WO2024045840A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2024045840A1
WO2024045840A1 PCT/CN2023/103492 CN2023103492W WO2024045840A1 WO 2024045840 A1 WO2024045840 A1 WO 2024045840A1 CN 2023103492 W CN2023103492 W CN 2023103492W WO 2024045840 A1 WO2024045840 A1 WO 2024045840A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio frequency
unit
cross
port
remote
Prior art date
Application number
PCT/CN2023/103492
Other languages
English (en)
French (fr)
Inventor
吴恒恒
邹志强
马霓
吴亚琦
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024045840A1 publication Critical patent/WO2024045840A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0203Power saving arrangements in the radio access network or backbone network of wireless communication networks
    • H04W52/0206Power saving arrangements in the radio access network or backbone network of wireless communication networks in access points, e.g. base stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements

Definitions

  • the present application relates to the field of communication technology, and in particular, to a communication method and device.
  • radio frequency remote unit (RRU) energy consumption accounts for more than 60%. It can be seen that how to reduce the power consumption of RRU is an issue that needs to be solved urgently.
  • Embodiments of the present application provide a communication method and device for reducing the power consumption of an RRU.
  • inventions of the present application provide a communication device.
  • the device may include N remote radio frequency units, a first module and N groups of antennas.
  • Each remote radio frequency unit is connected to the first module, and each group of remote radio frequency units is connected to the first module.
  • the antenna is connected to the first module, and the N radio frequency remote units correspond to the N groups of antennas one-to-one, where N is an integer greater than 1; wherein, the first radio frequency remote unit among the N radio frequency remote units
  • the first module can be used to send the first radio frequency signal to the first module; the first module can be used to receive the first radio frequency signal from the first radio frequency remote unit, divide the first radio frequency signal into M sub-radio frequency signals, and send the first radio frequency signal to the N radio frequency signals.
  • the M sets of antennas corresponding to the M radio frequency remote units in the signal send the M sub-radio frequency signals; the M sets of antennas can be used to send the M sub-radio frequency signals.
  • M is an integer greater than 1 and less than or equal to N.
  • the first radio frequency signal from the first radio frequency remote unit is divided into two or more sub-RF signals through the first module, and these sub-RF signals are sent by two or more groups of antennas. , thereby realizing that the radio frequency signal of one radio frequency remote unit drives two or more sets of antennas.
  • embodiments of the present application can use one radio frequency remote unit to drive multiple groups of antennas, and then at least one radio frequency among the multiple radio frequency remote units corresponding to the multiple groups of antennas The remote unit is in a dormant state or not working, thereby reducing the basic power consumption of the communication device at the granularity of the radio frequency remote unit.
  • the load of the cell corresponding to the first remote radio frequency unit is less than or equal to the load threshold, and the load of the cell corresponding to each of the M remote radio frequency units is less than or equal to the load threshold. load threshold.
  • the N remote radio frequency units may also include a second remote radio frequency unit, and the load of the cell corresponding to the second remote radio frequency unit is greater than the load threshold; the second remote radio frequency unit The first module is used to send a second radio frequency signal to the first module; the first module is also used to receive the second radio frequency signal, and send the second radio frequency signal to the antenna corresponding to the second radio frequency remote unit.
  • a radio frequency remote unit can conditionally drive multiple sets of antennas, and can also conditionally drive its own corresponding antenna.
  • the load of the cell corresponding to a remote radio unit is less than or equal to the load threshold, it means that the cell corresponding to the remote radio unit is in a medium load state or a small load state.
  • the remote radio unit can drive other units in One or more remote radio units in a medium load state or a light load state, so that the one or more remote radio units are in a dormant state or not working, which can reduce the basic functions of the one or more remote radio units. Consumption.
  • the load of the cell corresponding to a remote radio unit is greater than the load threshold, which means that the cell corresponding to the remote radio unit is in a higher load state.
  • the remote radio unit can drive its corresponding antenna to meet the requirements.
  • P groups of antennas in the N groups of antennas are used to receive P radio frequency signals and send P radio frequency signals to the first module, where P is an integer greater than 1 and less than or equal to N;
  • the first module is also used to receive the P radio frequency signals, synthesize the P radio frequency signals into a third radio frequency signal, and send the third radio frequency signal to the first radio frequency remote unit.
  • the load of the cell corresponding to the first remote radio unit is less than or equal to the load threshold, and the P groups of antenna pairs The load of the cell corresponding to each of the corresponding P remote radio units is less than or equal to the load threshold.
  • one radio frequency remote unit can conditionally receive radio frequency signals from multiple groups of antennas, so that one or more radio frequency remote units among the multiple radio frequency remote units corresponding to the multiple groups of antennas can be in a dormant state or inactive. The working state can greatly reduce the power consumption of the radio frequency remote unit.
  • the first module can be implemented in the following ways: In way 1, the first module includes (N-1) cross-connect units; in way 2, the first module includes the first sub-module and (N-1) ) second sub-modules, the first sub-module includes (N-1) cross-connect units.
  • the first module includes (N-1) cross-connect units, and each cross-connect unit includes a first port, a second port, a third port, and a fourth port; the first remote radio unit can transmit data to the first port in the following manner
  • the module sends the first radio frequency signal: the first remote radio frequency unit sends the first radio frequency signal to the first port of the first cross-connect unit; wherein the first cross-connect unit is one of the (N-1) cross-connect units.
  • the fourth port of the first cross-connect unit is connected to one of the N remote radio frequency units except the first remote radio unit, and the second port of the first cross-connect unit is connected to the first antenna, the
  • the third port of the first cross unit is connected to a cross unit other than the first cross unit among the (N-1) cross units or to a cross unit other than the first antenna among the N groups of antennas.
  • the antennas are connected together.
  • the first cross unit in the first module can send the first radio frequency signal or a sub-radio frequency signal of the first radio frequency signal to other radio frequency remote units except the first radio frequency remote unit.
  • N 2
  • the first port of the (N-1) cross-connect units is connected to the first radio frequency unit
  • the fourth port of the (N-1) cross-connect units is connected to the N remote radio frequency units except The radio frequency remote units other than the first radio frequency remote unit are connected
  • the second port of the (N-1) cross-connect units is connected to the first antenna
  • the third port of the (N-1) cross-connect units is connected to the N group
  • the antennas other than the first antenna among the antennas are connected.
  • N is greater than 2
  • the first port of the first cross-connect unit among the (N-1) cross-connect units is connected to the first remote-frequency unit among the N radio frequency remote units, and the first cross-connect unit
  • the second port is connected to the antenna corresponding to the first remote radio unit;
  • the first port of the i-th cross-connect unit in the (N-1) cross-connect unit is connected to the (N-1)-th cross-connect unit.
  • the third port of the i-1) cross-connect unit is connected, and the second port of the i-th cross-connect unit is connected to the antenna corresponding to the i-th radio frequency remote unit among the N radio frequency remote units.
  • the fourth port is connected to the (i+1)th radio frequency remote unit among the N radio frequency remote units, and the third port of the i-th cross-connect unit is connected to the (i-th) of the (N-1) cross-connect units.
  • the first port of the +1) cross-connect unit is connected, where i is an integer greater than 1 and less than (N-1); the (N-1)th cross-connect unit in the (N-1) cross-connect unit
  • the second port is connected to the antenna corresponding to the (N-1)th radio frequency remote unit among the N radio frequency remote units, and the fourth port of the (N-1)th cross-connect unit is connected to the N radio frequency remote unit.
  • the Nth radio frequency remote unit is connected, and the third port of the (N-1)th cross-connect unit is connected to the antenna corresponding to the Nth radio frequency remote unit.
  • the communication device can realize a small number of remote radio frequency units to drive multiple sets of antennas through the cross-connect unit in the first module, so that some remote radio frequency units are in a dormant state or not working, and the foundation of the remote radio frequency units is reduced. power consumption.
  • the first module includes a first sub-module and (N-1) second sub-modules.
  • the first sub-module is connected to each second sub-module, and the first antenna is one group of antennas in the N groups of antennas; wherein each radio frequency remote unit is connected to the first module and can be: A radio frequency remote unit is connected to the first sub-module.
  • (N-1) radio frequency remote units except the first radio frequency remote unit are connected to the (N-1) second radio frequency remote unit.
  • the sub-modules are connected, and a second sub-module is connected to a radio frequency remote unit; each group of antennas is connected to the first module, which can be: the first antenna corresponding to the first radio frequency remote unit is connected to the first sub-module, N groups (N-1) groups of antennas in the antenna except the first antenna are connected to the (N-1) second sub-modules, and one second sub-module is connected to one group of antennas.
  • the radio frequency signal of the first radio frequency remote unit can drive multiple sets of antennas through the first sub-module and the second sub-module, reducing the power consumption of the radio frequency remote unit; on the other hand, the remaining (N-1 ) radio frequency remote units can drive their corresponding antennas through (N-1) second sub-modules, which has good compatibility, and the second sub-module, radio frequency remote unit and antenna can be arranged nearby, so that Can reduce the attenuation of radio frequency signals.
  • the M remote radio frequency units include a first remote radio frequency unit.
  • the first module can divide the first radio frequency signal into M sub-radio frequency signals in the following manner, and transmit the signal to M of the N remote radio frequency units.
  • the M sets of antennas corresponding to the remote radio unit send the M sub-RF signals: the first sub-module can be used to divide the first radio frequency signal into the M sub-RF signals, send a sub-RF signal to the first antenna, and send a sub-RF signal to the (
  • the (M-1) second sub-modules connected to the M-1) radio frequency remote units send the remaining (M-1) sub-radio frequency signals, of which the (M-1) radio frequency remote units are M radio frequency remote units.
  • the radio frequency remote unit in the remote unit except the first radio frequency remote unit; the (M-1) second sub-module can be used to provide (M-1) radio frequency remote units corresponding to the (M-1) radio frequency remote units.
  • the group of antennas transmits (M-1) sub-RF signals.
  • the M remote radio frequency units do not include a first remote radio unit.
  • the first module is used to divide the first radio frequency signal into M sub-radio signals and transmit the signals to the M radio frequency remote units among the N remote radio units.
  • the M sets of antennas corresponding to the remote unit send M sub-radio frequency signals, which can be: a first sub-module, which can be used to divide the first radio frequency signal into the M sub-radio frequency signals, and M second sub-radio frequency signals connected to the M remote radio frequency units.
  • the sub-module sends M sub-radio frequency signals; M second sub-modules are used to send the M sub-modules to M groups of antennas sub-RF signal.
  • the first sub-module divides the first radio frequency signal into M sub-RF signals. All of the M sub-RF signals can be sent to the second sub-module, or part of them can be sent to the second sub-module.
  • the implementation method is flexible.
  • the first sub-module may include (N-1) cross-connect units, each cross-connect unit including a first port, a second port, a third port and a fourth port; wherein the first remote radio unit and the A sub-module is connected, which can be: the first radio frequency remote unit is connected to the first port of the first cross-connect unit; the first cross-connect unit is one of the (N-1) cross-connect units, and the first cross-connect unit The four ports are grounded, the second port of the first cross-connect unit is connected to the first antenna, and the third port of the first cross-connect unit is connected to one of the (N-1) cross-connect units except the first cross-connect unit or ( One of the N-1) second sub-modules is connected.
  • the first cross-connect unit in the first sub-module may send the first radio frequency signal or a sub-radio frequency signal of the first radio frequency signal to the second sub-module.
  • N 2
  • the first port of the (N-1) cross-connect unit is connected to the first radio frequency unit
  • the fourth port of the (N-1) cross-connect unit is grounded
  • the (N-1) cross-connect unit The second port of the cross-connect unit is connected to the first antenna
  • the third port of the (N-1) cross-connect units is connected to the (N-1) second sub-modules
  • the (N-1) second sub-modules are connected to The antennas in the N groups of antennas except the first antenna are connected.
  • N is greater than 2
  • the first port of the first cross-connect unit among the (N-1) cross-connect units is connected to the first radio frequency unit, the fourth port of the first cross-connect unit is grounded, and the first cross-connect unit
  • the second port of the unit is connected to the first antenna; the first port of the ith cross unit among the (N-1) cross units is connected to the (i-1)th cross unit among the (N-1) cross units.
  • the third port of the i-th cross-connect unit is connected to the (i-1)-th second sub-module of the (N-1) second sub-modules, and the fourth port of the i-th cross-connect unit Grounding, where i is an integer greater than 1 and less than (N-1); the first port of the (N-1)th cross-connect unit in the (N-1) cross-connect unit is connected to the (N-1) The third port of the (N-2)-th cross-connect unit in the cross-connect unit is connected, and the second port of the (N-1)-th cross-connect unit is connected to the (N-th) port of the (N-1) second sub-module.
  • the communication device can realize a small number of remote radio frequency units to drive multiple sets of antennas through the cross-connect unit and the second submodule in the first sub-module, so that some remote radio frequency units are in a dormant state or inactive state, reducing Basic power consumption of the remote radio unit.
  • the first cross-connect unit can be used to receive the first radio frequency signal through the first port and send the first radio frequency signal through the third port; or, the first cross-connect unit can be used to receive the first radio frequency signal through the first port.
  • Receive the first radio frequency signal divide the first radio frequency signal into two sub-RF signals, send one of the two sub-RF signals through the second port, and send the remaining one of the two sub-RF signals through the third port sub-RF signal.
  • the first remote radio frequency unit can drive the corresponding antennas of other remote radio frequency units through the first cross unit connected to it, thereby causing the other remote radio frequency units to be in a dormant state or inactive.
  • the present application provides a communication method, which can be applied to a communication device.
  • the communication device can include: N remote radio frequency units, a first module, and N groups of antennas, wherein each remote radio frequency unit is connected to the remote radio frequency unit.
  • the first module is connected, and each group of antennas is connected to the first module.
  • the N radio frequency remote units correspond to the N groups of antennas one-to-one, and N is an integer greater than 1.
  • the first radio frequency remote unit among the N radio frequency remote units sends a first radio frequency signal to the first module; the first module receives the first radio frequency signal and transmits the first radio frequency signal to the first module.
  • the signal is divided into M sub-radio frequency signals, and the M sub-radio frequency signals are sent to M groups of antennas corresponding to the M radio frequency remote units among the N radio frequency remote units, where the M is greater than 1 and less than or equal to The integer of N; the M groups of antennas transmit the M sub-radio frequency signals.
  • the load of the cell corresponding to the first remote radio frequency unit is less than or equal to the load threshold, and the load of the cell corresponding to each of the M remote radio frequency units is less than or equal to equal to the load threshold.
  • the N remote radio frequency units further include a second remote radio unit, and the load of the cell corresponding to the second remote radio unit is greater than the load threshold.
  • the method may further include: The second remote radio frequency unit sends a second radio frequency signal to the first module; the first module receives the second radio frequency signal and sends the second radio frequency to the antenna corresponding to the second remote radio frequency unit. Signal.
  • the method may further include: P groups of antennas among the N groups of antennas receive P radio frequency signals, and send the P radio frequency signals to the first module, where P is greater than 1 and less than the integer of N; the first module receives the P radio frequency signals, synthesizes the P radio frequency signals into a third radio frequency signal, and sends the third radio frequency signal to the first radio frequency remote unit.
  • P is greater than 1 and less than the integer of N
  • the first module receives the P radio frequency signals, synthesizes the P radio frequency signals into a third radio frequency signal, and sends the third radio frequency signal to the first radio frequency remote unit.
  • the load of the cell corresponding to the first remote radio unit is less than or equal to the load threshold
  • the P remote radio units corresponding to each of the P groups of antennas correspond to The load of the cell is less than or equal to the load threshold
  • the first module can be implemented in the following manner: Method 1, the first module includes (N-1) cross units; Method 2: The first module includes a first sub-module and (N-1) second sub-modules, where the first sub-module includes (N-1) cross-connect units.
  • the first module includes (N-1) cross-connect units, and each cross-connect unit includes a first port, a second port, a third port and a fourth port; the first remote radio unit sends the first
  • the radio frequency signal may be the first radio frequency remote unit sending the first radio frequency signal to the first port of the first cross-connect unit;
  • the first cross-connect unit is one of (N-1) cross-connect units, and the first cross-connect unit
  • the fourth port of the unit is connected to one radio frequency remote unit except the first radio frequency remote unit among the N radio frequency remote units, the second port of the first cross-connect unit is connected to the first antenna, and the third port of the first cross-connect unit is connected to the first antenna.
  • the three ports are connected to one cross unit except the first cross unit among the (N-1) cross units or to a group of antennas except the first antenna among the N groups of antennas.
  • N 2
  • the first port of the (N-1) cross-connect units is connected to the first radio frequency unit
  • the fourth port of the (N-1) cross-connect units is connected to the N remote radio frequency units except The radio frequency remote units other than the first radio frequency remote unit are connected
  • the second port of the (N-1) cross-connect units is connected to the first antenna
  • the third port of the (N-1) cross-connect units is connected to the N group
  • the antennas other than the first antenna among the antennas are connected.
  • N is greater than 2
  • the first port of the first cross-connect unit among the (N-1) cross-connect units is connected to the first remote-frequency unit among the N radio frequency remote units, and the first cross-connect unit
  • the second port is connected to the antenna corresponding to the first remote radio unit;
  • the first port of the i-th cross-connect unit in the (N-1) cross-connect unit is connected to the (N-1)-th cross-connect unit.
  • the third port of the i-1) cross-connect unit is connected, and the second port of the i-th cross-connect unit is connected to the antenna corresponding to the i-th radio frequency remote unit among the N radio frequency remote units.
  • the fourth port is connected to the (i+1)th radio frequency remote unit among the N radio frequency remote units, and the third port of the i-th cross-connect unit is connected to the (i-th) of the (N-1) cross-connect units.
  • the first port of the +1) cross-connect unit is connected, where i is an integer greater than 1 and less than (N-1); the (N-1)th cross-connect unit in the (N-1) cross-connect unit
  • the second port is connected to the antenna corresponding to the (N-1)th radio frequency remote unit among the N radio frequency remote units, and the fourth port of the (N-1)th cross-connect unit is connected to the N radio frequency remote unit.
  • the Nth radio frequency remote unit is connected, and the third port of the (N-1)th cross-connect unit is connected to the antenna corresponding to the Nth radio frequency remote unit.
  • the first module includes a first sub-module and (N-1) second sub-modules, and the first sub-module is connected to each second sub-module; wherein each radio frequency remote unit is connected to the first module Connected, it can be that the first remote radio frequency unit is connected to the first sub-module, and the (N-1) remote radio frequency units among the N remote radio frequency units except the first remote radio frequency unit are connected to the (N-1 ) second sub-modules are connected together, and one of the second sub-modules is connected to a radio frequency remote unit; each set of antennas is connected to the first module, which can be the first antenna and the first sub-module corresponding to the first radio frequency remote unit. Connected, (N-1) groups of antennas in the N groups of antennas except the first antenna are connected to (N-1) second sub-modules, and one second sub-module is connected to a group of antennas.
  • the M remote radio frequency units include a first remote radio frequency unit, divide the first radio frequency signal into M sub-radio frequency signals, and send signals to M groups corresponding to the M remote radio frequency units among the N remote radio frequency units.
  • the antenna sends the M sub-radio frequency signals.
  • the first sub-module can divide the first radio frequency signal into M sub-radio frequency signals, send one sub-radio frequency signal to the first antenna, and connect to (M-1) radio frequency remote units.
  • the (M-1) second sub-modules send the remaining (M-1) sub-radio signals, and the (M-1) radio frequency remote units are the M radio frequency remote units except the first radio frequency remote unit.
  • (M-1) second sub-modules send the (M-1) sub-radio frequency signals to the (M-1) group of antennas corresponding to the (M-1) radio frequency remote units.
  • the M remote radio frequency units do not include the first remote radio frequency unit, the first radio frequency signal is divided into M sub-radio frequency signals, and the M sets of antennas corresponding to the M remote radio frequency units among the N remote radio frequency units are
  • the first sub-module can divide the first radio frequency signal into M sub-radio frequency signals, and send the M sub-radio frequency signals to M second sub-modules connected to M radio frequency remote units; The sub-module sends the M sub-radio frequency signals to M groups of antennas.
  • the first sub-module includes (N-1) cross-connect units, each cross-connect unit includes a first port, a second port, a third port and a fourth port; the first remote radio unit and the first sub-module Connected, it can be that the first radio frequency remote unit is connected to the first port of the first cross-connect unit; the first cross-connect unit is one of the (N-1) cross-connect units, and the fourth port of the first cross-connect unit Grounded, the second port of the first cross-connect unit is connected to the first antenna, and the third port of the first cross-connect unit is connected to one cross-connect unit except the first cross-connect unit among (N-1) cross-connect units or to (N-1) cross-connect units. -1) One second submodule of the second submodules is connected.
  • N 2
  • the first port of the (N-1) cross-connect unit is connected to the first radio frequency unit
  • the fourth port of the (N-1) cross-connect unit is grounded
  • the (N-1) cross-connect unit The second port of the cross-connect unit is connected to the first antenna
  • the third port of the (N-1) cross-connect units is connected to the (N-1) second sub-modules
  • the (N-1) second sub-modules are connected to The antennas in the N groups of antennas except the first antenna are connected.
  • N is greater than 2
  • the first port of the first cross-connect unit among the (N-1) cross-connect units is connected to the first radio frequency unit, the fourth port of the first cross-connect unit is grounded, and the first cross-connect unit
  • the second port of the unit is connected to the first antenna; the first port of the ith cross unit among the (N-1) cross units is connected to the (i-1)th cross unit among the (N-1) cross units.
  • the third port is connected, the i-th The second port of the cross-connect unit is connected to the (i-1) second sub-module among the (N-1) second sub-modules, and the fourth port of the i-th cross-connect unit is grounded, where i is greater than 1 and is an integer less than (N-1); the first port of the (N-1)th cross-connect unit in the (N-1) cross-connect unit is the same as the (N-th) cross-connect unit in the (N-1) 2)
  • the third port of the cross-connect unit is connected, and the second port of the (N-1)-th cross-connect unit is connected to the (N-2)-th second sub-module of the (N-1) second sub-module.
  • the fourth port of the (N-1) cross-connect unit is grounded, and the third port of the (N-1) cross-connect unit is connected to the (N-1)th second sub-module of the (N-1) The two sub-modules are connected.
  • the first module receives the first radio frequency signal from the first radio frequency remote unit.
  • the first cross-connect unit can receive the first radio frequency signal through the first port and send the first radio frequency signal through the third port. signal; or, the first crossover unit receives the first radio frequency signal through the first port, divides the first radio frequency signal into two sub-RF signals, sends one of the two sub-RF signals through the second port, and transmits one of the two sub-RF signals through the third port.
  • the port sends the remaining one of the two sub-RF signals.
  • a communication device which may include N remote radio frequency units, a first module, and N groups of antennas, in which each remote radio frequency unit is connected to the first module, and each group The antenna is connected to the first module, and the N radio frequency remote units correspond to the N groups of antennas one-to-one, where N is an integer greater than 1; wherein, the P groups of antennas in the N groups of antennas can be used to receive P Radio frequency signals, sending the P radio frequency signals to the first module, where P is an integer greater than 1 and less than or equal to N; the first module can be used to receive P radio frequency signals and synthesize the P radio frequency signals is a third radio frequency signal, and sends the third radio frequency signal to a first radio frequency remote unit among the N radio frequency remote units; the first radio frequency remote unit can be used to receive the third radio frequency signal.
  • multiple radio frequency signals from multiple groups of antennas are synthesized into one radio frequency signal through the first module, and the one radio frequency signal is sent to a radio frequency remote unit, so that the multiple radio frequency signals corresponding to the multiple groups of antennas are One radio frequency remote unit or multiple radio frequency remote units in the remote unit are in a dormant state or a non-working state.
  • the embodiment of the present application can Reduce the basic power consumption of communication devices with the radio frequency remote unit as the granularity.
  • the load of the cell corresponding to the first remote radio unit is less than or equal to the load threshold, and the load of the cell corresponding to each of the P remote radio units corresponding to the P group of antennas is The load is less than or equal to the load threshold.
  • the N remote radio frequency units may also include a third remote radio frequency unit, and the load of the cell corresponding to the third remote radio frequency unit is greater than the load threshold; the third remote radio frequency unit The corresponding antenna is used to receive the fourth radio frequency signal and send the fourth radio frequency signal to the first module; the first module is also used to receive the fourth radio frequency signal and send the fourth radio frequency signal to the third radio frequency remote unit; The third radio frequency remote unit can be used to receive the fourth radio frequency signal.
  • the first radio frequency remote unit can also be used to send a first radio frequency signal to the first module; the first module can also be used to receive the first radio frequency signal and divide the first radio frequency signal into M Sub-radio frequency signals, and sending the M sub-radio frequency signals to M groups of antennas corresponding to M radio frequency remote units among the N radio frequency remote units, where M is an integer greater than 1 and less than or equal to N; the M groups of antennas Can be used to send the M sub-radio signals.
  • the load of the cell corresponding to the first remote radio unit is less than or equal to the load threshold, and the load of the cell corresponding to each of the M remote radio units is less than or equal to the load threshold.
  • the first module can be implemented in the following ways: In way 1, the first module includes (N-1) cross-connect units; in way 2, the first module includes the first sub-module and (N-1) ) second sub-modules, the first sub-module includes (N-1) cross-connect units.
  • the first module includes (N-1) cross-connect units, and each cross-connect unit includes a first port, a second port, a third port and a fourth port; the first module can be remote to the first radio frequency in the following manner
  • the unit sends a third radio frequency signal: the first port of the first cross-connect unit sends the first radio frequency signal to the first remote radio frequency unit; wherein the first cross-connect unit is one of the (N-1) cross-connect units.
  • the fourth port of the first cross-connect unit is connected to one of the N remote radio frequency units except the first remote radio unit, and the second port of the first cross-connect unit is connected to the first antenna, the The third port of the first cross-connect unit is connected to one cross-connect unit other than the first cross-connect unit among the (N-1) cross-connect units or to one of the N groups of antennas other than the first antenna. The antennas are connected together.
  • N 2
  • the first port of the (N-1) cross-connect units is connected to the first radio frequency unit
  • the fourth port of the (N-1) cross-connect units is connected to the N remote radio frequency units except The radio frequency remote units other than the first radio frequency remote unit are connected
  • the second port of the (N-1) cross-connect units is connected to the first antenna
  • the third port of the (N-1) cross-connect units is connected to the N group
  • the antennas other than the first antenna among the antennas are connected.
  • N is greater than 2
  • the first port of the first cross-connect unit among the (N-1) cross-connect units is far away from the N radio frequencies.
  • the first remote frequency unit in the unit is connected, and the second port of the first cross-connect unit is connected to the antenna corresponding to the first remote radio unit; the i-th cross-connect unit among the (N-1) cross-connect units
  • the first port of is connected to the third port of the (i-1)th cross-connect unit among the (N-1) cross-connect units, and the second port of the i-th cross-connect unit is connected to the N remote radio frequency units.
  • the antenna corresponding to the i-th remote radio unit is connected.
  • the fourth port of the i-th cross-connect unit is connected to the (i+1)-th radio remote unit among the N radio remote units.
  • the i-th cross-connect unit The third port is connected to the first port of the (i+1)th cross-connect unit among the (N-1) cross-connect units, where i is an integer greater than 1 and less than (N-1); the (N- 1)
  • the second port of the (N-1)-th cross-connect unit in the cross-connect unit is connected to the antenna corresponding to the (N-1)-th radio frequency remote unit in the N radio frequency remote units, and the (N-th) radio frequency remote unit -1)
  • the fourth port of the cross-connect unit is connected to the Nth radio frequency remote unit among the N radio frequency remote units, and the third port of the (N-1)th cross-connect unit is connected to the Nth radio frequency remote unit.
  • the corresponding antenna of the remote unit is connected.
  • the first module includes a first sub-module and (N-1) second sub-modules.
  • the first sub-module is connected to each second sub-module, and the first antenna is one group of antennas in the N groups of antennas; wherein each radio frequency remote unit is connected to the first module and can be: A radio frequency remote unit is connected to the first sub-module.
  • (N-1) radio frequency remote units except the first radio frequency remote unit are connected to the (N-1) second radio frequency remote unit.
  • the sub-modules are connected, and a second sub-module is connected to a radio frequency remote unit; each group of antennas is connected to the first module, which can be: the first antenna corresponding to the first radio frequency remote unit is connected to the first sub-module, N groups (N-1) groups of antennas in the antenna except the first antenna are connected to the (N-1) second sub-modules, and one second sub-module is connected to one group of antennas.
  • the P remote radio frequency units corresponding to the P groups of antennas include a first remote radio frequency unit.
  • the first module can receive P radio frequency signals in the following manner, synthesize the P radio frequency signals into a third radio frequency signal, and Send a third radio frequency signal to the first radio frequency signal: (P-1) second sub-modules connected to the (P-1) group of antennas, which can be used to receive (P-1) from the (P-1) group of antennas ) radio frequency signals, and transmit the (P-1) radio frequency signals to the first sub-module, where the (P-1) group of antennas are in the P group of antennas except for the first antenna corresponding to the first radio frequency remote unit.
  • the first sub-module can be used to receive (P-1) radio frequency signals from the (P-1) second sub-modules, receive one radio frequency signal from the first antenna, and synthesize the P radio frequency signals into a third radio frequency signal, and sending the third radio frequency signal to the first radio frequency remote unit.
  • the P remote radio frequency units corresponding to the P groups of antennas do not include the first remote radio frequency unit.
  • the first module can receive P radio frequency signals in the following manner, synthesize the P radio frequency signals into a third radio frequency signal, and send The first radio frequency signal sends a third radio frequency signal:
  • P second sub-modules connected to the P group of antennas can be used to receive P radio frequency signals from the P group of antennas and send the P radio frequency signals to the first sub-module;
  • the first sub-module can be used to receive P radio frequency signals from P second sub-modules, synthesize the P radio frequency signals into a third radio frequency signal, and send the third radio frequency signal to the first radio frequency remote unit.
  • the first sub-module may include (N-1) cross-connect units, each cross-connect unit including a first port, a second port, a third port and a fourth port; wherein the first remote radio unit and the A sub-module is connected, which can be: the first radio frequency remote unit is connected to the first port of the first cross-connect unit; the first cross-connect unit is one of the (N-1) cross-connect units, and the first cross-connect unit The four ports are grounded, the second port of the first cross-connect unit is connected to the first antenna, and the third port of the first cross-connect unit is connected to one of the (N-1) cross-connect units except the first cross-connect unit or ( One of the N-1) second sub-modules is connected.
  • N 2
  • the first port of the (N-1) cross-connect unit is connected to the first radio frequency unit
  • the fourth port of the (N-1) cross-connect unit is grounded
  • the (N-1) cross-connect unit The second port of the cross-connect unit is connected to the first antenna
  • the third port of the (N-1) cross-connect units is connected to the (N-1) second sub-modules
  • the (N-1) second sub-modules are connected to The antennas in the N groups of antennas except the first antenna are connected.
  • N is greater than 2
  • the first port of the first cross-connect unit among the (N-1) cross-connect units is connected to the first radio frequency unit, the fourth port of the first cross-connect unit is grounded, and the first cross-connect unit
  • the second port of the unit is connected to the first antenna; the first port of the ith cross unit among the (N-1) cross units is connected to the (i-1)th cross unit among the (N-1) cross units.
  • the third port of the i-th cross-connect unit is connected to the (i-1)-th second sub-module of the (N-1) second sub-modules, and the fourth port of the i-th cross-connect unit Grounding, where i is an integer greater than 1 and less than (N-1); the first port of the (N-1)th cross-connect unit in the (N-1) cross-connect unit is connected to the (N-1) The third port of the (N-2)-th cross-connect unit in the cross-connect unit is connected, and the second port of the (N-1)-th cross-connect unit is connected to the (N-th) port of the (N-1) second sub-module.
  • the first cross-connect unit may be configured to receive a third radio frequency signal through the third port and send the third radio frequency signal to the first radio frequency unit through the first port; or, the first cross-connect unit, It can be used to receive a radio frequency signal through the second port, receive a radio frequency signal through the third port, synthesize the two radio frequency signals into a third radio frequency signal, and send the third radio frequency to the first radio frequency remote unit through the first port Signal.
  • the communication device can include N radio frequency remote units, a first module, and N groups of antennas, each of which has a remote radio frequency unit.
  • the unit is connected to the first module, and each group of antennas is connected to the first module.
  • the N radio frequency remote units correspond to the N groups of antennas one-to-one, where N is an integer greater than 1; wherein, in the N groups of antennas, P groups of antennas receive P radio frequency signals and send the P radio frequency signals to the first module, where P is an integer greater than 1 and less than or equal to N; the first module receives P radio frequency signals and sends the P radio frequency signals to the first module.
  • the radio frequency signals are synthesized into a third radio frequency signal, and the third radio frequency signal is sent to a first radio frequency remote unit among the N radio frequency remote units; the first radio frequency remote unit receives the third radio frequency signal.
  • the load of the cell corresponding to the first remote radio unit is less than or equal to the load threshold, and the load of the cell corresponding to each of the P remote radio units corresponding to the P group of antennas is The load is less than or equal to the load threshold.
  • the N remote radio frequency units may also include a third remote radio frequency unit, and the load of the cell corresponding to the third remote radio frequency unit is greater than the load threshold.
  • the method may further include: The antenna corresponding to the third radio frequency remote unit receives the fourth radio frequency signal and sends the fourth radio frequency signal to the first module; the first module receives the fourth radio frequency signal and sends the fourth radio frequency signal to the third radio frequency remote unit. signal; the third radio frequency remote unit receives the fourth radio frequency signal.
  • the method may further include: the first radio frequency remote unit sends a first radio frequency signal to the first module; the first module receives the first radio frequency signal and divides the first radio frequency signal into M sub-units. Radio frequency signals, and sending the M sub-radio frequency signals to M groups of antennas corresponding to M radio frequency remote units among the N radio frequency remote units, where M is an integer greater than 1 and less than or equal to N; the M groups of antennas send The M sub-RF signals.
  • the load of the cell corresponding to the first remote radio unit is less than or equal to the load threshold, and the load of the cell corresponding to each of the M remote radio units is less than or equal to the load threshold.
  • the first module can be implemented in the following ways: In way 1, the first module includes (N-1) cross-connect units; in way 2, the first module includes the first sub-module and (N-1) ) second sub-modules, the first sub-module includes (N-1) cross-connect units.
  • the first module includes (N-1) cross-connect units, and each cross-connect unit includes a first port, a second port, a third port and a fourth port; the first module can be remote to the first radio frequency in the following manner
  • the unit sends a third radio frequency signal: the first port of the first cross-connect unit sends the first radio frequency signal to the first remote radio frequency unit; wherein the first cross-connect unit is one of the (N-1) cross-connect units.
  • the fourth port of the first cross-connect unit is connected to one of the N remote radio frequency units except the first remote radio unit, and the second port of the first cross-connect unit is connected to the first antenna, the
  • the third port of the first cross unit is connected to a cross unit other than the first cross unit among the (N-1) cross units or to a cross unit other than the first antenna among the N groups of antennas. The antennas are connected together.
  • N 2
  • the first port of the (N-1) cross-connect units is connected to the first radio frequency unit
  • the fourth port of the (N-1) cross-connect units is connected to the N remote radio frequency units except The radio frequency remote units other than the first radio frequency remote unit are connected
  • the second port of the (N-1) cross-connect units is connected to the first antenna
  • the third port of the (N-1) cross-connect units is connected to the N group
  • the antennas other than the first antenna among the antennas are connected.
  • N is greater than 2
  • the first port of the first cross-connect unit among the (N-1) cross-connect units is connected to the first remote-frequency unit among the N radio frequency remote units, and the first cross-connect unit
  • the second port is connected to the antenna corresponding to the first remote radio unit;
  • the first port of the i-th cross-connect unit in the (N-1) cross-connect unit is connected to the (N-1)-th cross-connect unit.
  • the third port of the i-1) cross-connect unit is connected, and the second port of the i-th cross-connect unit is connected to the antenna corresponding to the i-th radio frequency remote unit among the N radio frequency remote units.
  • the fourth port is connected to the (i+1)th radio frequency remote unit among the N radio frequency remote units, and the third port of the i-th cross-connect unit is connected to the (i-th) of the (N-1) cross-connect units.
  • the first port of the +1) cross-connect unit is connected, where i is an integer greater than 1 and less than (N-1); the (N-1)th cross-connect unit in the (N-1) cross-connect unit
  • the second port is connected to the antenna corresponding to the (N-1)th radio frequency remote unit among the N radio frequency remote units, and the fourth port of the (N-1)th cross-connect unit is connected to the N radio frequency remote unit.
  • the Nth radio frequency remote unit is connected, and the third port of the (N-1)th cross-connect unit is connected to the antenna corresponding to the Nth radio frequency remote unit.
  • the first module includes a first sub-module and (N-1) second sub-modules.
  • the first sub-module is connected to each second sub-module, and the first antenna is one group of antennas in the N groups of antennas; wherein each radio frequency remote unit is connected to the first module and can be: A radio frequency remote unit is connected to the first sub-module.
  • (N-1) radio frequency remote units except the first radio frequency remote unit are connected to the (N-1) second radio frequency remote unit.
  • the sub-modules are connected, and a second sub-module is connected to a radio frequency remote unit; each group of antennas is connected to the first module, which can be: the first antenna corresponding to the first radio frequency remote unit is connected to the first sub-module, N groups Antenna except (N-1) groups of antennas other than the first antenna are connected to the (N-1) second sub-modules, and one second sub-module is connected to one group of antennas.
  • the P remote radio frequency units corresponding to the P groups of antennas include a first remote radio frequency unit.
  • the first module receives P radio frequency signals, synthesizes the P radio frequency signals into a third radio frequency signal, and transmits the signal to the first radio frequency remote unit.
  • the radio frequency signal transmits the third radio frequency signal, which can be: (P-1) second sub-modules connected to the (P-1) group of antennas receive (P-1) radio frequency signals from the (P-1) group, and sending the (P-1) radio frequency signals to the first sub-module, where the (P-1) group of antennas are the antennas in the P group of antennas except the first antenna corresponding to the first radio frequency remote unit; the first sub-module
  • the module receives (P-1) radio frequency signals from the (P-1) second sub-module, receives a radio frequency signal from the first antenna, synthesizes the P radio frequency signals into a third radio frequency signal, and transmits the signal to the third radio frequency signal.
  • a radio frequency remote unit sends the third radio frequency signal.
  • the P remote radio frequency units corresponding to the P groups of antennas do not include the first remote radio frequency unit.
  • the first module receives P radio frequency signals, synthesizes the P radio frequency signals into a third radio frequency signal, and sends the signal to the first radio frequency remote unit.
  • the signal sending of the third radio frequency signal may be: P second sub-modules connected to the P group of antennas receive P radio frequency signals from the P group of antennas, and send the P radio frequency signals to the first sub-module; the first sub-module
  • the module receives P radio frequency signals from P second sub-modules, synthesizes the P radio frequency signals into a third radio frequency signal, and sends the third radio frequency signal to the first radio frequency remote unit.
  • the first sub-module may include (N-1) cross-connect units, each cross-connect unit including a first port, a second port, a third port and a fourth port; wherein the first remote radio unit and the A sub-module is connected, which can be: the first radio frequency remote unit is connected to the first port of the first cross-connect unit; the first cross-connect unit is one of the (N-1) cross-connect units, and the first cross-connect unit The four ports are grounded, the second port of the first cross-connect unit is connected to the first antenna, and the third port of the first cross-connect unit is connected to one of the (N-1) cross-connect units except the first cross-connect unit or ( One of the N-1) second sub-modules is connected.
  • N 2
  • the first port of the (N-1) cross-connect unit is connected to the first radio frequency unit
  • the fourth port of the (N-1) cross-connect unit is grounded
  • the (N-1) cross-connect unit The second port of the cross-connect unit is connected to the first antenna
  • the third port of the (N-1) cross-connect units is connected to the (N-1) second sub-modules
  • the (N-1) second sub-modules are connected to The antennas in the N groups of antennas except the first antenna are connected.
  • N is greater than 2
  • the first port of the first cross-connect unit among the (N-1) cross-connect units is connected to the first radio frequency unit, the fourth port of the first cross-connect unit is grounded, and the first cross-connect unit
  • the second port of the unit is connected to the first antenna; the first port of the ith cross unit among the (N-1) cross units is connected to the (i-1)th cross unit among the (N-1) cross units.
  • the third port of the i-th cross-connect unit is connected to the (i-1)-th second sub-module of the (N-1) second sub-modules, and the fourth port of the i-th cross-connect unit Grounding, where i is an integer greater than 1 and less than (N-1); the first port of the (N-1)th cross-connect unit in the (N-1) cross-connect unit is connected to the (N-1) The third port of the (N-2)-th cross-connect unit in the cross-connect unit is connected, and the second port of the (N-1)-th cross-connect unit is connected to the (N-th) port of the (N-1) second sub-module.
  • the method may further include: the first cross-connect unit receives a third radio frequency signal through a third port, and sends the third radio frequency signal to the first radio frequency unit through the first port; or, the first The crossover unit receives a radio frequency signal through the second port, receives a radio frequency signal through the third port, synthesizes the two radio frequency signals into a third radio frequency signal, and sends the third radio frequency signal to the first radio frequency remote unit through the first port. Signal.
  • inventions of the present application provide a communication device.
  • the communication device includes at least one processor and an interface circuit.
  • the at least one processor is used to implement the method described in the above-mentioned second aspect and its possible designs, or to implement the above-mentioned method.
  • the interface circuit is used to implement communication with other communication devices.
  • embodiments of the present application provide a computer-readable storage medium. Instructions are stored in the computer-readable storage medium. When run on a computer, the computer is caused to execute the above second aspect and its possible implementation. Design the method described above, or cause the computer to execute the method described in the fourth aspect and possible designs thereof.
  • embodiments of the present application also provide a computer program product, including instructions.
  • the instructions When the instructions are run on a computer, they cause the computer to execute the method in the above second aspect or any one of the possible designs of the second aspect. , or causing the computer to execute the method described in the fourth aspect and possible designs thereof.
  • embodiments of the present application also provide a chip system.
  • the chip system includes at least one processor and an interface circuit.
  • the processor is configured to execute instructions and/or data interaction through the interface circuit, so that the device where the chip system is located executes the above.
  • the chip system can be composed of chips or include chips and other discrete devices.
  • embodiments of the present application also provide a chip, which is used to read the computer program stored in the memory, execute the method in the above second aspect or any one of the possible designs of the second aspect, or execute the above second aspect. Methods in any of the four or fourth possible designs.
  • Figure 1 is a schematic structural diagram of a three-sector network in an embodiment of the present application
  • Figure 2 is a schematic diagram of time domain shutdown in the embodiment of the present application.
  • Figure 3 is a schematic diagram of frequency domain shutdown in the embodiment of the present application.
  • Figure 4 is a schematic diagram of a cross-connect unit provided by an embodiment of the present application.
  • Figure 5 is a circuit schematic diagram of a cross-connect unit provided by an embodiment of the present application.
  • Figure 6 is a schematic diagram of a communication device provided by an embodiment of the present application.
  • Figure 7A is another schematic diagram of a communication device provided by an embodiment of the present application.
  • Figure 7B is another schematic diagram of a communication device provided by an embodiment of the present application.
  • Figure 8 is another schematic diagram of a communication device provided by an embodiment of the present application.
  • Figure 9 is a schematic diagram of the first module provided by the embodiment of the present application.
  • Figure 10 is a schematic diagram of a communication device provided by an embodiment of the present application.
  • Figure 11A is another schematic diagram of a communication device provided by an embodiment of the present application.
  • Figure 11B is another schematic diagram of a communication device provided by an embodiment of the present application.
  • Figure 12 is another schematic diagram of a communication device provided by an embodiment of the present application.
  • Figure 13 is a schematic diagram of the first sub-module provided by the embodiment of the present application.
  • Figure 14 is a schematic diagram of the second sub-module provided by the embodiment of the present application.
  • Figure 15 is a schematic flow chart of a communication method provided by an embodiment of the present application.
  • Figure 16 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • At least one involved in the embodiments of this application includes one or more; at least two includes two or more; wherein, multiple means greater than or equal to two.
  • words such as “first” and “second” are only used for the purpose of distinguishing the description, and cannot be understood as indicating or implying relative importance, nor can they be understood as indicating. Or suggestive order.
  • the first port, the second port, the third port and the fourth port mentioned later are only used to distinguish the four ports and do not limit the size, position order, priority, etc. of the four ports.
  • the first radio frequency signal, the second radio frequency signal and the third radio frequency signal mentioned later are only used to distinguish the three radio frequency signals and do not limit the priorities of the three radio frequency signals.
  • FIG. 1 shows a schematic structural diagram of a three-sector network.
  • the three-sector network includes three RRUs, denoted as RRU1, RRU2, and RRU3, respectively, and three groups of antennas, denoted as antenna 1, antenna 2, and antenna 3, respectively.
  • each RRU includes 4 ports.
  • RRU1 is connected to antenna 1 through a feeder (shown as a black line in Figure 1)
  • RRU2 is connected to antenna 2 through a feeder
  • RRU3 is connected to antenna 3 through a feeder.
  • RRU is mainly responsible for modulation and demodulation of radio frequency signals and power amplification of radio frequency signals.
  • the antenna is mainly responsible for receiving and transmitting electromagnetic wave signals on the base station side.
  • the RRU sends a radio frequency signal to the antenna connected to it; accordingly, the antenna receives The radio frequency signal comes from the RRU and sends the radio frequency signal.
  • Time domain shutdown symbols are used as the granularity, and symbols without service data are shut down to reduce the power consumption of the RRU and achieve energy saving, as shown in Figure 2.
  • Airspace shutdown uses channels as granularity. In low-load scenarios, part of the downlink transmission channels are shut down to reduce the power consumption of the RRU and achieve energy saving, as shown in Figure 3.
  • Figure 3 takes the downlink transmit channel as an example, which is composed of a baseband processing unit (BB), an intermediate radio frequency unit (IRF) and a power amplifier (PA), and the dotted lines in Figure 3 indicate the connection Broken downlink transmission channel.
  • BB baseband processing unit
  • IRF intermediate radio frequency unit
  • PA power amplifier
  • the carrier is used as the granularity, and the carrier corresponding to some frequency bands or frequency points is turned off in the frequency domain to reduce the power consumption of the RRU and achieve the purpose of energy saving.
  • RRUs are usually in a state where multiple channels work together, and the basic power consumption accounts for a large proportion.
  • Commonly used fine-grained energy-saving methods such as time domain shutdown, air domain shutdown, and frequency domain energy saving cannot reduce the basic power consumption of the RRU. power consumption.
  • embodiments of the present application provide a communication method and device to realize one RRU driving multiple sets of antennas through one or more cross-connect units, so that at least one RRU among multiple RRUs corresponding to the multiple sets of antennas Being in the dormant state or not working can reduce the basic power consumption of the RRU and achieve energy saving.
  • the RRU being in the sleep state can be understood as the RRU maintaining the wake-up state with relatively small power consumption.
  • the RRU is not working, it can be understood that the RRU is in a deep energy saving state or a power-off state.
  • the communication method provided by this application can be applied to various communication systems, such as long term evolution (long term evolution, LTE) system, frequency division duplex (FDD) system, time division duplex (TDD) system , full-duplex system, fifth generation (5th generation, 5G) mobile communication system, Internet of things (IoT) system, V2X system, narrowband Internet of things (NB-IoT) system, LTE With 5G hybrid architecture, new radio (NR) system, or applied to future communication systems or other similar communication systems, etc.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • full-duplex system full-duplex system
  • 5th generation, 5G mobile communication system Internet of things (IoT) system, V2X system, narrowband Internet of things (NB-IoT) system
  • LTE With 5G hybrid architecture new radio (NR) system, or applied to future communication systems or other similar communication systems, etc.
  • NR new radio
  • the RRU involved in the embodiment of this application can be deployed in a macro base station, a micro base station, an indoor station, a high-frequency base station, etc.
  • the embodiments of this application do not limit the specific technology and specific equipment form used by the RRU.
  • the embodiments of the present application can implement one RRU to drive multiple sets of antennas through one or more cross-connect units.
  • the cross-connect units provided by the embodiments of the present application are first introduced below.
  • the cross-connect unit may also be called a cross-connector, a cross-connect module, etc.
  • the embodiment of the present application does not limit the naming of the cross-connect unit.
  • FIG. 4 shows a schematic diagram of a cross-connect unit provided by an embodiment of the present application.
  • cross-connect unit 400 includes four ports. These four ports can be respectively recorded as the first port (marked as "1" in Figure 4), the second port (marked as “2” in Figure 4), the third port (marked as “3” in Figure 4) and The fourth port (labeled "4" in Figure 4).
  • the first port and the fourth port can be used as input ports, and the second port and the third port can be used as output ports; or the first port and the fourth port can be used as output ports, and the second port and the third port can be used as input ports.
  • Port; in Figure 4, the first port and the fourth port are input ports, and the second port and the third port are output ports as an example.
  • the cross unit 400 can achieve the following working states through these four ports: pass-through state, cross state, power division state and combined state.
  • the pass-through state means that the radio frequency signal input to the first port is output through the second port, and/or the radio frequency signal input to the fourth port is output through the third port; or, the radio frequency signal input to the second port is output through the first port. , and/or the radio frequency signal input to the third port is output through the fourth port.
  • Cross state means that the radio frequency signal input to the first port is output through the third port, and/or the radio frequency signal input to the fourth port is output through the second port; or, the radio frequency signal input to the second port is output through the fourth port, and /Or the radio frequency signal input to the third port is output through the first port.
  • the power division state means that the RF signal input at the first port or the fourth port is divided into two sub-RF signals. One of the two sub-RF signals is output through the second port, and the remaining sub-RF signal is output through the third port. port output.
  • the cross-connect unit 400 in the power division state can divide a radio frequency signal into two sub-RF signals.
  • the cross-connect unit 400 can divide a radio frequency signal into two sub-RF signals through power division.
  • the output power of the two sub-radio frequency signals may be equally divided or unequally divided, such as being preset according to requirements.
  • the combined state means that the radio frequency signal input to the second port and the radio frequency signal input to the third port are combined into one radio frequency signal, and the one radio frequency signal is output through the first port or the fourth port.
  • the cross-connect unit 40 in the synthesis state can synthesize two radio frequency signals into one radio frequency signal.
  • the cross-connect unit 400 can synthesize two radio frequency signals into one radio frequency signal through time division or frequency division.
  • the embodiment of the present application is not limited thereto. Here it is.
  • FIG. 5 shows a schematic circuit diagram of a cross-connect unit provided by an embodiment of the present application.
  • the cross unit 400 includes two switches (such as radio frequency switches, marked S1 and S2 respectively), four diodes (marked P1, P2, P3, and P4 respectively), two microstrip lines (such as 1/4 wavelength microstrip line , marked as R1 and R2 respectively) and two capacitors (marked as C1 and C2 respectively).
  • the switch S1 is connected to the first port and the fourth port, the switch S1 is connected to the diode P1 and the microstrip line R1, the diode P1 is connected in parallel with the microstrip line R1, the microstrip line R1 is connected in series with the diode P2, and one of the capacitor C1 One side of the capacitor is connected to diode P1 and diode P2, and the other side of capacitor C1 is connected to ground.
  • the switch S2 is connected to the second port and the third port.
  • the switch S2 is connected to the diode P3 and the microstrip line R2.
  • the diode P3 is connected in parallel with the microstrip line R2.
  • the microstrip line R2 is connected in series with the diode P4.
  • One side of the capacitor C2 is connected with Diode P3 and diode P4 are connected, and the other side of capacitor C2 is connected to ground.
  • the crossover unit 400 can realize switching between the pass-through state, the crossover state, the power division state and the combined state by controlling the working states of the switch S1, the switch S2, the diode P1, the diode P2, the diode P3 and the diode P4.
  • the switch S1 selects the diode P2
  • the switch S2 selects the diode P4
  • both the diode P2 and the diode P4 are in the negative bias cut-off state.
  • the cross-connect unit 400 is in the straight-through state, that is, the radio frequency signal input from the first port passes through the third port. Two ports are output, and the RF signal input from the fourth port is output through the third port.
  • switch S1 selects diode P1
  • switch S2 selects diode P3
  • both diode P1 and diode P3 are in the negative bias cutoff state.
  • the crossover unit 400 is in the crossover state, that is, the radio frequency signal input from the first port passes through The third port outputs, and the radio frequency signal input from the fourth port is output through the second port.
  • switch S1 selects diode P2
  • switch S2 selects diode P4
  • diode P2 and diode P4 are both in a forward bias conduction state
  • capacitor C1 and capacitor C2 can be used as loading capacitors to change the phase state of the cross unit 400.
  • the cross-connect unit 400 may be in a power division state, that is, the radio frequency signal input by the first port or the fourth port is divided into two sub-RF signals, one of the two sub-RF signals is output through the second port, and the remaining one is output through the second port.
  • the sub-RF signal is output through the third port.
  • switch S1 selects diode P2
  • switch S2 selects diode P4
  • diode P2 and diode P4 are both in a forward bias conduction state
  • capacitor C1 and capacitor C2 can be used as loading capacitors to change the phase state of the cross unit 400.
  • the cross-connect unit 400 may be in a synthesis state, that is, the radio frequency signal input to the second port and the radio frequency signal input to the third port are synthesized into one radio frequency signal, and output through the first port or the fourth port.
  • the working modes of each device in the cross unit 400 may be the same when the cross unit 400 is in the power division state and in the combined state. The difference is that if the radio frequency signal is input from the first port or the fourth port, then the The cross-connect unit 400 is in the power division state; if the radio frequency signal is input from the second port and the third port, the cross-connect unit 400 is in the combined state.
  • the working modes of each device in the cross unit 400 may also be different, which is not limited in the embodiment of the present application.
  • circuit structure of FIG. 5 is only an example, and the embodiments of the present application are not limited thereto.
  • Figure 6 shows a schematic diagram of a communication device provided by an embodiment of the present application.
  • the communication device includes N RRUs, a first module and N sets of antennas.
  • Each RRU among the N RRUs is connected to the first module, for example, through a feeder.
  • the first module is connected to each of the N groups of antennas, for example, through a feeder.
  • the N is an integer greater than 1 ( Figure 6 takes N greater than or equal to 3 as an example).
  • the N RRUs correspond to N groups of antennas one-to-one.
  • N RRUs and N groups of antennas means that one RRU among the N RRUs corresponds to one group of antennas among the N groups of antennas, and one group of antennas among the N groups of antennas corresponds to one RRU among the N RRUs.
  • N RRUs include RRU 1, which corresponds to antenna 1 in the N group of antennas. It can be understood that the radio frequency signal of RRU 1 is used to drive the antenna 1 during deployment. Taking Figure 1 as an example, RRU1 corresponds to antenna 1, RRU2 corresponds to antenna 2, and RRU3 corresponds to antenna 3.
  • the communication device can transmit and receive signals, and can also transmit and receive signals.
  • the communication device can both send and receive signals, the communication device can send the signal first and then receive the signal, or receive the signal first and then send the signal. This is not limited in the embodiments of the present application. .
  • the communication device can transmit signals.
  • the N RRUs include the first RRU.
  • the first RRU may be used to send a first radio frequency signal to the first module.
  • the first module is configured to receive the first radio frequency signal from the first RRU, divide the first radio frequency signal into M sub-radio frequency signals, and send the M sub-radio frequency signals to M groups of antennas corresponding to M RRUs among the N RRUs.
  • Signal, M is an integer greater than 1 and less than or equal to N.
  • the M sets of antennas can be used to receive M sub-radio frequency signals from the first module and send the M sub-radio frequency signals.
  • the M sub-radio frequency signals may be sub-radio frequency signals obtained by one or more power divisions of the first radio frequency signal, but the embodiment of the present application is not limited thereto.
  • the radio frequency signal of the first RRU is divided into multiple sub-RF signals, and the multiple sub-RF signals are sent by multiple groups of antennas, thereby realizing one RRU driving two or more groups of antennas, breaking the problem of one RRU driving two or more groups of antennas.
  • a mode that drives a group of antennas so that one or more RRUs are in shutdown mode. In the sleep state or inactive state, the basic power consumption of the RRU can be reduced at the RRU granularity.
  • the load of the cell corresponding to the first RRU is less than or equal to the load threshold, and the load of the cell corresponding to each of the M RRUs is also less than or equal to the load threshold.
  • the M RRUs may include the first RRU.
  • the sub-RF signal of the radio frequency signal of the first RRU may drive the antenna corresponding to the first RRU; or the M RRUs may not include the first RRU.
  • the first RRU in this case, the sub-radio frequency signal of the radio frequency signal of the first RRU does not drive the antenna corresponding to the first RRU.
  • the cell corresponding to the RRU can be understood as the cell served by the RRU, or the cell covered by the RRU, or the cell served by the antenna corresponding to the RRU, or the cell covered by the antenna corresponding to the RRU, etc.
  • the load threshold may be predefined by the system or set by the user, which is not limited in the embodiment of this application. For example, the load threshold may be 30%, or 50%, etc.
  • the first module may divide the first radio frequency signal into M sub-radio frequency signals according to the load corresponding to each RRU among the N RRUs. For example, the first module can determine the RRUs that can be in the dormant state or the inactive state based on the load of the cell corresponding to each RRU among the N RRUs, and determine the number of RRUs that need to be in the dormant state or the inactive state based on the number of RRUs that need to be in the dormant state or the inactive state. The first radio frequency signal is divided into a number of sub-radio frequency signals.
  • the first module determines that the RRU may be in a dormant state or an inoperative state. For another example, if the load value of the RRU is greater than the load threshold, the first module determines that the RRU cannot be in a sleep state or an inactive state.
  • the first module determines, based on the load corresponding to each RRU among the N RRUs, that the load of the cell corresponding to each RRU among the Q RRUs among the N RRUs is less than or equal to the load threshold, that is, the Q RRUs can be in a dormant state. or not working.
  • the Q is an integer greater than or equal to M and less than or equal to N.
  • the first module can select one RRU from the Q RRUs as the first RRU, and select M RRUs from the remaining (Q-1) RRUs (in this case, the first RRU does not drive its own corresponding antenna) or select (M-1) RRUs (in this case, the first RRU drives its corresponding antenna).
  • the second RRU is an RRU among the N RRUs except the Q RRUs, that is, the load of the cell corresponding to the second RRU is greater than the load threshold.
  • the second RRU can be used to send a second radio frequency signal to the first module.
  • the first module may be configured to receive a second radio frequency signal from the second RRU and send the second radio frequency signal to the second antenna corresponding to the second RRU.
  • the second antenna is used to send the second radio frequency signal.
  • the RRU in the communication device can also drive its corresponding antenna through the first module, which has good compatibility and can ensure the service requirements of its corresponding cell.
  • the communication device may transmit the signal.
  • the communication device can receive signals.
  • the N RRUs include the first RRU.
  • P groups of antennas in the N groups of antennas can be used to receive P radio frequency signals and send the P radio frequency signals to the first module.
  • One group of antennas receives one radio frequency signal, and P is an integer greater than 1 and less than or equal to N.
  • the first module may be configured to receive P radio frequency signals from P groups of antennas, synthesize the P radio frequency signals into a third radio frequency signal, and send the third radio frequency signal to the first RRU.
  • the first RRU may be used to receive a third radio frequency signal from the first module.
  • the third radio frequency signal may be a radio frequency signal synthesized by using time division or frequency division of the P radio frequency signals, but the embodiment of the present application is not limited thereto.
  • multiple radio frequency signals from multiple sets of antennas are synthesized into one radio frequency signal and sent to one RRU, thereby enabling one RRU to receive radio frequency signals from two or more sets of antennas, breaking the problem of one RRU
  • the mode of receiving radio frequency signals from a group of antennas puts one or more RRUs in a dormant or inactive state, which can reduce the basic power consumption of RRUs at the RRU granularity.
  • the load of the cell corresponding to the first RRU is less than or equal to the load threshold, and the load of the cell corresponding to each of the P RRUs is also less than or equal to the load threshold.
  • the P RRUs may include the first RRU, in which case the first RRU may receive radio frequency signals from its corresponding antenna; or the P RRUs may not include the first RRU, in which case In this case, the first RRU does not receive radio frequency signals from its corresponding antenna.
  • the first module may synthesize P radio frequency signals of P groups of antennas corresponding to P RRUs into a third radio frequency signal according to the load corresponding to each RRU among the N RRUs. For example, the first module can determine the RRUs that can be in the dormant state or the inactive state based on the load of the cell corresponding to each RRU among the N RRUs, and determine the number of RRUs that need to be in the dormant state or the inactive state based on the number of RRUs that need to be in the dormant state or the inactive state. The number of antenna groups for the RF signal to be synthesized.
  • the first module determines that the RRU may be in a dormant state or an inactive state. For another example, if the load value of the RRU is greater than the load threshold, the first module determines that the RRU cannot be in a sleep state or an inactive state.
  • the first module determines each of the Q RRUs among the N RRUs based on the load corresponding to each RRU among the N RRUs.
  • the load of the cell corresponding to the RRU is less than or equal to the load threshold, that is, the Q RRUs may be in a dormant state or inactive state.
  • the Q is an integer greater than or equal to M and less than or equal to N.
  • the first module may select one RRU from the Q RRUs as the first RRU for receiving radio frequency signals; and select P RRUs from the remaining (Q-1) RRUs (in this case, the first RRU The RRU does not receive radio frequency signals from its corresponding antenna) or selects (M-1) RRUs (in this case, the first RRU receives radio frequency signals from its corresponding antenna), which is used to convert the P RRUs corresponding to P radio frequency signals from P groups of antennas are used as radio frequency signals to be synthesized.
  • the third RRU is an RRU among the N RRUs except the Q RRUs, that is, the load of the cell corresponding to the third RRU is greater than the load threshold.
  • the antenna corresponding to the third RRU may be used to receive a fourth radio frequency signal and send the fourth radio frequency signal to the first module.
  • the first module may be configured to receive a fourth radio frequency signal from an antenna corresponding to the third RRU, and send the fourth radio frequency signal to the third RRU.
  • the fourth radio frequency signal is used to receive the fourth radio frequency signal from the first module.
  • the RRU in the communication device can also receive the radio frequency signal from its corresponding antenna through the first module, which has good compatibility and can ensure the service requirements of its corresponding cell.
  • the communication device may also include a controller (not shown in Figure 6), which may be used to control the first module to divide the first radio frequency signal into M sub-radio frequency signals, or may be used to control the first module to divide the first radio frequency signal into M sub-radio frequency signals.
  • the P radio frequency signals are synthesized into a third radio frequency signal, or can be used to control the first radio frequency signal to be divided into M sub-radio frequency signals and to control the first module to synthesize the P radio frequency signals into a third radio frequency signal.
  • the controller may or may not be integrated in the first module, which is not limited in the embodiments of this application.
  • the first module in the above communication device may be used to divide the first radio frequency signal into M sub-radio frequency signals, and/or synthesize the P radio frequency signals into a third radio frequency signal.
  • the first module may divide the first radio frequency signal into M sub-radio frequency signals through one or more cross-over units, and/or synthesize P radio frequency signals into a third radio frequency signal through one or more cross-over units.
  • the cross unit is shown in Figure 4 or Figure 5 and will not be described again here.
  • the first module can be implemented in the following manner: In a first way, the first module includes (N-1) cross-connect units; in a second way, the first module includes a first sub-module and (N-1) second cross-connect units. Sub-module, the first sub-module includes (N-1) cross-connect units.
  • the first module may include (N-1) cross-connect units. It is assumed that the (N-1) cross-connect units include the first cross-connect unit.
  • the first RRU is connected to the first port of the first cross-connect unit.
  • the first RRU can send a first radio frequency signal to the first port of the first cross-connect unit.
  • the fourth port of the first cross-connect unit may be connected to one RRU among the N RRUs except the first RRU, and may be used to receive a radio frequency signal of the one RRU.
  • the second port of the first cross-connect unit may be connected to the first antenna corresponding to the first RRU, and is used to send the first radio frequency signal or a sub-radio frequency signal of the first radio frequency signal to the first antenna.
  • the third port of the first cross-connect unit can be connected to the first port of one of the (N-1) cross-connect units except the first cross-connect unit, and can be used to send the third port to the first port of the one cross-connect unit.
  • a radio frequency signal or a sub-radio frequency signal of the first radio frequency signal; alternatively, the third port of the first crossover unit can be connected to a group of antennas in the N group of antennas except the first antenna, and can be used to transmit to the group of antennas.
  • a sub-RF signal of the first RF signal can be connected to the first antenna corresponding to the first RRU, and is used to send the first radio frequency signal or a sub-radio frequency signal of the first radio frequency signal to the first antenna.
  • the first RRU is RRU1
  • the first antenna is antenna 1
  • the remaining RRUs are RRU2, and the remaining antennas are antenna 2
  • a schematic diagram of the communication device is shown as an example.
  • the first module consists of a cross-connect unit, in which the first port of the cross-connect unit is connected to RRU1, the fourth port of the cross-connect unit is connected to RRU2, and the second port of the cross-connect unit is connected to antenna 1.
  • the third port of the unit is connected to antenna 2.
  • the first port of the cross-connect unit receives the first radio frequency signal from RRU1, divides the first radio frequency signal into two sub-RF signals, and sends one of the sub-RF signals to the corresponding antenna 1 of RRU1 itself. And the remaining sub-radio frequency signal is sent to the antenna 2 corresponding to the RRU2, so that the RRU2 does not need to drive the antenna 2, so that the RRU2 can switch to a dormant state or an inactive state, reducing the basic power consumption of the RRU.
  • the second port of the crossover unit receives the radio frequency signal from antenna 1
  • the third port of the crossover unit receives the radio frequency signal from antenna 3.
  • the two radio frequency signals are synthesized into one radio frequency signal and passed through the third port.
  • One port is sent to RRU1, so that RRU2 does not need to receive radio frequency signals from its own corresponding antenna, so that RRU2 can switch to a sleep state or an inactive state, reducing the basic power consumption of the RRU.
  • the first module is composed of 2 or more cross units.
  • the first port of the first cross-connect unit among (N-1) cross-connect units is connected to the first RRU (denoted as RRU1) among the N RRUs
  • the second port of the first cross-connect unit is connected to RRU1
  • the corresponding antenna (denoted as antenna 1) is connected
  • the fourth port of the first cross-connect unit is connected to the second RRU (denoted as RRU2) among the N RRUs
  • the third port of the first cross-connect unit is connected to the ( The first port of the second cross-connect unit among the N-1) cross-connect units is connected.
  • the first port of the i-th cross-connect unit in the (N-1) cross-connect unit is connected to the third port of the (i-1)-th cross-connect unit in the (N-1) cross-connect unit, and the i-th cross-connect unit
  • the second port of the cross-connect unit is connected to the antenna corresponding to the i-th RRU among the N RRUs, and the fourth port of the i-th cross-connect unit is connected to
  • the (i+1)th RRU among the N RRUs is connected, and the third port of the i-th cross-connect unit is connected to the first port of the (i+1)-th cross-connect unit among the (N-1) cross-connect units. port is connected.
  • i is an integer greater than 1 and less than (N-1).
  • the first port of the (N-1)th cross-connect unit among the (N-1) cross-connect units is connected to the third port of the (N-2)-th cross-connect unit among the (N-1) cross-connect units.
  • the second port of the (N-1)th cross-connect unit is connected to the antenna corresponding to the (N-1)th RRU among the N RRUs
  • the fourth port of the (N-1)-th cross-connect unit is connected to the The Nth RRU among the N RRUs
  • the third port of the (N-1) cross-connect unit is connected to the antenna corresponding to the Nth RRU.
  • the first RRU involved in the embodiment of the present application may be any RRU from the first RRU to the (N-1)th RRU among the N RRUs.
  • the first cross-connect unit connected to the first RRU can receive the first radio frequency signal through the first port and send the first radio frequency signal through the third port; or it can also receive the first radio frequency signal through the first port. signal, divide the first radio frequency signal into two sub-RF signals, send one of the sub-RF signals through the second port, and send the remaining one of the sub-RF signals through the third port.
  • the first cross-connect unit connected to the first RRU may receive the third radio frequency signal through the third port, and send the third radio frequency signal to the first RRU through the first port of the first cross-connect unit; or , the first cross-connect unit connected to the first RRU can receive the radio frequency signal of the first antenna through the second port, receive a radio frequency signal through the third port, synthesize the two radio frequency signals into a third radio frequency signal, and pass the first radio frequency signal The first port of the cross-connect unit sends the third radio frequency signal to the first RRU.
  • the communication device shown in FIG. 6, FIG. 7A and FIG. 7B is taken as an example that the RRU includes one port.
  • the RRU can support multiple ports.
  • the first module may include two groups of ports, where each group of ports includes H ports.
  • Each of the N groups of antennas includes H ports.
  • the H is an integer greater than or equal to 1.
  • the two groups of ports of the first module are divided into a first group of ports and a second group of ports.
  • the j-th port in the first group of ports is connected to the j-th port of each RRU in the N RRUs.
  • the second group of ports is The j-th port in the group of ports is connected to the j-th port of each group of antennas in the N groups of antennas, as shown in Figure 8.
  • j is an integer greater than 0 and less than or equal to H.
  • the RRU supports 4 ports and N equals 3 as an example.
  • the first module may include H groups of cross-connect networks, each of which includes (N-1) cross-connect units.
  • connection method of the (N-1) cross-connect units please refer to The connection method of the (N-1) cross-connect units in Figure 7A or Figure 7B will not be described again here.
  • the H group of cross-connect networks corresponds to H ports one-to-one, that is, one group of cross-connect networks in the H group of cross-connect networks corresponds to one of the H ports, and one of the H ports also corresponds to one of the H group of cross-connect networks. Set of crossover network pairs.
  • the k-th cross-connect network in the H group of cross-connect networks is connected to the k-th port of each of the N RRUs, and the k-th cross-connect network is connected to the k-th port of each of the N groups of antennas.
  • k is an integer greater than 0 and less than or equal to H.
  • connection relationship between the (N-1) cross-connect units in the k-th cross-connect network, N RRUs, and N groups of antennas can be as follows: The first cross-connect unit among the (N-1) cross-connect units The first port is connected to the k-th port of the first RRU among the N RRUs; the second port of the x-th cross-connect unit among the (N-1) cross-connect units is connected to the x-th port of the N RRUs.
  • the k-th port of the antenna corresponding to the RRU is connected, and the fourth port of the x-th cross-connect unit is connected to the k-th port of the (x+1)-th RRU among the N RRUs, where x is greater than 0 and An integer less than N; the third port of the (N-1)th cross-connect unit among the (N-1) cross-connect units is connected to the k-th port of the antenna corresponding to the N-th RRU, as shown in Figure 9 .
  • the RRU supports 4 ports and N equals 3 as an example.
  • R1P1 in Figure 9 represents the first port of RRU1, and A1P1 represents the first port of antenna 1. The rest are similar and will not be explained one by one here.
  • the first module includes a first sub-module and (N-1) second sub-modules.
  • the first sub-module and each of the (N-1) second sub-modules are as shown in the figure Shown in 10.
  • the first sub-module is connected to the first RRU, and the first sub-module is also connected to the first antenna corresponding to the first RRU.
  • (N-1) second submodules are connected to (N-1) RRUs among the N RRUs except the first RRU, and one second submodule is connected to one RRU.
  • the (N-1) second sub-modules are also connected to (N-1) sets of antennas corresponding to the (N-1) RRUs, and one second sub-module is connected to a set of antennas.
  • the first module can receive the first radio frequency signal from the first RRU, divide the first radio frequency signal into M sub-RF signals, and send the M sub-RF signals to M groups of antennas corresponding to the M RRUs.
  • the M RRUs may include the first RRU, or may not include the first RRU.
  • M RRUs include the first RRU, then the first sub-module can be used to receive the first radio frequency signal from the first RRU, divide the first radio frequency signal into M sub-radio frequency signals, and send the first radio frequency signal to the first radio frequency signal corresponding to the first RRU.
  • the antenna sends a sub-RF signal, and to the The (M-1) second sub-modules connected to (M-1) RRUs transmit the remaining (M-1) sub-radio signals.
  • the (M-1) RRUs are the M RRUs except the first RRU. RRU.
  • the (M-1) second sub-modules can be used to send the (M-1) sub-radio frequency signals to the (M-1) group of antennas corresponding to the (M-1) RRUs.
  • the M RRUs do not include the first RRU.
  • the first sub-module may be used to receive the first radio frequency signal from the first RRU, divide the first radio frequency signal into M sub-radio frequency signals, and transmit the signal to the M sub-radio frequency signals.
  • the M second sub-modules connected to the RRU send the M sub-radio frequency signals.
  • the M second sub-modules may be used to send the M sub-radio signals to M groups of antennas corresponding to the M RRUs.
  • the specific implementation method of the first sub-module dividing the first radio frequency signal into M sub-radio signals can be referred to the aforementioned description of the first module dividing the first radio frequency signal into M sub-radio signals, which will not be described again here.
  • the first module can receive P radio frequency signals from P groups of antennas corresponding to P RRUs, synthesize the P radio frequency signals into a third radio frequency signal, and send the third radio frequency signal to the first RRU.
  • the P RRUs may include the first RRU, or may not include the first RRU.
  • the P RRUs include the first RRU, then the (P-1) second sub-modules connected to the (P-1) group of antennas can be used to receive (P-1) from the (P-1) group of antennas. radio frequency signals, and sends the (P-1) radio frequency signals to the first sub-module.
  • the (P-1) group of antennas are antennas corresponding to the (P-1) RRUs, and the (P-1) RRUs are the antennas corresponding to the (P-1) RRUs. RRUs other than the first RRU among the P RRUs.
  • the first sub-module can be used to receive radio frequency signals from the first antenna corresponding to the first RRU, receive (P-1) radio frequency signals from the (P-1) second sub-modules, and convert the P radio frequency signals synthesize a third radio frequency signal, and send the third radio frequency signal to the first RRU.
  • the first RRU is used to receive the third radio frequency signal.
  • the P RRUs do not include the first RRU, then the P second sub-modules connected to the P groups of antennas can be used to receive P radio frequency signals from the P groups of antennas and send the P radio frequency signals to the first sub-module.
  • Radio frequency signals, the P group of antennas are antennas corresponding to P RRUs.
  • the first sub-module may be configured to receive P radio frequency signals from the P second sub-modules, synthesize the P radio frequency signals into a third radio frequency signal, and send the third radio frequency signal to the first RRU.
  • the first RRU is used to receive the third radio frequency signal.
  • first sub-module synthesizing P radio frequency signals into a third radio frequency signal please refer to the related description of the aforementioned first module synthesizing P radio frequency signals into a third radio frequency signal, which will not be described again here.
  • the above-mentioned first sub-module may include (N-1) cross-connect units.
  • the cross-connect units are shown in, for example, Figures 4 and 5, which will not be described again here.
  • the following describes the connection method between the (N-1) cross-connect units in the first sub-module.
  • the first RRU is RRU1
  • the first antenna is Antenna 1
  • the remaining RRUs are RRU2, and the remaining antennas are Antenna 2
  • a schematic diagram of the communication device is shown as an example.
  • the first sub-module consists of 1 cross unit.
  • the first port of the cross unit is connected to RRU1
  • the second port of the cross unit is connected to antenna 1
  • the fourth port of the cross unit is grounded
  • the third port of the cross unit is connected to the second sub-module
  • the second sub-module The module is connected to RRU2, and the second sub-module is also connected to antenna 2.
  • the first port of the cross-connect unit receives the first radio frequency signal from RRU1, divides the first radio frequency signal into two sub-RF signals, and sends one of the sub-RF signals to the corresponding antenna 1 of RRU1 itself. And send the remaining sub-RF signal to the second sub-module, and then the second sub-module sends it to the antenna 2 corresponding to RRU2, so that RRU2 does not need to drive antenna 2, so that the RRU2 can switch to a dormant state or a non-working state, Reduce the basic power consumption of RRU.
  • the third port of the cross unit receives the radio frequency signal of the second sub-module
  • the second port of the cross unit receives the radio frequency signal of antenna 1
  • passes The first port sends the third radio frequency signal to the first RRU, so that RRU2 does not need to receive the radio frequency signal from its own corresponding antenna, so that the RRU2 can switch to a sleep state or an inactive state, reducing the basic power consumption of the RRU.
  • the first sub-module consists of 2 or more cross units.
  • the first port of the first cross-connect unit among the (N-1) cross-connect units is connected to the first RRU (denoted as RRU1) among the N RRUs
  • the second port of the first cross-connect unit is connected to the first RRU.
  • the antennas corresponding to RRUs (recorded as antenna 1) are connected, the fourth port of the first cross-connect unit is grounded, and the third port of the first cross-connect unit is connected to the second cross-connect unit among (N-1) cross-connect units.
  • the first port is connected.
  • the first port of the i-th cross-connect unit in the (N-1) cross-connect unit is connected to the third port of the (i-1)-th cross-connect unit in the (N-1) cross-connect unit, and the i-th cross-connect unit
  • the second port of the cross-connect unit is connected to the (i-1) second sub-module among the (N-1) second sub-modules, the fourth port of the i-th cross-connect unit is grounded, and the i-th cross-connect unit
  • the third port of is connected to the first port of the (i+1)th cross-connect unit among the (N-1) cross-connect units.
  • i is an integer greater than 1 and less than (N-1).
  • the first port of the (N-1)th cross-connect unit among the (N-1) cross-connect units is connected to the third port of the (N-2)-th cross-connect unit among the (N-1) cross-connect units.
  • the second port of the (N-1)th cross-connect unit and the (N-2)th port of the (N-1) second sub-module The second sub-module is connected, the fourth port of the (N-1) cross-connect unit is grounded, and the third port of the (N-1) cross-connect unit is connected to the (N-1) second sub-module. N-1) second sub-modules are connected.
  • the first RRU involved in the embodiment of this application may be the first RRU among the N RRUs.
  • the first cross-connect unit connected to the first RRU is the first cross-connect unit among (N-1) cross-connect units.
  • the first cross-connect unit can receive the first radio frequency signal through the first port and send the first radio frequency signal through the third port; or it can also receive the first radio frequency signal through the first port and send the first radio frequency signal to the first port.
  • the RF signal is divided into two sub-RF signals, one of which is sent through the second port, and the remaining one of the sub-RF signals is sent through the third port.
  • the first cross-connect unit may receive the third radio frequency signal through the third port and send the third radio frequency signal to the first RRU through the first port; or, the first cross-connect unit may receive the third radio frequency signal through the third port.
  • the port receives a radio frequency signal, receives a radio frequency signal from the first antenna through the second port, synthesizes the two radio frequency signals into a third radio frequency signal, and sends the third radio frequency signal to the first RRU through the first port.
  • the communication device shown in FIG. 10, FIG. 11A and FIG. 11B is taken as an example that the RRU includes one port.
  • the RRU may support multiple ports.
  • the first sub-module may include (N+1) groups of ports, where each group of ports includes H ports. Three groups of ports in (N-1) second sub-modules, each group of ports includes H ports, as shown in Figure 12.
  • the (N+1) group of ports of the first submodule is recorded as the third group of ports and the N group of ports
  • the three groups of ports of the second submodule are recorded as the fourth group of ports, the fifth group of ports, and the sixth group of ports. .
  • the j-th port in the third group of ports in the first sub-module is connected to the j-th port of the first RRU.
  • the j-th port of a group of N ports in the first sub-module is connected to the j-th port of the first antenna; a group of ports in the remaining (N-1) group of ports is connected to (N-1)
  • a fourth group of ports of a second sub-module in the second sub-module is connected, wherein the j-th port in the group of ports is connected to the j-th port in the fourth group of ports.
  • the fifth group of ports of each second submodule is connected to H ports of one RRU among (N-1) RRUs among the N RRUs except the first RRU, where the jth port of the fifth group of ports Connected to the j-th port among the H ports.
  • the sixth group of ports of each second sub-module is connected to H ports of one group of antennas in the (N-1) group of antennas except the first antenna in the N groups of antennas, where the jth port of the sixth group of ports The port is connected to the j-th port among the H ports.
  • j is an integer greater than 0 and less than or equal to H.
  • the RRU supports 4 ports and N equals 3 as an example.
  • the first sub-module may include H groups of cross-connect networks, each of which includes (N-1) cross-connect units.
  • the connection method of the (N-1) cross-connect units is as follows: Refer to the connection method of the (N-1) cross-connect units in Figure 11A or Figure 11B, which will not be described again here.
  • the H group of cross-connect networks corresponds to the H ports of the first RRU one-to-one, that is, one group of cross-connect networks in the H group of cross-connect networks corresponds to one of the H ports of the first RRU, and one of the H ports of the first RRU A port of also corresponds to a group of cross-connect networks in the H group of cross-connect networks.
  • the k-th cross-connect network in the H group of cross-connect networks is connected to the k-th port of the first RRU.
  • the k-th cross-connect network is connected to the k-th port of the first antenna corresponding to the first RRU.
  • the k-th cross-connect network is connected to the k-th port of the first RRU.
  • the network is connected to the k-th port in the fourth group of ports in each second sub-module. where k is an integer greater than 0 and less than or equal to H.
  • connection relationship between the (N-1) cross-connect units in the k-th cross-connect network and the first RRU, the first antenna, and the (N-1) second sub-modules can be as follows:
  • the (N -1) The first port of the first cross unit is connected to the kth port of the first RRU, and the second port of the first cross unit is connected to the kth port of the first antenna;
  • the ( The second port of the x-th cross-connect unit in the N-1)-th cross-connect unit is connected to the k-th port in the fourth group of ports in the (x-1)-th second sub-module, where x is greater than 1 and an integer less than or equal to N;
  • the third port of the (N-1)th cross-connect unit in the (N-1) cross-connect unit and the fourth group of ports in the (N-1)-th second sub-module The kth port in is connected, as shown in Figure 13.
  • RRU supports 4 ports and N equals 3 as an example.
  • R1P1 in Figure 13 represents the first port of RRU1
  • A1P1 represents the first port of antenna 1
  • M1P1 represents the first port in the fourth group of ports in the first second sub-module, and the rest are similar, here No more explanations one by one.
  • the second sub-module can be used to receive radio frequency signals or sub-radio frequency signals from the first sub-module, and can also be used to receive radio frequency signals from the RRU connected to it. And/or, the second sub-module may also be used to send the radio frequency signal from the antenna to the RRU corresponding to the antenna, or to send the radio frequency signal from the antenna to the first sub-module signal. Moreover, the second sub-module, RRU and antenna can be deployed nearby, which can reduce losses.
  • a second sub-module may include a switch (such as a radio frequency switch, denoted as S3), and the switch S3 may be connected to the first sub-module, an RRU, and a set of antennas corresponding to the RRU.
  • a switch such as a radio frequency switch, denoted as S3
  • the second sub-module can be connected to the first sub-module and disconnected from an RRU; or the second sub-module can be disconnected from the first sub-module and connected to an RRU.
  • the second submodule can receive the first radio frequency signal or sub-radio frequency signal from the first submodule, And send the first radio frequency signal or sub-radio frequency signal to the antenna 2; and/or, the second sub-module can receive the radio frequency signal from the antenna 2 and send the radio frequency signal to the first sub-module.
  • the second sub-module can receive the radio frequency signal from RRU2 and send the radio frequency signal to antenna 2; and/or, the third sub-module The second sub-module can receive the radio frequency signal from antenna 2 and send the radio frequency signal to RRU2.
  • Table 1 takes the communication device described in any one of Figure 6, Figure 7A, Figure 7B, Figure 8, Figure 10, Figure 11A, Figure 11B or Figure 12 as an example to show the situation of signal transmission in a three-sector network.
  • RRU1 when cross unit 1 is in the cross state and cross unit 2 is in the power split state, RRU1 can drive antenna 2 and antenna 3, making RRU 2 and RRU 3 in the sleep state.
  • RRU1 can drive antenna 1 and antenna 2 so that RRU2 is in the sleep state.
  • RRU1 can drive antenna 1 and antenna 3 so that RRU3 is in a sleep state.
  • RRU1 can drive antenna 1, antenna 2 and antenna 3 so that RRU2 and RRU3 are in the sleep state.
  • Table 2 takes the communication device described in any one of Figure 6, Figure 7A, Figure 7B, Figure 8, Figure 10, Figure 11A, Figure 11B or Figure 12 as an example to show the signal reception situation in the three-sector network.
  • cross unit 2 when cross unit 1 is in the cross state and cross unit 2 is in the synthesis state, cross unit 2 synthesizes the radio frequency signal from antenna 2 and the radio frequency signal from antenna 3 into a third radio frequency signal, and passes through the cross Unit 1 sends the third radio frequency signal to RRU1, causing RRU 2 and RRU3 to be in a sleep state.
  • cross unit 1 When cross unit 1 is in the synthesis state and cross unit 2 is in the straight-through state, cross unit 1 can synthesize the radio frequency signal from antenna 1 and the radio frequency signal from antenna 2 into a third radio frequency signal, and send the third radio frequency signal to RRU1 makes RRU2 sleep.
  • cross unit 1 When cross unit 1 is in the synthesis state and cross unit 2 is in the cross state, cross unit 1 can synthesize the radio frequency signal from antenna 1 and the radio frequency signal from antenna 3 into a third radio frequency signal, and send the third radio frequency signal to RRU1 makes RRU3 sleep.
  • cross unit 2 When cross unit 1 is in the synthesis state and cross unit 2 is in the synthesis state, cross unit 2 can synthesize the radio frequency signal from antenna 2 and the radio frequency signal from antenna 3 into one radio frequency signal and send it to cross unit 1, and cross unit 1 will synthesize the radio frequency signal from antenna 2 and the radio frequency signal from antenna 3.
  • a radio frequency signal from the cross unit 2 and the radio frequency signal from the antenna 1 are synthesized into a third radio frequency signal, and the third radio frequency signal is sent to RRU1, so that RRU2 and RRU3 are in a sleep state.
  • embodiments of the present application also provide a communication method.
  • the communication method is implemented by the communication device in the above embodiments. Please refer to the previous description for the communication device, which will not be described again here.
  • Figure 15 uses the communication device to send signals as For example, a schematic flowchart of the communication method provided by the embodiment of the present application is shown. As shown in Figure 15, the method includes the following contents.
  • the first RRU sends a first radio frequency signal to the first module; correspondingly, the first module receives the first radio frequency signal from the first RRU.
  • the first RRU is one RRU among the N RRUs in the communication device in the above embodiments.
  • the load of the cell corresponding to the first RRU is less than or equal to the load threshold.
  • the composition of the first module please refer to the introduction of the first module in Figure 6, Figure 7A, Figure 7B, Figure 8, Figure 10, Figure 11A, Figure 11B and Figure 12, which will not be described again here.
  • the first module can receive data from the first RRU, please refer to the relevant descriptions in the foregoing embodiments, which will not be described again here.
  • the first module divides the first radio frequency remote unit into M sub-radio frequency signals, where M is an integer greater than 1 and less than or equal to N. In Figure 15, M is smaller than N as an example.
  • the first module may determine, based on the load corresponding to each RRU among the N RRUs, that the working state of the M RRUs among the N RRUs can be converted to a sleep state or an inactive state, and according to the M RRUs, The first radio frequency remote unit is divided into M sub-radio frequency signals. For example, if the load of the cell corresponding to the RRU is less than or equal to the load threshold, the first module determines that the working state of the RRU can be converted to a dormant state or an inactive state.
  • S1502 please refer to the relevant description in Figure 6 and will not be repeated here.
  • the first module sends the M sub-radio frequency signals to M groups of antennas corresponding to M RRUs among the N RRUs; correspondingly, the M group of antennas receive the M sub-radio frequency signals. Among them, a set of antennas receives a sub-RF signal.
  • M groups of antennas send the M sub-radio signals.
  • M groups of antennas are used as an example to transmit the M sub-radio frequency signals to the target device.
  • embodiments of the present application are not limited thereto.
  • M groups of antennas may also broadcast the M sub-radio frequency signals.
  • FIG. 16 shows a schematic flowchart of the communication method provided by the embodiment of the present application, taking the communication device receiving a signal as an example. As shown in Figure 15, the method includes the following contents.
  • the P group of antennas in the N groups of antennas receive P radio frequency signals.
  • One set of antennas receives a radio frequency signal.
  • the P is an integer greater than 1 and less than or equal to N.
  • P is smaller than N as an example.
  • FIG. 16 takes the example that the P radio frequency signals come from the source device, but the embodiment of the present application is not limited thereto.
  • the P group of antennas send the P radio frequency signals to the first module; correspondingly, the first module receives the P radio frequency signals from the P group of antennas.
  • the composition of the first module please refer to the introduction of the first module in Figure 6, Figure 7A, Figure 7B, Figure 8, Figure 10, Figure 11A, Figure 11B and Figure 12, which will not be described again here.
  • the first module synthesizes the P radio frequency signals into a third radio frequency signal.
  • the first module may synthesize the P radio frequency signals into a third radio frequency signal according to the load of the cell corresponding to each RRU among the N RRUs.
  • the load of the cell corresponding to each of the P RRUs corresponding to the P groups of antennas is less than or equal to the load threshold.
  • the first module sends the third radio frequency signal to the first RRU; correspondingly, the first RRU receives the third radio frequency signal.
  • the first RRU is one RRU among the N RRUs in the communication device in the above embodiments.
  • the load of the cell corresponding to the first RRU is less than or equal to the load threshold.
  • inventions of the present application also provide a communication device.
  • the communication device includes at least one processor and an interface circuit.
  • the at least one processor is used to implement various methods of the embodiment.
  • the interface circuit is used to implement communication with other communication devices.
  • embodiments of the present application also provide an electronic device that can implement the functions of the above-mentioned first module.
  • embodiments of the present application also provide a computer-readable storage medium. Instructions are stored in the computer-readable storage medium. When run on a computer, the computer is caused to execute each of the above embodiments. method.
  • embodiments of the present application also provide a computer program product, which includes instructions.
  • the instructions When the instructions are run on a computer, they cause the computer to execute the methods in the above embodiments.
  • embodiments of the present application also provide a chip system.
  • the chip system includes at least one processor and an interface circuit.
  • the processor is configured to execute instructions and/or data interaction through the interface circuit, so that the device where the chip system is located Implement the methods in each of the above embodiments.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • embodiments of the present application also provide a chip, which is used to read the computer program stored in the memory and execute the methods in the above embodiments.
  • the methods provided by the embodiments of this application can be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software when When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with the embodiments of the present invention are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, a network device, a user equipment, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmit to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • Computer-readable storage media can be any available media that can be accessed by a computer or a data storage device such as a server or data center that contains one or more available media.
  • the available media can be magnetic media (for example, floppy disks, hard disks, tape), optical media (for example, digital video disc (DVD)), or semiconductor media (for example, SSD), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信方法及装置,用于减低RRU的功耗。具体的,该通信装置包括:N个射频拉远单元、第一模块以及N组天线,每个射频拉远单元与第一模块相连,且每组天线与第一模块相连,该N个射频拉远单元与N组天线一一对应,N为大于1的整数;其中,该N个射频拉远单元中的第一射频拉远单元,用于向第一模块发送第一射频信号;第一模块,用于将第一射频信号分为M个子射频信号,以及向N个射频拉远单元中的M个射频拉远单元对应的M组天线发送该M个子射频信号,所述M为大于1且小于或等于所述N的整数;该M组天线,用于发送所述M个子射频信号。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2022年08月30日提交中国国家知识产权局、申请号为202211048783.1、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
在“双碳”目标的大背景下,无线通信网络的能源消耗占全社会能源消耗的1%~2%,因此,各大运营商和设备商都在积极的推动无线网络节能措施的落地,以降低碳排放指标。而无线通信网络的能源消耗中,射频拉远单元(radio remote unit,RRU)的能耗占比在60%以上。可见,如何降低RRU的功耗是亟需解决的问题。
发明内容
本申请实施例提供一种通信方法及装置,用于降低RRU的功耗。
第一方面,本申请实施例提供一种通信装置,该装置可包括N个射频拉远单元、第一模块以及N组天线,其中的每个射频拉远单元与第一模块相连,且每组天线与该第一模块相连,该N个射频拉远单元与该N组天线一一对应,其中的N是大于1的整数;其中,该N个射频拉远单元中的第一射频拉远单元可用于向第一模块发送第一射频信号;第一模块,可用于接收来自第一射频拉远单元的第一射频信号,将该第一射频信号分为M个子射频信号,以及向N个射频信号中的M个射频拉远单元对应的M组天线发送该M个子射频信号;该M组天线,可用于发送该M个子射频信号。其中的M为大于1且小于或等于N的整数。
在上述实施例中,来自第一射频拉远单元的第一射频信号通过第一模块分为两个或两个以上的子射频信号,并由两组或两组以上的天线发送这些子射频信号,从而实现一个射频拉远单元的射频信号驱动两组或两组以上的天线。相较于一个射频拉远单元驱动一组天线而言,本申请实施例可以使用一个射频拉远单元驱动多组天线,则该多组天线所对应的多个射频拉远单元中的至少一个射频拉远单元处于休眠状态或者不工作的状态,从而以射频拉远单元为粒度降低通信装置的基础功耗。
在一种可能的设计中,该第一射频拉远单元对应的小区的负载小于或等于负载阈值,且该M个射频拉远单元中每个射频拉远单元对应的小区的负载小于或等于该负载阈值。而在另一种可能的设计中,该N个射频拉远单元还可以包括第二射频拉远单元,该第二射频拉远单元对应的小区的负载大于负载阈值;该第二射频拉远单元用于向第一模块发送第二射频信号;该第一模块还用于接收该第二射频信号,以及向第二射频拉远单元对应的天线发送该第二射频信号。通过该设计,一个射频拉远单元可以有条件地驱动多组天线,也可以有条件地驱动自身对应的天线。当一个射频拉远单元对应的小区的负载小于或等于负载阈值,意味着该射频拉远单元对应的小区处于中负载状态或小负载状态,在此情况下,该射频拉远单元可驱动其他处于中负载状态或小负载状态的一个或多个射频拉远单元,这样该一个或多个射频拉远单元处于休眠状态或不工作的状态,能够减少该一个或多个射频拉远单元的基础功耗。而一个射频拉远单元对应的小区的负载大于负载阈值,意味着该射频拉远单元对应的小区处于较高负载状态,在此情况下,该射频拉远单元可驱动自身对应的天线,以满足自身对应的小区的业务需求。
在一种可能的设计中,该N组天线中的P组天线,用于接收P个射频信号,向第一模块发送P个射频信号,该P为大于1且小于或等于N的整数;该第一模块还用于接收该P个射频信号,将P个射频信号合成为第三射频信号,以及向第一射频拉远单元发送该第三射频信号。通过该设计,多组天线接收到的多个射频信号可交由一个射频拉远单元处理,从而该多组天线对应的多个射频拉远单元中的一个或多个射频拉远单元可处于休眠状态或不工作的状态,能够大幅度减少射频拉远单元的功耗。
在一种可能的设计中,第一射频拉远单元对应的小区的负载小于或等于负载阈值,且P组天线对 应的P个射频拉远单元中每个射频拉远单元对应的小区的负载小于或等于负载阈值。通过该设计,一个射频拉远单元可以有条件地接收来自多组天线的射频信号,使得多组天线对应的多个射频拉远单元中的一个或多个射频拉远单元可处于休眠状态或不工作的状态,能够大幅度减少射频拉远单元的功耗。
在一种可能的设计中,第一模块可通过如下方式实现:方式一,第一模块包括(N-1)个交叉单元;方式二,该第一模块包括第一子模块和(N-1)个第二子模块,其中的第一子模块包括(N-1)个交叉单元。下面分别介绍这两种实现方式。
方式一,第一模块包括(N-1)个交叉单元,每个交叉单元包括第一端口、第二端口、第三端口和第四端口;第一射频拉远单元可通过如下方式向第一模块发送第一射频信号:第一射频拉远单元向第一交叉单元的第一端口发送该第一射频信号;其中,第一交叉单元是该(N-1)个交叉单元中的一个交叉单元,第一交叉单元的第四端口与N个射频拉远单元中除了第一射频拉远单元之外的一个射频拉远单元相连,第一交叉单元的第二端口与第一天线相连,所述第一交叉单元的第三端口与所述(N-1)个交叉单元中除了第一交叉单元之外的一个交叉单元相连或者与所述N组天线中除了所述第一天线之外的一组天线相连。通过该方式,第一模块中的第一交叉单元可将第一射频信号或第一射频信号的子射频信号发送给除了第一射频拉远单元之外的其他射频拉远单元。
示例性的,N等于2,该(N-1)个交叉单元的第一端口与第一射频单元相连,该(N-1)个交叉单元的第四端口与N个射频拉远单元中除了第一射频拉远单元之外的射频拉远单元相连,该(N-1)个交叉单元的第二端口与第一天线相连,该(N-1)个交叉单元的第三端口与N组天线中除了第一天线之外的天线相连。或者,N大于2,该(N-1)个交叉单元中的第一个交叉单元的第一端口与N个射频拉远单元中的第一个频拉远单元相连,第一个交叉单元的第二端口与第一个射频拉远单元对应的天线相连;该(N-1)个交叉单元中的第i个交叉单元的第一端口与该(N-1)个交叉单元中的第(i-1)个交叉单元的第三端口相连,第i个交叉单元的第二端口与该N个射频拉远单元中的第i个射频拉远单元对应的天线相连,第i个交叉单元的第四端口与该N个射频拉远单元中的第(i+1)个射频拉远单元相连,第i个交叉单元的第三端口与该(N-1)个交叉单元中的第(i+1)个交叉单元的第一端口相连,其中的i为大于1且小于(N-1)的整数;该(N-1)个交叉单元中的第(N-1)个交叉单元的第二端口与该N个射频拉远单元中的第(N-1)个射频拉远单元对应的天线相连,该第(N-1)个交叉单元的第四端口与该N个射频拉远单元中的第N个射频拉远单元相连,该第(N-1)个交叉单元的第三端口与该第N个射频拉远单元对应的天线相连。通过该示例,通信装置可通过第一模块中的交叉单元实现少量射频拉远单元对多组天线的驱动,使得部分射频拉远单元处于休眠状态或不工作的状态,减少射频拉远单元的基础功耗。
方式二,该第一模块包括第一子模块和(N-1)个第二子模块。其中的第一子模块与每个第二子模块相连,第一天线是所述N组天线中的一组天线;其中,每个射频拉远单元与所述第一模块相连,可以为:第一射频拉远单元与第一子模块相连,N个射频拉远单元中除了该第一射频拉远单元之外的(N-1)个射频拉远单元与该(N-1)个第二子模块相连,其中一个第二子模块与一个射频拉远单元相连;每组天线与第一模块相连,可以为:第一射频拉远单元对应的第一天线与第一子模块相连,N组天线中除了第一天线之外的(N-1)组天线与该(N-1)个第二子模块相连,其中一个第二子模块与一组天线相连。通过该方式,一方面第一射频拉远单元的射频信号可通过第一子模块和第二子模块驱动多组天线,减少射频拉远单元的功耗;另一方面,剩余的(N-1)个射频拉远单元可通过(N-1)个第二子模块驱动各自对应的天线,兼容性好,且该第二子模块、射频拉远单元以及天线三者之间可就近布局,从而能够减少射频信号的衰减。
示例性的,M个射频拉远单元包括第一射频拉远单元,该第一模块可通过如下方式将第一射频信号分为M个子射频信号,以及向N个射频拉远单元中的M个射频拉远单元对应的M组天线发送该M个子射频信号:第一子模块,可用于将第一射频信号分为该M个子射频信号,向第一天线发送一个子射频信号,以及向与(M-1)个射频拉远单元相连的(M-1)个第二子模块发送剩余的(M-1)个子射频信号,其中的(M-1)个射频拉远单元是M个射频拉远单元中除了第一射频拉远单元之外的射频拉远单元;该(M-1)个第二子模块,可用于向(M-1)个射频拉远单元对应的(M-1)组天线发送(M-1)个子射频信号。或者,M个射频拉远单元不包括第一射频拉远单元,该第一模块,用于将第一射频信号分为M个子射频信号,以及向N个射频拉远单元中的M个射频拉远单元对应的M组天线发送M个子射频信号,可以为:第一子模块,可用于将第一射频信号分为该M个子射频信号,以及与M个射频拉远单元相连的M个第二子模块发送M个子射频信号;M个第二子模块,用于向M组天线发送该M 个子射频信号。通过该示例,第一子模块将第一射频信号分为M个子射频信号,该M个子射频信号可全部发送给第二子模块,或者也可以部分发送给第二子模块,实现方式灵活。
示例性的,第一子模块可以包括(N-1)个交叉单元,每个交叉单元包括第一端口、第二端口、第三端口和第四端口;其中,第一射频拉远单元与第一子模块相连,可以为:第一射频拉远单元与第一交叉单元的第一端口相连;第一交叉单元是(N-1)个交叉单元中的一个交叉单元,第一交叉单元的第四端口接地,第一交叉单元的第二端口与第一天线相连,第一交叉单元的第三端口与(N-1)个交叉单元中除了第一交叉单元之外的一个交叉单元相连或者(N-1)个第二子模块中的一个第二子模块相连。通过该示例,第一子模块中的第一交叉单元可将第一射频信号或第一射频信号的子射频信号发送给第二子模块。
示例性的,N等于2,该(N-1)个交叉单元的第一端口与第一射频单元相连,该(N-1)个交叉单元的第四端口接地,该(N-1)个交叉单元的第二端口与第一天线相连,该(N-1)个交叉单元的第三端口与(N-1)个第二子模块相连,该(N-1)个第二子模块与N组天线中除了第一天线之外的天线相连。或者,N大于2,该(N-1)个交叉单元中的第一个交叉单元的第一端口与第一射频单元相连,该第一个交叉单元的第四端口接地,该第一个交叉单元的第二端口与第一天线相连;(N-1)个交叉单元中的第i个交叉单元的第一端口与(N-1)个交叉单元中的第(i-1)个交叉单元的第三端口相连,第i个交叉单元的第二端口与(N-1)个第二子模块中的第(i-1)个第二子模块相连,第i个交叉单元的第四端口接地,其中的i为大于1且小于(N-1)的整数;该(N-1)个交叉单元中的第(N-1)个交叉单元的第一端口与该(N-1)个交叉单元中的第(N-2)个交叉单元的第三端口相连,该第(N-1)个交叉单元的第二端口与该(N-1)第二子模块中的第(N-2)个第二子模块相连,该(N-1)个交叉单元的第四端口接地,该(N-1)个交叉单元的第三端口与该(N-1)第二子模块中的第(N-1)个第二子模块相连。通过该示例,通信装置可通过第一子模块中的交叉单元和第二子模块实现少量射频拉远单元对多组天线的驱动,使得部分射频拉远单元处于休眠状态或不工作的状态,减少射频拉远单元的基础功耗。
在一种可能的设计中,第一交叉单元,可用于通过第一端口接收第一射频信号,以及通过第三端口发送第一射频信号;或者,该第一交叉单元,可用于通过第一端口接收第一射频信号,将第一射频信号分为两个子射频信号,通过第二端口发送该两个子射频信号中的一个子射频信号,以及通过第三端口发送该两个子射频信号中剩余的一个子射频信号。通过该设计,第一射频拉远单元可通过与其相连的第一交叉单元驱动其他射频拉远单元对应的天线,从而使得该其他射频拉远单元处于休眠状态或不工作的状态。
第二方面,本申请提供一种通信方法,该方法可应用于通信装置,该通信装置可包括:N个射频拉远单元、第一模块以及N组天线,其中每个射频拉远单元与所述第一模块相连,且每组天线与所述第一模块相连,所述N个射频拉远单元与所述N组天线一一对应,N为大于1的整数。在该方法中:N个射频拉远单元中的第一射频拉远单元向所述第一模块发送第一射频信号;所述第一模块接收所述第一射频信号,将所述第一射频信号分为M个子射频信号,以及向所述N个射频拉远单元中的M个射频拉远单元对应的M组天线发送所述M个子射频信号,所述M为大于1且小于或等于所述N的整数;所述M组天线发送所述M个子射频信号。
在一种可能的设计中,所述第一射频拉远单元对应的小区的负载小于或等于负载阈值,且所述M个射频拉远单元中每个射频拉远单元对应的小区的负载小于或等于所述负载阈值。
在一种可能的设计中,所述N个射频拉远单元还包括第二射频拉远单元,所述第二射频拉远单元对应的小区的负载大于负载阈值,该方法还可以包括:所述第二射频拉远单元向所述第一模块发送第二射频信号;所述第一模块接收所述第二射频信号,以及向所述第二射频拉远单元对应的天线发送所述第二射频信号。
在一种可能的设计中,该方法还可以包括:所述N组天线中的P组天线接收P个射频信号,向所述第一模块发送所述P个射频信号,所述P为大于1且小于所述N的整数;所述第一模块接收所述P个射频信号,将所述P个射频信号合成为第三射频信号,以及向所述第一射频拉远单元发送所述第三射频信号。
在一种可能的设计中,所述第一射频拉远单元对应的小区的负载小于或等于负载阈值,且所述P组天线对应的P个射频拉远单元中每个射频拉远单元对应的小区的负载小于或等于所述负载阈值。
在一种可能的设计中,第一模块可通过如下方式实现:方式一,第一模块包括(N-1)个交叉单元; 方式二,该第一模块包括第一子模块和(N-1)个第二子模块,其中的第一子模块包括(N-1)个交叉单元。下面分别介绍这两种实现方式。
方式一,第一模块包括(N-1)个交叉单元,每个交叉单元包括第一端口、第二端口、第三端口和第四端口;第一射频拉远单元向第一模块发送第一射频信号,可以为第一射频拉远单元向第一交叉单元的第一端口发送第一射频信号;其中的第一交叉单元是(N-1)个交叉单元中的一个交叉单元,第一交叉单元的第四端口与N个射频拉远单元中除了第一射频拉远单元之外的一个射频拉远单元相连,第一交叉单元的第二端口与第一天线相连,第一交叉单元的第三端口与(N-1)个交叉单元中除了第一交叉单元之外的一个交叉单元相连或者与N组天线中除了第一天线之外的一组天线相连。
示例性的,N等于2,该(N-1)个交叉单元的第一端口与第一射频单元相连,该(N-1)个交叉单元的第四端口与N个射频拉远单元中除了第一射频拉远单元之外的射频拉远单元相连,该(N-1)个交叉单元的第二端口与第一天线相连,该(N-1)个交叉单元的第三端口与N组天线中除了第一天线之外的天线相连。或者,N大于2,该(N-1)个交叉单元中的第一个交叉单元的第一端口与N个射频拉远单元中的第一个频拉远单元相连,第一个交叉单元的第二端口与第一个射频拉远单元对应的天线相连;该(N-1)个交叉单元中的第i个交叉单元的第一端口与该(N-1)个交叉单元中的第(i-1)个交叉单元的第三端口相连,第i个交叉单元的第二端口与该N个射频拉远单元中的第i个射频拉远单元对应的天线相连,第i个交叉单元的第四端口与该N个射频拉远单元中的第(i+1)个射频拉远单元相连,第i个交叉单元的第三端口与该(N-1)个交叉单元中的第(i+1)个交叉单元的第一端口相连,其中的i为大于1且小于(N-1)的整数;该(N-1)个交叉单元中的第(N-1)个交叉单元的第二端口与该N个射频拉远单元中的第(N-1)个射频拉远单元对应的天线相连,该第(N-1)个交叉单元的第四端口与该N个射频拉远单元中的第N个射频拉远单元相连,该第(N-1)个交叉单元的第三端口与该第N个射频拉远单元对应的天线相连。
方式二,该第一模块包括第一子模块和(N-1)个第二子模块,该第一子模块与每个第二子模块相连;其中,每个射频拉远单元与第一模块相连,可以为第一射频拉远单元与第一子模块相连,该N个射频拉远单元中除了第一射频拉远单元之外的(N-1)个射频拉远单元与(N-1)个第二子模块一相连,其中一个第二子模块与一个射频拉远单元相连;每组天线与第一模块相连,可以为第一射频拉远单元对应的第一天线与第一子模块相连,N组天线中除了第一天线之外的(N-1)组天线与(N-1)个第二子模块相连,其中一个第二子模块与一组天线相连。
示例性的,M个射频拉远单元包括第一射频拉远单元,将第一射频信号分为M个子射频信号,以及向N个射频拉远单元中的M个射频拉远单元对应的M组天线发送该M个子射频信号,可以为第一子模块将第一射频信号分为M个子射频信号,向第一天线发送一个子射频信号,以及向与(M-1)个射频拉远单元相连的(M-1)个第二子模块发送剩余的(M-1)个子射频信号,所述(M-1)个射频拉远单元是该M个射频拉远单元中除了第一射频拉远单元之外的射频拉远单元;(M-1)个第二子模块向(M-1)个射频拉远单元对应的(M-1)组天线发送该(M-1)个子射频信号。或者,M个射频拉远单元不包括第一射频拉远单元,将第一射频信号分为M个子射频信号,以及向N个射频拉远单元中的M个射频拉远单元对应的M组天线发送M个子射频信号,可以为第一子模块将第一射频信号分为M个子射频信号,向与M个射频拉远单元相连的M个第二子模块发送M个子射频信号;M个第二子模块向M组天线发送该M个子射频信号。
示例性的,第一子模块包括(N-1)个交叉单元,每个交叉单元包括第一端口、第二端口、第三端口和第四端口;第一射频拉远单元与第一子模块相连,可以为第一射频拉远单元与第一交叉单元的第一端口相连;其中的第一交叉单元是(N-1)个交叉单元中的一个交叉单元,第一交叉单元的第四端口接地,第一交叉单元的第二端口与第一天线相连,第一交叉单元的第三端口与(N-1)个交叉单元中除了第一交叉单元之外的一个交叉单元相连或者与(N-1)个第二子模块中的一个第二子模块相连。
示例性的,N等于2,该(N-1)个交叉单元的第一端口与第一射频单元相连,该(N-1)个交叉单元的第四端口接地,该(N-1)个交叉单元的第二端口与第一天线相连,该(N-1)个交叉单元的第三端口与(N-1)个第二子模块相连,该(N-1)个第二子模块与N组天线中除了第一天线之外的天线相连。或者,N大于2,该(N-1)个交叉单元中的第一个交叉单元的第一端口与第一射频单元相连,该第一个交叉单元的第四端口接地,该第一个交叉单元的第二端口与第一天线相连;(N-1)个交叉单元中的第i个交叉单元的第一端口与(N-1)个交叉单元中的第(i-1)个交叉单元的第三端口相连,第i 个交叉单元的第二端口与(N-1)个第二子模块中的第(i-1)个第二子模块相连,第i个交叉单元的第四端口接地,其中的i为大于1且小于(N-1)的整数;该(N-1)个交叉单元中的第(N-1)个交叉单元的第一端口与该(N-1)个交叉单元中的第(N-2)个交叉单元的第三端口相连,该第(N-1)个交叉单元的第二端口与该(N-1)第二子模块中的第(N-2)个第二子模块相连,该(N-1)个交叉单元的第四端口接地,该(N-1)个交叉单元的第三端口与该(N-1)第二子模块中的第(N-1)个第二子模块相连。
在一种可能的设计中,第一模块接收来自第一射频拉远单元的第一射频信号,可以为第一交叉单元通过第一端口接收第一射频信号,以及通过第三端口发送第一射频信号;或者,第一交叉单元通过第一端口接收第一射频信号,将第一射频信号分为两个子射频信号,通过第二端口发送两个子射频信号中的一个子射频信号,以及通过第三端口发送两个子射频信号中剩余的一个子射频信号。
上述第二方面及其任意可能的设计所述方法的有益效果请对应参考第一方面及其任意可能的设计所述装置的有益效果,此处不再赘述。
第三方面,本申请实施例提供一种通信装置,该装置可包括N个射频拉远单元、第一模块以及N组天线,其中的每个射频拉远单元与第一模块相连,且每组天线与该第一模块相连,该N个射频拉远单元与该N组天线一一对应,其中的N是大于1的整数;其中,该N组天线中的P组天线,可用于接收P个射频信号,向所述第一模块发送所述P个射频信号,其中的P为大于1且小于或等于N的整数;第一模块,可用于接收P个射频信号,将该P个射频信号合成为第三射频信号,以及向该N个射频拉远单元中的第一射频拉远单元发送该第三射频信号;该第一射频拉远单元可用于接收该第三射频信号。
在上述实施例中,来自多组天线的多个射频信号通过第一模块合成为一个射频信号,并将该一个射频信号发送给一个射频拉远单元,从而使得该多组天线对应的多个射频拉远单元中的一个射频拉远单元或多个射频拉远单元处于休眠状态或不工作的状态,相较于一组天线的射频信号由一个射频拉远单元接收而言,本申请实施例能够以射频拉远单元为粒度降低通信装置的基础功耗。
在一种可能的设计中,该第一射频拉远单元对应的小区的负载小于或等于负载阈值,且该P组天线对应的P个射频拉远单元中每个射频拉远单元对应的小区的负载小于或等于该负载阈值。而在另一种可能的设计中,该N个射频拉远单元还可以包括第三射频拉远单元,该第三射频拉远单元对应的小区的负载大于负载阈值;该第三射频拉远单元对应的天线用于接收第四射频信号,向第一模块发送第四射频信号;该第一模块还用于接收第四射频信号,以及向该第三射频拉远单元发送该第四射频信号;该第三射频拉远单元,可用于接收该第四射频信号。
在一种可能的设计中,第一射频拉远单元还可以用于向第一模块发送第一射频信号;第一模块还用于接收该第一射频信号,将该第一射频信号分为M个子射频信号,以及向该N个射频拉远单元中的M个射频拉远单元对应的M组天线发送该M个子射频信号,该M为大于1且小于或等于N的整数;该M组天线可用于发送该M个子射频信号。
在一种可能的设计中,第一射频拉远单元对应的小区的负载小于或等于负载阈值,且该M个射频拉远单元中每个射频拉远单元对应的小区的负载小于或等于负载阈值。
在一种可能的设计中,第一模块可通过如下方式实现:方式一,第一模块包括(N-1)个交叉单元;方式二,该第一模块包括第一子模块和(N-1)个第二子模块,其中的第一子模块包括(N-1)个交叉单元。下面分别介绍这两种实现方式。
方式一,第一模块包括(N-1)个交叉单元,每个交叉单元包括第一端口、第二端口、第三端口和第四端口;第一模块可通过如下方式向第一射频拉远单元发送第三射频信号:第一交叉单元的第一端口向第一射频拉远单元发送该第一射频信号;其中,第一交叉单元是该(N-1)个交叉单元中的一个交叉单元,第一交叉单元的第四端口与N个射频拉远单元中除了第一射频拉远单元之外的一个射频拉远单元相连,第一交叉单元的第二端口与第一天线相连,所述第一交叉单元的第三端口与所述(N-1)个交叉单元中除了第一交叉单元之外的一个交叉单元相连或者与所述N组天线中除了所述第一天线之外的一组天线相连。
示例性的,N等于2,该(N-1)个交叉单元的第一端口与第一射频单元相连,该(N-1)个交叉单元的第四端口与N个射频拉远单元中除了第一射频拉远单元之外的射频拉远单元相连,该(N-1)个交叉单元的第二端口与第一天线相连,该(N-1)个交叉单元的第三端口与N组天线中除了第一天线之外的天线相连。或者,N大于2,该(N-1)个交叉单元中的第一个交叉单元的第一端口与N个射频拉远 单元中的第一个频拉远单元相连,第一个交叉单元的第二端口与第一个射频拉远单元对应的天线相连;该(N-1)个交叉单元中的第i个交叉单元的第一端口与该(N-1)个交叉单元中的第(i-1)个交叉单元的第三端口相连,第i个交叉单元的第二端口与该N个射频拉远单元中的第i个射频拉远单元对应的天线相连,第i个交叉单元的第四端口与该N个射频拉远单元中的第(i+1)个射频拉远单元相连,第i个交叉单元的第三端口与该(N-1)个交叉单元中的第(i+1)个交叉单元的第一端口相连,其中的i为大于1且小于(N-1)的整数;该(N-1)个交叉单元中的第(N-1)个交叉单元的第二端口与该N个射频拉远单元中的第(N-1)个射频拉远单元对应的天线相连,该第(N-1)个交叉单元的第四端口与该N个射频拉远单元中的第N个射频拉远单元相连,该第(N-1)个交叉单元的第三端口与该第N个射频拉远单元对应的天线相连。
方式二,该第一模块包括第一子模块和(N-1)个第二子模块。其中的第一子模块与每个第二子模块相连,第一天线是所述N组天线中的一组天线;其中,每个射频拉远单元与所述第一模块相连,可以为:第一射频拉远单元与第一子模块相连,N个射频拉远单元中除了该第一射频拉远单元之外的(N-1)个射频拉远单元与该(N-1)个第二子模块相连,其中一个第二子模块与一个射频拉远单元相连;每组天线与第一模块相连,可以为:第一射频拉远单元对应的第一天线与第一子模块相连,N组天线中除了第一天线之外的(N-1)组天线与该(N-1)个第二子模块相连,其中一个第二子模块与一组天线相连。
示例性的,P组天线对应的P个射频拉远单元包括第一射频拉远单元,该第一模块可通过如下方式接收P个射频信号,将P个射频信号合成为第三射频信号,以及向该第一射频信号发送第三射频信号:(P-1)组天线相连的(P-1)个第二子模块,可用于接收来自所述(P-1)组天线的(P-1)个射频信号,以及向第一子模块发送该(P-1)个射频信号,其中(P-1)组天线是P组天线中除了第一射频拉远单元对应的第一天线之外的天线;第一子模块,可用于接收来自该(P-1)个第二子模块的(P-1)个射频信号,接收来自第一天线的一个射频信号,将该P个射频信号合成为第三射频信号,以及向第一射频拉远单元发送该第三射频信号。或者,P组天线对应的P个射频拉远单元不包括第一射频拉远单元,该第一模块可通过如下方式接收P个射频信号,将P个射频信号合成为第三射频信号,以及向该第一射频信号发送第三射频信号:P组天线相连的P个第二子模块,可用于接收来自该P组天线的P个射频信号,以及向第一子模块发送该P个射频信号;该第一子模块,可用于接收来自P个第二子模块的P个射频信号,将该P个射频信号合成为第三射频信号,以及向第一射频拉远单元发送该第三射频信号。
示例性的,第一子模块可以包括(N-1)个交叉单元,每个交叉单元包括第一端口、第二端口、第三端口和第四端口;其中,第一射频拉远单元与第一子模块相连,可以为:第一射频拉远单元与第一交叉单元的第一端口相连;第一交叉单元是(N-1)个交叉单元中的一个交叉单元,第一交叉单元的第四端口接地,第一交叉单元的第二端口与第一天线相连,第一交叉单元的第三端口与(N-1)个交叉单元中除了第一交叉单元之外的一个交叉单元相连或者(N-1)个第二子模块中的一个第二子模块相连。
示例性的,N等于2,该(N-1)个交叉单元的第一端口与第一射频单元相连,该(N-1)个交叉单元的第四端口接地,该(N-1)个交叉单元的第二端口与第一天线相连,该(N-1)个交叉单元的第三端口与(N-1)个第二子模块相连,该(N-1)个第二子模块与N组天线中除了第一天线之外的天线相连。或者,N大于2,该(N-1)个交叉单元中的第一个交叉单元的第一端口与第一射频单元相连,该第一个交叉单元的第四端口接地,该第一个交叉单元的第二端口与第一天线相连;(N-1)个交叉单元中的第i个交叉单元的第一端口与(N-1)个交叉单元中的第(i-1)个交叉单元的第三端口相连,第i个交叉单元的第二端口与(N-1)个第二子模块中的第(i-1)个第二子模块相连,第i个交叉单元的第四端口接地,其中的i为大于1且小于(N-1)的整数;该(N-1)个交叉单元中的第(N-1)个交叉单元的第一端口与该(N-1)个交叉单元中的第(N-2)个交叉单元的第三端口相连,该第(N-1)个交叉单元的第二端口与该(N-1)第二子模块中的第(N-2)个第二子模块相连,该(N-1)个交叉单元的第四端口接地,该(N-1)个交叉单元的第三端口与该(N-1)第二子模块中的第(N-1)个第二子模块相连。
在一种可能的设计中,第一交叉单元,可用于通过第三端口接收第三射频信号,以及通过第一端口向第一射频单元发送该第三射频信号;或者,该第一交叉单元,可用于通过第二端口接收一个射频信号,通过第三端口接收一个射频信号,将这两个射频信号合成为第三射频信号,并通过第一端口向第一射频拉远单元发送该第三射频信号。
上述第三方面及其任意可能的设计所述装置的有益效果请对应参考第一方面及其任意可能的设计 所述装置的有益效果,此处不再赘述。
第四方面,本申请实施例提供一种通信方法,该通信方法可应用于通信装置,该通信装置可包括N个射频拉远单元、第一模块以及N组天线,其中的每个射频拉远单元与第一模块相连,且每组天线与该第一模块相连,该N个射频拉远单元与该N组天线一一对应,其中的N是大于1的整数;其中,该N组天线中的P组天线接收P个射频信号,向所述第一模块发送所述P个射频信号,其中的P为大于1且小于或等于N的整数;第一模块接收P个射频信号,将该P个射频信号合成为第三射频信号,以及向该N个射频拉远单元中的第一射频拉远单元发送该第三射频信号;该第一射频拉远单元接收该第三射频信号。
在一种可能的设计中,该第一射频拉远单元对应的小区的负载小于或等于负载阈值,且该P组天线对应的P个射频拉远单元中每个射频拉远单元对应的小区的负载小于或等于该负载阈值。而在另一种可能的设计中,该N个射频拉远单元还可以包括第三射频拉远单元,该第三射频拉远单元对应的小区的负载大于负载阈值,该方法还可以包括:该第三射频拉远单元对应的天线接收第四射频信号,向第一模块发送第四射频信号;该第一模块接收该第四射频信号,以及向该第三射频拉远单元发送该第四射频信号;该第三射频拉远单元接收该第四射频信号。
在一种可能的设计中,该方法还可以包括:第一射频拉远单元向第一模块发送第一射频信号;第一模块接收该第一射频信号,将该第一射频信号分为M个子射频信号,以及向该N个射频拉远单元中的M个射频拉远单元对应的M组天线发送该M个子射频信号,该M为大于1且小于或等于N的整数;该M组天线发送该M个子射频信号。
在一种可能的设计中,第一射频拉远单元对应的小区的负载小于或等于负载阈值,且该M个射频拉远单元中每个射频拉远单元对应的小区的负载小于或等于负载阈值。
在一种可能的设计中,第一模块可通过如下方式实现:方式一,第一模块包括(N-1)个交叉单元;方式二,该第一模块包括第一子模块和(N-1)个第二子模块,其中的第一子模块包括(N-1)个交叉单元。下面分别介绍这两种实现方式。
方式一,第一模块包括(N-1)个交叉单元,每个交叉单元包括第一端口、第二端口、第三端口和第四端口;第一模块可通过如下方式向第一射频拉远单元发送第三射频信号:第一交叉单元的第一端口向第一射频拉远单元发送该第一射频信号;其中,第一交叉单元是该(N-1)个交叉单元中的一个交叉单元,第一交叉单元的第四端口与N个射频拉远单元中除了第一射频拉远单元之外的一个射频拉远单元相连,第一交叉单元的第二端口与第一天线相连,所述第一交叉单元的第三端口与所述(N-1)个交叉单元中除了第一交叉单元之外的一个交叉单元相连或者与所述N组天线中除了所述第一天线之外的一组天线相连。
示例性的,N等于2,该(N-1)个交叉单元的第一端口与第一射频单元相连,该(N-1)个交叉单元的第四端口与N个射频拉远单元中除了第一射频拉远单元之外的射频拉远单元相连,该(N-1)个交叉单元的第二端口与第一天线相连,该(N-1)个交叉单元的第三端口与N组天线中除了第一天线之外的天线相连。或者,N大于2,该(N-1)个交叉单元中的第一个交叉单元的第一端口与N个射频拉远单元中的第一个频拉远单元相连,第一个交叉单元的第二端口与第一个射频拉远单元对应的天线相连;该(N-1)个交叉单元中的第i个交叉单元的第一端口与该(N-1)个交叉单元中的第(i-1)个交叉单元的第三端口相连,第i个交叉单元的第二端口与该N个射频拉远单元中的第i个射频拉远单元对应的天线相连,第i个交叉单元的第四端口与该N个射频拉远单元中的第(i+1)个射频拉远单元相连,第i个交叉单元的第三端口与该(N-1)个交叉单元中的第(i+1)个交叉单元的第一端口相连,其中的i为大于1且小于(N-1)的整数;该(N-1)个交叉单元中的第(N-1)个交叉单元的第二端口与该N个射频拉远单元中的第(N-1)个射频拉远单元对应的天线相连,该第(N-1)个交叉单元的第四端口与该N个射频拉远单元中的第N个射频拉远单元相连,该第(N-1)个交叉单元的第三端口与该第N个射频拉远单元对应的天线相连。
方式二,该第一模块包括第一子模块和(N-1)个第二子模块。其中的第一子模块与每个第二子模块相连,第一天线是所述N组天线中的一组天线;其中,每个射频拉远单元与所述第一模块相连,可以为:第一射频拉远单元与第一子模块相连,N个射频拉远单元中除了该第一射频拉远单元之外的(N-1)个射频拉远单元与该(N-1)个第二子模块相连,其中一个第二子模块与一个射频拉远单元相连;每组天线与第一模块相连,可以为:第一射频拉远单元对应的第一天线与第一子模块相连,N组天线中除了 第一天线之外的(N-1)组天线与该(N-1)个第二子模块相连,其中一个第二子模块与一组天线相连。
示例性的,P组天线对应的P个射频拉远单元包括第一射频拉远单元,该第一模块接收P个射频信号,将P个射频信号合成为第三射频信号,以及向该第一射频信号发送第三射频信号,可以为:(P-1)组天线相连的(P-1)个第二子模块接收来自所述(P-1)组的(P-1)个射频信号,以及向第一子模块发送该(P-1)个射频信号,其中(P-1)组天线是P组天线中除了第一射频拉远单元对应的第一天线之外的天线;第一子模块接收来自该(P-1)个第二子模块的(P-1)个射频信号,接收来自第一天线的一个射频信号,将该P个射频信号合成为第三射频信号,以及向第一射频拉远单元发送该第三射频信号。或者,P组天线对应的P个射频拉远单元不包括第一射频拉远单元,该第一模块接收P个射频信号,将P个射频信号合成为第三射频信号,以及向该第一射频信号发送第三射频信号,可以为:P组天线相连的P个第二子模块接收来自该P组天线的P个射频信号,以及向第一子模块发送该P个射频信号;该第一子模块接收来自P个第二子模块的P个射频信号,将该P个射频信号合成为第三射频信号,以及向第一射频拉远单元发送该第三射频信号。
示例性的,第一子模块可以包括(N-1)个交叉单元,每个交叉单元包括第一端口、第二端口、第三端口和第四端口;其中,第一射频拉远单元与第一子模块相连,可以为:第一射频拉远单元与第一交叉单元的第一端口相连;第一交叉单元是(N-1)个交叉单元中的一个交叉单元,第一交叉单元的第四端口接地,第一交叉单元的第二端口与第一天线相连,第一交叉单元的第三端口与(N-1)个交叉单元中除了第一交叉单元之外的一个交叉单元相连或者(N-1)个第二子模块中的一个第二子模块相连。
示例性的,N等于2,该(N-1)个交叉单元的第一端口与第一射频单元相连,该(N-1)个交叉单元的第四端口接地,该(N-1)个交叉单元的第二端口与第一天线相连,该(N-1)个交叉单元的第三端口与(N-1)个第二子模块相连,该(N-1)个第二子模块与N组天线中除了第一天线之外的天线相连。或者,N大于2,该(N-1)个交叉单元中的第一个交叉单元的第一端口与第一射频单元相连,该第一个交叉单元的第四端口接地,该第一个交叉单元的第二端口与第一天线相连;(N-1)个交叉单元中的第i个交叉单元的第一端口与(N-1)个交叉单元中的第(i-1)个交叉单元的第三端口相连,第i个交叉单元的第二端口与(N-1)个第二子模块中的第(i-1)个第二子模块相连,第i个交叉单元的第四端口接地,其中的i为大于1且小于(N-1)的整数;该(N-1)个交叉单元中的第(N-1)个交叉单元的第一端口与该(N-1)个交叉单元中的第(N-2)个交叉单元的第三端口相连,该第(N-1)个交叉单元的第二端口与该(N-1)第二子模块中的第(N-2)个第二子模块相连,该(N-1)个交叉单元的第四端口接地,该(N-1)个交叉单元的第三端口与该(N-1)第二子模块中的第(N-1)个第二子模块相连。
在一种可能的设计中,该方法还可以包括:第一交叉单元通过第三端口接收第三射频信号,以及通过第一端口向第一射频单元发送该第三射频信号;或者,该第一交叉单元通过第二端口接收一个射频信号,通过第三端口接收一个射频信号,将这两个射频信号合成为第三射频信号,并通过第一端口向第一射频拉远单元发送该第三射频信号。
上述第四方面及其任意可能的设计所述方法的有益效果请对应参考第三方面及其任意可能的设计所述装置的有益效果,此处不再赘述。
第五方面,本申请实施例提供一种通信装置,该通信装置包括至少一个处理器和接口电路,该至少一个处理器用于实现上述第二方面及其可能的设计所述的方法,或者实现上述第二方面及其可能的设计所述的方法。该接口电路用于实现与其它通信装置之间的通信。
第六方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得所述计算机执行上述第二方面及其可能的设计所述的方法,或者使得所述计算机执行上述第四方面及其可能的设计所述的方法。
第七方面,本申请实施例还提供了一种计算机程序产品,包括指令,当指令在计算机上运行时,使得所述计算机执行上述第二方面或第二方面任一项可能的设计中的方法,或者使得所述计算机执行上述第四方面及其可能的设计所述的方法。
第八方面,本申请实施例还提供一种芯片系统,该芯片系统包括至少一个处理器和接口电路,处理器用于通过接口电路执行指令和/或数据的交互,使得芯片系统所在的装置执行上述第二方面或第二方面任一项可能的设计中的方法,或者使得芯片系统所在的装置执行上述第四方面或第四方面任一项可能的设计中的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第九方面,本申请实施例还提供了一种芯片,芯片用于读取存储器中存储的计算机程序,执行上述第二方面或第二方面任一项可能的设计中的方法,或者执行上述第四方面或第四方面任一项可能的设计中的方法。
附图说明
图1为本申请实施例中三扇区组网的一种结构示意图;
图2为本申请实施例中时域关断的一种示意图;
图3为本申请实施例中频域关断的一种示意图;
图4为本申请实施例提供的交叉单元的一种示意图;
图5为本申请实施例提供的交叉单元的一种电路示意图;
图6为本申请实施例提供的通信装置的一种示意图;
图7A为本申请实施例提供的通信装置的又一种示意图;
图7B为本申请实施例提供的通信装置的再一种示意图;
图8为本申请实施例提供的通信装置的又一种示意图;
图9为本申请实施例提供的第一模块的一种示意图;
图10为本申请实施例提供的通信装置的一种示意图;
图11A为本申请实施例提供的通信装置的又一种示意图;
图11B为本申请实施例提供的通信装置的再一种示意图;
图12为本申请实施例提供的通信装置的又一种示意图;
图13为本申请实施例提供的第一子模块的一种示意图;
图14为本申请实施例提供的第二子模块的一种示意图;
图15为本申请实施例提供的通信方法的一种流程示意图;
图16为本申请实施例提供的通信方法的一种流程示意图。
具体实施方式
本申请实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。还应当理解,在本申请实施例中,“一个或多个”是指一个、两个或两个以上;“和/或”,描述关联对象的关联关系,表示可以存在三种关系;例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A、B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
本申请实施例涉及的至少一个,包括一个或者多个;至少两个,包括两个或两个以上;其中,多个是指大于或者等于两个。另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。比如,后文涉及的第一端口、第二端口、第三端口和第四端口仅用于区分四个端口,并不限定该四个端口的大小、位置顺序、优先级等。又比如,后文涉及的第一射频信号、第二射频信号和第三射频信号仅用于区分三个射频信号,并不限定该三个射频信号的优先级等。
图1示出了三扇区组网的结构示意图。如图1所示,该三扇区组网包括三个RRU,分别记为RRU1、RRU2、RRU3,以及三组天线,分别记为天线1、天线2、天线3。其中,每个RRU包括4个端口。RRU1通过馈线(图1中用黑线表示)与天线1连接,RRU2通过馈线与天线2连接,RRU3通过馈线与天线3连接。RRU主要负责射频信号的调制解调、射频信号功率放大。天线主要负责基站侧电磁波信号的接收和发送。在本申请实施例中,RRU向与其相连的天线发送射频信号;相应的,该天线接收 来自该RRU的射频信号,发送该射频信号。
为了降低RRU的功耗,目前常用的节能手段包括时域关断、空域关断以及频域节能。时域关断中以符号为粒度,关断没有业务数据的符号,以降低RRU的功耗,达到节能的目的,如图2所示。空域关断中以通道为粒度,在低负载场景下,将一部分下行发射通道关断,以降低RRU的功耗,达到节能的目的,如图3所示。图3以下行发射通道由基带处理单元(baseband processing unit,BB)、中射频单元(intermediate radio frequency unit,IRF)和功率放大器(power amplifier,PA)组成为例,以及图3中以虚线表示关断的下行发射通道。频域节能中以载波为粒度,在频域上关断部分频段或频点对应的载波,以降低RRU的功耗,达到节能的目的。
随着多天线技术的发展,RRU通常处于多通道共同工作的状态,基础功耗占比较大,常用的时域关断、空域关断以及频域节能等细粒度的节能手段不能减少RRU的基础功耗。
鉴于此,本申请实施例提供一种通信方法及装置,用以通过一个或多个交叉单元实现一个RRU对多组天线的驱动,从而使得该多组天线对应的多个RRU中的至少一个RRU处于休眠状态或不工作的状态,能够减少RRU的基础功耗,达到节能的目的。其中,RRU处于休眠状态可理解为RRU以较小的功耗维持待唤醒状态。RRU处于不工作的状态可理解为该RRU处于深度节能状态或下电状态。
本申请提供的通信方法可以应用于各种通信系统,例如长期演进(long term evolution,LTE)系统、频分双工(frequency division duplex,FDD)系统、时分双工(time division duplex,TDD)系统、全双工系统、第五代(5th generation,5G)移动通信系统、物联网(internet of things,IoT)系统、V2X系统、窄带物联网(narrow band internet of things,NB-IoT)系统、LTE与5G混合架构、新无线(new radio,NR)系统、或者应用于未来的通信系统或其它类似的通信系统等。只要该通信系统中涉及RRU,均可以采用本申请实施例提供的通信方法。
本申请实施例涉及的RRU可部署在宏基站中,也可以部署在微基站或室内站或高频基站等中。本申请的实施例对RRU所采用的具体技术和具体设备形态不做限定。
上述提到本申请实施例可通过一个或多个交叉单元实现一个RRU对多组天线的驱动,为了便于理解下面先介绍本申请实施例提供的交叉单元。其中,该交叉单元又可以称为交叉器、交叉模块等,本申请实施例对该交叉单元的命名不作限定。
图4示出了本申请实施例提供的交叉单元的一种示意图。如图4所示,交叉单元400包括四个端口。这四个端口可分别记为第一端口(图4中标注为“1”)、第二端口(图4中标注为“2”)、第三端口(图4中标注为“3”)以及第四端口(图4中标注为“4”)。其中,第一端口和第四端口可作为输入端口,第二端口和第三端口可作为输出端口;或者,第一端口和第四端口可作为输出端口,第二端口和第三端口可作为输入端口;图4中以第一端口和第四端口为输入端口,第二端口和第三端口为输出端口为例。该交叉单元400通过这四个端口可实现如下工作状态:直通态,交叉态、功分态和合成态。
其中,直通态,是指第一端口输入的射频信号通过第二端口输出,和/或第四端口输入的射频信号通过第三端口输出;或者,第二端口输入的射频信号通过第一端口输出,和/或第三端口输入的射频信号通过第四端口输出。
交叉态,是指第一端口输入的射频信号通过第三端口输出,和/或第四端口输入的射频信号通过第二端口输出;或者,第二端口输入的射频信号通过第四端口输出,和/或第三端口输入的射频信号通过第一端口输出。
功分态,是指第一端口或第四端口输入的射频信号分为两个子射频信号,该两个子射频信号中的一个子射频信号通过第二端口输出,剩余的一个子射频信号通过第三端口输出。处于功分态的交叉单元400可以将一个射频信号分为两个子射频信号,例如交叉单元400可通过功分的方式将一个射频信号分为两个子射频信号,但本申请实施例并不限定于此。其中该两个子射频信号的输出功率可以是均分的,也可以是非均分的,如根据需求预先设定的。
合成态,是指第二端口输入的射频信号与第三端口输入的射频信号合成为一个射频信号,并通过第一端口或第四端口输出该一个射频信号。处于合成态的交叉单元40可以将两个射频信号合成为一个射频信号,例如交叉单元400可通过时分或频分等方式将两个射频信号合成为一个射频信号,但本申请实施例并不限定于此。
需要说明的是,本申请实施例涉及的术语“端口”可替换为“接口”、“引脚”等。
作为一个示例,图5示出了本申请实施例提供的交叉单元的电路示意图。如图5所示,交叉单元 400包括两个开关(如射频开关,分别记为S1和S2),四个二极管(分别记为P1、P2、P3、和P4),两个微带线(如1/4波长的微带线,分别记为R1和R2)和两个电容(分别记为C1和C2)。其中,开关S1与第一端口和第四端口相连,开关S1与二极管P1相连、与微带线R1相连,二极管P1与微带线R1并联,微带线R1与二极管P2串联,电容C1的一侧与二极管P1、二极管P2相连,电容C1的另一侧接地。开关S2与第二端口和第三端口相连,开关S2与二极管P3相连、与微带线R2相连,二极管P3与微带线R2并联,微带线R2与二极管P4串联,电容C2的一侧与二极管P3、二极管P4相连,电容C2的另一侧接地。
交叉单元400可通过控制开关S1、开关S2、二极管P1、二极管P2、二极管P3、以及二极管P4的工作状态实现直通态、交叉态、功分态以及合成态之间的切换。
例如,开关S1选择二极管P2,开关S2选择二极管P4,二极管P2和二极管P4皆处于负偏压截止状态,在此情况下,交叉单元400处于直通态,即,第一端口输入的射频信号通过第二端口输出,第四端口输入的射频信号通过第三端口输出。
又例如,开关S1选择二极管P1,开关S2选择二极管P3,二极管P1和二极管P3皆处于负偏压截止状态,在此情况下,交叉单元400处于交叉态,即,第一端口输入的射频信号通过第三端口输出,第四端口输入的射频信号通过第二端口输出。
再例如,开关S1选择二极管P2,开关S2选择二极管P4,二极管P2和二极管P4皆处于正偏压导通状态,电容C1和电容C2可作为加载电容改变交叉单元400的相位状态,在此情况下,交叉单元400可处于功分态,即,第一端口或第四端口输入的射频信号分为两个子射频信号,该两个子射频信号中的一个子射频信号通过第二端口输出,剩余的一个子射频信号通过第三端口输出。
再例如,开关S1选择二极管P2,开关S2选择二极管P4,二极管P2和二极管P4皆处于正偏压导通状态,电容C1和电容C2可作为加载电容改变交叉单元400的相位状态,在此情况下,交叉单元400可处于合成态,即第二端口输入的射频信号和第三端口输入的射频信号合成为一个射频信号,并通过第一端口或第四端口输出。
需要说明的是,交叉单元400处于功分态和处于合成态时该交叉单元400中的各个器件的工作方式可以相同,不同的是:如果射频信号从第一端口或第四端口输入,则该交叉单元400处于功分态;如果射频信号从第二端口和第三端口输入,则该交叉单元400处于合成态。当然,该交叉单元400处于功分态和处于合成态时,该交叉单元400中的各个器件的工作方式也可以不同,本申请实施例对此不作限定。
应理解的是,图5的电路结构仅为一种示例,本申请实施例并不限定于此。
接下来,介绍本申请实施例提供的通信装置。
图6示出了本申请实施例提供的通信装置的一种示意图。如图6所示,通信装置包括N个RRU、第一模块和N组天线。其中,N个RRU中的每个RRU与第一模块相连,比如通过馈线相连。第一模块与N组天线中的每组天线相连,比如通过馈线相连。该N为大于1的整数(图6以N大于或等于3为例)。其中的N个RRU与N组天线一一对应。N个RRU与N组天线一一对应,是指N个RRU中的一个RRU对应于N组天线中的一组天线,且N组天线中的一组天线对应于N个RRU中的一个RRU。假设N个RRU包括RRU 1,该RRU 1对应于N组天线中的天线1,可理解为在部署时该RRU 1的射频信号用于驱动该天线1。以图1为例,RRU1与天线1对应,RRU2与天线2对应,RRU3与天线3对应。
该通信装置可实现对信号的发送,也可以实现对信号的接收,还可以实现对信号的发送以及实现对信号的接收。其中,当该通信装置既可以实现对信号的发送又可以实现对信号的接收时,通信装置可以先发送信号,再接收信号,或者先接收信号,再发送信号,本申请实施例对此不作限定。
在一种可能的实现方式中,该通信装置可以实现对信号的发送。在此情况下,假设N个RRU中包括第一RRU。该第一RRU,可用于向第一模块发送第一射频信号。第一模块,可用于接收来自第一RRU的第一射频信号,将该第一射频信号分为M个子射频信号,以及向N个RRU中的M个RRU对应的M组天线发送该M个子射频信号,M为大于1且小于或等于N的整数。该M组天线,可用于接收来自第一模块的M个子射频信号,并发送该M个子射频信号。其中,该M个子射频信号可以是第一射频信号通过一次或多次功分得到的子射频信号,但本申请实施例并不限定于此。在上述实现方式中,第一RRU的射频信号分为多个子射频信号,并由多组天线发送该多个子射频信号,从而实现一个RRU驱动两组或两组以上的天线,打破了由一个RRU驱动一组天线的模式,使得一个或多个RRU处于休 眠状态或不工作的状态,能够以RRU为粒度减少RRU的基础功耗。
作为一个示例,该第一RRU对应的小区的负载小于或等于负载阈值,且该M个RRU中每个RRU对应的小区的负载也小于或等于该负载阈值。其中,该M个RRU可以包括该第一RRU,在此情况下,该第一RRU的射频信号的子射频信号可驱动该第一RRU对应的天线;或者,该M个RRU也可以不包括该第一RRU,在此情况下,该第一RRU的射频信号的子射频信号不驱动该第一RRU对应的天线。
其中,RRU对应的小区,可理解为RRU服务的小区,或理解为RRU覆盖的小区,或理解为该RRU对应的天线所服务的小区,或理解为该RRU对应的天线所覆盖的小区等。该负载阈值可以是系统预先定义的,或者也可以是用户设置的,本申请实施例不作限定。例如,该负载阈值可以是30%,或者是50%等。RRU对应的小区可以是一个或多个。若RRU对应的小区是多个,那RRU对应的小区的负载可理解为该RRU对应的多个小区的平均负载等,但本申请实施例并不限定于此。
示例性的,第一模块可根据N个RRU中每个RRU对应的负载,将第一射频信号分为M个子射频信号。例如,第一模块可根据N个RRU中每个RRU对应的小区的负载,确定可以处于休眠状态或不工作的状态的RRU,并根据该需要处于休眠状态或不工作的状态的RRU数量,确定将第一射频信号分成子射频信号的数量。例如,RRU对应的小区的负载小于或等于负载阈值,第一模块确定该RRU可以处于休眠状态或不工作的状态。又例如,RRU的负载值大于负载阈值,第一模块确定该RRU不能处于休眠状态或不工作的状态。
假设第一模块根据N个RRU中每个RRU对应的负载,确定该N个RRU中的Q个RRU中每个RRU对应的小区的负载小于或等于负载阈值,即该Q个RRU可以处于休眠状态或不工作的状态。该Q为大于或等于M且小于或等于N的整数。进一步,第一模块可从该Q个RRU中选择一个RRU作为第一RRU,以及从剩余的(Q-1)个RRU中选择M个RRU(在此情况下,第一RRU不驱动自身对应的天线)或者选择(M-1)个RRU(在此情况下,第一RRU驱动自身对应的天线)。
作为又一个示例,假设第二RRU是N个RRU中除了该Q个RRU之外的RRU,即,该第二RRU对应的小区的负载大于该负载阈值。该第二RRU,可用于向第一模块发送第二射频信号。该第一模块,可用于接收来自第二RRU的第二射频信号,以及向第二RRU对应的第二天线发送该第二射频信号。该第二天线则用于发送该第二射频信号。通过该示例,通信装置中的RRU也可以通过第一模块驱动自身对应的天线,兼容性好,且能保证自身对应的小区的业务需求。
在上述实现方式中,通信装置可以实现对信号的发送。在另一种可能的实现方式中,该通信装置可以实现对信号的接收。在此情况下,假设N个RRU中包括第一RRU。该N组天线中的P组天线,可用于接收P个射频信号,并向第一模块发送该P个射频信号,其中一组天线接收一个射频信号,P为大于1且小于或等于N的整数。该第一模块,可用于接收来自P组天线的P个射频信号,将该P个射频信号合成为第三射频信号,以及向第一RRU发送该第三射频信号。该第一RRU,可用于接收来自第一模块的第三射频信号。其中,该第三射频信号可以是该P个射频信号用过时分或频分等方式合成得到的一个射频信号,但本申请实施例并不限定于此。在上述实现方式中,来自多组天线的多个射频信号合成为一个射频信号,并发送给一个RRU,从而实现一个RRU接收来自两组或两组以上的天线的射频信号,打破了由一个RRU接收一组天线的射频信号的模式,使得一个或多个RRU处于休眠状态或不工作的状态,能够以RRU为粒度减少RRU的基础功耗。
作为一个示例,该第一RRU对应的小区的负载小于或等于负载阈值,且该P个RRU中每个RRU对应的小区的负载也小于或等于该负载阈值。其中,该P个RRU可以包括该第一RRU,在此情况下,该第一RRU可接收来自其对应的天线的射频信号;或者,该P个RRU也可以不包括该第一RRU,在此情况下,该第一RRU不接收来自其对应的天线的射频信号。其中,RRU对应的小区,负载阈值等请参考前述描述,此处不再赘述。
示例性的,第一模块可根据N个RRU中每个RRU对应的负载,将P个RRU对应的P组天线的P个射频信号合成为第三射频信号。例如,第一模块可根据N个RRU中每个RRU对应的小区的负载,确定可以处于休眠状态或不工作的状态的RRU,并根据该需要处于休眠状态或不工作的状态的RRU数量,确定待合成的射频信号的天线组的数量。例如,RRU对应的小区的负载小于或等于负载阈值,第一模块确定该RRU可以处于休眠状态或不工作的状态。又例如,RRU的负载值大于负载阈值,第一模块确定该RRU不能处于休眠状态或不工作的状态。
假设第一模块根据N个RRU中每个RRU对应的负载,确定该N个RRU中的Q个RRU中每个 RRU对应的小区的负载小于或等于负载阈值,即该Q个RRU可以处于休眠状态或不工作的状态。该Q为大于或等于M且小于或等于N的整数。进一步,第一模块可从该Q个RRU中选择一个RRU作为第一RRU,用于接收射频信号;以及从剩余的(Q-1)个RRU中选择P个RRU(在此情况下,第一RRU不接收来自其对应的天线的射频信号)或者选择(M-1)个RRU(在此情况下,第一RRU接收来自其对应的天线的射频信号),用于将该P个RRU对应的P组天线的P个射频信号作为待合成的射频信号。
作为又一个示例,假设第三RRU是N个RRU中除了该Q个RRU之外的RRU,即,该第三RRU对应的小区的负载大于该负载阈值。该第三RRU对应的天线,可用于接收第四射频信号,向第一模块发送该第四射频信号。该第一模块,可用于接收来自第三RRU对应的天线的第四射频信号,以及向第三RRU发送该第四射频信号。该第四射频信号则用于接收来自第一模块的该第四射频信号。通过该示例,通信装置中的RRU也可以通过第一模块接收来自其自身对应的天线的射频信号,兼容性好,且能保证自身对应的小区的业务需求。
可选的,该通信装置还可以包括控制器(图6中未示出),该控制器可用于控制第一模块将第一射频信号分为M个子射频信号,或可用于控制第一模块将P个射频信号合成为第三射频信号,或者可用于控制将第一射频信号分为M个子射频信号以及控制第一模块将P个射频信号合成为第三射频信号。该控制器可以集成在第一模块中,也可以不集成在第一模块中,本申请实施例不作限定。
上述通信装置中的第一模块可用于将第一射频信号分为M个子射频信号,和/或将P个射频信号合成为第三射频信号。示例性的,该第一模块可通过一个或多个交叉单元将第一射频信号分为M个子射频信号,和/或通过一个或多个交叉单元将P个射频信号合成为第三射频信号。其中的交叉单元如图4或图5所示,此处不再赘述。示例性的,第一模块可通过如下方式实现:方式一,第一模块包括(N-1)个交叉单元;方式二,该第一模块包括第一子模块和(N-1)个第二子模块,其中的第一子模块包括(N-1)个交叉单元。下面分别介绍这两种实现方式。
方式一,第一模块可以包括(N-1)个交叉单元。假设该(N-1)个交叉单元中包括第一交叉单元。该第一RRU与第一交叉单元的第一端口相连,相应的,该第一RRU可以向第一交叉单元的第一端口发送第一射频信号。在本申请实施例中,该第一交叉单元的第四端口可与该N个RRU中除了第一RRU之外的一个RRU相连,可用于接收该一个RRU的射频信号。该第一交叉单元的第二端口可与第一RRU对应的第一天线相连,用于向该第一天线发送第一射频信号或第一射频信号的子射频信号。该第一交叉单元的第三端口可与(N-1)个交叉单元中除了第一交叉单元之外的一个交叉单元的第一端口相连,可用于向该一个交叉单元的第一端口发送第一射频信号或第一射频信号的子射频信号;或者,该第一交叉单元的第三端口可与N组天线中除了第一天线之外的一组天线相连,可用于向该一组天线发送第一射频信号的子射频信号。
在图7A中,以N等于2,第一RRU为RRU1,第一天线为天线1,剩余的RRU为RRU2,剩余的天线为天线2为例示出了通信装置的一种示意图。如图7A所示,第一模块由1个交叉单元组成,其中,交叉单元的第一端口与RRU1相连,交叉单元的第四端口与RRU2相连,交叉单元的第二端口与天线1相连,交叉单元的第三端口与天线2相连。在信号发送的情况下,交叉单元的第一端口接收来自RRU1的第一射频信号,将第一射频信号分为两个子射频信号,将其中的一个子射频信号发送给RRU1自身对应的天线1,以及将剩余的一个子射频信号发送给RRU2对应的天线2,这样RRU2无需驱动天线2,从而该RRU2可切换至休眠状态或不工作的状态,减少RRU的基础功耗。在信号接收的情况下,交叉单元的第二端口接收来自天线1的射频信号,交叉单元的第三端口接收来自天线3的射频信号,将这两个射频信号合成为一个射频信号,并通过第一端口发送给RRU1,这样RRU2无需接收来自其自身对应的天线的射频信号,从而该RRU2可切换至休眠状态或不工作的状态,减少RRU的基础功耗。
在图7B中,以N大于2为例示出了通信装置的又一种示意图。如图7B所示,第一模块由2个或2个以上的交叉单元组成。其中,(N-1)个交叉单元中的第一个交叉单元的第一端口与N个RRU中的第一个RRU(记为RRU1)相连,该第一个交叉单元的第二端口与RRU1对应的天线(记为天线1)相连,该第一个交叉单元的第四端口与N个RRU中第二个RRU(记为RRU2)相连,该第一个交叉单元的第三端口与该(N-1)个交叉单元中的第二个交叉单元的第一端口相连。该(N-1)个交叉单元中的第i个交叉单元的第一端口与该(N-1)个交叉单元中的第(i-1)个交叉单元的第三端口相连,第i个交叉单元的第二端口与该N个RRU中的第i个RRU对应的天线相连,该第i个交叉单元的第四端口与 该N个RRU中的第(i+1)个RRU相连,该第i个交叉单元的第三端口与该(N-1)个交叉单元中的第(i+1)个交叉单元的第一端口相连。其中的i为大于1且小于(N-1)的整数。该(N-1)个交叉单元中的第(N-1)个交叉单元的第一端口与该(N-1)个交叉单元中的第(N-2)个交叉单元的第三端口相连,该第(N-1)个交叉单元的第二端口与该N个RRU中的第(N-1)个RRU对应的天线相连,该(N-1)个交叉单元的第四端口与该N个RRU中的第N个RRU相连,该(N-1)个交叉单元的第三端口与该第N个RRU对应的天线相连。
应理解的是,在图7B所示的通信装置中,本申请实施例涉及的第一RRU可以是该N个RRU中的第一个RRU至第(N-1)个RRU中的任一个RRU。在信号发送的情况下,与第一RRU相连的第一交叉单元可通过第一端口接收第一射频信号以及通过第三端口发送该第一射频信号;或者也可以通过第一端口接收第一射频信号,将第一射频信号分为两个子射频信号,通过第二端口发送其中的一个子射频信号,以及通过第三端口发送剩余的一个子射频信号。在信号接收的情况下,与第一RRU相连的第一交叉单元可通过第三端口接收第三射频信号,并通过第一交叉单元的第一端口向第一RRU发送该第三射频信号;或者,与第一RRU相连的第一交叉单元可通过第二端口接收第一天线的射频信号,通过第三端口接收一个射频信号,将这两个射频信号合成为第三射频信号,并通过第一交叉单元的第一端口向第一RRU发送该第三射频信号。
为了便于理解本申请,上述图6、图7A和图7B所示的通信装置以RRU包括一个端口为例。在一种可能的实现方式中,RRU可支持多个端口。示例性的,假设RRU支持H个端口,第一模块可包括两组端口,其中每组端口包括H个端口。N组天线中的每组天线包括H个端口。该H为大于或等于1的整数。假设第一模块的两组端口分为记为第一组端口和第二组端口,第一组端口中的第j个端口与N个RRU中的每个RRU的第j个端口相连,第二组端口中的第j个端口与N组天线中的每组天线的第j个端口相连,如图8所示。其中的j为大于0且小于或等于H的整数。在图8中以RRU支持4个端口,N等于3为例。
在图8所示的通信装置中,第一模块可以包括H组交叉网络,其中的每组交叉网络包括(N-1)个交叉单元,该(N-1)个交叉单元的连接方式请参考图7A或图7B中的(N-1)个交叉单元的连接方式,此处不再赘述。该H组交叉网络与H个端口一一对应,即H组交叉网络中的一组交叉网络与H个端口中的一个端口对应,H个端口中的一个端口也与H组交叉网络中的一组交叉网络对。该H组交叉网络中的第k个交叉网络与N个RRU中的每个RRU的第k个端口相连,该第k个交叉网络与N组天线中的每组天线的第k个端口相连。其中的k为大于0且小于或等于H的整数。
示例性的,第k个交叉网络中的(N-1)个交叉单元与N个RRU、N组天线的连接关系可以如下:该(N-1)个交叉单元中的第一个交叉单元的第一端口与N个RRU中的第一个RRU的第k个端口相连;该(N-1)个交叉单元中的第x个交叉单元的第二端口与该N个RRU中的第x个RRU对应的天线的第k个端口相连,该第x个交叉单元的第四端口与该N个RRU中的第(x+1)个RRU的第k个端口相连,其中的x为大于0且小于N的整数;该(N-1)个交叉单元中的第(N-1)个交叉单元的第三端口与该第N个RRU对应的天线的第k个端口相连,如图9所示。在图9中以RRU支持4个端口,N等于3为例。图9中的R1P1表示RRU1的第一个端口,A1P1表示天线1的第一个端口,其余类似,此处不再逐一说明。
上述介绍了实现第一模块的方式一,接下来介绍实现第一模块的方式二。
方式二,第一模块包括第一子模块和(N-1)个第二子模块,该第一子模块与(N-1)个第二子模块中的每个第二子模块,如图10所示。其中,第一子模块与第一RRU相连,该第一子模块还与该第一RRU对应的第一天线相连。(N-1)个第二子模块与N个RRU中除了第一RRU之外的(N-1)个RRU相连,其中一个第二子模块与一个RRU相连。该(N-1)个第二子模块还与该(N-1)个RRU对应的(N-1)组天线相连,其中一个第二子模块与一组天线相连。
在信号发送的情况下,第一模块可接收来自第一RRU的第一射频信号,将第一射频信号分为M个子射频信号,并向M个RRU对应的M组天线发送该M个子射频信号。其中该M个RRU可以包括第一RRU,也可以不包括第一RRU。
例如,M个RRU包括第一RRU,那么,该第一子模块可用于接收来自第一RRU的第一射频信号,将第一射频信号分为M个子射频信号,向第一RRU对应的第一天线发送一个子射频信号,以及向与 (M-1)个RRU相连的(M-1)个第二子模块发送剩余的(M-1)个子射频信号,该(M-1)个RRU是M个RRU中除了第一RRU之外的RRU。该(M-1)个第二子模块,可用于向该(M-1)个RRU对应的(M-1)组天线发送该(M-1)个子射频信号。
又例如,M个RRU不包括第一RRU,那么,该第一子模块可用于接收来自第一RRU的第一射频信号,将第一射频信号分为M个子射频信号,以及向与该M个RRU相连的M个第二子模块发送该M个子射频信号。该M个第二子模块,可用于向该M个RRU对应的M组天线发送该M个子射频信号。
其中,第一子模块将第一射频信号分为M个子射频信号的具体实现方式,可参考前述第一模块将第一射频信号分为M个子射频信号的相关描述,此处不再赘述。
在信号接收的情况下,第一模块可接收来自P个RRU对应的P组天线的P个射频信号,将该P个射频信号合成为第三射频信号,并向第一RRU发送该第三射频信号。其中该P个RRU可以包括第一RRU,也可以不包括第一RRU。
例如,该P个RRU包括第一RRU,那么,(P-1)组天线相连的(P-1)个第二子模块可用于接收来自该(P-1)组天线的(P-1)个射频信号,以及向第一子模块发送该(P-1)个射频信号,该(P-1)组天线是(P-1)个RRU对应的天线,(P-1)个RRU是该P个RRU中除了第一RRU之外的RRU。第一子模块,可用于接收来自第一RRU对应的第一天线的射频信号,接收来自该(P-1)个第二子模块的(P-1)个射频信号,将这P个射频信号合成为第三射频信号,以及向第一RRU发送该第三射频信号。相应的,第一RRU则用于接收该第三射频信号。
又例如,该P个RRU不包括第一RRU,那么,P组天线相连的P个第二子模块可用于接收来自该P组天线的P个射频信号,以及向第一子模块发送该P个射频信号,该P组天线是P个RRU对应的天线。第一子模块,可用于接收来自该P个第二子模块的P个射频信号,将这P个射频信号合成为第三射频信号,以及向第一RRU发送该第三射频信号。相应的,第一RRU则用于接收该第三射频信号。
其中,第一子模块将P个射频信号合成为第三射频信号的具体实现方式,可参考前述第一模块将P个射频信号合成为第三射频信号的相关描述,此处不再赘述。
上述的第一子模块可以包括(N-1)交叉单元,该交叉单元例如图4、图5所示,此处不再赘述。下面介绍第一子模块中的该(N-1)交叉单元间的连接方式。
在图11A中,以N等于2,第一RRU为RRU1,第一天线为天线1,剩余的RRU为RRU2,剩余的天线为天线2为例示出了通信装置的一种示意图。如图11A所示,第一子模块由1个交叉单元组成。在此情况下,交叉单元的第一端口与RRU1相连,交叉单元的第二端口与天线1相连,交叉单元的第四端口接地,交叉单元的第三端口与第二子模块相连,第二子模块与RRU2相连,该第二子模块还与天线2相连。在信号发送的情况下,交叉单元的第一端口接收来自RRU1的第一射频信号,将第一射频信号分为两个子射频信号,将其中的一个子射频信号发送给RRU1自身对应的天线1,以及将剩余的一个子射频信号发送给第二子模块,再由第二子模块发送给RRU2对应的天线2,这样RRU2无需驱动天线2,从而该RRU2可切换至休眠状态或不工作的状态,减少RRU的基础功耗。在信号接收的情况下,交叉单元的第三端口接收第二子模块的射频信号,交叉单元的第二端口接收天线1的射频信号,将这两个射频信号合成为第三射频信号,并通过第一端口向第一RRU发送该第三射频信号,这样RRU2无需接收来自其自身对应的天线的射频信号,从而该RRU2可切换至休眠状态或不工作的状态,减少RRU的基础功耗。
在图11B中,以N大于2为例示出了通信装置的又一种示意图。如图11B所示,第一子模块由2个或2个以上的交叉单元组成。其中,(N-1)个交叉单元中的第一个交叉单元的第一端口与N个RRU中的第一个RRU(记为RRU1)相连,第一个交叉单元的第二端口与第一个RRU对应的天线(记为天线1)相连,第一个交叉单元的第四端口接地,第一个交叉单元的第三端口与(N-1)个交叉单元中的第二个交叉单元的第一端口相连。该(N-1)个交叉单元中的第i个交叉单元的第一端口与该(N-1)个交叉单元中的第(i-1)个交叉单元的第三端口相连,第i个交叉单元的第二端口与(N-1)个第二子模块中的第(i-1)个第二子模块相连,该第i个交叉单元的第四端口接地,该第i个交叉单元的第三端口与该(N-1)个交叉单元中的第(i+1)个交叉单元的第一端口相连。其中的i为大于1且小于(N-1)的整数。该(N-1)个交叉单元中的第(N-1)个交叉单元的第一端口与该(N-1)个交叉单元中的第(N-2)个交叉单元的第三端口相连,该第(N-1)个交叉单元的第二端口与该(N-1)第二子模块中的第(N-2) 个第二子模块相连,该(N-1)个交叉单元的第四端口接地,该(N-1)个交叉单元的第三端口与该(N-1)第二子模块中的第(N-1)个第二子模块相连。
应理解的是,在图11B所示的通信装置中,本申请实施例涉及的第一RRU可以是该N个RRU中的第一个RRU。在此情况下,与第一RRU相连的第一交叉单元是(N-1)个交叉单元中的第一个交叉单元。在信号发送的情况下,该第一交叉单元可通过第一端口接收第一射频信号以及通过第三端口发送该第一射频信号;或者也可以通过第一端口接收第一射频信号,将第一射频信号分为两个子射频信号,通过第二端口发送其中的一个子射频信号,以及通过第三端口发送剩余的一个子射频信号。在信号接收的情况下,该第一交叉单元可通过第三端口接收第三射频信号,并通过第一端口向第一RRU发送该第三射频信号;或者,该第一交叉单元可通过第三端口接收一个射频信号,通过第二端口接收来自第一天线的一个射频信号,将这两个射频信号合成为第三射频信号,并通过第一端口向第一RRU发送该第三射频信号。
为了便于理解本申请,上述图10、图11A和图11B所示的通信装置以RRU包括一个端口为例。在一种可能的实现方式中,RRU可支持多个端口。示例性的,假设RRU支持H个端口,第一子模块可包括(N+1)组端口,其中每组端口包括H个端口。(N-1)个第二子模块中的三组端口,其中每组端口包括H个端口,如图12所示。假设将第一子模块的(N+1)组端口记为第三组端口和N组端口,将第二子模块的三组端口记为第四组端口、第五组端口和第六组端口。第一子模块中的第三组端口中的第j个端口与第一RRU的第j个端口相连。第一子模块中的N组端口中的一组端口的第j个端口与第一天线的第j个端口相连;剩余的(N-1)组端口中的一组端口与(N-1)个第二子模块中的一个第二子模块的第四组端口相连,其中该一组端口中的第j个端口与该第四组端口中的第j个端口相连。每个第二子模块的第五组端口与N个RRU中除了第一RRU之外的(N-1)个RRU中的一个RRU的H个端口相连,其中第五组端口的第j个端口与该H个端口中的第j个端口相连。每个第二子模块的第六组端口与N组天线中除了第一天线之外的(N-1)组天线中的一组天线的H个端口相连,其中第六组端口的第j个端口与该H个端口中的第j个端口相连。其中的j为大于0且小于或等于H的整数。在图12中以RRU支持4个端口,N等于3为例。
在图12所示的通信装置中,第一子模块可以包括H组交叉网络,其中的每组交叉网络包括(N-1)个交叉单元,该(N-1)个交叉单元的连接方式请参考图11A或图11B中的(N-1)个交叉单元的连接方式,此处不再赘述。该H组交叉网络与第一RRU的H个端口一一对应,即H组交叉网络中的一组交叉网络与第一RRU的H个端口中的一个端口对应,第一RRU的H个端口中的一个端口也与H组交叉网络中的一组交叉网络对应。该H组交叉网络中的第k个交叉网络与第一RRU的第k个端口相连,该第k个交叉网络与第一RRU对应的第一天线的第k个端口相连,该第k个交叉网络与每个第二子模块中的第四组端口中的第k个端口相连。其中的k为大于0且小于或等于H的整数。
以N大于2为例,第k个交叉网络中的(N-1)个交叉单元与第一RRU、第一天线、(N-1)个第二子模块的连接关系可以如下:该(N-1)个交叉单元中的第一个交叉单元的第一端口与第一RRU的第k个端口相连,第一个交叉单元的第二端口与第一天线的第k个端口相连;该(N-1)个交叉单元中的第x个交叉单元的第二端口与第(x-1)个第二子模块中的第四组端口中的第k个端口相连,其中的x为大于1且小于或等于N的整数;该(N-1)个交叉单元中的第(N-1)个交叉单元的第三端口与第(N-1)个第二子模块中的第四组端口中的第k个端口相连,如图13所示。在图13中以RRU支持4个端口,N等于3为例。图13中的R1P1表示RRU1的第一个端口,A1P1表示天线1的第一个端口,M1P1表示第一个第二子模块中的第四组端口中的第一个端口,其余类似,此处不再逐一说明。
在上述方式二中,第二子模块可用于接收来自第一子模块的射频信号或子射频信号,也可以用于接收来自与其连接的RRU的射频信号。和/或,该第二子模块还可用于将来自天线的射频信号发送给该天线对应的RRU,或者用于将来自天线的射频信号发送给第一子模块信号。并且,该第二子模块、RRU以及天线三者之间可就近部署,能够减少损耗。
示例性的,一个第二子模块可包括一个开关(如射频开关,记为S3),该开关S3可与第一子模块、一个RRU和该一个RRU对应的一组天线相连。通过控制开关S3可实现第二子模块与第一子模块导通,与一个RRU断开;或者实现第二子模块与第一子模块断开,与一个RRU导通。
假设该一个RRU为RRU2,RRU2对应的天线为天线2,如图14所示。在第二子模块与第一子模块导通,与RRU2断开的场景下,该第二子模块可接收来自第一子模块的第一射频信号或子射频信号, 并将该第一射频信号或子射频信号发送给天线2;和/或,该第二子模块可接收来自天线2的射频信号,并将该射频信号发送给第一子模块。在第二子模块与第一子模块断开,与RRU2导通的场景下,该第二子模块可接收来自RRU2的射频信号,并将该射频信号发送给天线2;和/或,该第二子模块可接收来自天线2的射频信号,并将该射频信号发送给RRU2。
表1以图6、图7A、图7B、图8、图10、图11A、图11B或图12任一项所述的通信装置为例示出了三扇区组网中信号发送的情况。如表1所示,在交叉单元1处于交叉态,交叉单元2处于功分态时,RRU1可以驱动天线2和天线3,使得RRU 2和RRU3处于休眠状态。在交叉单元1处于功分态,交叉单元2处于直通态时,RRU1可以驱动天线1和天线2,使得RRU2处于休眠状态。在交叉单元1处于功分态,交叉单元2处于交叉态时,RRU1可以驱动天线1和天线3,使得RRU3处于休眠状态。在交叉单元1处于功分态,交叉单元2处于功分态时,RRU1可以驱动天线1、天线2和天线3,使得RRU2和RRU3处于休眠状态。
表1
表2以图6、图7A、图7B、图8、图10、图11A、图11B或图12任一项所述的通信装置为例示出了三扇区组网中信号接收的情况。如表2所示,在交叉单元1处于交叉态,交叉单元2处于合成态时,交叉单元2将来自天线2的射频信号和将来自天线3的射频信号合成为第三射频信号,并通过交叉单元1将该第三射频信号发送给RRU1,使得RRU 2和RRU3处于休眠状态。在交叉单元1处于合成态,交叉单元2处于直通态时,交叉单元1可将来自天线1的射频信号和来自天线2的射频信号合成为第三射频信号,并将该第三射频信号发送给RRU1,使得RRU2处于休眠状态。在交叉单元1处于合成态,交叉单元2处于交叉态时,交叉单元1可将来自天线1的射频信号和来自天线3的射频信号合成为第三射频信号,并将该第三射频信号发送给RRU1,使得RRU3处于休眠状态。在交叉单元1处于合成态,交叉单元2处于合成态时,交叉单元2可将来自天线2的射频信号和来自天线3的射频信号合成为一个射频信号发送给交叉单元1,交叉单元1将来自交叉单元2的一个射频信号和来自天线1的射频信号合成为第三射频信号,并将该第三射频信号发送给RRU1,使得RRU2和RRU3处于休眠状态。
表2
需要说明的是,上述图8、图9、图12、图13中多端口的连接方式仅为一种示例,本申请实施例并不限定于此。
基于与上述实施例的相同技术构思,本申请实施例还提供一种通信方法,该通信方法由上述各实施例中的通信装置实现,其中的通信装置请参考前述描述,此处不再赘述。图15以通信装置发送信号为 例,示出了本申请实施例提供的通信方法的流程示意图。如图15所示,该方法包括如下内容。
S1501,第一RRU向第一模块发送第一射频信号;相应的,第一模块接收来自第一RRU的第一射频信号。
其中,第一RRU是上述各个实施例中通信装置中的N个RRU中的一个RRU。该第一RRU对应的小区的负载小于或等于负载阈值。第一模块的组成可参考图6、图7A、图7B、图8、图10、图11A、图11B以及图12中有关第一模块的介绍,此处不再赘述。该第一模块可接收来自第一RRU的具体实现方式请参考前述各个实施例中的相关描述,此处不再赘述。
S1502,第一模块将第一射频拉远单元分为M个子射频信号,M为大于1且小于或等于N的整数。图15中以M小于N为例。例如,第一模块可根据N个RRU中每个RRU对应的负载,确定该N个RRU中的M个RRU的工作状态可以转换为休眠状态或不工作的状态,并根据该M个RRU,将第一射频拉远单元分为M个子射频信号。例如,RRU对应的小区的负载小于或等于负载阈值,第一模块确定该RRU的工作状态可以转换为休眠状态或不工作的状态。S1502的具体实现方式请参考图6的相关描述,此处不再赘述。
S1503,第一模块向N个RRU中的M个RRU对应的M组天线发送该M个子射频信号;相应的,M组天线接收该M个子射频信号。其中,一组天线接收一个子射频信号。
S1504,M组天线发送该M个子射频信号。图15中以M组天线向目标设备发送该M个子射频信号为例,但本申请实施例并不限定于此,例如,M组天线也可以广播该M个子射频信号等。
基于与上述实施例的相同技术构思,本申请实施例还提供一种通信方法,该通信方法由上述各实施例中的通信装置实现,其中的通信装置请参考前述描述,此处不再赘述。图16以通信装置接收信号为例,示出了本申请实施例提供的通信方法的流程示意图。如图15所示,该方法包括如下内容。
S1601,N组天线中的P组天线接收P个射频信号。其中一组天线接收一个射频信号。该P为大于1且小于或等于N的整数。图16中以P小于N为例。另外,图16以该P个射频信号来自于源设备为例,但本申请实施例并不限定于此。
S1602,该P组天线向第一模块发送该P个射频信号;相应的,第一模块接收来自该P组天线的P个射频信号。其中,第一模块的组成可参考图6、图7A、图7B、图8、图10、图11A、图11B以及图12中有关第一模块的介绍,此处不再赘述。
S1603,第一模块将该P个射频信号合成为第三射频信号。
例如,第一模块可根据N个RRU中每个RRU对应的小区的负载,将该P个射频信号合成为第三射频信号。其中,该P组天线对应的P个RRU中每个RRU对应的小区的负载小于或等于负载阈值。S1603的具体实现方式请参考图6的相关描述,此处不再赘述。
S1604,第一模块向第一RRU发送第三射频信号;相应的,第一RRU接收第三射频信号。
其中,第一RRU是上述各个实施例中通信装置中的N个RRU中的一个RRU。该第一RRU对应的小区的负载小于或等于负载阈值。
需要说明的是,本申请实施例涉及的通信方法的具体实现过程可参考前述各个实施例中通信装置的相关描述内容,此处不再赘述。
基于相同的技术构思,本申请实施例还提供一种通信装置,该通信装置包括至少一个处理器和接口电路,该至少一个处理器用于实现实施例的各个方法。该接口电路用于实现与其它通信装置之间的通信。
基于相同的技术构思,本申请实施例还提供一种电子设备,该电子设备可实现上述第一模块的功能。
基于相同的技术构思,本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得所述计算机执行上述实施例的各个方法。
基于相同的技术构思,本申请实施例还提供一种计算机程序产品,包括指令,当指令在计算机上运行时,使得计算机执行上述各个实施例中的方法。
基于相同的技术构思,本申请实施例还提供一种芯片系统,该芯片系统包括至少一个处理器和接口电路,处理器用于通过接口电路执行指令和/或数据的交互,使得芯片系统所在的装置执行上述各个实施例中的方法。可选的,该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
基于相同的技术构思,本申请实施例还提供一种芯片,芯片用于读取存储器中存储的计算机程序,执行上述各个实施例中的方法。
本申请实施例提供的方法中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当 使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,简称DSL)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,简称DVD))、或者半导体介质(例如,SSD)等。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (57)

  1. 一种通信装置,其特征在于,包括N个射频拉远单元、第一模块以及N组天线,其中每个射频拉远单元与所述第一模块相连,且每组天线与所述第一模块相连,所述N个射频拉远单元与所述N组天线一一对应,N为大于1的整数;其中,
    所述N个射频拉远单元中的第一射频拉远单元,用于向所述第一模块发送第一射频信号;
    所述第一模块,用于接收所述第一射频信号,将所述第一射频信号分为M个子射频信号,以及向所述N个射频拉远单元中的M个射频拉远单元对应的M组天线发送所述M个子射频信号,所述M为大于1且小于或等于所述N的整数;
    所述M组天线,用于发送所述M个子射频信号。
  2. 根据权利要求1所述的装置,其特征在于,所述第一射频拉远单元对应的小区的负载小于或等于负载阈值,且所述M个射频拉远单元中每个射频拉远单元对应的小区的负载小于或等于所述负载阈值。
  3. 根据权利要求1或2所述的装置,其特征在于,所述N个射频拉远单元还包括第二射频拉远单元,所述第二射频拉远单元对应的小区的负载大于负载阈值;
    所述第二射频拉远单元用于:向所述第一模块发送第二射频信号;
    所述第一模块还用于:接收所述第二射频信号,以及向所述第二射频拉远单元对应的天线发送所述第二射频信号。
  4. 根据权利要求1至3中任一项所述的装置,其特征在于,
    所述N组天线中的P组天线,用于接收P个射频信号,向所述第一模块发送所述P个射频信号,所述P为大于1且小于或等于所述N的整数;
    所述第一模块还用于:接收所述P个射频信号,将所述P个射频信号合成为第三射频信号,以及向所述第一射频拉远单元发送所述第三射频信号。
  5. 根据权利要求4所述的装置,其特征在于,所述第一射频拉远单元对应的小区的负载小于或等于负载阈值,且所述P组天线对应的P个射频拉远单元中每个射频拉远单元对应的小区的负载小于或等于所述负载阈值。
  6. 根据权利要求1至5中任一项所述的装置,其特征在于,所述第一模块包括第一子模块和(N-1)个第二子模块,所述第一子模块与每个第二子模块相连;其中,
    所述每个射频拉远单元与所述第一模块相连,包括:
    所述第一射频拉远单元与所述第一子模块相连,所述N个射频拉远单元中除了所述第一射频拉远单元之外的(N-1)个射频拉远单元与所述(N-1)个第二子模块相连,其中的一个第二子模块与一个射频拉远单元相连;
    所述每组天线与所述第一模块相连,包括:
    所述第一射频拉远单元对应的第一天线与所述第一子模块相连,所述N组天线中除了所述第一天线之外的(N-1)组天线与所述(N-1)个第二子模块相连,其中的一个第二子模块与一组天线相连。
  7. 根据权利要求6所述的装置,其特征在于,所述M个射频拉远单元包括所述第一射频拉远单元,所述第一模块用于通过如下方式将所述第一射频信号分为M个子射频信号,以及向所述N个射频拉远单元中的M个射频拉远单元对应的M组天线发送所述M个子射频信号:
    所述第一子模块,用于将所述第一射频信号分为所述M个子射频信号,向所述第一天线发送一个子射频信号,以及向与(M-1)个射频拉远单元相连的(M-1)个第二子模块发送剩余的(M-1)个子射频信号,所述(M-1)个射频拉远单元是所述M个射频拉远单元中除了所述第一射频拉远单元之外的射频拉远单元;
    所述(M-1)个第二子模块,用于向所述(M-1)个射频拉远单元对应的(M-1)组天线发送所述(M-1)个子射频信号。
  8. 根据权利要求6所述的装置,其特征在于,所述M个射频拉远单元不包括所述第一射频拉远单元,所述第一模块用于通过如下方式将所述第一射频信号分为M个子射频信号,以及向所述N个射频拉远单元中的M个射频拉远单元对应的M组天线发送所述M个子射频信号:
    所述第一子模块,用于将所述第一射频信号分为所述M个子射频信号,向与所述M个射频拉远单元相连的M个第二子模块发送所述M个子射频信号;
    所述M个第二子模块,用于向所述M组天线发送所述M个子射频信号。
  9. 根据权利要求6至8中任一项所述的装置,其特征在于,所述第一子模块包括(N-1)个交叉单元,每个交叉单元包括第一端口、第二端口、第三端口和第四端口;
    所述第一射频拉远单元与所述第一子模块相连,包括:
    所述第一射频拉远单元与第一交叉单元的第一端口相连;
    其中,所述第一交叉单元是所述(N-1)个交叉单元中的一个交叉单元,所述第一交叉单元的第四端口接地,所述第一交叉单元的第二端口与所述第一天线相连,所述第一交叉单元的第三端口与所述(N-1)个交叉单元中除了所述第一交叉单元之外的一个交叉单元相连或者与所述(N-1)个第二子模块中的一个第二子模块相连。
  10. 根据权利要求9所述的装置,其特征在于,
    所述N等于2,所述(N-1)个交叉单元的第一端口与所述第一射频单元相连,所述(N-1)个交叉单元的第四端口接地,所述(N-1)个交叉单元的第二端口与所述第一天线相连,所述(N-1)个交叉单元的第三端口与所述(N-1)个第二子模块相连,所述(N-1)个第二子模块与所述N组天线中除了所述第一天线之外的天线相连;或者,
    所述N大于2,所述(N-1)个交叉单元中的第一个交叉单元的第一端口与所述第一射频单元相连,所述第一个交叉单元的第四端口接地,所述第一个交叉单元的第二端口与所述第一天线相连;所述(N-1)个交叉单元中的第i个交叉单元的第一端口与所述(N-1)个交叉单元中的第(i-1)个交叉单元的第三端口相连,所述第i个交叉单元的第二端口与所述(N-1)个第二子模块中的第(i-1)个第二子模块相连,所述第i个交叉单元的第四端口接地,其中的i为大于1且小于(N-1)的整数;所述(N-1)个交叉单元中的第(N-1)个交叉单元的第一端口与所述(N-1)个交叉单元中的第(N-2)个交叉单元的第三端口相连,所述第(N-1)个交叉单元的第二端口与所述(N-1)第二子模块中的第(N-2)个第二子模块相连,所述(N-1)个交叉单元的第四端口接地,所述(N-1)个交叉单元的第三端口与所述(N-1)第二子模块中的第(N-1)个第二子模块相连。
  11. 根据权利要求1至5中任一项所述的装置,其特征在于,所述第一模块包括(N-1)个交叉单元,每个交叉单元包括第一端口、第二端口、第三端口和第四端口;
    所述第一射频拉远单元通过如下方式向所述第一模块发送第一射频信号:
    所述第一射频拉远单元向第一交叉单元的第一端口发送所述第一射频信号;
    其中,所述第一交叉单元是所述(N-1)个交叉单元中的一个交叉单元,所述第一交叉单元的第四端口与所述N个射频拉远单元中除了所述第一射频拉远单元之外的一个射频拉远单元相连,所述第一交叉单元的第二端口与第一天线相连,所述第一交叉单元的第三端口与所述(N-1)个交叉单元中除了所述第一交叉单元之外的一个交叉单元相连或者与所述N组天线中除了所述第一天线之外的一组天线相连。
  12. 根据权利要求11所述的装置,其特征在于,
    所述N等于2,所述(N-1)个交叉单元的第一端口与所述第一射频单元相连,所述(N-1)个交叉单元的第四端口与所述N个射频拉远单元中除了所述第一射频拉远单元之外的射频拉远单元相连,所述(N-1)个交叉单元的第二端口与所述第一天线相连,所述(N-1)个交叉单元的第三端口与所述N组天线中除了所述第一天线之外的天线相连;或者,
    所述N大于2,所述(N-1)个交叉单元中的第一个交叉单元的第一端口与所述N个射频拉远单元中的第一个频拉远单元相连,所述第一个交叉单元的第二端口与所述第一个射频拉远单元对应的天线相连;所述(N-1)个交叉单元中的第i个交叉单元的第一端口与所述(N-1)个交叉单元中的第(i-1)个交叉单元的第三端口相连,所述第i个交叉单元的第二端口与所述N个射频拉远单元中的第i个射频拉远单元对应的天线相连,所述第i个交叉单元的第四端口与所述N个射频拉远单元中的第(i+1)个射频拉远单元相连,所述第i个交叉单元的第三端口与所述(N-1)个交叉单元中的第(i+1)个交叉单元的第一端口相连,其中的i为大于1且小于(N-1)的整数;所述(N-1)个交叉单元中的第(N-1)个交叉单元的第二端口与所述N个射频拉远单元中的第(N-1)个射频拉远单元对应的天线相连,所述第(N-1)个交叉单元的第四端口与所述N个射频拉远单元中的第N个射频拉远单元相连,所述第(N-1)个交叉单元的第三端口与所述第N个射频拉远单元对应的天线相连。
  13. 根据权利要求9至12中任一项所述的装置,其特征在于,
    所述第一交叉单元,用于通过所述第一端口接收所述第一射频信号,以及通过所述第三端口发送所述第一射频信号;或者,
    所述第一交叉单元,用于通过所述第一端口接收所述第一射频信号,将所述第一射频信号分为两个子射频信号,通过所述第二端口发送所述两个子射频信号中的一个子射频信号,以及通过所述第三端口发送所述两个子射频信号中剩余的一个子射频信号。
  14. 一种通信方法,其特征在于,所述方法应用于通信装置,所述通信装置包括:N个射频拉远单元、第一模块以及N组天线,其中每个射频拉远单元与所述第一模块相连,且每组天线与所述第一模块相连,所述N个射频拉远单元与所述N组天线一一对应,N为大于1的整数;所述方法包括:
    其中,所述N个射频拉远单元中的第一射频拉远单元向所述第一模块发送第一射频信号;
    所述第一模块接收所述第一射频信号,将所述第一射频信号分为M个子射频信号,以及向所述N个射频拉远单元中的M个射频拉远单元对应的M组天线发送所述M个子射频信号,所述M为大于1且小于或等于所述N的整数;
    所述M组天线发送所述M个子射频信号。
  15. 根据权利要求14所述的方法,其特征在于,所述第一射频拉远单元对应的小区的负载小于或等于负载阈值,且所述M个射频拉远单元中每个射频拉远单元对应的小区的负载小于或等于所述负载阈值。
  16. 根据权利要求14或15所述的方法,其特征在于,所述N个射频拉远单元还包括第二射频拉远单元,所述第二射频拉远单元对应的小区的负载大于负载阈值,所述方法还包括:
    所述第二射频拉远单元向所述第一模块发送第二射频信号;
    所述第一模块接收所述第二射频信号,以及向所述第二射频拉远单元对应的天线发送所述第二射频信号。
  17. 根据权利要求14至16中任一项所述的方法,其特征在于,所述方法还包括:
    所述N组天线中的P组天线接收P个射频信号,向所述第一模块发送所述P个射频信号,所述P为大于1且小于所述N的整数;
    所述第一模块接收所述P个射频信号,将所述P个射频信号合成为第三射频信号,以及向所述第一射频拉远单元发送所述第三射频信号。
  18. 根据权利要求17所述的方法,其特征在于,所述第一射频拉远单元对应的小区的负载小于或等于负载阈值,且所述P组天线对应的P个射频拉远单元中每个射频拉远单元对应的小区的负载小于或等于所述负载阈值。
  19. 根据权利要求14至18中任一项所述的方法,其特征在于,所述第一模块包括第一子模块和(N-1)个第二子模块,所述第一子模块与每个第二子模块相连;其中,
    所述每个射频拉远单元与所述第一模块相连,包括:
    所述第一射频拉远单元与所述第一子模块相连,所述N个射频拉远单元中除了所述第一射频拉远单元之外的(N-1)个射频拉远单元与所述(N-1)个第二子模块相连,其中的一个第二子模块与一个射频拉远单元相连;
    所述每组天线与所述第一模块相连,包括:
    所述第一射频拉远单元对应的第一天线与所述第一子模块相连,所述N组天线中除了所述第一天线之外的(N-1)组天线与所述(N-1)个第二子模块相连,其中的一个第二子模块与一组天线相连。
  20. 根据权利要求19所述的方法,其特征在于,所述M个射频拉远单元包括所述第一射频拉远单元,所述第一模块将所述第一射频信号分为M个子射频信号,以及向所述N个射频拉远单元中的M个射频拉远单元对应的M组天线发送所述M个子射频信号,包括:
    所述第一子模块将所述第一射频信号分为所述M个子射频信号,向所述第一天线发送一个子射频信号,以及向与(M-1)个射频拉远单元相连的(M-1)个第二子模块发送剩余的(M-1)个子射频信号,所述(M-1)个射频拉远单元是所述M个射频拉远单元中除了所述第一射频拉远单元之外的射频拉远单元;
    所述(M-1)个第二子模块向所述(M-1)个射频拉远单元对应的(M-1)组天线发送所述(M-1)个子射频信号。
  21. 根据权利要求19所述的方法,其特征在于,所述M个射频拉远单元不包括所述第一射频拉远 单元,所述第一模块将所述第一射频信号分为M个子射频信号,以及向所述N个射频拉远单元中的M个射频拉远单元对应的M组天线发送所述M个子射频信号,包括:
    所述第一子模块将所述第一射频信号分为所述M个子射频信号,向与所述M个射频拉远单元相连的M个第二子模块发送所述M个子射频信号;
    所述M个第二子模块向所述M组天线发送所述M个子射频信号。
  22. 根据权利要求19至21中任一项所述的方法,其特征在于,所述第一子模块包括(N-1)个交叉单元,每个交叉单元包括第一端口、第二端口、第三端口和第四端口;
    所述第一射频拉远单元与所述第一子模块相连,包括:
    所述第一射频拉远单元与第一交叉单元的第一端口相连;
    其中,所述第一交叉单元是所述(N-1)个交叉单元中的一个交叉单元,所述第一交叉单元的第四端口接地,所述第一交叉单元的第二端口与所述第一天线相连,所述第一交叉单元的第三端口与所述(N-1)个交叉单元中除了所述第一交叉单元之外的一个交叉单元相连或者与所述(N-1)个第二子模块中的一个第二子模块相连。
  23. 根据权利要求22所述的方法,其特征在于,
    所述N等于2,所述(N-1)个交叉单元的第一端口与所述第一射频单元相连,所述(N-1)个交叉单元的第四端口接地,所述(N-1)个交叉单元的第二端口与所述第一天线相连,所述(N-1)个交叉单元的第三端口与所述(N-1)个第二子模块相连,所述(N-1)个第二子模块与所述N组天线中除了所述第一天线之外的天线相连;或者,
    所述N大于2,所述(N-1)个交叉单元中的第一个交叉单元的第一端口与所述第一射频单元相连,所述第一个交叉单元的第四端口接地,所述第一个交叉单元的第二端口与所述第一天线相连;所述(N-1)个交叉单元中的第i个交叉单元的第一端口与所述(N-1)个交叉单元中的第(i-1)个交叉单元的第三端口相连,所述第i个交叉单元的第二端口与所述(N-1)个第二子模块中的第(i-1)个第二子模块相连,所述第i个交叉单元的第四端口接地,其中的i为大于1且小于(N-1)的整数;所述(N-1)个交叉单元中的第(N-1)个交叉单元的第一端口与所述(N-1)个交叉单元中的第(N-2)个交叉单元的第三端口相连,所述第(N-1)个交叉单元的第二端口与所述(N-1)第二子模块中的第(N-2)个第二子模块相连,所述(N-1)个交叉单元的第四端口接地,所述(N-1)个交叉单元的第三端口与所述(N-1)第二子模块中的第(N-1)个第二子模块相连。
  24. 根据权利要求14至18中任一项所述的方法,其特征在于,所述第一模块包括(N-1)个交叉单元,每个交叉单元包括第一端口、第二端口、第三端口和第四端口;
    所述第一射频拉远单元向所述第一模块发送第一射频信号,包括:
    所述第一射频拉远单元向第一交叉单元的第一端口发送所述第一射频信号;
    其中,所述第一交叉单元是所述(N-1)个交叉单元中的一个交叉单元,所述第一交叉单元的第四端口与所述N个射频拉远单元中除了所述第一射频拉远单元之外的一个射频拉远单元相连,所述第一交叉单元的第二端口与第一天线相连,所述第一交叉单元的第三端口与所述(N-1)个交叉单元中除了所述第一交叉单元之外的一个交叉单元相连或者与所述N组天线中除了所述第一天线之外的一组天线相连。
  25. 根据权利要求24所述的方法,其特征在于,
    所述N等于2,所述(N-1)个交叉单元的第一端口与所述第一射频单元相连,所述(N-1)个交叉单元的第四端口与所述N个射频拉远单元中除了所述第一射频拉远单元之外的射频拉远单元相连,所述(N-1)个交叉单元的第二端口与所述第一天线相连,所述(N-1)个交叉单元的第三端口与所述N组天线中除了所述第一天线之外的天线相连;或者,
    所述N大于2,所述(N-1)个交叉单元中的第一个交叉单元的第一端口与所述N个射频拉远单元中的第一个频拉远单元相连,所述第一个交叉单元的第二端口与所述第一个射频拉远单元对应的天线相连;所述(N-1)个交叉单元中的第i个交叉单元的第一端口与所述(N-1)个交叉单元中的第(i-1)个交叉单元的第三端口相连,所述第i个交叉单元的第二端口与所述N个射频拉远单元中的第i个射频拉远单元对应的天线相连,所述第i个交叉单元的第四端口与所述N个射频拉远单元中的第(i+1)个射频拉远单元相连,所述第i个交叉单元的第三端口与所述(N-1)个交叉单元中的第(i+1)个交叉单元的第一端口相连,其中的i为大于1且小于(N-1)的整数;所述(N-1)个交叉单元中的第(N-1)个 交叉单元的第二端口与所述N个射频拉远单元中的第(N-1)个射频拉远单元对应的天线相连,所述第(N-1)个交叉单元的第四端口与所述N个射频拉远单元中的第N个射频拉远单元相连,所述第(N-1)个交叉单元的第三端口与所述第N个射频拉远单元对应的天线相连。
  26. 根据权利要求22至25中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一交叉单元通过所述第一端口接收所述第一射频信号,以及通过所述第三端口发送所述第一射频信号;或者,
    所述第一交叉单元通过所述第一端口接收所述第一射频信号,将所述第一射频信号分为两个子射频信号,通过所述第二端口发送所述两个子射频信号中的一个子射频信号,以及通过所述第三端口发送所述两个子射频信号中剩余的一个子射频信号。
  27. 一种通信装置,其特征在于,包括N个射频拉远单元、第一模块以及N组天线,其中的每个射频拉远单元与所述第一模块相连,且每组天线与所述第一模块相连,所述N个射频拉远单元与所述N组天线一一对应,N是大于1的整数;其中,
    所述N组天线中的P组天线,用于接收P个射频信号,向所述第一模块发送所述P个射频信号,P为大于1且小于或等于N的整数;
    所述第一模块,用于接收所述P个射频信号,将所述P个射频信号合成为第三射频信号,以及向所述N个射频拉远单元中的第一射频拉远单元发送所述第三射频信号;
    所述第一射频拉远单元,用于接收所述第三射频信号。
  28. 根据权利要求27所述的装置,其特征在于,所述第一射频拉远单元对应的小区的负载小于或等于负载阈值,且所述P组天线对应的P个射频拉远单元中每个射频拉远单元对应的小区的负载小于或等于所述负载阈值。
  29. 根据权利要求27或28所述的装置,其特征在于,所述N个射频拉远单元还包括第三射频拉远单元,所述第三射频拉远单元对应的小区的负载大于负载阈值;
    所述第三射频拉远单元对应的天线,用于接收第四射频信号,向所述第一模块发送所述第四射频信号;
    所述第一模块,还用于接收所述第四射频信号,以及向所述第三射频拉远单元发送所述第四射频信号;
    所述第三射频拉远单元,还用于接收所述第四射频信号。
  30. 根据权利要求27至29中任一项所述的装置,其特征在于,
    所述第一射频拉远单元,还用于向所述第一模块发送第一射频信号;
    所述第一模块,还用于接收所述第一射频信号,将所述第一射频信号分为M个子射频信号,以及向所述N个射频拉远单元中的M个射频拉远单元对应的M组天线发送所述M个子射频信号,M为大于1且小于或等于N的整数;
    所述M组天线,用于发送所述M个子射频信号。
  31. 根据权利要求30所述的装置,其特征在于,所述第一射频拉远单元对应的小区的负载小于或等于负载阈值,且所述M个射频拉远单元中每个射频拉远单元对应的小区的负载小于或等于所述负载阈值。
  32. 根据权利要求27至31中任一项所述的装置,其特征在于,所述第一模块包括第一子模块和(N-1)个第二子模块,所述第一子模块与每个第二子模块相连,所述第一天线是所述N组天线中的一组天线;其中,
    所述每个射频拉远单元与所述第一模块相连,包括:
    所述第一射频拉远单元与所述第一子模块相连,所述N个射频拉远单元中除了所述第一射频拉远单元之外的(N-1)个射频拉远单元与所述(N-1)个第二子模块相连,其中的一个第二子模块与一个射频拉远单元相连;
    所述每组天线与第一模块相连,包括:
    所述第一射频拉远单元对应的第一天线与所述第一子模块相连,所述N组天线中除了所述第一天线之外的(N-1)组天线与所述(N-1)个第二子模块相连,其中的一个第二子模块与一组天线相连。
  33. 根据权利要求32所述的装置,其特征在于,所述P组天线对应的P个射频拉远单元包括所述第一射频拉远单元,所述第一模块通过如下方式接收P个射频信号,将所述P个射频信号合成为第三射 频信号,以及向所述第一射频信号发送所述第三射频信号:
    (P-1)组天线相连的(P-1)个第二子模块,用于接收来自所述(P-1)组天线的(P-1)个射频信号,以及向所述第一子模块发送所述(P-1)个射频信号,其中,所述(P-1)组天线是所述P组天线中除了所述第一射频拉远单元对应的第一天线之外的天线;
    所述第一子模块,用于接收来自所述(P-1)个第二子模块的(P-1)个射频信号,接收来自所述第一天线的一个射频信号,将P个射频信号合成为所述第三射频信号,以及向所述第一射频拉远单元发送所述第三射频信号。
  34. 根据权利要求32所述的装置,其特征在于,所述P组天线对应的P个射频拉远单元不包括所述第一射频拉远单元,所述第一模块通过如下方式接收P个射频信号,将所述P个射频信号合成为第三射频信号,以及向所述第一射频信号发送所述第三射频信号:
    所述P组天线相连的P个第二子模块,用于接收来自所述P组天线的P个射频信号,以及向所述第一子模块发送所述P个射频信号;
    所述第一子模块,用于接收来自所述P个第二子模块的所述P个射频信号,将所述P个射频信号合成为所述第三射频信号,以及向所述第一射频拉远单元发送所述第三射频信号。
  35. 根据权利要求32至34中任一项所述的装置,其特征在于,所述第一子模块包括(N-1)个交叉单元,每个交叉单元包括第一端口、第二端口、第三端口和第四端口;
    所述第一射频拉远单元与所述第一子模块相连,包括:
    所述第一射频拉远单元与第一交叉单元的第一端口相连;
    其中,所述第一交叉单元是所述(N-1)个交叉单元中的一个交叉单元,所述第一交叉单元的第四端口接地,所述第一交叉单元的第二端口与所述第一天线相连,所述第一交叉单元的第三端口与所述(N-1)个交叉单元中除了所述第一交叉单元之外的一个交叉单元相连或者与所述(N-1)个第二子模块中的一个第二子模块相连。
  36. 根据权利要求35所述的装置,其特征在于,
    所述N等于2,所述(N-1)个交叉单元的第一端口与所述第一射频单元相连,所述(N-1)个交叉单元的第四端口接地,所述(N-1)个交叉单元的第二端口与所述第一天线相连,所述(N-1)个交叉单元的第三端口与所述(N-1)个第二子模块相连,所述(N-1)个第二子模块与所述N组天线中除了所述第一天线之外的天线相连;或者,
    所述N大于2,所述(N-1)个交叉单元中的第一个交叉单元的第一端口与所述第一射频单元相连,所述第一个交叉单元的第四端口接地,所述第一个交叉单元的第二端口与所述第一天线相连;所述(N-1)个交叉单元中的第i个交叉单元的第一端口与所述(N-1)个交叉单元中的第(i-1)个交叉单元的第三端口相连,所述第i个交叉单元的第二端口与所述(N-1)个第二子模块中的第(i-1)个第二子模块相连,所述第i个交叉单元的第四端口接地,其中的i为大于1且小于(N-1)的整数;所述(N-1)个交叉单元中的第(N-1)个交叉单元的第一端口与所述(N-1)个交叉单元中的第(N-2)个交叉单元的第三端口相连,所述第(N-1)个交叉单元的第二端口与所述(N-1)第二子模块中的第(N-2)个第二子模块相连,所述(N-1)个交叉单元的第四端口接地,所述(N-1)个交叉单元的第三端口与所述(N-1)第二子模块中的第(N-1)个第二子模块相连。
  37. 根据权利要求27至31中任一项所述的装置,其特征在于,所述第一模块包括(N-1)个交叉单元,每个交叉单元包括第一端口、第二端口、第三端口和第四端口;
    所述第一模块通过如下方式向第一射频拉远单元发送所述第三射频信号:
    第一交叉单元的第一端口向所述第一射频拉远单元发送所述第三射频信号;其中,所述第一交叉单元是所述(N-1)个交叉单元中的一个交叉单元,所述第一交叉单元的第四端口与所述N个射频拉远单元中除了第一射频拉远单元之外的一个射频拉远单元相连,所述第一交叉单元的第二端口与第一天线相连,所述第一交叉单元的第三端口与所述(N-1)个交叉单元中除了第一交叉单元之外的一个交叉单元相连或者与所述N组天线中除了所述第一天线之外的一组天线相连。
  38. 根据权利要求37所述的装置,其特征在于,
    所述N等于2,所述(N-1)个交叉单元的第一端口与所述第一射频单元相连,所述(N-1)个交叉单元的第四端口与所述N个射频拉远单元中除了所述第一射频拉远单元之外的射频拉远单元相连,所述(N-1)个交叉单元的第二端口与所述第一天线相连,所述(N-1)个交叉单元的第三端口与所述N 组天线中除了所述第一天线之外的天线相连;或者,
    所述N大于2,所述(N-1)个交叉单元中的第一个交叉单元的第一端口与所述N个射频拉远单元中的第一个频拉远单元相连,所述第一个交叉单元的第二端口与所述第一个射频拉远单元对应的天线相连;所述(N-1)个交叉单元中的第i个交叉单元的第一端口与所述(N-1)个交叉单元中的第(i-1)个交叉单元的第三端口相连,所述第i个交叉单元的第二端口与所述N个射频拉远单元中的第i个射频拉远单元对应的天线相连,所述第i个交叉单元的第四端口与所述N个射频拉远单元中的第(i+1)个射频拉远单元相连,所述第i个交叉单元的第三端口与所述(N-1)个交叉单元中的第(i+1)个交叉单元的第一端口相连,其中的i为大于1且小于(N-1)的整数;所述(N-1)个交叉单元中的第(N-1)个交叉单元的第二端口与所述N个射频拉远单元中的第(N-1)个射频拉远单元对应的天线相连,所述第(N-1)个交叉单元的第四端口与所述N个射频拉远单元中的第N个射频拉远单元相连,所述第(N-1)个交叉单元的第三端口与所述第N个射频拉远单元对应的天线相连。
  39. 根据权利要求35至38中任一项所述的装置,其特征在于,
    所述第一交叉单元,用于通过第三端口接收所述第三射频信号,以及通过第一端口向所述第一射频单元发送所述第三射频信号;或者,
    所述第一交叉单元,用于通过第二端口接收一个射频信号,通过第三端口接收一个射频信号,将这两个射频信号合成为所述第三射频信号,并通过第一端口向所述第一射频拉远单元发送所述第三射频信号。
  40. 一种通信方法,其特征在于,所述方法应用于通信装置,所述通信装置包括:N个射频拉远单元、第一模块以及N组天线,其中的每个射频拉远单元与所述第一模块相连,且每组天线与所述第一模块相连,所述N个射频拉远单元与所述N组天线一一对应,N是大于1的整数;所述方法包括:
    所述N组天线中的P组天线接收P个射频信号,向所述第一模块发送所述P个射频信号,P为大于1且小于或等于N的整数;
    第一模块接收所述P个射频信号,将所述P个射频信号合成为第三射频信号,以及向所述N个射频拉远单元中的第一射频拉远单元发送所述第三射频信号;
    所述第一射频拉远单元接收所述第三射频信号。
  41. 根据权利要求40所述的方法,其特征在于,所述第一射频拉远单元对应的小区的负载小于或等于负载阈值,且所述P组天线对应的P个射频拉远单元中每个射频拉远单元对应的小区的负载小于或等于所述负载阈值。
  42. 根据权利要求40或41所述的方法,其特征在于,所述N个射频拉远单元还包括第三射频拉远单元,所述第三射频拉远单元对应的小区的负载大于负载阈值,所述方法还包括:
    所述第三射频拉远单元对应的天线接收第四射频信号,向所述第一模块发送所述第四射频信号;
    所述第一模块接收所述第四射频信号,以及向所述第三射频拉远单元发送所述第四射频信号;
    所述第三射频拉远单元接收所述第四射频信号。
  43. 根据权利要求40至42中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一射频拉远单元向所述第一模块发送第一射频信号;
    所述第一模块接收所述第一射频信号,将所述第一射频信号分为M个子射频信号,以及向所述N个射频拉远单元中的M个射频拉远单元对应的M组天线发送所述M个子射频信号,M为大于1且小于或等于N的整数;
    所述M组天线发送所述M个子射频信号。
  44. 根据权利要求43所述的方法,其特征在于,所述第一射频拉远单元对应的小区的负载小于或等于负载阈值,且所述M个射频拉远单元中每个射频拉远单元对应的小区的负载小于或等于所述负载阈值。
  45. 根据权利要求40至44中任一项所述的方法,其特征在于,所述第一模块包括第一子模块和(N-1)个第二子模块,所述第一子模块与每个第二子模块相连,所述第一天线是所述N组天线中的一组天线;其中,
    所述每个射频拉远单元与所述第一模块相连,包括:
    所述第一射频拉远单元与所述第一子模块相连,所述N个射频拉远单元中除了所述第一射频拉远单元之外的(N-1)个射频拉远单元与所述(N-1)个第二子模块相连,其中的一个第二子模块与一个 射频拉远单元相连;
    所述每组天线与第一模块相连,包括:
    所述第一射频拉远单元对应的第一天线与所述第一子模块相连,所述N组天线中除了所述第一天线之外的(N-1)组天线与所述(N-1)个第二子模块相连,其中的一个第二子模块与一组天线相连。
  46. 根据权利要求45所述的方法,其特征在于,所述P组天线对应的P个射频拉远单元包括所述第一射频拉远单元,所述第一模块接收P个射频信号,将所述P个射频信号合成为第三射频信号,以及向所述第一射频信号发送所述第三射频信号,包括:
    (P-1)组天线相连的(P-1)个第二子模块接收来自所述(P-1)组天线的(P-1)个射频信号,以及向所述第一子模块发送所述(P-1)个射频信号,其中,所述(P-1)组天线是所述P组天线中除了所述第一射频拉远单元对应的第一天线之外的天线;
    所述第一子模块接收来自所述(P-1)个第二子模块的(P-1)个射频信号接收来自所述第一天线的一个射频信号,将P个射频信号合成为所述第三射频信号,以及向所述第一射频拉远单元发送所述第三射频信号。
  47. 根据权利要求45所述的方法,其特征在于,所述P组天线对应的P个射频拉远单元不包括所述第一射频拉远单元,所述第一模块接收P个射频信号,将所述P个射频信号合成为第三射频信号,以及向所述第一射频信号发送所述第三射频信号,包括:
    所述P组天线相连的P个第二子模块接收来自所述P组天线的P个射频信号,以及向所述第一子模块发送所述P个射频信号;
    所述第一子模块接收来自所述P个第二子模块的所述P个射频信号,将所述P个射频信号合成为所述第三射频信号,以及向所述第一射频拉远单元发送所述第三射频信号。
  48. 根据权利要求45至47中任一项所述的方法,其特征在于,所述第一子模块包括(N-1)个交叉单元,每个交叉单元包括第一端口、第二端口、第三端口和第四端口;
    所述第一射频拉远单元与所述第一子模块相连,包括:
    所述第一射频拉远单元与第一交叉单元的第一端口相连;
    其中,所述第一交叉单元是所述(N-1)个交叉单元中的一个交叉单元,所述第一交叉单元的第四端口接地,所述第一交叉单元的第二端口与所述第一天线相连,所述第一交叉单元的第三端口与所述(N-1)个交叉单元中除了所述第一交叉单元之外的一个交叉单元相连或者与所述(N-1)个第二子模块中的一个第二子模块相连。
  49. 根据权利要求48所述的方法,其特征在于,
    所述N等于2,所述(N-1)个交叉单元的第一端口与所述第一射频单元相连,所述(N-1)个交叉单元的第四端口接地,所述(N-1)个交叉单元的第二端口与所述第一天线相连,所述(N-1)个交叉单元的第三端口与所述(N-1)个第二子模块相连,所述(N-1)个第二子模块与所述N组天线中除了所述第一天线之外的天线相连;或者,
    所述N大于2,所述(N-1)个交叉单元中的第一个交叉单元的第一端口与所述第一射频单元相连,所述第一个交叉单元的第四端口接地,所述第一个交叉单元的第二端口与所述第一天线相连;所述(N-1)个交叉单元中的第i个交叉单元的第一端口与所述(N-1)个交叉单元中的第(i-1)个交叉单元的第三端口相连,所述第i个交叉单元的第二端口与所述(N-1)个第二子模块中的第(i-1)个第二子模块相连,所述第i个交叉单元的第四端口接地,其中的i为大于1且小于(N-1)的整数;所述(N-1)个交叉单元中的第(N-1)个交叉单元的第一端口与所述(N-1)个交叉单元中的第(N-2)个交叉单元的第三端口相连,所述第(N-1)个交叉单元的第二端口与所述(N-1)第二子模块中的第(N-2)个第二子模块相连,所述(N-1)个交叉单元的第四端口接地,所述(N-1)个交叉单元的第三端口与所述(N-1)第二子模块中的第(N-1)个第二子模块相连。
  50. 根据权利要求40至44中任一项所述的方法,其特征在于,所述第一模块包括(N-1)个交叉单元,每个交叉单元包括第一端口、第二端口、第三端口和第四端口;
    所述第一模块向第一射频拉远单元发送所述第三射频信号,包括:
    第一交叉单元的第一端口向所述第一射频拉远单元发送所述第三射频信号;其中,所述第一交叉单元是所述(N-1)个交叉单元中的一个交叉单元,所述第一交叉单元的第四端口与所述N个射频拉远单元中除了第一射频拉远单元之外的一个射频拉远单元相连,所述第一交叉单元的第二端口与第一天线相 连,所述第一交叉单元的第三端口与所述(N-1)个交叉单元中除了第一交叉单元之外的一个交叉单元相连或者与所述N组天线中除了所述第一天线之外的一组天线相连。
  51. 根据权利要求50所述的方法,其特征在于,
    所述N等于2,所述(N-1)个交叉单元的第一端口与所述第一射频单元相连,所述(N-1)个交叉单元的第四端口与所述N个射频拉远单元中除了所述第一射频拉远单元之外的射频拉远单元相连,所述(N-1)个交叉单元的第二端口与所述第一天线相连,所述(N-1)个交叉单元的第三端口与所述N组天线中除了所述第一天线之外的天线相连;或者,
    所述N大于2,所述(N-1)个交叉单元中的第一个交叉单元的第一端口与所述N个射频拉远单元中的第一个频拉远单元相连,所述第一个交叉单元的第二端口与所述第一个射频拉远单元对应的天线相连;所述(N-1)个交叉单元中的第i个交叉单元的第一端口与所述(N-1)个交叉单元中的第(i-1)个交叉单元的第三端口相连,所述第i个交叉单元的第二端口与所述N个射频拉远单元中的第i个射频拉远单元对应的天线相连,所述第i个交叉单元的第四端口与所述N个射频拉远单元中的第(i+1)个射频拉远单元相连,所述第i个交叉单元的第三端口与所述(N-1)个交叉单元中的第(i+1)个交叉单元的第一端口相连,其中的i为大于1且小于(N-1)的整数;所述(N-1)个交叉单元中的第(N-1)个交叉单元的第二端口与所述N个射频拉远单元中的第(N-1)个射频拉远单元对应的天线相连,所述第(N-1)个交叉单元的第四端口与所述N个射频拉远单元中的第N个射频拉远单元相连,所述第(N-1)个交叉单元的第三端口与所述第N个射频拉远单元对应的天线相连。
  52. 根据权利要求47至51中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一交叉单元通过第三端口接收所述第三射频信号,以及通过第一端口向所述第一射频单元发送所述第三射频信号;或者,
    所述第一交叉单元通过第二端口接收一个射频信号,通过第三端口接收一个射频信号,将这两个射频信号合成为所述第三射频信号,并通过第一端口向所述第一射频拉远单元发送所述第三射频信号。
  53. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得所述计算机执行如权利要求14至26中任一项所述的方法,或者执行如权利要求40至52中任一项所述的方法。
  54. 一种通信装置,其特征在于,所述通信装置包括至少一个处理器和接口电路,所述至少一个处理用于实现如权利要求14至26中任一项所述的方法,或者实现如权利要求40至52中任一项所述的方法,所述接口电路用于实现所述通信装置的接收和/或发送。
  55. 一种计算机程序产品,其特征在于,包括指令,当所述指令在计算机上运行时,使得所述计算机执行如权利要求14至26中任一项所述的方法,或者执行如权利要求40至52中任一项所述的方法。
  56. 一种芯片系统,其特征在于,所述芯片系统包括至少一个处理器和接口电路,所述至少一个处理器用于通过所述接口电路执行指令和/或数据的交互,使得所述芯片系统所在的装置执行如权利要求14至26中任一项所述的方法,或者执行如权利要求40至52中任一项所述的方法。
  57. 一种芯片,其特征在于,所述芯片用于读取存储器中存储的计算机程序,以执行如权利要求14至26中任一项所述的方法,或者执行如权利要求40至52中任一项所述的方法。
PCT/CN2023/103492 2022-08-30 2023-06-28 一种通信方法及装置 WO2024045840A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211048783.1 2022-08-30
CN202211048783.1A CN117676778A (zh) 2022-08-30 2022-08-30 一种通信方法及装置

Publications (1)

Publication Number Publication Date
WO2024045840A1 true WO2024045840A1 (zh) 2024-03-07

Family

ID=90068585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/103492 WO2024045840A1 (zh) 2022-08-30 2023-06-28 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN117676778A (zh)
WO (1) WO2024045840A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101232653A (zh) * 2007-01-22 2008-07-30 中兴通讯股份有限公司 一种基于数字中频传输的射频拉远系统
CN104660320A (zh) * 2015-02-06 2015-05-27 大唐移动通信设备有限公司 一种信号传输装置、系统及方法
CN106330279A (zh) * 2015-07-01 2017-01-11 华为技术有限公司 一种网络架构及资源配置方法
WO2017114159A1 (zh) * 2015-12-30 2017-07-06 中兴通讯股份有限公司 双工滤波装置、rru系统及无线射频系统
US20180007562A1 (en) * 2015-02-10 2018-01-04 Telefonaktiebolaget Lm Ericsson (Publ) Combining uplink radio signals
CN112714467A (zh) * 2019-10-24 2021-04-27 上海华为技术有限公司 通信处理方法、BBU、RHUB和第二pRRU

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101232653A (zh) * 2007-01-22 2008-07-30 中兴通讯股份有限公司 一种基于数字中频传输的射频拉远系统
CN104660320A (zh) * 2015-02-06 2015-05-27 大唐移动通信设备有限公司 一种信号传输装置、系统及方法
US20180007562A1 (en) * 2015-02-10 2018-01-04 Telefonaktiebolaget Lm Ericsson (Publ) Combining uplink radio signals
CN106330279A (zh) * 2015-07-01 2017-01-11 华为技术有限公司 一种网络架构及资源配置方法
WO2017114159A1 (zh) * 2015-12-30 2017-07-06 中兴通讯股份有限公司 双工滤波装置、rru系统及无线射频系统
CN112714467A (zh) * 2019-10-24 2021-04-27 上海华为技术有限公司 通信处理方法、BBU、RHUB和第二pRRU

Also Published As

Publication number Publication date
CN117676778A (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
US11223382B2 (en) Uplink carrier aggregation device and mobile terminal
US11750151B2 (en) Apparatus and methods for biasing of power amplifiers
US11949389B2 (en) Dual connectivity power amplifier system
WO2022218229A1 (zh) 一种信号转发方法、中继设备及通信系统
US20230387998A1 (en) Communication apparatus and electronic device
CN110798843A (zh) 一种5g信号射频分布系统
WO2023197662A1 (zh) 一种双发射频电路及电子设备
WO2021104169A1 (zh) 适用于5g的零中频的硬件平台系统和射频拉远单元
CN115276679A (zh) 移频系统、移频方法
WO2022127831A1 (zh) 多通道射频收发装置及收发方法
US11736183B2 (en) Wireless repeater
WO2024045840A1 (zh) 一种通信方法及装置
US20240063831A1 (en) Configurable filter bands for radio frequency communication
US20240014786A1 (en) Power amplification system for high modulation bandwidth
US12080948B2 (en) Staggered rows of antennas for dual frequency operation
US20220321151A1 (en) Reprogrammable array of selectable antenna elements for frequency adjustment
CN201957247U (zh) 一种自切换的wlan双向放大器装置
CN210641086U (zh) 一种5g信号射频分布系统
WO2020156170A1 (zh) 资源分配方法、终端及基站
CN203761392U (zh) Lte数字光纤直放站双通道功放电路
EP4231525A1 (en) Radio-frequency unit, antenna, and signal processing method
EP3637549A1 (en) Antenna system, base station and communication system
WO2023029949A1 (zh) 一种通信方法及装置
US20240079998A1 (en) Combiners for doherty power amplifier systems
US20240080005A1 (en) Doherty power amplifier systems with envelope controlled state

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23858878

Country of ref document: EP

Kind code of ref document: A1