WO2024046172A9 - 一种射频接收器、射频接收系统及电子设备 - Google Patents

一种射频接收器、射频接收系统及电子设备 Download PDF

Info

Publication number
WO2024046172A9
WO2024046172A9 PCT/CN2023/114222 CN2023114222W WO2024046172A9 WO 2024046172 A9 WO2024046172 A9 WO 2024046172A9 CN 2023114222 W CN2023114222 W CN 2023114222W WO 2024046172 A9 WO2024046172 A9 WO 2024046172A9
Authority
WO
WIPO (PCT)
Prior art keywords
switch
connection
connection circuit
receiver
radio frequency
Prior art date
Application number
PCT/CN2023/114222
Other languages
English (en)
French (fr)
Other versions
WO2024046172A1 (zh
Inventor
黄清华
李政
孙江涛
陈丹
冯宝新
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Priority to EP23855826.6A priority Critical patent/EP4380063A1/en
Publication of WO2024046172A1 publication Critical patent/WO2024046172A1/zh
Publication of WO2024046172A9 publication Critical patent/WO2024046172A9/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/006Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using switches for selecting the desired band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/18Input circuits, e.g. for coupling to an antenna or a transmission line
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/44Transmit/receive switching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems

Definitions

  • the present application relates to the field of radio frequency technology, and in particular to a radio frequency receiver, a radio frequency receiving system and an electronic device.
  • CA carrier aggregation
  • multiple filters and low noise amplifiers (LNA) commonly used in CA combinations are integrated into one receiving module.
  • LNA low noise amplifiers
  • three LNAs are integrated into one receiving module to achieve a CA combination of up to three frequency band signals.
  • the filter corresponding to the fourth frequency band signal is not integrated into this receiving module, it is necessary to externally place a corresponding filter outside this receiving module and "borrow" an LNA from another receiving module in the RF receiving system, that is, the external filter is connected between one receiving module and another receiving module through the wiring on the circuit board, and the signal from the antenna received by the receiving module enters the processing circuit from the external filter and the LNA in the other receiving module.
  • the distance between antennas is large in order to improve isolation, resulting in a large distance between receiving modules. If the above-mentioned "borrowing" of the LNA in another receiving module is used to process the signal received by the above-mentioned receiving module, the line connecting the two receiving modules will be longer, resulting in a larger insertion loss.
  • the embodiments of the present application provide a radio frequency receiver, a radio frequency receiving system and an electronic device, which are used to solve the problem of how to optimize insertion loss when implementing different numbers of CA combinations.
  • an embodiment of the present application provides a radio frequency receiver, which includes at least one first port, a first selection switch, a plurality of first filters, a plurality of second selection switches, a plurality of first amplifiers, two second ports, and a switch assembly.
  • the first selection switch includes an input end and a plurality of output ends, the first selection switch is used to select an input end of the first selection switch to be connected to at least one of the plurality of output ends of the first selection switch, an input end of the first selection switch is used to connect to a first antenna, the plurality of output ends of the first selection switch include at least one first output end and at least two second output ends, and at least one first output end is respectively connected to at least one first port.
  • the plurality of first filters form at least two filter groups, each filter group includes at least one first filter; each first filter includes an input end and an output end, and the input ends of at least two filter groups are respectively connected to at least two second output ends.
  • Each second selection switch includes a plurality of input ends and an output end, the second selection switch is used to select one of the plurality of input ends of the second selection switch to be connected to an output end of the second selection switch; all the input ends of the plurality of second selection switches form an input end group, and the plurality of input ends in the input end group are respectively connected to the output ends of the plurality of first filters.
  • Each first amplifier includes an input terminal and an output terminal, and one input terminal of the plurality of first amplifiers is respectively connected to one output terminal of the plurality of second selection switches.
  • a switch component includes at least three terminals, and the at least three terminals include a first terminal and two second terminals, one first terminal is connected to an input terminal in the input terminal group; the two second terminals are respectively connected to the two second ports; the switch component can switch between a first state and a second state; when the switch component is in the first state, the two second terminals are connected, and the first terminal is disconnected from any one of the two second terminals; when the switch component is in the second state, the first terminal is connected to one of the two second terminals, the first terminal is disconnected from the other of the two second terminals, and the two second terminals are disconnected.
  • the radio frequency receiver provided in the embodiment of the present application is connected to at least one first output end of the first selection switch through at least one first port, so that the signal received by the radio frequency receiver can be transmitted from the first output end and the first port to the outside of the radio frequency receiver.
  • the input ends of at least two filter groups are respectively connected to at least two second output ends of the first selection switch, and the input ends of the input end group composed of the input ends of the plurality of second selection switches are respectively connected to the output ends of the plurality of first filters, and one input end of the plurality of first amplifiers is respectively connected to the output ends of the plurality of second selection switches, so that the signal received by the radio frequency receiver can be transmitted from different first amplifiers to the outside of the radio frequency receiver and to the processing circuit of the electronic device under the selection of the plurality of second selection switches.
  • a first end of the switch component is connected to one input end of an input group of a plurality of second selection switches, and two second ends of the switch component are respectively connected to two second ports of the radio frequency receiver.
  • the switch component can switch between a first state and a second state.
  • the two second ports can be turned on. If one of the two second ports of the radio frequency receiver is turned on with a first port, and a second filter discretely arranged outside the radio frequency receiver is connected on the conduction path, and the other second port is turned on with a second amplifier in another radio frequency receiver in the electronic device, then the radio frequency receiver can receive frequency band signals greater than the number of the first amplifiers, and the frequency band signals are respectively received from the plurality of first amplifiers of the radio frequency receiver and the other radio frequency receiver.
  • the second amplifier in the RF receiver transmits the signals to the processing circuit of the electronic device to realize the corresponding CA combination; when the switch component is in the second state, one of the two second ports can be connected to the input end of a second selection switch. If the second port is connected to a first port and a second filter is connected to the conductive path, the RF receiver can receive frequency band signals less than or equal to the number of first amplifiers, and the frequency band signals include frequency band signals selected by the second filter.
  • frequency band signals can be transmitted from the multiple first amplifiers in the RF receiver to the processing circuit of the electronic device, thereby making full use of the first amplifiers in the RF receiver and avoiding the signal in the path where the second filter is located from another RF receiver to the processing circuit of the electronic device, resulting in unnecessary insertion loss.
  • the switch component can also be switched to a third state; when the switch component is in the third state, the first end is connected to the other second end of the two second ends, the first end is disconnected from one of the two second ends, and the two second ends are disconnected.
  • the switch component can switch between the first state, the second state and the third state, so that the RF receiver can transmit the frequency band signal selected by the second filter separately set outside the RF receiver to the processing circuit of the electronic device through the second amplifier in another RF receiver in the electronic device when it is necessary to realize the CA combination in which the number of frequency band signals is greater than the number of first amplifiers; and when the electronic device needs to realize the CA combination in which the number of frequency band signals is less than or equal to the number of first amplifiers, and the frequency band signal includes the frequency band signal selected by the second filter, the frequency band signal selected by the second filter can be transmitted from the first amplifier inside the RF receiver to the processing circuit of the electronic device, thereby optimizing the insertion loss of the path where the second filter is located; and in the electronic device applied to the MIMO technology, multiple frequency band signals from different antennas can be received at the same time, thereby improving the utilization rate of the first amplifier, reducing the total number of amplifiers in the RF receiving system
  • the switch assembly includes a first connection structure, a second connection structure, and a third connection structure.
  • the first connection structure includes a first connection circuit and a first switch;
  • the second connection structure includes a second connection circuit and a second switch;
  • the third connection structure includes a third connection circuit and a third switch; one end of the first connection circuit, one end of the second connection circuit, and one end of the third connection circuit are connected, the other end of the first connection circuit is connected to a first end, and the other end of the second connection circuit and the other end of the third connection circuit are respectively connected to two second ends.
  • the first switch is connected in series in the first connection circuit
  • the second switch is connected in series in the second connection circuit
  • the third switch is connected in series in the third connection circuit.
  • the conduction or disconnection between the two ends can be controlled, so that the switch component can switch between the first state, the second state and the third state.
  • the switch assembly includes a first connection structure, a second connection structure, and a third connection structure.
  • the first connection structure includes a first connection circuit and a first switch; the first connection circuit is connected between the two second ends, and the first switch is connected in series in the first connection circuit.
  • the second connection structure includes a second connection circuit and a second switch; the second connection circuit is connected between the first end and one of the two second ends, and the second switch is connected in series in the second connection circuit.
  • the third connection structure includes a third connection circuit and a third switch; the third connection circuit is connected between the first end and the other second end of the two second ends, and the third switch is connected in series in the third connection circuit.
  • connection structure By controlling a switch, the corresponding connection structure can be controlled to be turned on or off, and then the two ends connected to the two ends of the connection structure can be controlled to be turned on or off, so that the switch component can switch between the first state, the second state and the third state. Fewer devices need to be controlled and the control difficulty is lower.
  • At least three ends also include a third end.
  • the switch assembly also includes a fourth connection structure, a fifth connection structure, and a sixth connection structure.
  • the fourth connection structure includes a fourth connection circuit and a fourth switch; the fourth connection circuit is connected between the third end and the first end, and the fourth switch is connected in series in the fourth connection circuit.
  • the fifth connection structure includes a fifth connection circuit and a fifth switch; the fifth connection circuit is connected between the third end and one of the two second ends, and the fifth switch is connected in series in the fifth connection circuit.
  • the sixth connection structure includes a sixth connection circuit and a sixth switch; the sixth connection circuit is connected between the third end and the other second end of the two second ends, and the sixth switch is connected in series in the sixth connection circuit.
  • the switch component has more ends, and each two ends can be turned on or off, so that the RF receiver can be applied to electronic devices in more usage scenarios, simplifying the design and assembly difficulty of electronic devices, with a high degree of integration and strong applicability.
  • the at least three ends further include a third end.
  • the switch assembly further includes a fourth connection structure.
  • the fourth connection structure includes a fourth connection circuit and a fourth switch; one end of the fourth connection circuit is connected to one end of the first connection circuit, one end of the second connection circuit, and one end of the third connection circuit, and the other end of the fourth connection circuit is connected to the third end; the fourth switch is connected in series in the fourth connection circuit.
  • the switch component has more ends, and each two ends can be turned on or off, so that the RF receiver can be applied to electronic devices in more usage scenarios, simplifying the design and assembly difficulty of electronic devices, with a high degree of integration and strong applicability.
  • the RF receiver further includes a third port; a third end is connected to a third port.
  • the third port of the RF receiver can be connected to an output end of a third filter separately disposed outside the RF receiver
  • a second port can be connected to an output end of a second filter separately disposed outside the RF receiver
  • another second port can be connected to a sixth port of another RF receiver in the electronic device, so that the RF receiver can be used in electronic devices that simultaneously apply MIMO technology and CA technology.
  • the switch component can be selected according to the communication system of the operator to which the electronic device is connected to transmit the frequency band signal in the CA combination or the MIMO frequency band signal, thereby enhancing the applicability of the RF receiver.
  • a third end is connected to an input end in the input end group.
  • the first amplifier for transmitting the frequency band signal selected by the second filter can be flexibly selected.
  • the first amplifier for transmitting the MIMO frequency band signal can be flexibly selected, thereby enhancing the applicability of the RF receiver.
  • At least three ends also include a fourth end.
  • the switch assembly also includes a seventh connection structure, an eighth connection structure, a ninth connection structure, and a tenth connection structure.
  • the seventh connection structure includes a seventh connection line and a seventh switch; the seventh connection line is connected between the fourth end and the first end, and the seventh switch is connected in series in the seventh connection line.
  • the eighth connection structure includes an eighth connection line and an eighth switch; the eighth connection line is connected between the fourth end and one of the two second ends, and the eighth switch is connected in series in the eighth connection line.
  • the ninth connection structure includes a ninth connection line and a ninth switch; the ninth connection line is connected between the fourth end and the other second end of the two second ends, and the ninth switch is connected in series in the ninth connection line.
  • the tenth connection structure includes a tenth connection line and a tenth switch; the tenth connection line is connected between the fourth end and the third end, and the tenth switch is connected in series in the tenth connection line.
  • the switch component has more ends, and each two ends can be turned on or off, so that the RF receiver can be applied to electronic devices in more usage scenarios, simplifying the design and assembly difficulty of electronic devices, with a high degree of integration and strong applicability.
  • the at least three ends further include a fourth end.
  • the switch assembly further includes a fifth connection structure.
  • the fifth connection structure includes a fifth connection line and a fifth switch; one end of the fifth connection line is connected to one end of the first connection line, one end of the second connection line, one end of the third connection line, and one end of the fourth connection line, and the other end of the fifth connection line is connected to the fourth end; the fifth switch is connected in series in the fifth connection line.
  • the switch component has more ends, and each two ends can be turned on or off, so that the RF receiver can be applied to electronic devices in more usage scenarios, simplifying the design and assembly difficulty of electronic devices, with a high degree of integration and strong applicability.
  • a fourth end is connected to an input end in the input end group.
  • the third port of the RF receiver can be connected to a MIMO signal link
  • a second port can be connected to an output end of a second filter discretely arranged outside the RF receiver
  • another second port can be connected to a sixth port of another RF receiver, so that the RF receiver can be used in electronic devices that simultaneously apply MIMO technology and CA technology, and the first amplifier used to transmit the frequency band signal selected by the second filter and the MIMO frequency band signal can be flexibly selected, thereby enhancing the applicability of the RF receiver.
  • the RF receiver further includes a fourth port; and a fourth end is connected to the fourth port.
  • the third port of the RF receiver can be connected to a MIMO signal link
  • the fourth port can be connected to another MIMO signal link
  • a second port can be connected to an output end of a second filter discretely arranged outside the RF receiver
  • another second port can be connected to a sixth port of another RF receiver, so that the RF receiver can be used in electronic devices that simultaneously apply MIMO technology and CA technology.
  • the switch component can be selected according to the communication system of the operator to which the electronic device is connected to transmit the frequency band signal in the CA combination or the frequency band signal of MIMO, thereby enhancing the applicability of the RF receiver.
  • the radio frequency receiver further includes a plurality of fifth ports and a third selection switch.
  • a third selection switch has a plurality of input terminals and a plurality of output terminals; the plurality of input terminals of a third selection switch are respectively connected to the output terminals of the plurality of first amplifiers; the plurality of output terminals of a third selection switch are respectively connected to the plurality of fifth ports; the third selection switch is used to select one of the plurality of input terminals of the third selection switch to be respectively connected to the plurality of output terminals of the third selection switch.
  • the frequency band signals output by the multiple first amplifiers can be transmitted to the corresponding ports of the RF transceiver chip in the processing circuit through the third selection switch to ensure the processing effect of the electronic device on the received signal, thereby ensuring the performance of the electronic device.
  • an embodiment of the present application further provides a radio frequency receiving system, which includes a first antenna and a first radio frequency receiver.
  • the first radio frequency receiver is the radio frequency receiver described in any of the above technical solutions, and an input end of a first selection switch in the first radio frequency receiver is connected to the first antenna.
  • the beneficial technical effects of the radio frequency receiving system provided by the embodiment of the present application are the same as the beneficial technical effects of the radio frequency receiver provided by the embodiment of the present application, and will not be repeated here.
  • the RF receiving system further includes a second filter and a second RF receiver.
  • the second filter includes an input end and an output end, the input end of the second filter is connected to one of the at least one first port in the first RF receiver, and the output end of the second filter is connected to one of the two second ports in the first RF receiver.
  • the second RF receiver includes a sixth port and a second amplifier, the second amplifier includes an input end, the input end of the second amplifier is connected to the sixth port, and the sixth port is connected to the other second port of the two second ports in the first RF receiver.
  • the first RF receiver can receive frequency band signals greater than the number of first amplifiers, and the frequency band signals are transmitted from the multiple first amplifiers of the first RF receiver and the second amplifier in the second RF receiver to the processing circuit of the electronic device to achieve corresponding CA combination.
  • an embodiment of the present application further provides an electronic device, which includes the radio frequency receiving system described in any of the above technical solutions.
  • the beneficial technical effects of the electronic device provided by the embodiment of the present application are the same as the beneficial technical effects of the radio frequency receiving system provided by the embodiment of the present application, and will not be repeated here.
  • FIG1 is a schematic diagram of communication between a terminal device and a base station provided in some embodiments of the present application.
  • FIG2 is a schematic diagram of a radio frequency receiving system of a terminal device provided in some embodiments of the present application.
  • FIG3 is a schematic diagram of a first radio frequency receiver provided in some embodiments of the present application.
  • FIG4 is a schematic diagram of a radio frequency receiving system of a terminal device provided in some other embodiments of the present application.
  • FIG5 is a schematic diagram of a structure of a switch component in the first RF receiver shown in FIG3 ;
  • FIG6 is a schematic diagram of the switch assembly shown in FIG5 in a first state
  • FIG7 is a schematic diagram of the switch assembly shown in FIG5 in a second state
  • FIG8 is another schematic diagram of the structure of the switch component in the first RF receiver shown in FIG3 ;
  • FIG9 is a schematic diagram of the switch assembly shown in FIG8 in a first state
  • FIG10 is a schematic diagram of the switch assembly shown in FIG8 in a second state
  • FIG11 is a schematic diagram of a radio frequency receiving system of a terminal device provided in some other embodiments of the present application.
  • FIG12 is a schematic diagram of a MIMO communication scenario provided in some embodiments of the present application.
  • FIG13 is a schematic diagram of a radio frequency receiving system of a terminal device provided in some other embodiments of the present application.
  • FIG14 is a schematic diagram of a radio frequency receiving system of a terminal device provided in yet other embodiments of the present application.
  • FIG15 is another structural schematic diagram of the switch component in the first RF receiver shown in FIG3 ;
  • FIG16 is a schematic diagram of the switch assembly shown in FIG15 in a first state
  • FIG17 is a schematic diagram of the switch assembly shown in FIG15 in a second state
  • FIG18 is a schematic diagram of the switch assembly shown in FIG15 in a third state
  • FIG19 is another schematic diagram of the structure of the switch component in the first RF receiver shown in FIG3 ;
  • FIG20 is a schematic diagram of the switch assembly shown in FIG19 in a first state
  • FIG21 is a schematic diagram of the switch assembly shown in FIG19 in a second state
  • FIG22 is a schematic diagram of the switch assembly shown in FIG19 in a third state
  • FIG23 is a schematic diagram of the structure of a switch assembly provided in some other embodiments of the present application.
  • FIG24 is a schematic diagram of the structure of a switch assembly provided in some other embodiments of the present application.
  • FIG25 is a schematic diagram of the structure of a switch assembly provided in some other embodiments of the present application.
  • FIG26 is a schematic diagram of a first radio frequency receiver provided in some other embodiments of the present application.
  • FIG27 is a schematic diagram of a first radio frequency receiver provided in some other embodiments of the present application.
  • FIG28 is a schematic diagram of the structure of a switch assembly provided in some other embodiments of the present application.
  • FIG29 is a schematic diagram of the structure of a switch assembly provided in some other embodiments of the present application.
  • FIG30 is a schematic diagram of a first radio frequency receiver provided in some other embodiments of the present application.
  • FIG31 is a schematic diagram of a radio frequency receiving system of a terminal device provided in yet other embodiments of the present application.
  • FIG32 is a schematic diagram of a first radio frequency receiver provided in some further embodiments of the present application.
  • connection can be a detachable connection or a non-detachable connection; it can be a direct connection or an indirect connection through an intermediate medium.
  • connection between the electronic devices involved in the embodiments of the present application refers to coupling, which includes direct connection or indirect connection via other devices to achieve electrical connectivity.
  • the terms “first”, “second”, “third”, “fourth”, “fifth”, “sixth”, “seventh”, “eighth”, “ninth”, and “tenth” are used for descriptive purposes only and should not be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features.
  • the features defined as “first”, “second”, “third”, “fourth”, “fifth”, “sixth”, “seventh”, “eighth”, “ninth”, and “tenth” may explicitly or implicitly include one or more of the features.
  • the present application provides an electronic device, which may be a terminal device or a wireless access network device having a function of transmitting and receiving radio frequency signals.
  • the terminal device may refer to an access terminal, a user device, a user unit, a user station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent or a user device.
  • the terminal device may also be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), a handheld device with wireless communication function, a computing device or other processing device connected to a wireless modem, a vehicle-mounted device, a wearable device, a terminal device in a 5G network or a terminal device in a future evolved Public Land Mobile Network (PLMN), etc., and this application does not limit this.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the wireless access network equipment may include but is not limited to base stations.
  • the base station may be a base station (Base Transceiver Station, BTS) in a GSM or CDMA system, a base station (NodeB, NB) in a WCDMA system, an evolved base station (Evolutional NodeB, eNB or eNodeB) in an LTE system, or a wireless controller in a cloud radio access network (Cloud Radio Access Network, CRAN) scenario, or the base station may be a relay station, access point, vehicle-mounted device, wearable device, and a base station in a 5G network, etc., and this application does not limit this.
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • Evolutional NodeB, eNB or eNodeB evolved base station
  • CRAN Cloud Radio Access Network
  • the communication systems used by the above-mentioned electronic devices may include, but are not limited to, Global System of Mobile communication (GSM) system, Code Division Multiple Access (CDMA) system, Wideband Code Division Multiple Access (WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, LTE Frequency Division Duplex (FDD) system, LTE Time Division Duplex (TDD), Universal Mobile Telecommunication System (UMTS), Worldwide Interoperability for Microwave Access (WiMAX) communication system, fifth generation (5G) system or new radio (NR), etc.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • 5G fifth generation
  • NR new radio
  • an electronic device is a terminal device, and the terminal device is a mobile phone.
  • Fig. 1 is a schematic diagram of communication between a terminal device 100 and a base station 200 provided in some embodiments of the present application.
  • the terminal device 100 includes a radio frequency receiving system and a processing circuit.
  • the RF receiving system of the terminal device 100 is used to receive, process and transmit the received signal from the base station 200 to the processing circuit at the back end.
  • the processing circuit is used to generate a transmit signal or process a received signal.
  • the processing circuit may include a processor and a RF transceiver chip.
  • the processor may include one or more processing units, for example: the processor may include a baseband processor, an application processor (application processor, AP), a modem processor, a graphics processor (graphics processing unit, GPU), an image signal processor (image signal processor, ISP), a controller, a memory, a video codec, a digital signal processor (digital signal processor, DSP), and/or a neural network processor (neural-network processing unit, NPU), etc.
  • different processing units may be independent devices or integrated in one or more processors.
  • the RF receiving system When the RF receiving system receives a receiving signal, the RF receiving system switches to a receiving link of a corresponding frequency band through a selection switch and other components, and inputs the receiving signal into the RF transceiver chip through the receiving link for filtering, amplification, mixing, and other processing, and then inputs the signal into the baseband processor for demodulation.
  • the RF transceiver chip also outputs a control signal to the selection switch and other components in the RF receiving system 10 through a control line to control the selection switch to switch different links.
  • LTE-A Long Term Evolution Advanced
  • CA carrier aggregation
  • the signal received by the antenna of the terminal device 100 is a signal formed by the aggregation of carriers of different frequency bands, such as the signal is a signal after the carrier aggregation of two, three or four frequency bands of B1, B3, B34, B39, B40 and B7 signals, thereby increasing the bandwidth and the downlink transmission rate. Since operators in different regions of the world have different spectrum allocations, there are different frequency band combinations of carrier aggregation. Therefore, in order to adapt to the reception of carrier aggregation signals from different base stations 200, the RF receiving system 10 of the terminal device 100 needs to be able to realize the segmentation and processing of signals of different frequency bands.
  • Bx here represents the frequency band corresponding to the LTE frequency band number x. It can be understood that the meaning of Bx in the following text is the same as here, and it will not be explained in the following text.
  • FIG. 2 is a schematic diagram of a radio frequency receiving system 10 of a terminal device 100 provided in some embodiments of the present application, and the radio frequency receiving system 10 includes a first antenna 11 and a first radio frequency receiver 12.
  • the first radio frequency receiver 12 includes a first selection switch 121, a plurality of first filters 122, a plurality of second selection switches 123, and a plurality of first amplifiers 124.
  • the first selection switch 121 includes an input end and multiple output ends. An input end of the first selection switch 121 is connected to the first antenna 11. An input end of the first selection switch 121 can be detachably connected to the first antenna 11 through a connection port of the first RF receiver 12, and the input end of the first selection switch 121 can also be connected to the first antenna 11 through an integrated structure, such as a feeder line. This application does not limit this.
  • the first selection switch 121 is used to select an input end of the first selection switch 121 to be connected to at least one of the multiple output ends of the first selection switch 121.
  • an input end of the first selection switch 121 can be connected to one of the multiple output ends, so that the received signal from the first antenna 11 is output from an output end of the first selection switch 121.
  • an input end of the first selection switch 121 can also be connected to two or more output ends of the first selection switch 121 at the same time, so that the received signal from the first antenna 11 is output from two or more output ends of the first selection switch 121 to different signal transmission links at the same time, which can be determined according to the matching relationship between the first RF receiver 12 and the frequency band signal transmitted by the operator base station 200.
  • the multiple output terminals of the first selection switch 121 include at least two second output terminals 1212.
  • a plurality of first filters 122 form at least two filter groups, and each filter group includes at least one first filter 122.
  • Each first filter 122 includes an input and an output, and the inputs of at least two filter groups are connected to at least two second outputs 1212 respectively. It is understandable that the input of the filter group can be connected to the second output 1212 in a one-to-one correspondence.
  • the number of the filter groups is four. In other examples, the number of the filter groups can also be two or other numbers, and the application does not limit this.
  • first filter 122 is numbered in Figure 2, and it should be understood that when the number of components appearing below is multiple, the components can also refer to the numbering method of the first filter 122, and the specific hereinafter will not be repeated.
  • each filter group may include two first filters 122, and the two first filters 122 are an integral structure and share an input end, that is, the input end shared by the two first filters 122 is the input end of the filter group, and the two first filters 122 each have an output end.
  • the two first filters 122 forming an integral structure can be used to select signals of two frequency bands with similar frequencies.
  • the two first filters 122 used to select B1 signals and B3 signals can be an integral structure
  • the two first filters 122 used to select B34 signals and B39 signals can be an integral structure.
  • the structures of the two first filters 122 with an integral structure are similar, which is convenient for design and processing, and the number of lines between the multiple first filters 122 and the first selection switch 121 can be reduced, simplifying the design and wiring difficulty of the first RF receiver 12.
  • each filter group may include a first filter 122 , and an input end of the first filter 122 is connected to a second output end 1212 of the first selection switch 121 .
  • a portion of the filter groups may include one first filter 122, and another portion of the filter groups may include two first filters 122.
  • two filter groups include two first filters 122 respectively, and the other two filter groups include one first filter 122 respectively.
  • the frequencies that can be selected by all the first filters in the first RF receiver 12 are different, so that the frequency of the signal output from the output end of each first filter 122 is different from the frequency of the output signal of any other first filter 122, so that the first RF receiver 12 can receive as many different frequency band signals as possible to achieve as many CA combinations as possible.
  • each second selection switch 123 includes a plurality of input terminals and an output terminal, and the second selection switch 123 is used to select one of the plurality of input terminals of the second selection switch 123 to be connected to an output terminal of the second selection switch 123.
  • the number of input terminals of each second selection switch 123 is four, that is, the second selection switch 123 can be a single-pole four-throw switch.
  • the number of input terminals of each second selection switch 123 can also be two, three, five or other numbers, which is not limited in the present application.
  • all the input ends of the plurality of second selection switches 123 form an input end group.
  • the plurality of input ends in the input end group are respectively connected to the output ends of the plurality of first filters 122.
  • all the input ends of the three second selection switches 123 form an input end group with a total of 12 input ends.
  • some of the input ends can be respectively connected to the output ends of the plurality of first filters 122, that is, some of the input ends can be idle and not connected, or all the input ends can be respectively connected to the output ends of the plurality of first filters 122.
  • the output end of a first filter 122 can be connected to an output end of a second selection switch 123, or can be connected to an output end of a plurality of second selection switches 123 at the same time. It is only necessary to ensure that the output ends of the two first filters 122 in a filter group have a connection mode that is respectively connected to the input ends of the two second selection switches 123, so as to realize the CA combination of the frequency band signals selected by the two first filters 122 in a filter group.
  • each first amplifier 124 includes an input end and an output end, and an input end of the plurality of first amplifiers 124 is respectively connected to an output end of the plurality of second selection switches 123. That is, the first amplifiers 124 correspond to the second selection switches 123 one by one, and the input end of a first amplifier 124 is connected to the output end of a second selection switch 123.
  • the number of first filters 122 can be greater than or equal to the number of first amplifiers 124, so that when the number of first amplifiers 124 is fixed, the radio frequency receiving system 10 can receive as many signals of different frequency bands as possible, so that the terminal device 100 can adapt to the communication spectrum of different regions and different operators as much as possible, thereby increasing the market competitiveness of the terminal device 100.
  • the first amplifier 124 may be a low noise amplifier LNA, which is an amplifier with a very small noise coefficient, and can amplify the weak RF signal received by the first antenna 11 and minimize the introduction of noise, thereby effectively improving the receiving sensitivity of the first RF receiver 12.
  • the first amplifier 124 may also be other tolerant amplifiers, as long as it can amplify the RF signal received by the first antenna 11 and minimize the introduction of noise.
  • the first RF receiver 12 when the number of the first filters 122 is greater than the number of the first amplifiers 124, the first RF receiver 12 can simultaneously receive and output the same number of frequency band signals as the first amplifiers 124 at most. Therefore, in the CA combination that can be realized by the signal received by the first RF receiver 12, the number of frequency band signals can be at most the same as the number of the first amplifiers 124. In the embodiment shown in FIG2, the number of LNAs is three. Therefore, in the CA combination that can be realized by the signal received by the first RF receiver 12, the number of frequency band signals is at most three.
  • the first RF receiver 12 will integrate multiple first filters 122 used for common CA combinations.
  • the first RF receiver 12 can integrate the first filter 122 for selecting B1, B3, B34, B39, B40 and B7 signals, and integrate three LNAs to realize multiple CA combinations less than or equal to three frequency band signals. Therefore, it is impossible to realize the CA combination of four frequency band signals.
  • the first filter 122 integrated in the first RF receiver 12 usually does not cover the entire spectrum of all operators in the world.
  • a single first RF receiver 12 receives and selects the CA combination of the frequency band signal (such as B1, B3, B34, B39, B40, B7) corresponding to the integrated first filter 122 and the frequency band signal (such as B32) corresponding to the filter not integrated in the first RF receiver 12.
  • the frequency band signal such as B1, B3, B34, B39, B40, B7
  • the first RF receiver 12 further includes at least one first port 125
  • the output end of the first selection switch 121 further includes at least one first output end 1211
  • the at least one first output end 1211 is respectively connected to the at least one first port 125.
  • the number of the first port 125 and the first output end 1211 can both be one, and the number of the first port 125 and the number of the first output end 1211 can also be multiple, and the first port 125 and the first output end 1211 are connected one-to-one.
  • the RF receiving system 10 further includes a second filter 13, an impedance matching network 19, a second RF receiver 14 and a second antenna 18.
  • the second RF receiver 14 is connected to the second antenna 18 to receive a signal from the second antenna 18.
  • the second RF receiver 14 includes a sixth port 141 and a second amplifier 142.
  • the second amplifier 142 includes an input end, and the input end of the second amplifier 142 is connected to the sixth port 141.
  • the input end of the second amplifier 142 and the sixth port 141 can be indirectly connected through a selection switch.
  • the second amplifier 142 can be a low noise amplifier (Low Noise Amplifier, LNA), which is an amplifier with a very small noise coefficient, which can amplify weak RF signals and minimize the introduction of noise, thereby effectively improving the receiving sensitivity of the RF receiving system 10.
  • LNA Low Noise Amplifier
  • the second amplifier 142 can also be other tolerant amplifiers, as long as it can amplify RF signals and minimize the introduction of noise.
  • the structure of the second RF receiver 14 may be the same as that of the first RF receiver 12, or may be different from that of the first RF receiver 12. In the embodiment shown in FIG. 2 , the structure of the second RF receiver 14 is approximately the same as that of the first RF receiver 12, except that a filter capable of selecting signals of more frequency bands may be integrated in the second RF receiver 14 to enable the RF receiving system 10 to achieve a diversity receiving function of signals of more frequency bands, so as to improve the receiving sensitivity of the RF receiving system 10.
  • the second filter 13 includes an input end and an output end, and the input end of the second filter 13 is connected to one of the at least one first port 125 in the first RF receiver 12, and an impedance matching network 19 is connected in series on the connection line.
  • the second filter 13 and the first RF receiver 12 and the second RF receiver 14 are separately arranged on the circuit board of the terminal device 100, and the center frequency of the second filter 13 can be determined according to the area where the terminal device 100 is applied. For example, the second filter 13 can be used to select frequency band signals with fewer application areas.
  • the RF receiving system 10 can receive the frequency band signal including the frequency band selected by the second filter 13 to realize the corresponding CA combination is as follows: the output end of the second filter 13 is connected to the sixth port 141 of the second RF receiver 14, that is, the output end of the second filter 13 is connected to the second RF receiver 14 through the wiring on the circuit board of the terminal device 100, and the frequency band signal output from the second filter 13 can be transmitted from the second amplifier 142 in the second RF receiver 14 to the processing circuit for processing.
  • the antennas need to have the necessary spatial isolation, so the distance between the second RF receiver 14 and the first RF receiver 12 is relatively far, resulting in a longer line between the second filter 13 and the second RF receiver 14, which in turn leads to a larger insertion loss.
  • a surface wiring with a length of 50mm will lead to an insertion loss of about 1.5db.
  • the frequency band signal selected by the second filter 13 is CA combined with the frequency band signal in the first RF receiver 12 that is less than the number of first amplifiers 124. In this case, at least one first amplifier 124 will be idle in the first RF receiver 12. If the frequency band signal in the path where the second filter 13 is located still enters the processing circuit from the second amplifier 142 in the second RF receiver 14, it will cause unnecessary insertion loss in the path where the second filter 13 is located.
  • FIG. 3 is a schematic diagram of a first RF receiver 12 provided in some embodiments of the present application
  • FIG. 4 is a schematic diagram of a RF receiving system 10 of a terminal device 100 provided in other embodiments of the present application, wherein the first RF receiver 12 further includes two second ports 126 and a switch component 127.
  • the output end of the second filter 13 is connected to one of the two second ports 126
  • the sixth port 141 of the second RF receiver 14 is connected to the other second port 126 of the two second ports 126 of the first RF receiver 12.
  • the switch assembly 127 includes at least three ends 1271, including a first end 1271a and two second ends 1271b, wherein the first end 1271a is connected to one input end in the input end group of the plurality of second selection switches 123, and the two second ends 1271b are respectively connected to the two second ports 125.
  • the switch assembly 127 can switch between a first state and a second state.
  • the switch component 127 When the switch component 127 is in the first state, the two second ends 1271b are connected, and the first end 1271a and any one of the two second ends 1271b are disconnected. In this way, the signal chain formed by the first selection switch 121, the second filter 13, the two second ports 126, the two second ends 1271b, the sixth port 141 and the second amplifier 142 is connected, and the four frequency band signals received by the first RF receiver 12 from the first antenna 11 are B1, B3, B7 and B32 signals, for example.
  • the B1 signal, the B3 signal and the B7 signal are output from the three signal chains in the first RF receiver 12 to the processing circuit of the terminal device 100, and the B32 signal is output from the signal chain formed by the first selection switch 121, the second filter 13, the two second ports 126, the two second ends 1271b, the sixth port 141 and the second amplifier 142 to the processing circuit of the terminal device 100, so as to realize the CA combination of the four frequency band signals.
  • the switch component 127 When the switch component 127 is in the second state, the first end 1271a is connected to one of the two second ends 1271b, and the second end 1271b is connected to the output end of the second filter 13 through the second port 126; the first end 1271a is disconnected from the other second end 1271b of the two second ends 1271b, and the two second ends 1271b are disconnected.
  • the signal chain formed by the first selection switch 121, the second filter 13, a second port 126, a second end 1271b, a second selection switch 123 and a first amplifier 124 is turned on; and the signal chain formed by the first selection switch 121, the second filter 13, two second ports 125, two second ends 1271b, the sixth port 141 and the second amplifier 142 is turned off.
  • the first RF receiver 12 receives less than or equal to three frequency band signals from the first antenna 11, for example, the three frequency band signals may be B1, B3 and B32 signals, or the three frequency band signals may be B1, B7 and B32 signals, or the two frequency band signals received by the first RF receiver 12 from the first antenna 11 may be B1 and B32 signals, or the two frequency band signals may be B3 and B32 signals, or the two frequency band signals may be B7 and B32 signals.
  • the B32 signal can be transmitted to the processing circuit of the terminal device 100 via a signal link formed by the first selection switch 121, the second filter 13, a second port 126, a second end 1271b, a second selection switch 123 and a first amplifier 124, and another one or two frequency band signals can be transmitted from the signal transmission link in the first RF receiver 12 to the processing circuit of the terminal device 100 to achieve 2 or 3 CA combinations containing B32 signals.
  • the transmission path is shorter than that from the second amplifier 142 in the second RF receiver 14 to the processing circuit, and the insertion loss is smaller, which effectively optimizes the NF performance of the terminal device 100, improves the receiving sensitivity, and enhances the user experience.
  • the first RF receiver 12 provided in some embodiments of the present application is connected to at least one first output terminal 1211 of the first selection switch 121 through at least one first port 125, so that the signal received by the first RF receiver 12 from the first antenna 11 can be transmitted from the first output terminal 1211 and the first port 125 to the outside of the first RF receiver 12.
  • the input terminals of at least two filter groups are respectively connected to at least two second output terminals 1212 of the first selection switch 121, the input terminals of the input terminal group composed of the input terminals of the plurality of second selection switches 123 are respectively connected to the output terminals of the plurality of first filters 122, and one input terminal of the plurality of first amplifiers 124 is respectively connected to the output terminals of the plurality of second selection switches 123, so that the signal received by the first RF receiver 12 from the first antenna 11 can be transmitted from different first amplifiers 124 to the outside of the first RF receiver 12 and to the processing circuit of the terminal device 100 under the selection of the plurality of second selection switches 123.
  • a first end 1271a of the switch component 127 is connected to one input end of the input group of the plurality of second selection switches 123, and two second ends 1271b of the switch component 127 are respectively connected to the two second ports 126 of the first RF receiver 12.
  • the switch component 127 can switch between a first state and a second state. When the switch component 127 is in the first state, the two second ports 126 can be turned on.
  • the first RF receiver 12 can receive frequency band signals greater than the number of the first amplifier 124, and the frequency band signals are respectively output from the plurality of first amplifiers 124 of the first RF receiver 12 and the plurality of first amplifiers 124 of the second RF receiver 14.
  • the second amplifier 142 transmits to the processing circuit of the terminal device 100 to realize the corresponding CA combination; when the switch component 127 is in the second state, one of the two second ports 126 can be connected to the input end of a second selection switch 123.
  • the first RF receiver 12 can receive frequency band signals less than or equal to the number of first amplifiers 124, and the frequency band signals include frequency band signals selected by the second filter 13. These frequency band signals can be transmitted from the multiple first amplifiers 124 in the first RF receiver 12 to the processing circuit of the terminal device 100, thereby fully utilizing the first amplifier 124 in the first RF receiver 12, and avoiding the signal in the path where the second filter 13 is located from the second RF receiver 14 to the processing circuit of the terminal device 100, resulting in unnecessary insertion loss.
  • switch component 127 There are various structures of the switch component 127 that can switch between the first state and the second state.
  • FIG. 5 is a schematic diagram of a structure of the switch component 127 in the first RF receiver 12 shown in FIG. 3, and the switch component 127 further includes a single-pole multi-throw switch 1272, a moving end of the single-pole multi-throw switch 1272 is connected to one of the two second ends 1271b, a fixed end of the single-pole multi-throw switch 1272 is connected to the first end 1271a, and the other fixed end is connected to the other second end 1271b of the two second ends 1271b.
  • FIG. 6 which is a schematic diagram of the switch component 127 shown in FIG. 5 in the first state.
  • FIG. 7 is a schematic diagram of the switch assembly 127 shown in FIG. 5 in the second state.
  • the moving end of the single-pole multi-throw switch 1272 is connected to the fixed end connected to the first end 1271a, so that the first end 1271a of the switch assembly 127 is connected to one second end 1271b, and is disconnected from the other second end 1271b, and the two second ends 1271b are disconnected.
  • the single-pole multi-throw switch 1272 can be a single-pole double-throw switch.
  • FIG. 8 is another structural schematic diagram of the switch component 127 in the first RF receiver 12 shown in FIG. 3, and the switch component 127 includes a first connection structure 1273 and a second connection structure 1274.
  • the first connection structure 1273 includes a first connection line 1273a and a first switch 1273b, the first connection line 1273a is connected between the two second ends 1271b, and the first switch 1273b is connected in series in the first connection line 1273a.
  • the second connection structure 1274 includes a second connection line 1274a and a second switch 1274b, the second connection line 1274a is connected between the first end 1271a and one of the two second ends 1271b, and the second switch 1274b is connected in series in the second connection line 1274a.
  • FIG. 9 is a schematic diagram of the switch assembly 127 shown in FIG. 8 in the first state.
  • the first switch 1273b is turned on to make the two second ends 1271b conductive, and at the same time, the second switch 1274b is turned off to disconnect the first end 1271a from any second end 1271b.
  • FIG. 10 is a schematic diagram of the switch assembly 127 shown in FIG. 8 in the second state.
  • the second switch 1274b When the switch assembly 127 is in the second state, the second switch 1274b is turned on to make the first end 1271a conductive to the second end 1271b connected to the end of the second connection line 1274a, and at the same time, the first switch 1273b is turned off to disconnect the two second ends 1271b.
  • the first switch 1273b and the second switch 1274b are single-pole single-throw switches.
  • the first switch 1273b and the second switch 1274b may be relay switches; the first switch 1273b and the second switch 1274b may also be MOS switches; the first switch 1273b and the second switch 1274b may also be mechanical switches.
  • the above example is explained by taking the switch component 127 integrated in the first RF receiver 12 as an example.
  • Figure 11 is a schematic diagram of the RF receiving system 10 of the terminal device 100 provided in some other embodiments of the present application.
  • the switch component 127 may not be integrated in the first RF receiver 12.
  • the RF receiving system 10 also includes a second single-pole double-throw switch 15.
  • the second single-pole double-throw switch 15 is separately arranged on the circuit board of the terminal device 100 with the first RF receiver 12 and the second RF receiver 14.
  • the moving end of the second single-pole double-throw switch 15 is connected to the output end of the second filter 13, and a fixed end of the second single-pole double-throw switch 15 is connected to a second port 126.
  • This second port 126 is connected to one input end of the input end group of multiple second selection switches 123, and the other fixed end of the second single-pole double-throw switch 15 is connected to the sixth port 141 of the second RF receiver 14.
  • the first RF receiver 12 can receive frequency band signals greater than the number of the first amplifiers 124, and the signals are transmitted from the multiple signal links where the multiple first amplifiers 124 of the first RF receiver 12 are located and the signal links where the second filter 13 and the second amplifier 142 are connected to the processing circuit of the terminal device 100 to achieve the corresponding CA combination.
  • the first RF receiver 12 can receive frequency band signals less than or equal to the number of the first amplifiers 124, and the frequency band signals include frequency band signals selected by the second filter 13, and these frequency band signals can be transmitted from the multiple first amplifiers 124 in the first RF receiver 12 to the processing circuit of the terminal device 100, thereby fully utilizing the first amplifiers 124 in the first RF receiver 12, and avoiding the transmission of the signal in the path where the second filter 13 is located from the second RF receiver 14 to the processing circuit of the terminal device 100, resulting in unnecessary insertion loss.
  • the second SPDT switch 15 is provided in the RF receiving system 10 , and the second SPDT switch 15 is provided separately from the first RF receiver 12 and the second RF receiver 14 , which increases the difficulty of designing and processing the circuit board of the terminal device 100 .
  • Introducing carrier aggregation technology in a communication system is a way to provide communication rate.
  • Another way to increase the communication rate is to use multiple input multiple output (MIMO) technology in LTE networking to increase channel capacity and improve data throughput.
  • MIMO multiple input multiple output
  • the antenna form applied to MIMO is that both the transmitting end and the receiving end use multiple antennas to form an antenna system with multiple transmitting and receiving paths between the transceiver devices.
  • Figure 12 is a communication scenario architecture diagram of MIMO provided by some embodiments of the present application.
  • the transmitting end of the base station 200 and the receiving end of the terminal device 100 are both exemplified by two antennas.
  • the base station 200 transmits through the transmitting antenna 1 and the transmitting antenna 2, and the terminal device 100 receives the signal through the receiving antenna 1 and the receiving antenna 2. It can be seen that the use of MIMO technology by the terminal device 100 makes the number of antennas thereon multiple. Therefore, the number of RF receivers in the terminal device 100 is also multiple, and the RF receivers correspond to the antennas one by one to realize the reception of the received signals of multiple antennas.
  • Figure 13 is a schematic diagram of the RF receiving system 10 of the terminal device 100 provided in some other embodiments of the present application.
  • the RF receiving system 10 may further include two third filters 16. The frequency ranges that the two third filters 16 can select can be the same as the frequency ranges that the multiple first filters 122 can select.
  • the two third filters 16 can also be filters that can select B39 signals and B3 signals, respectively.
  • the RF receiving system 10 also includes a third single-pole double-throw switch 17, the input ends of the two third filters 16 are connected to other antennas (such as the second antenna 18 or other antennas not shown in the figure) other than the first antenna 11 in the RF receiving system 10, the output ends of the two third filters 16 are respectively connected to the two fixed ends of the third single-pole double-throw switch 17, the moving end of the third single-pole double-throw switch 17 is connected to a second port 126 of the first RF receiver 12, and the second port 126 is connected to one input end group of the input end groups of the plurality of second selection switches 123.
  • the active end of the third single-pole double-throw switch 17 can be connected to one of the two fixed ends, so that a frequency band signal selected by the third filter 16 can be transmitted from a first amplifier 124 in the first RF receiver 12 to the processing circuit of the terminal device 100, which not only improves the utilization rate of the first amplifier 124, but also reduces the total number of amplifiers in the RF receiving system 10, saving the cost of the terminal device 100.
  • the switch component 127 is not integrated in the first RF receiver 12, if the terminal device 100 is to implement the CA combination of the frequency band signal including the frequency band selected by the second filter 13, it is necessary to separately set a second single-pole double-throw switch 15 outside the first RF receiver 12. If the terminal device 100 using MIMO technology is to improve the utilization rate of the first amplifier 124 in the first RF receiver 12, it is necessary to separately set a third single-pole double-throw switch 17 outside the first RF receiver 12, thereby increasing the difficulty of designing and assembling the terminal device 100 suitable for communication systems of different operators in different regions.
  • FIG 14 is a schematic diagram of the radio frequency receiving system 10 of the terminal device 100 provided in some other embodiments of the present application.
  • the aforementioned switch component 127 can also be switched to a third state.
  • the first end 1271a is connected to the other second end 1271b of the two second ends 1271b, the first end 1271a is disconnected from one second end 1271b of the two second ends 1271b, and the two second ends 1271b are disconnected.
  • the second end 1271b here refers to the second end 1271b connected to a second port 126 connected to the output end of the second filter 13 when the radio frequency receiving system 10 includes the second filter 13 as described above.
  • the switch component 127 when the switch component 127 is in the second state, one of the two second ports 126 can be connected to the input end of a second selection switch 123, and if the second port 126 is connected to a third filter 16 (such that the third filter 16 selects the B39 signal), two B39 signals can be transmitted from the first RF receiver 12 to the processing circuit of the terminal device 100; when the switch component 127 is in the third state, the other second port 126 of the two second ports 126 can be connected to the input end of a second selection switch 123, and if the second port 126 is connected to another third filter 16 (such that the third filter 16 selects the B3 signal), two B3 signals can be transmitted from the first RF receiver 12 to the processing circuit of the terminal device 100.
  • This not only improves the utilization rate of the first amplifier 124, but also reduces the total number of amplifiers in the RF receiving system 10, saving the cost of the terminal device 100.
  • the first RF receiver 12 provided in some embodiments of the present application does not need to be separately provided with the second single-pole double-throw switch 15 or the third single-pole double-throw switch 17 outside the first RF receiver 12.
  • the switch component 127 can switch between the first state, the second state and the third state, so that the first RF receiver 12 can transmit the frequency band signal selected by the second filter 13 separately provided outside the first RF receiver 12 to the terminal device 10 by connecting to the second amplifier 142 in the second RF receiver 14 in the RF receiving system 10 when it is necessary to implement a CA combination in which the number of frequency band signals is greater than the number of the first amplifier 124.
  • the terminal device 100 needs to realize a CA combination in which the number of frequency band signals is less than or equal to the number of the first amplifiers 124, and the frequency band signals include the frequency band signals selected by the second filter 13, the frequency band signals selected by the second filter 13 can be transmitted from the first amplifier 124 inside the first RF receiver 12 to the processing circuit of the terminal device 100, thereby optimizing the insertion loss of the path where the second filter 13 is located; and in the terminal device 100 applied to the MIMO technology, multiple frequency band signals from different antennas can be received at the same time, thereby improving the utilization rate of the first amplifier 124, reducing the total number of amplifiers in the RF receiving system 10, and saving the cost of the terminal device 100. Therefore, the first RF receiver 12 can be applied to the terminal device 100 in various usage scenarios, simplifying the design and assembly difficulty of the terminal device 100, with a high degree of integration and strong applicability.
  • switch component 127 There are various structures of the switch component 127 that can switch between the first state, the second state and the third state.
  • FIG. 15 is another structural schematic diagram of the switch component 127 in the first RF receiver 12 shown in FIG. 3.
  • the switch component 127 includes a first connection structure 1273, a second connection structure 1274, and a third connection structure 1275.
  • the first connection structure 1273 includes a first connection line 1273a and a first switch 1273b.
  • the second connection structure 1274 includes a second connection line 1274a and a second switch 1274b.
  • the third connection structure 1275 includes a third connection line 1275a and a third switch 1275b.
  • first connection line 1273a One end of the first connection line 1273a, one end of the second connection line 1274a, and one end of the third connection line 1275a are connected, and the other end of the first connection line 1273a is connected to a first end 1271a, and the other end of the second connection line 1274a and the other end of the third connection line 1275a are respectively connected to two second ends 1271b.
  • the first switch 1273b is connected in series to the first connection line 1273a
  • the second switch 1274b is connected in series to the second connection line 1274a
  • the third switch 1275b is connected in series to the third connection line 1275a.
  • FIG. 16 is a schematic diagram of the switch assembly 127 shown in FIG. 15 in the first state.
  • the second switch 1274b and the third switch 1275b are turned on to make the two second ends 1271b conductive, and at the same time, the first switch 1273b is turned off to disconnect the first end 1271a from any second end 1271b.
  • FIG. 17 which is a schematic diagram of the switch assembly 127 shown in FIG. 15 in the second state.
  • FIG. 18 is a schematic diagram of the switch assembly 127 shown in FIG. 15 in the third state.
  • the switch assembly 127 When the switch assembly 127 is in the third state, the first switch 1273b and the third switch 1275b are turned on, so that the first end 1271a is connected to the second end 1271b connected to the end of the third connection line 1275a, and the second switch 1274b is turned off, so that the two second ends 1271b are disconnected.
  • the third switch 1275b has the same structure as the first switch 1273b and the second switch 1274b.
  • the structures of the first switch 1273b and the second switch 1274b are as described above and will not be repeated here.
  • FIG. 19 is another structural schematic diagram of the switch component 127 in the first RF receiver 12 shown in FIG. 3, wherein the switch component 127 includes a first connection structure 1273, a second connection structure 1274, and a third connection structure 1275.
  • the first connection structure 1273 includes a first connection line 1273a and a first switch 1273b.
  • the first connection line 1273a is connected between the two second ends 1271b, and the first switch 1273b is connected in series in the first connection line 1273a.
  • the second connection structure 1274 includes a second connection line 1274a and a second switch 1274b; the second connection line 1274a is connected between the first end 1271a and one of the two second ends 1271b, and the second switch 1274b is connected in series in the second connection line 1274a.
  • the third connection structure 1275 includes a third connection line 1275a and a third switch 1275b; the third connection line 1275a is connected between the first end 1271a and the other second end 1271b of the two second ends 1271b, and the third switch 1275b is connected in series in the third connection line 1275a.
  • FIG. 20 is a schematic diagram of the switch assembly 127 shown in FIG. 19 in the first state.
  • the first switch 1273b is turned on to connect the two second ends 1271b, and at the same time, the second switch 1274b and the third switch 1275b are turned off to disconnect the first end 1271a from any second end 1271b.
  • FIG. 21 is a schematic diagram of the switch assembly 127 shown in FIG. 19 in the second state.
  • FIG. 22 is a schematic diagram of the switch assembly 127 shown in FIG. 19 in the third state.
  • the third switch 1275b is turned on to make the first end 1271a and the second end 1271b connected to the end of the third connection line 1275a conductive, and at the same time, the first switch 1273b and the second switch 1274b are turned off to disconnect the two second ends 1271b.
  • the third switch 1275b has the same structure as the first switch 1273b and the second switch 1274b.
  • the structures of the first switch 1273b and the second switch 1274b are as described above and will not be repeated here.
  • the corresponding connection structure can be controlled to be turned on or off by controlling one switch, thereby controlling the conduction or disconnection of the two ends 1271 connected to the two ends of the connection structure. Fewer devices need to be controlled, and the control difficulty is low.
  • FIG. 23 is a schematic diagram of the structure of the switch assembly 127 provided in some other embodiments of the present application
  • FIG. 24 is a schematic diagram of the structure of the switch assembly 127 provided in some other embodiments of the present application.
  • FIG. 23 and FIG. 24 only show the connection structure between each end 1271, and do not show the switch connected in series to the connection line of the connection structure. At least three ends 1271 also include a third end 1271c.
  • the switch assembly 127 also includes a fourth connection structure 1276, a fifth connection structure 1277 and a sixth connection structure 1278.
  • the fourth connection structure 1276 includes a fourth connection line and a fourth switch.
  • the fourth connection line is connected between the third end 1271c and the first end 1271a, and the fourth switch is connected in series in the fourth connection line.
  • the fifth connection structure 1277 includes a fifth connection line and a fifth switch.
  • the fifth connection line is connected between the third end 1271c and one of the two second ends 1271b, and the fifth switch is connected in series in the fifth connection line.
  • the sixth connection structure 1278 includes a sixth connection circuit and a sixth switch.
  • the sixth connection circuit is connected between the third end 1271c and the other second end 1271b of the two second ends 1271b, and the sixth switch is connected in series in the sixth connection circuit.
  • the fourth switch, the fifth switch, and the sixth switch have the same structure as the first switch 1273b, the second switch 1274b, and the third switch 1275b.
  • the structures of the first switch 1273b and the second switch 1274b are as described above and will not be repeated here.
  • the switch component 127 When the switch component 127 is in the first state, the second state and the third state, the on and off forms of the first switch, the second switch and the third switch are as described in the above-mentioned embodiment, and will not be repeated here. It should be noted that when the switch component 127 is in the first state, the second state and the third state, the fourth switch, the fifth switch and the sixth switch need to be turned off at the same time. In this way, the switch component 127 has more ends 1271, and each two ends 1271 can be turned on or off, so that the first RF receiver 12 can be applied to the terminal device 100 in more usage scenarios, simplifying the design and assembly difficulty of the terminal device 100, with a high degree of integration and strong applicability.
  • FIG. 25 is a schematic diagram of the structure of the switch assembly 127 provided in some other embodiments of the present application.
  • FIG. 25 only shows the connection structure between each end 1271, and does not show the switch connected in series on the connection line of the connection structure.
  • At least three ends 1271 also include a third end 1271c.
  • the switch assembly 127 also includes a fourth connection structure 1276.
  • the fourth connection structure 1276 includes a fourth connection line and a fourth switch. One end of the fourth connection line is connected to one end of the first connection line, one end of the second connection line, and one end of the third connection line, and the other end of the fourth connection line is connected to the third end 1271c; the fourth switch is connected in series in the fourth connection line.
  • the fourth switch, the fifth switch, and the sixth switch have the same structure as the first switch 1273b, the second switch 1274b, and the third switch 1275b.
  • the structures of the first switch 1273b and the second switch 1274b are as described above and will not be repeated here.
  • the switch component 127 When the switch component 127 is in the first state, the second state and the third state, the on and off forms of the first switch, the second switch and the third switch are as described in the above-mentioned embodiment, and will not be repeated here. It should be noted that the fourth switch needs to be turned off at the same time when the switch component 127 is in the first state, the second state and the third state. In this way, the switch component 127 has more ends 1271, and each two ends 1271 can be turned on or off, so that the first RF receiver 12 can be applied to the terminal device 100 in more usage scenarios, simplifying the design and assembly difficulty of the terminal device 100, with a high degree of integration and strong applicability.
  • FIG. 26 is a schematic diagram of the first RF receiver 12 provided in other embodiments of the present application, wherein a third end 1271c is connected to an input end in the input end group of multiple second selection switches 123. It should be noted that the third end 1271c and the first end 1271a are respectively connected to the input ends of two second selection switches 123. In this way, when the RF receiving system 10 needs to implement a CA combination including a frequency band signal selected by the second filter 13, the first amplifier 124 for transmitting the frequency band signal selected by the second filter 13 can be flexibly selected.
  • the first amplifier 124 for transmitting the frequency band signal selected by the third filter 16 can be flexibly selected, thereby enhancing the applicability of the first RF receiver 12.
  • FIG. 27 is a schematic diagram of the first RF receiver 12 provided in other embodiments of the present application
  • FIG. 28 is.
  • the first RF receiver 12 also includes a third port 128.
  • a third end 1271c is connected to a third port 128.
  • the third port 128 of the first RF receiver 12 can be connected to the output end of a third filter 16
  • a second port 126 can be connected to the output end of the second filter 13
  • another second port 126 can be connected to the sixth port 141, so that the first RF receiver 12 can be used in a terminal device 100 that simultaneously applies MIMO technology and CA technology.
  • the switch component 127 can be selected according to the communication system of the operator to which the terminal device 100 is connected to transmit the frequency band signal in the CA combination or the frequency band signal of MIMO, thereby enhancing the applicability of the first RF receiver 12.
  • FIG. 28 is a schematic diagram of the structure of the switch assembly 127 provided in some other embodiments of the present application.
  • FIG. 28 only shows the connection structure between each end 1271, and does not show the switch connected in series to the connection line of the connection structure.
  • At least three ends 1271 also include a fourth end 1271d.
  • the switch assembly 127 also includes a seventh connection structure 1279, an eighth connection structure 1280, a ninth connection structure 1281 and a tenth connection structure 1282.
  • the seventh connection structure 1279 includes a seventh connection line and a seventh switch; the seventh connection line is connected between the fourth end 1271d and the first end 1271a, and the seventh switch is connected in series in the seventh connection line.
  • the eighth connection structure 1280 includes an eighth connection line and an eighth switch; the eighth connection line is connected between the fourth end 1271d and one of the two second ends 1271b, and the eighth switch is connected in series in the eighth connection line.
  • the ninth connection structure 1281 includes a ninth connection circuit and a ninth switch; the ninth connection circuit is connected between the fourth end 1271d and the other second end 1271b of the two second ends 1271b, and the ninth switch is connected in series in the ninth connection circuit.
  • the tenth connection structure 1282 includes a tenth connection circuit and a tenth switch; the tenth connection circuit is connected between the fourth end 1271d and the third end 1271c, and the tenth switch is connected in series in the tenth connection circuit.
  • the switch component 127 When the switch component 127 is in the first state, the second state and the third state, the on and off forms of the first switch, the second switch and the third switch are as described in the above-mentioned embodiment, and will not be repeated here. It should be noted that when the switch component 127 is in the first state, the second state and the third state, the fourth switch, the fifth switch, the sixth switch, the seventh switch, the eighth switch, the ninth switch and the tenth switch need to be turned off at the same time.
  • the switch component 127 has more ends 1271, and each two ends 1271 can be turned on or off, so that the first RF receiver 12 can be applied to terminal devices 100 in more usage scenarios, simplifying the design and assembly difficulty of the terminal device 100, with a high degree of integration and strong applicability.
  • FIG. 29 is a schematic diagram of the structure of the switch assembly 127 provided in some other embodiments of the present application.
  • FIG. 29 only shows the connection structure between the respective ends 1271, and does not show the switch connected in series to the connection line of the connection structure.
  • At least three ends 1271 also include a fourth end 1271d.
  • the switch assembly 127 also includes a fifth connection structure 1277; the fifth connection structure 1277 includes a fifth connection line and a fifth switch; one end of the fifth connection line is connected to one end of the first connection line, one end of the second connection line, one end of the third connection line, and one end of the fourth connection line, and the other end of the fifth connection line is connected to the fourth end 1271d; the fifth switch is connected in series to the fifth connection line.
  • the switch component 127 When the switch component 127 is in the first state, the second state and the third state, the on and off forms of the first switch 1273b, the second switch 1274b and the third switch 1275b are as described in the above embodiments and will not be repeated here. It should be noted that the fourth switch and the fifth switch need to be turned off at the same time when the switch component 127 is in the first state, the second state and the third state. In this way, the switch component 127 has more ends 1271, and each two ends 1271 can be turned on or off, so that the first RF receiver 12 can be applied to terminal devices 100 in more usage scenarios, simplifying the design and assembly difficulty of the terminal device 100, with a high degree of integration and strong applicability.
  • FIG. 30 is a schematic diagram of a first RF receiver 12 provided in some other embodiments of the present application
  • FIG. 31 is a schematic diagram of a RF receiving system 10 of a terminal device 100 provided in some other embodiments of the present application.
  • a fourth end 1271d is connected to an input end in the input end group of the plurality of second selection switches 123. It should be noted that the fourth end 1271d and the first end 1271a are connected to the input ends of two second selection switches 123 respectively.
  • the third port 128 of the first RF receiver 12 can be connected to the output end of a third filter 16
  • a second port 126 can be connected to the output end of the second filter 13
  • another second port 126 can be connected to the sixth port 141 of the second RF receiver 14, so that the first RF receiver 12 can be used in the terminal device 100 that simultaneously applies the MIMO technology and the CA technology, and the first amplifier 124 for transmitting the frequency band signal selected by the second filter 13 and the third filter 16 can be flexibly selected, thereby enhancing the applicability of the first RF receiver 12.
  • FIG. 32 is a schematic diagram of the first RF receiver 12 provided in some other embodiments of the present application, and the RF receiver 12 also includes a fourth port 129. A fourth end 1271d is connected to a fourth port 129.
  • the switch component 127 can be selected according to the communication system of the operator to which the terminal device 100 is connected to transmit the frequency band signal in the CA combination or the frequency band signal of MIMO, thereby enhancing the applicability of the first RF receiver 12.
  • the RF receiver 12 further includes a plurality of fifth ports 130 and a third selection switch 131.
  • a third selection switch 131 has a plurality of input ends and a plurality of output ends.
  • the plurality of input ends of a third selection switch 131 are respectively connected to the output ends of the plurality of first amplifiers 124; the plurality of output ends of a third selection switch 131 are respectively connected to the plurality of fifth ports 130; the third selection switch 131 is used to select a plurality of input ends of a third selection switch 131 to be respectively connected to the plurality of output ends of a third selection switch 131.
  • the input ends of the third selection switch 131 are connected to the output ends of the first amplifier 124 in a one-to-one correspondence, the output ends of the third selection switch 131 are connected to the fifth ports 130 in a one-to-one correspondence, and one input end of the first selection switch 131 is only connected to one output end at the same time.
  • the frequency band signals output by the multiple first amplifiers 124 can be transmitted to the corresponding ports of the RF transceiver chip in the processing circuit through the third selection switch 131 to ensure the processing effect of the terminal device 100 on the received signal, thereby ensuring the performance of the terminal device 100.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)

Abstract

本申请提供一种射频接收器、射频接收系统及电子设备,用于解决在实现不同数目CA组合时,如何优化插损的问题。电子设备的射频接收系统包括第一射频接收器,第一射频接收器包括至少一个第一端口、第一选择开关、多个第一滤波器、多个第二选择开关、多个第一放大器、两个第二端口以及一个开关组件。第一选择开关和第二选择开关能够选择在第一射频接收器内导通至少一个信号传输链路。开关组件能够使得第一射频接收器接收小于或等于第一放大器数量的频段信号,且频段信号中具有分立设置于第一射频接收器外部的第二滤波器选通的频段信号时,这些频段信号均可以自第一射频接收器传输至电子设备的处理电路,信号传输路径较短,优化了插损。

Description

一种射频接收器、射频接收系统及电子设备
本申请要求于2022年09月02日提交国家知识产权局、申请号为202211071627.7、发明名称为“一种射频接收器、射频接收系统及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及射频技术领域,尤其涉及一种射频接收器、射频接收系统及电子设备。
背景技术
随着通信技术的迅速发展,人们对通信速率的要求越来越高。为了提高系统容量和峰值速率,需增加系统传输带宽。然而,每个运营商在每个频段都只能拿到有限的频谱资源,因此,为了提供更高的业务速率,通信系统中引入了载波聚合(Carrier Aggregation,CA)技术,可以有效增加传输带宽。由于全球不同区域的运营商会有不同的频谱分配,导致载波聚合的实现方式不同,以使对不同CA组合工作的电子设备的射频接收系统也不同。
相关技术中,将常用CA组合使用的多个滤波器(Filter)和低噪声放大器(Low Noise Amplifier,LNA)集成在一个接收模组中,例如,将三个LNA集成于一个接收模组中,以实现最多3个频段信号的CA组合。此时,如果要实现包含第四个频段信号的CA组合,且第四个频段信号对应的滤波器未集成于此接收模组内,则需要在此接收模组外部外置一个相应的滤波器,并向射频接收系统中的另一个接收模组中“借”一路LNA,也即,外置的滤波器通过电路板上的走线连接于一个接收模组和另一个接收模组之间,接收模组接收到的来自天线的信号自外置的滤波器及另一个接收模组中的LNA进入处理电路。
同时,由于不同的接收模组分别用于不同天线的信号接收,而针对不同的天线,为了提升隔离度,天线与天线之间的距离较大,导致接收模组与接收模组之间的距离较大,若采用上述“借”另一个接收模组中的LNA对上述接收模组接收的信号进行处理,则连接于两个接收模组之间的线路较长,从而导致插损较大。
发明内容
本申请实施例提供一种射频接收器、射频接收系统及电子设备,用于解决在实现不同数目CA组合时,如何优化插损的问题。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,本申请实施例提供了一种射频接收器,该射频接收器包括至少一个第一端口、第一选择开关、多个第一滤波器、多个第二选择开关、多个第一放大器、两个第二端口以及一个开关组件。第一选择开关包括一个输入端和多个输出端,第一选择开关用于选择第一选择开关的一个输入端与第一选择开关的多个输出端中的至少一个导通,第一选择开关的一个输入端用于连接第一天线,第一选择开关的多个输出端包括至少一个第一输出端和至少两个第二输出端,至少一个第一输出端分别与至少一个第一端口连接。多个第一滤波器组成至少两个滤波器组,每个滤波器组包括至少一个第一滤波器;每个第一滤波器均包括输入端和输出端,至少两个滤波器组的输入端分别与至少两个第二输出端连接。每个第二选择开关均包括多个输入端和一个输出端,第二选择开关用于选择第二选择开关的多个输入端中的一个与第二选择开关的一个输出端导通;多个第二选择开关的所有输入端组成输入端组,输入端组内多个输入端分别与多个第一滤波器的输出端连接。每个第一放大器包括一个输入端和一个输出端,多个第一放大器的一个输入端分别与多个第二选择开关的一个输出端连接。一个开关组件包括至少三个端部,至少三个端部包括一个第一端部和两个第二端部,一个第一端部与输入端组内的一个输入端连接;两个第二端部分别与两个第二端口连接;开关组件能够在第一状态与第二状态之间切换;当开关组件处于第一状态时,两个第二端部之间导通,第一端部与两个第二端部中的任意一个第二端部之间关断;当开关组件处于第二状态时,第一端部与两个第二端部中的一个第二端部导通,第一端部与两个第二端部中的另一个第二端部关断,且两个第二端部之间关断。
本申请实施例提供的射频接收器,通过至少一个第一端口与第一选择开关的至少一个第一输出端连接,使得射频接收器接收到的信号能够自第一输出端和第一端口传输至射频接收器的外部。通过至少两个滤波器组的输入端分别与第一选择开关的至少两个第二输出端连接,多个第二选择开关的输入端组成的输入端组中的多个输入端分别与多个第一滤波器的输出端连接,多个第一放大器的一个输入端分别与多个第二选择开关的输出端连接,使得射频接收器接收到的信号能够在多个第二选择开关的选择作用下,分别自不同的第一放大器传输至射频接收器的外部并传输至电子设备的处理电路。通过开关组件的一个第一端部与多个第二选择开关的输入组中的一个输入端连接,开关组件的两个第二端部分别与射频接收器的两个第二端口连接,开关组件能够在第一状态和第二状态之间切换,当开关组件处于第一状态时,使得两个第二端口能够导通,若射频接收器的两个第二端口中的一个第二端口与一个第一端口之间导通,且导通路径上连接分立设置于射频接收器外部的第二滤波器,另一个第二端口与电子设备中的另一个射频接收器中的一个第二放大器导通,则射频接收器能够接收大于第一放大器数量的频段信号,且频段信号分别自射频接收器的多个第一放大器及另一个射频接收器中的第二放大器传输至电子设备的处理电路以实现相应的CA组合;当开关组件处于第二状态时,使得两个第二端口中的一个第二端口能够与一个第二选择开关的输入端导通,若此第二端口与一个第一端口导通且导通路径上连接有第二滤波器,则射频接收器能够接收小于或等于第一放大器数量的频段信号,且频段信号中具有第二滤波器选通的频段信号,这些频段信号均可以自射频接收器内的多个第一放大器传输至电子设备的处理电路,从而充分地利用了射频接收器内的第一放大器,且避免了第二滤波器所在通路的信号自另一个射频接收器传输至电子设备的处理电路,导致不必要的插损。
在第一方面的一些可能的实现方式中,开关组件还能够切换至第三状态;当开关组件处于第三状态时,第一端部与两个第二端部中的另一个第二端部导通,第一端部与两个第二端部中的一个第二端部关断,两个第二端部之间关断。
这样一来,通过将开关组件集成于射频接收器内,开关组件能够在第一状态、第二状态和第三状态之间切换,使得射频接收器既能够在需要实现频段信号数量大于第一放大器数量的CA组合时,通过电子设备中的另一个射频接收器内的第二放大器,将分立设置于射频接收器外部的第二滤波器选通的频段信号传输至电子设备的处理电路中;又能够在电子设备需要实现频段信号数量小于或等于第一放大器数量的CA组合,且频段信号包括第二滤波器选通的频段信号时,使得第二滤波器选通的频段信号能够自射频接收器内部的第一放大器传输至电子设备的处理电路,优化了第二滤波器所在通路的插损;还能够在应用于MIMO技术的电子设备中,同时接收多路来自不同天线的频段信号,既提高了第一放大器的利用率,又减少了射频接收系统中的放大器的总数量,节省了电子设备的成本。因此,射频接收器可以应用于多种使用场景的电子设备中,简化了电子设备的设计及组装难度,且射频接收器的集成化程度高,适用性强。
在第一方面的一些可能的实现方式中,开关组件包括第一连接结构、第二连接结构和第三连接结构。第一连接结构包括第一连接线路和第一开关;第二连接结构包括第二连接线路和第二开关;第三连接结构包括第三连接线路和第三开关;第一连接线路的一端、第二连接线路的一端和第三连接线路的一端连接,第一连接线路的另一端与一个第一端部连接,第二连接线路的另一端、第三连接线路的另一端分别与两个第二端部连接。第一开关串接于第一连接线路内,第二开关串接于第二连接线路内,第三开关串接于第三连接线路内。
这样一来,通过控制两个端部之间的两个开关导通或关断,即可实现控制两个端部之间导通或关断,使得开关组件能够在第一状态、第二状态和第三状态之间的切换。
在第一方面的一些可能的实现方式中,开关组件包括第一连接结构、第二连接结构和第三连接结构。第一连接结构包括第一连接线路和第一开关;第一连接线路连接于两个第二端部之间,第一开关串接于第一连接线路内。第二连接结构包括第二连接线路和第二开关;第二连接线路连接于第一端部与两个第二端部中的一个第二端部之间,第二开关串接于第二连接线路内。第三连接结构包括第三连接线路和第三开关;第三连接线路连接于第一端部与两个第二端部中的另一个第二端部之间,第三开关串接于第三连接线路内。
这样一来,通过控制一个开关即可控制相应的连接结构导通或断开,进而控制连接于连接结构两端的两个端部导通或断开,使得开关组件能够在第一状态、第二状态和第三状态之间的切换,需要控制的器件较少,控制难度较低。
在第一方面的一些可能的实现方式中,至少三个端部还包括一个第三端部。开关组件还包括第四连接结构、第五连接结构和第六连接结构。第四连接结构包括第四连接线路和第四开关;第四连接线路连接于第三端部与第一端部之间,第四开关串接于第四连接线路内。第五连接结构包括第五连接线路和第五开关;第五连接线路连接于第三端部与两个第二端部中的一个第二端部之间,第五开关串接于第五连接线路内。第六连接结构包括第六连接线路和第六开关;第六连接线路连接于第三端部与两个第二端部中的另一个第二端部之间,第六开关串接于第六连接线路内。
这样一来,开关组件具有更多的端部,且每两个端部之间均可以导通或断开,使得射频接收器可以应用于更多种使用场景的电子设备中,简化了电子设备的设计及组装难度,集成化程度高,适用性强。
在第一方面的一些可能的实现方式中,至少三个端部还包括一个第三端部。开关组件还包括第四连接结构。第四连接结构包括第四连接线路和第四开关;第四连接线路的一端与第一连接线路的一端、第二连接线路的一端、第三连接线路的一端连接,第四连接线路的另一端与第三端部连接;第四开关串接于第四连接线路内。
这样一来,开关组件具有更多的端部,且每两个端部之间均可以导通或断开,使得射频接收器可以应用于更多种使用场景的电子设备中,简化了电子设备的设计及组装难度,集成化程度高,适用性强。
在第一方面的一些可能的实现方式中,射频接收器还包括一个第三端口;一个第三端部与一个第三端口连接。这样一来,射频接收器的第三端口可以与一个分离设置于射频接收器外部的第三滤波器的输出端连接,一个第二端口可以与分立设置于射频接收器外部的第二滤波器的输出端连接,另一个第二端口可以与电子设备中另一个射频接收器的第六端口连接,使得射频接收器能够用于同时应用MIMO技术和CA技术的电子设备中,具体可根据电子设备所接入的运营商的通信系统选择开关组件用于传输CA组合内的频段信号还是MIMO频段信号,增强了射频接收器的适用性。
在第一方面的一些可能的实现方式中,一个第三端部与输入端组内的一个输入端连接。这样一来,射频接收器需要实现包含分立设置于射频接收器外部的第二滤波器选通的频段信号的CA组合时,可以灵活地选择用于传输第二滤波器选通的频段信号的第一放大器。同理,射频接收系统用于应用MIMO技术的电子设备中,实现同时接收多路来自不同天线的频段信号时,可以灵活地选择用于传输MIMO频段信号的第一放大器,从而增强了射频接收器的适用性。
在第一方面的一些可能的实现方式中,至少三个端部还包括一个第四端部。开关组件还包括第七连接结构、第八连接结构、第九连接结构和第十连接结构。第七连接结构包括第七连接线路和第七开关;第七连接线路连接于第四端部与第一端部之间,第七开关串接于第七连接线路内。第八连接结构包括第八连接线路和第八开关;第八连接线路连接于第四端部与两个第二端部中的一个第二端部之间,第八开关串接于第八连接线路内。第九连接结构包括第九连接线路和第九开关;第九连接线路连接于第四端部与两个第二端部中的另一个第二端部之间,第九开关串接于第九连接线路内。第十连接结构包括第十连接线路和第十开关;第十连接线路连接于第四端部与第三端部之间,第十开关串接于第十连接线路内。
这样一来,开关组件具有更多的端部,且每两个端部之间均可以导通或断开,使得射频接收器可以应用于更多种使用场景的电子设备中,简化了电子设备的设计及组装难度,集成化程度高,适用性强。
在第一方面的一些可能的实现方式中,至少三个端部还包括一个第四端部。开关组件还包括第五连接结构。第五连接结构包括第五连接线路和第五开关;第五连接线路的一端与第一连接线路的一端、第二连接线路的一端、第三连接线路的一端、第四连接线路的一端连接,第五连接线路的另一端与第四端部连接;第五开关串接于第五连接线路内。
这样一来,开关组件具有更多的端部,且每两个端部之间均可以导通或断开,使得射频接收器可以应用于更多种使用场景的电子设备中,简化了电子设备的设计及组装难度,集成化程度高,适用性强。
在第一方面的一些可能的实现方式中,一个第四端部与输入端组内的一个输入端连接。这样一来,在射频接收器包括第三端口,且第三端部与第三端口连接的情况下,射频接收器的第三端口可以与一个MIMO信号链路连接,一个第二端口可以与分立设置于射频接收器外部的第二滤波器的输出端连接,另一个第二端口可以与另一个射频接收器的第六端口连接,使得射频接收器能够用于同时应用MIMO技术和CA技术的电子设备中,且可灵活地选择用于传输第二滤波器选通的频段信号和MIMO频段信号的第一放大器,增强了射频接收器的适用性。
在第一方面的一些可能的实现方式中,射频接收器还包括一个第四端口;一个第四端部与一个第四端口连接。这样一来,在射频接收器包括第三端口,且第三端部与第三端口连接的情况下,射频接收器的第三端口可以与一个MIMO信号链路连接,第四端口可以与另一个MIMO信号链路连接,一个第二端口可以与分立设置于射频接收器外部的第二滤波器的输出端连接,另一个第二端口可以与另一个射频接收器的第六端口连接,使得射频接收器能够用于同时应用MIMO技术和CA技术的电子设备中,具体可根据电子设备所接入的运营商的通信系统选择开关组件用于传输CA组合内的频段信号还是MIMO的频段信号,增强了射频接收器的适用性。
在第一方面的一些可能的实现方式中,射频接收器还包括多个第五端口以及一个第三选择开关。一个第三选择开关具有多个输入端和多个输出端;一个第三选择开关的多个输入端分别与多个第一放大器的输出端连接;一个第三选择开关的多个输出端分别与多个第五端口连接;第三选择开关用于选择一个第三选择开关的多个输入端分别与一个第三选择开关的多个输出端导通。
这样一来,可以通过第三选择开关,将多个第一放大器输出的频段信号传输至处理电路中的射频收发芯片的相应的端口,以保证电子设备对接收到的信号的处理效果,进而保证电子设备的性能。
第二方面,本申请实施例还提供了一种射频接收系统,该射频接收系统包括第一天线以及第一射频接收器。第一射频接收器为上述任一技术方案所述的射频接收器,第一射频接收器中第一选择开关的一个输入端与第一天线连接。
本申请实施例提供的射频接收系统有益技术效果与本申请实施例提供的射频接收器的有益技术效果相同,在此不再赘述。
在第二方面的一些可能的实现方式中,射频接收系统还包括第二滤波器以及第二射频接收器。第二滤波器包括输入端和输出端,第二滤波器的输入端与第一射频接收器内至少一个第一端口中的一个第一端口连接,第二滤波器的输出端与第一射频接收器中两个第二端口中的一个第二端口连接。第二射频接收器包括第六端口和第二放大器,第二放大器包括输入端,第二放大器的输入端与第六端口连接,第六端口与第一射频接收器中两个第二端口中的另一个第二端口连接。
这样一来,第一射频接收器能够接收大于第一放大器数量的频段信号,且频段信号分别自第一射频接收器的多个第一放大器及第二射频接收器中的第二放大器传输至电子设备的处理电路以实现相应的CA组合。
第三方面,本申请实施例还提供了一种电子设备,该电子设备包括上述任一技术方案所述的射频接收系统。
本申请实施例提供的电子设备的有益技术效果与本申请实施例提供的射频接收系统的有益技术效果相同,在此不再赘述。
附图说明
图1为本申请一些实施例提供的终端设备与基站之间的通信示意图;
图2为本申请一些实施例提供的终端设备的射频接收系统的示意图;
图3为本申请一些实施例提供的第一射频接收器的示意图;
图4为本申请另一些实施例提供的终端设备的射频接收系统的示意图;
图5为图3所示第一射频接收器中的开关组件的一种结构示意图;
图6为图5所示开关组件处于第一状态时的示意图;
图7为图5所示开关组件处于第二状态时的示意图;
图8为图3所示第一射频接收器中的开关组件的另一种结构示意图;
图9为图8所示开关组件处于第一状态时的示意图;
图10为图8所示开关组件处于第二状态时的示意图;
图11为本申请又一些实施例提供的终端设备的射频接收系统的示意图;
图12为本申请一些实施例提供的一种MIMO的通信场景示意图;
图13为本申请又一些实施例提供的终端设备的射频接收系统的示意图;
图14为本申请又一些实施例提供的终端设备的射频接收系统的示意图;
图15为图3所示第一射频接收器中的开关组件的又一种结构示意图;
图16为图15所示开关组件处于第一状态时的示意图;
图17为图15所示开关组件处于第二状态时的示意图;
图18为图15所示开关组件处于第三状态时的示意图;
图19为图3所示第一射频接收器中的开关组件的又一种结构示意图;
图20为图19所示开关组件处于第一状态时的示意图;
图21为图19所示开关组件处于第二状态时的示意图;
图22为图19所示开关组件处于第三状态时的示意图;
图23为本申请又一些实施例提供的开关组件的结构示意图;
图24为本申请又一些实施例提供的开关组件的结构示意图;
图25为本申请又一些实施例提供的开关组件的结构示意图;
图26为本申请另一些实施例提供的第一射频接收器的示意图;
图27为本申请又一些实施例提供的第一射频接收器的示意图;
图28为本申请又一些实施例提供的开关组件的结构示意图;
图29为本申请又一些实施例提供的开关组件的结构示意图;
图30为本申请又一些实施例提供的第一射频接收器的示意图;
图31为本申请又一些实施例提供的终端设备的射频接收系统的示意图;
图32为本申请又一些实施例提供的第一射频接收器的示意图。
附图标记:
100-终端设备;
10-射频接收系统;
11-第一天线;
12-第一射频接收器;121-第一选择开关;1211-第一输出端;1212-第二输出端;
122-第一滤波器;123-第二选择开关;124-第一放大器;125-第一端口;126-第二端口;127-开关组件;1271-端部;1271a-第一端部;1271b-第二端部;1271c-第三端部;1271d-第四端部;1272-单刀多掷开关;1273-第一连接结构;1273a-第一连接线路;1273b-第一开关;1274-第二连接结构;1274a-第二连接线路;1274b-第二开关;1275-第三连接结构;1275a-第三连接线路;1275b-第三开关;1276-第四连接结构;1277-第五连接结构;1278-第六连接结构;1279-第七连接结构;1280-第八连接结构;1281-第九连接结构;1282-第十连接结构;128-第三端口;129-第四端口;130-第五端口;131-第三选择开关;
13-第二滤波器;
14-第二射频接收器;141-第六端口;142-第二放大器;
15-第二单刀双掷开关;
16-第三滤波器;
17-第三单刀双掷开关;
18-第二天线;
19-阻抗匹配网络;
200-基站。
具体实施方式
在本申请实施例中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“连接”应做广义理解,例如,“连接”可以是可拆卸地连接,也可以是不可拆卸地连接;可以是直接连接,也可以通过中间媒介间接连接。需要说明的是,本申请实施例中涉及的电子器件之间的“连接”是指耦合,其包括直接相连或经由其他器件间接相连以实现电连通。
在本申请实施例中,需要理解的是,所提到的方位用语,例如,“上”、“下”、“左”、“右”、“内”、“外”等,仅是参考附图的方向,因此,使用的方位用语是为了更好、更清楚地说明及理解本申请实施例,而不是指示或暗指所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例中,术语“第一”、“第二”、“第三”、“第四”、“第五”、“第六”、“第七”、“第八”、“第九”、“第十”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”、“第四”、“第五”、“第六”、“第七”、“第八”、“第九”、“第十”的特征可以明示或者隐含地包括一个或者更多个该特征。
在本申请实施例中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
在本申请实施例中,“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请提供一种电子设备。该电子设备可以为具有收发射频信号功能的终端设备或无线接入网设备。
具体地,终端设备可以指接入终端、用户设备、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,PLMN)中的终端设备等,本申请对此不做限定。
无线接入网设备可包括但不限于基站。所述基站可以是GSM或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional NodeB,eNB或eNodeB),还可以是云无线接入网络(Cloud Radio Access Network,CRAN)场景下的无线控制器,或者该基站可以为中继站、接入点、车载设备、可穿戴设备以及5G网络中的基站等,本申请对此不做限定。
上述电子设备所使用的通信系统可以包括但不限于:全球移动通讯(Global Systemof Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time DivisionDuplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、第五代(5th Generation,5G)系统或新无线(New Radio,NR)等。
以下各实施例中以电子设备为终端设备,终端设备为手机为例进行示例性说明。
请参阅图1,图1为本申请一些实施例提供的终端设备100与基站200之间的通信示意图。终端设备100包括射频接收系统和处理电路。
终端设备100的射频接收系统用于接收、处理并传输来自基站200的接收信号至后端的处理电路。处理电路用于生成发送信号或处理接收信号。该处理电路可以包括处理器及射频收发芯片。其中,处理器可以包括一个或多个处理单元,例如:处理器可以包括基带处理器,应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,存储器,视频编解码器,数字信号处理器(digital signal processor,DSP),和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
当射频接收系统接收到接收信号时,在射频接收系统中通过选择开关等器件切换到对应频段的接收链路,通过接收链路将接收信号输入射频收发芯片进行滤波、放大、混频等处理之后,输入基带处理器进行解调。同时,射频收发芯片还通过控制线对射频接收系统10中的选择开关等组件输出控制信号,实现控制选择开关切换不同链路。
随着通信技术的迅速发展,人们对通信速率的要求越来越高。为了提高系统容量和峰值速率,需增加系统传输带宽。例如,在长期演进网络的演进(Long Term Evolution Advanced,LTE-A)标准中规定,系统的最大带宽为100MHz。然而,每个运营商在每个频段都只能拿到有限的频谱资源,无法满足其带宽需求。为了提供更高的业务速率,通信系统中引入了载波聚合(Carrier Aggregation,CA)技术,即将不同频段的载波(Component Carrier,CC)聚合在一起实现所需通信带宽。具体的,终端设备100的天线接收的信号为不同频段的载波聚合在一起形成的信号,比如该信号为B1、B3、B34、B39、B40和B7信号中两个、三个或者四个频段信号的载波聚合后的信号,由此提升带宽,提高下行传输速率。由于全球不同区域的运营商会有不同的频谱分配,因此也就有不同的载波聚合的频段组合方式。因此为了适应来自不同基站200的载波聚合信号的接收,终端设备100的射频接收系统10需要能够实现对不同频段信号的分割和处理。需要说明的是,此处Bx均表示LTE频段号x所对应的频段,可以理解,后文中Bx的意思与此处相同,后文不再解释。
基于此,请参阅图2,图2为本申请一些实施例提供的终端设备100的射频接收系统10的示意图,射频接收系统10包括第一天线11和第一射频接收器12。第一射频接收器12包括第一选择开关121、多个第一滤波器122、多个第二选择开关123和多个第一放大器124。
上述第一选择开关121包括一个输入端和多个输出端。第一选择开关121的一个输入端和第一天线11连接。第一选择开关121的一个输入端可以通过第一射频接收器12的连接端口与第一天线11可拆卸连接,第一选择开关121的输入端也可以通过一体式结构,比如一根馈电线与第一天线11连接。本申请对此不做限定。
第一选择开关121用于选择第一选择开关121的一个输入端与第一选择开关121的多个输出端中的至少一个导通。在一些示例中,第一选择开关121的一个输入端可以与多个输出端中的一个输出端导通,以使来自第一天线11的接收信号自第一选择开关121的一个输出端输出。在另一些示例中,第一选择开关121的一个输入端也可以同时与第一选择开关121的两个或更多个输出端导通,以使来自第一天线11的接收信号自第一选择开关121的两个或更多个输出端同时输出至不同的信号传输链路,具体可以根据第一射频接收器12与运营商基站200发射的频段信号的匹配关系确定。
第一选择开关121的多个输出端包括至少两个第二输出端1212。在此基础上, 多个第一滤波器122组成至少两个滤波器组,每个滤波器组包括至少一个第一滤波器122。每个第一滤波器122均包括输入端和输出端,至少两个滤波器组的输入端分别与至少两个第二输出端1212连接。可以理解的是,滤波器组的输入端可以和第二输出端1212一一对应连接。图2所示的实施例中,滤波器组的数量为四个。在其他示例中,滤波器组的数量也可以为两个或其他数量,本申请对此不做限定。需要说明的是,为了附图简洁,图2中仅对一个第一滤波器122进行了标号,应理解,当下文出现的部件的数量为多个时,该部件也可以参照第一滤波器122的标号方式,具体的下文将不再赘述。
多个第一滤波器122组成至少两个滤波器组的组合形式有多种。
在一些示例中,每个滤波器组可以包括两个第一滤波器122,两个第一滤波器122为一体结构件,共用一个输入端,也即两个第一滤波器122共用的一个输入端即为此滤波器组的输入端,两个第一滤波器122各自有一个输出端,形成一体结构的两个第一滤波器122可以用于选通频率相近的两个频段的信号,例如,用于选通B1信号和选通B3信号的两个第一滤波器122可以为一体结构件,用于选通B34信号和选通B39信号的两个第一滤波器122可以为一体结构件,这样一来,一体结构的两个第一滤波器122的结构相近,便于设计及加工,且可以减少多个第一滤波器122与第一选择开关121之间的线路数量,简化第一射频接收器12的设计及接线难度。
在另一些示例中,每个滤波器组中可以包括一个第一滤波器122,一个第一滤波器122的输入端与第一选择开关121的一个第二输出端1212连接。
在又一些示例中,至少两个滤波器组中,可以有一部分滤波器组包括一个第一滤波器122,另一部分滤波器组中包括两个第一滤波器122。图2所示的实施例中,四个滤波器组中,两个滤波器组分别包括两个第一滤波器122,另外两个滤波器组分别包括一个第一滤波器122。
需要说明的是,第一射频接收器12中所有第一滤波器能够选通的频率均不同,以使自每个第一滤波器122输出端输出信号的频率不同于其他任一第一滤波器122输出信号的频率,从而使得第一射频接收器12能够接收尽可能多的不同频段信号以实现尽可能多的CA组合。
在上述基础上,每个第二选择开关123均包括多个输入端和一个输出端,第二选择开关123用于选择第二选择开关123的多个输入端中的一个与第二选择开关123的一个输出端导通。图2所示实施例中,每个第二选择开关123的输入端的数量为四个,即第二选择开关123可以为单刀四掷开关,当然,每个第二选择开关123的输入端的数量也可以为两个、三个或五个等其他数量,本申请对此不做限定。
基于此,多个第二选择开关123的所有输入端组成输入端组。输入端组内多个输入端分别与多个第一滤波器122的输出端连接。图2所示实施例中,三个第二选择开关123的所有输入端组成输入端组中共有12个输入端。多个第二选择开关123的全部输入端组成的输入端组中,可以部分输入端分别与多个第一滤波器122的输出端连接,即部分输入端可以闲置不接线,也可以全部输入端分别与多个第一滤波器122的输出端连接。一个第一滤波器122的输出端可以与一个第二选择开关123的一个输出端连接,也可以同时与多个第二选择开关123的一个输出端连接,只需要保证一个滤波器组内的两个第一滤波器122的输出端具有分别连接于两个第二选择开关123的输入端上的连接方式,以实现一个滤波器组内两个第一滤波器122选通的频段信号的CA组合即可。
在上述基础上,每个第一放大器124包括一个输入端和一个输出端,多个第一放大器124的一个输入端分别与多个第二选择开关123的一个输出端连接。即,第一放大器124与第二选择开关123一一对应,一个第一放大器124的输入端与一个第二选择开关123的输出端连接。需要说明的是,第一滤波器122的数量可以大于或等于第一放大器124的数量,以使在第一放大器124的数量固定的情况下,射频接收系统10能够尽可能多地接收不同频段的信号,以使终端设备100能够尽可能地适应不同区域以及不同运营商的通信频谱,从而增加终端设备100的市场竞争力。
在一些示例中,第一放大器124可以为低噪声放大器LNA,LNA是噪声系数很小的放大器,能把第一天线11接收到的微弱射频信号放大,并尽量减少噪声的引入,有效提高第一射频接收器12的接收灵敏度。在其他示例中,第一放大器124也可以为其他耐受型放大器,只要能够放大第一天线11接收到的射频信号,并尽可能地减小噪声的引入即可。
根据上述描述,当第一滤波器122的数量大于第一放大器124的数量时,第一射频接收器12最多能同时接收并输出与第一放大器124相同数量的频段信号,故第一射频接收器12接收到的信号能实现的CA组合中,频段信号的数量最多能与第一放大器124的数量相同。图2所示实施例中,LNA的数量为三个,因此,第一射频接收器12接收到的信号能实现的CA组合中,频段信号的数量最多为三个。为了使第一射频接收器12能够应用于尽可能多的区域尽可能多的运营商的通信系统,实现多种CA组合的可能性,第一射频接收器12中会集成常用CA组合所使用的多个第一滤波器122。例如,图2所示的实施例中,第一射频接收器12可以集成选通B1、B3、B34、B39、B40和B7信号的第一滤波器122,并集成三个LNA以实现小于或等于三个频段信号的多种CA组合,因此,无法实现四个频段信号的CA组合。此外,从面积和成本考虑,第一射频接收器12内集成的第一滤波器122通常不会涵盖全球全部运营商的全部频谱,因此,终端设备100无法实现这个目标:单一的第一射频接收器12接收并选通传输集成的第一滤波器122对应的频段信号(如B1、B3、B34、B39、B40、B7)与第一射频接收器12未集成的滤波器对应的频段信号(如B32)的CA组合。
基于此,请继续参阅图2,第一射频接收器12还包括至少一个第一端口125,第一选择开关121的输出端还包括至少一个第一输出端1211,至少一个第一输出端1211分别与至少一个第一端口125连接。第一端口125和第一输出端1211的数量可以均为一个,第一端口125的数量和第一输出端1211的数量也可以为多个,第一端口125和第一输出端1211一一对应地连接。
在此基础上,射频接收系统10还包括第二滤波器13、阻抗匹配网络19、第二射频接收器14和第二天线18。第二射频接收器14与第二天线18连接以接收来自第二天线18的信号。第二射频接收器14包括第六端口141和第二放大器142。第二放大器142包括输入端,第二放大器142的输入端与第六端口141连接,具体地,第二放大器142的输入端与第六端口141可以通过选择开关间接地连接。在一些示例中,第二放大器142可以为低噪声放大器(Low Noise Amplifier,LNA),LNA是噪声系数很小的放大器,能把微弱的射频信号放大,并尽量减少噪声的引入,有效提高射频接收系统10的接收灵敏度。在其他示例中,第二放大器142也可以为其他耐受型放大器,只要能够放大射频信号,并尽可能地减小噪声的引入即可。
第二射频接收器14的结构可以与第一射频接收器12的结构相同,也可以与第一射频接收器12的结构不同,图2所示实施例中,第二射频接收器14的结构与第一射频接收器12的结构近似相同,不同之处在于,第二射频接收器14内可以集成能选通更多频段信号的滤波器以使射频接收系统10能够实现更多频段信号的分集接收功能,以提高射频接收系统10的接收灵敏度。
第二滤波器13包括输入端和输出端,第二滤波器13的输入端与第一射频接收器12内至少一个第一端口125中的一个第一端口125连接,连接线路上串接有阻抗匹配网络19。第二滤波器13与第一射频接收器12和第二射频接收器14分立设置于终端设备100的电路板上,第二滤波器13的中心频率可以根据终端设备100所应用的区域确定。例如,第二滤波器13可以用于选通应用区域较少的频段信号。
射频接收系统10能够接收包含第二滤波器13选通的频段信号以实现相应的CA组合的一种方式如下:第二滤波器13的输出端与第二射频接收器14的第六端口141连接,也即,第二滤波器13的输出端通过终端设备100的电路板上的走线与第二射频接收器14连接,自第二滤波器13输出的频段信号能够自第二射频接收器14中的第二放大器142传输至处理电路中进行处理。由于终端设备100的天线为多个时,天线之间需要具有必要的空间隔离度,故第二射频接收器14与第一射频接收器12之间的距离较远,从而导致第二滤波器13与第二射频接收器14之间的线路较长,进而导致插损较大,例如,50mm长度的表层走线会导到大约1.5db的插损。此外,除了上述四个频段信号的CA组合外,还可能存在第二滤波器13选通的频段信号与第一射频接收器12内的少于第一放大器124数量的频段信号进行CA组合的使用场景,此时,第一射频接收器12内会闲置至少一个第一放大器124,若第二滤波器13所在通路的频段信号仍然自第二射频接收器14内的第二放大器142进入处理电路,会导致第二滤波器13所在通路的不必要的插损。
为了解决上述问题,请参阅图3和图4,图3为本申请一些实施例提供的第一射频接收器12的示意图,图4为本申请另一些实施例提供的终端设备100的射频接收系统10的示意图,第一射频接收器12还包括两个第二端口126和一个开关组件127。第二滤波器13的输出端与两个第二端口126中的一个第二端口126连接,第二射频接收器14的第六端口141与第一射频接收器12的两个第二端口126中的另一个第二端口126连接。
开关组件127包括至少三个端部1271,至少三个端部1271包括一个第一端部1271a和两个第二端部1271b,一个第一端部1271a与多个第二选择开关123的输入端组内的一个输入端连接,两个第二端部1271b分别与两个第二端口125连接。开关组件127能够在第一状态与第二状态之间切换。
当开关组件127处于第一状态时,两个第二端部1271b之间导通,第一端部1271a与两个第二端部1271b中的任意一个第二端部1271b之间关断。这样一来,由第一选择开关121、第二滤波器13、两个第二端口126、两个第二端部1271b、第六端口141和第二放大器142形成的信号链路导通,第一射频接收器12自第一天线11接收的四个频段信号,以四个频段信号分别是B1、B3、B7和B32信号为例,B1信号、B3信号和B7信号自第一射频接收器12内的三个信号链路输出至终端设备100的处理电路中,B32信号自由第一选择开关121、第二滤波器13、两个第二端口126、两个第二端部1271b、第六端口141和第二放大器142形成的信号链路输出至终端设备100的处理电路,实现四个频段信号的CA组合。
当开关组件127处于第二状态时,第一端部1271a与两个第二端部1271b中的一个第二端部1271b导通,该一个第二端部1271b通过第二端口126与第二滤波器13输出端导通;第一端部1271a与两个第二端部1271b中的另一个第二端部1271b关断,且两个第二端部1271b之间关断。
这样一来,由第一选择开关121、第二滤波器13、一个第二端口126、一个第二端部1271b、一个第二选择开关123和一个第一放大器124形成的信号链路导通;且由第一选择开关121、第二滤波器13、两个第二端口125、两个第二端部1271b、第六端口141和第二放大器142形成的信号链路关断。第一射频接收器12自第一天线11接收的小于或等于三个频段信号,例如,三个频段信号可以分别是B1、B3和B32信号,或者三个频段信号也可以分别是B1、B7和B32信号,或者第一射频接收器12自第一天线11接收的两个频段信号可以分别是B1和B32信号,或者两个频段信号也可以分别是B3和B32信号,或者两个频段信号也可以分别是B7和B32信号。B32信号可以经由第一选择开关121、第二滤波器13、一个第二端口126、一个第二端部1271b、一个第二选择开关123和一个第一放大器124形成的信号链路传输至终端设备100的处理电路,另外一个或两个频段信号可以自第一射频接收器12内的信号传输链路传输至终端设备100的处理电路,以实现2个或3个包含B32信号的CA组合。由于B32信号自第一射频接收器12内部传输至终端设备100的处理电路,因此,比自第二射频接收器14内的第二放大器142传输至处理电路的传输路径短,插损较小,有效地优化了终端设备100的NF性能,改善接收灵敏度,提升了用户的使用体验。
综上所述,本申请一些实施例提供的第一射频接收器12,通过至少一个第一端口125与第一选择开关121的至少一个第一输出端1211连接,使得第一射频接收器12自第一天线11接收到的信号能够自第一输出端1211和第一端口125传输至第一射频接收器12的外部。通过至少两个滤波器组的输入端分别与第一选择开关121的至少两个第二输出端1212连接,多个第二选择开关123的输入端组成的输入端组中的多个输入端分别与多个第一滤波器122的输出端连接,多个第一放大器124的一个输入端分别与多个第二选择开关123的输出端连接,使得第一射频接收器12自第一天线11接收到的信号能够在多个第二选择开关123的选择作用下,分别自不同的第一放大器124传输至第一射频接收器12的外部并传输至终端设备100的处理电路。通过开关组件127的一个第一端部1271a与多个第二选择开关123的输入组中的一个输入端连接,开关组件127的两个第二端部1271b分别与第一射频接收器12的两个第二端口126连接,开关组件127能够在第一状态和第二状态之间切换,当开关组件127处于第一状态时,使得两个第二端口126能够导通,若第一射频接收器12的两个第二端口126中的一个第二端口126与一个第一端口125之间导通,且导通路径上连接有第二滤波器13,另一个第二端口126与第二射频接收器14中的一个第二放大器142导通,则第一射频接收器12能够接收大于第一放大器124数量的频段信号,且频段信号分别自第一射频接收器12的多个第一放大器124及第二射频接收器14中的第二放大器142传输至终端设备100的处理电路以实现相应的CA组合;当开关组件127处于第二状态时,使得两个第二端口126中的一个第二端口126能够与一个第二选择开关123的输入端导通,若此第二端口126与一个第一端口125导通且导通路径上连接有第二滤波器13,则第一射频接收器12能够接收小于或等于第一放大器124数量的频段信号,且频段信号中具有第二滤波器13选通的频段信号,这些频段信号均可以自第一射频接收器12内的多个第一放大器124传输至终端设备100的处理电路,从而充分地利用了第一射频接收器12内的第一放大器124,且避免了第二滤波器13所在通路的信号自第二射频接收器14传输至终端设备100的处理电路,导致不必要的插损。
开关组件127能够实现在第一状态和第二状态之间切换的结构有多种。
在一些示例中,请参阅图5,图5为图3所示第一射频接收器12中的开关组件127的一种结构示意图,开关组件127还包括一个单刀多掷开关1272,单刀多掷开关1272的动端与两个第二端部1271b中的一个第二端部1271b连接,单刀多掷开关1272的一个不动端与第一端部1271a连接,另一个不动端与两个第二端部1271b中的另一个第二端部1271b连接。请参阅图6,图6为图5所示开关组件127处于第一状态时的示意图,当开关组件127处于第一状态时,单刀多掷开关1272的动端与连接于另一个第二端部1271b的不动端导通,以使开关组件127的两个第二端部1271b导通,且第一端部1271b与任意一个第二端部1271b关断。请参阅图7,图7为图5所示开关组件127处于第二状态时的示意图,当开关组件127处于第二状态时,单刀多掷开关1272的动端与连接于第一端部1271a的不动端导通,以使开关组件127的第一端部1271a与一个第二端部1271b导通,与另一个第二端部1271b关断,且两个第二端部1271b关断。具体地,单刀多掷开关1272可以为单刀双掷开关。
在另一些示例中,请参阅图8,图8为图3所示第一射频接收器12中的开关组件127的另一种结构示意图,开关组件127包括还第一连接结构1273和第二连接结构1274。第一连接结构1273包括第一连接线路1273a和第一开关1273b,第一连接线路1273a连接于两个第二端部1271b之间,第一开关1273b串接于第一连接线路1273a内。第二连接结构1274包括第二连接线路1274a和第二开关1274b,第二连接线路1274a连接于第一端部1271a和两个第二端部1271b中的一个第二端部1271b之间,第二开关1274b串接于第二连接线路1274a内。请参阅图9,图9为图8所示开关组件127处于第一状态时的示意图,当开关组件127处于第一状态时,第一开关1273b导通,以使两个第二端部1271b导通,同时,第二开关1274b关断,以使第一端部1271a与任意一个第二端部1271b之间关断。请参阅图10,图10为图8所示开关组件127处于第二状态时的示意图,当开关组件127处于第二状态时,第二开关1274b导通,以使第一端部1271a与连接于第二连接线路1274a端部的第二端部1271b导通,同时第一开关1273b关断,以使两个第二端部1271b之间关断。具体地,第一开关1273b和第二开关1274b为单刀单掷开关。可选地,第一开关1273b和第二开关1274b可以为继电器开关;第一开关1273b和第二开关1274b也可以为MOS管开关;第一开关1273b和第二开关1274b还可以为机械开关。
以上示例以开关组件127集成于第一射频接收器12内为例进行说明,在其他实施例中,请参阅图11,图11为本申请又一些实施例提供的终端设备100的射频接收系统10的示意图,射频接收系统10中,也可以不在第一射频接收器12内集成开关组件127,射频接收系统10还包括第二单刀双掷开关15,第二单刀双掷开关15与第一射频接收器12和第二射频接收器14分立设置于终端设备100的电路板上,第二单刀双掷开关15的动端与第二滤波器13的输出端连接,第二单刀双掷开关15的一个不动端与一个第二端口126连接,此第二端口126与多个第二选择开关123的输入端组中的一个输入端连接,第二单刀双掷开关15的另一个不动端与第二射频接收器14的第六端口141连接。
这样一来,若第二射频接收器14的第六端口141通过第二单刀双掷开关15与第二滤波器13的输出端导通,则第一射频接收器12能够接收大于第一放大器124数量的频段信号,且分别自第一射频接收器12的多个第一放大器124所在的多个信号链路及第二滤波器13和第二放大器142导通的信号链路传输至终端设备100的处理电路以实现相应的CA组合。若第一射频接收器12的第二端口126通过第二单刀双掷开关15与第二滤波器13的输出端导通,则第一射频接收器12能够接收小于或等于第一放大器124数量的频段信号,且频段信号中具有第二滤波器13选通的频段信号,这些频段信号可以分别自第一射频接收器12内的多个第一放大器124传输至终端设备100的处理电路,从而充分地利用了第一射频接收器12内的第一放大器124,且避免了第二滤波器13所在通路的信号自第二射频接收器14传输至终端设备100的处理电路,导致不必要的插损。然而,在射频接收系统10中设置第二单刀双掷开关15,第二单刀双掷开关15与第一射频接收器12和第二射频接收器14分立设置,会增加终端设备100的电路板的设计及加工组装难度。
在通信系统中引入载波聚合技术是一种提供通信速率的方式,另一种提高通信速率的方式是,在LTE的组网中,采用多输入多输出(multiple input multiple output,MIMO)技术来提高信道容量,以提高数据吞吐量。应用于MIMO的天线形式就是发送端和接收端都使用多根天线,在收发设备之间构成多个收发路径的天线系统。请参阅图12,图12为本申请一些实施例提供的一种MIMO的通信场景架构图,图12中以基站200为例的发射端和终端设备100为例的接收端的天线均为两个进行示例,基站200通过发射天线1和发射天线2进行发射,终端设备100通过接收天线1和接收天线2来接收信号。可见,终端设备100对MIMO技术的使用,使得其上的天线数量为多个。因此,终端设备100中射频接收器的数量也为多个,射频接收器与天线一一对应,以实现对多个天线的接收信号的接收。
请参阅图13,图13为本申请又一些实施例提供的终端设备100的射频接收系统10的示意图,使用MIMO技术的终端设备100中,若第一射频接收器12自第一天线11接收的频段信号的数量少于第一放大器124的数量,则第一射频接收器12内会闲置至少一个第一放大器124,为了提高第一射频接收器12内的第一放大器124的利用率,进而减少射频接收系统10中放大器的总数量,射频接收系统10还可以包括两个第三滤波器16,两个第三滤波器16能够选通的频率范围可以分别与多个第一滤波器122能够选通的频率范围相同,如第一射频接收器12内具有能选通B39信号和B3信号的第一滤波器122,两个第三过滤波器16也可以分别为能够选通B39信号和B3信号的滤波器。为了能够实现B39信号或B3信号的MIMO多路接收功能,射频接收系统10还包括一个第三单刀双掷开关17,两个第三滤波器16的输入端与射频接收系统10中第一天线11以外的其他天线(如第二天线18或图中未示出的其他天线)连接,两个第三滤波器16的输出端分别与第三单刀双掷开关17的两个不动端连接,第三单刀双掷开关17的动端与第一射频接收器12的一个第二端口126连接,此第二端口126与多个第二选择开关123的输入端组中的一个输入端组连接。
这样一来,可以通过第三单刀双掷开关17的动端与两个不动端中的一个导通,实现一个第三滤波器16选通的频段信号自第一射频接收器12内的一个第一放大器124传输至终端设备100的处理电路,既提高了第一放大器124的利用率,又减少了射频接收系统10中的放大器的总数量,节省了终端设备100的成本。
根据上述描述可知,若不在第一射频接收器12内集成开关组件127,终端设备100若要实现包含第二滤波器13选通的频段信号的CA组合,则需要在第一射频接收器12以外分立设置一个第二单刀双掷开关15。使用MIMO技术的终端设备100若要实现提高第一射频接收器12内的第一放大器124的利用率,则需要在第一射频接收器12外分立设置一个第三单刀双掷开关17,因此,增加了适用于不同区域不同运营商通信系统的终端设备100的设计及组装难度。
为了解决上述问题,请参阅图14,图14为本申请又一些实施例提供的终端设备100的射频接收系统10的示意图。前述开关组件127还能够切换至第三状态。当开关组件127处于第三状态时,第一端部1271a与两个第二端部1271b中的另一个第二端部1271b导通,第一端部1271a与两个第二端部1271b中的一个第二端部1271b关断,两个第二端部1271b之间关断。此处的一个第二端部1271b是指前文所述的在射频接收系统10包括第二滤波器13时,与一个连接于第二滤波器13输出端的第二端口126连接的第二端部1271b。这样一来,使用MIMO技术的终端设备100中,当开关组件127处于第二状态时,使得两个第二端口126中的一个第二端口126能够与一个第二选择开关123的输入端导通,若此第二端口126与一个第三滤波器16(如此第三滤波器16选通B39信号)连接,则自第一射频接收器12能够传输两路B39信号至终端设备100的处理电路;当开关组件127处于第三状态时,使得两个第二端口126中的另一个第二端口126能够与一个第二选择开关123的输入端导通,若此第二端口126与另一个第三滤波器16(如此第三滤波器16选通B3信号)连接,则自第一射频接收器12能够传输两路B3信号至终端设备100的处理电路。既提高了第一放大器124的利用率,又减少了射频接收系统10中的放大器的总数量,节省了终端设备100的成本。
由上述可知,本申请一些实施例提供的第一射频接收器12,无需在第一射频接收器12外部分立设置第二单刀双掷开关15或第三单刀双掷开关17,通过将开关组件127集成于第一射频接收器12内,开关组件127能够在第一状态、第二状态和第三状态之间切换,使得第一射频接收器12既能够在需要实现频段信号数量大于第一放大器124数量的CA组合时,通过连接射频接收系统10中的第二射频接收器14内的第二放大器142,将分立设置于第一射频接收器12外部的第二滤波器13选通的频段信号传输至终端设备100的处理电路中;又能够在终端设备100需要实现频段信号数量小于或等于第一放大器124数量的CA组合,且频段信号包括第二滤波器13选通的频段信号时,使得第二滤波器13选通的频段信号能够自第一射频接收器12内部的第一放大器124传输至终端设备100的处理电路,优化了第二滤波器13所在通路的插损;还能够在应用于MIMO技术的终端设备100中,同时接收多路来自不同天线的频段信号,既提高了第一放大器124的利用率,又减少了射频接收系统10中的放大器的总数量,节省了终端设备100的成本。因此,第一射频接收器12可以应用于多种使用场景的终端设备100中,简化了终端设备100的设计及组装难度,集成化程度高,适用性强。
开关组件127能够实现在第一状态、第二状态和第三状态之间切换的结构有多种。
在一些实施例中,请参阅图15,图15为图3所示第一射频接收器12中的开关组件127的又一种结构示意图,开关组件127包括第一连接结构1273、第二连接结构1274和第三连接结构1275。第一连接结构1273包括第一连接线路1273a和第一开关1273b。第二连接结构1274包括第二连接线路1274a和第二开关1274b。第三连接结构1275包括第三连接线路1275a和第三开关1275b。第一连接线路1273a的一端、第二连接线路1274a的一端和第三连接线路1275a的一端连接,第一连接线路1273a的另一端与一个第一端部1271a连接,第二连接线路1274a的另一端、第三连接线路1275a的另一端分别与两个第二端部1271b连接。第一开关1273b串接于第一连接线路1273a内,第二开关1274b串接于第二连接线路1274a内,第三开关1275b串接于第三连接线路1275a内。
请参阅图16,图16为图15所示开关组件127处于第一状态时的示意图,当开关组件127处于第一状态时,第二开关1274b和第三开关1275b导通,以使两个第二端部1271b导通,同时,第一开关1273b关断,以使第一端部1271a与任意一个第二端部1271b之间关断。请参阅图17,图17为图15所示开关组件127处于第二状态时的示意图,当开关组件127处于第二状态时,第一开关1273b和第二开关1274b导通,以使第一端部1271a与连接于第二连接线路1274a端部的第二端部1271b导通,同时第三开关1275b关断,以使两个第二端部1271b之间关断。请参阅图18,图18为图15所示开关组件127处于第三状态时的示意图,当开关组件127处于第三状态时,第一开关1273b和第三开关1275b导通,以使第一端部1271a与连接于第三连接线路1275a端部的第二端部1271b导通,同时第二开关1274b关断,以使两个第二端部1271b之间关断。具体地,第三开关1275b与第一开关1273b、第二开关1274b的结构相同,第一开关1273b、第二开关1274b的结构如前所述,此处不再赘述。
在另一些实施例中,请参阅图19,图19为图3所示第一射频接收器12中的开关组件127的又一种结构示意图,开关组件127包括第一连接结构1273、第二连接结构1274和第三连接结构1275。第一连接结构1273包括第一连接线路1273a和第一开关1273b。第一连接线路1273a连接于两个第二端部1271b之间,第一开关串1273b接于第一连接线路1273a内。第二连接结构1274包括第二连接线路1274a和第二开关1274b;第二连接线路1274a连接于第一端部1271a与两个第二端部1271b中的一个第二端部1271b之间,第二开关1274b串接于第二连接线路1274a内。第三连接结构1275包括第三连接线路1275a和第三开关1275b;第三连接线路1275a连接于第一端部1271a与两个第二端部1271b中的另一个第二端部1271b之间,第三开关1275b串接于第三连接线路1275a内。
请参阅图20,图20为图19所示开关组件127处于第一状态时的示意图,当开关组件127处于第一状态时,第一开关1273b导通,以使两个第二端部1271b导通,同时,第二开关1274b和第三开关1275b关断,以使第一端部1271a与任意一个第二端部1271b之间关断。请参阅图21,图21为图19所示开关组件127处于第二状态时的示意图,当开关组件127处于第二状态时,第二开关1274b导通,以使第一端部1271a与连接于第二连接线路1274a端部的第二端部1271b导通,同时第一开关1273b和第三开关1275b关断,以使两个第二端部1271b之间关断。请参阅图22,图22为图19所示开关组件127处于第三状态时的示意图,当开关组件127处于第三状态时,第三开关1275b导通,以使第一端部1271a与连接于第三连接线路1275a端部的第二端部1271b导通,同时第一开关1273b和第二开关1274b关断,以使两个第二端部1271b之间关断。具体地,第三开关1275b与第一开关1273b、第二开关1274b的结构相同,第一开关1273b、第二开关1274b的结构如前所述,此处不再赘述。本实施例中,通过控制一个开关即可控制相应的连接结构导通或断开,进而控制连接于连接结构两端的两个端部1271的导通或断开,需要控制的器件较少,控制难度较低。
在上述实施例的基础上,在一些实施例中,请参阅图23和图24,图23为本申请又一些实施例提供的开关组件127的结构示意图,图24为本申请又一些实施例提供的开关组件127的结构示意图,图23和图24中仅示出了各个端部1271之间的连接结构,未示出串接于连接结构的连接线路上的开关。至少三个端部1271还包括一个第三端部1271c。开关组件127还包括第四连接结构1276、第五连接结构1277和第六连接结构1278。第四连接结构1276包括第四连接线路和第四开关。第四连接线路连接于第三端部1271c与第一端部1271a之间,第四开关串接于第四连接线路内。第五连接结构1277包括第五连接线路和第五开关。第五连接线路连接于第三端部1271c与两个第二端部1271b中的一个第二端部1271b之间,第五开关串接于第五连接线路内。第六连接结构1278包括第六连接线路和第六开关。第六连接线路连接于第三端部1271c与两个第二端部1271b中的另一个第二端部1271b之间,第六开关串接于第六连接线路内。具体地,第四开关、第五开关和第六开关与第一开关1273b、第二开关1274b、第三开关1275b的结构相同,第一开关1273b、第二开关1274b的结构如前所述,此处不再赘述。
开关组件127处于第一状态、第二状态和第三状态时,第一开关、第二开关和第三开关的导通和关断形式如前述实施例所述,此处不再赘述。需要说明的是,开关组件127处于第一状态、第二状态和第三状态时均需要同时关断第四开关、第五开关和第六开关。这样一来,开关组件127具有更多的端部1271,且每两个端部1271之间均可以导通或断开,使得第一射频接收器12可以应用于更多种使用场景的终端设备100中,简化了终端设备100的设计及组装难度,集成化程度高,适用性强。
在另一些实施例中,请参阅图25,图25为本申请又一些实施例提供的开关组件127的结构示意图,图25中仅示出了各个端部1271之间的连接结构,未示出串接于连接结构的连接线路上的开关。至少三个端部1271还包括一个第三端部1271c。开关组件127还包括第四连接结构1276。第四连接结构1276包括第四连接线路和第四开关。第四连接线路的一端与第一连接线路的一端、第二连接线路的一端、第三连接线路的一端连接,第四连接线路的另一端与第三端部1271c连接;第四开关串接于第四连接线路内。具体地,第四开关、第五开关和第六开关与第一开关1273b、第二开关1274b、第三开关1275b的结构相同,第一开关1273b、第二开关1274b的结构如前所述,此处不再赘述。
开关组件127处于第一状态、第二状态和第三状态时,第一开关、第二开关和第三开关的导通和关断形式如前述实施例所述,此处不再赘述。需要说明的是,开关组件127处于第一状态、第二状态和第三状态时均需要同时关断第四开关。这样一来,开关组件127具有更多的端部1271,且每两个端部1271之间均可以导通或断开,使得第一射频接收器12可以应用于更多种使用场景的终端设备100中,简化了终端设备100的设计及组装难度,集成化程度高,适用性强。
具体地,在一些实施例中,请参阅图26,图26为本申请另一些实施例提供的第一射频接收器12的示意图,一个第三端部1271c与多个第二选择开关123的输入端组内的一个输入端连接。需要说明的是,第三端部1271c与第一端部1271a分别与两个第二选择开关123的输入端连接。这样一来,射频接收系统10需要实现包含第二滤波器13选通的频段信号的CA组合时,可以灵活地选择用于传输第二滤波器13选通的频段信号的第一放大器124。同理,射频接收系统10用于应用MIMO技术的终端设备100中,实现同时接收多路来自不同天线的频段信号时,可以灵活地选择用于传输第三滤波器16选通的频段信号的第一放大器124,从而增强了第一射频接收器12的适用性。
在另一些实施例中,请参阅图27,图27为本申请另一些实施例提供的第一射频接收器12的示意图,图28为。第一射频接收器12还包括一个第三端口128。一个第三端部1271c与一个第三端口128连接。这样一来,第一射频接收器12的第三端口128可以与一个第三滤波器16的输出端连接,一个第二端口126可以与第二滤波器13的输出端连接,另一个第二端口126可以与第六端口141连接,使得第一射频接收器12能够用于同时应用MIMO技术和CA技术的终端设备100中,具体可根据终端设备100所接入的运营商的通信系统选择开关组件127用于传输CA组合内的频段信号还是MIMO的频段信号,增强了第一射频接收器12的适用性。
在上述实施例的基础上,在一些实施例中,请参阅图28,图28为本申请又一些实施例提供的开关组件127的结构示意图,图28中仅示出了各个端部1271之间的连接结构,未示出串接于连接结构的连接线路上的开关。至少三个端部1271还包括一个第四端部1271d。开关组件127还包括第七连接结构1279、第八连接结构1280、第九连接结构1281和第十连接结构1282。第七连接结构1279包括第七连接线路和第七开关;第七连接线路连接于第四端部1271d与第一端部1271a之间,第七开关串接于第七连接线路内。第八连接结构1280包括第八连接线路和第八开关;第八连接线路连接于第四端部1271d与两个第二端部1271b中的一个第二端部1271b之间,第八开关串接于第八连接线路内。第九连接结构1281包括第九连接线路和第九开关;第九连接线路连接于第四端部1271d与两个第二端部1271b中的另一个第二端部1271b之间,第九开关串接于第九连接线路内。第十连接结构1282包括第十连接线路和第十开关;第十连接线路连接于第四端部1271d与第三端部1271c之间,第十开关串接于第十连接线路内。
开关组件127处于第一状态、第二状态和第三状态时,第一开关、第二开关和第三开关的导通和关断形式如前述实施例所述,此处不再赘述。需要说明的是,开关组件127处于第一状态、第二状态和第三状态时均需要同时关断第四开关、第五开关、第六开关、第七开关、第八开关、第九开关和第十开关。这样一来,开关组件127具有更多的端部1271,且每两个端部1271之间均可以导通或断开,使得第一射频接收器12可以应用于更多种使用场景的终端设备100中,简化了终端设备100的设计及组装难度,集成化程度高,适用性强。
在另一些实施例中,请参阅图29,图29为本申请又一些实施例提供的开关组件127的结构示意图,图29中仅示出了各个端部1271之间的连接结构,未示出串接于连接结构的连接线路上的开关。至少三个端部1271还包括一个第四端部1271d。开关组件127还包括第五连接结构1277;第五连接结构1277包括第五连接线路和第五开关;第五连接线路的一端与第一连接线路的一端、第二连接线路的一端、第三连接线路的一端、第四连接线路的一端连接,第五连接线路的另一端与第四端部1271d连接;第五开关串接于第五连接线路内。
开关组件127处于第一状态、第二状态和第三状态时,第一开关1273b、第二开关1274b和第三开关1275b的导通和关断形式如前述实施例所述,此处不再赘述。需要说明的是,开关组件127处于第一状态、第二状态和第三状态时均需要同时关断第四开关和第五开关。这样一来,开关组件127具有更多的端部1271,且每两个端部1271之间均可以导通或断开,使得第一射频接收器12可以应用于更多种使用场景的终端设备100中,简化了终端设备100的设计及组装难度,集成化程度高,适用性强。
具体地,在一些实施例中,请参阅图30和图31,图30为本申请又一些实施例提供的第一射频接收器12的示意图,图31为本申请又一些实施例提供的终端设备100的射频接收系统10的示意图。一个第四端部1271d与多个第二选择开关123的输入端组内的一个输入端连接。需要说明的是,第四端部1271d与第一端部1271a分别与两个第二选择开关123的输入端连接。这样一来,在第一射频接收器12包括第三端口128,且第三端部1271c与第三端口128连接的情况下,第一射频接收器12的第三端口128可以与一个第三滤波器16的输出端连接,一个第二端口126可以与第二滤波器13的输出端连接,另一个第二端口126可以与第二射频接收器14的第六端口141连接,使得第一射频接收器12能够用于同时应用MIMO技术和CA技术的终端设备100中,且可灵活地选择用于传输第二滤波器13和第三滤波器16选通的频段信号的第一放大器124,增强了第一射频接收器12的适用性。
在另一些实施例中,请参阅图32,图32为本申请又一些实施例提供的第一射频接收器12的示意图,射频接收器12还包括一个第四端口129。一个第四端部1271d与一个第四端口129连接。这样一来,在第一射频接收器12包括第三端口128,且第三端部1271c与第三端口128连接的情况下,第一射频接收器12的第三端口128可以与一个第三滤波器16的输出端连接,第四端口129可以与另一个第三滤波器16的输出端连接,一个第二端口126可以与第二滤波器13的输出端连接,另一个第二端口126可以与第二射频接收器14的第六端口141连接,使得第一射频接收器12能够用于同时应用MIMO技术和CA技术的终端设备100中,具体可根据终端设备100所接入的运营商的通信系统选择开关组件127用于传输CA组合内的频段信号还是MIMO的频段信号,增强了第一射频接收器12的适用性。
由于自多个第一放大器124的输出端传输至终端设备100的处理电路的信号的频率不同,为了使终端设备处理电路自最优接收路径接收来自多个第一放大器124的频段信号,在一些实施例中,请继续参阅图32,射频接收器12还包括多个第五端口130和一个第三选择开关131。一个第三选择开关131具有多个输入端和多个输出端。一个第三选择开关131的多个输入端分别与多个第一放大器124的输出端连接;一个第三选择开关131的多个输出端分别与多个第五端口130连接;第三选择开关131用于选择一个第三选择开关131的多个输入端分别与一个第三选择开关131的多个输出端导通。在一些示例中,第三选择开关131的输入端与第一放大器124的输出端一一对应连接,第三选择开关131的输出端与第五端口130一一对应连接,第一选择开关131的一个输入端同时只与一个输出端导通。这样一来,可以通过第三选择开关131,将多个第一放大器124输出的频段信号传输至处理电路中的射频收发芯片的相应的端口,以保证终端设备100对接收到的信号的处理效果,进而保证终端设备100的性能。
在本说明书的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (16)

  1. 一种射频接收器,其特征在于,包括:
    至少一个第一端口;
    第一选择开关,包括一个输入端和多个输出端,第一选择开关用于选择所述第一选择开关的所述一个输入端与所述第一选择开关的所述多个输出端中的至少一个导通,所述第一选择开关的一个输入端用于连接第一天线,所述第一选择开关的所述多个输出端包括至少一个第一输出端和至少两个第二输出端,所述至少一个第一输出端分别与所述至少一个第一端口连接;
    多个第一滤波器,组成至少两个滤波器组,每个滤波器组包括至少一个第一滤波器;每个第一滤波器均包括输入端和输出端,所述至少两个滤波器组的输入端分别与所述至少两个第二输出端连接;
    多个第二选择开关,每个第二选择开关均包括多个输入端和一个输出端,所述第二选择开关用于选择所述第二选择开关的所述多个输入端中的一个与所述第二选择开关的一个输出端导通;所述多个第二选择开关的所有输入端组成输入端组,所述输入端组内多个输入端分别与所述多个第一滤波器的输出端连接;
    多个第一放大器,每个所述第一放大器包括一个输入端和一个输出端,所述多个第一放大器的一个输入端分别与多个所述第二选择开关的一个输出端连接;
    两个第二端口;
    一个开关组件,包括至少三个端部,所述至少三个端部包括一个第一端部和两个第二端部,所述一个第一端部与所述输入端组内的一个输入端连接;所述两个第二端部分别与所述两个第二端口连接;所述开关组件能够在第一状态与第二状态之间切换;当所述开关组件处于所述第一状态时,所述两个第二端部之间导通,所述第一端部与所述两个第二端部中的任意一个第二端部之间关断;当所述开关组件处于所述第二状态时,所述第一端部与所述两个第二端部中的一个第二端部导通,所述第一端部与所述两个第二端部中的另一个第二端部关断,且所述两个第二端部之间关断。
  2. 根据权利要求1所述的射频接收器,其特征在于,所述开关组件还能够切换至第三状态;
    当所述开关组件处于所述第三状态时,所述第一端部与所述两个第二端部中的所述另一个第二端部导通,所述第一端部与所述两个第二端部中的所述一个第二端部关断,所述两个第二端部之间关断。
  3. 根据权利要求2所述的射频接收器,其特征在于,所述开关组件包括第一连接结构、第二连接结构和第三连接结构;
    所述第一连接结构包括第一连接线路和第一开关;所述第二连接结构包括第二连接线路和第二开关;所述第三连接结构包括第三连接线路和第三开关;所述第一连接线路的一端、所述第二连接线路的一端和所述第三连接线路的一端连接,所述第一连接线路的另一端与所述一个第一端部连接,所述第二连接线路的另一端、所述第三连接线路的另一端分别与所述两个第二端部连接;
    所述第一开关串接于所述第一连接线路内,所述第二开关串接于所述第二连接线路内,所述第三开关串接于所述第三连接线路内。
  4. 根据权利要求2所述的射频接收器,其特征在于,所述开关组件包括第一连接结构、第二连接结构和第三连接结构;
    所述第一连接结构包括第一连接线路和第一开关;所述第一连接线路连接于所述两个第二端部之间,所述第一开关串接于所述第一连接线路内;
    所述第二连接结构包括第二连接线路和第二开关;所述第二连接线路连接于所述第一端部与所述两个第二端部中的所述一个第二端部之间,所述第二开关串接于所述第二连接线路内;
    所述第三连接结构包括第三连接线路和第三开关;所述第三连接线路连接于所述第一端部与所述两个第二端部中的所述另一个第二端部之间,所述第三开关串接于所述第三连接线路内。
  5. 根据权利要求3或4所述的射频接收器,其特征在于,所述至少三个端部还包括一个第三端部;
    所述开关组件还包括第四连接结构、第五连接结构和第六连接结构;
    所述第四连接结构包括第四连接线路和第四开关;所述第四连接线路连接于所述第三端部与所述第一端部之间,所述第四开关串接于所述第四连接线路内;
    所述第五连接结构包括第五连接线路和第五开关;所述第五连接线路连接于所述第三端部与所述两个第二端部中的所述一个第二端部之间,所述第五开关串接于所述第五连接线路内;
    所述第六连接结构包括第六连接线路和第六开关;所述第六连接线路连接于所述第三端部与所述两个第二端部中的所述另一个第二端部之间,所述第六开关串接于所述第六连接线路内。
  6. 根据权利要求4所述的射频接收器,其特征在于,所述至少三个端部还包括一个第三端部;
    所述开关组件还包括第四连接结构;
    所述第四连接结构包括第四连接线路和第四开关;所述第四连接线路的一端与所述第一连接线路的所述一端、所述第二连接线路的所述一端、所述第三连接线路的所述一端连接,所述第四连接线路的另一端与所述第三端部连接;所述第四开关串接于所述第四连接线路内。
  7. 根据权利要求5所述的射频接收器,其特征在于,所述射频接收器还包括一个第三端口;
    所述一个第三端部与所述一个第三端口连接。
  8. 根据权利要求5所述的射频接收器,其特征在于,所述一个第三端部与所述输入端组内的一个输入端连接。
  9. 根据权利要求5所述的射频接收器,其特征在于,所述至少三个端部还包括一个第四端部;
    所述开关组件还包括第七连接结构、第八连接结构、第九连接结构和第十连接结构;
    所述第七连接结构包括第七连接线路和第七开关;所述第七连接线路连接于所述第四端部与所述第一端部之间,所述第七开关串接于所述第七连接线路内;
    所述第八连接结构包括第八连接线路和第八开关;所述第八连接线路连接于所述第四端部与所述两个第二端部中的所述一个第二端部之间,所述第八开关串接于所述第八连接线路内;
    所述第九连接结构包括第九连接线路和第九开关;所述第九连接线路连接于所述第四端部与所述两个第二端部中的所述另一个第二端部之间,所述第九开关串接于所述第九连接线路内;
    所述第十连接结构包括第十连接线路和第十开关;所述第十连接线路连接于所述第四端部与所述第三端部之间,所述第十开关串接于所述第十连接线路内。
  10. 根据权利要求6所述的射频接收器,其特征在于,所述至少三个端部还包括一个第四端部;
    所述开关组件还包括第五连接结构;
    所述第五连接结构包括第五连接线路和第五开关;所述第五连接线路的一端与所述第一连接线路的所述一端、所述第二连接线路的所述一端、所述第三连接线路的所述一端、所述第四连接线路的所述一端连接,所述第五连接线路的另一端与所述第四端部连接;所述第五开关串接于所述第五连接线路内。
  11. 根据权利要求9所述的射频接收器,其特征在于,所述一个第四端部与所述输入端组内的一个输入端连接。
  12. 根据权利要求9所述的射频接收器,其特征在于,所述射频接收器还包括一个第四端口;
    所述一个第四端部与所述一个第四端口连接。
  13. 根据权利要求1-4中任一项所述的射频接收器,其特征在于,所述射频接收器还包括:
    多个第五端口;
    一个第三选择开关,具有多个输入端和多个输出端;所述一个第三选择开关的多个输入端分别与所述多个第一放大器的输出端连接;所述一个第三选择开关的多个输出端分别与所述多个第五端口连接;所述第三选择开关用于选择所述一个第三选择开关的多个输入端分别与所述一个第三选择开关的多个输出端导通。
  14. 一种射频接收系统,其特征在于,包括:
    第一天线;
    第一射频接收器,所述第一射频接收器为权利要求1-13中任一项所述的射频接收器,所述第一射频接收器中第一选择开关的所述一个输入端与所述第一天线连接。
  15. 根据权利要求14所述的射频接收系统,其特征在于,所述射频接收系统还包括:
    第二滤波器,包括输入端和输出端,所述第二滤波器的输入端与所述第一射频接收器内所述至少一个第一端口中的一个第一端口连接,所述第二滤波器的输出端与所述第一射频接收器中所述两个第二端口中的一个第二端口连接;
    第二射频接收器,包括第六端口和第二放大器,所述第二放大器包括输入端,所述第二放大器的输入端与所述第六端口连接,所述第六端口与所述第一射频接收器中所述两个第二端口中的另一个第二端口连接。
  16. 一种电子设备,其特征在于,包括:
    权利要求14或15所述的射频接收系统。
PCT/CN2023/114222 2022-09-02 2023-08-22 一种射频接收器、射频接收系统及电子设备 WO2024046172A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP23855826.6A EP4380063A1 (en) 2022-09-02 2023-08-22 Radio-frequency receiver, radio-frequency receiving system, and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211071627.7A CN115225101B (zh) 2022-09-02 2022-09-02 一种射频接收器、射频接收系统及电子设备
CN202211071627.7 2022-09-02

Publications (2)

Publication Number Publication Date
WO2024046172A1 WO2024046172A1 (zh) 2024-03-07
WO2024046172A9 true WO2024046172A9 (zh) 2024-04-25

Family

ID=83617391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/114222 WO2024046172A1 (zh) 2022-09-02 2023-08-22 一种射频接收器、射频接收系统及电子设备

Country Status (3)

Country Link
EP (1) EP4380063A1 (zh)
CN (1) CN115225101B (zh)
WO (1) WO2024046172A1 (zh)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10979088B2 (en) * 2017-12-15 2021-04-13 Skyworks Solutions, Inc. Front end architecture for selectively adding external carrier aggregation band
US20200412403A1 (en) * 2019-06-27 2020-12-31 Skyworks Solutions, Inc. Rf front-end with filter-based interface to multi-feed antenna
JP2022024343A (ja) * 2020-07-16 2022-02-09 株式会社村田製作所 高周波モジュール及び通信装置
CN114337693B (zh) * 2020-09-27 2023-11-10 Oppo广东移动通信有限公司 射频L-PA Mid器件、射频收发系统和通信设备
CN112436845B (zh) * 2020-12-02 2022-05-13 Oppo广东移动通信有限公司 射频L-PA Mid器件、射频收发系统和通信设备
CN213661597U (zh) * 2020-12-02 2021-07-09 Oppo广东移动通信有限公司 射频L-PA Mid器件、射频收发系统和通信设备
CN112436847B (zh) * 2020-12-02 2022-05-17 Oppo广东移动通信有限公司 射频L-PA Mid器件、射频收发系统和通信设备
CN114124140B (zh) * 2021-11-30 2023-05-05 Oppo广东移动通信有限公司 射频系统和通信设备

Also Published As

Publication number Publication date
CN115225101B (zh) 2023-01-20
WO2024046172A1 (zh) 2024-03-07
CN115225101A (zh) 2022-10-21
EP4380063A1 (en) 2024-06-05

Similar Documents

Publication Publication Date Title
JP6955103B2 (ja) マルチウェイスイッチ、無線周波数システム及び無線通信装置
US11601166B2 (en) Antenna switching on MIMO devices
WO2017166353A1 (zh) 一种载波聚合电路实现方法、实现系统及移动终端
CN108462498B (zh) 多路选择开关、射频系统和无线通信设备
EP3739762B1 (en) Terminal device
CN108880602B (zh) 多路选择开关以及相关产品
CN108462507B (zh) 多路选择开关、射频系统以及无线通信设备
CN108390694B (zh) 多路选择开关、射频系统以及无线通信设备
CN108494461B (zh) 无线通信设备
CN111193526A (zh) 射频系统和电子设备
TW201946398A (zh) 用於增強之交互調變失真性能之切換的終端的前端系統
CN215682278U (zh) 一种射频装置及终端设备
CN116599542B (zh) 一种实现天线复用的控制方法和电子设备
CN111628802B (zh) 一种射频电路及电子设备
WO2023098153A1 (zh) 射频前端模块、终端设备以及射频前端模块的控制方法
CN209748553U (zh) 射频电路及终端设备
US20210218152A1 (en) Antenna apparatus
WO2024067406A1 (zh) 射频电路和电子设备
US20240063831A1 (en) Configurable filter bands for radio frequency communication
CN111478709B (zh) 载波聚合电路及移动终端
CN112751573B (zh) 射频前端模块、收发装置和通信终端
WO2024046172A9 (zh) 一种射频接收器、射频接收系统及电子设备
CN102820901B (zh) 射频电路以及信号传输方法
CN211830764U (zh) 一种射频电路及电子设备
CN217935611U (zh) 射频通路配置单元、射频前端模组、射频系统及电子设备

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023855826

Country of ref document: EP

Effective date: 20240229

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23855826

Country of ref document: EP

Kind code of ref document: A1