WO2024045699A1 - 投影装置、显示设备及交通工具 - Google Patents

投影装置、显示设备及交通工具 Download PDF

Info

Publication number
WO2024045699A1
WO2024045699A1 PCT/CN2023/095293 CN2023095293W WO2024045699A1 WO 2024045699 A1 WO2024045699 A1 WO 2024045699A1 CN 2023095293 W CN2023095293 W CN 2023095293W WO 2024045699 A1 WO2024045699 A1 WO 2024045699A1
Authority
WO
WIPO (PCT)
Prior art keywords
projection
light
light beam
unit
modulation unit
Prior art date
Application number
PCT/CN2023/095293
Other languages
English (en)
French (fr)
Inventor
邵坤
陈彦哲
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024045699A1 publication Critical patent/WO2024045699A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings

Definitions

  • the present application relates to the field of light display technology, and in particular to a projection device, a display device and a vehicle.
  • projection technology With the development of projection technology, the application scope of projection technology is becoming more and more extensive, and the types of projection products are becoming more and more abundant.
  • Projection products such as projectors, smart car lights, head-up displays or near-eye display devices have been promoted and applied in scenarios such as home, education, medical care and transportation, bringing great convenience to people's work, life and entertainment.
  • This application provides a projection device, a display device and a vehicle so that the projection product can cover more application scenarios.
  • a first aspect provides a projection device.
  • the device includes a lighting unit, a light modulation unit and a projection unit.
  • the lighting unit is used to provide the first light beam and the second light beam.
  • the light modulation unit is used to modulate the first light beam into a third light beam, and modulate the second light beam into a fourth light beam.
  • the emission direction of the third light beam outgoing light modulation unit is different from the emission direction of the fourth light beam outgoing light modulation unit.
  • the incident direction of one light beam incident on the light modulation unit is different from the incident direction of the second light beam incident on the light modulation unit.
  • a projection unit is used to project the third beam and the fourth beam to different projection areas. Therefore, the same projection device has different projection areas.
  • the projection device can achieve imaging in different projection areas by switching the first beam and the second beam, or it can also quickly switch the first beam and the second beam to achieve imaging in different projection areas.
  • the projected images are visually imaged at the same time, allowing the projection device to present a larger projection field of view and cover more application scenarios.
  • the projection unit is specifically configured to project the third beam into a fifth beam and the fourth beam into a sixth beam, and there is an angle between the optical axis of the fifth beam and the optical axis of the sixth beam. , so that the fifth beam and the sixth beam are imaged in different projection areas.
  • the fifth beam and the sixth beam are the imaging lights that are finally projected into the projection area and imaged in the projection area.
  • There is an angle between the optical axes of the fifth beam and the sixth beam that is, the projection direction of the fifth beam and the projection of the sixth beam. The directions are different so that the fifth beam and the sixth beam can be imaged in different projection areas.
  • the third light beam is modulated by the light modulation unit based on the modulation signal corresponding to the first image
  • the fourth light beam is modulated by the light modulation unit based on the modulation signal corresponding to the second image.
  • the light modulation unit can independently modulate the first beam and the second beam in a time-sharing manner, and can display different images in different projection areas, and And since the same light modulation unit is time-division multiplexed, the resolution of the projection images in the two projection areas is the same, both are the resolutions of the light modulation unit, and the resolution of the projection image will not be affected by the increase in the total projection area. Rate.
  • the projection unit includes a first projection lens and a second projection lens, the first projection lens is used to project the third light beam, and the second projection lens is used to project the fourth light beam.
  • the projection unit includes a first projection lens and a second projection lens, the first projection lens is used to project the third light beam, and the second projection lens is used to project the fourth light beam.
  • the lens magnification of the first projection lens and the lens magnification of the second projection lens are different.
  • the lens magnification of the first projection lens and the lens magnification of the second projection lens are the same. Therefore, the field of view of different projection lenses is the same, and the size, area and pixel density of the projection area are the same.
  • images are projected and imaged in different projection areas at the same time, it is visually easier to splice the projected images in different projection areas into a complete image. images, reducing the sense of fragmentation in the spliced image.
  • the projection unit includes a third projection lens
  • the projection device further includes a reflection unit.
  • the reflection unit is used to change the optical path of the third beam and the fourth beam, so that the third beam and the fourth beam are incident on the third beam.
  • Projection lens the incident direction of the third light beam incident on the third projection lens is different from the incident direction of the fourth light beam incident on the third projection lens.
  • the third beam and the fourth beam are guided to the same projection lens through the reflection unit, thereby reusing the same projection lens, which can reduce the manufacturing cost of the projection device.
  • the third beam and the fourth beam enter the third projection lens in different directions, so that the third projection lens can project the third beam and the fourth beam to different projection areas.
  • the reflection unit includes a first reflection mirror and a second reflection mirror, the first reflection mirror is used to reflect the third light beam to the third projection lens, and the second reflection mirror is used to reflect the fourth light beam. to the third projection lens.
  • the third beam and the fourth beam are respectively reflected to the third projection lens through the two reflectors, and the incident angles of the third beam and the fourth beam incident on the reflector can be independently adjusted so that the third beam and the fourth beam are incident on the third projection lens.
  • the three projection lenses have different incident directions.
  • the first reflecting mirror and the second reflecting mirror may be plane mirrors, which have lower cost.
  • the reflection unit includes a third reflection mirror.
  • the third reflection mirror includes a first reflection area and a second reflection area.
  • the first reflection area and the second reflection area have different curvatures.
  • the first reflection area is In order to reflect the third light beam to the third projection lens, the second reflection area is used to reflect the fourth light beam to the third projection lens.
  • the curvatures of the first reflection area and the second reflection area are different, so that the third light beam and the fourth light beam can respectively enter the third projection lens in different incident directions.
  • changing the optical path of the third beam and the fourth beam through a reflector can reduce the number of components in the projection device, save the occupied space, and make the projection device more compact.
  • the reflection unit includes a third reflection mirror
  • the third reflection mirror includes a first reflection area and a second reflection area
  • the first reflection area is used to reflect the third light beam to the third projection lens
  • the second reflection area is used to reflect the fourth light beam to the third projection lens.
  • Both the first reflective area and the second reflective area may be plane mirrors to reduce manufacturing difficulty and cost.
  • changing the optical path of the third beam and the fourth beam through a reflector can reduce the number of components in the projection device, save the occupied space, and make the projection device more compact.
  • the projection unit includes a third projection lens
  • the projection device further includes a reflection unit
  • the third projection lens is disposed on the optical path of the third light beam
  • the reflection unit is used to change the optical path of the fourth light beam so that the third light beam Four beams incident
  • the incident direction of the third light beam incident on the third projection lens is different from the incident direction of the fourth light beam incident on the third projection lens.
  • the projection lens is arranged on the optical path of the third beam, and the reflection unit can only include one reflector. The reflector reflects the fourth beam to the third projection lens, which can reduce the number of reflectors, reduce costs, and save occupied space. .
  • the light modulation unit includes a plurality of micromirrors, each micromirror has a first tilt state and a second tilt state, and the first tilt state and the second tilt state are used to modulate the first light beam. is the tilt state of the third beam, which is different from the tilt state used to modulate the second beam into the fourth beam.
  • the micromirror array has high optical utilization and resolution, as well as precise control methods. The micromirror array is used to modulate the first beam and the second beam, so that the modulated beam has higher brightness, resolution and Contrast. Moreover, the micromirror works in a high-temperature environment. Being in a certain tilted state for a long time can easily lead to micromirror failure.
  • the proportion of bright pixels is greater than the proportion of dark pixels.
  • Different tilted states of the micromirror are represented by By modulating the bright pixels in the first image and the second image, the probability that the micromirror is in one of the tilted states for a long time can be reduced, thereby increasing the life of the micromirror.
  • the light modulation unit includes a plurality of micromirrors, each micromirror has a first tilt state and a second tilt state, and the first tilt state and the second tilt state are used to The tilt state of the first beam modulated into the third beam is the same as the tilt state used to modulate the second beam into the fourth beam.
  • the bright pixels in the first image and the second image are modulated based on the same tilt state of the micromirror.
  • the first image or the second image does not need to be inverted, or the modulation signal of the first image or the second image does not need to be inverted. , thereby improving the modulation efficiency.
  • the micromirrors move around the rotation axis between a first tilted state and a second tilted state, each micromirror further includes a flat state, and the first light beam and the second light beam are incident from one side of the plane.
  • the plane of the light modulation unit is the plane determined by the normal direction of the light modulation unit and the rotation axis.
  • the normal direction of the light modulation unit is parallel to the normal direction of the micromirror in a flat state.
  • the first light beam and the second light beam enter the light modulation unit from the same side of the plane. Then, part of the optical devices can be reused on the optical path of the first light beam and the second light beam from the illumination unit to the incident light modulation unit, thereby reducing manufacturing costs.
  • the lighting unit includes a first light source and a second light source.
  • the first light source is used to provide a first light beam.
  • the second light source is used to provide a second light beam.
  • the first light source and the second light source are arranged on a plane. same side. Different light sources are provided to provide light beams with different incident directions, enabling simple and rapid switching between the first light beam and the second light beam.
  • the first light source and the second light source are located on the same side of the plane, and the first light beam and the second light beam can reuse part of the optical components, thereby reducing manufacturing costs.
  • each micromirror moves between a first tilted state and a second tilted state around the rotation axis, each micromirror further includes a flat state, and the first beam and the second beam differ from the plane.
  • the plane is the plane determined by the normal direction of the light modulation unit and the rotation axis.
  • the normal direction of the light modulation unit is parallel to the normal direction of the micromirror in a flat state. The smaller the incident angle between the light beam and the reflective surface, the higher the reflection efficiency of the light beam, and the greater the brightness of the reflected light beam.
  • the first light beam and the second light beam enter the light modulation unit from different sides of the plane, ensuring that the first light beam and the second light beam are incident on each other.
  • the reflection efficiency of the light beams can also be ensured, so that the third and fourth light beams have higher brightness.
  • the lighting unit includes a first light source and a second light source.
  • the first light source is used to provide a first light beam.
  • the second light source is used to provide a second light beam.
  • the first light source and the second light source are arranged on a plane. of different sides. Different light sources are provided to provide light beams with different incident directions, enabling simple and rapid switching between the first light beam and the second light beam.
  • the first light source and the second light source are arranged on different sides of the plane, which is beneficial to heat dissipation of the light source, reducing the spatial layout, and improving the reflection efficiency of the light beam.
  • the lighting unit includes a third light source, the third light source provides the first light beam and the second light beam in a time-sharing manner, and the third light source is configured to provide the first light beam when it is in the first position, and when it is in the second position to provide a second beam.
  • the projection device can project images in different projection areas, and can also reduce the number of light sources in the light modulation unit and the lighting unit, thereby reducing the manufacturing cost of the projection device.
  • the light modulation unit is configured to modulate the first light beam when it is in the third position and modulate the second light beam when it is in the fourth position, so that the incident directions of the first light beam and the second light beam are different.
  • the projection device can project images in different projection areas and reduce the number of light modulation units, thereby reducing the manufacturing cost of the projection device.
  • the lighting unit provides the first light beam for a different duration than the second light beam.
  • the lighting unit can realize that the images in the first projection area and the second projection area are simultaneously imaged in the human eye by alternately providing the first light beam and the second light beam.
  • the duration is consistent with the duration of the beam imaging on the imaging interface. The longer the duration, the higher the brightness of the corresponding projection area. Therefore, the duration of providing the first light beam and the duration of providing the second light beam can be set to different durations according to the brightness requirements of different projection areas.
  • the different projection areas include different projection areas located on the ground, or include a projection area located on the ground and a projection area on a plane that is at an angle with the ground.
  • the projection device of the present application can project images in different areas on the ground, and can expand the scope of the projection area. Or it can be projected on the ground and a plane at an angle with the ground respectively, so that the projection device can be suitable for different scenes and meet the multiple functional needs of users.
  • a second aspect provides a display device.
  • the display device can specifically be a smart car light, a projector or a head-up display device, etc.
  • the display device includes a processor and the projection device in the above-mentioned first aspect or any possible implementation of the first aspect, and the processor is configured to send image data to the light modulation unit.
  • the image data includes first image data and second image data.
  • the processor is configured to send first image data to the light modulation unit, and the light modulation unit is configured to generate a modulation signal for modulating the first light beam into a third light beam according to the first image data.
  • the processor is configured to send second image data to the light modulation unit, and the light modulation unit is configured to generate a modulation signal for modulating the second light beam into a fourth light beam according to the second image data.
  • the third aspect provides a means of transportation.
  • the vehicle includes the display device in the above-mentioned second aspect or any possible implementation of the second aspect, and the display device is installed on the vehicle.
  • the vehicle further includes a reflective element
  • the display device is configured to respectively project the fifth beam and the sixth beam to different areas of the reflective element
  • the reflective element is configured to reflect the fifth beam and the sixth beam.
  • Figure 1 is a schematic structural diagram of an embodiment of a projection device provided by the present application.
  • FIG. 2 is a schematic structural diagram of the light modulation unit provided by this application.
  • Figure 3 is a schematic diagram of the working principle of the micromirror
  • Figure 4a is a schematic diagram of a modulation method of the light modulation unit
  • Figure 4b is a schematic diagram of another modulation method of the light modulation unit
  • Figure 4c is a schematic diagram of another modulation method of the light modulation unit
  • Figure 4d is a schematic diagram of another modulation method of the light modulation unit
  • Figure 5a is a schematic diagram of a projection effect that can be achieved by the projection device provided by the present application.
  • Figure 5b is a schematic diagram of another projection effect that can be achieved by the projection device provided by the present application.
  • Figure 6 is a schematic diagram of another projection effect that can be achieved by the projection device provided by the present application.
  • Figure 7 is a schematic structural diagram of another embodiment of the projection device provided by the present application.
  • Figure 8 is a schematic structural diagram of another embodiment of the projection device provided by the present application.
  • Figure 9 is a schematic structural diagram of another embodiment of the projection device provided by the present application.
  • Figure 10 is a schematic structural diagram of another embodiment of the projection device provided by the present application.
  • Figure 11 is a schematic structural diagram of another embodiment of the projection device provided by the present application.
  • Figure 12 is a schematic structural diagram of another embodiment of the projection device provided by the present application.
  • Figure 13 is a schematic structural diagram of another embodiment of the projection device provided by the present application.
  • Figure 14 is a schematic structural diagram of another embodiment of the projection device provided by the present application.
  • Figure 15 is a schematic structural diagram of another embodiment of the projection device provided by the present application.
  • Figure 16 is a schematic structural diagram of another embodiment of the projection device provided by the present application.
  • Figure 17 is a schematic structural diagram of a display device provided by this application.
  • Figure 18 is a schematic diagram of a display device provided by this application.
  • Figure 19 is a schematic structural diagram of a vehicle provided by this application.
  • Figure 20 is a schematic diagram of a vehicle scene provided by this application.
  • This application provides a projection device, a display device and a vehicle so that the projection product can cover more application scenarios.
  • the projection device provided by this application is integrated into different projection products, the functions implemented are slightly different.
  • the projection device of the present application is integrated into a projector.
  • the projector can project images onto a wall or a projection screen, and users can watch videos.
  • the projection device of the present application is integrated into a head-up display (HUD) device.
  • HUD can be applied to vehicles, airplanes and other means of transportation. In addition, it can also be used in central control rooms, architectural landscapes, advertising and other scenarios. For example, when HUD is applied in a vehicle, HUD can project an image containing vehicle status information, navigation information and other information onto the vehicle's windshield. After reflection from the windshield, a virtual image of the projected image can be presented to the human eye.
  • the projection device of the present application can also be integrated into a car light.
  • the car lights can also implement the adaptive driving beam (ADB) system, which can project text or complex graphics such as traffic signs to provide the driver with trajectory guidance when turning, low beam enhancement, Functions such as lane width display and pedestrian zebra crossing projection can also provide outdoor cinema projection video images to add assisted driving or entertainment functions.
  • ADB adaptive driving beam
  • the current car light projection has a fixed field of view and a single projection direction, which cannot meet the needs of multi-scenario projection.
  • the projection device is integrated into the car lights
  • projecting pedestrian zebra crossings needs to project the image onto the ground near the car
  • outdoor cinemas need to project onto the wall or curtain in front of the car lights.
  • the projection light path directions required for the above two scenarios are different. Since the current smart car lights have a single projection direction, they can only selectively meet one of the scenarios and cannot fully cover the application scenario requirements of smart car lights.
  • the projection device is integrated into the scene of the projector. Since the projection field of view is fixed, the user needs to manually adjust the height and angle of the projector to make the projection image of the projector on the wall or projection screen square and distortion-free, which makes the operation complicated.
  • the projection device provided by the present application has a variable field of view. By switching the field of view of the projection device, the projection device can achieve more functions and meet the usage requirements in different application scenarios.
  • Figure 1 is a schematic structural diagram of an embodiment of the projection device provided by the present application.
  • the projection device 10 includes a lighting unit 11 , a light modulation unit 12 and a projection unit 13 .
  • the lighting unit 11 is used to generate a white or primary color light beam.
  • the lighting unit 11 is, for example, a laser light source or a light-emitting diode (LED) light source.
  • the light modulation unit 12 is used to modulate the light beam from the lighting unit 11 to obtain imaging light containing image information.
  • the imaging light is projected by the projection unit 13 and is imaged on an imaging interface such as a screen, wall or floor.
  • the lighting unit 11 is specifically configured to provide the first light beam 20 and the second light beam 21 in a time-sharing manner.
  • the incident direction of the first light beam 20 entering the light modulation unit 12 (hereinafter referred to as the first incident direction) is different from the incident direction of the second light beam 21 entering the light modulation unit 12 (hereinafter referred to as the second incident direction).
  • the light modulation unit 12 is used to modulate the first light beam 20 into a third light beam 22 and to modulate the second light beam 21 into a fourth light beam 23 .
  • the emission direction in which the third light beam 22 exits the light modulation unit 12 is different from the exit direction in which the fourth light beam 23 exits the light modulation unit 12 .
  • the projection unit 13 is used to project the third beam 22 and the fourth beam 23 to different projection areas.
  • the third beam 22 is amplified by the projection unit 13 and projected into the fifth beam 24, which is imaged in the first projection area.
  • the fourth beam 23 is amplified by the projection unit 13 and projected into a sixth beam 25, which is imaged in the second projection area.
  • the optical axis is the centerline of the light beam. The existence of an included angle means that they are not parallel and do not overlap.
  • the first projection area and the second projection area are different projection areas, that is, the first projection area and the second projection area do not overlap or do not completely overlap.
  • the first projection area and the second projection area may be different areas on the same imaging plane, or may be different areas located on different imaging planes. Different imaging planes are, for example, two planes with an included angle. For example, in a specific scene, the first projection area and the second projection area are different areas on the ground, or one of the first projection area and the second projection area is a projection area on the ground, and the other is a projection area on the ground. An area on a plane that is at an angle to the ground, such as a projection area on a wall.
  • the light modulation unit 12 can also modulate the first light beam 20 and the second light beam 21 independently in a time-divided manner.
  • the light modulation unit 12 modulates the first light beam 20 into a third light beam 22 carrying the first image information according to the modulation signal corresponding to the first image, and then projects the first image in the first projection area.
  • the light modulation unit 12 modulates the second light beam 21 into a fourth light beam 23 carrying the second image information according to the modulation signal corresponding to the second image, and then projects the second image in the second projection area.
  • the first image refers to the image used for imaging in the first projection area
  • the second image refers to the image used for imaging in the second projection area, and does not specifically refer to a certain frame image.
  • the content in the first image and the content in the second image may be the same or different.
  • the difference between the first incident direction and the second incident direction specifically means that the first beam 20 and the second beam 21 satisfy at least one of the following two conditions: the first beam 20 and the second beam 21 are not parallel to each other or coincident, that is, the first beam 20 and the second beam 21 are not parallel to each other or coincide with each other.
  • the same conditions apply when the exit direction of the third light beam 22 exiting the light modulation unit 12 and the exit direction of the fourth light beam 23 exiting the light modulation unit 12 are different.
  • Figure 2 is a schematic structural diagram of the light modulation unit provided by the present application
  • Figure 3 is a schematic diagram of the working principle of the micromirror.
  • the light modulation unit 12 is, for example, a digital micromirror device (DMD) chip.
  • the light modulation unit 12 may also be liquid crystal on silicon (LCOS), etc., which is not limited here.
  • the light modulation unit 12 includes a micromirror array 121 composed of a plurality of micromirrors 1211.
  • Each micromirror 1211 in the micromirror array 121 can be independently controlled and is equivalent to a pixel in the image.
  • the micromirrors 1211 are all in a flat state.
  • the micromirror 1211 When the mirror array 121 is powered on, the micromirror 1211 has two working states, namely a first tilting state and a second tilting state.
  • the micromirror 1211 transforms between the first tilt state and the second tilt state around a rotation axis, which is a geometric straight line according to which the rotational symmetry action is performed.
  • the micromirror 1211 in the first tilted state and the micromirror 1211 in the second tilted state can respectively reflect light in the same direction to different directions. Specifically, when the micromirror 1211 is in one of the first tilted state and the second tilted state, the light incident on the micromirror 1211 can be reflected to the projection unit 13, and at this time, a bright light is formed on the imaging interface. Pixel; when the micromirror 1211 is in another tilted state, the light incident on the micromirror 1211 can be reflected in a direction away from the projection unit 13 and cannot be projected through the projection lens. At this time, a dark pixel is formed on the imaging interface.
  • each micro mirror 1211 on the micro mirror array 121 is controlled to be in the first tilt state or the third tilt state. 2. Tilt state. Therefore, the light modulation unit 12 can modulate the first beam 20 and the second beam 21 incident on the micromirror array 121 into the third beam 22 and the fourth beam 23 containing image information.
  • the first tilt state is, for example, a stable position in which the micromirror 1211 is flipped around the rotation axis from a flat state by a first angle ⁇ .
  • the second tilt state is, for example, a stable position in which the micromirror 1211 is flipped around the rotation axis by a second angle - ⁇ from the flat state.
  • the first tilt state can also be a stable position in which the micromirror 1211 is flipped around the rotation axis from the flat state by the second angle - ⁇
  • the second tilt state can also be the micromirror 1211 from the flat state around the rotation axis.
  • the micromirror 1211 can flip ⁇ around the rotation axis.
  • the value of ⁇ can be 10°, 12° or 17° etc.
  • can also be other values, which are not limited here.
  • the rotation axis and the normal direction of the light modulation unit 12 can determine a plane, as shown in FIG. 3 .
  • the first normal direction is parallel to the normal direction of the micromirror 1211 in the flat state.
  • the first light beam 20 and the second light beam 21 enter the light modulation unit 12 from different sides of the plane, or they may enter the light modulation unit 12 from the same side of the plane, which is not limited here.
  • the plane has a second normal direction, and the second normal direction intersects the first normal direction.
  • this embodiment defines the first normal direction as 0°, and the angle range formed by rotating 90° from the first normal direction in the counterclockwise direction to the second normal direction is 0 to 90°.
  • the angle range formed by rotating the direction 90° to the second normal direction is 0 to -90° (the negative sign "-" only indicates the direction and does not affect the angle).
  • the angle between the first light beam 20 and the first normal direction is the first incident angle
  • the angle between the second light beam 21 and the first normal direction is the second incident angle.
  • the first incident angle/second incident angle is greater than or equal to 0° and less than ⁇ (90°- ⁇ ).
  • the first incident angle/second incident angle is not ⁇ .
  • the first incident angle and the second incident angle should also be such that the optical path of the first light beam 20 after being reflected by the light modulation unit 12 does not coincide with the optical path of the second light beam 21 , and the light beam after the second light beam 21 is reflected by the light modulation unit 12 does not coincide with the optical path of the first light beam 20 .
  • the angle between the optical axis of the first beam 20 and the optical axis of the second beam 21 is greater than 0° and less than 2 (90°- ⁇ ). When there is an included angle between the optical axis of the first light beam 20 and the optical axis of the second light beam 21 , the first incident angle and the second incident angle may be equal in magnitude.
  • the angle between the first beam 20 and the second beam 21 will be affected by factors such as the space of the projection device 10 and the size and position of each unit.
  • the optical axis of the first beam 20 and the optical axis of the second beam 21 The angle between the axes is subject to the actual situation and is not limited here.
  • Figures 4a to 4d are schematic diagrams of modulation methods of the light modulation unit.
  • the light in the first beam 20 that is incident on the micromirror 1211 in the first tilted state in the micromirror array 121 is reflected toward the first emission direction by the micromirror 1211 in the first tilted state, and the first sub-beam 201 is obtained.
  • the first light beam 20 the light incident on the micromirror 1211 in the second tilted state in the micromirror array 121 is reflected toward the second emission direction by the micromirror 1211 in the second tilted state.
  • the first emission direction and the second emission direction are different, that is, there is an included angle between the optical axis of the first sub-beam 201 and the optical axis of the second sub-beam 202, and the included angle is 2 ⁇ .
  • the light in the second beam 21 that is incident on the micromirror 1211 in the first tilted state in the micromirror array 121 is reflected toward the third emission direction by the micromirror 1211 in the first tilted state, and a third sub-beam 211 is obtained.
  • the light in the second beam 21 that is incident on the micromirror 1211 in the second tilted state in the micromirror array 121 is reflected by the micromirror 1211 in the second tilted state in the fourth emission direction to obtain the fourth sub-beam 212.
  • the third emission direction and the fourth emission direction are different, that is, there is an included angle between the optical axis of the third sub-beam 211 and the optical axis of the fourth sub-beam 212, and the included angle is 2 ⁇ . Since the first incident direction and the second incident direction are different, at least one of the first sub-beam 201 and the second sub-beam 202 does not coincide with at least one of the third beam 211 and the fourth beam 212 . Therefore, the light modulation unit 12 can respectively modulate the first light beam 20 and the second light beam 21 into the third light beam 22 and the fourth light beam 23 with different emission directions.
  • the modulation rules of the first beam 20 and the second beam 21 by the light modulation unit 12 may be different, that is, the tilt state used to modulate the first beam into the third beam in the first tilt state and the second tilt state. , which is different from the tilt state used to modulate the second beam into the fourth beam.
  • the micromirror in the first tilted state of the light modulation unit 12 is used to modulate the first beam 20 into the third beam 22
  • the micromirror in the second tilted state is used to modulate the second beam 21 Modulated into a fourth beam 23, as shown in Figures 4a and 4c.
  • the micromirror in the second tilt state of the light modulation unit 12 is used to modulate the first beam 20 into the third beam 22 , and the micromirror in the first tilt state is used to modulate the second beam 22 .
  • 21 is modulated into a fourth beam 23, as shown in Figures 4b and 4d.
  • the projection unit 13 is disposed on the optical path of the first sub-beam 201
  • the first sub-beam 201 is the third beam 22
  • the light absorption unit 14 is disposed on the optical path of the second sub-beam 202 .
  • the light absorption unit 14 is used to absorb the non-imaging light rays in the first light beam 20 that do not need to be projected from the projection unit 13 , that is, the second sub-beam 202 , so as to reduce the crosstalk of the non-imaging light rays.
  • the bright pixels in the first image correspond to the first tilted state of the micromirror 1211
  • the dark pixels in the first image correspond to the second tilted state of the micromirror 1211.
  • the projection unit 13 is also disposed on the optical path of the fourth sub-beam 212
  • the fourth sub-beam 212 is the fourth beam 23 .
  • a light absorption unit 14 is provided on the optical path of the third sub-beam 211 for absorbing the third sub-beam 211 .
  • the bright pixels in the second image correspond to the second tilted state of the micromirror 1211
  • the dark pixels in the second image correspond to the first tilted state of the micromirror 1211.
  • Figure 4b is a schematic diagram of the optical path of the first light beam 20 and the second light beam 21 incident on the light modulation unit 12 from different sides of the plane.
  • the projection unit 13 is disposed on the optical path of the second sub-beam 202
  • the second sub-beam 202 is the third beam 22 .
  • a light absorption unit 14 is provided on the optical path of the first sub-beam 201 for absorbing the first sub-beam 201 .
  • the bright pixels in the first image correspond to the second tilted state of the micromirror 1211
  • the dark pixels in the first image correspond to the first tilted state of the micromirror 1211 .
  • the projection unit 13 is also disposed on the optical path of the third sub-beam 211 , and the third sub-beam 211 is the fourth beam 23 .
  • a light absorption unit 14 is provided on the optical path of the fourth sub-beam 212 for absorbing the fourth sub-beam 212 .
  • the bright pixels in the second image correspond to the first tilted state of the micromirror 1211
  • the dark pixels in the second image correspond to the second tilted state of the micromirror 1211.
  • the angle between the normal direction of the first beam 20 and the micromirror 1211 in the first tilted state is smaller than the angle between the normal direction of the first beam 20 and the micromirror 1211 in the second tilted state. the angle between.
  • the beam brightness of the third beam 22 in Figure 4a (based on the first sub-beam 201 reflected by the micromirror 1211 in the first tilted state) is greater than that of the third beam 22 in Figure 4b (based on the micromirror 1211 in the second tilted state).
  • the beam brightness of the reflected second sub-beam 202). The same applies to the second light beam 21 . on the imaging beam
  • the modulation method corresponding to Figure 4a can be selected.
  • the modulation method corresponding to Figure 4b can also be selected.
  • Micromirror 1211 works in a high-temperature environment. Being in a certain tilted state for a long time can easily lead to micromirror failure. Generally, in an image, the proportion of bright pixels is greater than the proportion of dark pixels.
  • the different tilted states of micromirror 1211 are represented by Modulating the bright pixels in the first image and the second image can reduce the probability that the micromirror 1211 is in one of the tilted states for a long time, thereby increasing the life of the micromirror.
  • the incident angle of the third beam 22/the fourth beam 23 entering the projection unit may be larger, which is not conducive to the projection of the third beam 22/the fourth beam 23, then the third beam 22/the fourth beam 23 can be 22/A wedge-shaped mirror 18 is added to the optical path of the fourth beam 23 entering the projection unit 13 to change the incident angle of the third beam 22 and/or the fourth beam 23 entering the projection unit 13, thereby changing the fifth beam 24 and/or the third beam 23.
  • the projection angle of the six beams 25 enables the fifth beam 24 and/or the sixth beam 25 to be projected in the expected projection area.
  • This embodiment takes the setting of the light absorption unit 14 to process non-imaging light as an example.
  • a reflector (not shown) can also be provided on the optical path of the non-imaging light to reflect the non-imaging light away from the light.
  • the directions of the modulation unit 12 and the projection unit 13 are to avoid crosstalk caused by non-imaging light incident on the light modulation unit 12 or the projection unit 13 .
  • the light modulation unit 12 further includes a signal modulation module (not shown), which is used to convert the image into a modulation signal used to control the micromirror 1211 in the micromirror array 121 to flip.
  • the signal modulation module has a preset modulation rule. For example, bright pixels in the image correspond to the first tilt state of the micromirror 1211, and dark pixels correspond to the second tilt state of the micromirror 1211.
  • the modulation rules corresponding to the first image and/or the second image are different from the modulation rules of the signal modulation module, the signal generated according to the first image and/or the second image also needs to be inverted. For example, it is originally used to control micro-controllers.
  • the signal that the mirror 1211 flips to the first tilt state is inverted to a signal that controls the micro mirror 1211 to flip to the second tilt state.
  • the signal originally used to control the micro mirror 1211 to flip to the second tilt state is inverted to control the micro mirror 1211 to flip to the second tilt state.
  • the signal modulation module outputs the inverted signal of the first tilt state as the modulation signal of the micromirror array 121 .
  • the first image and/or the second image obtained by the light modulation unit 12 are, for example, already inverted light and dark images, and the signal modulation module may output a modulation signal based on the inverted light and dark image.
  • the modulation rules of the first beam 20 and the second beam 21 by the light modulation unit 12 can also be the same, that is, in the first tilt state and the second tilt state, the first beam 20 is modulated to
  • the tilt state of the third light beam 22 is the same as the tilt state used to modulate the second light beam 21 into the fourth light beam 23 .
  • the bright pixels in the first image and the second image are modulated based on the same tilt state of the micromirror 1211.
  • the first image or the second image does not need to perform light and dark inversion processing, or the modulation signal of the first image or the second image does not need to be inverted. processing, thereby improving modulation efficiency.
  • This embodiment changes the incident direction of the light beam incident on the light modulation unit 12 so that the projection device 10 can project light beams with different directions, so that the projection device 10 has a variable or larger projection area to adapt to different application scenarios. For example, when it is only necessary to project in the first projection area, the projection device 10 may only provide the first light beam 20 . When only projection in the second projection area is required, the projection device 10 may only provide the second light beam 21 .
  • the first light beam 20 and the second light beam 21 can be quickly switched to utilize the persistence of vision phenomenon of the human eye to make the first light beam in the first projection area
  • the image and the second image in the second projection area are simultaneously presented in the user's vision.
  • the first beam 20 is switched with frequency N and the second beam 21, so that the first image and the second image are alternately imaged, thereby expanding the projection area and imaging range.
  • the refresh rates of both the first image and the second image are N/2.
  • the frequency N is greater than or equal to 2 times the critical flicker frequency (CFF).
  • CFF critical flicker frequency
  • N should be greater than or equal to 120 Hz.
  • N can also be 160Hz, 180Hz, 288Hz, 300Hz or 320Hz, etc., and is not limited here.
  • the upper limit of N is, for example, the maximum flip frequency of the micromirror 1211 .
  • the lighting unit 11 quickly alternately provides the first light beam 20 and the second light beam 21 .
  • the lighting unit 11 provides the first light beam 20 and the second light beam 21 for the same duration, so that the first image and the second image are projected for 50% of the time per unit time.
  • the lighting unit 11 may provide the first light beam 20 and the second light beam 21 for different periods of time.
  • the greater the proportion of a certain beam duration provided by the lighting unit 11 per unit time the higher the brightness of the corresponding projected image.
  • the time period during which the lighting unit 11 provides the first light beam 20 and the time period during which the second light beam 21 is provided may be determined according to the brightness of the first and second images expected to be projected, and is not limited here.
  • the projection unit 13 may include one projection lens, that is, the third beam 22 and the fourth beam 23 are projected from the same projection lens, which can reduce the number of projection lenses and thereby reduce the manufacturing cost of the projection device 10 .
  • the projection unit 13 may also include at least two projection lenses, that is, the third beam 22 and the fourth beam 23 are projected from different projection lenses, which is not limited here.
  • the two projection lenses may have the same magnification, so that the fields of view of the first projection area and the second projection area are the same, as shown in Figures 5a and 5b. Therefore, the field of view of different projection lenses is the same, and the size, area and pixel density of the projection area are the same.
  • images are projected and imaged in different projection areas at the same time, it is visually easier to splice the projected images in different projection areas into a complete image. images, which can reduce the sense of fragmentation in spliced images.
  • the projection effects in Figure 5a and Figure 5b are only for illustration.
  • the first projection area and the second projection area may partially overlap, or the first projection area and the second projection area may not overlap and have borders connected.
  • the first projection area and the second projection area may not overlap.
  • the two projection areas may not overlap and have gaps, which is not limited here.
  • Figure 6 is another method that can be achieved by the projection device provided by the present application. Illustration of the projection effect. Different magnifications of the two projection lenses can make the area sizes of the first projection area and the second projection area different. The greater the magnification of the projection lens, the larger the corresponding projection area, and the lower the brightness and pixel density of image imaging. The smaller the magnification of the projection lens, the smaller the area of the corresponding projection area, and the higher the brightness and pixel density of the image, thereby making the projection graphics clearer and providing a better visual experience.
  • the relative positions of the first projection area and the second projection area in Figures 5a, 5b and 6 are only for illustration and should not be understood as limitations of the present application.
  • the projection device 10 further includes a collimating unit 15 and a focusing unit 16, for example.
  • the collimating unit 15 is used to convert light into parallel light. After the first beam 20 and the second beam 21 emitted by the lighting unit 11 pass through the collimating unit 15, the light in the first beam 20 and the second beam 21 becomes parallel light.
  • the collimating unit 15 is, for example, a Fresnel lens.
  • the converging unit 16 is used to focus the parallel light to the light modulation unit 12 .
  • the light in the collimated first beam 20 and the second beam 21 is focused and reflected by the condensing unit 16 and converged on the micromirror array 121 of the light modulation unit 12, so that the light modulation unit 12 can detect the first beam 20 and the second beam 21.
  • the converging unit 16 is, for example, a free-form surface mirror.
  • the projection device The device 10 may not include the collimating unit 15.
  • the lighting unit 11 is a parallel light source and can directly emit parallel light
  • the collimating unit 15 may not be provided to collimate the light beam emitted by the lighting unit 11.
  • the position of the lighting unit 11 can be moved, or the position of the light modulation unit 12 can be moved.
  • the lighting unit 11 includes at least two light sources with different positions.
  • the number and position of different light sources in the lighting unit 11, combined with the number and position of different projection lenses in the projection unit 13, can form a variety of different embodiments, which are described separately below.
  • the following embodiments are only examples, and are only a few of the many possible implementations of this solution. They do not represent all implementations of this solution. All solutions based on the same principle as this solution fall within the scope of this application. protected range.
  • the lighting unit 11 may include at least two light sources, and the first light beam 20 and the second light beam 21 are respectively provided through different light sources in the lighting unit 11 .
  • the lighting unit 11 includes, for example, a first light source 111 and a second light source 112 .
  • the first light source 111 and the second light source 112 may be disposed on the same side of the plane, as shown in FIGS. 7 to 10 .
  • the first light source 111 and the second light source 112 can also be disposed on both sides of the plane, as shown in Figures 11 and 12.
  • 7 to 12 are respectively schematic structural diagrams of several possible projection devices provided by this application.
  • the projection device 10 includes an illumination unit, a collimation unit, a focusing unit 16 , a light modulation unit 12 , a projection unit and a light absorption unit.
  • the lighting unit includes a first light source 111 and a second light source 112.
  • the alignment unit includes a first alignment unit 151 and a second alignment unit 152.
  • the projection unit includes a first projection lens 131 and a second projection lens 132 .
  • the light absorption unit includes a first light absorption module 141 and a second light absorption module 142 .
  • the first light source 111 is used to provide the first light beam 20
  • the second light source 112 is used to provide the second light beam 21 .
  • the first light source 111 provides the first light beam 20 at a different time than the second light source 112 provides the second light beam 21 to avoid beam crosstalk from affecting the projection effect.
  • the first light beam 20 emitted by the first light source 111 is collimated by the first collimation unit 151 and then enters the first convergence area of the convergence unit 16.
  • the first convergence area of the convergence unit 16 converges and reflects the first beam 20 to the light modulation unit. 12.
  • the light modulation unit 12 controls the micromirrors in the micromirror array to flip to the first tilt state or the second tilt state according to the modulation signal corresponding to the first image to modulate the first beam 20 to obtain the third beam 22 and the seventh beam 26,
  • the third light beam 22 is incident on the first projection lens 131
  • the seventh light beam 26 is incident on the first light absorption module 141 .
  • the first projection lens 131 projects the third light beam 22 into a fifth light beam 24, and the fifth light beam 24 forms and displays the first image in the first projection area.
  • the second light beam 21 emitted by the second light source 112 is collimated by the second collimation unit 152 and then enters the second convergence area of the convergence unit 16.
  • the second convergence area of the convergence unit 16 converges and reflects the second beam 21 to the light modulation unit. 12.
  • the first collection area and the second collection area are different areas of the collection unit 16 .
  • the first light beam 20 and the second light beam 21 have different incident directions into the light modulation unit 12 .
  • the light modulation unit 12 controls the micromirrors in the micromirror array to flip to the first tilt state or the second tilt state according to the modulation signal corresponding to the second image to modulate the second beam 21 to obtain the fourth beam 23 and the eighth beam 27.
  • the fourth light beam 23 is incident on the second projection lens 132
  • the eighth light beam 27 is incident on the second light absorption module 142 . Since the first light beam 20 and the second light beam 21 enter the light modulation unit 12 in different directions, the third light beam 22 and the fourth light beam 23 exit the light modulation unit 12 in different directions.
  • the second projection lens 132 projects the fourth light beam 23 into a sixth light beam 25, and the sixth light beam 25 is imaged and displays a second image in the second projection area.
  • the first projection area and the second projection area are different projection areas.
  • the optical paths of the third beam 22 and the fourth beam 23 are separated. Therefore, there is an angle between the optical axis of the fifth beam 24 and the optical axis of the sixth beam 25 projected through the projection unit. Furthermore, the fifth beam 24 and the sixth beam 25 have an included angle.
  • the beam 25 is imaged in different projection areas.
  • the aggregation unit 16 may include a first aggregation unit (not shown in this figure) and a second aggregation unit (not shown in this figure).
  • the first aggregation unit and the second aggregation unit respectively aggregate The first beam 20 and the second beam 21 are reflected.
  • the light modulation unit 12 may use an ON-state micromirror to convert the first light beam 20 into the light modulation unit 12.
  • a light beam 20 is modulated into a third light beam 22 carrying first image information.
  • the light modulation unit 12 can use the micromirror in the OFF state to modulate the second light beam 21 into a fourth light beam 23 carrying second image information.
  • the ON state is, for example, the above-mentioned first tilt state
  • the OFF state is the above-mentioned second tilt state.
  • the OFF state is the above-mentioned first tilt state
  • the ON state is the above-mentioned second tilt state.
  • the service life of the light modulation unit 12 can be improved by using micromirrors in different tilt states to reflect the imaging light (the third beam 22 and the fourth beam 23).
  • the light modulation unit 12 can also use a micromirror in either the ON state or the OFF state to modulate the first beam 20 into the third beam 22 and the second beam 21 into the fourth beam 23, where No restrictions.
  • the first light source 111 When it is necessary to project in the first projection area, the first light source 111 is powered on, and the first light beam 20 emitted by the first light source 111 enters the light modulation unit 12 in the first incident direction.
  • the second light source 112 When it is necessary to project in the second projection area, the second light source 112 is powered on, and the second light beam 21 emitted by the second light source 112 is incident on the light modulation unit 12 in the second incident direction.
  • the first light source 111 and the second light source 112 can be powered alternately at frequency N.
  • the first light source 111 and the second light source 112 are energized alternately and are sequential and intermittent, the first light source 111 and the second light source 112 can withstand higher instantaneous current during instantaneous operation. Therefore, the driving instantaneous current of the light source can be increased to obtain higher instantaneous energy output, and the brightness of the first projection area or the second projection area can be increased without affecting the total heating power and service life of the light source itself.
  • first projection area and the second projection area are located on different imaging planes with an included angle.
  • the first projection area and the second projection area can also be located on the same or parallel imaging planes. Examples are not given here. .
  • the projection unit includes two projection lenses.
  • the projection unit may also be a single projection lens, and the projection unit includes a third projection lens 133 .
  • the optical path of the third beam and/or the fourth beam can be changed by adding a reflection unit, so that the third beam and the fourth beam can enter the same projection lens.
  • the third beam and the fourth beam have different incident directions into the third projection lens 133, thereby ensuring that the third projection lens 133 can project the third beam and the fourth beam into different projection areas.
  • Figure 8 is a modification of Figure 7 .
  • the difference from the projection device 10 in FIG. 7 is that the projection unit is a single projection lens, that is, the third projection lens 133 .
  • the reflection unit includes, for example, a first reflection mirror 171 and a second reflection mirror 172 .
  • the first reflecting mirror 171 is used to reflect the third light beam to the third projection lens 133
  • the second reflecting mirror 172 is used to reflect the fourth light beam to the third projection lens 133 .
  • the third beam and the fourth beam are respectively reflected to the third projection lens 133 through the first reflector 171 and the second reflector 172, and the incident angles of the third beam and the fourth beam incident on the reflector can be adjusted independently, so that the third beam can be The three light beams and the fourth light beam enter the third projection lens 133 in different directions.
  • the first reflecting mirror 171 and the second reflecting mirror 172 may be plane mirrors, which have lower manufacturing costs.
  • the first reflecting mirror 171 and the second reflecting mirror 172 can also be curved mirrors, and there is no limitation here.
  • FIG. 9 is a modification of FIG. 7 .
  • the difference from the projection device 10 in FIG. 7 is that the projection unit is a single projection lens, including a third projection lens 133 .
  • the reflection unit includes, for example, a third reflection mirror 173 .
  • the third reflecting mirror 173 is used to change the optical path of the third beam and the fourth beam, and reflect the third beam and the fourth beam to the projection lens 133 .
  • the third reflection mirror 173 includes, for example, a first reflection area 1731 and a second reflection area 1732.
  • the first reflective area 1731 is used to reflect the third light beam
  • the second reflective area 1732 is used to reflect the fourth light beam.
  • FIG. 10 is a modification of FIG. 7 .
  • the difference from the projection device in FIG. 7 is that the projection unit is a single projection lens, including a third projection lens 133 .
  • the reflection unit includes, for example, a fourth reflection mirror 174 .
  • the fourth reflecting mirror 174 can be a plane mirror or a curved mirror, and is not limited here.
  • the fourth reflecting mirror 174 may change the optical path of only one of the third light beam and the fourth light beam.
  • the third projection lens 133 is disposed on the optical path of the third light beam, and the fourth reflecting mirror 174 is used to change the optical path of the fourth light beam so that the fourth light beam is incident on the third projection lens 133 .
  • the projection lens is arranged on the optical path of the third beam, and the reflection unit can only include one reflector.
  • the reflector reflects the fourth beam to the third projection lens, which can reduce the number of reflectors, reduce costs, and save occupied space. .
  • the first light source 111 and the second light source 112 are arranged on different sides of the plane.
  • the projection device includes an illumination unit, a collimation unit, a focusing unit, a light modulation unit 12, a projection unit and a light absorption unit (not shown in this figure).
  • the lighting unit includes a first light source 111 and a second light source 112.
  • the collimation unit includes a first collimation unit 151 and a second collimation unit 152
  • the convergence unit includes a first convergence unit 161 and a second convergence unit 162 .
  • the projection unit includes a first projection lens 131 and a second projection lens 132 .
  • the first light beam provided by the first light source 111 is collimated by the first collimating unit 151 and then enters the first condensing unit 161 .
  • the first condensing unit 161 converges and reflects the first light beam to the light modulation unit 12 .
  • the second light beam emitted by the second light source 112 is collimated by the second collimation unit 152 and then enters the second converging unit 162 .
  • the second condensing unit 162 converges and reflects the second light beam to the light modulation unit 12 .
  • the manner in which the light modulation unit 12 modulates the first and second light beams, the third and fourth light beams that are incident on the projection unit, and the projection of the fifth and sixth light beams can be referred to the relevant description in FIG. 7 and will not be described again here.
  • the first light source 111 and the second light source 112 are arranged on different sides of the plane, which is beneficial to heat dissipation of the light source, reducing the spatial layout, and improving the reflection efficiency of the light beam.
  • the projection unit includes two projection lenses.
  • the projection unit may also be a single projection lens, and both the third beam and the fourth beam are incident on the third projection lens 133, as shown in Figure 12.
  • FIG. 12 takes the fourth light beam reflected by the fourth mirror 174 as an example.
  • a deformation scheme similar to that in which the third light beam and the fourth light beam are incident on the third projection lens 133 as shown in FIGS. 8 and 9 can also be implemented based on FIG. 11 . No further details will be given here.
  • the lighting unit is a single light source, and the incident angles of the first light beam and the second light beam can be different by moving the lighting unit (by rotation and/or translation) to different positions.
  • Figure 13 is a schematic structural diagram of another embodiment of the projection device provided by the present application.
  • the projection device 10 includes an illumination unit, a collimation unit 15, a convergence unit 16, a light modulation unit 12, a projection unit and a light absorption unit.
  • the lighting unit is a single light source and includes a third light source 113 .
  • the projection unit includes a first projection lens 131 and a second projection lens 132 .
  • the light absorption unit includes a first light absorption module 141 and a second light absorption module 142 .
  • the third light source 113 is configured to provide the first light beam 20 when located in the first position.
  • the first beam 20 is sequentially collimated by the collimating unit 15 and converged and reflected by the converging unit 16, and then enters the light modulation unit 12 in the first incident direction.
  • the light modulation unit 12 controls the micromirrors in the micromirror array to flip to the first tilt state or the second tilt state according to the modulation signal corresponding to the first image to modulate the first beam 20 to obtain the third beam 22 and the seventh beam 26,
  • the third light beam 22 is incident on the first projection lens 131
  • the seventh light beam 26 is incident on the first light absorption module 141 .
  • the first projection lens 131 projects the third light beam 22 into a fifth light beam 24, and the fifth light beam 24 forms and displays the first image in the first projection area.
  • the third light source 113 is configured to provide the second light beam 21 when located in the second position.
  • the second light beam 21 is sequentially collimated by the collimating unit 15 and converged and reflected by the condensing unit 16, and then enters the micromirror array in the light modulation unit 12 in the second incident direction.
  • the first light beam 20 and the second light beam 21 have different incident directions into the light modulation unit 12 .
  • the light modulation unit 12 controls the micromirrors in the micromirror array to flip to the first tilt state or the second tilt state according to the modulation signal corresponding to the second image to modulate the second beam 21 to obtain the fourth beam 23 and the eighth beam 27.
  • the fourth light beam 23 is incident on the second projection lens 132
  • the eighth light beam 27 is incident on the second light absorption module 142 .
  • the third light beam 22 and the fourth light beam 23 exit the light modulation unit 12 in different directions.
  • the second projection lens 132 projects the fourth light beam 23 into a sixth light beam 25, and the sixth light beam 25 is imaged and displays a second image in the second projection area.
  • the first projection area and the second projection area are different projection areas.
  • the light modulation unit 12 may use an ON-state micromirror to modulate the first light beam 20 into a third light beam 22 carrying the first image information.
  • the light modulation unit 12 can use the micromirror in the OFF state to modulate the second light beam 21 into a fourth light beam 23 carrying second image information.
  • the ON state is, for example, the above-mentioned first tilt state
  • the OFF state is the above-mentioned second tilt state.
  • the OFF state is the above-mentioned first tilt state
  • the ON state is the above-mentioned second tilt state.
  • the service life of the light modulation unit 12 can be improved by using micromirrors in different tilt states to reflect the imaging light (the third beam 22 and the fourth beam 23).
  • the light modulation unit 12 can also use a micromirror in either an ON state or an OFF state to modulate the first beam 20 to the third beam 22 and the second beam 21 to modulate the fourth beam 23.
  • a micromirror in either an ON state or an OFF state to modulate the first beam 20 to the third beam 22 and the second beam 21 to modulate the fourth beam 23.
  • the lighting unit can only include one third light source 113 , which can reduce the manufacturing cost of the projection device 10 cost.
  • the lighting unit moves to the first position, and the first light beam 20 emitted by the lighting unit is incident on the light modulation unit 12 in the first incident direction.
  • the lighting unit moves to the second position, and the second light beam 21 emitted by the lighting unit is incident on the light modulation unit 12 in the second incident direction.
  • the lighting unit can move quickly between the first position and the second position at frequency N.
  • the projection device further includes a first driving unit (not shown) and a first transmission unit (not shown).
  • the first transmission unit is used to connect the first driving unit and the third light source 113 .
  • the first driving unit works to drive the first transmission unit, and the first transmission unit further drives the third light source 113 to move and/or rotate, so that the third light source 113 moves from the first position to the second position. position, or move from a second position to a first position.
  • the first light beam 20 and the second light beam 21 are incident on the light modulation unit 12 on the same side of the plane, and the projection unit includes two projection lenses. In some other implementations, the first beam 20 and the second beam 21 may also be incident on the light modulation unit 12 on different sides of the plane, and/or the projection unit may be a single projection lens.
  • FIG. 14 is a schematic structural diagram of another embodiment of the projection device provided by the present application.
  • Figure 14 (the seventh beam 26, the eighth beam 27 and the light absorption unit 14 are omitted in the figure, the same below) is a modification of Figure 13.
  • the difference from the projection device in FIG. 13 is that the convergence unit includes a first convergence unit 161 and a second convergence unit 162, and the projection device also includes a reflection unit.
  • the reflecting unit includes a fifth reflecting mirror 175 .
  • the fifth reflecting mirror 175 may be a curved mirror or a plane mirror.
  • the first gathering unit 161 and the second gathering unit 162 are arranged on both sides of the plane.
  • the first reflecting mirror 171 is used to reflect the first light beam or the second light beam.
  • the fifth reflecting mirror 175 is used to reflect the second light beam as an example.
  • the optical path of the first beam is similar to the optical path of the first beam in FIG. 13 and will not be described again here.
  • the third light source 113 When the third light source 113 is in the second position, it emits a second light beam. After being collimated by the collimating unit 15, the second light beam is reflected by the fifth reflector 175 to the second condensing unit 162.
  • the second condensing unit 162 converges the second light beam. Reflected to the light modulation unit 12. Parameters of the method for modulating the first light beam and the second light beam by the light modulation unit 12 Read the above related descriptions and will not repeat them here.
  • FIG. 15 is a schematic structural diagram of another embodiment of the projection device provided by the present application.
  • Figure 15 is a variation of Figure 13.
  • the projection unit can also be improved on the basis of Figure 14.
  • the difference from the projection device in FIG. 13 is that the projection unit in FIG. 15 is a single projection lens, that is, the third projection lens 133 .
  • the projection device also includes a reflection unit, and the reflection unit includes a fourth reflection mirror 174 .
  • the fourth reflecting mirror 174 may be a curved mirror or a plane mirror.
  • the fourth reflecting mirror 174 is used to reflect the third light beam or the fourth light beam to the third projection lens 133 .
  • the fourth reflector 174 reflects the fourth light beam as an example.
  • the optical path of the third beam is similar to the optical path of the third beam in FIG. 14 and will not be described again here.
  • the third light beam is incident on the third projection lens 133 in the third incident direction.
  • the fourth light beam emitted from the light modulation unit 12 is reflected by the fourth reflecting mirror 174 and enters the third projection lens 133 in the fourth incident direction.
  • the third incident direction is different from the fourth incident direction, so there is an angle between the optical axes of the third projection lens 133 for projecting the fifth beam and the sixth beam, so that the fifth beam and the sixth beam can be imaged in different projection areas.
  • FIG. 15 takes the fourth reflector 174 reflecting the fourth beam as an example.
  • a deformation scheme similar to that in which the third beam and the fourth beam are incident on the third projection lens 133 as shown in FIGS. 8 and 9 can also be implemented based on FIG. 13 . No further details will be given here.
  • the position of the light modulation unit 12 can also be changed to make the incident directions of the first light beam and the second light beam incident on the light modulation unit 12 different.
  • Figure 16 is a schematic structural diagram of another embodiment of the projection device provided by the present application.
  • the projection device includes an illumination unit, a collimation unit 15, a convergence unit 16, a light modulation unit 12, a projection unit and a light absorption unit (not shown in this figure).
  • the lighting unit is a single light source, and the lighting unit includes a third light source 113 .
  • the projection unit includes a first projection lens 131 and a second projection lens 132 .
  • the position of the third light source 113 remains unchanged, but the position of the light modulation unit 12 is changed. Specifically, when the third light source 113 provides the first beam, the light modulation unit 12 is located at the third position and controls the micromirrors in the micromirror array to flip to the first tilted state or the second tilted state according to the modulation signal corresponding to the first image, so as to The first beam is modulated to produce a third beam for projection imaging. The third beam is projected by the first projection lens 131 into a fifth beam, and the fifth beam is imaged in the first projection area.
  • the light modulation unit 12 controls the micromirrors in the micromirror array to flip to the first tilt state or the second tilt state according to the modulation signal corresponding to the second image at the fourth position to modulate the second light beam.
  • the beam results in a fourth beam used for projection imaging.
  • the fourth beam is projected by the second projection lens 132 into a sixth beam, and the sixth beam is imaged in the second projection area.
  • the optical path of the first light beam and the second light beam before reaching the light modulation unit 12 is the same. Simply because the light modulation unit changes its position, the incident direction of the first light beam entering the light modulation unit 12 is the same as that of the second light beam entering the light modulation unit 12 .
  • the incident directions are different, and finally the fifth beam and the sixth beam can be imaged in different projection areas.
  • the specific modulation method of the light modulation unit 12 please refer to the above-mentioned relevant descriptions and will not be described again here.
  • the projection device further includes a second driving unit (not shown) and a second transmission unit (not shown).
  • the second transmission unit is used to connect the second driving unit and the light modulation unit 12 .
  • the second driving unit works to drive the second transmission unit
  • the second transmission unit further drives the light modulation unit 12 to move and/or rotate, so that the light modulation unit 12 moves from the third position to the fourth position. position, or move from the fourth position to the third position.
  • the light modulation unit 12 When projection in the first projection area is required, the light modulation unit 12 is located in the third position, and the first light beam emitted by the third light source 113 is incident on the light modulation unit 12 in the first incident direction.
  • the position of the light modulation unit 12 is moved to the fourth position, and the second light beam emitted by the third light source 113 is incident on the light modulation unit 12 in the second incident direction.
  • the light modulation unit 12 can quickly move between the third position and the fourth position at the frequency N. That is, by moving the same
  • the position of the light modulation unit 12 causes the first light beam and the second light beam to enter the light modulation unit 12 at different incident angles. Therefore, the lighting unit can only include one light source, and there is no need to increase the number of light modulation units 12, which can reduce the manufacturing cost of the projection unit.
  • the first light beam and the second light beam are incident on the light modulation unit 12 on the same side of the plane, and the projection unit includes two projection lenses.
  • the first light beam and the second light beam may also be incident on the light modulation unit 12 on different sides of the plane, and/or the projection unit is a single projection lens.
  • the first light beam and the second light beam are incident on the light modulation unit 12 from the same side of the plane, the first light beam and the second light beam are emitted from the lighting unit to the optical path of the incident light modulation unit 12, and can be complexed.
  • Some optical devices such as the collimating unit 15 and the focusing unit 16, are used to reduce manufacturing costs.
  • the first light beam and the second light beam enter the light modulation unit 12 from the same side of the plane, it is possible to ensure that there is a certain angle between the incident directions of the first light beam and the second light beam when they enter the light modulation unit 12 .
  • the reflection efficiency improves the light source utilization and makes the third beam and the fourth beam have higher brightness.
  • the lighting unit 11 provides two light beams, the first light beam and the second light beam, imaging in two projection areas as an example.
  • This application can also be extended to three light beams, imaging in three projection areas, and More beams, imaging in more areas, etc.
  • the incident directions of the light beams provided by the illumination unit 11 and the light modulation unit 12 are different, and the optical axes of the light beams finally projected by the projection unit 13 are different, which will not be described again here.
  • the first light beam and the second light beam with different incident angles are used to enter the light modulation unit 12, and the light modulation unit 12 can respectively modulate the first light beam and the second light beam into a third light beam and a fourth light beam with different exit angles.
  • the light beam, the third light beam and the fourth light beam can be projected into the fifth light beam and the sixth light beam whose optical axes have an included angle, and then the fifth light beam and the sixth light beam are imaged in different projection areas, so that the same projection device 10 can have
  • the projection area can be changed, that is, it can project in the first projection area and the second projection area, and can also project imaging in the first projection area and the second projection area at the same time, so that the projection device 10 can achieve more functions. Can cover more application scenarios.
  • FIG. 17 is a schematic structural diagram of a display device provided by the present application.
  • the display device 1700 includes a processor 1701 and the projection device 1702 in any of the above embodiments.
  • the processor 1701 is used to send image data to the projection device 1702.
  • the image data includes first image data and second image data.
  • the processor 1701 is configured to send the first image data and the second image data to the light modulation unit in a time-sharing manner.
  • the light modulation unit is configured to generate a modulation signal for modulating the first light beam into a third light beam according to the first image data, and according to the second
  • the image data generates a modulation signal that modulates the second beam into a fourth beam. Therefore, when the first light beam is incident on the light modulation unit, the light modulation unit can modulate the first light beam into a third light beam carrying the first image information according to the modulation signal corresponding to the first image data.
  • the light modulation unit can modulate the second light beam into a fourth light beam carrying the second image information according to the modulation signal corresponding to the second image data.
  • the third light beam is imaging light and is projected by the projection unit to the first projection area to display the first image.
  • the fourth light beam is also imaging light and is projected by the projection unit to a second projection area different from the first projection area to display the second image.
  • the projection device 1702 is specifically configured to project the first image in the first projection area, and/or project the second image in the second projection area.
  • the display device 1700 may specifically be a smart car light.
  • the plane where the first projection area and the second projection area are located may have a certain angle, such as 80°, 90°, or 100°.
  • the display device 1700 may also be a projector, as shown in Figure 18.
  • Figure 18 is a schematic scene diagram of a display device provided by this application.
  • the planes where the first projection area and the second projection area are located may be coplanar.
  • the planes where the first projection area and the second projection area are located may also have a certain angle, which is not limited here.
  • the display device 1700 may also be a HUD or a desktop display device.
  • FIG. 19 is a schematic structural diagram of a vehicle provided by this application.
  • the above-mentioned display device 1901 is installed on the vehicle 1900 .
  • the vehicle 1900 may be a vehicle, a ship, a train or an airplane, and is not limited here.
  • Figure 20 is a schematic scene diagram of a vehicle provided by this application.
  • the vehicle 1900 as a car and the display device 1901 as a smart car light as an example.
  • a car equipped with the smart car light provided by the embodiment of the present application can project in the first projection area, or in the second projection area, or in the first projection area and the second projection area at the same time, thus covering multiple scene projections. need.
  • the first projection area formed in front of the car in Figure 20 can project video images, etc., to meet the needs of outdoor theaters and realize audio-visual entertainment functions.
  • the second projection area formed on the ground in front of the car in Figure 20 can project trajectory guidance, low beam enhancement, lane width display, and pedestrian zebra crossing, etc., to achieve assisted driving functions.
  • the first projection area has a smaller field of view than the second projection area, that is, the magnification of the projection lens corresponding to the first projection area is smaller than the magnification of the projection lens corresponding to the second projection area, so that the projection in the first projection area
  • the video image quality is clearer and more detailed, with higher brightness and richer details.
  • the proportion of the first power-on time and the second power-on time per unit time can also be increased according to the needs, so as to improve the area in the corresponding projection area.
  • the projection brightness makes the projected image brighter, and the projected image has a greater brightness contrast and shows richer details.
  • the car can simultaneously realize the projection trajectory guidance of the first projection area on the ground and the high beam illumination of the second projection area.
  • the corresponding ADB image can also be generated based on the distance and orientation of the oncoming car.
  • the light modulation unit in the smart car light modulates the first beam according to the ADB image, so that no beam in the final projected beam directly hits the area where the oncoming car is. area, thereby achieving trajectory guidance and ADB high-beam lighting at the same time.
  • the vehicle also includes reflective elements.
  • the display device is configured to respectively project the fifth beam and the sixth beam to different areas of the reflective element, and the reflective element is configured to reflect the fifth beam and the sixth beam.
  • the reflective element is, for example, a windshield.
  • the reflective element can also be transparent ceramics, resin or other optical materials, which is not limited here.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

一种投影装置(10)、显示设备(1700)及交通工具(1900),具有可变的投影视场,以覆盖更多的应用场景。投影装置(10)包括照明单元(11)、光调制单元(12)和投影单元(13)。其中,照明单元(11),用于提供第一光束(20)和第二光束(21)。光调制单元(12),用于将第一光束(20)调制为第三光束(22),将第二光束(21)调制为第四光束(23),第三光束(22)出射光调制单元(12)的出射角与第四光束(23)出射光调制单元(12)的出射角不同,第一光束(20)入射光调制单元(12)的入射角与第二光束(21)入射光调制单元(12)的入射角不同。投影单元(13),用于将第三光束(22)和第四光束(23)投射到不同的投影区域。

Description

投影装置、显示设备及交通工具
本申请要求于2022年8月29日提交中国国家知识产权局、申请号202211043067.4、申请名称为“投影装置、显示设备及交通工具”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光显示技术领域,特别是涉及一种投影装置、显示设备及交通工具。
背景技术
随着投影技术的发展,投影技术的应用范围越来越广泛,投影产品的种类也越来越丰富。投影仪、智能车灯、抬头显示装置或近眼显示设备等投影产品在家庭、教育、医疗和交通等场景中得到推广和应用,给人们的工作、生活及娱乐带来极大的便利。
而目前的投影产品投影视场固定,使投影产品的能够实现的功能受限,存在一些应用需求无法被同一个投影产品同时满足。
发明内容
本申请提供了一种投影装置、显示设备及交通工具,以使投影产品能够覆盖更多的应用场景。
第一方面提供一种投影装置。该装置包括照明单元、光调制单元和投影单元。其中,照明单元,用于提供第一光束和第二光束。光调制单元,用于将第一光束调制为第三光束,将第二光束调制为第四光束,第三光束出射光调制单元的出射方向与第四光束出射光调制单元的出射方向不同,第一光束入射光调制单元的入射方向与第二光束入射光调制单元的入射方向不同。投影单元,用于将第三光束和第四光束投射到不同的投影区域。从而,同一个投影装置具有不同的投影区域,既可以通过切换第一光束和第二光束实现在不同的投影区域成像,也可以通过快速切换第一光束和第二光束,使不同的投影区域中的投影图像同时在视觉上成像,使得投影装置能够呈现出更大的投影视场,能够覆盖更多的应用场景。
在一种可能的实现方式中,投影单元具体用于将第三光束投射为第五光束,将第四光束投射为第六光束,第五光束的光轴与第六光束的光轴存在夹角,以使第五光束和第六光束在不同的投影区域中成像。第五光束和第六光束为最终投射到投影区域,在投影区域成像的成像光,第五光束和第六光束的光轴存在夹角,也就是第五光束的投射方向与第六光束的投射方向不同,使得第五光束和第六光束能够在不同的投影区域中成像。
在一种可能的实现方式中,第三光束为光调制单元基于第一图像对应的调制信号调制得到的,第四光束为光调制单元基于第二图像对应的调制信号调制得到的。光调制单元可以分时对第一光束和第二光束分别进行独立地调制,能够在不同的投影区域显示不同的图像,并 且由于是分时复用同一个光调制单元,两个投影区域中的投影图像的分辨率相同,均为光调制单元的分辨率,不会因总的投影区域面积变大影响投影图像的分辨率。
在一种可能的实现方式中,投影单元包括第一投影镜头和第二投影镜头,第一投影镜头用于投射第三光束,第二投影镜头用于投射第四光束。使用不同的投影镜头分别投射不同的光束,两个投影镜头可以参数可以不同,能够更加灵活地满足不同投影区域的投影需求。
在一种可能的实现方式中,第一投影镜头的镜头放大倍率和第二投影镜头的镜头放大倍率不同。镜头放大倍率越小的投影镜头视场越小,对应的投影区域具有更高的亮度和像素密度,因此可以根据需求设置两个镜头放大倍率不同的投影镜头,使不同的投影区域的亮度和像素密度不同,亮度和像素密度越高,投影图像的画质越清晰细腻,以适应不同的应用场景。
在一种可能的实现方式中,第一投影镜头的镜头放大倍率和第二投影镜头的镜头放大倍率相同。从而,不同投影镜头的视场相同,投影区域的大小面积和像素密度相同,当图像在不同的投影区域同时投影成像时,在视觉上更容易将不同投影区域中的投影图像拼接为一幅完整的图像,降低拼接图像的割裂感。
在一种可能的实现方式中,投影单元包括第三投影镜头,投影装置还包括反射单元,反射单元用于改变第三光束和第四光束的光路,使第三光束和第四光束入射第三投影镜头,第三光束入射第三投影镜头的入射方向,与第四光束入射第三投影镜头的入射方向不同。通过反射单元将第三光束和第四光束引导至同一投影镜头,从而复用同一个投影镜头,能够降低投影装置的制造成本。并且,第三光束和第四光束入射第三投影镜头的入射方向不同,使得第三投影镜头能够将第三光束和第四光束投射到不同的投影区域。
在一种可能的实现方式中,反射单元包括第一反射镜和第二反射镜,第一反射镜用于将第三光束反射至第三投影镜头,第二反射镜用于将第四光束反射至第三投影镜头。通过两个反射镜分别将第三光束和第四光束反射至第三投影镜头,能够通过独立地调节第三光束和第四光束入射反射镜的入射角度,使得第三光束和第四光束入射第三投影镜头的入射方向不同。第一反射镜和第二反射镜可以是平面镜,具有更低的成本。
在一种可能的实现方式中,反射单元包括第三反射镜,第三反射镜包括第一反射区和第二反射区,第一反射区和第二反射区的曲率不同,第一反射区用于将第三光束反射至第三投影镜头,第二反射区用于将第四光束反射至第三投影镜头。第一反射区和第二反射区的曲率不同,可以分别将第三光束和第四光束以不同的入射方向入射第三投影镜头。并且,通过一个反射镜改变第三光束和第四光束的光路,能够减少投影装置中器件的数量,节约占用的空间,能够使投影装置更加小型化。
在一种可能的实现方式中,反射单元包括第三反射镜,第三反射镜包括第一反射区和第二反射区,第一反射区所在的平面和第二反射区所在的平面存在夹角,第一反射区用于将第三光束反射至第三投影镜头,第二反射区用于将第四光束反射至第三投影镜头。第一反射区和第二反射区所在的平面存在夹角,可以分别将第三光束和第四光束以不同的入射方向入射第三投影镜头。第一反射区和第二反射区可以均是平面镜,以降低制造难度和成本。并且,通过一个反射镜改变第三光束和第四光束的光路,能够减少投影装置中器件的数量,节约占用的空间,能够使投影装置更加小型化。
在一种可能的实现方式中,投影单元包括第三投影镜头,投影装置还包括反射单元,第三投影镜头设置于第三光束的光路上,反射单元用于改变第四光束的光路,使第四光束入射 第三投影镜头,第三光束入射第三投影镜头的入射方向与第四光束入射第三投影镜头的入射方向不同。将投影镜头设置于第三光束的光路上,反射单元则可以仅包括一个反射镜,反射镜将第四光束反射至第三投影镜头,可以减少反射镜的数量,降低成本,并且节约占用的空间。
在一种可能的实现方式中,光调制单元包括多个微镜,每一微镜具备第一倾斜状态和第二倾斜状态,第一倾斜状态和第二倾斜状态中用于将第一光束调制为第三光束的倾斜状态,与用于将第二光束调制为第四光束的倾斜状态不同。微镜阵列具有较高的光学利用率和分辨率,以及精准的控制方式等,使用微镜阵列对第一光束和第二光束进行调制,使得调制后的光束具有更高的亮度、分辨率和对比度。并且,微镜工作在高温环境中,长期处于某一种倾斜状态容易导致微镜故障,一般一幅图像中,亮的像素占比大于暗的像素的占比,微镜的不同倾斜状态分别用于调制第一图像和第二图像中亮的像素,能够降低微镜长期处于其中某一种倾斜状态的概率,从而提高微镜寿命。
在一种可能的实现方式中,光调制单元包括多个微镜,每一微镜具备第一倾斜状态和第二倾斜状态,所述第一倾斜状态和所述第二倾斜状态中用于将所述第一光束调制为所述第三光束的倾斜状态,与用于将所述第二光束调制为所述第四光束的倾斜状态相同。基于微镜的同一倾斜状态调制第一图像和第二图像中亮的像素,第一图像或第二图像无需进行明暗反转处理,或者第一图像或第二图像的调制信号无需进行反转处理,从而能够提高调制效率。
在一种可能的实现方式中,微镜绕旋转轴线在第一倾斜状态和第二倾斜状态之间移动,每一微镜还包括平态,第一光束和第二光束从平面的一侧入射光调制单元,平面为光调制单元的法向与旋转轴线所确定的平面,光调制单元的法向与处于平态的微镜的法向平行。第一光束和第二光束从平面同侧入射光调制单元,那么第一光束和第二光束从照明单元发出到入射光调制单元的光路上,可以复用部分光学器件,从而降低制造成本。
在一种可能的实现方式中,照明单元包括第一光源和第二光源,第一光源用于提供第一光束,第二光源用于提供第二光束,第一光源和第二光源设置于平面的同侧。设置不同的光源用于提供入射方向不同的光束,能够实现第一光束和第二光束之间简单且快速的切换。第一光源和第二光源位于平面的同侧,第一光束和第二光束能够复用部分光学器件,从而降低制造成本。
在一种可能的实现方式中,每一微镜绕旋转轴线在第一倾斜状态和第二倾斜状态之间移动,每一微镜还包括平态,第一光束和第二光束从平面的不同侧入射光调制单元,平面为光调制单元的法向与旋转轴线所确定的平面,光调制单元的法向与处于平态的微镜的法向平行。光束与反射面的入射角越小,光束的反射效率越高,反射光束的亮度越大,从而,第一光束和第二光束从平面的不同侧入射光调制单元,在保证第一光束和第二光束入射光调制单元时的入射方向间存在一定的夹角的情况下,还能够保证光束的反射效率,使第三光束和第四光束具有更高的亮度。
在一种可能的实现方式中,照明单元包括第一光源和第二光源,第一光源用于提供第一光束,第二光源用于提供第二光束,第一光源和第二光源设置于平面的不同侧。设置不同的光源用于提供入射方向不同的光束,能够实现第一光束和第二光束之间简单且快速的切换。第一光源和第二光源设置在平面的不同侧,有利于光源散热以及缩小空间布局,以及提高光束的反射效率。
在一种可能的实现方式中,照明单元包括第三光源,所第三光源分时提供第一光束和第二光束,第三光源被配置为处于第一位置时提供第一光束,处于第二位置时提供第二光束。通过时分复用光调制单元和照明单元,使投影装置既能够在不同的投影区域投影成像,还能够减少光调制单元和照明单元中光源的数量,从而降低投影装置的制造成本。
在一种可能的实现方式中,所光调制单元被配置为在处于第三位置时调制第一光束,处于第四位置时调制第二光束,以使第一光束和第二光束的入射方向不同。通过时分复用光调制单元和照明单元,使投影装置既能够在不同的投影区域投影成像,还能够减少光调制单元的数量,从而降低投影装置的制造成本。
在一种可能的实现方式中,照明单元提供第一光束的时长与提供第二光束的时长不同。在需要同时在不同的投影区域投影的场景中,照明单元可以通过交替提供第一光束和第二光束实现第一投影区域和第二投影区域中的图像同时在人眼中成像。时长与光束在成像界面上成像的时长一致,时长越长,对应投影区域的亮度也就越高。因此可以根据不同的投影区域的亮度需求,将提供第一光束的时长和提供第二光束的时长设置为不同的时长。
在一种可能的实现方式中,不同的投影区域包括位于地面上的不同投影区域,或,包括位于地面上的投影区域和与地面存在夹角的平面上的投影区域。本申请的投影装置,能够在地面不同的区域投影成像,能够扩大投影区域的范围。或者分别在地面和与地面存在夹角的平面上投影,使得投影装置能够适用于不同的场景,满足用户的多种功能需求。
第二方面提供一种显示设备。显示设备具体可以为智能车灯、投影仪或抬头显示设备等。该显示设备包括处理器以及上述的第一方面或第一方面的任一种可能的实现方式中的投影装置,处理器用于向光调制单元发送图像数据。
在一种可能的实现方式中,图像数据包括第一图像数据和第二图像数据。处理器用于向光调制单元发送第一图像数据,光调制单元用于根据第一图像数据生成将第一光束调制为第三光束的调制信号。处理器用于向光调制单元发送第二图像数据,光调制单元用于根据第二图像数据生成将第二光束调制为第四光束的调制信号。从而实现对第一光束和第二光束的独立调制。
第三方面提供一种交通工具。该交通工具包括上述的第二方面或第二方面的任一种可能的实现方式中的显示设备,显示设备安装于交通工具上。
在一种可能的实现方式中,交通工具还包括反射元件,显示设备用于向反射元件的不同区域分别投射第五光束和第六光束,反射元件用于反射第五光束和第六光束。
附图说明
图1为本申请提供的投影装置一实施例的结构示意图;
图2为本申请提供的光调制单元的结构示意图;
图3为微镜的工作原理示意图;
图4a为光调制单元的一种调制方式的示意图;
图4b为光调制单元的另一种调制方式的示意图;
图4c为光调制单元的另一种调制方式的示意图;
图4d为光调制单元的另一种调制方式的示意图;
图5a为本申请提供的投影装置能够实现的一种投影效果的示意图;
图5b为本申请提供的投影装置能够实现的另一种投影效果的示意图;
图6为本申请提供的投影装置能够实现的另一种投影效果的示意图;
图7为本申请提供的投影装置另一实施例的结构示意图;
图8为本申请提供的投影装置另一实施例的结构示意图;
图9为本申请提供的投影装置另一实施例的结构示意图;
图10为本申请提供的投影装置另一实施例的结构示意图;
图11为本申请提供的投影装置另一实施例的结构示意图;
图12为本申请提供的投影装置另一实施例的结构示意图;
图13为本申请提供的投影装置另一实施例的结构示意图;
图14为本申请提供的投影装置另一实施例的结构示意图;
图15为本申请提供的投影装置另一实施例的结构示意图;
图16为本申请提供的投影装置另一实施例的结构示意图;
图17为本申请提供的一种显示设备的结构示意图;
图18为本申请提供的一种显示设备的场景示意图;
图19为本申请提供的一种交通工具的结构示意图;
图20为本申请提供的一种交通工具的场景示意图。
具体实施方式
本申请提供了一种投影装置、显示设备及交通工具,以使投影产品能够覆盖更多的应用场景。
本申请提供的投影装置集成于不同的投影产品中时,实现的功能稍有不同。例如,在一种可能的应用场景中,本申请的投影装置集成于投影仪,投影仪可以将图像投影到墙上或投影屏幕上,用户可以进行视频观看等。
在另一种可能的应用场景中,本申请的投影装置集成于抬头显示(head up display,HUD)设备中。HUD可以应用在车辆、飞机等交通工具上,除此之外,还可以应用在中控室、建筑景观、广告投放等场景中。例如HUD应用在车辆中时,HUD可以将包含车辆状态信息和导航信息等信息的图像投影到车辆的挡风玻璃上,经过风挡玻璃的反射,投影图像的虚像即可呈现在人眼上。
在又一种可能的是应用场景中,本申请的投影装置还可以集成于车灯中。除了实现照明功能,车灯还可以实现自适应远光系统(adaptive driving beam,ADB),可以投射出文字,或交通标志等复杂的图形,为驾驶员提供转弯时的轨迹指引、近光增强、车道示宽和投影行人斑马线等功能,还可以提供室外影院投影视频画面,增加辅助驾驶或娱乐的功能。
目前的车灯投影的视场固定,且投影方向单一,不能满足多场景投影需求。例如,在投影装置集成于车灯的场景中,投影行人斑马线需要投影图像到近车地面,而室外影院则需要投影到车灯前方墙壁或幕布上。上述两个场景所需要的投影光路方向不同,由于目前的智能车灯投影方向单一,只能选择性满足其中一种场景,不能全覆盖智能车灯的应用场景需求。投影装置集成于投影仪的场景中,由于投影视场固定,需要用户手动调节投影仪的高度和角度等,以使投影仪在墙面或投影屏幕上的投影画面方正、无畸变,操作复杂。
因此,本申请提供的投影装置具有可变的视场,可以通过切换投影装置的视场,使投影装置能够实现更多的功能,满足不同应用场景下的使用需求。
如图1所示,图1为本申请提供的投影装置一实施例的结构示意图。本实施例中,投影装置10包括照明单元11、光调制单元12和投影单元13。其中,照明单元11用于生成的白色或基色光束。照明单元11例如为激光光源或发光二极管(light-emitting diode,LED)光源。光调制单元12用于调制来自照明单元11的光束,得到包含图像信息的成像光。成像光被投影单元13投射出去,在幕布、墙壁或地面等成像界面上成像。
本实施例中,照明单元11具体用于分时提供第一光束20和第二光束21。第一光束20入射光调制单元12的入射方向(以下简称为第一入射方向)与第二光束21入射光调制单元12的入射方向(以下简称为第二入射方向)不同。光调制单元12用于将第一光束20调制为第三光束22,将第二光束21调制为第四光束23。第三光束22出射光调制单元12的出射方向与第四光束23出射光调制单元12的出射方向不同。投影单元13用于将第三光束22和第四光束23投射到不同的投影区域。具体地,第三光束22经过投影单元13的放大,被投射为第五光束24,在第一投影区域成像。第四光束23经过投影单元13的放大,被投射为第六光束25,在第二投影区域成像。第五光束24的光轴与第六光束25的光轴存在夹角。其中,光轴为光束的中心线。存在夹角是指不平行且不重合。第一投影区域和第二投影区域为不同的投影区域,即第一投影区域和第二投影区域不重合或不完全重合。
第一投影区域和第二投影区域可以为相同的成像平面上的不同区域,也可以为位于不同的成像平面的不同区域。不同的成像平面例如为存在夹角的两个平面。示例性地,在一个具体的场景中,第一投影区域和第二投影区域例如为地面上的不同区域,或者,第一投影区域和第二投影区域中的一个为地面上的投影区域,另一个为与地面存在夹角的平面上的区域,例如墙壁上的投影区域等。
由于第一光束20和第二光束21是照明单元11分时提供的,光调制单元12也可以分时、独立地调制第一光束20和第二光束21。光调制单元12根据第一图像对应的调制信号将第一光束20调制为携带第一图像信息的第三光束22,进而在第一投影区域中投影第一图像。光调制单元12根据第二图像对应的调制信号将第二光束21调制为携带第二图像信息的第四光束23,进而在第二投影区域投影第二图像。本实施例中,第一图像是指用于在第一投影区域成像的图像,第二图像是指用于在第二投影区域成像的图像,并非特指某一帧图像。第一图像中的内容与第二图像中的内容可以相同,也可以不同。
第一入射方向和第二入射方向不同具体是指第一光束20和第二光束21满足以下两个条件中的至少一个:第一光束20和第二光束21互不平行或重合,即第一光束20的光轴和第二光束21的光轴存在夹角;第一光束20和第二光束21与光调制单元12的法向之间的夹角不同。第三光束22出射光调制单元12的出射方向与第四光束23出射光调制单元12的出射方向不同满足的条件同理。
如图2和图3所示,图2为本申请提供的光调制单元的结构示意图;图3为微镜的工作原理示意图。光调制单元12例如为数字微镜(digital micromirror device,DMD)芯片。光调制单元12还可以为硅基液晶(liquid crystal on silicon,LCOS)等,此处不作限制。光调制单元12包括多个微镜1211组成的微镜阵列121。微镜阵列121中的每个微镜1211可被独立控制,相当于图像中的一个像素。微镜阵列121未通电时,微镜1211均处于平(flat)态。微 镜阵列121通电时,微镜1211具备两种工作状态,即第一倾斜状态和第二倾斜状态。微镜1211绕旋转轴线在第一倾斜状态和第二倾斜状态之间变换,旋转轴线为旋转对称动作据以进行的几何直线。
处于第一倾斜状态的微镜1211和第二倾斜状态的微镜1211,能够分别将来同一方向的光线反射到不同的方向上。具体地,从而当微镜1211处于第一倾斜状态和第二倾斜状态中的一种倾斜状态时,可以将入射该微镜1211的光线反射到投影单元13,此时成像界面上形成一个亮的像素;当微镜1211处于另一种倾斜状态时,可以将入射该微镜1211的光线反射到远离投影单元13的方向,不能通过投影镜头投射出去,此时成像界面上形成一个暗的像素。因而,根据将要投影的图像的像素信息,确定微镜阵列121中对应的微镜1211是否需要向投影单元13投射光线,进而控制微镜阵列121上的各个微镜1211处于第一倾斜状态还是第二倾斜状态。从而,光调制单元12能够将入射微镜阵列121第一光束20和第二光束21调制为包含图像信息的第三光束22和第四光束23。
如图3所示,第一倾斜状态具体例如为微镜1211绕旋转轴线从flat态翻转第一角度α后所处的一种稳态位置。第二倾斜状态具体例如为微镜1211绕旋转轴线从flat态翻转第二角度-α后所处的一种稳态位置。当然,第一倾斜状态还可以为微镜1211绕旋转轴线从flat态翻转第二角度-α后所处的一种稳态位置,第二倾斜状态还可以为微镜1211绕旋转轴线从flat态翻转第一角度α后所处的一种稳态位置,本实施例以图3为例进行说明。也即微镜1211可以绕旋转轴线翻转±α。α的值可以为10°、12°或17°等。当然,α还可以是其他的值,此处不作限制。
旋转轴线与光调制单元12的法向(为了描述简洁,以下将光调制单元12的法向简称为第一法向)可以确定一个平面,如图3所示。第一法向与处于flat态的微镜1211的法向平行。第一光束20和第二光束21从平面的不同侧入射光调制单元12,也可以是从平面的同侧入射光调制单元12,此处不做限制。
如图4a至图4d所示,平面具有第二法向,第二法向与第一法向相交。为了描述方便本实施例定义第一法向为0°,从第一法向沿逆时针方向向第二法向旋转90°形成的角度范围为0至90°,从第一法向沿顺时针方向向第二法向旋转90°形成的角度范围为0至-90°(负号“-”仅表示方向,不影响角度大小)。第一光束20与第一法向之间的夹角为第一入射角,第二光束21与第一法向之间的夹角为第二入射角。第一入射角/第二入射角大于或等于0°,且小于±(90°-α)。并且第一入射角/第二入射角不为±α。第一入射角和第二入射角还应满足使光第一光束20经过光调制单元12反射后的光束不与第二光束21的光路重合,第二光束21经过光调制单元12反射后的光束不与第一光束20的光路重合。第一光束20的光轴和第二光束21的光轴之间的夹角大于0°且小于2(90°-α)。在第一光束20的光轴和第二光束21的光轴存在夹角的情况下,第一入射角和第二入射角的大小可以相等。在实践中,第一光束20和第二光束21之间的夹角会受投影装置10的空间、各单元的大小及位置等因素影响,第一光束20的光轴和第二光束21的光轴之间的夹角具体以实际情况为准,此处不作限制。
如图4a至图4d所示,图4a至图4d为光调制单元的调制方式的示意图。第一光束20中入射微镜阵列121中的处于第一倾斜状态的微镜1211的光线,被处于第一倾斜状态的微镜1211向第一出射方向反射出去,得到第一子光束201。第一光束20中入射微镜阵列121中的处于第二倾斜状态的微镜1211的光线,被处于第二倾斜状态的微镜1211向第二出射方向反 射出去,得到第二子光束202。第一出射方向和第二出射方向不同,即第一子光束201的光轴和第二子光束202的光轴之间存在夹角,夹角大小为2α。第二光束21中入射微镜阵列121中的处于第一倾斜状态的微镜1211的光线,被处于第一倾斜状态的微镜1211向第三出射方向反射出去,得到第三子光束211。第二光束21中入射微镜阵列121中的处于第二倾斜状态的微镜1211的光线,被处于第二倾斜状态的微镜1211向第四出射方向反射出去,得到第四子光束212。第三出射方向和第四出射方向不同,即第三子光束211的光轴和第四子光束212的光轴之间存在夹角,夹角大小为2α。由于第一入射方向和第二入射方向不同,因此,第一子光束201和第二子光束202中的至少一者与第三光束211和第四光束212中的至少一者不重合。从而,光调制单元12能够将第一光束20和第二光束21分别调制为出射方向不同的第三光束22和第四光束23。
本实施例中,光调制单元12对第一光束20和第二光束21的调制规则可以不同,即第一倾斜状态和第二倾斜状态中用于将第一光束调制为第三光束的倾斜状态,与用于将第二光束调制为第四光束的倾斜状态不同。一种可能的调制方式中,光调制单元12中处于第一倾斜状态的微镜用于将第一光束20调制为第三光束22,处于第二倾斜状态的微镜用于将第二光束21调制为第四光束23,如图4a和图4c所示。另一种可能的调制方式中,光调制单元12中处于第二倾斜状态的微镜用于将第一光束20调制为第三光束22,处于第一倾斜状态的微镜用于将第二光束21调制为第四光束23,如图4b和图4d所示。
具体地,如图4a所示,投影单元13设置在第一子光束201的光路上,第一子光束201即为第三光束22。第二子光束202的光路上设置吸光单元14。吸光单元14用于吸收第一光束20中不需要从投影单元13投射出去的非成像光线,即第二子光束202,以降低非成像光线的串扰。该情况下,第一图像中亮的像素对应于微镜1211的第一倾斜状态,第一图像中暗的像素对应于微镜1211的第二倾斜状态。投影单元13还设置在第四子光束212的光路上,第四子光束212即为第四光束23。第三子光束211的光路上设置吸光单元14,用于吸收第三子光束211。该情况下,第二图像中亮的像素对应于微镜1211的第二倾斜状态,第二图像中暗的像素对应于微镜1211的第一倾斜状态。
如图4b所示,图4b为第一光束20和第二光束21从平面的不同侧入射光调制单元12的光路示意图。投影单元13设置在第二子光束202的光路上,第二子光束202即为第三光束22。第一子光束201的光路上设置吸光单元14,用于吸收第一子光束201。该情况下,第一图像中亮的像素对应于微镜1211的第二倾斜状态,第一图像中暗的像素对应于微镜1211的第一倾斜状态。投影单元13还设置在第三子光束211的光路上,第三子光束211即为第四光束23。第四子光束212的光路上设置吸光单元14,用于吸收第四子光束212。该情况下,第二图像中亮的像素对应于微镜1211的第一倾斜状态,第二图像中暗的像素对应于微镜1211的第二倾斜状态。
一般而言,第一光束20与微镜1211的法向之间的夹角越大,光束的反射效率也就越低,反射后的光线亮度越低,在投影区域投影成像的亮度也就越低。在图4a和图4b中,第一光束20与处于第一倾斜状态的微镜1211的法向之间的夹角,小于第一光束20与处于第二倾斜状态的微镜1211的法向之间的夹角。因此,图4a中第三光束22(基于第一倾斜状态的微镜1211反射得到的第一子光束201)的光束亮度要大于图4b中第三光束22(基于第二倾斜状态的微镜1211反射得到的第二子光束202)的光束亮度。第二光束21同理。在对成像光束 (第三光束22和第四光束23)的亮度要求较高的场景下,可以选择图4a对应的调制方式。而对成像光束的亮度要求不高的场景下,或者可以通过其他途径例如提高照明单元11的电流来提高投影亮度的场景下,也可以选择图4b对应的调制方式。
第一光束20和第二光束21从平面的同侧入射光调制单元12的光路可参阅图4c和图4d,原理与图4a和图4b类似,此处不再赘述。
微镜1211工作在高温环境中,长期处于某一种倾斜状态容易导致微镜故障,一般一幅图像中,亮的像素占比大于暗的像素的占比,微镜1211的不同倾斜状态分别用于调制第一图像和第二图像中亮的像素,能够降低微镜1211长期处于其中某一种倾斜状态的概率,从而提高微镜寿命。
可选地,在图4b和图4d,第三光束22/第四光束23入射投影单元的入射角可能较大,不利于第三光束22/第四光束23的投射,则可以在第三光束22/第四光束23入射投影单元13的光路中增加楔形镜18,用于改变第三光束22和/或第四光束23入射投影单元13的入射角,进而改变第五光束24和/或第六光束25的投射角度,使第五光束24和/或第六光束25能够在预期的投影区域投影。
本实施例以设置吸光单元14来处理非成像光线为例,在一些其他的实施方式中,还可以在非成像光线的光路上设置反射镜(图未示),将非成像光线反射至远离光调制单元12和投影单元13的方向,以避免非成像光入射光调制单元12或投影单元13造成串扰。
光调制单元12例如还包括信号调制模块(图未示),信号调制模块用于将图像转换得到用于控制微镜阵列121中的微镜1211进行翻转的调制信号。信号调制模块例如有预设的调制规则,示例性地,图像中亮的像素对应于微镜1211的第一倾斜状态,暗的像素对应于微镜1211的第二倾斜状态。当第一图像和/或第二图像对应的调制规则与信号调制模块的调制规则不同时,根据第一图像和/或第二图像生成的信号还需要进行反转处理,例如原本用于控制微镜1211翻转至第一倾斜状态的信号反转为控制微镜1211翻转至第二倾斜状态的信号,原本用于控制微镜1211翻转至第二倾斜状态的信号反转为控制微镜1211翻转至第一倾斜状态的信号,信号调制模块输出反转后的信号作为微镜阵列121的调制信号。在其他的实现方式中,光调制单元12获得的第一图像和/或第二图像例如已经是明暗反转后的图像,信号调制模块输出基于明暗反转后的图像得到的调制信号即可。
在一种可能的实现方式中,光调制单元12对第一光束20和第二光束21的调制规则也可以相同,即第一倾斜状态和第二倾斜状态中用于将第一光束20调制为第三光束22的倾斜状态,与用于将第二光束21调制为第四光束23的倾斜状态相同。基于微镜1211的同一倾斜状态调制第一图像和第二图像中亮的像素,第一图像或第二图像无需进行明暗反转处理,或者第一图像或第二图像的调制信号无需进行反转处理,从而能够提高调制效率。
本实施例通过改变光束入射光调制单元12的入射方向,使得投影装置10能够投射出方向不同的光束,从而投影装置10具有可变的或更大的投影区域,以适应不同的应用场景。例如,仅需要在第一投影区域投影时,投影装置10可以仅提供第一光束20。当仅需要在第二投影区域投影时,投影装置10可以仅提供第二光束21。
当需要同时在第一投影区域和第二投影区域投影图像时,则可以通过快速切换第一光束20和第二光束21,利用人眼的视觉暂留现象,使第一投影区域中的第一图像和第二投影区域中的第二图像同时呈现在用户的视觉中。具体地,在单位时间内,以频率N切换第一光束20 和第二光束21,使第一图像和第二图像交替成像,从而能够扩大投影区域和成像范围。第一图像和第二图像的刷新率均为N/2。为了使第一图像和第二图像用户视觉中连续成像,不会明显感知因第一图像和第二图像交替成像导致的闪烁,频率N大于或等于2倍的临界闪烁频率(critical flicker frequency,CFF)。大于或等于临界闪烁频率的闪烁光被人眼感知到时,会被认为是连续、无明显不闪烁的光。例如,人眼的临界闪烁频率例如为60赫兹(Hz),那么N则应当大于或等于120Hz。一般而言,N越大,用户观察到的图像的越连贯、无闪烁感。N例如还可以为160Hz、180Hz、288Hz、300Hz或320Hz等,此处不做限制。N的上限例如为微镜1211的最大翻转频率。
在第一投影区域和第二投影区域“同时”投影图像的场景下,照明单元11快速地交替提供第一光束20和第二光束21。该场景下,照明单元11提供第一光束20的时长和提供第二光束21的时长可以相同,从而单位时间内,第一图像和第二图像被投影的时间各占50%。当然,照明单元11提供第一光束20的时长和提供第二光束21的时长也可以不同。一般地,单位时间内照明单元11提供的某一光束时长占比越大,对应的投影的图像的亮度越高。照明单元11提供第一光束20的时长和提供第二光束21的时长可以根据期望投影的第一图像和第二图像的亮度而定,此处不做限制。
本实施例中,投影单元13可以包括一个投影镜头,也即第三光束22和第四光束23从同一个投影镜头投射出去,能够降低投影镜头的数量,从而降低投影装置10的制造成本。投影单元13也可以包括至少两个投影镜头,也即第三光束22和第四光束23从不同的投影镜头投射出去,此处不做限制。
当投影装置10包括两个投影镜头时,两个投影镜头可以有相同的放大倍率,使第一投影区域和第二投影区域的视场相同,如图5a和图5b所示。从而,不同投影镜头的视场相同,投影区域的大小面积和像素密度相同,当图像在不同的投影区域同时投影成像时,在视觉上更容易将不同投影区域中的投影图像拼接为一幅完整的图像,能够降低拼接图像的割裂感。图5a和图5b中的投影效果仅作为示意,第一投影区域和第二投影区域可以部分重合,第一投影区域和第二投影区域也可以不重合且边界相接,第一投影区域和第二投影区域还可以不重合且存在间隔,此处不作限制。
当然,两个投影镜头也可以有不同的放大倍率,使第一投影区域和第二投影区域的视场不同,如图6所示,图6为本申请提供的投影装置能够实现的另一种投影效果的示意图。两个投影镜头不同的放大倍率,可以使第一投影区域和第二投影区域的面积大小不同。投影镜头的放大倍率越大,对应的投影区域的面积越大,图像成像的亮度和像素密度则越低。投影镜头的放大倍率越小,对应的投影区域的面积越小,图像成像的亮度和像素密度越高,从而使投影图形更加清晰,具有更好的视觉体验。图5a、图5b和图6中第一投影区域和第二投影区域的相对位置仅作为示意,不应理解为对本申请的限制。
投影装置10例如还包括准直单元15和汇聚单元16。准直单元15用于将光线转换为平行光。照明单元11发出的第一光束20和第二光束21经过准直单元15后,第一光束20和第二光束21中的光线变为平行光。准直单元15例如为菲涅尔透镜。汇聚单元16用于将平行光聚焦到光调制单元12。准直后的第一光束20和第二光束21中的光线经过汇聚单元16的聚焦反射,汇聚到光调制单元12的微镜阵列121上,从而光调制单元12能够对第一光束20和第二光束21进行调制。汇聚单元16例如为自由曲面反射镜。当然,在一些场景中,投影装 置10也可以不包括准直单元15,例如,当照明单元11为平行光源,能够直接发出平行光时,则可以不设置准直单元15对照明单元11发出的光束进行准直。
本实施例中,使第一光束20的第一入射方向和第二光束21的第二入射方向不同的方法有多种,例如可以移动照明单元11的位置,或者移动光调制单元12的位置,又或者照明单元11包括至少两个位置不同的光源等。照明单元11中不同的光源的数量和位置,结合投影单元13中不同的投影镜头的数量和位置,可以形成多种不同的实施例,以下分别进行描述。当然,以下实施例仅作为示例,仅为本方案多种可能的实现方式中的几种,不代表本方案的所有实现方式,所有基于与本方案相同原理实现的方案,均落入本申请的保护范围。
在一种可能的实现的方式中,照明单元11可以包括至少两个光源,通过照明单元11中不同的光源分别提供第一光束20和第二光束21。照明单元11例如包括第一光源111和第二光源112。第一光源111和第二光源112可以设置于平面的同侧,如图7至图10所示。第一光源111和第二光源112也可以设置于平面两侧,如图11和12所示。图7至图12分别为本申请提供的几种可能的投影装置的结构示意图。
图7中,投影装置10包括照明单元、准直单元、汇聚单元16、光调制单元12、投影单元和吸光单元。照明单元包括第一光源111和第二光源112。准直单元包括第一准直单元151和第二准直单元152。投影单元包括第一投影镜头131和第二投影镜头132。吸光单元包括第一吸光模块141和第二吸光模块142。第一光源111用于提供第一光束20,第二光源112用于提供第二光束21。第一光源111提供第一光束20的时间与第二光源112提供第二光束21的时间不同,以避免光束串扰影响投影效果。第一光源111发出的第一光束20经过第一准直单元151的准直后入射汇聚单元16的第一汇聚区,汇聚单元16的第一汇聚区将第一光束20汇聚反射到光调制单元12。光调制单元12根据第一图像对应的调制信号控制微镜阵列中的微镜翻转至第一倾斜状态或第二倾斜状态,以调制第一光束20,得到第三光束22和第七光束26,第三光束22入射第一投影镜头131,第七光束26入射第一吸光模块141。第一投影镜头131将第三光束22投射为第五光束24,第五光束24在第一投影区域成像显示第一图像。
第二光源112发出的第二光束21经过第二准直单元152的准直后入射汇聚单元16的第二汇聚区,汇聚单元16的第二汇聚区将第二光束21汇聚反射到光调制单元12。第一汇聚区和第二汇聚区为汇聚单元16的不同的区域。第一光束20和第二光束21入射光调制单元12的入射方向不同。光调制单元12根据第二图像对应的调制信号控制微镜阵列中的微镜翻转至第一倾斜状态或第二倾斜状态,以调制第二光束21,得到第四光束23和第八光束27,第四光束23入射第二投影镜头132,第八光束27入射第二吸光模块142。由于第一光束20和第二光束21入射光调制单元12的入射方向不同,第三光束22与第四光束23出射光调制单元12的出射方向也不相同。第二投影镜头132将第四光束23投射为第六光束25,第六光束25在第二投影区域成像显示第二图像。第一投影区域和第二投影区域为不同的投影区域。第三光束22与第四光束23的光路是分离的,从而,经过投影单元投射得到的第五光束24的光轴和第六光束25的光轴存在夹角,进而第五光束24和第六光束25在不同的投影区域成像。
当然,在一些其他的实现方式中,汇聚单元16可以包括第一汇聚单元(此图中未示)和第二汇聚单元(此图中未示),第一汇聚单元和第二汇聚单元分别汇聚反射第一光束20和第二光束21。
可选地,第一光束20入射光调制单元12时,光调制单元12可以利用ON态的微镜将第 一光束20调制为携带第一图像信息的第三光束22。第二光束21入射光调制单元12时,光调制单元12可以利用OFF态的微镜将第二光束21调制为携带第二图像信息的第四光束23。ON态例如为上述的第一倾斜状态,OFF态为上述的第二倾斜状态。或者,OFF态为上述的第一倾斜状态,ON态为上述的第二倾斜状态。利用不同倾斜状态的微镜反射得到成像光(第三光束22和第四光束23),能够提高光调制单元12的使用寿命。当然,光调制单元12也可以使用ON态和OFF态中的某一种状态的微镜将第一光束20调制为第三光束22,以及将第二光束21调制为第四光束23,此处不作限制。
当需要在第一投影区域投影时,第一光源111通电,第一光源111发出的第一光束20以第一入射方向入射光调制单元12。当需要在第二投影区域投影时,第二光源112通电,第二光源112发出的第二光束21则以第二入射方向入射光调制单元12。当既需要在第一投影区域投影,又需要在第二投影区域投影时,则可以以频率N交替为第一光源111和第二光源112供电。
由于第一光源111和第二光源112是交替通电,具有时序性及间歇性,第一光源111和第二光源112在瞬时工作时可以耐受更高的瞬时电流。因此,可以提高光源的驱动瞬时电流,来获得更高的瞬时能量输出,在不影响光源自身的总发热功率及使用寿命的前提下,提高第一投影区域或第二投影区域的亮度。
图7中仅以第一投影区域和第二投影区域位于存在夹角的不同成像平面为例,第一投影区域和第二投影区域还可以位于相同或平行的成像平面,此处不一一举例。
图7中,投影单元包括两个投影镜头。在一些其他的实现方式中,投影单元也可以为单投影镜头,投影单元包括第三投影镜头133。该实现方式中,可以通过增设反射单元改变第三光束和/或第四光束的光路,使第三光束和第四光束能够入射同一个投影镜头。并且,第三光束和第四光束入射第三投影镜头133的入射方向不同,从而保证第三投影镜头133能够将第三光束和第四光束投射到不同的投影区域中。通过复用同一个投影镜头,能够降低投影装置的制造成本。
例如,如图8所示(图中省略第七光束、第八光束和吸光单元,下同),图8为图7的变形方案。与图7中的投影装置10区别之处在于,投影单元为单投影镜头,即第三投影镜头133。反射单元例如包括第一反射镜171和第二反射镜172。第一反射镜171用于将第三光束反射至第三投影镜头133,第二反射镜172用于将第四光束反射至第三投影镜头133。通过第一反射镜171和第二反射镜172分别将第三光束和第四光束反射至第三投影镜头133,能够通过独立地调节第三光束和第四光束入射反射镜的入射角度,使得第三光束和第四光束入射第三投影镜头133的入射方向不同。第一反射镜171和第二反射镜172可以是平面镜,制造成本更低。当然,第一反射镜171和第二反射镜172也可以时曲面镜,此处不作限制。
还例如,如图9所示,图9为图7的变形方案。与图7中的投影装置10区别之处在于,投影单元为单投影镜头,包括第三投影镜头133。反射单元例如包括第三反射镜173。第三反射镜173用于改变第三光束和第四光束的光路,将第三光束和第四光束反射至投影镜头133。第三反射镜173例如包括第一反射区1731和第二反射区1732。第一反射区1731用于反射第三光束,第二反射区1732用于反射第四光束。第一反射区1731所在的平面和第二反射区1722所在的平面存在夹角,或第一反射区1731和第二反射区1732的曲率不同,以使第三光束入射第三投影镜头133的入射方向,与第四光束入射第三投影镜头133的入射方向不同,从而 第三投影镜头133投射第五光束和第六光束的方向不同,进而第五光束和第六光束在不同的投影区域成像。通过一个反射镜改变第三光束和第四光束的光路,能够减少投影装置中器件的数量,节约占用的空间,能够使投影装置更加小型化。
还例如,如图10所示,图10为图7的变形方案。与图7中的投影装置区别之处在于,投影单元为单投影镜头,包括第三投影镜头133。反射单元例如包括第四反射镜174。第四反射镜174可以为平面镜或曲面镜,此处不做限制。第四反射镜174可以仅改变第三光束和第四光束中的一个光束的光路。例如,第三投影镜头133设置于第三光束的光路上,第四反射镜174用于改变第四光束的光路,使第四光束入射第三投影镜头133。将投影镜头设置于第三光束的光路上,反射单元则可以仅包括一个反射镜,反射镜将第四光束反射至第三投影镜头,可以减少反射镜的数量,降低成本,并且节约占用的空间。
图11中,第一光源111和第二光源112设置于平面的不同侧。投影装置包括照明单元、准直单元、汇聚单元、光调制单元12、投影单元和吸光单元(此图中未示)。照明单元包括第一光源111和第二光源112。准直单元包括第一准直单元151和第二准直单元152,汇聚单元包括第一汇聚单元161和第二汇聚单元162。投影单元包括第一投影镜头131和第二投影镜头132。第一光源111提供的第一光束经过第一准直单元151进行准直后入射第一汇聚单元161,第一汇聚单元161将第一光束汇聚反射到光调制单元12。第二光源112发出的第二光束经过第二准直单元152进行准直后入射第二汇聚单元162,第二汇聚单元162将第二光束汇聚反射到光调制单元12。光调制单元12调制第一光束和第二光束的方式,第三光束和第四光束入射投影单元,以及第五光束和第六光束的投射可参阅图7的相关描述,此处不再赘述。第一光源111和第二光源112设置在平面的不同侧,有利于光源散热以及缩小空间布局,以及提高光束的反射效率。
图11中,投影单元包括两个投影镜头。在一些其他的实现方式中,投影单元也可以为单投影镜头,第三光束和第四光束均入射第三投影镜头133,如图12所示。图12以第四反射镜174反射第四光束为例,当然,也可以基于图11实现类似于图8和图9中将第三光束和第四光束入射到第三投影镜头133的变形方案,此处不再赘述。
在另一种可能的实现方式中,照明单元为单光源,可以通过将照明单移动(通过旋转和/或平移)到不同的位置使第一光束和第二光束的入射角度不同。如图13所示,图13为本申请提供的投影装置另一实施例的结构示意图。本实施例中,投影装置10包括照明单元、准直单元15、汇聚单元16、光调制单元12、投影单元和吸光单元。其中,照明单元为单光源,包括第三光源113。投影单元包括第一投影镜头131和第二投影镜头132。吸光单元包括第一吸光模块141和第二吸光模块142。
第三光源113被配置为位于第一位置时提供第一光束20。第一光束20依次经过准直单元15的准直,以及汇聚单元16的汇聚反射后以第一入射方向入射光调制单元12。光调制单元12根据第一图像对应的调制信号控制微镜阵列中的微镜翻转至第一倾斜状态或第二倾斜状态,以调制第一光束20,得到第三光束22和第七光束26,第三光束22入射第一投影镜头131,第七光束26入射第一吸光模块141。第一投影镜头131将第三光束22投射为第五光束24,第五光束24在第一投影区域成像显示第一图像。
第三光源113被配置为位于第二位置时提供第二光束21。第二光束21依次经过准直单元15的准直,以及汇聚单元16的汇聚反射后以第二入射方向入射光调制单元12中的微镜阵 列121。第一光束20和第二光束21入射光调制单元12的入射方向不同。光调制单元12根据第二图像对应的调制信号控制微镜阵列中的微镜翻转至第一倾斜状态或第二倾斜状态,以调制第二光束21,得到第四光束23和第八光束27,第四光束23入射第二投影镜头132,第八光束27入射第二吸光模块142。第三光束22与第四光束23出射光调制单元12的出射方向不相同。第二投影镜头132将第四光束23投射为第六光束25,第六光束25在第二投影区域成像显示第二图像。第一投影区域和第二投影区域为不同的投影区域。经过投影单元投射得到的第五光束24的光轴和第六光束25的光轴存在夹角,进而第五光束24和第六光束25在不同的投影区域成像。
可选地,第一光束20入射光调制单元12时,光调制单元12可以利用ON态的微镜将第一光束20调制为携带第一图像信息的第三光束22。第二光束21入射光调制单元12时,光调制单元12可以利用OFF态的微镜将第二光束21调制为携带第二图像信息的第四光束23。ON态例如为上述的第一倾斜状态,OFF态为上述的第二倾斜状态。或者,OFF态为上述的第一倾斜状态,ON态为上述的第二倾斜状态。利用不同倾斜状态的微镜反射得到成像光(第三光束22和第四光束23),能够提高光调制单元12的使用寿命。当然,光调制单元12也可以使用ON态和OFF态中的某一种状态的微镜将第一光束20调制第三光束22,以及将第二光束21调制第四光束23,此处不作限制。
也即,通过复用照明单元,利用处于不同位置的同一照明单元提供入射方向不同的第一光束20和第二光束21,照明单元可以仅包括一个第三光源113,能够降低投影装置10的制造成本。当需要在第一投影区域投影时,照明单元移动到第一位置,照明单元发出的第一光束20则以第一入射方向入射光调制单元12。当需要在第二投影区域投影时,照明单元移动到第二位置,照明单元发出的第二光束21则以第二入射方向入射光调制单元12。当既需要在第一投影区域投影,又需要在第二投影区域投影时,则照明单元可以以频率N在第一位置和第二位置之间快速移动。
投影装置例如还包括第一驱动单元(图未示)和第一传动单元(图未示),第一传动单元用于连接第一驱动单元和第三光源113。当需要第三光源113移动位置时,第一驱动单元工作带动第一传动单元,第一传动单元进一步带动第三光源113移动和/或旋转,使得第三光源113从第一位置移动到第二位置,或从第二位置移动到第一位置。
图13中,第一光束20和第二光束21在平面的同一侧入射光调制单元12,投影单元包括两个投影镜头。在一些其他的实现方式中,第一光束20和第二光束21还可以是在平面的不同侧入射光调制单元12,和/或,投影单元为单投影镜头。
例如,如图14所示,图14为本申请提供的投影装置另一实施例的结构示意图。图14(图中省略第七光束26、第八光束27和吸光单元14,下同)为图13的变形方案。与图13中的投影装置区别之处在于,汇聚单元包括第一汇聚单元161和第二汇聚单元162,投影装置还包括反射单元。反射单元包括第五反射镜175。第五反射镜175可以是曲面镜也可以是平面镜。第一汇聚单元161和第二汇聚单元162设置在平面的两侧。第一反射镜171用于反射第一光束或第二光束,图14中以第五反光镜175用于反射第二光束为例。第一光束的光路与图13中第一光束的光路类似,此处不再赘述。第三光源113处于第二位置时发出第二光束,第二光束经过准直单元15的准直后由第五反射镜175反射至第二汇聚单元162,第二汇聚单元162将第二光束汇聚反射至光调制单元12。光调制单元12调制第一光束和第二光束的方法参 阅上述的相关描述,此处不再赘述。
例如,如图15所示,图15为本申请提供的投影装置另一实施例的结构示意图。图15为图13的变形方案。当然,还可以在图14的基础上对投影单元进行改进。与图13中的投影装置区别之处在于,图15中的投影单元为单投影镜头,即第三投影镜头133,投影装置还包括反射单元,反射单元包括第四反射镜174。第四反射镜174可以是曲面镜也可以是平面镜。第四反射镜174用于将第三光束或第四光束反射至第三投影镜头133。图15中以第四反射镜174反射第四光束为例。第三光束的光路与图14中第三光束的光路类似,此处不再赘述。第三光束以第三入射方向入射第三投影镜头133。光调制单元12出射的第四光束经过第四反射镜174的反射,以第四入射方向入射第三投影镜头133。第三入射方向与第四入射方向不同,从而第三投影镜头133投射第五光束和第六光束的光轴存在夹角,进而第五光束和第六光束能够在不同的投影区域成像。通过复用同一个投影镜头,能够降低投影装置的制造成本。图15以第四反射镜174反射第四光束为例,当然,也可以基于图13实现类似于图8和图9中将第三光束和第四光束入射到第三投影镜头133的变形方案,此处不再赘述。
除了可以移动照明单元的位置来使第一入射方向和第二入射方向不同,还可以改变光调制单元12的位置使第一光束和第二光束的入射光调制单元12的入射方向不同。如图16所示,图16为本申请提供的投影装置另一实施例的结构示意图。本实施例中,投影装置包括照明单元、准直单元15、汇聚单元16、光调制单元12、投影单元和吸光单元(此图中未示)。其中,照明单元为单光源,照明单元包括第三光源113。投影单元包括第一投影镜头131和第二投影镜头132。
第三光源113的位置不变,但改变光调制单元12的位置。具体地,第三光源113提供第一光束时,光调制单元12位于第三位置根据第一图像对应的调制信号控制微镜阵列中的微镜翻转至第一倾斜状态或第二倾斜状态,以调制第一光束得到用于投影成像的第三光束。第三光束被第一投影镜头131投射为第五光束,第五光束在第一投影区域成像。第三光源113提供第二光束时,光调制单元12在第四位置根据第二图像对应的调制信号控制微镜阵列中的微镜翻转至第一倾斜状态或第二倾斜状态,以调制第二光束得到用于投影成像的第四光束。第四光束被第二投影镜头132投射为第六光束,第六光束在第二投影区域成像。第一光束和第二光束在到达光调制单元12之前的光路是相同的,单由于光调制单元改变了位置,使得第一光束入射光调制单元12的入射方向与第二光束入射光调制单元12的入射方向不同,进而最终第五光束和第六光束能够在不同的投影区域中成像。光调制单元12的具体调制方式可参阅上述的相关描述,此处不再赘述。
投影装置例如还包括第二驱动单元(图未示)和第二传动单元(图未示),第二传动单元用于连接第二驱动单元和光调制单元12。当需要光调制单元12移动位置时,第二驱动单元工作带动第二传动单元,第二传动单元进一步带动光调制单元12移动和/或旋转,使得光调制单元12从第三位置移动到第四位置,或从第四位置移动到第三位置。
当需要在第一投影区域投影时,光调制单元12位于第三位置,第三光源113发出的第一光束则以第一入射方向入射光调制单元12。当需要在第二投影区域投影时,将光调制单元12的位置移动到第四位置,第三光源113发出的第二光束则以第二入射方向入射光调制单元12。当既需要在第一投影区域投影,又需要在第二投影区域投影时,则光调制单元12可以以频率N在第三位置和第四位置之间快速移动。也即,通过时分复用光调制单元12,通过移动同一 光调制单元12的位置使第一光束和第二光束以不同的入射角度入射光调制单元12。从而,照明单元可以仅包括一个光源,也无需增加光调制单元12的数量,能够降低投影单元的制造成本。
图16中,第一光束和第二光束在平面的同一侧入射光调制单元12,投影单元包括两个投影镜头。在一些其他的实现方式中,第一光束和第二光束还可以是在平面的不同侧入射光调制单元12,和/或,投影单元为单投影镜头。具体实现方式可以参照上述的实施例,此处不再赘述。
根据以上的实施例可以看出,当第一光束和第二光束从平面同侧入射光调制单元12,第一光束和第二光束从照明单元发出到入射光调制单元12的光路上,可以复用部分光学器件,例如准直单元15和汇聚单元16等,从而降低制造成本。当第一光束和第二光束从平面同侧入射光调制单元12,在保证第一光束和第二光束入射光调制单元12时的入射方向间存在一定的夹角的情况下,还能够保证光束的反射效率,提高光源利用率,使第三光束和第四光束具有更高的亮度。
以上实施例中,以照明单元11提供第一光束和第二光束两个光束、在两个投影区域成像为例进行说明,本申请还可以推广到三个光束、在三个投影区域成像,以及更多光束、在更多区域成像等场景中。使照明单元11提供的光束入射光调制单元12的入射方向不同,最终投影单元13投射的光束的光轴不同即可,此处不再赘述。
本实施例中,利用不同的入射角度的第一光束和第二光束入射光调制单元12,光调制单元12能够将第一光束和第二光束分别调制为出射角不同的第三光束和第四光束,第三光束和第四光束能够被投影为光轴具有夹角的第五光束和第六光束,进而第五光束和第六光束在不同的投影区域成像,从而同一个投影装置10具有可变的投影区域,即既可以在第一投影区域投影,又可以在第二投影区域投影,还能够同时在第一投影区域和第二投影区域投影成像,从而投影装置10能够实现更多功能,能够覆盖更多的应用场景。
本申请实施例还提供了一种显示设备,如图17所示,图17为本申请提供的一种显示设备的结构示意图。该显示设备1700包括处理器1701和上述任意实施例中的投影装置1702。该处理器1701用于向投影装置1702发送图像数据。图像数据包括第一图像数据和第二图像数据。
处理器1701用于分时向光调制单元发送第一图像数据和第二图像数据,光调制单元用于根据第一图像数据生成将第一光束调制为第三光束的调制信号,以及根据第二图像数据生成将第二光束调制为第四光束的调制信号。从而,在第一光束入射光调制单元时,光调制单元能够根据第一图像数据对应的调制信号,将第一光束调制为携带第一图像信息的第三光束。在第二光束入射光调制单元时,光调制单元能够根据第二图像数据对应的调制信号,将第二光束调制为携带第二图像信息的第四光束。第三光束为成像光,被投影单元投射到第一投影区域显示第一图像。第四光束也为成像光,被投影单元投射到与第一投影区域不同的第二投影区域显示第二图像。
投影装置1702具体用于在第一投影区域投影第一图像,和/或在第二投影区域投影第二图像。
显示设备1700具体可以是智能车灯。显示设备1700为智能车灯时,第一投影区域和第二投影区域所在的平面可以存在一定的夹角,例如80°、90°或100°等。
在另一些实现方式中,显示设备1700也可以是投影仪,如图18所示,图18为本申请提供的一种显示设备的场景示意图。显示设备1700为投影仪时,第一投影区域和第二投影区域所在的平面可以共平面。当然,第一投影区域和第二投影区域所在的平面也可以存在一定的夹角,此处不做限制。
在其他的实现方式中,显示设备1700也可以是HUD或桌面显示设备。
本申请实施例还提供了一种交通工具。如图19所示,图19为本申请提供的一种交通工具的结构示意图。该交通工具1900上安装有上述的显示设备1901。交通工具1900可以是汽车、轮船、火车或飞机等交通工具,此处不做限制。
示例性地,如图20所示,图20为本申请提供的一种交通工具的场景示意图。以交通工具1900为汽车,显示设备1901为智能车灯为例。安装有本申请实施例提供的智能车灯的汽车,能够在第一投影区域投影,或在第二投影区域投影,或同时在第一投影区域和第二投影区域投影,从而能够覆盖多场景投影需求。例如,图20中的汽车前方形成的第一投影区域例如可以投影视频图像等,满足户外影院的需求,实现影音娱乐功能。图20中的汽车前方地面上形成的第二投影区域可以投影轨迹指引、近光增强、车道示宽和投影行人斑马线等,实现辅助驾驶功能。第一投影区域例如相较第二投影区域具有更小的视场,即第一投影区域对应的投影镜头的放大倍率小于第二投影区域对应的投影镜头的放大倍率,从而第一投影区域中投影的视频图像的画质更加清晰细腻,具有更高的亮度和更丰富的细节。在另一应用场景中,例如同时在地面和墙壁上投影成像时,还可以根据需求,提高单位时间内第一通电时间的时长和第二通电时间的时长的占比,以提高相应投影区域内的投影亮度,使投影其中的图像更加明亮,投影图像有更大的亮度对比度,展现更加丰富的细节。
还例如,在汽车行驶过程中,汽车可以同时实现地面的第一投影区域投影轨迹指引,以及第二投影区域的远光照明。会车时,还可以根据对向来车的距离和方位生成对应的ADB图像,智能车灯中的光调制单元根据ADB图像调制第一光束,使最终投影的光束中无光束直射对向来车所在的区域,从而同时实现轨迹指引和ADB远光照明。
当显示设备1901为HUD时,交通工具还包括反射元件。显示设备用于向反射元件的不同区域分别投射第五光束和第六光束,反射元件用于反射第五光束和第六光束。反射元件例如为挡风玻璃。除了玻璃,反射元件也可以是透明陶瓷、树脂或其他光学材料,此处不做限定。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
需要说明的是,以上实施例仅用以说明本申请的技术方案,而非对其限制。尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (22)

  1. 一种投影装置,其特征在于,所述装置包括:
    照明单元,用于分时提供第一光束和第二光束;
    光调制单元,用于将所述第一光束调制为第三光束,将所述第二光束调制为第四光束,所述第三光束出射所述光调制单元的出射方向与所述第四光束出射所述光调制单元的出射方向不同,所述第一光束入射所述光调制单元的入射方向与所述第二光束入射所述光调制单元的入射方向不同;
    投影单元,用于将所述第三光束和所述第四光束投射到不同的投影区域。
  2. 根据权利要求1所述的投影装置,其特征在于,
    所述投影单元,具体用于将所述第三光束投射为第五光束,将所述第四光束投射为第六光束,所述第五光束的光轴与所述第六光束的光轴存在夹角,以使所述第五光束和所述第六光束在所述不同的投影区域中成像。
  3. 根据权利要求1或2所述的投影装置,其特征在于,所述第三光束为所述光调制单元基于第一图像对应的调制信号调制得到的,所述第四光束为所述光调制单元基于第二图像对应的调制信号调制得到的。
  4. 根据权利要求1至3中任一项所述的投影装置,其特征在于,所述投影单元包括第一投影镜头和第二投影镜头,所述第一投影镜头用于投射所述第三光束,所述第二投影镜头用于投射所述第四光束。
  5. 根据权利要求4所述的投影装置,其特征在于,所述第一投影镜头的镜头放大倍率和所述第二投影镜头的镜头放大倍率不同。
  6. 根据权利要求1至3中任一项所述的投影装置,其特征在于,所述投影单元包括第三投影镜头,所述投影装置还包括反射单元,所述反射单元用于改变所述第三光束和所述第四光束的光路,使所述第三光束和所述第四光束入射所述第三投影镜头,其中,所述第三光束入射所述第三投影镜头的入射方向与所述第四光束入射所述第三投影镜头的入射方向不同。
  7. 根据权利要求6所述的投影装置,其特征在于,所述反射单元包括第一反射镜和第二反射镜,所述第一反射镜用于将所述第三光束反射至所述第三投影镜头,所述第二反射镜用于将所述第四光束反射至所述第三投影镜头。
  8. 根据权利要求6所述的投影装置,其特征在于,所述反射单元包括第三反射镜,所述第三反射镜包括第一反射区和第二反射区,所述第一反射区和所述第二反射区的曲率不同,所述第一反射区用于将所述第三光束反射至所述第三投影镜头,所述第二反射区用于将所述第四光束反射至所述第三投影镜头。
  9. 根据权利要求6所述的投影装置,其特征在于,所述反射单元包括第三反射镜,所述第三反射镜包括第一反射区和第二反射区,所述第一反射区所在的平面和所述第二反射区所在的平面存在夹角,所述第一反射区用于将所述第三光束反射至所述第三投影镜头,所述第二反射区用于将所述第四光束反射至所述第三投影镜头。
  10. 根据权利要求1至3中任一项所述的投影装置,其特征在于,所述投影单元包括第三投影镜头,所述投影装置还包括反射单元,所述第三投影镜头设置于所述第三光束的光路上,所述反射单元用于改变所述第四光束的光路,使所述第四光束入射所述第三投影镜头,所述 第三光束入射所述第三投影镜头的入射方向,与所述第四光束入射所述第三投影镜头的入射方向不同。
  11. 根据权利要求1至10中任一项所述的投影装置,其特征在于,所述光调制单元包括多个微镜,每一所述微镜具备第一倾斜状态和第二倾斜状态,所述第一倾斜状态和所述第二倾斜状态中用于将所述第一光束调制为所述第三光束的倾斜状态,与用于将所述第二光束调制为所述第四光束的倾斜状态不同。
  12. 根据权利要求11所述的投影装置,其特征在于,每一所述微镜绕旋转轴线在所述第一倾斜状态和所述第二倾斜状态之间移动,每一所述微镜还包括平态,所述第一光束和所述第二光束从平面的一侧入射所述光调制单元,所述平面为所述光调制单元的法向与所述旋转轴线所确定的平面,所述光调制单元的法向与处于所述平态的所述微镜的法向平行。
  13. 根据权利要求12所述的投影装置,其特征在于,所述照明单元包括第一光源和第二光源,所述第一光源用于提供所述第一光束,所述第二光源用于提供所述第二光束,所述第一光源和所述第二光源设置于所述平面的同侧。
  14. 根据权利要求11所述的投影装置,其特征在于,每一所述微镜绕旋转轴线在所述第一倾斜状态和所述第二倾斜状态之间移动,每一所述微镜还包括平态,所述第一光束和所述第二光束从平面的不同侧入射所述光调制单元,所述平面为所述光调制单元的法向与所述旋转轴线所确定的平面,所述光调制单元的法向与处于所述平态的微镜的法向平行。
  15. 根据权利要求14所述的投影装置,其特征在于,所述照明单元包括第一光源和第二光源,所述第一光源用于提供所述第一光束,所述第二光源用于提供所述第二光束,所述第一光源和所述第二光源设置于所述平面的不同侧。
  16. 根据权利要求1至12、14中任一项所述的投影装置,其特征在于,所述照明单元包括第三光源,所第三光源用于分时提供所述第一光束和所述第二光束,所述第三光源被配置为处于第一位置时提供所述第一光束,处于第二位置时提供所述第二光束。
  17. 根据权利要求1至16中任一项所述的投影装置,其特征在于,所述照明单元提供所述第一光束的时长与提供所述第二光束的时长不同。
  18. 根据权利要求1至17中任一项所述的投影装置,其特征在于,所述不同的投影区域包括位于地面上的不同投影区域,或,包括位于地面上的投影区域和与所述地面存在夹角的平面上的投影区域。
  19. 一种显示设备,其特征在于,包括处理器以及如权利要求1至17中任一项所述的投影装置,所述处理器用于向所述光调制单元发送图像数据。
  20. 根据权利要求19所述的显示设备,其特征在于,所述图像数据包括第一图像数据和第二图像数据;
    所述处理器用于向所述光调制单元发送所述第一图像数据,所述光调制单元用于根据所述第一图像数据生成将所述第一光束调制为所述第三光束的调制信号;
    所述处理器用于向所述光调制单元发送所述第二图像数据,所述光调制单元用于根据所述第二图像数据生成将所述第二光束调制为所述第四光束的调制信号。
  21. 一种交通工具,其特征在于,包括如权利要求19或20所述的显示设备,所述显示设备安装于所述交通工具上。
  22. 根据权利要求21所述的交通工具,其特征在于,所述交通工具还包括反射元件,所 述显示设备用于向所述反射元件的不同区域分别投射所述第五光束和所述第六光束,所述反射元件用于反射所述第五光束和所述第六光束。
PCT/CN2023/095293 2022-08-29 2023-05-19 投影装置、显示设备及交通工具 WO2024045699A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211043067.4A CN117666254A (zh) 2022-08-29 2022-08-29 投影装置、显示设备及交通工具
CN202211043067.4 2022-08-29

Publications (1)

Publication Number Publication Date
WO2024045699A1 true WO2024045699A1 (zh) 2024-03-07

Family

ID=90084977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/095293 WO2024045699A1 (zh) 2022-08-29 2023-05-19 投影装置、显示设备及交通工具

Country Status (2)

Country Link
CN (1) CN117666254A (zh)
WO (1) WO2024045699A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030086148A1 (en) * 2001-11-08 2003-05-08 Seiko Epson Corporation Projector
JP2007206397A (ja) * 2006-02-02 2007-08-16 Seiko Epson Corp プロジェクタ
CN104614929A (zh) * 2015-02-12 2015-05-13 南京中科神光科技有限公司 一种多画面投影显示装置及多画面投影方法
CN105527789A (zh) * 2016-02-29 2016-04-27 青岛海信电器股份有限公司 一种投影显示方法及系统
CN108965841A (zh) * 2018-08-31 2018-12-07 青岛海信激光显示股份有限公司 一种投影光学系统及投影显示方法
CN108957755A (zh) * 2018-07-27 2018-12-07 京东方科技集团股份有限公司 一种显示组件及其控制方法、平视显示器及汽车

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030086148A1 (en) * 2001-11-08 2003-05-08 Seiko Epson Corporation Projector
JP2007206397A (ja) * 2006-02-02 2007-08-16 Seiko Epson Corp プロジェクタ
CN104614929A (zh) * 2015-02-12 2015-05-13 南京中科神光科技有限公司 一种多画面投影显示装置及多画面投影方法
CN105527789A (zh) * 2016-02-29 2016-04-27 青岛海信电器股份有限公司 一种投影显示方法及系统
CN108957755A (zh) * 2018-07-27 2018-12-07 京东方科技集团股份有限公司 一种显示组件及其控制方法、平视显示器及汽车
CN108965841A (zh) * 2018-08-31 2018-12-07 青岛海信激光显示股份有限公司 一种投影光学系统及投影显示方法

Also Published As

Publication number Publication date
CN117666254A (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
CN108957755B (zh) 一种显示组件及其控制方法、平视显示器及汽车
JP4128008B2 (ja) 3d画像を表示するための方法及び装置
US7252394B1 (en) Laser projection display and illumination device with MEMS scanning mirror for indoor and outdoor applications
US8905548B2 (en) Device and method for reducing speckle in projected images
JP5213076B2 (ja) プロジェクタおよびその制御方法
US9041868B2 (en) Projection image display device comprising a plurality of illumination optical systems
US8608320B2 (en) Projector and method for controlling the same
CN108663883A (zh) 一种投影显示系统
CN106200219A (zh) 用于具有变形光学器件的光效率可编程前灯的方法和装置
WO2022141851A1 (zh) 一种投影光学系统及汽车的抬头显示装置
WO2022141849A1 (zh) 一种投影光学系统及汽车的抬头显示装置
CN111338165B (zh) 光源系统及其控制方法与显示设备及其控制方法
WO2022141850A1 (zh) 一种投影光学系统及汽车的抬头显示装置
WO2022141847A1 (zh) 一种投影光学系统及汽车的抬头显示装置
WO2022141848A1 (zh) 一种投影光学系统及汽车的抬头显示装置
WO2024045699A1 (zh) 投影装置、显示设备及交通工具
US20090303444A1 (en) Projection System
US20220206297A1 (en) Projection optical system and head-up display device mounted on automobile
WO2022141852A1 (zh) 一种投影光学系统及汽车的抬头显示装置
US20220206296A1 (en) Projection optical system and head-up display device mounted on automobile
WO2021166807A1 (ja) 光源装置、及び画像表示装置
JP2004138881A (ja) 画像投影表示装置
WO2022141853A1 (zh) 一种投影光学系统及汽车的抬头显示装置
US11765325B2 (en) Digital display system and method
KR101167747B1 (ko) 마이크로 프로젝터를 위한 광학 엔진

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23858738

Country of ref document: EP

Kind code of ref document: A1