WO2024045906A1 - 气压调整装置、气压按摩仪及气压按摩仪的控制方法 - Google Patents

气压调整装置、气压按摩仪及气压按摩仪的控制方法 Download PDF

Info

Publication number
WO2024045906A1
WO2024045906A1 PCT/CN2023/106622 CN2023106622W WO2024045906A1 WO 2024045906 A1 WO2024045906 A1 WO 2024045906A1 CN 2023106622 W CN2023106622 W CN 2023106622W WO 2024045906 A1 WO2024045906 A1 WO 2024045906A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
pressure
channel
cavity
exhaust
Prior art date
Application number
PCT/CN2023/106622
Other languages
English (en)
French (fr)
Inventor
杨继超
曾伟
张文
Original Assignee
四川千里倍益康医疗科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211053707.XA external-priority patent/CN115337190A/zh
Priority claimed from CN202211054271.6A external-priority patent/CN115844702A/zh
Application filed by 四川千里倍益康医疗科技股份有限公司 filed Critical 四川千里倍益康医疗科技股份有限公司
Publication of WO2024045906A1 publication Critical patent/WO2024045906A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C27/00Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas
    • A47C27/08Fluid mattresses or cushions
    • A47C27/10Fluid mattresses or cushions with two or more independently-fillable chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/10Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit
    • F16K11/20Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit operated by separate actuating members
    • F16K11/22Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit operated by separate actuating members with an actuating member for each valve, e.g. interconnected to form multiple-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic

Definitions

  • the present invention relates to the technical field of massage equipment, in particular to an air pressure adjustment device, an air pressure massager and a control method of the air pressure massager.
  • Air pressure massager is a device that massages human limbs and muscle tissue through the inflation and deflation of air bags.
  • Air pressure massagers are usually equipped with multiple air bags. Each air bag is inflated by an air pump.
  • a solenoid valve is installed between each air bag and the inflation channel and the deflation channel to control the opening and closing of the air path. The opening and closing of the solenoid valve is controlled by the air pressure massager. control system.
  • the existing air pressure massager gradually inflates multiple air bags
  • the high-pressure gas in the air bags that have completed the inflation work will flow back into the air bags that are being inflated, causing air flow between the inflated air bags and the air bags that are being inflated.
  • the formation of air cross phenomenon will not only reduce the air pressure in the inflated air bag, but also produce noise; at the same time, due to the reduction of air pressure in the inflated air bag, it will increase the difficulty of controlling the air bag inflation and deflation, and reduce the control accuracy of the air bag inflation and deflation. ;
  • the air leakage phenomenon in the air pressure massager will have a negative impact on the massage work of the air pressure massager, and will ultimately affect the user's massage experience.
  • the air bag needs to be inflated from a state of no pre-charge pressure to a set pressure every time, and the inflation time is long, resulting in a reduction in the number of massage cycles within the same period and serious power consumption.
  • the present invention aims to solve the problem in the prior art that there is air cross-flow between the air bags of the air pressure massager and the air bag inflation time is long.
  • an air pressure adjustment device includes a base body, the base body is provided with a pressure maintaining channel and a plurality of three-way cavities, and each three-way cavity is connected with an opening and closing device.
  • the diversion chamber is connected with an air bag connecting pipe, and the port of the three-way cavity that is not connected to the diversion chamber is connected to the pressure-maintaining channel; the connection between each three-way cavity and the pressure-maintaining channel is provided with There is a one-way valve, which opens from the three-way cavity in the direction of the pressure-maintaining channel; the pressure-maintaining channel is also connected to an openable and closable pressure-maintaining channel air inlet and an openable and closable first row. air channel.
  • the base body is provided with a first exhaust solenoid valve and an air chamber solenoid valve corresponding to the three-way cavity; the first exhaust solenoid valve controls the opening and closing of the first exhaust channel, so The air chamber solenoid valve controls the opening and closing of the diversion chamber connected to the corresponding three-way chamber.
  • the base body includes a middle frame and a lower seat, a plurality of three-way cavities are arranged at intervals along the length direction of the lower seat inside the lower seat, and a plurality of flow guide chambers are arranged at intervals along the length direction of the middle frame.
  • the air guide cavity is located in the corresponding three Above the through cavity; the air chamber solenoid valve is fixed at the bottom of the lower seat. The piston end of the air chamber solenoid valve passes through the corresponding three-way cavity and extends into the upper diversion chamber.
  • the piston end of the air chamber solenoid valve is connected to the Each connection point of the flow guide cavity forms a sealing fit; the middle frame is detachably connected to the top of the lower seat, and the middle frame is provided with an inlet and exhaust channel connected between the flow guide cavity and the airbag connection pipe.
  • the lower seat is also provided with an exhaust channel corresponding to the three-way cavity, and the exhaust channel is connected between the pressure maintaining channel and the corresponding three-way cavity; the one-way The valve is arranged at the connection between the exhaust channel and the pressure maintaining channel, and the one-way valve opens from the exhaust channel to the direction of the pressure maintaining channel.
  • the airbag connecting pipe is a conical pipe erected on the middle frame, and the outer diameter of one end of the airbag connecting pipe connected with the intake and exhaust passages is larger than the outer diameter of the other end.
  • the base body also includes a one-way valve fixing plate, which is detachably connected to the side of the lower seat; the one-way valve fixing plate is provided with a first one-way valve corresponding to the one-way valve.
  • Installation half cavity the lower seat is provided with a second installation half cavity corresponding to the one-way valve, the second installation half cavity is connected with the corresponding three-way cavity, the first installation half cavity and the second installation half cavity The cavities are connected to form a cavity that accommodates the corresponding one-way valve.
  • the base body also includes a sealing side cover plate, and the one-way valve fixing plate is provided with a pressure-maintaining channel groove extending along the length direction of the one-way valve fixed plate.
  • the pressure-maintaining channel groove is connected with each first mounting plate.
  • the half chambers are connected; the sealing side cover plate is detachably connected to the side of the one-way valve fixed plate that is not connected to the lower seat.
  • the sealing side cover plate covers the pressure-maintaining channel groove and seals with the pressure-maintaining channel groove to form a pressure-maintaining aisle.
  • the base body is also provided with a gas channel and an openable and closable second exhaust cavity;
  • the gas channel is provided with an air inlet, and the gas channel is connected with each three-way cavity
  • the flow guide cavity is connected;
  • the second exhaust cavity is connected with the air channel, and the second exhaust channel is connected to the place where the second exhaust cavity is not connected with the air channel.
  • the second exhaust solenoid valve controls the opening and closing of the second exhaust cavity;
  • the second exhaust solenoid valve is fixed at the bottom of the lower seat, and the second exhaust solenoid valve controls the opening and closing of the second exhaust cavity.
  • the piston end of the solenoid valve extends into the second exhaust chamber and forms a sealing fit with each communication point of the second exhaust chamber.
  • the base body also includes an upper cover, one side of the upper cover is provided with an air channel channel extending along the length direction of the upper cover, the upper cover is detachably connected to the middle frame, and the air channel channel is connected to the third
  • the two exhaust cavities and the flow guide cavities of each three-way cavity are connected, and the side where the middle frame and the upper cover are connected is sealingly matched with the air channel channel groove to form an air channel.
  • the upper cover is also provided with a relief hole corresponding to the airbag connecting pipe, and the airbag connecting pipe passes through the corresponding relief hole on the upper cover.
  • the base body also includes a base extension part, the base extension part includes a middle frame extension part and a lower base extension part, the middle frame extension part is detachably connected to the lower base extension part, and the base extension part is fixed in the base body.
  • One end; the first exhaust channel is provided on the extension of the lower seat, and a first exhaust cavity that is connected to the pressure maintaining channel and the first exhaust channel is provided in the extension of the middle frame.
  • the first exhaust cavity The body is formed by the pressure-maintaining channel extending to the inside of the middle frame extension.
  • first exhaust solenoid valve is fixed at the bottom of the extension of the lower seat, and the piston end of the first exhaust solenoid valve extends into the first exhaust cavity and forms a connection with each communication point of the first exhaust cavity. Sealing fit.
  • the base extension also includes an upper cover extension, which is detachably connected to the middle frame extension, and the pressure maintaining channel air inlet is provided on the upper cover extension, and the pressure maintaining channel inlet The air port is connected with the first exhaust cavity.
  • it also includes an air intake one-way valve, which is arranged at the air inlet of the pressure maintaining channel; the air intake one-way valve controls the opening and closing of the air inlet of the pressure maintaining channel. The valve is opened in the direction from the outside of the air inlet of the pressure maintaining channel to the first exhaust chamber.
  • the upper cover extension and the upper cover are of an integrated structure
  • the middle frame extension and the middle frame are of an integral structure
  • the lower seat extension and the lower seat are of an integral structure
  • first exhaust solenoid valve, the second exhaust solenoid valve and the air chamber solenoid valve are all normally closed solenoid valves.
  • piston ends of the first exhaust solenoid valve, the second exhaust solenoid valve and the air chamber solenoid valve are all provided with sealing caps.
  • sealing cap is a silicone sealing cap.
  • the invention also discloses an air pressure massager, which includes an air source and a plurality of air bags connected to the air source. It also includes an air pressure adjusting device as described above.
  • the three-way cavity on the air pressure adjusting device is connected to the air bag.
  • each air bag is connected to the corresponding air bag connecting pipe of the air pressure adjustment device; the air source is connected to the flow guide cavity of each three-way cavity in the air pressure adjustment device through the second inflation channel.
  • the air source is connected to the air inlet of the pressure maintaining channel through the first inflation channel.
  • the invention also discloses a control method of the above-mentioned air pressure massager.
  • the air bag inflates the pressure-maintaining channel, and selectively controls the pressure-maintaining channel, the three-way cavity and the diversion cavity. Open and close to achieve one action or a combination of at least two actions among the air pressure massager's pre-charge and pressure-maintaining, pressure-maintaining massage, pressure equalization and pressure regulation, and automatic pressure release after power-off; the air inlet of the pressure-maintaining channel is open.
  • the pressure maintaining channel, three-way cavity, and diversion cavity are selectively opened and closed to realize the pre-charge and pressure-maintaining, pressure-maintaining massage, pressure equalization, pressure regulation, and power-off of the air pressure massager.
  • any air bag is inflated from the air source. After the air bag is inflated, the gas in the air bag flushes out the corresponding three-way cavity.
  • the one-way valve in the pressure-maintaining channel enters the air pressure-maintaining channel to inflate the pressure-maintaining channel.
  • the pressure in the pressure-maintaining channel increases and closes the one-way valve to seal the pressure-maintaining channel to maintain the air pressure in the pressure-maintaining channel unchanged; the air inlet of the pressure-maintaining channel When it is in the open state and connected to the air source, during the pre-charge and pressure-maintaining action, the air source directly inflates the pressure-maintaining channel in the air pressure adjustment device, and the pressure in the pressure-maintaining channel increases to close the pressure-maintaining channel to maintain the pressure-maintaining channel.
  • the internal air pressure remains unchanged.
  • a pre-charge and pressure-maintaining action is first performed to keep the pressure-maintaining channel closed, and each air bag is inflated individually from the air source, and the air pressure in each air bag is maintained unchanged through the pressure-maintaining channel.
  • a pre-charging and pressure-maintaining action is performed first to keep the pressure-maintaining channel closed, and the air pressure in each air bag is changed by deflating the inflated air bags individually.
  • the pressure maintaining channel is automatically opened after all the solenoid valves are powered off, and each air bag is deflated and exhausted through the pressure maintaining channel.
  • the present invention uses the air pressure adjustment device to maintain the pressure of the air bag connected to the air bag connection pipe on the air pressure adjustment device.
  • the air bag can be inflated directly into the pressure maintaining channel of the air pressure adjustment device through the air source of the air pressure massager itself, or through the air pressure massager. After inflating the air bag with its own air source, the high-pressure gas in the air bag is used to open the one-way valve between the pressure-maintaining channel and the three-way cavity, and then inflate the pressure-maintaining channel of the air pressure adjustment device to make the inner and outer sides of the one-way valve There is a pressure difference, so that the one-way valve remains closed and the diversion chamber connected to the airbag connection pipe is closed.
  • the gas in the airbag cannot flow without backflow, thus maintaining the pressure of the airbag, thus solving the problem in the airbag.
  • the problem of air leakage between the inflated airbag and the uninflated airbag ensures the smooth progress of the airbag inflation and shortens the airbag inflation time;
  • the present invention realizes the sealing of the air bag exhaust channel through the cooperation of the air chamber solenoid valve and the one-way valve.
  • By inflating the pressure maintaining channel of the air pressure adjustment device a pressure difference is generated on both sides of the one-way valve to ensure that the one-way valve In the closed state, the exhaust channel of the air bag can only be opened when the air chamber solenoid valve is powered on, thereby achieving the effect of preventing the air bag from deflating when the air chamber solenoid valve is powered off and closed, thus maintaining the pressure of the air bag.
  • it reduces the power consumption of the solenoid valve and has a good energy saving effect;
  • the present invention realizes the automatic closing of the pressure maintaining channel in the air pressure adjustment device by setting up the air inlet check valve, and uses inflating the pressure maintaining channel in the air pressure adjustment device to generate a pressure difference on both sides of the air inlet check valve, thereby
  • the air inlet check valve is automatically closed when the air pressure in the inner pressure maintaining channel is greater than the air pressure outside the intake check valve, and the pressure maintaining channel is closed so that the gas in the pressure maintaining channel cannot be discharged, thereby achieving the effect of maintaining pressure inside the pressure maintaining channel. , thereby maintaining the air pressure outside the one-way valve unchanged and achieving continuous pressure maintenance on the airbag;
  • the present invention prevents the air bag from deflating through the cooperation of the air chamber solenoid valve and the one-way valve, and ensures that the air pressure in the air bag remains unchanged after all air bags are inflated, thereby avoiding the need to re-inflate the air bag due to deflation. Effectively saves the inflation time of the airbag and reduces power consumption;
  • the present invention can control the opening and closing of each air chamber solenoid valve and the second exhaust solenoid valve to achieve selective quantitative inflation and deflation of the air bag, so that the pressure in each air bag can be adjusted individually.
  • the air pressure massager can adjust different air bags to have different massage pressures according to different massage parts, and can also adjust the air pressure in different air bags to be consistent, making the massage work more targeted and the user's massage experience better;
  • the solenoid valve in the present invention is closed after a power outage.
  • the air pressure massager can open the pressure maintaining channel of the air pressure adjustment device by closing the first exhaust solenoid valve and the air chamber solenoid valve for exhaust and exhaust. pressure, so that the gas in the air bag can It is enough to open the one-way valve for exhaust, and realize automatic deflation of all air bags after the air pressure massager is powered off. This avoids the situation where the air bags of the air pressure massage device keep squeezing the user's limbs after the power is cut off, eliminating safety concerns. Hidden dangers provide safety in massage work;
  • the present invention avoids the noise problem caused by the air leakage, can provide users with a quiet massage environment, and effectively improves user comfort.
  • the present invention maintains the air pressure inside the inflated air bag by maintaining the pressure of the air bag, so that the internal pressure of the air bag remains consistent with the preset pressure, effectively reducing the difficulty of controlling the inflation and deflation of the air bag, thereby improving the efficiency of air bag inflation and deflation. Control accuracy ensures the stability of the air pressure massager.
  • Figure 1 is a front isometric view of the air pressure adjusting device in the present invention
  • Figure 2 is a rear isometric view of the air pressure adjustment device in the present invention.
  • Figure 3 is an exploded view of the structure of the first embodiment of the air pressure adjustment device of the present invention.
  • Figure 4 is a longitudinal cross-sectional view of the structure of the first embodiment of the air pressure adjustment device of the present invention.
  • Figure 5 is an exploded view of the structure of the second embodiment of the air pressure adjustment device of the present invention.
  • Figure 6 is a longitudinal cross-sectional view of the structure of the second embodiment of the air pressure adjustment device according to the present invention.
  • Figure 7 is a schematic cross-sectional view of the air pressure massager in an uninflated state when it adopts the first embodiment of the air pressure adjustment device according to the present invention
  • Figure 8 is a transverse cross-sectional view of the air pressure adjustment device in Figure 7, where A-A is a cross-sectional view of A-A in Figure 7;
  • Figure 9 is a schematic cross-sectional view of the air pressure massager in the non-inflated state when using the second embodiment of the air pressure adjustment device according to the present invention.
  • Figure 10 is a transverse cross-sectional view of the air pressure adjustment device in Figure 9, where A-A is a cross-sectional view of A-A in Figure 9;
  • Figure 11 is a cross-sectional view of B-B in Figure 8.
  • Figure 12 is a schematic cross-sectional view of the air pressure massager using the first embodiment of the air pressure adjustment device according to the present invention when inflating the first air bag through the air source;
  • Figure 13 is a transverse cross-sectional view of the air pressure adjustment device in Figure 12, where A-A is a cross-sectional view of A-A in Figure 12;
  • Figure 14 is a schematic cross-sectional view of the air pressure massager using the first embodiment of the air pressure adjustment device according to the present invention, which uses the inflated first air bag to pre-inflate the air pressure adjustment device to maintain pressure;
  • Figure 15 is a transverse cross-sectional view of the air pressure adjustment device in Figure 14, where A-A is a cross-sectional view of A-A in Figure 14;
  • Figure 16 shows the air pressure massager using the air pressure adjustment device according to the second embodiment of the present invention. Schematic cross-sectional view of internal pre-inflation for pressure maintenance;
  • Figure 17 is a transverse cross-sectional view of the air pressure adjustment device in Figure 16, where A-A is a cross-sectional view of A-A in Figure 16;
  • Figure 18 is a schematic cross-sectional view of the air pressure massage device of the present invention when inflating the first air bag through the air source in the pressure-maintaining state;
  • Figure 19 is a transverse cross-sectional view of the air pressure adjustment device in Figure 18, where A-A is a cross-sectional view of A-A in Figure 18;
  • Figure 20 is a schematic cross-sectional view of the air pressure massage device of the present invention when inflating the second air bag through the air source in the pressure-maintaining state;
  • Figure 21 is a transverse cross-sectional view of the air pressure adjustment device in Figure 20, where A-A is a cross-sectional view of A-A in Figure 20;
  • Figure 22 is a schematic cross-sectional view of the air pressure massage device of the present invention when inflating the third air bag through the air source in the pressure-maintaining state;
  • Figure 23 is a transverse cross-sectional view of the air pressure adjustment device in Figure 22, where A-A is a cross-sectional view of A-A in Figure 22;
  • Figure 24 is a schematic cross-sectional view of the air pressure massage device of the present invention when inflating the fourth air bag through the air source in the pressure-maintaining state;
  • Figure 25 is a transverse cross-sectional view of the air pressure adjustment device in Figure 24, where A-A is a cross-sectional view of A-A in Figure 24;
  • Figure 26 is a schematic cross-sectional view of the air pressure massage device of the present invention when inflating the fifth air bag through the air source in the pressure-maintaining state;
  • Figure 27 is a transverse cross-sectional view of the air pressure adjustment device in Figure 26, where A-A is a cross-sectional view of A-A in Figure 26;
  • Figure 28 is a schematic cross-sectional view of the air pressure massager of the present invention when it is exhausting and regulating the first air bag;
  • Figure 29 is a transverse cross-sectional view of the air pressure adjustment device in Figure 28, where A-A is a cross-sectional view of A-A in Figure 28;
  • Figure 30 is a schematic cross-sectional view of the air pressure massager of the present invention when it is exhausting and regulating the second air bag;
  • Figure 31 is a transverse cross-sectional view of the air pressure adjustment device in Figure 30, where A-A is a cross-sectional view of A-A in Figure 30;
  • Figure 32 is a schematic cross-sectional view of the air pressure massager of the present invention when it is exhausting and regulating the third air bag;
  • Figure 33 is a transverse cross-sectional view of the air pressure adjustment device in Figure 32, where A-A is the cross-sectional view of A-A in Figure 32;
  • Figure 34 is a schematic cross-sectional view of the air pressure massager of the present invention when it is exhausting and regulating the fourth air bag;
  • Figure 35 is a transverse cross-sectional view of the air pressure adjustment device in Figure 34, where A-A is the cross-sectional view of A-A in Figure 34;
  • Figure 36 is a schematic cross-sectional view of the air pressure massager of the present invention when it is exhausting and regulating the fifth air bag;
  • Figure 37 is a transverse cross-sectional view of the air pressure adjustment device in Figure 36, where A-A is a cross-sectional view of A-A in Figure 36;
  • Figure 38 is a schematic cross-sectional view of the air pressure massager of the present invention when it is exhausting and releasing pressure;
  • Figure 39 is a transverse cross-sectional view of the air pressure adjustment device in Figure 38, where A-A is the cross-sectional view of A-A in Figure 38.
  • the marks in the figure are: 100-base body, 110-lower seat, 120-middle frame, 130-inlet and exhaust channel, 140-exhaust channel, 150-upper cover, 151-buffer hole, 160-one-way valve fixing plate , 161-first installation half cavity, 162-second installation half cavity, 163-pressure maintaining channel groove, 170-sealing side cover plate, 180-air channel, 190-second exhaust cavity, 191-second Exhaust channel, 192-second exhaust solenoid valve, 200-pressure maintaining channel, 210-pressure maintaining channel air inlet, 220-first exhaust channel, 230-first exhaust solenoid valve, 240-air intake single Directional valve, 300-three-way cavity, 310-diversion chamber, 320-one-way valve, 400-air bag connecting pipe, 500-air chamber solenoid valve, 600-base extension, 610-upper cover extension, 620- Middle frame extension, 630-lower seat extension, 631-first exhaust cavity, 700-air source, 710-first inflation channel,
  • the main structure of the air pressure adjustment device disclosed in the present invention is a base body 100, and a pressure maintaining channel 200 and a three-way cavity 300 are provided inside the base body 100.
  • the pressure maintaining channel 200 can be used as a gas channel of the air pressure adjustment device.
  • the pressure maintaining channel 200 is provided with a pressure maintaining channel air inlet 210 and a first exhaust channel 220.
  • the pressure maintaining channel air inlet 210 and the first exhaust channel 220 are provided. Both can be opened and closed; gas can be transported into the pressure maintaining channel 200 through the pressure maintaining channel air inlet 210 or the three-way cavity 300; the pressure maintaining channel 200 can be exhausted through the first exhaust channel 220.
  • the base 100 is provided with a flow guide cavity 310 corresponding to each of the three-way cavities 300 .
  • the flow guide cavity 310 is connected to the corresponding three-way cavity 300
  • the flow guide cavity 310 is connected to the base body 100 .
  • the air bag connecting pipe 400 is connected, and the flow guide chamber 310 can also be opened and closed; the air bag connecting pipe 400 is used to connect to the air bag in the air pressure massager or other equipment with a similar air bag structure.
  • the parts of the tee cavity 300 connecting the guide chamber 310 and the pressure maintaining channel 200 are different. Taking Figure 11 as an example, the pressure maintaining channel 200 is connected to the lower part of the tee cavity 300, then the guide cavity 310 and the tee cavity The upper part of the body 300 is connected.
  • the important component of the air pressure adjustment device disclosed in the present invention for maintaining the pressure of the airbag 800 is the one-way valve 320 provided at the connection between each three-way cavity 300 and the pressure maintaining channel 200. At the same time, the one-way valve 320 is limited from the three-way cavity 300 to the pressure maintaining channel 200. 300 points in the direction of the pressure maintaining channel 200 and opens.
  • the principle of maintaining pressure through the air pressure adjusting device in the present invention is: inflating air into the pressure maintaining channel 200 of the air pressure adjusting device, and the air pressure in the pressure maintaining channel 200 continues to increase.
  • the gas can only flow from If the direction of the three-way cavity 300 flows to the direction of the pressure maintaining channel 200 through the one-way valve 320 but cannot flow from the direction of the pressure maintaining channel 200 to the direction of the three-way cavity 300 through the one-way valve 320, then the one-way valve 320 is pressed by the high-pressure gas. Close, the air pressure in the pressure-maintaining channel 200 continues to rise until it reaches the preset air pressure value, and then the pressure-maintaining channel air inlet 210 is closed.
  • the high-pressure gas in the pressure-maintaining channel 200 cannot be discharged and a stable air pressure value is maintained; at this time, only When the air pressure value in the three-way cavity 300 is greater than the air pressure value in the pressure maintaining channel 200, the one-way valve 320 can be opened. As long as the pressure value in the pressure maintaining channel 200 is set to be greater than the maximum pressure value in the three-way cavity 300 air pressure value, the tee cavity 300 and the airbag 800 are connected through the airbag connecting pipe 400 and the tee cavity 300 is closed. Without actively opening the pressure maintaining channel 200 for exhaust and pressure relief, the airbag 800 and the tee cavity The air pressure value within the body 300 will remain stable, eventually achieving the effect of pre-charging and maintaining pressure.
  • the air pressure adjustment device in the present invention can adopt the following two different implementation structures according to different inflation methods for the pressure maintaining channel 200:
  • the first embodiment of the air pressure adjustment device is shown in Figures 1 to 4, 7 and 8.
  • the air bag 800 inflates the pressure maintaining channel 200 through the tee cavity 300.
  • the pressure maintaining channel air inlet 210 does not need to be used as a gas inlet, so it is set to a normally closed state.
  • the pressure maintaining channel air inlet 210 can be directly closed or the pressure maintaining channel air inlet 210 can be directly omitted; after inflating the pressure maintaining channel 200
  • one or more air bags 800 are inflated in advance. After the air bag 800 is inflated, the gas input is stopped, the channel for inflating the air bag 800 is closed and the channel between the air bag 800 and the corresponding three-way cavity 300 is connected.
  • the air pressure in the air bag 800 increases, and the gas in the air bag 800 will flow in the low pressure direction.
  • the gas in the air bag 800 enters the three-way cavity 300 and then passes through the one-way valve 320 and enters the pressure maintaining channel 200. Since the one-way valve 320 is opened Due to direction restrictions, gas can only flow from the direction of the three-way cavity 300 through the one-way valve 320 to the direction of the pressure maintaining channel 200, but cannot flow from the direction of the pressure maintaining channel 200 through the one-way valve 320 to the direction of the three-way cavity 300. Maintaining pressure The air pressure in the channel 200 continues to increase until the air pressure in the pressure-maintaining channel 200 reaches the preset air pressure value.
  • the one-way valve 320 is closed by the gas pressure in the pressure-maintaining channel 200.
  • the pressure-maintaining channel 200 forms a sealed channel to ensure The high-pressure gas in the pressure channel 200 cannot be discharged and a stable air pressure value is maintained; at this time, only when the air pressure value in the three-way cavity 300 is greater than the air pressure value in the pressure maintaining channel 200, the one-way valve 320 can be opened.
  • the preset pressure value in the pressure channel 200 is set to be greater than the maximum air pressure value in the three-way cavity 300, that is, greater than the maximum inflation pressure value of the air bag 800.
  • the pressure is maintained without actively opening
  • the air pressure values in the air bag 800 and the three-way cavity 300 will remain stable, ultimately achieving the effect of pre-charging and maintaining pressure.
  • the second embodiment of the air pressure adjustment device is shown in Figure 1, Figure 2, Figure 5, Figure 6, Figure 9 and Figure 10. It is controlled by an external air source.
  • the pressure-maintaining channel 200 is inflated and pressure-maintained through the pressure-maintaining channel air inlet 210.
  • the pressure-maintaining channel air inlet 210 is used as a gas inlet, so the pressure-maintaining channel air inlet 210 needs to be opened and connected to an external air source. Connected.
  • the external air source inflates the pressure maintaining channel 200 through the air inlet 210 of the pressure maintaining channel.
  • the air pressure in the pressure maintaining channel 200 continues to increase.
  • the one-way valve 320 Since the one-way valve 320 is opened in the direction Due to the restriction, the gas can only flow from the direction of the three-way cavity 300 through the one-way valve 320 to the direction of the pressure maintaining channel 200 but cannot flow from the direction of the pressure maintaining channel 200 through the one-way valve 320 to the direction of the three-way cavity 300, then the one-way The valve 320 is closed by the high-pressure gas pressure, and the air pressure in the pressure-maintaining channel 200 continues to rise until it reaches the preset air pressure value, and then the pressure-maintaining channel air inlet 210 is closed. The high-pressure gas in the pressure-maintaining channel 200 cannot be discharged and remains stable.
  • the one-way valve 320 can be opened. As long as the pressure value in the pressure maintaining channel 200 is set to be greater than three The maximum air pressure value in the cavity 300. After the three-way cavity 300 and the air bag 800 are connected through the air bag connecting pipe 400 and the three-way cavity 300 is closed, the pressure maintaining channel 200 is not actively opened for exhaust and pressure relief. , the air pressure values in the air bag 800 and the three-way cavity 300 will remain stable, and ultimately achieve the effect of pre-charging and maintaining pressure.
  • both the flow guide chamber 310 and the first exhaust channel 220 in the present invention can be opened and closed.
  • the opening and closing of the flow guide cavity 310 and the first exhaust channel 220 are controlled by solenoid valves.
  • the opening and closing of the guide chamber 310 is controlled by the air chamber solenoid valve 500
  • the opening and closing of the first exhaust channel 220 is controlled by the first exhaust solenoid valve 230; the number of the air chamber solenoid valves 500 is consistent with that of the guide chamber 310
  • the air chamber solenoid valve 500 and the first exhaust solenoid valve 230 are both installed on the base 100 .
  • the base 100 used in the air pressure adjustment device of the present invention includes a lower seat 110 and a middle frame 120 .
  • the lower seat 110 is a fixed part of the air chamber solenoid valve 500 and the first exhaust solenoid valve 230 .
  • a plurality of three-way cavities 300 are arranged at intervals along the length direction of the lower seat 110 and are arranged inside the lower seat 110 .
  • the middle frame 120 can be detachably fixed on the top of the lower base 110.
  • the assembly between the middle frame 120 and the lower base 110 can be achieved through various existing connection methods such as fastener connection and buckle structure connection.
  • a plurality of flow guide cavities 310 are arranged at intervals along the length direction of the middle frame 120 and are arranged inside the middle frame 120.
  • the flow guide cavities 310 are located above the corresponding tee cavity 300 and It is connected with the corresponding three-way cavity 300 .
  • the three-way cavity 300 in the present invention can be used to install the air cavity solenoid valve 500.
  • the top of the valve seat of the air cavity solenoid valve 500 is fixed in the corresponding three-way cavity 300, and the piston end of the air cavity solenoid valve 500 is fixed in the corresponding three-way cavity 300. Passing through the corresponding three-way cavity 300 and extending into the upper guide chamber 310, the air chamber solenoid valve 500 opens and closes the guide chamber 310 by lifting the piston end.
  • the size of the piston end of the air chamber solenoid valve 500 is larger than When the piston end of the air chamber solenoid valve 500 drops to the connection point between the guide chamber 310 and the three-way cavity 300, the guide chamber 310 and the three-way cavity 300 can be connected.
  • the three-way cavity 300 is isolated, and gas cannot flow between the flow guide cavity 310 and the three-way cavity 300 .
  • an inlet and exhaust channel 130 is also provided inside the middle frame 120.
  • the inlet and exhaust channel 130 is used to realize the communication between the air guide cavity 310 and the airbag connecting pipe 400.
  • the intake and exhaust channel 130 has a one-to-one correspondence with the air guide cavity 310.
  • the airbag connecting pipe 400 is fixed on the top surface of the middle frame 120, The bottom of the airbag connecting pipe 400 extends into the middle frame 120 and communicates with the corresponding intake and exhaust passages 130 .
  • the air bag connecting pipe 400 is used to connect the air pressure adjustment device to the air bag 800 in the air pressure massager.
  • a conical pipe can be used as the air bag connecting pipe 400, and the air bag connection is limited If the outer diameter of one end of the pipe 400 connected to the air inlet and exhaust passage 130 is larger than the outer diameter of the other end, the airbag connecting pipe 400 and the airbag 800 can be quickly and conveniently connected by snapping.
  • the number of one-way valves is consistent with that of the air bags, and the one-way valves are arranged at the connection between the flow guide chamber 310 and the inflation channel 180 to limit the opening of the one-way valve from the inflation channel 180 to the direction of the flow guide cavity 310 .
  • the high-pressure gas introduced into the inflation channel 180 from an external air source flushes the one-way valve and sequentially passes through the flow guide chamber 310, the intake and exhaust channels 130 and the airbag connecting pipe 400 to the corresponding airbag 800.
  • the one-way valve between the diversion chamber 310 and the inflation channel 180 automatically closes due to the pressure balance on both sides. After the one-way valve closes Since the pressure in the airbag 800 is relatively high, as long as the pressure in the inflation channel 180 no longer increases, the one-way valve between the flow guide chamber 310 and the inflation channel 180 will not open, thereby keeping the pressure in the airbag 800 stable.
  • the first air chamber solenoid valve 501 is opened, and the high-pressure gas from the inflation channel 180 opens the one-way valve in the first guide chamber 311 to inflate the first air bag 801.
  • the gas pressure of the first air bag 801 is higher than the gas pressure in the inflation channel 180, and the one-way valve in the first diversion chamber 311 is closed; then the second air bag 802 is inflated, and the second air chamber solenoid valve 502 is opened, and the high-pressure gas from the inflation channel 180 opens the one-way valve in the second guide chamber 312 to inflate the second air bag 802; since the one-way valve in the first guide chamber 311 can only conduct one-way, The high-pressure gas in the first air bag 801 will not open the one-way valve in the first guide chamber 311 and flow back into the inflation channel 180 , and the gas in the first air bag 801 will not flow into the second air bag 802 .
  • the communication between the three-way cavity 300 and the pressure maintaining channel 200 in the present invention is achieved by relying on the exhaust channel 140 provided in the lower seat 110.
  • the exhaust channel 140 and the three-way The cavity 300 has a one-to-one correspondence, the exhaust channel 140 is provided between the corresponding three-way cavity 300 and the pressure maintaining channel 200, and the one-way valve 32 is provided at the connection between the exhaust channel 140 and the pressure maintaining channel 200.
  • the one-way valve 320 opens from the exhaust channel 140 to the direction of the pressure maintaining channel 200, that is, the gas can flow from the exhaust channel 140 to the pressure maintaining channel 200 through the one-way valve 320 but cannot pass from the pressure maintaining channel 200.
  • the one-way valve 320 directs the flow toward the exhaust passage 140 .
  • the base body 100 also includes a one-way valve fixing plate 160.
  • the one-way valve fixing plate 160 can be detachably connected to the side of the lower seat 110 through fastener connection or buckle structure connection. There are multiple screws fixed on the one-way valve fixing plate 160.
  • a plurality of second installation half-cavities 162 corresponding to the first installation half-cavities 161 are fixed on the side of the lower seat 110.
  • the second installation half-cavities 162 are connected to the lower part through the exhaust channel 140.
  • the corresponding three-way cavities 300 in the seat 110 are connected.
  • the one-way valve fixing plate 160 is assembled with the lower seat 110 , the first installation half-cavity 161 and the second installation half-cavity 162 are butted together to form a cavity for accommodating the one-way valve 320 .
  • the one-way valve 320 adopts a single-piece wafer check valve, and the one-way valve 320 is opened by the pressure of the gas on the one-way valve 320 to realize the opening of the one-way valve 320 .
  • the pressure maintaining channel 200 in the present invention is assembled and formed by the sealing side cover plate 170 and the one-way valve fixing plate 160 provided on the base body 100. As shown in Figures 2, 3, 5 and 6, the one-way valve is fixed on The plate 160 is provided with a pressure-maintaining channel groove 163 extending along the length direction of the one-way valve fixed plate 160. The pressure-maintaining channel groove 163 is connected with each first installation half cavity 161 on the one-way valve fixed plate 160, and seals the side cover plate.
  • the inflation channel and the exhaust channel of the air bag 800 are integrated into the air pressure adjustment device.
  • the base body 100 is provided with an air passage 180 and a second exhaust cavity 190.
  • the air passage 180 is provided with an air inlet, and the air inlet is The port is used to communicate with the air source for inflation; the air channel 180 is connected to the flow guide chamber 310 of each three-way cavity 300, and the second exhaust cavity 190 is connected to the air channel 180.
  • the part 190 that is not connected with the air passage 180 is also connected with a second exhaust channel 191 .
  • the second exhaust cavity 190 can be opened and closed.
  • the second exhaust cavity 190 is connected with the air channel 180, and the gas in the air bag 800 can enter the second exhaust cavity through the air channel 180.
  • the air passage 180 can be used as an exhaust channel when the second exhaust cavity 190 is closed.
  • the exhaust cavity 190 is isolated from the air channel 180, and the gas in the air channel 180 cannot enter the second exhaust cavity 190.
  • the air channel 180 can only be used as an inflation channel.
  • the second exhaust solenoid valve 192 is used in the present invention to control the opening and closing of the second exhaust chamber 190.
  • the second exhaust solenoid valve 192 is used to control the opening and closing of the second exhaust chamber 190.
  • the solenoid valve 192 is fixed at the bottom of the lower seat 110 and the piston end of the second exhaust solenoid valve 192 extends into the second exhaust cavity 190 .
  • the second exhaust solenoid valve 192 opens and closes the second exhaust cavity 190 by lifting the piston end.
  • the size of the piston end of the second exhaust solenoid valve 192 is larger than that of the second exhaust cavity 190 and the air passage 180 .
  • the second exhaust cavity 190 and the air channel 180 can be connected. Isolation, second exhaust The cavity 190 is closed. At this time, no gas can flow between the second exhaust cavity 190 and the air passage 180; when the piston end of the second exhaust solenoid valve 192 descends, the piston end of the second exhaust solenoid valve 192 The second exhaust chamber 190 is no longer isolated from the air path channel 180. The second exhaust chamber 190 is opened. At this time, the gas in the air path channel 180 can enter the second exhaust chamber 190 and pass through the second exhaust chamber 190. The second exhaust channel 191 discharges.
  • the air channel 180 in the present invention is assembled by an upper cover 150 and a middle frame 120 arranged on the base 100 .
  • One side of the upper cover 150 is provided with a gasket along the upper cover 150
  • the air passage groove extending in the length direction faces and connects the side of the upper cover 150 with the air passage groove and the top surface of the middle frame 120 so that the air passage groove is connected with the second exhaust cavity 190 and each flow guide.
  • the cavities 310 are connected, and the middle frame 120 completely covers and seals the air passage groove on the upper cover 150 . Then the side of the middle frame 120 and the upper cover 150 seals with the air passage groove to form the air passage 180 .
  • the airbag connecting pipe 400 is fixed on the top surface of the middle frame 120, and a relief hole 151 can be opened on the upper cover 150 to make way for the airbag connecting pipe 400.
  • the relief hole 151 corresponds to the airbag connecting pipe 400 one-to-one, and the airbag connecting pipe 400 passes through the corresponding relief hole 151 on the upper cover 150 .
  • a base extension part 600 is extended from one end of the base 100 to provide a pressure maintaining channel air inlet 210, a first exhaust channel 220 and a first exhaust solenoid valve 230.
  • the base extension part 600 is composed of an upper cover extension part 610, a middle frame extension part 620 and a lower seat extension part 630.
  • the middle frame extension part 620 is detachably connected to the upper cover extension part through fastener connection or snap structure connection. 610 and the lower seat extension 630.
  • the pressure-maintaining channel air inlet 210 is provided in the upper cover extension 610, and the middle frame extension 620 is provided with a first exhaust cavity 631 that is simultaneously connected to the pressure-maintaining channel air inlet 210 and the first exhaust channel 220.
  • the first exhaust cavity 631 is formed by extending the pressure maintaining channel 200 to the inside of the middle frame extension 620 .
  • the first exhaust solenoid valve 230 is used to control the opening and closing of the first exhaust channel 220.
  • the first exhaust solenoid valve 230 is fixed at the bottom of the lower seat extension 630 and the piston end of the first exhaust solenoid valve 230 extends into the first exhaust cavity 631.
  • the first exhaust solenoid valve 230 can open and close the first exhaust channel 220 by lifting the piston end; the first exhaust solenoid valve 230 The size of the piston end is larger than the diameter of the connection between the first exhaust channel 220 and the first exhaust cavity 631.
  • the piston end of the first exhaust solenoid valve 230 descends to the first exhaust channel 220 and the first exhaust cavity, 631, the first exhaust channel 220 can be isolated from the first exhaust cavity 631, and the first exhaust channel 220 is closed. At this time, the pressure maintaining channel 200 connected to the first exhaust cavity 631 is connected to the first exhaust cavity 631.
  • the gas in the pressure maintaining channel 200 cannot be discharged through the first exhaust channel 220; when the piston end of the first exhaust solenoid valve 230 rises, the first exhaust channel 220 and the first exhaust channel 220 The connection point of the exhaust cavity 631 is no longer closed by the piston end of the first exhaust solenoid valve 230, and the first exhaust channel 220 is opened. At this time, the gas in the pressure maintaining channel 200 can enter through the first exhaust cavity 631. in the first exhaust channel 220 and can be discharged through the first exhaust channel 220 .
  • the pressure-maintaining channel air inlet 210 in the present invention can be opened and closed.
  • the pressure-maintaining channel air inlet 210 is in a normally closed state
  • the third embodiment of the air pressure adjustment device is in a normally closed state.
  • Air intake of the pressure maintaining channel in the two embodiments The port 210 needs to be opened to communicate with the external air source when inflating and maintaining pressure, and remains closed during the pressure maintaining process after inflation is completed; specifically, in the second embodiment of the air pressure adjustment device, the port 210 needs to be installed in the pressure maintaining channel.
  • the air intake check valve 240 in the air inlet 210 realizes the automatic opening and closing of the pressure maintaining channel air inlet 210.
  • the air intake check valve 240 controls the opening and closing of the pressure maintaining channel air inlet 210.
  • the air intake check valve 240 It is opened from the outside of the pressure maintaining channel air inlet 210 toward the first exhaust cavity 631 .
  • the gas can be connected from the pressure maintaining channel air inlet 210 to the gas source.
  • side enters the first exhaust chamber 631 through the air inlet check valve 240.
  • the air pressure in the pressure maintaining channel 200 continues to increase, when the air pressure value inside the pressure maintaining channel 200 reaches the set value, the air source is closed to stop air supply.
  • the intake check valve 240 automatically closes under the internal pressure of the pressure maintaining channel 200 to close the air inlet 210 of the pressure maintaining channel, and then cooperates with the joint action of the check valve 320 and the first exhaust solenoid valve 230, that is,
  • the pressure-maintaining channel 200 can be completely sealed, and the air pressure in the pressure-maintaining channel 200 can be maintained unchanged, thereby achieving the pressure-maintaining effect.
  • the base extension part 600 can adopt an integrated structure with the base body 100 to simplify the overall structure of the air pressure adjustment device and reduce the occupied space. That is, the upper cover extension part 610 and the upper cover 150 are integrated structures, and the middle frame extension part 620 is integrated with the middle frame 120 structure, the lower seat extension 630 and the lower seat 110 are an integral structure.
  • the first exhaust solenoid valve 230, the second exhaust solenoid valve 192 and the air chamber solenoid valve 500 all adopt normally closed solenoid valves.
  • the solenoid valve is open when the power is on and is closed when the power is off. state, so that the gas in all air bags and channels can be discharged when the power is cut off, and the power consumption of the solenoid valve can be effectively reduced, achieving the effect of energy saving.
  • sealing caps can be provided on the piston ends of the first exhaust solenoid valve 230, the second exhaust solenoid valve 192 and the air chamber solenoid valve 500.
  • the sealing caps are Using a silicone sealing cap with good elasticity is the best choice.
  • the present invention also discloses an air pressure massager including the above air pressure adjustment device.
  • the air pressure massager includes an air source 700 and a plurality of air bags 800.
  • the air bags 800 can be inflated through the air source 700 to make the air bags 800 swell.
  • the base 100 of the air pressure adjustment device can be directly installed on the original control component of the air pressure massager, thereby integrating the air pressure adjustment device, the control component and the air source 700 together.
  • the air bag 800 on the air pressure massager corresponds one-to-one with the three-way cavity 300 in the air pressure adjustment device.
  • the air bag 800 is connected to the corresponding air bag connecting pipe 400.
  • the pipe 810 serves as a relay pipe between the air bag 800 and the air bag connecting pipe 400.
  • the best choice is to use a connecting hose for the connecting pipe 810.
  • the connecting hose can be bent during assembly to reduce the space occupied.
  • the air source 700 communicates with the pressure maintaining channel air inlet 210 through the first inflation channel 710 , and the air source 700 passes through the second inflation channel 720 It is connected with the air inlet of the air channel 180 to realize the communication between the air source 700 and the flow guide chamber 310 of each three-way cavity 300 in the air pressure adjustment device; in the first embodiment of the air pressure adjustment device 7 and 8 , the air source 700 only passes through the second inflation channel 720 It is connected with the air inlet of the air channel 180 to realize the communication between the air source 700 and the flow guide chamber 310 of each three-way cavity 300 in the air pressure adjustment device.
  • the pressure maintaining channel 200 is not The air needs to be supplied directly from the air source 700, so the air inlet 210 of the pressure maintaining channel is closed, and there is no need to directly provide a communication structure between the air source 700 and the air inlet 210 of the pressure maintaining channel.
  • the air source 700 generally uses a commonly used air pump, and the number of the air sources 700 can be two.
  • the first inflation channel 710 and the second inflation channel 720 are respectively connected to the two air sources 700 .
  • only one air source 700 can be used.
  • a tee joint 730 is used to realize that the air source 700 communicates with the first inflation channel 710 and the second inflation channel 720 at the same time.
  • the connection means that the inlet end of the three-way joint 730 is connected to the outlet end of the air source 700, and the two outlet ends of the three-way joint 730 are respectively connected with the inlet end of the first inflation channel 710 and the inlet end of the second inflation channel 720.
  • a pressure sensor 740 is provided on the pipeline between the air source 700 and the air pressure massager.
  • the pressure sensor 740 is electrically connected to the control component of the air pressure massager.
  • the pressure sensor 740 can transmit the monitored air pressure value data to the air pressure massager. Control components.
  • the air pressure massager is provided with five air bags 800.
  • the air bags 800 include a first air bag 801, a second air bag 802, a third air bag 803, a fourth air bag 804 and a fifth air bag 805; correspondingly, the three-way cavity 300,
  • the number of the flow guide chamber 310, the one-way valve 320, the air bag connecting pipe 400 and the air chamber solenoid valve 500 is five.
  • the three-way cavity 300 includes a first three-way cavity 301, a second three-way cavity 302, a third three-way cavity 303, a fourth three-way cavity 304 and a fifth three-way cavity 305;
  • a flow guide cavity 310 includes a first guide chamber 311, a second guide chamber 312, a third guide chamber 313, a fourth guide chamber 314 and a fifth guide chamber 315;
  • the one-way valve 320 includes a first one-way valve 321, a third guide chamber 313, a fourth guide chamber 314 and a fifth guide chamber 315.
  • the airbag connection pipe 400 includes a first airbag connection pipe 401, a second airbag connection pipe 402, and a third airbag connection pipe.
  • the air chamber solenoid valve 500 includes a first air chamber solenoid valve 501, a second air chamber solenoid valve 502, a third air chamber solenoid valve 503, a fourth air bag solenoid valve 503 and a fourth air bag solenoid valve 502.
  • the air pressure massager equipped with an air pressure adjustment device can realize the functions of pre-charging and maintaining pressure, pressure maintaining massage, pressure equalization and pressure regulation, and automatic pressure release when power is turned off; due to the inflation methods of the pressure maintaining channel 200 in the two embodiments of the air pressure adjustment device are different, so there are differences in the process of pre-charging and maintaining pressure, while the processes of pressure-maintaining massage, pressure equalization and pressure regulation, and automatic pressure release after power outage are the same.
  • the specific function description is as follows:
  • the first air chamber solenoid valve 501 and the first exhaust solenoid valve 220 are powered on and open, the second air chamber solenoid valve 502, the third air chamber solenoid valve 503, and the fourth air chamber solenoid valve 504 , the fifth air chamber solenoid valve 505 and the second exhaust The solenoid valves 192 are both powered off and closed.
  • the air source 700 starts the air source 700 to inflate the air channel 180 through the second inflation channel 720.
  • the air channel 180 is connected to the first guide chamber 311, and the first guide chamber 311 is isolated from the first three-way cavity 301.
  • the gas It can only enter the first flow guide cavity 311 and enter the first airbag 801 through the first airbag connecting pipe 401 .
  • the air source 700 is turned off and the first air chamber solenoid valve 501 is powered off and closed, so that the first guide chamber 311 is isolated from the air channel 180 and separated from the first air bag 801.
  • a three-way cavity 301 is connected.
  • the high-pressure gas in the first air bag 801 flows into the first three-way cavity 310 and opens the first one-way valve 321 to enter the pressure maintaining channel 200.
  • the first air chamber solenoid valve 501 is re-energized to open, and the first diversion chamber 311 is isolated from the first three-way chamber 301 again, and the high-pressure gas in the pressure-maintaining channel 200 is
  • the first one-way valve 321 is pressed closed, and the pressure maintaining channel 200 forms a sealed channel that maintains the air pressure value Pa.
  • the first one-way valve 321, the second one-way valve 322, the third one-way valve 323, the fourth one-way valve 324, and the fifth one-way valve 325 are all in a closed state, while maintaining When the air pressure value in the pressure channel 200 reaches the preset Pa, as long as the maximum inflation pressure value Pb set by the air bag 800 is less than the air pressure value Pa in the pressure maintaining channel 200, each one-way valve 320 can continue to remain closed through the pressure difference.
  • the gas in the inflated air bag can be prevented from flowing back when the solenoid valves 500 of each air chamber are de-energized, thus preventing the occurrence of gas cross-flow and reducing the energy consumption of each solenoid valve. .
  • the first air chamber solenoid valve 501, the second air chamber solenoid valve 502, the third air chamber solenoid valve 503, the fourth air chamber solenoid valve 504, the fifth air chamber solenoid valve 505 and the The two exhaust solenoid valves 192 are both in a power-off and closed state.
  • the first flow guide chamber 311, the second flow guide cavity 312, the third flow guide cavity 313, the fourth flow guide cavity 314, and the fifth flow guide cavity 315 and the second exhaust chamber 190 are isolated from the air passage 180 .
  • the air source 700 supplies air into the air pressure adjustment device through the first inflation channel 710. Since the first exhaust solenoid valve 230 is in an open state, the first exhaust cavity 631 is connected to the air inlet 210 of the pressure maintaining channel and at the same time is connected to the first row. The gas channel 220 is isolated, and the gas can rush through the intake check valve 240 and enter the first exhaust cavity 631, and then enter the pressure maintaining channel 200. Then the gas rushes to each one-way valve 320 respectively, and each one-way valve 320 is closed under pressure.
  • the pressure-maintaining channel 200 and each three-way cavity 300 are isolated by the one-way valve 320 and cannot carry out gas circulation.
  • the gas is in the pressure-maintaining channel 200
  • the pressure sensor 740 monitors that the air pressure in the pressure maintaining channel 200 rises to the preset pressure value Pa
  • the air source 700 stops supplying air; at this time, there is a pressure difference on both sides of the intake check valve 240.
  • the air inlet check valve 240 is closed under pressure, the entire pressure maintaining channel 200 is closed, and the air pressure value in the pressure maintaining channel 200 remains Pa unchanged.
  • the first one-way valve 321, the second one-way valve 322, the third one-way valve 323, the fourth one-way valve 324, and the fifth one-way valve 325 are all closed, and at the same time, the pressure maintaining channel 200
  • the air pressure value in the airbag 800 reaches the preset Pa.
  • the maximum inflation pressure value Pb set in the airbag 800 is less than the air pressure value Pa in the pressure maintaining channel 200
  • each one-way valve 320 can be continuously kept closed through the pressure difference, and the airbag is subsequently inflated.
  • the gas in the inflated air bag can be prevented from flowing back when the solenoid valves 500 of each air chamber are de-energized, thus preventing the occurrence of gas cross-flow and reducing the energy consumption of each solenoid valve.
  • the first exhaust solenoid valve 230 is energized to remain open so that the air pressure adjustment device maintains the pressure maintaining state.
  • the first air chamber solenoid valve 501 is energized to open, and the second air chamber solenoid valve 502 and the third air chamber solenoid valve 502 are energized to open.
  • the air chamber solenoid valve 503, the fourth air chamber solenoid valve 504, the fifth air chamber solenoid valve 505 and the second exhaust solenoid valve 192 remain in a power-off and closed state.
  • the starting air source 700 supplies air into the air path channel 180 through the second inflation channel 720, and the air enters the first flow guide chamber 311.
  • the first air chamber solenoid valve 501 Since the first air chamber solenoid valve 501 is in an open state, the first flow guide chamber 311 and the first three-way cavity 301 are isolated and cannot circulate gas, and the gas can only be connected through the first air bag connected to the first flow guide chamber 311
  • the duct 401 enters the first air bag 801.
  • the pressure sensor 740 monitors that the air pressure value Pb1 in the first guide chamber 311 reaches the maximum inflation pressure value Pb of the air bag
  • the air source 700 stops inflating
  • the first air chamber solenoid valve 501 is powered off and closed, and the first guide chamber 311 Isolated from the air channel 180, the first air bag connecting pipe 401 is connected to the first three-way cavity 301 through the first guide chamber 311.
  • the air pressure value Pa in the pressure maintaining channel 200 is greater than the air pressure in the first guide chamber 311 At the value Pb1, the first one-way valve 321 cannot be flushed open, and the gas in the first air bag 801 cannot flow, thus maintaining the pressure of the first air bag 801.
  • the second air chamber solenoid valve 502 is powered on and the first air chamber solenoid valve 501, the third air chamber solenoid valve 503, the fourth air chamber solenoid valve 504, and the fifth air chamber solenoid valve 502 open.
  • the solenoid valve 505 and the second exhaust solenoid valve 192 remain powered off and closed.
  • the air source 700 is started to inflate the second air bag 802.
  • the air pressure value Pb2 in the second guide chamber 312 reaches the maximum inflation pressure value Pb of the air bag, the air source 700 stops inflating, and the air pressure adjustment device maintains the pressure of the second air bag 802.
  • the third air chamber solenoid valve 503 is powered on and the first air chamber solenoid valve 501, the second air chamber solenoid valve 502, the fourth air chamber solenoid valve 504, and the fifth air chamber solenoid valve 504 open.
  • the solenoid valve 505 and the second exhaust solenoid valve 192 remain powered off and closed.
  • the air source 700 is started to inflate the third air bag 803.
  • the air pressure value Pb3 in the third guide chamber 313 reaches the maximum inflation pressure value Pb of the air bag, the air source 700 stops inflating, and the air pressure adjustment device maintains the pressure of the third air bag 803.
  • the fourth air chamber solenoid valve 504 is powered on and the first air chamber solenoid valve 501, the second air chamber solenoid valve 502, the third air chamber solenoid valve 503, and the fifth air chamber solenoid valve 503 open.
  • the solenoid valve 505 and the second exhaust solenoid valve 192 remain powered off and closed.
  • the air source 700 is started to inflate the fourth air bag 804.
  • the air pressure value Pb4 in the fourth flow guide chamber 314 reaches the maximum inflation pressure value Pb of the air bag, the air source 700 stops inflating, and the air pressure adjustment device maintains the pressure of the fourth air bag 804.
  • the fifth air chamber solenoid valve 505 is powered on and the first air chamber solenoid valve 501 and The second air chamber solenoid valve 502, the third air chamber solenoid valve 503, the fourth air chamber solenoid valve 504 and the second exhaust solenoid valve 192 remain in the power-off and closed state.
  • the air source 700 is started to inflate the fifth air bag 805.
  • the air pressure value Pb5 in the fifth flow guide chamber 315 reaches the maximum inflation pressure value Pb of the air bag, the air source 700 stops inflating, and the air pressure adjustment device maintains the pressure of the fifth air bag 805.
  • all air bags 800 When all air bags 800 are inflated, all air chamber solenoid valves 500 are powered off and closed, and the power consumption of the solenoid valves is reduced to a minimum. After the inflation is completed, the air bag 800 can be used to press and massage the limbs and muscle tissue.
  • each air bag 800 can have different expansion degrees, and can press different massage parts with different strengths, thereby bringing a better massage experience to the user.
  • the first exhaust solenoid valve 230 is energized and remains open so that the air pressure adjustment device maintains the pressure maintaining state, and the air source 700 stops inflating.
  • the first air chamber solenoid valve 501 and the second exhaust solenoid valve 192 are energized to open, and the second air chamber solenoid valve 502, the third air chamber solenoid valve 503, the fourth air chamber solenoid valve 504 and the fifth air chamber solenoid valve 505 remain Power off state.
  • the first air chamber solenoid valve 501 since the first air chamber solenoid valve 501 is in an open state, the gas in the first air bag 801 can enter the first guide chamber 311 through the first air bag connecting pipe 401.
  • the through cavity 301 is isolated, but the first flow guide chamber 311 is connected to the gas path channel 180 , and the gas entering the first flow guide cavity 311 can only enter the gas path channel 180 .
  • gas flows in the gas channel 180, since all the gas chamber solenoid valves 500 except the first gas chamber solenoid valve 501 are in a power-off and closed state, and the second exhaust solenoid valve 192 is in a power-on and open state, gas cannot enter.
  • the other flow guide chambers 310 can only enter the second exhaust chamber 190 connected with the air channel 180, and can then be discharged through the second exhaust channel 191, and the air pressure in the first air bag 801 is reduced.
  • the second exhaust solenoid valve 192 is powered off and closed, and the gas in the first air bag 801 stops exhausting and releasing pressure.
  • the air pressure value in the first air bag 801 can be adjusted individually.
  • the first exhaust solenoid valve 230 is energized and remains open so that the air pressure adjustment device maintains the pressure maintaining state, and the air source 700 stops inflating.
  • the second air chamber solenoid valve 502 and the second exhaust solenoid valve 192 are energized to open, and the first air chamber solenoid valve 501, the third air chamber solenoid valve 503, the fourth air chamber solenoid valve 504 and the fifth air chamber solenoid valve 505 remain Power off state.
  • the gas in the second air bag 802 enters the second exhaust chamber 190 and is then discharged through the second exhaust channel 191, and the air pressure in the second air bag 802 decreases.
  • the second exhaust solenoid valve 192 is powered off and closed, and the gas in the second air bag 802 stops exhausting and releasing pressure. Through the above steps, the air pressure value in the second air bag 802 can be adjusted individually.
  • the first exhaust solenoid valve 230 is energized and remains open to maintain the pressure maintaining state of the air pressure adjustment device, and the air source 700 stops inflating.
  • the third air chamber solenoid valve 503 and the second exhaust solenoid valve 192 are powered on and opened.
  • the first air chamber solenoid valve 501, the second air chamber solenoid valve 502, the fourth air chamber solenoid valve 504 and the fifth air chamber solenoid valve 505 remain in the power-off and closed state.
  • the gas in the third air bag 803 enters the second exhaust chamber 190 and is then discharged through the second exhaust channel 191, and the air pressure in the third air bag 803 decreases.
  • the second exhaust solenoid valve 192 is powered off and closed, and the gas in the third air bag 803 stops exhausting and releasing pressure. Through the above steps, the air pressure value in the third air bag 803 can be adjusted individually.
  • the first exhaust solenoid valve 230 is energized and remains open so that the air pressure adjustment device maintains the pressure maintaining state, and the air source 700 stops inflating.
  • the fourth air chamber solenoid valve 504 and the second exhaust solenoid valve 192 are energized to open, and the first air chamber solenoid valve 501, the second air chamber solenoid valve 502, the third air chamber solenoid valve 503 and the fifth air chamber solenoid valve 505 remain Power off state.
  • the gas in the fourth air bag 804 enters the second exhaust chamber 190 and is then discharged through the second exhaust channel 191, and the air pressure in the fourth air bag 804 decreases.
  • the second exhaust solenoid valve 192 is powered off and closed, and the gas in the fourth air bag 804 stops exhausting and releasing pressure.
  • the air pressure value in the fourth air bag 804 can be adjusted individually.
  • the first exhaust solenoid valve 230 is energized and remains open so that the air pressure adjustment device maintains the pressure maintaining state, and the air source 700 stops inflating.
  • the fifth air chamber solenoid valve 505 and the second exhaust solenoid valve 192 are energized to open, and the first air chamber solenoid valve 501, the second air chamber solenoid valve 502, the third air chamber solenoid valve 503 and the fourth air chamber solenoid valve 504 remain Power off state.
  • the gas in the fifth airbag 805 enters the second exhaust chamber 190 and is then discharged through the second exhaust channel 191, and the air pressure in the fifth airbag 805 decreases.
  • the second exhaust solenoid valve 192 is powered off and closed, and the gas in the fifth air bag 805 stops exhausting and releasing pressure.
  • the air pressure value in the fifth air bag 805 can be adjusted individually.
  • all solenoid valves include the first air chamber solenoid valve 501, the second air chamber solenoid valve 502, the third air chamber solenoid valve 503, the fourth air chamber solenoid valve 504, and the fifth air chamber solenoid valve 504.
  • the solenoid valve 505, the first exhaust solenoid valve 230 and the second exhaust solenoid valve 192 are all powered off, and the air source 700 is also powered off to stop inflation.
  • the pressure maintaining channel 200 is connected to the first exhaust chamber 631, the pressure maintaining channel 200 is no longer closed, and the gas in the pressure maintaining channel 200 is discharged through the first exhaust channel 230, so the air pressure in the pressure maintaining channel 200 decreases.
  • each one-way valve 320 is flushed open, and the gas in each air bag 800 passes through the corresponding one-way valve 320 and enters the exhaust. In the air channel 200, it is finally discharged through the first exhaust channel 230, thereby achieving pressure relief for all air bags 800.
  • the power-off automatic pressure release function of the air pressure massager after the air pressure massager encounters a fault and is powered off, all air bags 800 will deflate and release pressure, thereby ensuring that the air bags 800 will not always squeeze the user's limbs, effectively improving the user's ability to use air pressure massage. time security.
  • the above four actions can be combined through different control logics.
  • the combination of pressure-maintaining massage, pressure equalization and pressure regulation can achieve multiple massage modes, achieving pressure equalization, adjustable single-chamber air pressure and low power consumption. Effect; the combination of pre-charged pressure-maintaining and pressure-maintaining massage can achieve the effect of maintaining pressure; through the combined use of the above four actions, the product use experience of the air pressure massager can be effectively improved, making the application of the air pressure massager more extensive and applicable The crowd is bigger.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Massaging Devices (AREA)

Abstract

一种气压调整装置、气压按摩仪及气压按摩仪的控制方法,气压调整装置包括基体(100),基体(100)内设有进气通道以及多个气腔,各个气腔上都连通有可开闭的进气腔体,进气腔体上连通有气囊连接管道(400),气腔未与进气腔体相连通处与进气通道连通;各个气腔与进气通道的连接处都设有单向阀(321、322、323、324、325),单向阀(321、322、323、324、325)从气腔指向进气通道的方向开启;进气通道上还连通有可开闭的进气通道进气口以及可开闭的第一排气通道(220)。通过气压调整装置对与气压调整装置上气囊连接管道(400)相连的气囊进行保压,可向气压调整装置的进气通道内充气使单向阀(321、322、323、324、325)内外两侧存在压力差,从而将与气囊连接管道(400)连通的进气腔体封闭,气囊内的气体无法流动而不会出现回流,实现了对气囊的保压。

Description

气压调整装置、气压按摩仪及气压按摩仪的控制方法 技术领域
本发明涉及按摩设备技术领域,尤其是一种气压调整装置、一种气压按摩仪以及一种气压按摩仪的控制方法。
背景技术
气压按摩仪是通过气囊的充放气动作来对人体肢体和肌肉组织进行按摩的设备。气压按摩仪通常都配备多个气囊,由气泵为各个气囊充气,各个气囊与充气通道以及放气通道之间设置有电磁阀来控制气路的开闭,电磁阀的开闭由气压按摩仪的控制系统进行控制。
现有的气压按摩仪在对多个气囊进行逐步充气时,已经完成充气工作的气囊中的高压气体会回流进正在进行充气的气囊中,使得已充气气囊和正在充气的气囊之间形成串气。串气现象的形成,不仅会降低已充气气囊内的气压,还会产生噪音;同时,由于已充气气囊内的气压降低,会提高气囊充放气的控制难度,降低气囊充放气的控制精度;显然,气压按摩仪出现串气现象会对气压按摩仪的按摩工作造成不利影响,最终会影响用户的按摩体验。并且,气囊充气每次都需要从没有预充力压力状态充气至设定压力,充气时间较长,导致同样时间内按摩循环次数降低,电力耗费严重。
发明内容
本发明旨在解决现有技术中气压按摩仪的气囊间存在串气且气囊充气时间较长的问题。
为解决上述技术问题本发明所采用的技术方案是:气压调整装置,包括基体,所述基体内设有保压通道以及多个三通腔体,各个三通腔体上都连通有可开闭的导流腔,导流腔上连通有气囊连接管道,三通腔体未与导流腔相连通的端口与保压通道连通;所述各个三通腔体与保压通道的连接处都设有单向阀,所述单向阀从三通腔体指向保压通道的方向开启;所述保压通道上还连通有可开闭的保压通道进气口以及可开闭的第一排气通道。
进一步的是:所述基体上设有第一排气电磁阀以及与三通腔体一一对应的气腔电磁阀;所述第一排气电磁阀控制第一排气通道的开闭,所述气腔电磁阀控制与相对应三通腔体相连通的导流腔的开闭。
进一步的是:所述基体包括中框和下座,多个三通腔体沿下座的长度方向间隔排布设置在下座内部,多个导流腔沿中框的长度方向间隔排布设置在中框内部,导流腔位于相对应三 通腔体的上方;气腔电磁阀固定在下座的底部,气腔电磁阀的活塞端穿过相对应的三通腔体并伸入上方的导流腔内,气腔电磁阀的活塞端与导流腔的各连通处形成密封配合;所述中框可拆卸连接在下座的顶部,中框上设有连通在导流腔和气囊连接管道之间的进排气通道。
进一步的是:所述下座内还设有与三通腔体一一对应的排气通道,所述排气通道连通在保压通道以及相对应的三通腔体之间;所述单向阀设置在排气通道与保压通道的连通处,单向阀从排气通道指向保压通道的方向开启。
进一步的是:所述气囊连接管道为竖立设置在中框上的圆锥形管道,气囊连接管道与进排气通道相连通一端的外径大于另一端的外径。
进一步的是:所述基体还包括单向阀固定板,所述单向阀固定板可拆卸连接在下座的侧面;所述单向阀固定板上设有与单向阀一一对应的第一安装半腔,所述下座上设有与单向阀一一对应的第二安装半腔,第二安装半腔与相对应的三通腔体连通,第一安装半腔和第二安装半腔对接组成容纳相对应单向阀的腔体。
进一步的是:所述基体还包括密封侧盖板,所述单向阀固定板上设有沿单向阀固定板长度方向延伸的保压通道槽,所述保压通道槽与各个第一安装半腔连通;所述密封侧盖板可拆卸连接在单向阀固定板未与下座相连接的一面上,密封侧盖板将保压通道槽覆盖且与保压通道槽密封配合形成保压通道。
进一步的是:所述基体上还设有气路通道和可开闭的第二排气腔体;所述气路通道上设有气路通道进气口,气路通道与各个三通腔体的导流腔连通;所述第二排气腔体与气路通道连通,第二排气腔体未与气路通道相连通处连通有第二排气通道。
进一步的是:还包括第二排气电磁阀,所述第二排气电磁阀控制第二排气腔体的开闭;所述第二排气电磁阀固定在下座的底部,第二排气电磁阀的活塞端伸入第二排气腔体内并与第二排气腔体的各连通处形成密封配合。
进一步的是:所述基体还包括上盖,所述上盖的其中一面上设有沿上盖长度方向延伸的气路通道槽,上盖可拆卸连接在中框上且气路通道槽与第二排气腔体以及各个三通腔体的导流腔连通,中框与上盖相接的一面与气路通道槽密封配合形成气路通道。
进一步的是:所述上盖上还设有与气囊连接管道一一对应的让位孔,所述气囊连接管道从上盖上相对应的让位孔中穿过。
进一步的是:所述基体还包括基体延伸部,所述基体延伸部包括中框延伸部和下座延伸部,中框延伸部可拆卸连接在下座延伸部上,基体延伸部固定在基体的其中一端端头;所述第一排气通道设置在下座延伸部上,中框延伸部内设有同时与保压通道以及第一排气通道连通的第一排气腔体,第一排气腔体由保压通道延伸至中框延伸部内部形成。
进一步的是:所述第一排气电磁阀固定在下座延伸部的底部,第一排气电磁阀的活塞端伸入第一排气腔体内并与第一排气腔体的各连通处形成密封配合。
进一步的是:所述基体延伸部还包括上盖延伸部,上盖延伸部可拆卸连接在中框延伸部上,所述保压通道进气口设置在上盖延伸部上,保压通道进气口与第一排气腔体连通。
进一步的是:还包括进气单向阀,所述进气单向阀设置在保压通道进气口处;所述进气单向阀控制保压通道进气口的开闭,进气单向阀从保压通道进气口外侧指向第一排气腔体的方向开启。
进一步的是:所述上盖延伸部与上盖为一体结构,所述中框延伸部与中框为一体结构,所述下座延伸部与下座为一体结构。
进一步的是:所述第一排气电磁阀、第二排气电磁阀和气腔电磁阀都为常闭电磁阀。
进一步的是:所述第一排气电磁阀、第二排气电磁阀和气腔电磁阀的活塞端端头都设置有密封帽。
进一步的是:所述密封帽为硅胶密封帽。
本发明还公开了一种气压按摩仪,包括气源以及多个与气源连通的气囊,还包括如上述内容所述的气压调整装置,所述气压调整装置上的三通腔体与气囊一一对应,各个气囊分别与气压调整装置相上对应的气囊连接管道连通;所述气源通过第二充气通道与气压调整装置中各个三通腔体的导流腔连通。
进一步的是:所述气源通过第一充气通道与保压通道进气口连通。
本发明还公开了上述气压按摩仪的控制方法,保压通道进气口为关闭状态时,由气囊向保压通道充气,通过对保压通道、三通腔体、导流腔进行选择性的开闭来实现气压按摩仪的预充保压、保压按摩、均压及调压和断电自动泄压中的一项动作或至少两项动作的组合;保压通道进气口为开启状态并与气源连通时,通过对保压通道、三通腔体、导流腔进行选择性的开闭来实现气压按摩仪的预充保压、保压按摩、均压及调压和断电自动泄压中的一项动作或至少两项动作的组合。
进一步的是:保压通道进气口为关闭状态时,所述预充保压动作中,由气源向任意气囊中充气,气囊在完成充气后,气囊中的气体冲开对应三通腔体中的单向阀并进入气保压通道中对保压通道充气,保压通道内升压将单向阀关闭使保压通道封闭以维持保压通道内气压不变;保压通道进气口为开启状态并与气源连通时,所述预充保压动作中,由气源直接向气压调整装置中的保压通道充气,保压通道内升压使保压通道封闭以维持保压通道内气压不变。
进一步的是:所述保压按摩动作中,先进行预充保压动作使保压通道保持封闭,由气源向各个气囊单独充气,通过保压通道维持各个气囊内气压不变。
进一步的是:所述均压及调压动作中,先进行预充保压动作使保压通道保持封闭,通过对已充气的气囊单独进行放气以分别改变各个气囊内的气压。
进一步的是:所述断电自动泄压动作中,保压通道在电磁阀全部断电后自动打开,各个气囊放气并通过保压通道进行排气。
本发明的有益效果是:
1、本发明通过气压调整装置对与气压调整装置上气囊连接管道相连的气囊进行保压,可通过气压按摩仪自身的气源直接向气压调整装置的保压通道内充气,或通过气压按摩仪自身的气源对气囊充气后利用气囊内的高压气体冲开保压通道与三通腔体之间的单向阀后向气压调整装置的保压通道内充气,以使单向阀内外两侧存在压力差,从而使单向阀保持关闭状态而将与气囊连接管道连通的导流腔封闭,气囊内的气体无法流动而不会出现回流,实现了对气囊的保压,从而解决了在气囊充气过程中已充气气囊与未充气气囊之间的串气问题,确保气囊充气工作的顺利进行,缩短了气囊充气时间;
2、本发明通过气腔电磁阀和单向阀的配合实现对气囊排气通道的封闭,通过向气压调整装置的保压通道内充气而使单向阀两侧产生压力差以保证单向阀处于关闭状态,只有在气腔电磁阀通电的状态下才能开启气囊的排气通道,从而实现了在气腔电磁阀断电关闭的状态下阻止气囊放气的效果,从而在对气囊进行保压的同时降低了电磁阀的电力耗费,起到良好的节能省电效果;
3、本发明通过设置进气单向阀来实现对气压调整装置内保压通道的自动关闭,利用向气压调整装置的保压通道内充气使进气单向阀的两侧产生压力差,从而使进气单向阀在其内侧保压通道内气压大于进气单向阀外侧气压时自动关闭将保压通道封闭,使保压通道内的气体无法排出而达到保压通道内部保压的效果,从而维持单向阀外侧气压保持不变,实现对气囊的持续保压;
4、本发明通过气腔电磁阀和单向阀的配合阻止气囊放气,在所有气囊充气完成后仍保证气囊内气压不变,从而避免了因气囊放气而必须进行再次充气的情况发生,有效节约了气囊的充气时长,同时降低了电力耗费;
5、本发明可通过对各个气腔电磁阀以及第二排气电磁阀的开闭进行控制以达到有选择性得对气囊进行定量充放气,从而可对各个气囊内的压力进行单独调节,气压按摩仪可根据按摩部位的不同来调节不同气囊具有不同的按摩压力,也可将不同气囊内的气压调节至一致,使得按摩工作具有更强的针对性,用户的按摩体验更好;
6、本发明中的电磁阀在断电后关闭,气压按摩仪在断电后可通过第一排气电磁阀和气腔电磁阀的断电关闭将气压调整装置的保压通道打开进行排气泄压,从而使得气囊内的气体能 够冲开单向阀进行排气,实现了在气压按摩仪断电后自动对所有气囊进行放气,避免了在断电后气压按摩仪的气囊一直挤压用户肢体的情况发生,消除了安全隐患,提供了按摩工作的安全性;
7、本发明通过解决在气囊充气过程中已充气气囊与未充气气囊之间的串气问题,避免了因串气而引发的噪音问题,能够为用户带来安静的按摩环境,有效提高了用户使用气压按摩仪时的按摩体验;
8、本发明通过对气囊进行保压,维持了已充气气囊内部的气压,使得气囊内部压力与预设压力保持一致,有效降低了气囊充放气的控制难度,从而提高了气囊充放气的控制精度,保证了气压按摩仪工作的稳定性。
附图说明
图1为本发明中气压调整装置的正面轴测图;
图2为本发明中气压调整装置的背面轴测图;
图3为本发明中气压调整装置第一种实施例的结构爆炸图;
图4为本发明中气压调整装置第一种实施例的结构纵向剖视图;
图5为本发明中气压调整装置第二种实施例的结构爆炸图;
图6为本发明中气压调整装置第二种实施例的结构纵向剖视图;
图7为本发明中气压按摩仪采用气压调整装置第一种实施例时未充气状态的剖视示意图;
图8为图7中气压调整装置的横向剖视图,其中A-A处为图7中A-A处的剖视图;
图9为本发明中气压按摩仪采用气压调整装置第二种实施例时未充气状态的剖视示意图;
图10为图9中气压调整装置的横向剖视图,其中A-A处为图9中A-A处的剖视图;
图11为图8中B-B的剖视图;
图12为本发明采用气压调整装置第一种实施例的气压按摩仪通过气源向第一气囊充气时的剖视示意图;
图13为图12中气压调整装置的横向剖视图,其中A-A处为图12中A-A处的剖视图;
图14为本发明采用气压调整装置第一种实施例的气压按摩仪通过已充气的第一气囊向气压调整装置内预充气进行保压的剖视示意图;
图15为图14中气压调整装置的横向剖视图,其中A-A处为图14中A-A处的剖视图;
图16为本发明采用气压调整装置第二种实施例的气压按摩仪通过气源向气压调整装置 内预充气进行保压时的剖视示意图;
图17为图16中气压调整装置的横向剖视图,其中A-A处为图16中A-A处的剖视图;
图18为本发明中气压按摩仪在保压状态下通过气源向第一气囊充气时的剖视示意图;
图19为图18中气压调整装置的横向剖视图,其中A-A处为图18中A-A处的剖视图;
图20为本发明中气压按摩仪在保压状态下通过气源向第二气囊充气时的剖视示意图;
图21为图20中气压调整装置的横向剖视图,其中A-A处为图20中A-A处的剖视图;
图22为本发明中气压按摩仪在保压状态下通过气源向第三气囊充气时的剖视示意图;
图23为图22中气压调整装置的横向剖视图,其中A-A处为图22中A-A处的剖视图;
图24为本发明中气压按摩仪在保压状态下通过气源向第四气囊充气时的剖视示意图;
图25为图24中气压调整装置的横向剖视图,其中A-A处为图24中A-A处的剖视图;
图26为本发明中气压按摩仪在保压状态下通过气源向第五气囊充气时的剖视示意图;
图27为图26中气压调整装置的横向剖视图,其中A-A处为图26中A-A处的剖视图;
图28为本发明中气压按摩仪对第一气囊进行排气调压时的剖视示意图;
图29为图28中气压调整装置的横向剖视图,其中A-A处为图28中A-A处的剖视图;
图30为本发明中气压按摩仪对第二气囊进行排气调压时的剖视示意图;
图31为图30中气压调整装置的横向剖视图,其中A-A处为图30中A-A处的剖视图;
图32为本发明中气压按摩仪对第三气囊进行排气调压时的剖视示意图;
图33为图32中气压调整装置的横向剖视图,其中A-A处为图32中A-A处的剖视图;
图34为本发明中气压按摩仪对第四气囊进行排气调压时的剖视示意图;
图35为图34中气压调整装置的横向剖视图,其中A-A处为图34中A-A处的剖视图;
图36为本发明中气压按摩仪对第五气囊进行排气调压时的剖视示意图;
图37为图36中气压调整装置的横向剖视图,其中A-A处为图36中A-A处的剖视图;
图38为本发明中气压按摩仪进行排气泄压时的剖视示意图;
图39为图38中气压调整装置的横向剖视图,其中A-A处为图38中A-A处的剖视图。
图中标记为:100-基体、110-下座、120-中框、130-进排气通道、140-排气通道、150-上盖、151-让位孔、160-单向阀固定板、161-第一安装半腔、162-第二安装半腔、163-保压通道槽、170-密封侧盖板、180-气路通道、190-第二排气腔体、191-第二排气通道、192-第二排气电磁阀、200-保压通道、210-保压通道进气口、220-第一排气通道、230-第一排气电磁阀、240-进气单向阀、300-三通腔体、310-导流腔、320-单向阀、400-气囊连接管道、500-气腔电磁阀、600-基体延伸部、610-上盖延伸部、620-中框延伸部、630-下座延伸部、631-第一排气腔体、700-气源、710-第一充气通道、720-第二充气通道、730-三通接头、740-压 力传感器、800-气囊、810-连接管;
301-第一三通腔体、302-第二三通腔体、303-第三三通腔体、304-第四三通腔体、305-
第五三通腔体;
311-第一导流腔、312-第二导流腔、313-第三导流腔、314-第四导流腔、315-第五导流
腔;
321-第一单向阀、322-第二单向阀、323-第三单向阀、324-第四单向阀、325-第五单向
阀;
401-第一气囊连接管道、402-第二气囊连接管道、403-第三气囊连接管道、404-第四气
囊连接管道、405-第五气囊连接管道;
501-第一气腔电磁阀、502-第二气腔电磁阀、503-第三气腔电磁阀、504-第四气腔电磁
阀、505-第五气腔电磁阀;
801-第一气囊、802-第二气囊、803-第三气囊、804-第四气囊、805-第五气囊;
910-气囊管道、920-气泵充气通道、930-气囊放气通道、940-电磁阀、941-第一电磁阀、
942-第二电磁阀、943-第三电磁阀、944-第四电磁阀、945-第五电磁阀。
具体实施方式
为了便于理解本发明,下面结合附图和实施例对本发明进行进一步的说明。
在本发明的描述中,需要说明的是,术语“前”、“后”、“左”、“右”、“上”、“下”、“内”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述,而不是指示或暗示所指的装置或部件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
如图1至图11所示,本发明所公开的气压调整装置的主体结构为基体100,在基体100内部设有保压通道200和三通腔体300。保压通道200可作为气压调整装置的气体通道,在保压通道200上设有保压通道进气口210和第一排气通道220,保压通道进气口210和第一排气通道220都可进行开闭;通过保压通道进气口210或三通腔体300可将气体输送至保压通道200内;通过第一排气通道220则可对保压通道200进行排气。在基体100内部设有与各个三通腔体300一一对应的导流腔310,导流腔310与相对应的三通腔体300连通,并且导流腔310再与固定在基体100上的气囊连接管道400连通,导流腔310同样可进行开闭;气囊连接管道400用于与气压按摩仪中的气囊连接或与其他带有类似气囊结构设备进行连接。三通腔体300上连接导流腔310和连接保压通道200的部位不同,以图11为例,保压通道200与三通腔体300的下部连通,则导流腔310与三通腔体300的上部连通。
本发明所公开的气压调整装置对气囊800进行保压的重要部件在于设置在各个三通腔体300与保压通道200连接处的单向阀320,同时限定单向阀320从三通腔体300指向保压通道200的方向开启。本发明通过气压调整装置实现保压的原理为:向气压调整装置的保压通道200内充气,保压通道200内的气压不断增加,由于单向阀320受到开启方向的限制,气体只能从三通腔体300方向通过单向阀320向保压通道200方向流动而不能从保压通道200方向通过单向阀320向三通腔体300方向流动,则单向阀320被高压气体顶压关闭,保压通道200内的气压不断上升,直至达到预设的气压值后将保压通道进气口210关闭,保压通道200内的高压气体不能排出而维持稳定的气压值;此时只有当三通腔体300内的气压值大于保压通道200内的气压值时,单向阀320才能打开,只要将保压通道200内的压力值设定为大于三通腔体300内的最大气压值,三通腔体300与气囊800通过气囊连接管道400连通后将三通腔体300关闭,则在不主动打开保压通道200进行排气泄压的情况下,气囊800和三通腔体300内的气压值会一直保持稳定,最终达到预充保压的效果。
本发明中气压调整装置根据对保压通道200采取不同的充气方式可采用以下两种不同的实施结构:
气压调整装置的第一种实施例如图1至图4、图7和图8所示,由气囊800通过三通腔体300对保压通道200进行充气,此实施例中保压通道进气口210不需要作为气体的进口使用,因此设置为常闭状态,为了简化结构可直接将保压通道进气口210封闭或直接将保压通道进气口210省略;在对保压通道200进行充气保压时,预先向其中一个或多个气囊800进行充气,在气囊800充气后停止气体输入,关闭对气囊800充气的通道并连通气囊800与相对应三通腔体300之间的通道,由于气囊800充气后气压增加,气囊800内的气体会向低压方向流动,则气囊800中的气体进入三通腔体300然后穿过单向阀320进入保压通道200中,由于单向阀320开启方向的限制,气体只能从三通腔体300方向通过单向阀320向保压通道200方向流动而不能从保压通道200方向通过单向阀320向三通腔体300方向流动,保压通道200内的气压不断增加,直至保压通道200中的气压达到预设的气压值后,单向阀320被保压通道200中的气体顶压关闭,保压通道200形成密封的通道,保压通道200内的高压气体不能排出而维持稳定的气压值;此时只有当三通腔体300内的气压值大于保压通道200内的气压值时,单向阀320才能打开,只要将保压通道200内的预设压力值设定为大于三通腔体300内的最大气压值即大于气囊800的最大充气气压值,三通腔体300与气囊800连通后,在不主动打开保压通道200进行排气泄压的情况下,气囊800和三通腔体300内的气压值会一直保持稳定,最终达到预充保压的效果。
气压调整装置的第二种实施例如图1、图2、图5、图6、图9和图10所示,由外接气源 通过保压通道进气口210对保压通道200进行充气保压,此实施例中保压通道进气口210作为气体的进口使用,因此保压通道进气口210需要打开并与外接气源连通。在对保压通道200进行充气保压时,由外接气源通过保压通道进气口210向保压通道200内充气,保压通道200内的气压不断增加,由于单向阀320受到开启方向的限制,气体只能从三通腔体300方向通过单向阀320向保压通道200方向流动而不能从保压通道200方向通过单向阀320向三通腔体300方向流动,则单向阀320被高压气体顶压关闭,保压通道200内的气压不断上升,直至达到预设的气压值后将保压通道进气口210关闭,保压通道200内的高压气体不能排出而维持稳定的气压值;此时只有当三通腔体300内的气压值大于保压通道200内的气压值时,单向阀320才能打开,只要将保压通道200内的压力值设定为大于三通腔体300内的最大气压值,三通腔体300与气囊800通过气囊连接管道400连通后将三通腔体300关闭,则在不主动打开保压通道200进行排气泄压的情况下,气囊800和三通腔体300内的气压值会一直保持稳定,最终达到预充保压的效果。
如上述内容所述,本发明中的导流腔310和第一排气通道220都可进行开闭,具体的,导流腔310和第一排气通道220的开闭都采用电磁阀进行控制,导流腔310的开闭由气腔电磁阀500控制,而第一排气通道220的开闭则由第一排气电磁阀230控制;气腔电磁阀500的数量与导流腔310一致且一一对应,气腔电磁阀500和第一排气电磁阀230都安装在基体100上。
如图1至图11所示,本发明中气压调整装置所采用的基体100包括下座110和中框120。下座110为气腔电磁阀500和第一排气电磁阀230的固定部位,多个三通腔体300沿下座110的长度方向间隔排布并设置在下座110内部。中框120可拆卸固定在下座110的顶部,中框120与下座110之间的装配可通过紧固件连接、卡扣结构连接等多种现有的连接方式实现。多个导流腔310则沿中框120的长度方向间隔排布并设置在中框120内部,下座110和中框120装配后,导流腔310位于相对应三通腔体300的上方并与相对应的三通腔体300连通。作为优选方案,本发明中三通腔体300可用于安装气腔电磁阀500,气腔电磁阀500的阀座顶部固定在相对应的三通腔体300内,气腔电磁阀500的活塞端穿过相对应的三通腔体300并伸入上方的导流腔310内,气腔电磁阀500通过活塞端的升降来实现对导流腔310的开闭,气腔电磁阀500活塞端的尺寸大于导流腔310与三通腔体300相连接处的孔径,则当气腔电磁阀500的活塞端下降至导流腔310与三通腔体300的相连处时即可将导流腔310与三通腔体300隔绝,导流腔310与三通腔体300之间不能进行气体流通。此外,在中框120内部还设有进排气通道130,进排气通道130用于实现导流腔310与气囊连接管道400的连通,进排气通道130与导流腔310为一一对应关系;气囊连接管道400固定在中框120的顶面上, 气囊连接管道400的底部伸入中框120内与相对应的进排气通道130连通。气囊连接管道400用于进行气压调整装置与气压按摩仪中气囊800的连接,为了便于实现气囊连接管道400与气囊800之间的连接,可采用圆锥形管道作为气囊连接管道400,并且限定气囊连接管道400与进排气通道130相连通一端的外径大于另一端的外径,则可通过卡插的方式快速、便捷的进行气囊连接管道400与气囊800的连接。
此外,在针对气囊充气过程中的串气问题时,也可通过单独在导流腔310中增加单向阀的方案来解决,利用单向阀来控制导流腔310与充气通道180之间的连通状态。具体的,采用数量与气囊一致的单向阀,将单向阀设置在导流腔310与充气通道180的连通处,限定单向阀从充气通道180指向导流腔310的方向开启。在对气囊进行充气时,由外接气源通入充气通道180中的高压气体冲开单向阀,依次通过导流腔310、进排气通道130和气囊连接管道400后向对应的气囊800进行充气;当气囊800中的压力达到或接近充气通道180中的压力值时,导流腔310与充气通道180之间的单向阀由于两侧压力变的平衡而自动关闭,单向阀关闭后由于气囊800中的压力较大,只要充气通道180中的压力不再增加,导流腔310与充气通道180之间的单向阀变不会打开,从而能够保持气囊800中的压力稳定。具体的,当需要对第一气囊801进行充气,第一气腔电磁阀501开启,来自充气通道180的高压气体顶开第一导流腔311中的单向阀,对第一气囊801进行充气,充气完成后第一气囊801气体压力高于充气通道180中的气体压力,反推第一导流腔311中的单向阀关闭;然后对第二气囊802进行充气,第二气腔电磁阀502开启,来自充气通道180的高压气体顶开第二导流腔312中的单向阀,对第二气囊802进行充气;由于第一导流腔311中的单向阀只能单向导通,第一气囊801中的高压气体不会顶开第一导流腔311中的单向阀而回流到充气通道180中,第一气囊801中的气体就不会串入第二气囊802内。同理,在分别对第三气囊803、第四气囊804以及第五气囊805进行充气时,只需打开相应的第三气腔电磁阀503,第四气腔电磁阀504以及第五气腔电磁阀505即可,已经充好气的第二气囊802、第三气囊803、第四气囊804所对应的单向阀会自行关闭,不会出现气囊间串气的问题。
如图2、图10和图11所示,本发明中三通腔体300与保压通道200之间的连通依靠设置在下座110内的排气通道140来实现,排气通道140与三通腔体300为一一对应关系,排气通道140设置在相对应的三通腔体300与保压通道200之间,而单向阀32则设置在排气通道140与保压通道200的连接处,单向阀320从排气通道140指向保压通道200的方向开启,即气体可从排气通道140方向通过单向阀320向保压通道200方向流动而不能从保压通道200方向通过单向阀320向排气通道140方向流动。
如图2、图3、图5和图6所示,为了实现单向阀320的安装,本发明中气压调整装置的 基体100还包括单向阀固定板160,单向阀固定板160可通过紧固件连接或卡扣结构连接等方式可拆卸连接在下座110的侧面,在单向阀固定板160上固定有多个第一安装半腔161,同时,在下座110的侧面上固定有多个于第一安装半腔161相对应的第二安装半腔162,第二安装半腔162通过排气通道140与下座110内相对应的三通腔体300连通。单向阀固定板160与下座110装配后,第一安装半腔161和第二安装半腔162对接组成容纳单向阀320的腔体。此处,单向阀320采用单片对夹式止回阀,通过气体对单向阀320的压力将单向阀320单向冲开以实现单向阀320的开启。
本发明中的保压通道200由设置在基体100上的密封侧盖板170和单向阀固定板160装配形成,如图2、图3、图5和图6所示,在单向阀固定板160上设有沿单向阀固定板160长度方向延伸的保压通道槽163,保压通道槽163与单向阀固定板160上的各个第一安装半腔161连通,将密封侧盖板170连接在单向阀固定板160未与下座110相连接的一面上并通过密封侧盖板170将保压通道槽163完全覆盖并密封,则保压通道槽163与密封侧盖板170配合形成了保压通道200。
将气压调整装置与气压按摩仪进行装配后,为了简化结构、节约所占用的空间,本发明中将气囊800的充气通道和排气通道都集成到气压调整装置上。如图4、图6至图10所示,在基体100上设有气路通道180和第二排气腔体190,气路通道180上设有气路通道进气口,气路通道进气口用于与气源连通进行充气;气路通道180与各个三通腔体300的导流腔310连通,且第二排气腔体190与气路通道180连通,在第二排气腔体190未与气路通道180相连通处还连通有第二排气通道191。第二排气腔体190可进行开闭,第二排气腔体190打开时,第二排气腔体190与气路通道180连通,气囊800中的气体可通过气路通道180进入第二排气腔体190中并通过第二排气通道191排出,从而实现对气囊800的放气,此时气路通道180可作为排气通道使用;第二排气腔体190关闭时,第二排气腔体190与气路通道180隔绝开,气路通道180中的气体无法进入第二排气腔体190中,此时气路通道180只能作为充气通道使用。本发明通过设置气路通道180、第二排气腔体190和第二排气通道191,可选择对单个气囊800进行放气,从而实现对单个气囊800内的气压进单独行调节。
如前述的导流腔310的开闭原理一样,本发明中采用第二排气电磁阀192来控制第二排气腔体190的开闭,如图3至图6所示,第二排气电磁阀192固定在下座110的底部且第二排气电磁阀192的活塞端伸入第二排气腔体190内。第二排气电磁阀192通过活塞端的升降来实现对进第二排气腔体190的开闭,第二排气电磁阀192活塞端的尺寸大于第二排气腔体190与气路通道180相连接处的孔径,则当第二排气电磁阀192的活塞端上升至第二排气腔体190与气路通道180相连接处时即可将第二排气腔体190与气路通道180隔绝,第二排气 腔体190关闭,此时第二排气腔体190与气路通道180之间不能进行气体流通;当第二排气电磁阀192的活塞端下降后,第二排气电磁阀192的活塞端不再将第二排气腔体190与气路通道180隔绝,第二排气腔体190打开,此时气路通道180中的气体能够进入第二排气腔体190中,并可通过第二排气通道191排出。
具体的,如图1至图11所示,本发明中的气路通道180由设置在基体100上的上盖150和中框120装配形成,上盖150的其中一面上设有沿上盖150长度方向延伸的气路通道槽,将上盖150设有气路通道槽的一面与中框120的顶面相对并进行连接,使气路通道槽与第二排气腔体190以及各个导流腔310连通,中框120将上盖150上的气路通道槽完全覆盖并密封,则中框120与上盖150相接的一面与气路通道槽密封配合形成了气路通道180。
如图1至图3、图5所示,气囊连接管道400固定在中框120的顶面上,可在上盖150上开设让位孔151以对气囊连接管道400进行让位,让位孔151与气囊连接管道400一一对应,气囊连接管道400从上盖150上相对应的让位孔151中穿过。
如图1、图9和图10所示,本发明中在基体100的一端延伸出基体延伸部600来设置保压通道进气口210、第一排气通道220和第一排气电磁阀230。基体延伸部600由上盖延伸部610、中框延伸部620和下座延伸部630组成,中框延伸部620通过紧固件连接或卡扣结构连接等连接方式可拆卸连接在上盖延伸部610和下座延伸部630之间。保压通道进气口210设置在上盖延伸部610内,中框延伸部620内设有同时与保压通道进气口210以及第一排气通道220连通的第一排气腔体631,第一排气腔体631由保压通道200延伸至中框延伸部620内部形成。本发明中采用第一排气电磁阀230来控制第一排气通道220的开闭,第一排气电磁阀230固定在下座延伸部630的底部且第一排气电磁阀230的活塞端伸入第一排气腔体631内。由于第一排气通道220与第一排气腔体631连通,则第一排气电磁阀230可通过活塞端的升降来实现对第一排气通道220的开闭;第一排气电磁阀230活塞端的尺寸大于第一排气通道220与第一排气腔体631相连接处的孔径,当第一排气电磁阀230的活塞端下降至第一排气通道220与第一排气腔体631连接处时即可将第一排气通道220与第一排气腔体631隔绝,第一排气通道220关闭,此时与第一排气腔体631连通的保压通道200与第一排气通道220之间不能进行气体流通,则保压通道200中的气体无法通过第一排气通道220排出;当第一排气电磁阀230的活塞端上升,第一排气通道220与第一排气腔体631连接处不再被第一排气电磁阀230的活塞端封闭,第一排气通道220打开,此时保压通道200中的气体能够通过第一排气腔体631进入第一排气通道220中,并可通过第一排气通道220排出。
上述内容中提到,本发明中的保压通道进气口210可进行开闭,气压调整装置的第一种实施例中保压通道进气口210为常闭状态,而气压调整装置的第二种实施例中保压通道进气 口210需要在充气保压时打开与外接气源连通,并且在充气完成后的保压过程中保持关闭状态;具体的,在气压调整装置的第二种实施例中,依靠设置在保压通道进气口210内的进气单向阀240来实现保压通道进气口210的自动开闭,进气单向阀240控制保压通道进气口210的开闭,进气单向阀240从保压通道进气口210外侧指向第一排气腔体631的方向开启。由气源通过保压通道进气口210向保压通道200内输送气体时,由于限定了进气单向阀240的开启方向,气体可从保压通道进气口210与气源连通的一侧通过进气单向阀240进入第一排气腔体631中,随着保压通道200内气压不断增加,当保压通道200内部的气压值达到设定的数值时,关闭气源停止送气,则进气单向阀240在保压通道200内部压力作用下自动关闭,实现对保压通道进气口210的关闭,再配合单向阀320和第一排气电磁阀230的共同作用即可实现对保压通道200的完全封闭,维持保压通道200内的气压保持不变,从而实现保压的效果。
基体延伸部600可与基体100采用一体结构以简化气压调整装置的整体结构、减小占用空间,即上盖延伸部610与上盖150为一体结构,中框延伸部620与中框120为一体结构,下座延伸部630与下座110为一体结构。
本发明中,第一排气电磁阀230、第二排气电磁阀192和气腔电磁阀500都采用常闭电磁阀,采用常闭电磁阀时电磁阀通电时为开启状态、断电时为关闭状态,从而能够在断电时将所有气囊和通道内的气体排出,且能够有效降低电磁阀的电力耗费,达到节能省电的效果。
进一步的,为了提高电磁阀对各个腔体的封闭效果,可在第一排气电磁阀230、第二排气电磁阀192和气腔电磁阀500的活塞端端头都设置密封帽,密封帽以采用弹性良好的硅胶密封帽为最优选择。
本发明还公开了包含上述气压调整装置的气压按摩仪,如图7至图10所示,气压按摩仪包括气源700和多个气囊800,通过气源700可向气囊800充气以使气囊800膨胀。气压调整装置的基体100可直接安装在气压按摩仪原有控制组件上,从而将气压调整装置、控制组件和气源700都集成在一起。气压按摩仪上气囊800与气压调整装置中的三通腔体300一一对应,气囊800与相对应的气囊连接管道400连接,由于气囊800与气囊连接管道400之间不易进行连接,可采用连接管810作为气囊800与气囊连接管道400之间的中继管道,连接管810以采用连接软管作为最优选择,在装配时可对连接软管进行折弯以减小占用空间。在气压调整装置的第二种实施例中,如图9和图10所示,气源700通过第一充气通道710与保压通道进气口210连通,且气源700通过第二充气通道720与气路通道180的气路通道进气口连通,进而实现气源700与气压调整装置中各个三通腔体300的导流腔310之间的连通;在气压调整装置的第一种实施例中,如图7和图8所示,气源700只通过第二充气通道720 与气路通道180的气路通道进气口连通,进而实现气源700与气压调整装置中各个三通腔体300的导流腔310之间的连通,此实施例中由于保压通道200不需要直接由气源700供气,因此保压通道进气口210关闭,气源700与保压通道进气口210之间不需要直接设置连通结构。
气源700一般采用常用的气泵,气源700的数量可为两个,第一充气通道710和第二充气通道720分别连通在两个气源700上。为了简化结构、节约成本,可只采用一个气源700,在气压调整装置的第二种实施例中,利用三通接头730来实现气源700同时与第一充气通道710和第二充气通道720的连通,即将三通接头730的进口端与气源700的出口端连通,将三通接头730的两个出口端分别与第一充气通道710的进口端以及第二充气通道720的进口端连通。
由于气压按摩仪的控制组件需要根据对各个通道内的气压值来控制各个电磁阀的开闭以进行气压调整装置的保压、均压或泄压工作,为了便于对气压值进行准确监控,本发明中在气源700与气压按摩仪之间的管路上设置了压力传感器740,压力传感器740与气压按摩仪的控制组件电气连接,压力传感器740可将监控的气压值数据传输给气压按摩仪的控制组件。
此发明中气压按摩仪设有五个气囊800,气囊800包括第一气囊801、第二气囊802、第三气囊803、第四气囊804和第五气囊805;相应的,三通腔体300、导流腔310、单向阀320、气囊连接管道400和气腔电磁阀500的数量都为五个。即三通腔体300包括第一三通腔体301、第二三通腔体302、第三三通腔体303、第四三通腔体304和第五三通腔体305;导流腔310包括第一导流腔311、第二导流腔312、第三导流腔313、第四导流腔314和第五导流腔315;单向阀320包括第一单向阀321、第二单向阀322、第三单向阀323、第四单向阀324、和第五单向阀325;气囊连接管道400包括第一气囊连接管道401、第二气囊连接管道402、第三气囊连接管道403、第四气囊连接管道404和第五气囊连接管道405;气腔电磁阀500包括第一气腔电磁阀501、第二气腔电磁阀502、第三气腔电磁阀503、第四气腔电磁阀504和第五气腔电磁阀505。
设有气压调整装置的气压按摩仪可实现预充保压、保压按摩、均压及调压、断电自动泄压的功能;由于气压调整装置两种实施例中保压通道200的充气方式不同,因此预充保压的过程存在差异,而保压按摩、均压及调压和断电自动泄压的过程相同。具体功能说明如下:
1)预充保压
气压调整装置的第一种实施例中,
如图12和图13所示,第一气腔电磁阀501和第一排气电磁阀220通电打开,第二气腔电磁阀502、第三气腔电磁阀503、第四气腔电磁阀504、第五气腔电磁阀505以及第二排气 电磁阀192都为断电关闭状态。
启动气源700通过第二充气通道720向气路通道180中充气,此时气路通道180与第一导流腔311连通,第一导流腔311与第一三通腔体301隔绝,气体只能进入第一导流腔311中并经过第一气囊连接管道401进入第一气囊801中。第一气囊801充气完成后,如图14和图15所示,关闭气源700并使第一气腔电磁阀501断电关闭,则第一导流腔311与气路通道180隔绝而与第一三通腔体301连通,第一气囊801中的高压气体流入第一三通腔体310中,并顶开第一单向阀321进入保压通道200中,当保压通道200中的气压增加到预设的气压值Pa时,重新对第一气腔电磁阀501通电使其打开,则第一导流腔311与第一三通腔体301再次隔绝,保压通道200中的高压气体将第一单向阀321顶压关闭,保压通道200形成维持气压值Pa的密封通道。
保压通道200充气完成后,第一单向阀321、第二单向阀322、第三单向阀323、第四单向阀324、和第五单向阀325都处于关闭状态,同时保压通道200内的气压值达到预设的Pa,只要气囊800设定的最大充气气压值Pb小于保压通道200内的气压值Pa,则可通过压力差使各个单向阀320都持续保持关闭状态,后续向气囊800内进行充气时也可在各气腔电磁阀500不通电的情况下阻止已充气气囊内的气体回流,进而杜绝了串气现象的发生,同时能够降低各个电磁阀的能耗。
气压调整装置的第二种实施例中,
如图16和图17所示,第一气腔电磁阀501、第二气腔电磁阀502、第三气腔电磁阀503、第四气腔电磁阀504、第五气腔电磁阀505以及第二排气电磁阀192都为断电关闭状态,此时,第一导流腔311、第二导流腔312、第三导流腔313、第四导流腔314、第五导流腔315和第二排气腔体190都与气路通道180隔绝。
打开第一排气电磁阀230并启动气源700,由于各个气腔电磁阀500将对应的导流腔310都关闭,气源700无法通过导流腔310向各个气囊800内充气。气源700通过第一充气通道710向气压调整装置内送气,由于第一排气电磁阀230为打开状态,第一排气腔体631与保压通道进气口210连通的同时与第一排气通道220隔绝,气体可冲开进气单向阀240进入第一排气腔体631中,并接着保压通道200中。然后气体分别冲向各个单向阀320,各个单向阀320受压关闭,保压通道200与各个三通腔体300之间被单向阀320隔绝而无法进行气体流通,气体在保压通道200内不断充气增压,当压力传感器740监控到保压通道200内的气压值上升至预设的压力值Pa后,气源700停止送气;此时进气单向阀240两侧存在压力差,进气单向阀240受压关闭,整个保压通道200完成封闭,保压通道200内的气压值维持为Pa保持不变。
通过上述流程,使第一单向阀321、第二单向阀322、第三单向阀323、第四单向阀324、和第五单向阀325都处于关闭状态,同时保压通道200内的气压值达到预设的Pa,只要气囊800设定的最大充气气压值Pb小于保压通道200内的气压值Pa,则可通过压力差使各个单向阀320持续保持关闭状态,后续向气囊800内进行充气时也可在各气腔电磁阀500不通电的情况下阻止已充气气囊内的气体回流,进而杜绝了串气现象的发生,同时能够降低各个电磁阀的能耗。
2)保压按摩
如图18和图19所示,第一排气电磁阀230通电保持开启状态以使气压调整装置维持保压状态,第一气腔电磁阀501通电打开,第二气腔电磁阀502、第三气腔电磁阀503、第四气腔电磁阀504、第五气腔电磁阀505和第二排气电磁阀192保持断电关闭状态。启动气源700通过第二充气通道720向气路通道180内送气,气体进入第一导流腔311中。由于第一气腔电磁阀501为打开状态,第一导流腔311和第一三通腔体301相隔绝无法进行气体流通,气体只能通过与第一导流腔311连通的第一气囊连接管道401进入第一气囊801中。当压力传感器740监控到第一导流腔311内的气压值Pb1达到气囊的最大充气气压值Pb时,气源700停止充气,第一气腔电磁阀501断电关闭,第一导流腔311和气路通道180隔绝,第一气囊连接管道401通过第一导流腔311与第一三通腔体301连通,但由于保压通道200内的气压值Pa大于第一导流腔311内的气压值Pb1,第一单向阀321无法被冲开,第一气囊801中的气体则无法流动,从而实现了对第一气囊801的保压。
同理,如图20和图21所示,第二气腔电磁阀502通电打开,第一气腔电磁阀501、第三气腔电磁阀503、第四气腔电磁阀504、第五气腔电磁阀505和第二排气电磁阀192保持断电关闭状态。启动气源700对第二气囊802进行充气,第二导流腔312内的气压值Pb2达到气囊的最大充气气压值Pb时,气源700停止充气,气压调整装置对第二气囊802保压。
同理,如图22和图23所示,第三气腔电磁阀503通电打开,第一气腔电磁阀501、第二气腔电磁阀502、第四气腔电磁阀504、第五气腔电磁阀505和第二排气电磁阀192保持断电关闭状态。启动气源700对第三气囊803进行充气,第三导流腔313内的气压值Pb3达到气囊的最大充气气压值Pb时,气源700停止充气,气压调整装置对第三气囊803保压。
同理,如图24和图25所示,第四气腔电磁阀504通电打开,第一气腔电磁阀501、第二气腔电磁阀502、第三气腔电磁阀503、第五气腔电磁阀505和第二排气电磁阀192保持断电关闭状态。启动气源700对第四气囊804进行充气,第四导流腔314内的气压值Pb4达到气囊的最大充气气压值Pb时,气源700停止充气,气压调整装置对第四气囊804保压。
同理,如图26和图27所示,第五气腔电磁阀505通电打开,第一气腔电磁阀501、第 二气腔电磁阀502、第三气腔电磁阀503、第四气腔电磁阀504和第二排气电磁阀192保持断电关闭状态。启动气源700对第五气囊805进行充气,第五导流腔315内的气压值Pb5达到气囊的最大充气气压值Pb时,气源700停止充气,气压调整装置对第五气囊805保压。
当所有气囊800充气完成后,所有气腔电磁阀500都为断电关闭状态,电磁阀的电耗降至最低。充气完成后即可通过气囊800对肢体和肌肉组织的按压按摩。
另外,可向不同气囊800内充入不同量的气体以使各个气囊800内的气压值不等同,即Pb1≠Pb2≠Pb3≠Pb4≠Pb5,只要各个气囊800内的气压值都小于保压通道200内的保压气压值Pa,就能一致维持保压状态。从而可使各个气囊800具有不同的膨胀程度,能够对不同按摩部位进行不同力度的按压,为用户带来更好的按摩体验。
3)均压及调压
如图28和图29所示,第一排气电磁阀230通电保持开启状态以使气压调整装置维持保压状态,气源700停止充气。第一气腔电磁阀501和第二排气电磁阀192通电打开,第二气腔电磁阀502、第三气腔电磁阀503、第四气腔电磁阀504和第五气腔电磁阀505保持断电关闭状态。此时,由于第一气腔电磁阀501为打开状态,第一气囊801中的气体能够通过第一气囊连接管道401进入第一导流腔311中,由于第一导流腔311和第一三通腔体301隔绝,但第一导流腔311和气路通道180连通,进入第一导流腔311中的气体则只能够进入气路通道180中。气体在气路通道180中流动时,由于除开第一气腔电磁阀501外的其他气腔电磁阀500都为断电关闭状态,而第二排气电磁阀192为通电打开状态,气体无法进入其他导流腔310中而只能进入与气路通道180连通的第二排气腔体190中,进而可通过第二排气通道191排出,第一气囊801中的气压降低。当压力传感器741监控到第一气囊801中的气压值降低至所需的气压值Pc1时,第二排气电磁阀192断电关闭,第一气囊801中的气体停止排气释压。通过上述步骤,即可单独对第一气囊801中气压值进行调节。
同理,如图30和图31所示,第一排气电磁阀230通电保持开启状态以使气压调整装置维持保压状态,气源700停止充气。第二气腔电磁阀502和第二排气电磁阀192通电打开,第一气腔电磁阀501、第三气腔电磁阀503、第四气腔电磁阀504和第五气腔电磁阀505保持断电关闭状态。第二气囊802中的气体进入第二排气腔体190中,进而通过第二排气通道191排出,第二气囊802中的气压降低。当压力传感器741监控到第二气囊802中的气压值降低至所需的气压值Pc2时,第二排气电磁阀192断电关闭,第二气囊802中的气体停止排气释压。通过上述步骤,即可单独对第二气囊802中气压值进行调节。
同理,如图32和图33所示,第一排气电磁阀230通电保持开启状态以使气压调整装置维持保压状态,气源700停止充气。第三气腔电磁阀503和第二排气电磁阀192通电打开, 第一气腔电磁阀501、第二气腔电磁阀502、第四气腔电磁阀504和第五气腔电磁阀505保持断电关闭状态。第三气囊803中的气体进入第二排气腔体190中,进而通过第二排气通道191排出,第三气囊803中的气压降低。当压力传感器741监控到第三气囊803中的气压值降低至所需的气压值Pc3时,第二排气电磁阀192断电关闭,第三气囊803中的气体停止排气释压。通过上述步骤,即可单独对第三气囊803中气压值进行调节。
同理,如图34和图35所示,第一排气电磁阀230通电保持开启状态以使气压调整装置维持保压状态,气源700停止充气。第四气腔电磁阀504和第二排气电磁阀192通电打开,第一气腔电磁阀501、第二气腔电磁阀502、第三气腔电磁阀503和第五气腔电磁阀505保持断电关闭状态。第四气囊804中的气体进入第二排气腔体190中,进而通过第二排气通道191排出,第四气囊804中的气压降低。当压力传感器741监控到第四气囊804中的气压值降低至所需的气压值Pc4时,第二排气电磁阀192断电关闭,第四气囊804中的气体停止排气释压。通过上述步骤,即可单独对第四气囊804中气压值进行调节。
同理,如图36和图37所示,第一排气电磁阀230通电保持开启状态以使气压调整装置维持保压状态,气源700停止充气。第五气腔电磁阀505和第二排气电磁阀192通电打开,第一气腔电磁阀501、第二气腔电磁阀502、第三气腔电磁阀503和第四气腔电磁阀504保持断电关闭状态。第五气囊805中的气体进入第二排气腔体190中,进而通过第二排气通道191排出,第五气囊805中的气压降低。当压力传感器741监控到第五气囊805中的气压值降低至所需的气压值Pc5时,第二排气电磁阀192断电关闭,第五气囊805中的气体停止排气释压。通过上述步骤,即可单独对第五气囊805中气压值进行调节。
另外,可通过对所有气囊800进行排气释压以使所有气囊800中的气压值相同,即Pb1=Pb2=Pb3=Pb4=Pb5,即可实现均压效果。
4)断电自动泄压
如图38和图39所示,所有电磁阀,包括第一气腔电磁阀501、第二气腔电磁阀502、第三气腔电磁阀503、第四气腔电磁阀504、第五气腔电磁阀505、第一排气电磁阀230和第二排气电磁阀192全部断电,并且气源700也断电停止充气。此时,保压通道200与第一排气腔体631连通,保压通道200不再封闭,保压通道200中的气体通过第一排气通道230排出,则保压通道200中的气压降低,当保压通道200中的气压值降低至小于各三通腔体300中的气压值时,各单向阀320被冲开,各气囊800中的气体穿过对应的单向阀320进入排气通道200中,最后通过第一排气通道230排出,从而实现了对所有气囊800的泄压。通过气压按摩仪的断电自动泄压功能,在气压按摩仪遇到故障断电后,所有气囊800放气泄压从而确保了气囊800不会一直挤压用户肢体,有效提高了用户使用气压按摩仪时的安全性。
进一步的,上述四种动作可通过不同的控制逻辑来进行组合,例如保压按摩和均压及调压合能够实现多种按摩模式,达到可均压、单腔气压可调且功耗低的效果;预充保压和保压按摩组合能够起到保压的效果;通过对上述四种动作的结合使用能够有效提高气压按摩仪的产品使用体验,使得气压按摩仪的应用场合更加广泛,适用人群更多。

Claims (21)

  1. 气压调整装置,其特征在于:包括基体(100),所述基体(100)内设有保压通道(200)以及多个三通腔体(300),各个三通腔体(300)上都连通有可开闭的导流腔(310),导流腔(310)上连通有气囊连接管道(400),三通腔体(300)未与导流腔(310)相连通的端口与保压通道(200)连通;所述各个三通腔体(300)与保压通道(200)之间都设有单向阀(320),所述单向阀(320)从三通腔体(300)指向保压通道(200)的方向开启;所述保压通道(200)上还连通有可开闭的保压通道进气口(210)以及可开闭的第一排气通道(220)。
  2. 如权利要求1所述的气压调整装置,其特征在于:所述基体(100)上设有第一排气电磁阀(230)以及与三通腔体(300)一一对应的气腔电磁阀(500);所述第一排气电磁阀(230)控制第一排气通道(220)的开闭,所述气腔电磁阀(500)控制与相对应三通腔体(300)相连通的导流腔(310)的开闭。
  3. 如权利要求2所述的气压调整装置,其特征在于:所述基体(100)包括中框(120)和下座(110),多个三通腔体(300)沿下座(110)的长度方向间隔排布设置在下座(110)内部,多个导流腔(310)沿中框(120)的长度方向间隔排布设置在中框(120)内部,导流腔(310)位于相对应三通腔体(300)的上方;气腔电磁阀(500)固定在下座(110)的底部,气腔电磁阀(500)的活塞端穿过相对应的三通腔体(300)并伸入上方的导流腔(310)内,气腔电磁阀(500)的活塞端与导流腔(310)的各连通处形成密封配合;所述中框(120)可拆卸连接在下座(110)的顶部,中框(120)上设有连通在导流腔(310)和气囊连接管道(400)之间的进排气通道(130)。
  4. 如权利要求3所述的气压调整装置,其特征在于:所述下座(110)内还设有与三通腔体(300)一一对应的排气通道(140),所述排气通道(140)连通在保压通道(200)以及相对应的三通腔体(300)之间;所述单向阀(320)设置在排气通道(140)与保压通道(200)的连通处,单向阀(320)从排气通道(140)指向保压通道(200)的方向开启。
  5. 如权利要求3所述的气压调整装置,其特征在于:所述基体(100)还包括单向阀固定板(160),所述单向阀固定板(160)可拆卸连接在下座(110)的侧面;所述单向阀固定板(160)上设有与单向阀(320)一一对应的第一安装半腔(161),所述下座(110)上设有与单向阀(320)一一对应的第二安装半腔(162),第二安装半腔(162)与相对应的三通腔体(300)连通,第一安装半腔(161)和第二安装半腔(162)对接组成容纳相对应单向阀(320)的腔体。
  6. 如权利要求5所述的气压调整装置,其特征在于:所述基体(100)还包括密封侧盖板(170),所述单向阀固定板(160)上设有沿单向阀固定板(160)长度方向延伸的保压通道 槽(163),所述保压通道槽(163)与各个第一安装半腔(161)连通;所述密封侧盖板(170)可拆卸连接在单向阀固定板(160)未与下座(110)相连接的一面上,密封侧盖板(170)将保压通道槽(163)覆盖且与保压通道槽(163)密封配合形成保压通道(200)。
  7. 如权利要求3所述的气压调整装置,其特征在于:所述基体(100)上还设有气路通道(180)和可开闭的第二排气腔体(190);所述气路通道(180)上设有气路通道进气口,气路通道(180)与各个三通腔体(300)的导流腔(310)连通;所述第二排气腔体(190)与气路通道(180)连通,第二排气腔体(190)未与气路通道(180)相连通处连通有第二排气通道(191)。
  8. 如权利要求7所述的气压调整装置,其特征在于:还包括第二排气电磁阀(192),所述第二排气电磁阀(192)控制第二排气腔体(190)的开闭;所述第二排气电磁阀(192)固定在下座(110)的底部,第二排气电磁阀(192)的活塞端伸入第二排气腔体(190)内并与第二排气腔体(190)的各连通处形成密封配合。
  9. 如权利要求7所述的气压调整装置,其特征在于:所述基体(100)还包括上盖(150),所述上盖(150)的其中一面上设有沿上盖(150)长度方向延伸的气路通道槽,上盖(150)可拆卸连接在中框(120)上且气路通道槽与第二排气腔体(190)以及各个三通腔体(300)的导流腔(310)连通,中框(120)与上盖(150)相接的一面与气路通道槽密封配合形成气路通道(180)。
  10. 如权利要求9所述的气压调整装置,其特征在于:所述基体(100)还包括基体延伸部(600),所述基体延伸部(600)包括中框延伸部(620)和下座延伸部(630),中框延伸部(620)可拆卸连接在下座延伸部(630)上,基体延伸部(600)固定在基体(100)的其中一端端头;所述第一排气通道(220)设置在下座延伸部(630)上,中框延伸部(620)内设有同时与保压通道(200)以及第一排气通道(220)连通的第一排气腔体(631),第一排气腔体(631)由保压通道(200)延伸至中框延伸部(620)内部形成。
  11. 如权利要求10所述的气压调整装置,其特征在于:所述第一排气电磁阀(230)固定在下座延伸部(630)的底部,第一排气电磁阀(230)的活塞端伸入第一排气腔体(631)内并与第一排气腔体(631)的各连通处形成密封配合。
  12. 如权利要求10所述的气压调整装置,其特征在于:所述基体延伸部(600)还包括上盖延伸部(610),上盖延伸部(610)可拆卸连接在中框延伸部(620)上,所述保压通道进气口(210)设置在上盖延伸部(610)上,保压通道进气口(210)与第一排气腔体(631)连通。
  13. 如权利要求12所述的气压调整装置,其特征在于:还包括进气单向阀(240),所述 进气单向阀(240)设置在保压通道进气口(210)处;所述进气单向阀(240)控制保压通道进气口(210)的开闭,进气单向阀(240)从保压通道进气口(210)外侧指向第一排气腔体(631)的方向开启。
  14. 如权利要求11所述的气压调整装置,其特征在于:所述第一排气电磁阀(230)、第二排气电磁阀(192)和气腔电磁阀(500)都为常闭电磁阀。
  15. 气压按摩仪,包括气源(700)以及多个与气源(700)连通的气囊(800),其特征在于:还包括如权利要求1所述的气压调整装置,所述气压调整装置上的三通腔体(300)与气囊(800)一一对应,各个气囊(800)分别与气压调整装置相上对应的气囊连接管道(400)连通;所述气源(700)通过第二充气通道(720)与气压调整装置中各个三通腔体(300)上的导流腔(310)连通。
  16. 如权利要求15所述的气压按摩仪,其特征在于:所述气源(700)通过第一充气通道(710)与保压通道进气口(210)连通。
  17. 气压按摩仪的控制方法,其特征在于:采用如权利要求16所述的气压按摩仪,保压通道进气口为关闭状态时,由气囊向保压通道充气,通过对保压通道、三通腔体、导流腔进行选择性的开闭来实现气压按摩仪的预充保压、保压按摩、均压及调压和断电自动泄压中的一项动作或至少两项动作的组合;保压通道进气口为开启状态并与气源连通时,通过对保压通道、三通腔体、导流腔进行选择性的开闭来实现气压按摩仪的预充保压、保压按摩、均压及调压和断电自动泄压中的一项动作或至少两项动作的组合。
  18. 如权利要求17所述的气压按摩仪的控制方法,其特征在于:保压通道进气口为关闭状态时,所述预充保压动作中,由气源向任意气囊中充气,气囊在完成充气后,气囊中的气体冲开对应三通腔体中的单向阀并进入气保压通道中对保压通道充气,保压通道内升压将单向阀关闭使保压通道封闭以维持保压通道内气压不变;保压通道进气口为开启状态并与气源连通时,所述预充保压动作中,由气源直接向气压调整装置中的保压通道充气,保压通道内升压使保压通道封闭以维持保压通道内气压不变。
  19. 如权利要求17所述的气压按摩仪的控制方法,其特征在于:所述保压按摩动作中,先进行预充保压动作使保压通道保持封闭,由气源向各个气囊单独充气,通过保压通道维持各个气囊内气压不变。
  20. 如权利要求17所述的气压按摩仪的控制方法,其特征在于:所述均压及调压动作中,先进行预充保压动作使保压通道保持封闭,通过对已充气的气囊单独进行放气以分别改变各个气囊内的气压。
  21. 如权利要求17所述的气压按摩仪的控制方法,其特征在于:所述断电自动泄压动作 中,保压通道在电磁阀全部断电后自动打开,各个气囊放气并通过保压通道进行排气。
PCT/CN2023/106622 2022-08-31 2023-07-10 气压调整装置、气压按摩仪及气压按摩仪的控制方法 WO2024045906A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202211054271.6 2022-08-31
CN202211053707.XA CN115337190A (zh) 2022-08-31 2022-08-31 气压调整装置、气压按摩仪及气压按摩仪的控制方法
CN202211054271.6A CN115844702A (zh) 2022-08-31 2022-08-31 气压按摩仪及其控制方法
CN202211053707.X 2022-08-31

Publications (1)

Publication Number Publication Date
WO2024045906A1 true WO2024045906A1 (zh) 2024-03-07

Family

ID=90100306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/106622 WO2024045906A1 (zh) 2022-08-31 2023-07-10 气压调整装置、气压按摩仪及气压按摩仪的控制方法

Country Status (1)

Country Link
WO (1) WO2024045906A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100783934B1 (ko) * 2006-12-07 2007-12-10 현대자동차주식회사 에어백 쿠션의 압력 유지 타입 인플레이터
CN104089046A (zh) * 2014-07-12 2014-10-08 厦门蒙发利科技(集团)股份有限公司 一种按摩器具用集成气阀及空气按摩器具
CN110123554A (zh) * 2019-05-22 2019-08-16 北京工业大学 一种用于卧床老人长期护理的防压疮气囊床垫装置
CN212422921U (zh) * 2020-04-30 2021-01-29 东莞市安海思精密电子有限公司 用于汽车座椅的按摩电磁阀泵阀模组及汽车座椅
CN216022002U (zh) * 2021-02-07 2022-03-15 江苏承康医用设备有限公司 六腔空气波单腔保压系统
CN114732698A (zh) * 2022-04-08 2022-07-12 浙江晟飞科技有限公司 新型电磁阀气囊按摩装置
CN115337190A (zh) * 2022-08-31 2022-11-15 四川千里倍益康医疗科技股份有限公司 气压调整装置、气压按摩仪及气压按摩仪的控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100783934B1 (ko) * 2006-12-07 2007-12-10 현대자동차주식회사 에어백 쿠션의 압력 유지 타입 인플레이터
CN104089046A (zh) * 2014-07-12 2014-10-08 厦门蒙发利科技(集团)股份有限公司 一种按摩器具用集成气阀及空气按摩器具
CN110123554A (zh) * 2019-05-22 2019-08-16 北京工业大学 一种用于卧床老人长期护理的防压疮气囊床垫装置
CN212422921U (zh) * 2020-04-30 2021-01-29 东莞市安海思精密电子有限公司 用于汽车座椅的按摩电磁阀泵阀模组及汽车座椅
CN216022002U (zh) * 2021-02-07 2022-03-15 江苏承康医用设备有限公司 六腔空气波单腔保压系统
CN114732698A (zh) * 2022-04-08 2022-07-12 浙江晟飞科技有限公司 新型电磁阀气囊按摩装置
CN115337190A (zh) * 2022-08-31 2022-11-15 四川千里倍益康医疗科技股份有限公司 气压调整装置、气压按摩仪及气压按摩仪的控制方法

Similar Documents

Publication Publication Date Title
US20140232155A1 (en) Seat adjusting device and method of providing seat adjustment
CN103991397B (zh) 用于车辆部件的调节装置
CN109318770B (zh) 一种集成腰部支撑和多点按摩的座椅多气囊舒适系统
CA2243942A1 (en) Improved valve enclosure assembly
CN105443807A (zh) 复合式配气阀组
CN115337190A (zh) 气压调整装置、气压按摩仪及气压按摩仪的控制方法
WO2024045906A1 (zh) 气压调整装置、气压按摩仪及气压按摩仪的控制方法
US20190063624A1 (en) Inflation valve seat with adjustable flow
US20090240179A1 (en) Pneumatic massage apparatus
CN204083440U (zh) 电磁气阀
CN220193502U (zh) 气压按摩仪
CN218923160U (zh) 气压按摩仪
CN115844702A (zh) 气压按摩仪及其控制方法
CN111789751A (zh) 一种空气压力治疗仪及控制方法
CN109386629B (zh) 具有可调整流量的充泄气阀座
CN108697251B (zh) 一种用于枕头内气囊的充放气装置及智能枕头
CN220089909U (zh) 气压按摩装置的充放气集成模块
CN111367326B (zh) 一种用于牵引装置的力量调控系统及方法
CN115317335A (zh) 多气囊充排气装置及腿部按摩仪
CN216783334U (zh) 一种结构简单的腰托按摩装置
KR20210157556A (ko) 고압 산소 치료 시스템
CN216009650U (zh) 按摩水池接气管路装置、按摩水池池体及按摩水池
CN220275931U (zh) 泡脚桶
CN220646137U (zh) 一种气泵组件及使用气泵组件的控制器和使用控制器的床
WO2015109098A1 (en) Pressure regulating and distribution de-icing valve assembly for aircraft

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23858944

Country of ref document: EP

Kind code of ref document: A1