WO2024046214A1 - 一种主动格栅与冷却风扇协同控制方法及装置 - Google Patents

一种主动格栅与冷却风扇协同控制方法及装置 Download PDF

Info

Publication number
WO2024046214A1
WO2024046214A1 PCT/CN2023/114790 CN2023114790W WO2024046214A1 WO 2024046214 A1 WO2024046214 A1 WO 2024046214A1 CN 2023114790 W CN2023114790 W CN 2023114790W WO 2024046214 A1 WO2024046214 A1 WO 2024046214A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling fan
conditioning system
air conditioning
opening
pressure
Prior art date
Application number
PCT/CN2023/114790
Other languages
English (en)
French (fr)
Inventor
郑淳允
陈星龙
Original Assignee
广州汽车集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州汽车集团股份有限公司 filed Critical 广州汽车集团股份有限公司
Publication of WO2024046214A1 publication Critical patent/WO2024046214A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/08Air inlets for cooling; Shutters or blinds therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/88Optimized components or subsystems, e.g. lighting, actively controlled glasses

Definitions

  • the invention belongs to the technical field of intelligent connected vehicles, and specifically relates to a method and device for collaborative control of an active grille and a cooling fan.
  • the existing active grille opening is usually directly determined based on the on-state of the air conditioner, and the cooling fan duty cycle is simply controlled based on the air conditioner pressure. This mechanism often causes the active grille opening to be set when the vehicle speed is high. The setting is unreasonable, resulting in high vehicle wind resistance; and at low vehicle speeds, the active grille opening and cooling fan duty cycle are not controlled cooperatively, resulting in high air conditioning energy consumption.
  • the technical problem to be solved by embodiments of the present invention is to provide a method and device for collaborative control of an active grille and a cooling fan to reduce vehicle air conditioning energy consumption.
  • the present invention provides a collaborative control method for active grilles and cooling fans, which includes:
  • the vehicle speed and the pressure of the vehicle air conditioning system are collected in real time, and the current vehicle speed is judged to be in the preset speed range;
  • the opening of the active grille and the opening of the cooling fan are cooperatively controlled.
  • the preset speed interval includes a high speed interval, a low speed interval and an idle interval.
  • the active grille opening and the cooling fan opening are cooperatively controlled.
  • the degree includes: if the current vehicle speed is in the high-speed range, as the pressure of the vehicle air-conditioning system increases, the cooling fan duty cycle strategy is implemented as a priority; as the pressure of the vehicle air-conditioning system decreases, the active grille opening strategy is implemented as a priority; if the current When the vehicle speed is in the low-speed range, as the pressure of the vehicle air-conditioning system increases, the active grille opening strategy will be prioritized to be adjusted; as the pressure of the vehicle air-conditioning system decreases, the cooling fan duty cycle strategy will be prioritized to be adjusted; if the current vehicle speed is in the idle range, Control the opening of the active grille to the maximum, and dynamically adjust the cooling fan duty cycle according to the pressure changes of the vehicle's air conditioning system.
  • a priority adjustment strategy for the cooling fan duty cycle is executed, which specifically includes: adjusting the cooling fan duty cycle before adjusting the active grille opening, After the air conditioning system is turned on, the opening of the active grille is controlled to be at the minimum opening, and the cooling fan remains closed; after each increase in the duty cycle of the cooling fan, the current opening of the active grille is maintained unchanged until the air conditioning system
  • the active grille opening is increased; as the pressure of the vehicle air conditioning system decreases, a priority adjustment strategy for the active grille opening is implemented, which specifically includes: adjusting the active grille opening before the cooling fan takes over. To adjust the air ratio, after each reduction in the opening of the active grille, the current duty cycle of the cooling fan remains unchanged until the pressure of the air conditioning system drops to a lower value, and then the duty cycle of the cooling fan is reduced.
  • a priority adjustment strategy for the active grille opening is executed, which specifically includes: adjusting the active grille opening prior to adjusting the cooling fan duty cycle, After the active grille opening is increased for the first time, the current duty cycle of the cooling fan is maintained unchanged until the pressure of the air conditioning system rises to the first preset value, and then increases linearly with the pressure of the air conditioning system.
  • Cooling fan duty cycle when the pressure of the air conditioning system rises to a second preset value, increase the active grille opening to 100%, wherein the second preset value is greater than the first preset value;
  • the strategy of priority adjustment of the cooling fan duty cycle is implemented, which specifically includes: adjusting the cooling fan duty cycle before adjusting the active grille opening, and then controlling the cooling fan duty cycle to decrease in steps to After reaching the minimum, the opening of the active grille is reduced to 50%; when the pressure of the air conditioning system continues to drop to the third preset value, the opening of the active grille is controlled to be reduced to the minimum opening.
  • the cooling fan duty cycle is dynamically adjusted according to the pressure change of the vehicle air conditioning system, specifically including: during the pressure rise of the air conditioning system, controlling the cooling fan duty cycle to follow the pressure rise of the air conditioning system. Linear improvement; during the pressure drop of the air conditioning system, if the pressure drops below the hysteresis point, the duty cycle of the cooling fan is controlled to decrease accordingly, otherwise the duty cycle of the cooling fan is maintained unchanged.
  • the invention also provides an active grille and cooling fan collaborative control device, which includes:
  • the data acquisition module is used to collect the vehicle speed and the pressure of the vehicle air conditioning system in real time when the vehicle air conditioning system is turned on, and determine the preset speed range in which the current vehicle speed is;
  • the cooperative control module is used to cooperatively control the opening of the active grille and the opening of the cooling fan according to the preset speed range of the current vehicle speed and the pressure change of the vehicle air conditioning system.
  • the preset speed interval includes a high-speed interval, a low-speed interval and an idle interval.
  • the collaborative control module is specifically used to: if the current vehicle speed is in the high-speed interval, as the pressure of the vehicle air conditioning system increases, perform priority adjustment of the cooling fan occupancy.
  • Air ratio strategy as the pressure of the vehicle air conditioning system decreases, the strategy of priority adjustment of the active grille opening is implemented; if the current vehicle speed is in the low speed range, as the pressure of the vehicle air conditioning system increases, the strategy of priority adjustment of the active grille opening is implemented; as the vehicle When the pressure of the air conditioning system decreases, the cooling fan duty cycle priority adjustment strategy is implemented; if the current vehicle speed is in the idle range, the active grille opening is controlled to the maximum, and the cooling fan duty cycle is dynamically adjusted according to the pressure change of the vehicle air conditioning system.
  • a priority adjustment strategy for the cooling fan duty cycle is executed, which specifically includes: adjusting the cooling fan duty cycle before adjusting the active grille opening, After the air conditioning system is turned on, the opening of the active grille is controlled to be at the minimum opening, and the cooling fan remains closed; after each increase in the duty cycle of the cooling fan, the current opening of the active grille is maintained unchanged until the air conditioning system
  • the active grille opening is increased; as the pressure of the vehicle air conditioning system decreases, a priority adjustment strategy for the active grille opening is implemented, which specifically includes: adjusting the active grille opening before the cooling fan takes over. To adjust the air ratio, after each reduction in the opening of the active grille, the current duty cycle of the cooling fan remains unchanged until the pressure of the air conditioning system drops to a lower value, and then the duty cycle of the cooling fan is reduced.
  • a priority adjustment strategy for the active grille opening is executed, which specifically includes: adjusting the active grille opening prior to adjusting the cooling fan duty cycle, After the active grille opening is increased for the first time, the current duty cycle of the cooling fan is maintained unchanged until the pressure of the air conditioning system rises to the first preset value, and then increases linearly with the pressure of the air conditioning system.
  • Cooling fan duty cycle when the pressure of the air conditioning system rises to a second preset value, increase the active grille opening to 100%, wherein the second preset value is greater than the first preset value;
  • the strategy of priority adjustment of the cooling fan duty cycle is implemented, which specifically includes: adjusting the cooling fan duty cycle before adjusting the active grille opening, and then controlling the cooling fan duty cycle to decrease in steps to After reaching the minimum, the opening of the active grille is reduced to 50%; when the pressure of the air conditioning system continues to drop to the third preset value, the opening of the active grille is controlled to be reduced to the minimum opening.
  • the cooling fan duty cycle is dynamically adjusted according to the pressure change of the vehicle air conditioning system, specifically including: during the pressure rise of the air conditioning system, controlling the cooling fan duty cycle to follow the pressure rise of the air conditioning system. Linear improvement; during the pressure drop of the air conditioning system, if the pressure drops below the hysteresis point, the duty cycle of the cooling fan is controlled to decrease accordingly, otherwise the duty cycle of the cooling fan is maintained unchanged.
  • the present invention divides different vehicle speed intervals, and then controls the active grille opening and the cooling fan duty cycle collaboratively according to the weight of the active grille opening and the cooling fan duty cycle in the vehicle speed interval. Dynamically adjust the active grille opening and cooling fan duty cycle to maximize the reduction of air conditioning energy consumption.
  • Figure 1 is a schematic flowchart of a method for collaborative control of an active grille and a cooling fan according to an embodiment of the present invention.
  • Figure 2 is a schematic diagram of vehicle speed zone division in the embodiment of the present invention.
  • Figure 3a is a schematic diagram of the relationship between the duty cycle of the cooling fan and the pressure of the vehicle air conditioning system when the vehicle speed is in a high speed range in the embodiment of the present invention.
  • Figure 3b is a schematic diagram of the relationship between the opening of the active grille and the pressure of the vehicle air conditioning system when the vehicle speed is in a high speed range in the embodiment of the present invention.
  • Figure 4a is a schematic diagram of the relationship between the duty cycle of the cooling fan and the pressure of the vehicle air conditioning system when the vehicle speed is in a low speed range in the embodiment of the present invention.
  • Figure 4b is a schematic diagram of the relationship between the opening of the active grille and the pressure of the vehicle air conditioning system when the vehicle speed is in a low speed range in the embodiment of the present invention.
  • FIG. 5 is a schematic diagram of the relationship between the duty cycle of the cooling fan and the pressure of the vehicle air conditioning system when the vehicle speed is in the idle range in the embodiment of the present invention.
  • Embodiment 1 of the present invention provides a collaborative control method for active grilles and cooling fans, including:
  • the vehicle speed and the pressure of the vehicle air conditioning system are collected in real time, and the current vehicle speed is judged to be in the preset speed range;
  • the opening of the active grille and the opening of the cooling fan are cooperatively controlled.
  • three vehicle speed intervals are pre-divided: a high-speed interval, a low-speed interval and an idle interval.
  • the high-speed interval is when the vehicle speed is higher than or equal to 80km/h
  • the low-speed interval is The vehicle speed is greater than 30km/h and less than 80km/h
  • the idle speed range is when the vehicle speed is less than Or equal to 30km/h.
  • the vehicle air conditioning system is turned on, the vehicle speed is collected in real time, and then it is determined which of the aforementioned pre-divided vehicle speed intervals the current collected vehicle speed belongs to.
  • the pressure data of the vehicle's air conditioning system is also collected simultaneously.
  • the active grille opening and the cooling fan duty cycle are collaboratively controlled according to the different pressures of the air conditioning system in different vehicle speed ranges.
  • Collaboration is the process or ability to coordinate two or more different resources or individuals to accomplish a certain goal in a coordinated manner; therefore, it can be understood that the collaborative control in this embodiment refers to controlling the air conditioner according to the air conditioner in different vehicle speed ranges.
  • the different pressures of the system control the opening of the active grille and the duty cycle of the cooling fan at the same time; or control the duty cycle of the cooling fan and the opening of the active grille at the same time; thereby jointly achieving the reduction of energy consumption of the air conditioning system. The goal.
  • the collaborative control of the opening of the active grille and the opening of the cooling fan specifically includes:
  • the cooling fan duty cycle strategy will be prioritized to be adjusted; as the pressure of the vehicle air-conditioning system decreases, the active grille opening strategy will be prioritized to be adjusted;
  • the active grille opening is controlled to the maximum, and the duty cycle of the cooling fan is dynamically adjusted according to pressure changes in the vehicle air conditioning system.
  • the opening of the active grille should be reduced as much as possible: when the pressure rises, priority is given to adjusting the cooling fan duty cycle, and when the pressure drops, priority is given to adjusting the opening of the active grille. , to minimize air conditioning energy consumption.
  • the active grille opening and cooling fan duty cycle are cooperatively controlled as follows:
  • the active grille opening is controlled at the minimum opening of 12%, and the cooling fan remains closed to ensure a certain amount of air inlet to the condenser;
  • the cooling fan duty cycle is adjusted first. After the pressure rises to 14bar, the cooling fan duty cycle is controlled to rise to 40%, and the active grille opening is maintained at the minimum opening of 12%;
  • the priority adjustment strategy for the duty cycle of the cooling fan is to adjust the duty cycle of the cooling fan. Prior to adjusting the opening of the active grille, after the air conditioning system is turned on, the opening of the active grille is controlled to be at the minimum opening, and the cooling fan remains closed; after each increase in the duty cycle of the cooling fan, the current active grille is first maintained. The grille opening remains unchanged until the pressure of the air conditioning system increases to a higher value, and then the active grille opening is increased.
  • Adjusting the opening of the active grille first means that the opening of the active grille will be adjusted first.
  • the adjustment of the cooling fan duty cycle after each reduction in the opening of the active grille, the current cooling fan duty cycle is maintained until the pressure of the air conditioning system drops to a lower value, and then the cooling fan duty cycle is reduced. empty ratio.
  • the opening of the active grille should be increased as much as possible: when the pressure rises, the opening of the active grille is adjusted first, and when the pressure drops, the duty cycle of the cooling fan is adjusted first .
  • the active grille opening and cooling fan duty cycle system controls are as follows:
  • the active grille opening is controlled at the minimum opening of 12%, and the cooling fan is controlled at the minimum duty cycle of 15% to ensure a certain amount of air inlet to the condenser;
  • the duty cycle of the cooling fan is controlled to increase linearly as the pressure rises; when the pressure rises to 15bar, The active grille opens to 100% to ensure optimal air intake;
  • the priority adjustment of the opening of the active grille is the adjustment of the opening of the active grille.
  • the first preset value for example, 14bar
  • the second preset value for example, 15bar
  • the opening of the active grille will be adjusted multiple times, and the duty cycle of the cooling fan will also be adjusted multiple times.
  • Prioritizing the duty cycle of the cooling fan means that the duty cycle of the cooling fan is adjusted first. For the adjustment of the opening of the active grille, after controlling the duty cycle of the cooling fan to be reduced to the minimum in steps, then reduce the opening of the active grille to 50%; while the pressure of the air conditioning system continues to drop to the third preset value (for example, 8bar ), the opening of the active grille is controlled to be reduced to the minimum opening of 12%.
  • the cooling fan duty cycle is controlled as follows:
  • the cooling fan duty cycle is controlled to change linearly with the pressure; during the pressure drop, if the pressure drops below the hysteresis point, the cooling fan duty cycle will decrease accordingly, otherwise the cooling fan duty cycle will remain unchanged, effectively avoiding pressure. Duty cycle oscillation caused by fluctuations.
  • the present invention is applied to a certain vehicle model and tested and compared with the existing technical solutions, and the corresponding test data obtained are as follows:
  • the present invention can achieve the energy-saving effect of reducing power consumption. Especially under spring and autumn working conditions, the present invention can reduce energy consumption by 165w, and the energy-saving effect is better.
  • the second embodiment of the present invention provides a cooperative control device of the active grille and the cooling fan, which includes:
  • the data acquisition module is used to collect the vehicle speed and the pressure of the vehicle air conditioning system in real time when the vehicle air conditioning system is turned on, and determine the preset speed range in which the current vehicle speed is;
  • the cooperative control module is used to cooperatively control the opening of the active grille and the opening of the cooling fan according to the preset speed range of the current vehicle speed and the pressure change of the vehicle air conditioning system.
  • the preset speed interval includes a high-speed interval, a low-speed interval and an idle interval
  • the collaborative control module is specifically used to:
  • the cooling fan duty cycle strategy will be prioritized to be adjusted; as the pressure of the vehicle air-conditioning system decreases, the active grille opening strategy will be prioritized to be adjusted;
  • the active grille opening is controlled to the maximum, and the cooling fan duty cycle is dynamically adjusted according to the pressure changes of the vehicle air conditioning system.
  • a priority adjustment strategy for cooling fan duty cycle is executed, which specifically includes: adjusting the cooling fan duty cycle before adjusting the active grille opening, After the air conditioning system is turned on, the opening of the active grille is controlled at the minimum opening, and the cooling fan remains closed; after each increase in the duty cycle of the cooling fan, the current opening of the active grille is maintained unchanged until the air conditioning system When the pressure increases to a higher value, increase the opening of the active grille;
  • the strategy of prioritizing the opening of the active grille is implemented, which specifically includes: adjusting the opening of the active grille before adjusting the duty cycle of the cooling fan. After each reduction in the opening of the active grille, The current cooling fan duty cycle is first maintained until the pressure of the air conditioning system drops to a lower value, and then the cooling fan duty cycle is reduced.
  • a priority adjustment strategy for the active grille opening is executed, which specifically includes: adjusting the active grille opening prior to adjusting the cooling fan duty cycle, After the active grille opening is increased for the first time, the current duty cycle of the cooling fan is maintained unchanged until the pressure of the air conditioning system rises to the first preset value, and then increases linearly with the pressure of the air conditioning system. Cooling fan duty cycle; when the pressure of the air conditioning system rises to a second preset value, increase the active grille opening to 100%, wherein the second preset value is greater than the first preset value;
  • the strategy of priority adjustment of the cooling fan duty cycle is implemented, which specifically includes: adjusting the cooling fan duty cycle before adjusting the active grille opening, and then controlling the cooling fan duty cycle to decrease in steps to After reaching the minimum, the opening of the active grille is reduced to 50%; when the pressure of the air conditioning system continues to drop to the third preset value, the opening of the active grille is controlled to be reduced to the minimum opening.
  • the cooling fan duty cycle is dynamically adjusted according to the pressure change of the vehicle air conditioning system, specifically including: during the pressure rise of the air conditioning system, controlling the cooling fan duty cycle to follow the pressure rise of the air conditioning system. Linear improvement; during the pressure drop of the air conditioning system, if the pressure drops below the hysteresis point, the duty cycle of the cooling fan is controlled to decrease, otherwise the duty cycle of the cooling fan is maintained unchanged.
  • the beneficial effect of the present invention is that: the present invention divides different vehicle speed intervals, and then adjusts the active grille according to the influence weight of the active grille opening and cooling fan duty cycle in the vehicle speed interval.
  • the opening and cooling fan duty cycle are cooperatively controlled, and the active grille opening and cooling fan duty cycle are dynamically adjusted to maximize the reduction of air conditioning energy consumption.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

本发明提供一种主动格栅与冷却风扇协同控制方法及装置,其中,所述方法包括:在车辆空调系统开启时,实时采集车辆速度和车辆空调系统的压力,并判断当前车辆速度所处预设速度区间;根据当前车辆速度所处预设速度区间和车辆空调系统的压力变化,协同控制主动格栅开度和冷却风扇开度。本发明通过划分不同车速区间,再根据车速区间里主动格栅开度和冷却风扇占空比影响权重,对主动格栅开度和冷却风扇占空比协同控制,动态调整主动格栅开度和冷却风扇占空比,从而实现最大化降低空调能耗。

Description

一种主动格栅与冷却风扇协同控制方法及装置
本申请要求于2022年08月29日提交中国专利局、申请号为202211038298.6、发明名称为“一种主动格栅与冷却风扇协同控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本发明属于智能网联汽车技术领域,具体涉及一种主动格栅与冷却风扇协同控制方法及装置。
背景技术
现有的主动格栅开度通常根据空调开启状态直接确定,冷却风扇占空比也是简单根据空调压力进行控制,这种机制往往会造成在车速较高的情况下,由于主动格栅开度设定不合理,导致整车风阻偏大;而在车速较低情况下,由于主动格栅开度和冷却风扇占空比没有协同控制,导致空调能耗偏高。
发明内容
本发明实施例所要解决的技术问题在于,提供一种主动格栅与冷却风扇协同控制方法及装置,以降低车辆空调能耗。
为解决上述技术问题,本发明提供一种主动格栅与冷却风扇协同控制方法,包括:
在车辆空调系统开启时,实时采集车辆速度和车辆空调系统的压力,并判断当前车辆速度所处预设速度区间;
根据当前车辆速度所处预设速度区间和车辆空调系统的压力变化,协同控制主动格栅开度和冷却风扇开度。
进一步地,所述预设速度区间包括高速区间、低速区间和怠速区间,所述根据当前车辆速度所处预设速度区间和车辆空调系统的压力变化,协同控制主动格栅开度和冷却风扇开度具体包括:如果当前车辆速度处于高速区间,随车辆空调系统的压力增加,执行优先调整冷却风扇占空比策略;随车辆空调系统的压力降低,执行优先调整主动格栅开度策略;如果当前车辆速度处于低速区间,随车辆空调系统的压力增加,执行优先调整主动格栅开度策略;随车辆空调系统的压力降低,执行优先调整冷却风扇占空比策略;如果当前车辆速度处于怠速区间,控制主动格栅开度开至最大,并根据车辆空调系统的压力变化动态调整冷却风扇占空比。
进一步地,如果当前车辆速度处于高速区间,随车辆空调系统的压力增加,执行优先调整冷却风扇占空比策略,具体包括:使冷却风扇占空比的调整先于主动格栅开度的调整,在空调系统开启后,控制主动格栅开度在最小开度,冷却风扇保持关闭;在冷却风扇占空比每一次提高后,均先维持当前的主动格栅开度不变,直至空调系统的压力增加至更高值时,再提高主动格栅开度;随车辆空调系统的压力降低,执行优先调整主动格栅开度策略,具体包括:使主动格栅开度的调整先于冷却风扇占空比的调整,在主动格栅开度每一次降低后,均先维持当前的冷却风扇占空比不变,直至空调系统的压力降低至更低值时,再降低冷却风扇占空比。
进一步地,如果当前车辆速度处于低速区间,随车辆空调系统的压力增加,执行优先调整主动格栅开度策略,具体包括:使主动格栅开度的调整先于冷却风扇占空比的调整,在主动格栅开度第一次提高后,先维持当前的冷却风扇占空比不变,直至空调系统的压力升高至第一预设值时,再随空调系统的压力升高而线性提高冷却风扇占空比;在空调系统的压力升高至第二预设值时,将主动格栅开度提高至100%,其中,所述第二预设值大于所述第一预设值;随车辆空调系统的压力降低,执行优先调整冷却风扇占空比策略,具体包括:使冷却风扇占空比的调整先于主动格栅开度的调整,在控制冷却风扇占空比呈阶梯降低至最低后,再降低主动格栅开度至50%;在空调系统的压力继续下降至第三预设值时,控制主动格栅开度再降为最小开度。
进一步地,如果当前车辆速度处于怠速区间,根据车辆空调系统的压力变化动态调整冷却风扇占空比,具体包括:在空调系统的压力上升期间,控制冷却风扇占空比跟随空调系统的压力上升而线性提高;在空调系统的压力下降期间,如果压力降至回滞点以下,控制冷却风扇占空比随之下降,否则维持冷却风扇占空比不变。
本发明还提供一种主动格栅与冷却风扇协同控制装置,包括:
数据获取模块,用于在车辆空调系统开启时,实时采集车辆速度和车辆空调系统的压力,并判断当前车辆速度所处预设速度区间;
协同控制模块,用于根据当前车辆速度所处预设速度区间和车辆空调系统的压力变化,协同控制主动格栅开度和冷却风扇开度。
进一步地,所述预设速度区间包括高速区间、低速区间和怠速区间,所述协同控制模块具体用于:如果当前车辆速度处于高速区间,随车辆空调系统的压力增加,执行优先调整冷却风扇占空比策略;随车辆空调系统的压力降低,执行优先调整主动格栅开度策略;如果当前车辆速度处于低速区间,随车辆空调系统的压力增加,执行优先调整主动格栅开度策略;随车辆空调系统的压力降低,执行优先调整冷却风扇占空比策略;如果当前车辆速度处于怠速区间,控制主动格栅开度开至最大,并根据车辆空调系统的压力变化动态调整冷却风扇占空比。
进一步地,如果当前车辆速度处于高速区间,随车辆空调系统的压力增加,执行优先调整冷却风扇占空比策略,具体包括:使冷却风扇占空比的调整先于主动格栅开度的调整,在空调系统开启后,控制主动格栅开度在最小开度,冷却风扇保持关闭;在冷却风扇占空比每一次提高后,均先维持当前的主动格栅开度不变,直至空调系统的压力增加至更高值时,再提高主动格栅开度;随车辆空调系统的压力降低,执行优先调整主动格栅开度策略,具体包括:使主动格栅开度的调整先于冷却风扇占空比的调整,在主动格栅开度每一次降低后,均先维持当前的冷却风扇占空比不变,直至空调系统的压力降低至更低值时,再降低冷却风扇占空比。
进一步地,如果当前车辆速度处于低速区间,随车辆空调系统的压力增加,执行优先调整主动格栅开度策略,具体包括:使主动格栅开度的调整先于冷却风扇占空比的调整,在主动格栅开度第一次提高后,先维持当前的冷却风扇占空比不变,直至空调系统的压力升高至第一预设值时,再随空调系统的压力升高而线性提高冷却风扇占空比;在空调系统的压力升高至第二预设值时,将主动格栅开度提高至100%,其中,所述第二预设值大于所述第一预设值;随车辆空调系统的压力降低,执行优先调整冷却风扇占空比策略,具体包括:使冷却风扇占空比的调整先于主动格栅开度的调整,在控制冷却风扇占空比呈阶梯降低至最低后,再降低主动格栅开度至50%;在空调系统的压力继续下降至第三预设值时,控制主动格栅开度再降为最小开度。
进一步地,如果当前车辆速度处于怠速区间,根据车辆空调系统的压力变化动态调整冷却风扇占空比,具体包括:在空调系统的压力上升期间,控制冷却风扇占空比跟随空调系统的压力上升而线性提高;在空调系统的压力下降期间,如果压力降至回滞点以下,控制冷却风扇占空比随之下降,否则维持冷却风扇占空比不变。
实施本发明具有如下有益效果:本发明通过划分不同车速区间,再根据车速区间里主动格栅开度和冷却风扇占空比影响权重,对主动格栅开度和冷却风扇占空比协同控制,动态调整主动格栅开度和冷却风扇占空比,从而实现最大化降低空调能耗。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例一一种主动格栅与冷却风扇协同控制方法的流程示意图。
图2是本发明实施例中车速区间划分示意图。
图3a是本发明实施例中在车速处于高速区间时冷却风扇占空比与车辆空调系统压力的关系示意图。
图3b是本发明实施例中在车速处于高速区间时主动格栅开度与车辆空调系统压力的关系示意图。
图4a是本发明实施例中在车速处于低速区间时冷却风扇占空比与车辆空调系统压力的关系示意图。
图4b是本发明实施例中在车速处于低速区间时主动格栅开度与车辆空调系统压力的关系示意图。
图5是本发明实施例中在车速处于怠速区间时冷却风扇占空比与车辆空调系统压力的关系示意图。
具体实施方式
以下各实施例的说明是参考附图,用以示例本发明可以用以实施的特定实施例。
请参照图1所示,本发明实施例一提供一种主动格栅与冷却风扇协同控制方法,包括:
在车辆空调系统开启时,实时采集车辆速度和车辆空调系统的压力,并判断当前车辆速度所处预设速度区间;
根据当前车辆速度所处预设速度区间和车辆空调系统的压力变化,协同控制主动格栅开度和冷却风扇开度。
具体地,如图2所示,本实施例中,预先划分有三个车速区间:高速区间、低速区间和怠速区间,作为一种示例,高速区间为车速高于或等于80km/h,低速区间为车速大于30km/h且小于80km/h,怠速区间为车速低于 或等于30km/h。在车辆空调系统开启时,实时采集车辆速度,然后判断采集的当前车辆速度属于前述预先划分的哪一个车速区间。与此同时,也同步采集车辆空调系统的压力数据,本实施例将在不同车速区间下,根据空调系统的不同压力,对主动格栅开度和冷却风扇占空比进行协同控制。
协同是协调两个或者两个以上的不同资源或者个体,协同一致地完成某一目标的过程或能力;因此,可以理解的是,本实施例的协同控制是指在不同车速区间下,根据空调系统的不同压力,在控制主动格栅开度的同时,也控制冷却风扇占空比;或者在控制冷却风扇占空比的同时,也控制主动格栅开度;从而共同达成降低空调系统能耗的目标。
基于上述说明,协同控制主动格栅开度和冷却风扇开度具体包括:
如果当前车辆速度处于高速区间,随车辆空调系统的压力增加,执行优先调整冷却风扇占空比策略;随车辆空调系统的压力降低,执行优先调整主动格栅开度策略;
如果当前车辆速度处于低速区间,随车辆空调系统的压力增加,执行优先调整主动格栅开度策略;随车辆空调系统的压力降低,执行优先调整冷却风扇占空比策略;
如果当前车辆速度处于怠速区间,控制主动格栅开度开至最大,并根据车辆空调系统压力变化动态调整冷却风扇占空比。
以下再结合图3a、图3b、图4a、图4b和图5对上述控制策略做具体介绍。
(一)当前车辆速度处于高速区间
当车辆速度处于高速区间时,由于主动格栅开度对风阻影响较大,应尽量降低主动格栅开度:压力上升时优先调整冷却风扇占空比,压力下降时优先调整主动格栅开度,以尽量降低空调能耗。在空调系统的不同压力下,主动格栅开度与冷却风扇占空比协同控制如下:
(1)空调系统开启后,主动格栅开度控制在最小开度12%,冷却风扇保持关闭,以保证冷凝器有一定进风量;
随着空调系统的压力升高,先调整冷却风扇占空比,在压力升至14bar后,控制冷却风扇占空比升至40%,主动格栅开度则保持最小开度12%;
待压力升至15bar时,再调整主动格栅开度至50%;
若压力继续升高,在压力升至18bar时,控制冷却风扇占空比升至90%,主动格栅开度保持50%不变;待压力升至19bar时,再调整主动格栅开度至100%;
由上可知,随空调系统的压力增加,主动格栅开度将调整多次,冷却风扇占空比也将调整多次,优先调整冷却风扇占空比策略即是使冷却风扇占空比的调整先于主动格栅开度的调整,在空调系统开启后,控制主动格栅开度在最小开度,冷却风扇保持关闭;在冷却风扇占空比每一次提高后,均先维持当前的主动格栅开度不变,直至空调系统的压力增加至更高值时,再提高主动格栅开度。
(2)随着压力降低,先调整主动格栅开度,在压力降至17bar时,控制主动格栅开度降到50%,冷却风扇占空比保持90%;
待压力降至16bar时,再控制冷却风扇占空比降至40%;若压力继续降低,在压力降至13bar时,控制主动格栅开度降到12%,冷却风扇占空比保持40%;待压力降至12bar时,控制冷却风扇占空比再降至10%;
由上可知,随空调系统的压力降低,主动格栅开度将调整多次,冷却风扇占空比也将调整多次,优先调整主动格栅开度即是使主动格栅开度的调整先于冷却风扇占空比的调整,在主动格栅开度每一次降低后,均先维持当前的冷却风扇占空比不变,直至空调系统的压力降低至更低值时,再降低冷却风扇占空比。
(二)当前车辆速度处于低速区间
当车辆速度处于低速区间时,由于主动格栅开度对风阻影响较小,应尽量提高主动格栅开度:压力上升时先调整主动格栅开度,压力下降时先调整冷却风扇占空比。在空调系统的不同压力下,主动格栅开度与冷却风扇占空比系统控制如下:
(1)空调系统开启后,主动格栅开度控制在最小开度12%,冷却风扇控制在最小占空比15%,以保证冷凝器有一定进风量;
随着压力升高,先调整主动格栅开度,在压力升至10bar时,控制主动格栅开度开至50%,冷却风扇保持最小占空比15%;
若压力继续升高,在压力升至14bar时,控制冷却风扇占空比随压力升高而线性提高;在压力升至15bar时, 主动格栅开度开至100%,保证最优的进风量;
由上可知,随空调系统的压力升高,主动格栅开度将调整多次,冷却风扇占空比也将调整多次,优先调整主动格栅开度即是使主动格栅开度的调整先于冷却风扇占空比的调整,在主动格栅开度第一次提高后,先维持当前的冷却风扇占空比不变,直至空调系统的压力升高至第一预设值(例如14bar)时,再随空调系统的压力升高而线性提高冷却风扇占空比;在空调系统的压力升高至第二预设值(例如15bar)时,将主动格栅开度提高至100%,第二预设值大于第一预设值。
(2)随着压力降低,先控制冷却风扇占空比呈阶梯降低,以在压力波动时有效防止占空比发生震荡;待压力降至13bar时,冷却风扇占空比降为最低15%后,控制主动格栅开度再降为50%;待压力降至8bar时,控制主动格栅开度再降为最小开度12%;
由上可知,随空调系统的压力降低,主动格栅开度将调整多次,冷却风扇占空比也将调整多次,优先调整冷却风扇占空比即是使冷却风扇占空比的调整先于主动格栅开度的调整,在控制冷却风扇占空比呈阶梯降低至最低后,再降低主动格栅开度至50%;在空调系统的压力继续下降至第三预设值(例如8bar)时,控制主动格栅开度再降为最小开度12%。
(三)当前车辆速度处于怠速区间
当车辆速度处于怠速区间时,由于车辆相当于处于静止状态,可以忽略整车风阻,主动格栅开度开至最大100%。在空调系统的不同压力下,冷却风扇占空比控制如下:
压力上升期间,控制冷却风扇占空比跟随压力线性变化;压力下降期间,如压力降至回滞点以下,冷却风扇占空比随之下降,否则保持冷却风扇占空比不变,有效避免压力波动引起的占空比震荡。
需要说明的是,上述压力变化、主动格栅开度和冷却风扇占空比的具体数值可以根据不同车型和配置相应调整;并且可以通过实车的标定测试,获取到不同车速下对应的主动格栅开度和冷却风扇占空比,用到实际的协同控制上,可以获得控制更精准,节能降耗效果更明显的优点。
将本发明应用于某一车型,与现有技术方案进行测试对比,得到相应的测试数据如下:
由此可见,本发明均能获得功耗减少的节能效果,尤其在春秋季工况条件下,本发明能带来165w的能耗降低,节能效果更好。
相应于前述本发明实施例一所述的主动格栅与冷却风扇协同控制方法,本发明实施例二提供一种主动格栅与冷却风扇协同控制装置,包括:
数据获取模块,用于在车辆空调系统开启时,实时采集车辆速度和车辆空调系统的压力,并判断当前车辆速度所处预设速度区间;
协同控制模块,用于根据当前车辆速度所处预设速度区间和车辆空调系统的压力变化,协同控制主动格栅开度和冷却风扇开度。
进一步地,所述预设速度区间包括高速区间、低速区间和怠速区间,所述协同控制模块具体用于:
如果当前车辆速度处于高速区间,随车辆空调系统的压力增加,执行优先调整冷却风扇占空比策略;随车辆空调系统的压力降低,执行优先调整主动格栅开度策略;
如果当前车辆速度处于低速区间,随车辆空调系统的压力增加,执行优先调整主动格栅开度策略;随车辆空调系统的压力降低,执行优先调整冷却风扇占空比策略;
如果当前车辆速度处于怠速区间,控制主动格栅开度开至最大,并根据车辆空调系统的压力变化动态调整冷却风扇占空比。
进一步地,如果当前车辆速度处于高速区间,随车辆空调系统的压力增加,执行优先调整冷却风扇占空比策略,具体包括:使冷却风扇占空比的调整先于主动格栅开度的调整,在空调系统开启后,控制主动格栅开度在最小开度,冷却风扇保持关闭;在冷却风扇占空比每一次提高后,均先维持当前的主动格栅开度不变,直至空调系统的压力增加至更高值时,再提高主动格栅开度;
随车辆空调系统的压力降低,执行优先调整主动格栅开度策略,具体包括:使主动格栅开度的调整先于冷却风扇占空比的调整,在主动格栅开度每一次降低后,均先维持当前的冷却风扇占空比不变,直至空调系统的压力降低至更低值时,再降低冷却风扇占空比。
进一步地,如果当前车辆速度处于低速区间,随车辆空调系统的压力增加,执行优先调整主动格栅开度策略,具体包括:使主动格栅开度的调整先于冷却风扇占空比的调整,在主动格栅开度第一次提高后,先维持当前的冷却风扇占空比不变,直至空调系统的压力升高至第一预设值时,再随空调系统的压力升高而线性提高冷却风扇占空比;在空调系统的压力升高至第二预设值时,将主动格栅开度提高至100%,其中,所述第二预设值大于所述第一预设值;
随车辆空调系统的压力降低,执行优先调整冷却风扇占空比策略,具体包括:使冷却风扇占空比的调整先于主动格栅开度的调整,在控制冷却风扇占空比呈阶梯降低至最低后,再降低主动格栅开度至50%;在空调系统的压力继续下降至第三预设值时,控制主动格栅开度再降为最小开度。
进一步地,如果当前车辆速度处于怠速区间,根据车辆空调系统的压力变化动态调整冷却风扇占空比,具体包括:在空调系统的压力上升期间,控制冷却风扇占空比跟随空调系统的压力上升而线性提高;在空调系统的压力下降期间,如果压力降至回滞点以下,控制冷却风扇占空比随之下降,否则维持冷却风扇占空比不变。
有关本实施例的工作原理和过程,参见前述本发明实施例一的说明,此处不再赘述。
通过上述说明可知,与现有技术相比,本发明的有益效果在于:本发明通过划分不同车速区间,再根据车速区间里主动格栅开度和冷却风扇占空比影响权重,对主动格栅开度和冷却风扇占空比协同控制,动态调整主动格栅开度和冷却风扇占空比,从而实现最大化降低空调能耗。
以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明的权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (10)

  1. 一种主动格栅与冷却风扇协同控制方法,其特征在于,包括:
    在车辆空调系统开启时,实时采集车辆速度和车辆空调系统的压力,并判断当前车辆速度所处预设速度区间;
    根据当前车辆速度所处预设速度区间和车辆空调系统的压力变化,协同控制主动格栅开度和冷却风扇开度。
  2. 如权利要求1所述的方法,其特征在于,所述预设速度区间包括高速区间、低速区间和怠速区间,所述根据当前车辆速度所处预设速度区间和车辆空调系统的压力变化,协同控制主动格栅开度和冷却风扇开度具体包括:如果当前车辆速度处于高速区间,随车辆空调系统的压力增加,执行优先调整冷却风扇占空比策略;随车辆空调系统的压力降低,执行优先调整主动格栅开度策略;如果当前车辆速度处于低速区间,随车辆空调系统的压力增加,执行优先调整主动格栅开度策略;随车辆空调系统的压力降低,执行优先调整冷却风扇占空比策略;如果当前车辆速度处于怠速区间,控制主动格栅开度开至最大,并根据车辆空调系统的压力变化动态调整冷却风扇占空比。
  3. 如权利要求2所述的方法,其特征在于,如果当前车辆速度处于高速区间,随车辆空调系统的压力增加,执行优先调整冷却风扇占空比策略,具体包括:使冷却风扇占空比的调整先于主动格栅开度的调整,在空调系统开启后,控制主动格栅开度在最小开度,冷却风扇保持关闭;在冷却风扇占空比每一次提高后,均先维持当前的主动格栅开度不变,直至空调系统的压力增加至更高值时,再提高主动格栅开度;随车辆空调系统的压力降低,执行优先调整主动格栅开度策略,具体包括:使主动格栅开度的调整先于冷却风扇占空比的调整,在主动格栅开度每一次降低后,均先维持当前的冷却风扇占空比不变,直至空调系统的压力降低至更低值时,再降低冷却风扇占空比。
  4. 如权利要求2所述的方法,其特征在于,如果当前车辆速度处于低速区间,随车辆空调系统的压力增加,执行优先调整主动格栅开度策略,具体包括:使主动格栅开度的调整先于冷却风扇占空比的调整,在主动格栅开度第一次提高后,先维持当前的冷却风扇占空比不变,直至空调系统的压力升高至第一预设值时,再随空调系统的压力升高而线性提高冷却风扇占空比;在空调系统的压力升高至第二预设值时,将主动格栅开度提高至100%,其中,所述第二预设值大于所述第一预设值;随车辆空调系统的压力降低,执行优先调整冷却风扇占空比策略,具体包括:使冷却风扇占空比的调整先于主动格栅开度的调整,在控制冷却风扇占空比呈阶梯降低至最低后,再降低主动格栅开度至50%;在空调系统的压力继续下降至第三预设值时,控制主动格栅开度再降为最小开度。
  5. 如权利要求2所述的方法,其特征在于,如果当前车辆速度处于怠速区间,根据车辆空调系统的压力变化动态调整冷却风扇占空比,具体包括:在空调系统的压力上升期间,控制冷却风扇占空比跟随空调系统的压力上升而线性提高;在空调系统的压力下降期间,如果压力降至回滞点以下,控制冷却风扇占空比随之下降,否则维持冷却风扇占空比不变。
  6. 一种主动格栅与冷却风扇协同控制装置,其特征在于,包括:
    数据获取模块,用于在车辆空调系统开启时,实时采集车辆速度和车辆空调系统的压力,并判断当前车辆速度所处预设速度区间;
    协同控制模块,用于根据当前车辆速度所处预设速度区间和车辆空调系统的压力变化,协同控制主动格栅开度和冷却风扇开度。
  7. 如权利要求6所述的装置,其特征在于,所述预设速度区间包括高速区间、低速区间和怠速区间,所述协同控制模块具体用于:如果当前车辆速度处于高速区间,随车辆空调系统的压力增加,执行优先调整冷却风扇占空比策略;随车辆空调系统的压力降低,执行优先调整主动格栅开度策略;如果当前车辆速度处于低速区间,随车辆空调系统的压力增加,执行优先调整主动格栅开度策略;随车辆空调系统的压力降低,执行优先调整冷却风扇占空比策略;如果当前车辆速度处于怠速区间,控制主动格栅开度开至最大,并根据车辆空调系统的压力变化动态调整冷却风扇占空比。
  8. 如权利要求7所述的装置,其特征在于,如果当前车辆速度处于高速区间,随车辆空调系统的压力增加,执行优先调整冷却风扇占空比策略,具体包括:使冷却风扇占空比的调整先于主动格栅开度的调整,在空调系统开启后,控制主动格栅开度在最小开度,冷却风扇保持关闭;在冷却风扇占空比每一次提高后,均先维持当前的 主动格栅开度不变,直至空调系统的压力增加至更高值时,再提高主动格栅开度;随车辆空调系统的压力降低,执行优先调整主动格栅开度策略,具体包括:使主动格栅开度的调整先于冷却风扇占空比的调整,在主动格栅开度每一次降低后,均先维持当前的冷却风扇占空比不变,直至空调系统的压力降低至更低值时,再降低冷却风扇占空比。
  9. 如权利要求7所述的装置,其特征在于,如果当前车辆速度处于低速区间,随车辆空调系统的压力增加,执行优先调整主动格栅开度策略,具体包括:使主动格栅开度的调整先于冷却风扇占空比的调整,在主动格栅开度第一次提高后,先维持当前的冷却风扇占空比不变,直至空调系统的压力升高至第一预设值时,再随空调系统的压力升高而线性提高冷却风扇占空比;在空调系统的压力升高至第二预设值时,将主动格栅开度提高至100%,其中,所述第二预设值大于所述第一预设值;随车辆空调系统的压力降低,执行优先调整冷却风扇占空比策略,具体包括:使冷却风扇占空比的调整先于主动格栅开度的调整,在控制冷却风扇占空比呈阶梯降低至最低后,再降低主动格栅开度至50%;在空调系统的压力继续下降至第三预设值时,控制主动格栅开度再降为最小开度。
  10. 如权利要求7所述的装置,其特征在于,如果当前车辆速度处于怠速区间,根据车辆空调系统的压力变化动态调整冷却风扇占空比,具体包括:在空调系统的压力上升期间,控制冷却风扇占空比跟随空调系统的压力上升而线性提高;在空调系统的压力下降期间,如果压力降至回滞点以下,控制冷却风扇占空比随之下降,否则维持冷却风扇占空比不变。
PCT/CN2023/114790 2022-08-29 2023-08-24 一种主动格栅与冷却风扇协同控制方法及装置 WO2024046214A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211038298.6 2022-08-29
CN202211038298.6A CN117656755A (zh) 2022-08-29 2022-08-29 一种主动格栅与冷却风扇协同控制方法及装置

Publications (1)

Publication Number Publication Date
WO2024046214A1 true WO2024046214A1 (zh) 2024-03-07

Family

ID=90064755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/114790 WO2024046214A1 (zh) 2022-08-29 2023-08-24 一种主动格栅与冷却风扇协同控制方法及装置

Country Status (2)

Country Link
CN (1) CN117656755A (zh)
WO (1) WO2024046214A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000355215A (ja) * 1999-06-11 2000-12-26 Bosch Automotive Systems Corp 車両用空調ユニット及びグリルユニット
US20130036991A1 (en) * 2011-08-09 2013-02-14 Ford Global Technologies, Llc Control Method for a Vehicle Air Intake System
CN104972894A (zh) * 2014-04-01 2015-10-14 上海汽车集团股份有限公司 格栅的控制方法及装置
CN205149502U (zh) * 2015-11-19 2016-04-13 杨聪 一种汽车进气格栅的机电双模控制装置
CN112848879A (zh) * 2021-02-05 2021-05-28 长城汽车股份有限公司 车辆散热方法、存储介质以及车辆
CN114274763A (zh) * 2020-09-27 2022-04-05 北京新能源汽车股份有限公司 一种车内环境的控制方法和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000355215A (ja) * 1999-06-11 2000-12-26 Bosch Automotive Systems Corp 車両用空調ユニット及びグリルユニット
US20130036991A1 (en) * 2011-08-09 2013-02-14 Ford Global Technologies, Llc Control Method for a Vehicle Air Intake System
CN104972894A (zh) * 2014-04-01 2015-10-14 上海汽车集团股份有限公司 格栅的控制方法及装置
CN205149502U (zh) * 2015-11-19 2016-04-13 杨聪 一种汽车进气格栅的机电双模控制装置
CN114274763A (zh) * 2020-09-27 2022-04-05 北京新能源汽车股份有限公司 一种车内环境的控制方法和装置
CN112848879A (zh) * 2021-02-05 2021-05-28 长城汽车股份有限公司 车辆散热方法、存储介质以及车辆

Also Published As

Publication number Publication date
CN117656755A (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
CN110332664B (zh) 一种空调器控制方法和空调器
CN108662735B (zh) 一种中央空调系统末端设备节能优化控制系统及方法
WO2023273346A1 (zh) 一种空调器控制方法、控制装置与存储介质
CN103423836B (zh) 车辆空调系统过热度控制方法及车辆空调系统
CN103486689B (zh) 空调器的控制方法及装置
CN106642592A (zh) 一种空调器的控制方法及装置
WO2020052281A1 (zh) 变频压缩机的控制方法、控制系统以及空调器
CN106545966B (zh) 空调器及其频率控制方法和控制装置
WO2021227801A1 (zh) 空调器的控制方法、空调器及可读存储介质
CN111570093B (zh) 一种基于锅炉煤量风量的电除尘节能控制方法及系统
WO2015006952A1 (zh) 车辆空调系统过热度控制方法及车辆空调系统
CN111238000B (zh) 一种空调自动风速控制方法及空调控制系统、空调
CN103033006B (zh) 一种汽车空调系统电子膨胀阀的控制方法
CN106440241A (zh) 一种空调室外风机的调速控制方法
WO2024046214A1 (zh) 一种主动格栅与冷却风扇协同控制方法及装置
CN106352510A (zh) 适于空调器的自动模式控制方法及装置
CN110686390A (zh) 一种变频器防止主板凝露的控制方法、系统及空调
CN110966714B (zh) 一种空调智能控制方法、计算机可读存储介质及空调
CN107719062B (zh) 一种汽车变排量压缩机的控制方法
CN101885969B (zh) 一种集气管压力控制方法
CN111895624B (zh) 一种空调温湿度控制方法、装置、存储介质及空调
CN107906668B (zh) 空调系统的节流控制方法、装置与空调器
CN106152401A (zh) 制冷工况下的风冷热泵协同变频运行方法
CN111267582A (zh) 一种汽车空调压缩机排量控制方法
CN110567102A (zh) 一种基于定温差调节的风机盘管控制方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859247

Country of ref document: EP

Kind code of ref document: A1