WO2023108606A1 - 一种无轴血泵 - Google Patents
一种无轴血泵 Download PDFInfo
- Publication number
- WO2023108606A1 WO2023108606A1 PCT/CN2021/139110 CN2021139110W WO2023108606A1 WO 2023108606 A1 WO2023108606 A1 WO 2023108606A1 CN 2021139110 W CN2021139110 W CN 2021139110W WO 2023108606 A1 WO2023108606 A1 WO 2023108606A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- impeller
- outer ring
- ring
- wall
- bearing
- Prior art date
Links
- 239000008280 blood Substances 0.000 title claims abstract description 62
- 210000004369 blood Anatomy 0.000 title claims abstract description 62
- 238000004804 winding Methods 0.000 claims abstract description 56
- 239000004020 conductor Substances 0.000 claims abstract description 36
- 238000009434 installation Methods 0.000 claims description 21
- 238000000576 coating method Methods 0.000 claims description 7
- 239000011248 coating agent Substances 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 239000007787 solid Substances 0.000 claims description 5
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 claims description 3
- 229960002897 heparin Drugs 0.000 claims description 3
- 229920000669 heparin Polymers 0.000 claims description 3
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 3
- 230000017531 blood circulation Effects 0.000 abstract description 6
- 206010018910 Haemolysis Diseases 0.000 abstract description 4
- 230000008588 hemolysis Effects 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 12
- 210000004204 blood vessel Anatomy 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 239000002473 artificial blood Substances 0.000 description 7
- 206010019280 Heart failures Diseases 0.000 description 6
- 208000027418 Wounds and injury Diseases 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 208000007536 Thrombosis Diseases 0.000 description 4
- 230000015271 coagulation Effects 0.000 description 4
- 238000005345 coagulation Methods 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000009347 mechanical transmission Effects 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 208000024172 Cardiovascular disease Diseases 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 210000001124 body fluid Anatomy 0.000 description 2
- 239000010839 body fluid Substances 0.000 description 2
- 230000000747 cardiac effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 239000010687 lubricating oil Substances 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 238000002054 transplantation Methods 0.000 description 2
- 206010052337 Diastolic dysfunction Diseases 0.000 description 1
- 208000019724 Narrow chest Diseases 0.000 description 1
- 206010071436 Systolic dysfunction Diseases 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008081 blood perfusion Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 230000004087 circulation Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 230000005288 electromagnetic effect Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 210000000115 thoracic cavity Anatomy 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/20—Type thereof
- A61M60/205—Non-positive displacement blood pumps
- A61M60/216—Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller
- A61M60/226—Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller the blood flow through the rotating member having mainly radial components
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/40—Details relating to driving
- A61M60/403—Details relating to driving for non-positive displacement blood pumps
- A61M60/419—Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being permanent magnetic, e.g. from a rotating magnetic coupling between driving and driven magnets
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/40—Details relating to driving
- A61M60/465—Details relating to driving for devices for mechanical circulatory actuation
- A61M60/489—Details relating to driving for devices for mechanical circulatory actuation the force acting on the actuation means being magnetic
- A61M60/495—Electromagnetic force
Definitions
- the invention relates to the technical field of medical devices, in particular to a shaftless blood pump.
- Heart failure refers to the failure of the venous blood to fully discharge the heart due to cardiac systolic and/or diastolic dysfunction, resulting in blood stasis in the venous system and insufficient blood perfusion in the arterial system, resulting in cardiac circulation syndrome.
- Heart transplantation is the best treatment for end-stage heart failure, but it is facing an extreme shortage of donors.
- artificial heart assistance is an effective alternative to heart transplantation, and its future application prospects in the field of heart failure treatment are very broad.
- the artificial heart is one of the technologies with the highest technological content in cardiovascular medical devices. It is a high-end product with typical multidisciplinary cross-infiltration. It has gathered technologies in many fields including mechanical design, fluid mechanics optimization, microelectronic circuits, automatic control, and surgery.
- Artificial heart at least includes blood pump, driving device, monitoring system, energy source and other parts. Among them, the fluid power device, that is, the blood pump, determines the strength of the artificial heart's blood pumping ability, and is closely related to the short-term and long-term complications of the patient, so it is the most important.
- the existing blood pump is shown in Figure 1.
- the blood pump includes two parts: a pump body arranged in the sleeve body and a driving device arranged outside the pump body.
- the pump body includes a sleeve body, a leading vane, a rotor conductor and a rear guide vane.
- the hub of the front guide vane, rotor conductor and rear guide vane adopts an overall streamlined integrated design, and the central shaft drives the rotation of the impeller to drive the flow of blood.
- the existing blood pump has the following defects:
- the blood flow generated by the current blood pump is a rotating blood flow, so the front and rear guide vanes are required to ensure the straight flow of blood, which leads to an increase in the useless work of the blood pump;
- the current blood pump includes front and rear guide vanes, resulting in increased volume (especially increased pump length), increased weight, and limited installation locations. Even if it is installed in a narrow chest cavity, the burden on the body will increase;
- the purpose of the present invention is to provide a shaftless blood pump, which solves the problems of easy hemolysis and high noise in the existing blood pump, and has a simple structure and does not need front and rear guide vanes.
- the present invention realizes through following technical scheme:
- a shaftless blood pump comprising a support shell, a stator winding, a bearing outer ring, a bearing inner ring, a rotor conductor, an impeller, and an impeller outer ring;
- the bearing outer ring is arranged inside the support shell, the bearing inner ring is arranged inside the bearing outer ring, and the bearing inner ring can rotate inside the bearing outer ring;
- the impeller is arranged on the inner wall of the outer ring of the impeller, and the outer wall of the outer ring of the impeller is connected to the inner wall of the inner ring of the bearing.
- the rotor conductor is embedded in the inner ring of the bearing. There are multiple rotor conductors, and the plurality of rotor conductors are Evenly arranged in the inner ring of the bearing;
- the stator winding is arranged at a position corresponding to the outer wall of the supporting shell and the rotor conductor;
- the support shell, the bearing outer ring, the bearing inner ring and the impeller outer ring are coaxially arranged, and the support shell and the bearing outer ring respectively limit the axial ends of the impeller outer ring;
- the inner wall of the outer ring of the impeller is provided with a plurality of impellers, and the installation angle of the impeller gradually increases from the outside to the inside, that is, the closer the impeller is to the center of the circle, the larger the installation angle is, and the tip of the impeller faces the outer ring of the impeller. axis.
- the biggest improvement between the blood pump of the present invention and the existing blood pump is that there is no shaft, and the shaft mechanical transmission structure of the traditional motor is cancelled.
- the present invention fixes the impeller on the inner wall of the outer ring of the impeller, and the outer ring of the impeller supports the impeller. Function, the impeller rotates with the outer ring of the impeller, which realizes that the mechanical structure of the blood pump according to the present invention has undergone a fundamental change compared with the shafting structure (existing blood pump), and the power output mode is from the main engine-transmission shaft-impeller Directly simplified to the motor-impeller.
- the method of inserting the outer ring of the impeller into the inner ring of the bearing, the outer ring of the impeller and the inner ring of the bearing adopt an interference fit, and the two are tightly fixed, or welded, and pressure welding can be used, with or without heating
- pressure is applied to the assembly to cause plastic deformation or melting, and through recrystallization and diffusion, the atoms between the two separated surfaces of the outer wall surface of the impeller outer ring and the inner wall surface of the bearing inner ring are formed.
- 3. Use two-component epoxy resin or instant glue to fix the connection between the two), and power will be generated when the rotor conductor rotates.
- the power source of the rotor conductor in the support shell is the stator winding located on the outer ring of the bearing. When the stator winding is energized, a rotating magnetic field is generated to drive the rotor conductor and the entire internal rotor to rotate to achieve the purpose of driving blood.
- the supporting shell, stator winding and bearing outer ring of the present invention constitute the fixed part, and the combination of the bearing inner ring, rotor conductor, impeller and impeller outer ring constitutes the rotating part, and the present invention can make the blood only contact the impeller and the impeller outer ring
- the shaftless drive structure of the present invention solves the problems of mechanical wear, heat generation, hemolysis, coagulation, infection and high noise caused by the mechanical transmission of the existing shafting structure.
- the impeller of the present invention adopts the outer ring of the impeller to achieve positioning support, and the two ends of the outer ring of the impeller are respectively axially limited by the support shell and the outer ring of the bearing, which greatly improves the stability of the rotor rotation, even at low speeds.
- the rotor can also maintain good rotational stability, and the rotational center of the impeller will hardly deviate.
- the installation angle corresponding to a certain radius of the blade in the present invention specifically refers to the angle between the cylindrical surface made with this radius and the chord length of the section cut by the blade, and the bottom surface of the cylinder (rotational surface).
- the inner wall of the outer ring of the impeller of the present invention is provided with a plurality of impellers, and the tip of the impeller faces the axis of the outer ring of the impeller, forming an "inner ring (including the impeller, the outer ring of the impeller and the inner ring of the bearing) in the outer ring.” (the non-rotating part of the outer ring of the bearing) the unique structure of internal rotation”.
- the installation angle of the impeller (blade) of the present invention gradually increases from the outside to the inside, the installation angle of the outermost (the connection between the impeller and the outer ring of the impeller) is the smallest, and the installation angle of the innermost (the tip of the blade closest to the axis) is the largest.
- the blood flow velocity generated is dominated by the axial velocity, and the tangential velocity is extremely small, without the need for front and rear guide vanes.
- the shape of the planar expansion of the blade can be set to shapes such as rectangle, trapezoid, mixed trapezoid, and wing tip sweep.
- the installation angle of the blades at the outer ring of the impeller with a high tangential linear velocity should not be too large, and the installation angle is preferably 5°-45°.
- the outer wall of the bearing outer ring is in close contact with and fixed to the inner wall of the supporting shell, and the outer wall of the impeller outer ring is in tight contact with and fixed with the inner wall of the bearing inner ring.
- bearing outer ring and the bearing inner ring are connected in a solid self-lubricating manner.
- the invention adopts solid self-lubricating bearings to support the rotation of the impeller, does not need lubricating oil for maintenance, and has the advantages of small mechanical vibration, low noise and long service life.
- one end of the support shell extends radially inward to form a first annular baffle
- one end of the bearing outer ring extends radially inward to form a second annular baffle
- the first annular baffle and The second annular baffle is respectively used to limit the axial ends of the impeller outer ring.
- first annular baffle plate extends axially outward to form a first connection end
- second annular baffle plate extends axially outward to form a second connection end
- first connection end and the second The connecting end is used for connecting with the artificial blood vessel.
- first connection end and the outer wall of the first connection end are both provided with an annular groove, and also include a fixing ring matched with the annular groove.
- the fixing ring adopts a buckle-type metal ring, and the inner wall of the buckle-type metal ring is provided with an annular protrusion matching the annular groove; when the artificial blood vessel is connected to the first connection end and the second connection end , using a fixing ring to fix and seal the artificial blood vessel.
- stator windings there are multiple sets of stator windings, and the multiple sets of stator windings are uniformly arranged in the circumferential direction on the outer wall of the support shell, and each set is connected by wires, and the two sets of stator windings connected by the same wire are symmetrically distributed on the circumference, and the symmetrical The winding directions of the stator windings distributed on both sides of the circumference of the supporting shell are opposite.
- the same group of stator windings includes at least one magnetic core and is placed in a straight line. The wires in the same group of stator windings are wound on each magnetic core in the same direction to form a coil.
- the invention uses a coil to wind the magnetic core, and uses a plurality of magnetic cores to form a set of stator windings in parallel.
- the stator winding can generate a magnetic field passing through the magnetic core.
- Arranging multiple sets of stator windings outside the circumference can control the current of each set of stator windings to change according to the cosine law to generate a magnetic field that rotates with the axis, so that induced currents are generated in the rotor conductors, thereby driving the entire rotor to rotate.
- the invention can adjust the number of stator windings, rotor conductors and the number of magnetic cores in a single set of stator windings according to actual needs, so as to obtain proper torque and rotating speed.
- the inner wall of the outer ring of the impeller is provided with three impellers.
- the surface of the impeller and the inner wall of the outer ring of the impeller, as well as the parts of the outer ring of the bearing and the inner wall of the support shell that are in contact with blood are all provided with heparin coating or other coatings, which inhibit the formation of coagulation and thrombus, and greatly reduce the number of cells
- Adhesion or tantalum metal coating on the surface of the impeller forms a stable oxide film that does not react with body fluids.
- the present invention has the following advantages and beneficial effects:
- the present invention adopts shaftless drive, which has high energy efficiency; the traditional shaft pump needs to carry out main shaft transmission and speed change during the propulsion process, and its mechanical efficiency is generally about 50%, and its energy efficiency is even lower. Due to the direct electromagnetic drive and no redundant mechanical transmission module, the mechanical efficiency of the shaftless pump can be close to 80%.
- the shaftless pump propulsion technology adopted by the present invention has very small natural oscillation frequency and mechanical contact noise, which greatly reduces the interference to the human body.
- the present invention is not easy to cause hemolysis easily caused by heating; the contact area with blood is small, and almost all of them are moving structures, which avoids the deposition of coagulation substances and cells on the impeller and wall, so the blood pump thrombus of the present invention is used Formation risk reduction.
- the blood pump of the present invention takes up little space, is easy to install, and has little trauma, meeting the needs of implanting into the human body.
- the diameter of the connection position (the first connection end and the second connection end) can be flexibly adjusted according to the thickness of the blood vessel, and because the electromagnetic effect is used to drive the impeller to rotate, its power source is only the induced electromagnetic force between the stator winding and the rotor conductor. The effect is excellent, and the structural sealing problem existing between the traditional electric motor-transmission shaft-propeller is avoided.
- the structure of the blood pump described in the present invention is stable and reliable, and can maintain relatively stable rotation at any rotational speed; it can operate normally at any angle, and it will not be affected by the posture of the human body if it is implanted into the human body.
- FIG. 1 is a schematic structural diagram of an existing blood pump
- FIG. 2 is a schematic diagram of the overall structure of the blood pump of the present invention.
- Fig. 3 is a schematic structural view of the fixed part of the blood pump of the present invention.
- Fig. 4 is a schematic structural diagram of the rotating part of the blood pump of the present invention.
- Fig. 5 is a schematic diagram 1 of the structure of the impeller and the outer ring of the impeller;
- Fig. 6 is a schematic diagram 2 of the structure of the impeller and the outer ring of the impeller;
- Fig. 7 is a structural schematic diagram 1 of the impeller
- Fig. 8 is a structural schematic diagram II of the impeller
- Fig. 9 is a schematic structural view of a single impeller
- Fig. 10 is a schematic diagram showing that the plane expanded shape of the impeller is trapezoidal
- Figure 11 is a schematic diagram of the arrangement of the stator windings on the outer circumference of the support shell
- Fig. 12 is a structural schematic diagram of each set of stator windings
- Fig. 13 is a schematic diagram showing the current variation of the three sets of stator windings A, B, and C in Fig. 6 according to the cosine law.
- a shaftless blood pump includes a support shell 1, a stator winding 2, a bearing outer ring 3, a bearing inner ring 5, a rotor conductor 6, an impeller 7 and an impeller outer ring 8;
- the bearing outer ring 3 is arranged inside the support shell 1, the bearing inner ring 5 is arranged inside the bearing outer ring 3, and the bearing inner ring 5 can rotate inside the bearing outer ring 3;
- the impeller 7 is arranged on the inner wall of the impeller outer ring 8, the outer wall of the impeller outer ring 8 is connected to the inner wall of the bearing inner ring 5, the rotor conductor 6 is embedded in the bearing inner ring 5, and the rotor conductor 6 is provided with multiple A plurality of rotor conductors 6 are evenly arranged in the bearing inner ring 5 in the circumferential direction;
- the stator winding 2 is arranged at a position corresponding to the outer wall of the support shell 1 and the rotor conductor 6;
- the supporting shell 1 , the bearing outer ring 3 , the bearing inner ring 5 and the impeller outer ring 8 are arranged coaxially, and the supporting shell 1 and the bearing outer ring 3 respectively limit the axial ends of the impeller outer ring 8 .
- the outer wall of the bearing outer ring 3 is in close contact with and fixed to the inner wall of the support shell 1, and the outer wall of the impeller outer ring 8 is in tight contact with and fixed to the inner wall of the bearing inner ring 5; the bearing outer ring 3 is connected with the bearing inner ring 5 in a solid self-lubricating manner.
- one end of the support shell 1 extends radially inward to form a first annular baffle
- one end of the bearing outer ring 3 extends radially inward to form a second annular baffle.
- the first annular baffle and the second annular baffle are respectively used to limit the axial ends of the impeller outer ring 8.
- the first annular baffle extends outward along the axial direction to form a first connection end.
- the second annular baffle extends outward along the axial direction to form a second connection end; the first connection end and the outer wall of the first connection end are both provided with an annular groove, and also include a fixed ring 4 matching the annular groove;
- the fixed ring 4 is a buckle-type metal ring, and the inner wall of the buckle-type metal ring is provided with an annular protrusion matching the annular groove.
- the support shell 1 and the bearing outer ring 3 are circular boss structures with one end large and the other end small, and the large end of the bearing outer ring 3 can be inserted into the inside of the large end of the support shell 1, so
- the small ends of the support shell 1 and the bearing outer ring 3 are respectively the first connection end and the second connection end, which are used to connect with the artificial blood vessel.
- a fixed ring is used 4 The artificial blood vessel is fixed and sealed.
- the rotor conductor 6 is embedded in the inner side of the bearing inner ring 5 and arranged evenly and parallelly along the central axis.
- the impeller 7 and the impeller outer ring 8 are of an integrated structure, so that the outer wall of the impeller outer ring 8 is in close contact with the inner wall of the bearing inner ring 5 without leakage; the stator
- the winding 2 is fixed on the outer wall of the support shell 1, and the rotating part (bearing inner ring 5, impeller 7 and impeller outer ring 8) is put into the bearing outer ring 3, and then the support shell 1 is set on the outside of the bearing outer ring 3, so that the support shell 1
- the inner wall is in close contact with the outer wall of the bearing outer ring 3 without leakage.
- the solid self-lubricating method is adopted between the bearing inner ring 5 and the bearing outer ring 3, and no lubricating oil is needed for lubrication; this connection enables the rotating part to rotate freely in the bearing outer ring 3, and the bearing outer ring 3 and the support shell 1 rotate The axial position of the part is limited; and the rotating part between the bearing outer ring 3 and the bearing inner ring 5 is isolated from the blood.
- stator winding 2 is energized to generate a magnetic field to make the rotor conductor 6 rotate, thereby driving the impeller 7 to rotate.
- Embodiment 1 There are multiple sets of stator windings 2, and the multiple sets of stator windings 2 are evenly arranged in the circumferential direction on the outer wall of the support shell 1. Each group is connected by wires, and the two sets of stator windings connected by the same wire The windings 2 are symmetrically distributed on the circumference, and the winding directions of the stator windings 2 symmetrically distributed on both sides of the supporting shell 1 are opposite.
- the same group of stator windings 2 includes at least one magnetic core and is placed in a straight line.
- the same group of stator winding wires are in the Coils are wound on each core in the same direction.
- stator windings 2 are evenly arranged along the outer circumference of the support shell 1 , marked as groups A, B, C, A', B', and C'.
- Group A is connected with wires of group A'
- group B is connected with wires of group B'
- group C is connected with wires of group C'.
- the two sets of stator windings connected by wires are distributed symmetrically on the circumference, and the three connection terminals A, B, and C can be connected in a ⁇ or Y shape.
- Each set of stator windings is shown in FIG. 12 , including: a first magnetic core 201 , a second magnetic core 202 , a third magnetic core 203 , and a fourth magnetic core 204 .
- the first magnetic core 201, the second magnetic core 202, the third magnetic core 203, and the fourth magnetic core 204 are arranged in a straight line, and the wires are wound into coils in the same direction on each magnetic core, that is, after each group of coils is energized produce a magnetic field in the same direction.
- the winding direction of the stator winding 2 symmetrically distributed on both sides of the circumference of the support shell 1 is opposite.
- stator winding coils of groups A, B, and C are all wound clockwise; the stator windings of groups A', B', and C' The winding coils are all wound counterclockwise.
- a magnetic field passing through the center of the circle is generated.
- a center-down magnetic field is generated; when the coil is wound counterclockwise around the magnetic core, a center-up magnetic field is generated.
- the currents of the three sets of stator windings A, B, and C change according to the cosine law, and the phases are sequentially different by 120°.
- the current in Group A is at its maximum, it is the timing zero point, as shown in Figure 13.
- the 6 parts of the rotor conductor are embedded in the inner ring 5 of the bearing with 6 conductor bars evenly distributed in a squirrel-cage structure, and the two ends are respectively short-circuited using a short-circuit ring.
- the rotor conductor conductor with current is subjected to electromagnetic force under the action of the magnetic field to form electromagnetic torque, which drives the bearing inner ring 5 to rotate; the bearing inner ring 5 is connected to the impeller Outer ring 8 and impeller 7 rotate together.
- Embodiment 1 is based on Embodiment 1, the inner wall of the impeller outer ring 8 is provided with a plurality of impellers 7, and the tip of the impeller 7 faces the axis of the impeller outer ring 8, forming an "inner ring" (comprising impeller, impeller The outer ring and the bearing inner ring) rotate inside the outer ring (the non-rotating part of the bearing outer ring)".
- the installation angle of the impeller 7 is gradually increasing from the outside to the inside, that is, the closer the impeller 7 is to the center of the circle (the smaller the radius), the larger the installation angle, and the installation angle corresponding to a certain radius of the blade specifically refers to the The angle between the chord length of the cross-section cut by the cylindrical surface and the blade and the bottom surface of the cylinder (rotational surface); The tip) has the largest installation angle.
- the larger the installation angle the greater the resistance the blade receives. Therefore, the installation angle at the outer ring of the blade with a higher peripheral speed should not be too large. suitable.
- the impeller 7 adopts arc-shaped blades, and the planar development shape of the blades can be set to rectangle, trapezoid, mixed trapezoid and wingtip sweep.
- Figure 10 shows the shape of the impeller It is a schematic diagram of a trapezoidal unfolded shape, and its blade rotation plane is a plane perpendicular to the axis. The closer the blade is to the center of the circle, the smaller its peripheral speed, that is, a larger installation angle is required to generate sufficient impulse to the blood.
- the installation angle of the blade (that is, the angle between the chord length of the blade element and the rotating surface) increases from the outside to the inside, that is, the closer the blade is to the center of the circle, the larger the installation angle is.
- the rotor conductor 6 drives the impeller to rotate clockwise, and the inclined face of the blade generates axial pressure on the blood, and transmits kinetic energy to the blood in the direction of blood flow to generate an axially induced velocity, so as to realize the function of transporting blood.
- the axially induced velocity for the blood it also produces a tangentially induced velocity, which is in the same direction as the rotation direction of the blade.
- Embodiment 1 is based on any one of Embodiment 1-Embodiment 3.
- the surface of the impeller 7 and the inner wall of the impeller outer ring 8, as well as the parts of the bearing outer ring 3 and the inner wall of the support shell 1 that are in contact with blood are all provided with heparin coating. layer to avoid coagulation and thrombus, or tantalum metal coating to form a stable oxide film to avoid reaction with body fluids.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Heart & Thoracic Surgery (AREA)
- Cardiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Anesthesiology (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Mechanical Engineering (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- External Artificial Organs (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
一种无轴血泵,包括支撑壳(1)、定子绕组(2)、轴承外圈(3)、轴承内圈(5)、转子导体(6)、叶轮(7)和叶轮外圈(8);轴承外圈(3)设置在支撑壳(1)内侧,轴承内圈(5)设置在轴承外圈(3)内侧,轴承内圈(5)能够在轴承外圈(3)内侧转动;叶轮(7)设置在叶轮外圈(8)内壁上,叶轮外圈(8)的外壁与轴承内圈(5)的内壁连接,转子导体(6)嵌入轴承内圈(5)内;定子绕组(2)设置在支撑壳(1)外壁与转子导体(6)相对应的位置;支撑壳(1)、轴承外圈(3)、轴承内圈(5)和叶轮外圈(8)同轴设置,且支撑壳(1)和轴承外圈(3)分别对叶轮外圈(8)的轴向两端进行限位;叶轮(7)的安装角自外向内呈逐渐增大趋势,且叶轮(7)的尖端朝向叶轮外圈(8)的轴心。该无轴血泵解决了现有血泵易产生溶血、噪音大的问题,且结构简单,产生的血流仅有前向速度,旋转速度极小,无需前后导叶。
Description
本发明涉及医疗器械技术领域,具体涉及一种无轴血泵。
随着我国人口老龄化加剧以及人们生活习惯的改变,心血管疾病发病率剧增。而几乎所有的心血管疾病最终都会导致心力衰竭的发生。心力衰竭简称心衰,是指由于心脏的收缩功能和(或)舒张功能发生障碍,不能将静脉回心血量充分排出心脏,导致静脉系统血液淤积,动脉系统血液灌注不足,从而引起心脏循环障碍症候群。心脏移植是终末心衰治疗的最佳方案,但面临着供体极度短缺的问题。
人工心脏辅助为一种治疗心衰的手段,是心脏移植术有效的替代方案,在心力衰竭治疗领域未来的应用前景非常广阔。人工心脏是心血管医疗器械中科技含量最高的技术之一,属于典型多学科交叉渗透的高端产品,聚集了包括机械设计、流体力学优化、微电子电路、自动化控制、外科学等多领域技术,人工心脏至少包括血泵、驱动装置、监控系统、能源等部分。其中流体动力装置,即血泵,决定着人工心脏泵血能力的强弱,并与患者短期和长期并发症密切相关,因此最为重要。
现有的血泵如图1所示,该血泵包括设置在套体内的泵体和设置在泵体外的驱动装置两部分,所述泵体包括套体、前导叶、转子导体和后导叶,前导叶、转子导体和后导叶的轮毂采用整体流线形一体化设计,利用中心轴带动叶轮的旋转驱动血液的流动。
现有的血泵存在以下缺陷:
1)、目前的血泵产生的血流为旋转血流,因此需要前后导叶,才能保证血液的直线流动,这导致血泵的无用功增加;
2)目前的血泵包含前后导叶,导致体积加大(特别是泵长度增加),重量增加,安装位置受限。即使安装于狭小的胸腔后,机体负担加大;
3)安装时使用较长的人工血管、以及复杂的血泵结构,使血液与异物接触面大,容易出现血栓形成、感染等并发症;
4)传动轴在转动输出动力过程中不可避免的机械磨损和耦合振荡会产生相当大的噪音。
发明内容
本发明的目的在于提供一种无轴血泵,解决现有血泵易产生溶血、噪音大的问题,且结构简单,无需前后导叶。
本发明通过下述技术方案实现:
一种无轴血泵,包括支撑壳、定子绕组、轴承外圈、轴承内圈、转子导体、叶轮和叶轮外圈;
所述轴承外圈设置在支撑壳内侧,所述轴承内圈设置在轴承外圈内侧,所述轴承内圈能够在轴承外圈内侧转动;
所述叶轮设置在叶轮外圈内壁上,所述叶轮外圈的外壁与轴承内圈的内壁连接,所述转子导体嵌入轴承内圈内,所述转子导体设置有多个,多个转子导体呈均匀周向布置在轴承内圈内;
所述定子绕组设置在支撑壳外壁与转子导体相对应的位置;
所述支撑壳、轴承外圈、轴承内圈和叶轮外圈同轴设置,且所述支撑壳和轴承外圈分别对叶轮外圈的轴向两端进行限位;
所述叶轮外圈的内壁设置有多个叶轮,所述叶轮的安装角自外向内呈逐渐增大趋势,即叶轮越接近圆心位置的安装角越大,且所述叶轮的尖端朝向叶轮外圈的轴心。
本发明所述血泵与现有血泵最大的改进在于无轴,取消了传统电机的轴部机械传动结构,本发明将叶轮固定在叶轮外圈内壁,所述叶轮外圈对叶轮起到支承作用,叶轮随着叶轮外圈转动,实现了本发明所述血泵的机械结构与轴系结构(现有血泵)相比发生了根本性的改变,动力输出模式从主机-传动轴-叶轮直接简化为电动机-叶轮。
本发明所述血泵的推进方式将叶轮与支撑壳内的转子导体相固定(叶轮外圈与轴承内圈之间的连接方式包括以下三种:1.二者可以使用模具一次成型,或使用精密车床制作;2.将叶轮外圈嵌入轴承内圈的方式,叶轮外圈与轴承内圈采取过盈配合,两者进行紧密固定,或焊接,可采用压焊的方式,在加热或不加热状态下,对组合体之间施加压力,使其产生塑性变形或融化,并通过再结晶和扩散等作用,使叶轮外圈外壁表面与轴承内圈内壁表面这两个分离表面间的原子间形成金属键而连接,3.在两者的连接处使用双组份环氧树脂或瞬干胶水进行固定),当转子导体旋转时即产生动力。支撑壳内的转子导体动力来源是位于轴承外圈的定子绕组,当定子绕组通电产生旋转的磁场带动转子导体及整个内部转子旋转,以达到驱动血液的目的。
本发明的支撑壳、定子绕组和轴承外圈构成固定部分,所述轴承内圈、转子导体、叶轮和叶轮外圈的组合体构成转动部分,本发明能够使血液仅接触到叶轮和叶轮外圈内壁,将血液与叶轮外圈以外的部分相隔离。
因此,本发明的无轴驱动式结构解决了现有轴系结构的机械传动易造成机械磨损、发热、溶血、凝血、感染、噪音大的问题。
并且,本发明的叶轮采用叶轮外圈实现定位支承,且叶轮外圈的两端分别通过支撑壳和 轴承外圈进行轴向限位,极大改善了转子转动的稳定性,即使在低速状态下转子也能够保持较好的转动稳定性,叶轮的转动中心也几乎不会发生偏移。
本发明所述叶片某一半径处对应的安装角具体是指,以该半径作的圆柱面与叶片所截得剖面的弦长与圆柱底面(旋转面)的夹角。
并且,本发明叶轮外圈的内壁设置有多个叶轮,所述叶轮的尖端朝向叶轮外圈的轴心,形成“内圈圆环(包括叶轮、叶轮外圈及轴承内圈)在外圈圆环(轴承外圈不转动的部分)内部旋转”的独特结构。本发明的叶轮(桨叶)从外到内安装角逐渐增大,最外部(叶轮与叶轮外圈连接处)的安装角最小,最内部(最接近轴心处的叶片尖端)安装角最大。这种浆叶设计后的效果:产生的血流速度以轴向速度为主,切向速度极小,无需前后导叶。
桨叶的平面展开形状可以设置为矩形、梯形、混合梯形、翼尖后掠形等形状。
另一方面,安装角越大,叶片所受到的阻力越大,所以切向线速度较大的叶轮外圈处的叶片安装角不宜过大,安装角优选为5°~45°。
进一步地,轴承外圈的外壁与支撑壳的内壁紧密接触并固定,所述叶轮外圈的外壁与轴承内圈的内壁紧密接触并固定。
进一步地,轴承外圈与轴承内圈之间采用固体自润滑方式连接。
本发明采用固体自润滑轴承支撑叶轮旋转,无需润滑油进行保养,具有机械振动小,噪音低、寿命长等优点。
进一步地,支撑壳的一端沿着径向向内延伸形成第一环形档板,所述轴承外圈的一端沿着径向向内延伸形成第二环形档板,所述第一环形档板和第二环形档板分别用于对叶轮外圈的轴向两端进行限位。
进一步地,第一环形档板沿着轴向向外延伸形成第一连接端,所述第二环形档板沿着轴向向外延伸形成第二连接端,所述第一连接端和第二连接端用于与人工血管连接。
进一步地,第一连接端和第一连接端的外壁均设置有环形槽,还包括与环形槽相配合的固定圈。
进一步地,固定圈为采用卡扣式金属圈,所述采用卡扣式金属圈的内壁设置有与环形槽相配合的环形凸起;当人工血管接上第一连接端和第二连接端时,采用固定圈对人工血管进行固定并密封。
进一步地,定子绕组设置有多组,多组定子绕组在支撑壳的外壁呈周向均匀布置,每组之间采用导线进行连接,同一导线相连的两组定子绕组在圆周上对称分布,且对称分布在支撑壳圆周两侧的定子绕组的导线缠绕方向相反,同一组定子绕组至少包括一个磁芯并呈直线放置,同一组定子绕组中导线在每一磁芯上以相同方向缠绕成线圈。
本发明采用线圈缠绕磁芯,并使用多个磁芯并列组成一组定子绕组,线圈通电时可使得定子绕组产生穿过磁芯的磁场。在圆周外布置多组定子绕组,可控制每组定子绕组的电流按余弦规律变化产生随轴线转动的磁场,使得转子导体中产生感应电流,以此带动整个转子转动。
本发明可根据实际需求调整定子绕组、转子导体的数目和单组定子绕组内磁芯的数目,以获取合适的扭矩和转速。
进一步地,叶轮外圈的内壁设置有3个叶轮。
进一步地叶轮的表面和叶轮外圈的内壁,以及轴承外圈和支撑壳的内壁与血液接触的部分均设置有肝素涂层或其他涂层,抑制了凝血及血栓的形成,并大幅度减少细胞在叶轮表面粘附,或钽金属镀层,形成稳定的氧化膜,不与体液发生反应。
本发明与现有技术相比,具有如下的优点和有益效果:
1、本发明采用无轴驱动,能量效率较高;传统的有轴泵推在推进过程中需要进行主轴传动和变速,其机械效率一般为50%左右,能量效率甚至更低。无轴泵推由于采用直接电磁驱动且无多余的机械传动模块,其机械效率就可以接近80%。
2、本发明采用的无轴泵推动技术相比传统的轴系结构,其本身的固有振荡频率和机械接触噪音非常之小,极大地减小了对人体的干扰。
3、本发明不易导致因发热容易产生的溶血;与血液的接触面积较小,且几乎均为运动结构,避免了凝血物质和细胞在叶轮和壁的沉积,因此采用本发明所述血泵血栓形成风险减少。
4、本发明所述血泵占用空间小,血泵安装简单,创伤小,满足植入人体的需求。可灵活根据血管粗细来调整连接位置(第一连接端和第二连接端)的直径,且由于应用电磁效应驱动叶轮转动,其动力来源仅为定子绕组与转子导体之间的感应电磁力,密封效果极好,避免了传统的电动机-传动轴-螺旋桨之间存在的结构密封问题。
5、本发明所述血泵结构稳定、可靠,在任何转速状态下均能保持相对稳定旋转;在任意角度放置均可正常运行,如植入人体使用也不受人体姿势影响。
此处所说明的附图用来提供对本发明实施例的进一步理解,构成本申请的一部分,并不构成对本发明实施例的限定。在附图中:
图1为现有血泵的结构示意图;
图2为本发明血泵的整体结构示意图;
图3为本发明血泵固定部分的结构示意图;
图4为本发明血泵转动部分的结构示意图;
图5为叶轮和叶轮外圈的结构是示意图一;
图6为叶轮和叶轮外圈的结构是示意图二;
图7为叶轮的结构示意图一;
图8为叶轮的结构示意图二;
图9为单个叶轮的结构示意图;
图10为叶轮的平面展开形状为梯形的示意图;
图11为定子绕组在支撑壳外圆周上布置示意图;
图12为每组定子绕组的结构示意图;
图13为图6中A、B、C三组定子绕组的电流按余弦规律变化示意图。
附图中标记及对应的零部件名称:
1-支撑壳,2-定子绕组,3-轴承外圈,4-固定圈,5-轴承内圈,6-转子导体,7-叶轮,8-叶轮外圈,201-第一磁芯,202-第二磁芯,203-第三磁芯,204-第四磁芯。
为使本发明的目的、技术方案和优点更加清楚明白,下面结合实施例和附图,对本发明作进一步的详细说明,本发明的示意性实施方式及其说明仅用于解释本发明,并不作为对本发明的限定。
实施例1:
如图2-图13所示,一种无轴血泵,包括支撑壳1、定子绕组2、轴承外圈3、轴承内圈5、转子导体6、叶轮7和叶轮外圈8;
所述轴承外圈3设置在支撑壳1内侧,所述轴承内圈5设置在轴承外圈3内侧,所述轴承内圈5能够在轴承外圈3内侧转动;
所述叶轮7设置在叶轮外圈8内壁上,所述叶轮外圈8的外壁与轴承内圈5的内壁连接,所述转子导体6嵌入轴承内圈5内,所述转子导体6设置有多个,多个转子导体6呈周向均匀布置在轴承内圈5内;
所述定子绕组2设置在支撑壳1外壁与转子导体6相对应的位置;
所述支撑壳1、轴承外圈3、轴承内圈5和叶轮外圈8同轴设置,且所述支撑壳1和轴承外圈3分别对叶轮外圈8的轴向两端进行限位。
在本实施例中,所述轴承外圈3的外壁与支撑壳1的内壁紧密接触并固定,所述叶轮外圈8的外壁与轴承内圈5的内壁紧密接触并固定;所述轴承外圈3与轴承内圈5之间采用固体自润滑方式连接。
在本实施例中,所述支撑壳1的一端沿着径向向内延伸形成第一环形档板,所述轴承外 圈3的一端沿着径向向内延伸形成第二环形档板,所述第一环形档板和第二环形档板分别用于对叶轮外圈8的轴向两端进行限位所述第一环形档板沿着轴向向外延伸形成第一连接端,所述第二环形档板沿着轴向向外延伸形成第二连接端;所述第一连接端和第一连接端的外壁均设置有环形槽,还包括与环形槽相配合的固定圈4;所述固定圈4为采用卡扣式金属圈,所述采用卡扣式金属圈的内壁设置有与环形槽相配合的环形凸起。
即在本实施例中,所述支撑壳1和轴承外圈3均为一端大一端小的圆形凸台结构,所述轴承外圈3的大端能够插入支撑壳1的大端内侧,所述支撑壳1和轴承外圈3的小端分别为第一连接端和第二连接端,用于与人工血管连接,当人工血管接上第一连接端和第二连接端时,采用固定圈4对人工血管进行固定并密封。
本实施例所述血泵的装配过程如下:
转子导体6嵌入轴承内圈5内侧,沿圆心轴均匀平行布置,叶轮7与叶轮外圈8为一体式结构,使叶轮外圈8的外壁与轴承内圈5的内壁紧密接触不泄露;将定子绕组2固定在支撑壳1外壁,将转动部分(轴承内圈5、叶轮7与叶轮外圈8)放入轴承外圈3后,再将支撑壳1套在轴承外圈3外侧,使支撑壳1内壁与轴承外圈3的外壁紧密接触不泄露。轴承内圈5与轴承外圈3之间采用固体自润滑方式,无需润滑油等进行润滑;如此连接使得转动部分能在轴承外圈3内自由转动,且轴承外圈3与支撑壳1对转动部分的轴向位置进行限制;并将轴承外圈3和轴承内圈5之间的转动部分与血液相隔离。
本实施例通过定子绕组2通电产生磁场使得转子导体6转动,进而带动叶轮7转动。
实施例2:
本实施例基于实施例1,所述定子绕组2设置有多组,多组定子绕组2在支撑壳1的外壁呈周向均匀布置,每组之间采用导线连接,同一导线相连的两组定子绕组2在圆周上对称分布,且对称分布在支撑壳1圆周两侧的定子绕组2的导线缠绕方向相反,同一组定子绕组2至少包括一个磁芯,并呈直线放置,同一组定子绕组导线在每一磁芯上以相同方向缠绕成线圈。
在本实施例中,如图11所示,沿着支撑壳1的外圆周平均布置6组定子绕组2,标记为A、B、C、A’、B’、C’组。A组与A’组导线相连,B组与B’组导线相连,C组与C’组导线相连。导线相连的两组定子绕组在圆周上对称分布,A,B,C三个连接端可以以△型或者Y型进行连接。
每组定子绕组均如图12所示,包括:第一磁芯201、第二磁芯202、第三磁芯203、第四磁芯204。第第一磁芯201、第二磁芯202、第三磁芯203、第四磁芯204成一条直线布置,导线在每一磁芯上以相同方向缠绕成线圈,即每组线圈在通电后产生相同方向的磁场。且对 称分布在支撑壳1圆周两侧的定子绕组2的导线缠绕方向相反,如图4所示,A、B、C组定子绕组线圈均顺时针缠绕;A’、B’、C’组定子绕组线圈均逆时针缠绕。当6组定子绕组均通电后,产生一穿过圆心的磁场。当线圈绕磁芯顺时针缠绕时,则产生一中心向下的磁场;当线圈绕磁芯逆时针缠绕时,则产生一中心向上的磁场。
A、B、C三组定子绕组的电流按余弦规律变化,并相位依次相差120°。A组电流最大时为计时零点,如图13所示。
转子导体6部分以鼠笼式结构以6根导体条平均分布嵌入轴承内圈5,使用短路环将两端分别进行短接。当A、B、C三组定子绕组的电流按余弦规律变化,穿过圆心的磁场绕圆心进行顺时针旋转。在旋转过程中,磁场切割转子导体导体产生感应电动势及感应电流,拥有电流的转子导体导体在磁场作用下受电磁力作用,形成电磁转矩,驱动轴承内圈5旋转;轴承内圈5连通叶轮外圈8及叶轮7一起转动。
实施例3:
本实施例基于实施例1,所述叶轮外圈8的内壁设置有多个叶轮7,且所述叶轮7的尖端朝向叶轮外圈8的轴心,形成“内圈圆环(包括叶轮、叶轮外圈及轴承内圈)在外圈圆环(轴承外圈不转动的部分)内部旋转”。
所述叶轮7的安装角自外向内呈逐渐增大趋势,即叶轮7越接近圆心位置(半径越小)的安装角越大,叶片某一半径处对应的安装角具体是指,以该半径作的圆柱面与叶片所截得剖面的弦长与圆柱底面(旋转面)的夹角;最外部(叶轮7与叶轮外圈8连接出的安装角最小,最内部(最接近轴心处的尖端)安装角最大,另一方面,安装角越大,叶片所受到的阻力越大,所以圆周速度较大的叶片外圈处的安装角不宜过大一般设置为5°~45°范围内较为合适。
在本实施例中,如图5-10所示,叶轮7采用圆弧形叶片,其桨叶的平面展开形状可以设置为矩形、梯形、混合梯形和翼尖后掠形,图10为叶轮的平面展开形状为梯形的示意图,其叶片旋转面为垂直于轴线的平面。叶片越接近圆心处,其圆周速度越小,即需要更大的安装角能对血液产生足够的冲量。叶片的安装角(即叶片叶素弦长与旋转面的夹角)自外向内增大,即叶片越接近圆心位置的安装角越大。
转子导体6带动叶轮顺时针旋转,叶片的倾斜面对血液产生轴向的压力,在血液流动方向给血液以冲量来传递动能产生轴向诱导速度,以实现输送血液的功能。而除了对血液产生轴向诱导速度外还产生切向诱导速度,其方向与叶片旋转方向相同,两者合成作用表现为水流经过叶片旋转面后有扭转现象。得血液在经过叶片旋转面后以螺旋状进行有旋流动,之后受流体间粘性力与流体与周壁间附着力影响,其血液周向速度逐渐减小,血液流动趋于稳定。
实施例4:
本实施例基于实施例1-实施例3任一项,所述叶轮7的表面和叶轮外圈8的内壁,以及轴承外圈3和支撑壳1的内壁与血液接触的部分均设置有肝素涂层,避免产生凝血及血栓,或钽金属镀层,形成稳定的氧化膜,避免与体液发生反应。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (10)
- 一种无轴血泵,其特征在于,包括支撑壳(1)、定子绕组(2)、轴承外圈(3)、轴承内圈(5)、转子导体(6)、叶轮(7)和叶轮外圈(8);所述轴承外圈(3)设置在支撑壳(1)内侧,所述轴承内圈(5)设置在轴承外圈(3)内侧,所述轴承内圈(5)能够在轴承外圈(3)内侧转动;所述叶轮(7)设置在叶轮外圈(8)内壁上,所述叶轮外圈(8)的外壁与轴承内圈(5)的内壁连接,所述转子导体(6)嵌入轴承内圈(5)内;所述定子绕组(2)设置在支撑壳(1)外壁与转子导体(6)相对应的位置;所述支撑壳(1)、轴承外圈(3)、轴承内圈(5)和叶轮外圈(8)同轴设置,且所述支撑壳(1)和轴承外圈(3)分别对叶轮外圈(8)的轴向两端进行限位;所述叶轮外圈(8)的内壁设置有多个叶轮(7),所述叶轮(7)的安装角自外向内呈逐渐增大趋势,且所述叶轮(7)的尖端朝向叶轮外圈(8)的轴心。
- 根据权利要求1所述的一种无轴血泵,其特征在于,所述轴承外圈(3)的外壁与支撑壳(1)的内壁紧密接触,所述叶轮外圈(8)的外壁与轴承内圈(5)的内壁紧密接触。
- 根据权利要求1所述的一种无轴血泵,其特征在于,所述轴承外圈(3)与轴承内圈(5)之间采用固体自润滑方式连接。
- 根据权利要求1所述的一种无轴血泵,其特征在于,所述支撑壳(1)的一端沿着径向向内延伸形成第一环形档板,所述轴承外圈(3)的一端沿着径向向内延伸形成第二环形档板,所述第一环形档板和第二环形档板分别用于对叶轮外圈(8)的轴向两端进行限位。
- 根据权利要求4所述的一种无轴血泵,其特征在于,所述第一环形档板沿着轴向向外延伸形成第一连接端,所述第二环形档板沿着轴向向外延伸形成第二连接端。
- 根据权利要求5所述的一种无轴血泵,其特征在于,所述第一连接端和第一连接端的外壁均设置有环形槽,还包括与环形槽相配合的固定圈(4)。
- 根据权利要求6所述的一种无轴血泵,其特征在于,所述固定圈(4)为采用卡扣式金属圈,所述采用卡扣式金属圈的内壁设置有与环形槽相配合的环形凸起。
- 根据权利要求1所述的一种无轴血泵,其特征在于,所述定子绕组(2)设置有多组,多组定子绕组(2)在支撑壳(1)的外壁呈周向均匀布置,每组之间采用导线连接,同一导线相连的两组定子绕组(2)在圆周上对称分布,且对称分布在支撑壳(1)圆周两侧的定子绕组(2)的导线缠绕方向相反,同一组定子绕组(2)至少包括一个磁芯,多个磁芯呈直线放置,导线在每一磁芯上以相同方向缠绕成线圈。
- 根据权利要求1所述的一种无轴血泵,其特征在于,所述叶轮外圈(8)的内壁设置有3个叶轮(7)。
- 根据权利要求1-9任一项所述的一种无轴血泵,其特征在于,所述叶轮(7)的表面和叶轮外圈(8)的内壁,以及轴承外圈(3)和支撑壳(1)的内壁与血液接触的部分均设置有肝素涂层或钽金属镀层。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2021/139110 WO2023108606A1 (zh) | 2021-12-17 | 2021-12-17 | 一种无轴血泵 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2021/139110 WO2023108606A1 (zh) | 2021-12-17 | 2021-12-17 | 一种无轴血泵 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023108606A1 true WO2023108606A1 (zh) | 2023-06-22 |
Family
ID=86775295
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/139110 WO2023108606A1 (zh) | 2021-12-17 | 2021-12-17 | 一种无轴血泵 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023108606A1 (zh) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5695471A (en) * | 1996-02-20 | 1997-12-09 | Kriton Medical, Inc. | Sealless rotary blood pump with passive magnetic radial bearings and blood immersed axial bearings |
US20050135942A1 (en) * | 2003-09-25 | 2005-06-23 | Medforte Research Foundation | Streamlined unobstructed one-pass axial-flow pump |
US20060122456A1 (en) * | 2004-12-03 | 2006-06-08 | Larose Jeffrey A | Wide blade, axial flow pump |
CN103083742A (zh) * | 2013-01-18 | 2013-05-08 | 江苏大学 | 一种低血损的微型轴流式人工心脏 |
US20150231318A1 (en) * | 2012-08-29 | 2015-08-20 | Oran Bulent | Trans arterial permanent heart assist device with double stators |
CN111588928A (zh) * | 2020-06-14 | 2020-08-28 | 中国医学科学院阜外医院 | 一种血液泵送装置 |
CN112316297A (zh) * | 2020-11-03 | 2021-02-05 | 四川大学华西医院 | 一种中空心脏辅助泵 |
-
2021
- 2021-12-17 WO PCT/CN2021/139110 patent/WO2023108606A1/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5695471A (en) * | 1996-02-20 | 1997-12-09 | Kriton Medical, Inc. | Sealless rotary blood pump with passive magnetic radial bearings and blood immersed axial bearings |
US20050135942A1 (en) * | 2003-09-25 | 2005-06-23 | Medforte Research Foundation | Streamlined unobstructed one-pass axial-flow pump |
US20060122456A1 (en) * | 2004-12-03 | 2006-06-08 | Larose Jeffrey A | Wide blade, axial flow pump |
US20150231318A1 (en) * | 2012-08-29 | 2015-08-20 | Oran Bulent | Trans arterial permanent heart assist device with double stators |
CN103083742A (zh) * | 2013-01-18 | 2013-05-08 | 江苏大学 | 一种低血损的微型轴流式人工心脏 |
CN111588928A (zh) * | 2020-06-14 | 2020-08-28 | 中国医学科学院阜外医院 | 一种血液泵送装置 |
CN112316297A (zh) * | 2020-11-03 | 2021-02-05 | 四川大学华西医院 | 一种中空心脏辅助泵 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2637605C1 (ru) | Микроаксиальный насос поддержки кровообращения (варианты) | |
CN108175884B (zh) | 心室辅助泵 | |
JP3725027B2 (ja) | 流体力学的に懸架されたインペラを有するロータリポンプ | |
US10159773B2 (en) | Blood pump | |
EP3037118B1 (en) | Blood pump | |
US6176848B1 (en) | Intravascular blood pump | |
US20070004959A1 (en) | Blood pump with frusto-conical bearing structure | |
EP3313471A1 (en) | Ventricular assist devices having a hollow rotor and methods of use | |
JPH08504490A (ja) | 無シールロトダイナミックポンプ | |
CN116328176A (zh) | 一种导管泵电机及其导管泵 | |
CN112206409B (zh) | 一种磁悬浮混流心脏泵 | |
WO2023108606A1 (zh) | 一种无轴血泵 | |
CN209033311U (zh) | 心室辅助泵 | |
CN217593604U (zh) | 基于磁驱动的无轴血泵 | |
CN114288547A (zh) | 一种无轴血泵 | |
CN115445078A (zh) | 一种微型血泵及制造方法 | |
CN210812927U (zh) | 轴向磁力卸载式轴流泵心脏辅助装置 | |
CN219251390U (zh) | 一种搏动式磁悬浮轴流血泵 | |
CN218940913U (zh) | 一种用于人工心脏泵的无槽永磁电机及人工心脏泵 | |
CN114159694B (zh) | 一种磁悬浮脉动轴流式心脏泵 | |
CN107715203A (zh) | 一种单支点磁动力驱动式离心泵 | |
CN116531654B (zh) | 一种微型泵 | |
CN107670135A (zh) | 一种单支点磁动力驱动式离心泵及其驱动组件 | |
CN208943032U (zh) | 一种单支点磁动力驱动式离心泵及其驱动组件 | |
CN112587793A (zh) | 一种使用滚珠轴承的离心式心脏泵 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21967740 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |