WO2024045598A1 - 一种不锈钢复合板智能化埋弧焊焊接方法 - Google Patents

一种不锈钢复合板智能化埋弧焊焊接方法 Download PDF

Info

Publication number
WO2024045598A1
WO2024045598A1 PCT/CN2023/085082 CN2023085082W WO2024045598A1 WO 2024045598 A1 WO2024045598 A1 WO 2024045598A1 CN 2023085082 W CN2023085082 W CN 2023085082W WO 2024045598 A1 WO2024045598 A1 WO 2024045598A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
stainless steel
steel composite
shaped groove
submerged arc
Prior art date
Application number
PCT/CN2023/085082
Other languages
English (en)
French (fr)
Inventor
刘文明
许庆江
张新明
樊云博
Original Assignee
中建安装集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中建安装集团有限公司 filed Critical 中建安装集团有限公司
Publication of WO2024045598A1 publication Critical patent/WO2024045598A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/18Submerged-arc welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K33/00Specially-profiled edge portions of workpieces for making soldering or welding connections; Filling the seams formed thereby
    • B23K33/004Filling of continuous seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • B23K9/124Circuits or methods for feeding welding wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • B23K9/133Means for feeding electrodes, e.g. drums, rolls, motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/235Preliminary treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • B23K2103/05Stainless steel

Definitions

  • the invention belongs to the field of welding technology, and in particular relates to an intelligent submerged arc welding method for stainless steel composite plates.
  • Stainless steel composite plate is a metal composite material with low carbon steel or low alloy steel as the base layer and stainless steel as the cladding.
  • This metal composite material not only has the same corrosion resistance and strength as stainless steel of the same thickness, but also has low manufacturing cost, so it has obtained a wider range of applications.
  • the current intelligent stainless steel composite plate submerged arc welding technology is not mature enough. Affected by human factors and mechanical processing accuracy, the dimensions of different groove positions are different, resulting in different arc lengths and differences in welding quality at different groove positions during the welding process.
  • the present invention provides an intelligent submerged arc welding method for stainless steel composite plates.
  • the arc length, the allowable error of the arc length, the maximum temperature of the molten pool, and the arc length can be accurately detected.
  • Process parameters such as the allowable fluctuation range of temperature, and automatic replacement of welding wires, thereby achieving precise control and adjustment of the welding process, thus effectively ensuring welding quality.
  • the present invention achieves the above technical objectives through the following technical means.
  • An intelligent submerged arc welding method for stainless steel composite plates including the following steps:
  • Step 1 Prepare stainless steel composite plates and welding materials, and perform bevel processing
  • Step 2 Set a positioning reference point on the stainless steel composite plate near the end of the groove
  • Step 3 Preliminarily position the submerged arc welding machine and establish a Cartesian three-dimensional spatial coordinate system based on the intelligent control device;
  • Step 4 Input the preset welding control parameters to the intelligent control device
  • Step 5 Adjust the initial position of the bottom of the welding gun
  • Step 6 Generate the welding gun movement and height adjustment plan, and perform the welding operation
  • Step 7 Use the infrared detector in the intelligent control device to detect the temperature of the welding pool in real time to form the seat of the weld. Mark-temperature distribution cloud chart to identify abnormal conditions;
  • Step 8 Repeat steps 4 to 7 until the front base part between the two stainless steel composite plates is welded;
  • Step 9 Turn over the two stainless steel composite plates, repeat steps 2 to 7, re-determine the reference point, and continue to weld the back base layer between the two stainless steel composite plates. After all the base layers are welded, replace the welding materials and weld the transitions in sequence. layer, cladding.
  • the welding materials include base welding materials, cladding welding materials, and transition layer welding materials.
  • the base material of the stainless steel composite plate is low carbon steel/low alloy steel, and the cladding material is stainless steel; groove processing It is an X-shaped groove with a groove angle of 60°.
  • step 2 place the two stainless steel composite plates to be welded butt-jointed on the welding platform.
  • the grooves form an X shape.
  • the surfaces of the two stainless steel composite plates are close to the end positions of the X-shaped grooves.
  • Set two positioning reference points are located on both sides of the X-shaped groove.
  • the distance from the X-shaped groove is 500 to 1000 mm. They are symmetrically distributed based on the extension direction of the X-shaped groove. They are respectively defined as the first reference points. and the second datum point.
  • step 3 the specific process of preliminary positioning the submerged arc welding machine is: place the submerged arc welding machine above the starting section of the stainless steel composite plate to be welded, align the welding gun at the center of the X-shaped groove, and Adjust and level the submerged arc welding machine and perform preliminary positioning of the submerged arc welding machine;
  • the intelligent control device includes a controller, arithmetic unit, memory, storage device, lidar detection device, infrared detector, and a touch screen for parameter input.
  • the lidar detection device and infrared detector are relatively fixed to the bottom of the welding gun, respectively located at The front and rear sides of the welding gun; the specific process of establishing a Cartesian three-dimensional spatial coordinate system based on the intelligent control device is: first, align and lock the lidar detection device to the first reference point, and set the coordinates of the reference point to (0, 0, 0 through the touch screen ), then align the laser radar detection device with the extension direction of the starting section of the X-shaped groove, set the extension direction of the X-shaped groove as the y-axis, and automatically generate the coordinates of the A Cartesian three-dimensional spatial coordinate system with the mouth extension direction as the y-axis, the horizontal and vertical y-axis as the x-axis, and the vertical and vertical y-axis as the z-axis;
  • the lidar detection device at the second reference point automatically generate the spatial coordinates of the second reference point through the operator, and then check whether the coordinates of the first reference point are (0, 0, 0) based on the second reference point to ensure that each The reference point position information is accurate, and the initial spatial coordinates of the submerged arc welding machine's location are generated at the same time, and each reference point information data is stored in the storage device.
  • the preset welding control parameters include arc length, arc length allowable error, maximum temperature of the molten pool, and allowable temperature fluctuation range.
  • the allowable error of arc length is 0.1mm, and the allowable temperature fluctuation range is preferably 5%. .
  • step 5 the laser radar detection device automatically detects the distance from the end of the welding wire to the root of the X-shaped groove, that is, the initial arc length, and the operator compares the initial arc length with the preset welding control parameters. Analysis, the controller issues instructions to the welding gun motion mechanism according to the analysis results, adjusts the height of the welding gun, and then covers the submerged arc flux.
  • step 6 the signal transmitting device in the lidar detection device aims at the X-shaped groove area within 90° in front of it and the 30° range behind it to emit laser, and then the signal receiving device receives the obstacle
  • the reflection signal of the object to the laser is amplified and stored in the memory.
  • the operator Based on the three-dimensional laser scanning technology, the operator automatically generates a three-dimensional point cloud model of the X-shaped groove area through an algorithm, and automatically analyzes and calculates the root of the X-shaped groove.
  • the controller issues adjustment instructions accordingly to the welding gun movement.
  • the mechanism automatically adjusts the height and position of the welding gun; during the movement of the welding gun, real-time position verification is performed based on the first reference point and the second reference point.
  • the welding material is replaced and distributed based on the welding wire replacement and distribution device.
  • the welding wire replacement and distribution device includes a shell, which is fixedly installed on the aluminum alloy bottom bracket, and a motor drive is installed on the top of the shell.
  • the motor drive mechanism is signally connected to the intelligent control device, the output end of the motor drive mechanism is connected to a drive shaft, the drive shaft is located inside the housing and is fixedly connected to the drive bevel gear;
  • the transmission device includes an electromagnetic coil.
  • a transmission box is connected to the top of the electromagnetic coil box.
  • iron blocks on the outside of the electromagnetic coil box.
  • springs are installed between the iron block and the electromagnetic coil;
  • a driven shaft is rotated and installed in the transmission box, one end of the driven shaft extends into the housing and a driven bevel gear is fixedly installed at the end, and the other end of the driven shaft is fixed
  • a driven spur gear is installed.
  • the driven spur gear meshes with the two wire feed gears for transmission.
  • the two wire feed gears are fixedly installed on the two transmission shafts.
  • the other ends of the two transmission shafts extend out of the transmission box and
  • a wire feed pulley is fixedly installed.
  • step 7 the intelligent control device compares and analyzes the recorded values in the coordinate-temperature distribution cloud diagram with the preset welding control parameter data, and identifies the positions with large temperature deviations, which are the values after the welding is completed. Quality inspection provides key location guidance.
  • the present invention uses a laser radar detection device to perform three-dimensional detection of welding grooves, which is not affected by small-sized flux and can achieve the purpose of accurate detection. It can sense the arc length height that needs to be adjusted in advance, so that the arc length adjustment process can be transitioned evenly to ensure The welding process is stable; the present invention compares the real-time monitored process parameters with the preset process parameters to achieve precise control and ensures welding accuracy; the present invention uses an infrared detector to monitor the welding process and records large temperature deviations during the welding process The position is conducive to assisting in subsequent quality analysis and quality control of welded joints; the invention is also designed with a welding wire replacement and distribution device to realize automatic distribution and replacement of welding materials, which is convenient and flexible and helps to improve welding efficiency.
  • Figure 1 is a flow chart of the welding method according to the present invention.
  • Figure 2 is a schematic diagram of the datum point layout in step 2;
  • Figure 3 is a schematic diagram of the X-shaped groove according to the present invention.
  • Figure 4 is a schematic diagram of the installation of the laser radar detection device according to the present invention.
  • Figure 5 is a vertical cross-sectional view of the welding wire replacement and distribution device according to the present invention.
  • Figure 6 is a schematic diagram of the arrangement of the wire feed gear according to the present invention.
  • Figure 7 is a schematic layout diagram of the transmission box according to the present invention.
  • the intelligent submerged arc welding method for stainless steel composite plates according to the present invention is shown in Figure 1, and specifically includes the following steps:
  • Step 1 Prepare the stainless steel composite plate and welding materials, and perform groove processing on the stainless steel composite plate at the position to be welded;
  • the stainless steel composite plate includes a base layer and a cladding layer.
  • the base layer material is low carbon steel/low alloy steel
  • the cladding layer is made of low carbon steel/low alloy steel.
  • the layer material is stainless steel
  • the welding materials include base layer welding materials, cladding welding materials, and transition layer welding materials; the groove processing adopts the X-shaped groove form as shown in Figures 2 and 3, and the groove angle is 60°.
  • L represents the thickness of stainless steel composite plate.
  • Step 2 As shown in Figure 2, the two stainless steel composite plates to be welded are butt-joined and placed on the welding platform.
  • the grooves form an X shape.
  • Set two stainless steel composite plates on the surface near the end of the X-shaped groove 3 The two positioning reference points are located on both sides of the X-shaped groove 3, with a distance of 500 to 1000 mm from the X-shaped groove 3, and are symmetrically distributed based on the extension direction of the X-shaped groove 3. They are respectively defined as the first datum. point 1 and second datum point 2.
  • Step 3 Preliminarily position the submerged arc welding machine and establish a Cartesian three-dimensional spatial coordinate system
  • a Cartesian three-dimensional spatial coordinate system is established based on the intelligent control device on the submerged arc welding machine: the intelligent control device includes a controller, arithmetic unit, memory, storage device, lidar detection device 4, infrared detector 5, and Touch screen; first align and lock the lidar detection device 4 with the first reference point 1, set the coordinates of the reference point to (0, 0, 0) through the touch screen, and then align the lidar detection device 4 with the X-shaped groove 3 In the extension direction of the initial section, set the extension direction of the X-shaped groove 3 as the y-axis, and use the operator to automatically generate coordinates with the first reference point as the origin, the extension direction of the X-shaped groove 3 as the y-axis, and the y-axis horizontal and vertical direction. is the Cartesian three-dimensional space coordinate system with the x-axis and the vertical y-axis as the z-axis;
  • Align the lidar detection device 4 with the second reference point 2 automatically generate the spatial coordinates of the second reference point 2 through the operator, and then check whether the coordinates of the first reference point 1 are (0, 0, based on the second reference point 2 0), ensure that the position information of each reference point is accurate, and at the same time generate the initial spatial coordinates of the location of the submerged arc welding machine, and store the information data of each reference point in the storage device;
  • the lidar detection device 4 and the infrared detector 5 are relatively fixed to the bottom of the welding gun 6, respectively located on the front and rear sides of the welding gun 6.
  • the operator is based on the coordinate position of the lidar detection device 4 and its relationship with the welding gun 6
  • the relative position of the bottom automatically generates the coordinate position data of the bottom of the welding gun 6.
  • Step 4 Preset welding control parameters
  • the intelligent control device Enter the preset welding control parameters on the touch screen of the intelligent control device, including arc length, arc length allowable Allowable error, maximum temperature of the molten pool, and allowable temperature fluctuation range.
  • the arc length and maximum temperature of the molten pool can be determined according to the welding process evaluation results.
  • the allowable error of the arc length should be 0.1mm, and the allowable temperature fluctuation range should be 5%. .
  • Step 5 Adjust the initial position of the bottom of welding gun 6;
  • the lidar detection device 4 automatically detects the distance from the end of the welding wire to the root of the X-shaped groove 3, which is the initial arc length.
  • the operator compares and analyzes the initial arc length with the arc length data preset in step 4 to control
  • the device sends instructions to the welding gun motion mechanism according to the analysis results to adjust the height of the welding gun 6, thereby realizing the initial adjustment of the arc length.
  • the vertical distance between the bottom of the welding gun 6 and the root of the X-shaped groove 3 is ⁇ Z.
  • Step 6 Generate the movement and height adjustment plan of welding gun 6;
  • the lidar detection device 4 performs three-dimensional imaging and distance detection.
  • the signal transmitting device in the lidar detection device 4 aims at the X-shaped groove 3 area within 90° in front of it and the 30° range behind it to emit laser, and then the signal receiving device Receive the reflection signal of the laser from the obstacle, amplify the reflection signal and store it in the memory.
  • the operator Based on the three-dimensional laser scanning technology, the operator automatically generates a three-dimensional point cloud model of the X-shaped groove 3 areas through the algorithm, and automatically analyzes and calculates the X-shaped groove.
  • a real-time position check is performed based on the first reference point 1 and the second reference point 2. Only when the position coordinates of the welding gun calculated through the analysis of the two reference points are the same, can the welding gun 6 be controlled to move and work. , otherwise the movement and welding operations should be interrupted and the coordinates reset.
  • Step 7 Generate a weld temperature distribution cloud diagram to identify abnormal conditions
  • the infrared detector 5 detects the temperature of the welding pool in real time, forms a coordinate-temperature distribution cloud diagram of the weld, and compares and analyzes the recorded values in the cloud diagram with the preset control parameter data to identify locations with large temperature deviations. Marking is provided to provide key position guidance for quality inspection after welding is completed.
  • Step 8 Repeat steps 4 to 7 until the front base part between the two stainless steel composite plates is welded;
  • Step 9 Turn over the two stainless steel composite plates, repeat steps 2 to 7, re-determine the reference point, and continue to weld the back base layer between the two stainless steel composite plates. After all the base layers are welded, replace the welding materials and weld the transition layer. , after the transition layer welding is completed, replace the welding materials and weld the cladding.
  • the process parameter settings during the welding process are as shown in Table 1 below:
  • the welding wire replacement and distribution device as shown in Figures 5 to 7 is used to perform welding material replacement and distribution operations;
  • the welding wire replacement and distribution device includes a shell, and the shell is fixedly installed on the aluminum On the alloy bottom bracket 7, a motor drive mechanism 8 is installed on the top of the casing.
  • the motor drive mechanism 8 is connected to the signal of the intelligent control device.
  • the output end of the motor drive mechanism 8 is connected to a drive shaft 9 through a coupling.
  • the drive shaft 9 is located inside the casing. And it is fixedly connected with the driving bevel gear 10 inside the housing.
  • the angle between adjacent transmission devices is 120°; the transmission device includes an electromagnetic coil 20, and a transmission is connected to the top of the box of the electromagnetic coil 20.
  • the box 11 and the electromagnetic coil 20 are each provided with an iron block 12 on the outside of the box, and a spring 13 is installed between the iron block 12 and the electromagnetic coil 20;
  • a driven shaft 14 is rotatably installed in the transmission box 11, and the driven shaft 14 One end extends into the housing and a driven bevel gear 15 is fixedly installed at the end.
  • the other end of the driven shaft 14 is fixedly installed with a driven spur gear 16.
  • the driven spur gear 16 meshes with the two wire feed gears 17 for transmission.
  • the wire feeding gears 17 are respectively fixedly installed on the two transmission shafts 18.
  • the other ends of the two transmission shafts 18 both extend out of the transmission box 11 and are fixedly installed with a wire feeding pulley 19 for transmitting the welding wire.
  • the working principle of the welding wire replacement and distribution device is: when a certain type of welding wire needs to be distributed, the electromagnetic coil 20 in the transmission device corresponding to the welding wire is energized, and the attractive force between the electromagnetic coil 20 and the iron block 12 is greater than the thrust of the spring 13.
  • the box body of the electromagnetic coil 20 moves towards the center of the housing together with the transmission box 11, and then drives the driven bevel gear 15 to approach the driving bevel gear 10 to achieve 45° meshing.
  • the other two electromagnetic coils 20 are powered off, and when the spring 13 thrust Under the action, the remaining two driven bevel gears 15 are disconnected from the driving bevel gear 10; then, the intelligent control device controls the operation of the motor driving mechanism 8, and the motor driving mechanism 8 drives the driving shaft 9 and the driving bevel gear 10 to rotate, driving the bevel gears.
  • the wheel 10 drives the driven bevel gear 15 and the driven shaft 14 to rotate, and then drives the driven spur gear 16 to rotate.
  • the driven spur gear 16 drives the two wire feeding gears 17 and the two transmission shafts 18 to rotate, and then drives the two wire feeding gears 17 and the two transmission shafts 18 to rotate.
  • the pulley 19 rotates to realize wire feeding.
  • the current needs to be controlled to slowly increase or decrease to a preset value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Arc Welding In General (AREA)

Abstract

本发明提供了一种不锈钢复合板智能化埋弧焊焊接方法,在待焊接的两块不锈钢复合板焊接处加工X型坡口,并在坡口末端位置处设置两个基准点,采用智能控制装置建立笛卡尔三维空间坐标系,进行焊接坡口三维检测,能够达到精准检测的目的,并对于需要调节的弧长高度提前感知,实现弧长调整过程均匀过渡。本发明将激光雷达探测装置及红外探测仪实时监测的工艺参数与预设工艺参数对比,实现精准控制,保证了焊接精准度,同时生成焊缝温度分布云图,对温度偏差较大的位置进行标识,能够为焊接完成后的质量检验提供重点位置指导。焊接时,本发明还利用自行设计的焊丝更换及配送装置进行焊材自动更换以及配送操作,整个焊接过程更加灵活高效。

Description

一种不锈钢复合板智能化埋弧焊焊接方法 技术领域
本发明属于焊接技术领域,尤其涉及一种不锈钢复合板智能化埋弧焊焊接方法。
背景技术
不锈钢复合板是以低碳钢或低合金钢为基层、以不锈钢为覆层的金属复合材料,该金属复合材料不仅与同厚度不锈钢具有相同的耐腐蚀性和强度,而且制造成本低,因此获得了较为广泛的应用。但是,目前的智能化不锈钢复合板埋弧焊技术尚不够成熟,受人为因素及机械加工精度影响,坡口不同位置尺寸存在差异,导致焊接过程中不同坡口位置电弧长度不同、焊接质量存在差异;受埋弧焊接工艺特有的焊剂覆盖影响,对坡口形状以及焊缝的过程参数检测较为困难,无法实现对焊接过程的精准控制;另外,复合板焊接需要采用多种焊丝,目前焊丝更换采用手动方式,在焊接工作量大时,需要人工重复更换焊丝,过程繁琐,自动化、智能化程度低,严重影响了焊接效率和品质。
发明内容
针对现有技术中存在的不足,本发明提供了一种不锈钢复合板智能化埋弧焊焊接方法,在进行不锈钢复合板焊接时,可以精准检测电弧长度、电弧长度允许误差、熔池最高温度、温度允许波动范围等过程参数,并自动更换焊丝,进而实现了对焊接过程的精准控制调节,从而有效保证了焊接质量。
本发明通过以下技术手段实现上述技术目的。
一种不锈钢复合板智能化埋弧焊焊接方法,包括如下步骤:
步骤1:准备不锈钢复合板以及焊接材料,并进行坡口加工;
步骤2:在不锈钢复合板上靠近坡口末端位置处设置定位基准点;
步骤3:初步定位埋弧焊机,基于智能控制装置建立笛卡尔三维空间坐标系;
步骤4:向智能控制装置输入预设的焊接控制参数;
步骤5:进行焊枪底部初始位置调整;
步骤6:生成焊枪移动及高度调节方案,并进行焊接操作;
步骤7:利用智能控制装置中的红外探测仪实时检测焊接熔池温度,形成焊缝的坐 标-温度分布云图,进行异常状态辨识;
步骤8:重复步骤4至7,直至两块不锈钢复合板之间的正面基层部分焊接完成;
步骤9:将两块不锈钢复合板翻面,重复步骤2至7,重新确定基准点,继续焊接两块不锈钢复合板之间的背面基层部分,基层全部焊接完成后,更换焊材,依次焊接过渡层、覆层。
进一步地,所述步骤1中,焊接材料包括基层焊材、覆层焊材、过渡层焊材,不锈钢复合板的基层材料为低碳钢/低合金钢,覆层材料为不锈钢;坡口加工为X型坡口形式,坡口角度为60°。
进一步地,所述步骤2的具体过程为:将待焊接的两块不锈钢复合板对接放置在焊接平台上,坡口组成X型,在两块不锈钢复合板表面靠近X型坡口的末端位置处设置两个定位基准点,两个定位基准点分别位于X型坡口两侧,与X型坡口距离为500~1000mm,且基于X型坡口延伸方向对称分布,分别定义为第一基准点和第二基准点。
进一步地,所述步骤3中,初步定位埋弧焊机的具体过程为:将埋弧焊机放置于不锈钢复合板待焊部位起始段上方,焊枪对准X型坡口中心位置,并将埋弧焊机调正调平,进行埋弧焊机的初步定位;
智能控制装置包括控制器、运算器、内存、储存装置、激光雷达检测装置、红外探测仪、用于实现参数输入的触摸屏,激光雷达检测装置以及红外探测仪均与焊枪底部位置相对固定,分别位于焊枪前后两侧;基于智能控制装置建立笛卡尔三维空间坐标系的具体过程为:首先将激光雷达检测装置对准并锁定第一基准点,通过触摸屏将基准点坐标设置为(0,0,0),然后将激光雷达检测装置对准X型坡口起始段延伸方向,将X型坡口延伸方向设置为y轴,通过运算器自动生成以第一基准点为原点坐标、以X型坡口延伸方向为y轴、以y轴水平垂向为x轴、以y轴竖直垂向为z轴的笛卡尔三维空间坐标系;
将激光雷达检测装置对准第二基准点,通过运算器自动生成第二基准点的空间坐标,然后基于第二基准点校核第一基准点坐标是否为(0,0,0),确保各基准点位置信息准确无误,同时生成埋弧焊机所在位置的初始空间坐标,将各基准点信息数据存储在储存装置中。
进一步地,所述步骤4中,预设的焊接控制参数包括电弧长度、电弧长度允许误差、熔池最高温度、温度允许波动范围,电弧长度允许误差为0.1mm,温度允许波动范围宜为5%。
进一步地,所述步骤5的具体过程为:激光雷达检测装置自动检测焊丝端部至X型坡口根部的距离,即初始电弧长度,运算器将初始电弧长度与预设的焊接控制参数进行对比分析,控制器根据分析结果向焊枪运动机构发出指令,调节焊枪高度,然后覆盖埋弧焊剂。
进一步地,所述步骤6的具体过程为:激光雷达检测装置中的信号发射装置对准其前方90°范围内的X型坡口区域以及后方30°范围发射激光,而后由信号接收装置接收障碍物对激光的反射信号,对反射信号进行放大处理并存入内存中,基于三维激光扫描技术,运算器通过算法自动生成X型坡口区域三维点云模型,自动分析计算出X型坡口根部的三维坐标位置数据;然后根据X型坡口根部竖向坐标Zp以及焊枪底部与X型坡口根部之间的竖向距离ΔZ,利用下式计算出X型坡口延伸方向上各焊接点处焊枪底部Z向坐标Zq
Zq=Zp+ΔZ
然后绘制Zq与X型坡口根部坐标之间的对应关系曲线,明确需要进行焊枪位置调整的X型坡口位置坐标,形成焊枪移动及高度调节方案,控制器据此发出调节指令至焊枪运动机构,自动对焊枪高度以及位置进行调整;在焊枪移动过程中,基于第一基准点和第二基准点进行实时位置校核。
进一步地,所述步骤9中,基于焊丝更换及配送装置来进行焊材更换与配送,焊丝更换及配送装置包括壳体,壳体固定安装在铝合金底托上,壳体顶部安装有电机驱动机构,电机驱动机构与智能控制装置信号连接,电机驱动机构输出端连接有驱动轴,驱动轴位于壳体内部且与驱动锥齿轮固定连接;
壳体外围设置有三套传动装置,相邻传动装置之间角度为120°,传动装置包括电磁线圈,电磁线圈的盒体顶部均连接有一个传动盒,电磁线圈的盒体外侧均设置有铁块,铁块与电磁线圈之间均安装有弹簧;传动盒内均转动安装有从动轴,从动轴一端伸入壳体中且端部固定安装有从动锥齿轮,从动轴另一端固定安装有从动正齿轮,从动正齿轮与两个送丝齿轮啮合传递,两个送丝齿轮分别固定安装在两根传动轴上,两根传动轴另一端端部均伸出传动盒外且固定安装有一个送丝滑轮。
进一步地,所述步骤7中,智能控制装置将坐标-温度分布云图中的记录值与预设的焊接控制参数数据进行对比分析,对温度偏差较大的位置进行标识,为焊接完成后的 质量检验提供重点位置指导。
本发明具有如下有益效果:
本发明通过采用激光雷达探测装置进行焊接坡口三维检测,不受小尺寸焊剂的影响,能够达到精准检测的目的,能够对于需要调节的弧长高度提前感知,使弧长调整过程均匀过渡,保证焊接过程稳定;本发明根据实时监测的工艺参数与预设工艺参数进行对比,达到精准控制,保证了焊接精准度;本发明采用红外探测仪对焊接过程进行监测,记录焊接过程中温度偏差较大的位置,有利于辅助后续焊接接头质量分析及质量控制;本发明还设计有焊丝更换及配送装置,实现焊材的自动配送以及更换,方便灵活,有助于提高焊接效率。
附图说明
图1为本发明所述焊接方法流程图;
图2为步骤2中的基准点布置示意图;
图3为本发明所述X型坡口示意图;
图4为本发明所述激光雷达检测装置安装示意图;
图5为本发明所述焊丝更换及配送装置竖向剖面图;
图6为本发明所述送丝齿轮布置示意图;
图7为本发明所述传动盒布置示意图。
图中:1-第一基准点;2-第二基准点;3-X型坡口;4-激光雷达检测装置;5-红外探测仪;6-焊枪;7-铝合金底托;8-电机驱动机构;9-驱动轴;10-驱动锥齿轮;11-传动盒;12-铁块;13-弹簧;14-从动轴;15-从动锥齿轮;16-从动正齿轮;17-送丝齿轮;18-传动轴;19-送丝滑轮;20-电磁线圈。
具体实施方式
下面结合附图以及具体实施例对本发明作进一步的说明,但本发明的保护范围并不限于此。
在本发明的描述中,需要理解的是,术语“前”、“后”、“左”、“右”等所指示的方位和位置均是以说明书附图为基础,不能理解为对本发明的限制;术语“第一”、“第二”等的使用均是为了便于区分各名称相同的部件,不能理解为对本发明的限制;对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
本发明所述的不锈钢复合板智能化埋弧焊焊接方法如图1所示,具体包括如下步骤:
步骤1:准备不锈钢复合板以及焊接材料,并在不锈钢复合板上待焊接的位置处进行坡口加工;其中,不锈钢复合板包括基层和覆层,基层材料为低碳钢/低合金钢,覆层材料为不锈钢,焊接材料包括基层焊材、覆层焊材、过渡层焊材;坡口加工采用如图2、3所示的X型坡口形式,坡口角度为60°,图3中,L表示不锈钢复合板厚度。
步骤2:如图2所示,将待焊接的两块不锈钢复合板对接放置在焊接平台上,坡口组成X型,在两块不锈钢复合板表面靠近X型坡口3的末端位置处设置两个定位基准点,两个定位基准点分别位于X型坡口3两侧,与X型坡口3距离为500~1000mm,且基于X型坡口3延伸方向对称分布,分别定义为第一基准点1和第二基准点2。
步骤3:初步定位埋弧焊机,并建立笛卡尔三维空间坐标系;
将埋弧焊机放置于不锈钢复合板待焊部位起始段上方,焊枪对准X型坡口3中心位置,并将埋弧焊机调正调平,进行埋弧焊机的初步定位;
基于埋弧焊机上的智能控制装置建立笛卡尔三维空间坐标系:智能控制装置包括控制器、运算器、内存、储存装置、激光雷达检测装置4、红外探测仪5、用于实现参数输入的触摸屏;首先将激光雷达检测装置4对准并锁定第一基准点1,通过触摸屏将基准点坐标设置为(0,0,0),然后将激光雷达检测装置4对准X型坡口3起始段延伸方向,将X型坡口3延伸方向设置为y轴,通过运算器自动生成以第一基准点为原点坐标、以X型坡口3延伸方向为y轴、以y轴水平垂向为x轴、以y轴竖直垂向为z轴的笛卡尔三维空间坐标系;
将激光雷达检测装置4对准第二基准点2,通过运算器自动生成第二基准点2的空间坐标,然后基于第二基准点2校核第一基准点1坐标是否为(0,0,0),确保各基准点位置信息准确无误,同时生成埋弧焊机所在位置的初始空间坐标,将各基准点信息数据存储在储存装置中;
如图4所示,所述激光雷达检测装置4以及红外探测仪5均与焊枪6底部位置相对固定,分别位于焊枪6前后两侧,运算器基于激光雷达检测装置4坐标位置及其与焊枪6底部的相对位置,自动生成焊枪6底部坐标位置数据,通过调节激光雷达检测装置4在竖直方向上的位置即可实现对焊枪底部6高度的调整。
步骤4:预设焊接控制参数;
在智能控制装置的触摸屏上输入预设的焊接控制参数,包括电弧长度、电弧长度允 许误差、熔池最高温度、温度允许波动范围,实际应用中,电弧长度、熔池最高温度可根据焊接工艺评定结果而定,电弧长度允许误差宜为0.1mm,温度允许波动范围宜为5%。
步骤5:焊枪6底部初始位置调整;
焊接开始前,激光雷达检测装置4自动检测焊丝端部至X型坡口3根部的距离,即初始电弧长度,运算器将初始电弧长度与步骤4中预设的电弧长度数据进行对比分析,控制器根据分析结果向焊枪运动机构发出指令,调节焊枪6高度,进而实现对电弧长度的初始调节,此时焊枪6底部与X型坡口3根部的竖向距离为ΔZ,电弧长度初始调节完成后,覆盖埋弧焊剂。
步骤6:生成焊枪6移动及高度调节方案;
激光雷达检测装置4进行三维成像及距离检测,激光雷达检测装置4中的信号发射装置对准其前方90°范围内的X型坡口3区域以及后方30°范围发射激光,而后由信号接收装置接收障碍物对激光的反射信号,对反射信号进行放大处理并存入内存中,基于三维激光扫描技术,运算器通过算法自动生成X型坡口3区域三维点云模型,自动分析计算出X型坡口3根部的三维坐标位置数据;然后根据X型坡口3根部竖向坐标Zp以及焊枪6底部与X型坡口3根部之间的竖向距离ΔZ,利用下式计算出X型坡口3延伸方向上各焊接点处焊枪6底部Z向坐标Zq
Zq=Zp+ΔZ
然后绘制Zq与X型坡口3根部坐标之间的对应关系曲线,明确需要进行焊枪6位置调整的X型坡口3位置坐标,形成焊枪6移动及高度调节方案,控制器据此发出调节指令至焊枪运动机构,自动对焊枪6高度以及位置进行调整;
在焊枪6移动过程中,基于第一基准点1和第二基准点2进行实时位置校核,只有当通过两个基准点分析计算得到的焊枪位置坐标相同时,方能控制焊枪6移动并工作,否则应中断移动以及焊接操作,重新设置坐标。
步骤7:生成焊缝温度分布云图,进行异常状态辨识;
焊接过程中,红外探测仪5实时检测焊接熔池温度,形成焊缝的坐标-温度分布云图,并将云图中的记录值与预设的控制参数数据进行对比分析,对温度偏差较大的位置进行标识,为焊接完成后的质量检验提供重点位置指导。
步骤8:重复步骤4至7,直至两块不锈钢复合板之间的正面基层部分焊接完成;
步骤9:将两块不锈钢复合板翻面,重复步骤2至7,重新确定基准点,继续焊接两块不锈钢复合板之间的背面基层部分,基层全部焊接完成后,更换焊材,焊接过渡层,过渡层焊接完成后,再更换焊材,焊接覆层。
本实施例中,优选地,焊接过程中的工艺参数设置如下表1所示:
表1焊接工艺参数
本实施例中,优选地,焊接过程中,利用如图5至7所示的焊丝更换及配送装置进行焊材的更换以及配送操作;焊丝更换及配送装置包括壳体,壳体固定安装在铝合金底托7上,壳体顶部安装有电机驱动机构8,电机驱动机构8与智能控制装置信号连接,电机驱动机构8输出端通过联轴器连接有驱动轴9,驱动轴9位于壳体内部且与壳体内部的驱动锥齿轮10固定连接。壳体外围设置有三套传动装置,分别用于配送不同类型的三种焊丝,相邻传动装置之间角度为120°;传动装置包括电磁线圈20,电磁线圈20的盒体顶部均连接有一个传动盒11,电磁线圈20的盒体外侧均设置有一块铁块12,铁块12与电磁线圈20之间均安装有弹簧13;传动盒11内均转动安装有从动轴14,从动轴14一端伸入壳体中且端部固定安装有从动锥齿轮15,从动轴14另一端固定安装有从动正齿轮16,从动正齿轮16与两个送丝齿轮17啮合传递,两个送丝齿轮17分别固定安装在两根传动轴18上,两根传动轴18另一端端部均伸出传动盒11外且固定安装有一个用于传送焊丝的送丝滑轮19。
焊丝更换及配送装置的工作原理为:当需要配送某一种焊丝时,该焊丝对应的传动装置中的电磁线圈20通电,电磁线圈20与铁块12之间的吸引力大于弹簧13的推力,电磁线圈20的盒体带着传动盒11共同向着壳体中心移动,进而带动从动锥齿轮15向着驱动锥齿轮10靠近,实现45°啮合,另外两处电磁线圈20断电,在弹簧13推力作用下,其余两个从动锥齿轮15与驱动锥齿轮10断开连接;接着,智能控制装置控制电机驱动机构8工作,电机驱动机构8带动驱动轴9以及驱动锥齿轮10转动,驱动锥齿 轮10带动从动锥齿轮15以及从动轴14转动,进而带动从动正齿轮16转动,从动正齿轮16带动两个送丝齿轮17以及两根传动轴18旋转,进而带动两个送丝滑轮19旋转,实现送丝。
为避免电磁线圈20的盒体在通电初始阶段及断电初始阶段运动速度过快,保证安全稳定运行,需要控制电流缓慢升高或降低至预设值。
所述实施例为本发明的优选的实施方式,但本发明并不限于上述实施方式,在不背离本发明的实质内容的情况下,本领域技术人员能够做出的任何显而易见的改进、替换或变型均属于本发明的保护范围。

Claims (10)

  1. 一种不锈钢复合板智能化埋弧焊焊接方法,其特征在于,包括如下步骤:
    步骤1:准备不锈钢复合板以及焊接材料,并进行坡口加工;
    步骤2:在不锈钢复合板上靠近坡口末端位置处设置定位基准点;
    步骤3:初步定位埋弧焊机,基于智能控制装置建立笛卡尔三维空间坐标系;
    步骤4:向智能控制装置输入预设的焊接控制参数;
    步骤5:进行焊枪(6)底部初始位置调整;
    步骤6:生成焊枪(6)移动及高度调节方案,并进行焊接操作;
    步骤7:利用智能控制装置中的红外探测仪(5)实时检测焊接熔池温度,形成焊缝的坐标-温度分布云图,进行异常状态辨识;
    步骤8:重复步骤4至7,直至两块不锈钢复合板之间的正面基层部分焊接完成;
    步骤9:将两块不锈钢复合板翻面,重复步骤2至7,重新确定基准点,继续焊接两块不锈钢复合板之间的背面基层部分,基层全部焊接完成后,更换焊材,依次焊接过渡层、覆层。
  2. 根据权利要求1所述的不锈钢复合板智能化埋弧焊焊接方法,其特征在于,所述步骤1中,焊接材料包括基层焊材、覆层焊材、过渡层焊材,不锈钢复合板的基层材料为低碳钢/低合金钢,覆层材料为不锈钢;坡口加工为X型坡口形式,坡口角度为60°。
  3. 根据权利要求1所述的不锈钢复合板智能化埋弧焊焊接方法,其特征在于,所述步骤2的具体过程为:将待焊接的两块不锈钢复合板对接放置在焊接平台上,坡口组成X型,在两块不锈钢复合板表面靠近X型坡口(3)的末端位置处设置两个定位基准点,两个定位基准点分别位于X型坡口(3)两侧,与X型坡口(3)距离为500~1000mm,且基于X型坡口(3)延伸方向对称分布,分别定义为第一基准点(1)和第二基准点(2)。
  4. 根据权利要求3所述的不锈钢复合板智能化埋弧焊焊接方法,其特征在于,所述步骤3中,初步定位埋弧焊机的具体过程为:将埋弧焊机放置于不锈钢复合板待焊部位起始段上方,焊枪对准X型坡口(3)中心位置,并将埋弧焊机调正调平,进行埋弧焊机的初步定位;
    智能控制装置包括控制器、运算器、内存、储存装置、激光雷达检测装置(4)、红外探测仪(5)、用于实现参数输入的触摸屏,激光雷达检测装置(4)以及红外探测仪(5)均与焊枪(6)底部位置相对固定,分别位于焊枪(6)前后两侧;基于智能控制装置建立笛卡尔三维空间坐标系的具体过程为:首先将激光雷达检测装置(4)对准并 锁定第一基准点(1),通过触摸屏将基准点坐标设置为(0,0,0),然后将激光雷达检测装置(4)对准X型坡口(3)起始段延伸方向,将X型坡口(3)延伸方向设置为y轴,通过运算器自动生成以第一基准点为原点坐标、以X型坡口(3)延伸方向为y轴、以y轴水平垂向为x轴、以y轴竖直垂向为z轴的笛卡尔三维空间坐标系。
  5. 根据权利要求4所述的不锈钢复合板智能化埋弧焊焊接方法,其特征在于,所述步骤3中,笛卡尔三维空间坐标系建立好后需进行基准点复核,将激光雷达检测装置(4)对准第二基准点(2),通过运算器自动生成第二基准点(2)的空间坐标,然后基于第二基准点(2)校核第一基准点(1)坐标是否为(0,0,0),确保各基准点位置信息准确无误,同时生成埋弧焊机所在位置的初始空间坐标,将各基准点信息数据存储在储存装置中。
  6. 根据权利要求1所述的不锈钢复合板智能化埋弧焊焊接方法,其特征在于,所述步骤4中,预设的焊接控制参数包括电弧长度、电弧长度允许误差、熔池最高温度、温度允许波动范围,电弧长度允许误差为0.1mm,温度允许波动范围宜为5%。
  7. 根据权利要求4所述的不锈钢复合板智能化埋弧焊焊接方法,其特征在于,所述步骤5的具体过程为:激光雷达检测装置(4)自动检测焊丝端部至X型坡口(3)根部的距离,即初始电弧长度,运算器将初始电弧长度与预设的焊接控制参数进行对比分析,控制器根据分析结果向焊枪运动机构发出指令,调节焊枪(6)高度,然后覆盖埋弧焊剂。
  8. 根据权利要求4所述的不锈钢复合板智能化埋弧焊焊接方法,其特征在于,所述步骤6的具体过程为:激光雷达检测装置(4)中的信号发射装置对准其前方90°范围内的X型坡口(3)区域以及后方30°范围发射激光,而后由信号接收装置接收障碍物对激光的反射信号,对反射信号进行放大处理并存入内存中,基于三维激光扫描技术,运算器通过算法自动生成X型坡口(3)区域三维点云模型,自动分析计算出X型坡口(3)根部的三维坐标位置数据;然后根据X型坡口(3)根部竖向坐标Zp以及焊枪(6)底部与X型坡口(3)根部之间的竖向距离ΔZ,利用下式计算出X型坡口(3)延伸方向上各焊接点处焊枪(6)底部Z向坐标Zq
    Zq=Zp+ΔZ
    然后绘制Zq与X型坡口(3)根部坐标之间的对应关系曲线,明确需要进行焊枪(6) 位置调整的X型坡口(3)位置坐标,形成焊枪(6)移动及高度调节方案,控制器据此发出调节指令至焊枪运动机构,自动对焊枪(6)高度以及位置进行调整;在焊枪(6)移动过程中,基于第一基准点(1)和第二基准点(2)进行实时位置校核。
  9. 根据权利要求1所述的不锈钢复合板智能化埋弧焊焊接方法,其特征在于,所述步骤9中,基于焊丝更换及配送装置来进行焊材更换与配送,焊丝更换及配送装置包括壳体,壳体固定安装在铝合金底托(7)上,壳体顶部的电机驱动机构(8)与智能控制装置信号连接,电机驱动机构(8)输出端连接驱动轴(9),驱动轴(9)位于壳体内部且与驱动锥齿轮(10)固定连接;
    壳体外围设置有三套传动装置,相邻传动装置之间角度为120°,传动装置包括电磁线圈(20),电磁线圈(20)的盒体顶部均连接有一个传动盒(11),电磁线圈(20)的盒体外侧均设置有铁块(12),铁块(12)与电磁线圈(20)之间均安装有弹簧(13);传动盒(11)内均转动安装有从动轴(14),从动轴(14)一端均伸入壳体中且固定安装有从动锥齿轮(15),另一端均固定安装有从动正齿轮(16),从动正齿轮(16)与两个送丝齿轮(17)啮合,两个送丝齿轮(17)分别固定安装在两根传动轴(18)上,两根传动轴(18)另一端端部均伸出传动盒(11)外且固定安装有一个送丝滑轮(19)。
  10. 根据权利要求1所述的不锈钢复合板智能化埋弧焊焊接方法,其特征在于,所述步骤7中,智能控制装置将坐标-温度分布云图中的记录值与预设的焊接控制参数数据进行对比分析,对温度偏差较大的位置进行标识,为焊接完成后的质量检验提供重点位置指导。
PCT/CN2023/085082 2022-08-29 2023-03-30 一种不锈钢复合板智能化埋弧焊焊接方法 WO2024045598A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211054920.2A CN115302053B (zh) 2022-08-29 2022-08-29 一种不锈钢复合板智能化埋弧焊焊接方法
CN202211054920.2 2022-08-29

Publications (1)

Publication Number Publication Date
WO2024045598A1 true WO2024045598A1 (zh) 2024-03-07

Family

ID=83865288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/085082 WO2024045598A1 (zh) 2022-08-29 2023-03-30 一种不锈钢复合板智能化埋弧焊焊接方法

Country Status (2)

Country Link
CN (1) CN115302053B (zh)
WO (1) WO2024045598A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115302053B (zh) * 2022-08-29 2023-11-14 中建安装集团有限公司 一种不锈钢复合板智能化埋弧焊焊接方法
CN117961393A (zh) * 2024-04-01 2024-05-03 江苏威士智能装备有限公司 一种自动化焊接装置及工作方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000351072A (ja) * 1999-06-14 2000-12-19 Kawasaki Heavy Ind Ltd 溶接位置計測装置
CN104057202A (zh) * 2014-07-11 2014-09-24 华南理工大学 基于fpga的远程监控移动式机器人自主焊接系统及方法
CN107081503A (zh) * 2017-05-31 2017-08-22 温州大学 一种弧焊质量的红外无损检测装置及其红外无损检测方法
CN108817616A (zh) * 2018-07-11 2018-11-16 成都熊谷加世电器有限公司 一种基于激光跟踪的焊接系统
CN212286238U (zh) * 2020-03-31 2021-01-05 北京博清科技有限公司 焊枪更换装置及具有其的自动焊接机器人
CN113319408A (zh) * 2021-07-15 2021-08-31 济南时代新纪元科技有限公司 直角坐标式埋弧焊接机器人
CN214921287U (zh) * 2021-02-26 2021-11-30 广船国际有限公司 一种自动跟踪调节的埋弧自动焊装置
CN115302053A (zh) * 2022-08-29 2022-11-08 中建安装集团有限公司 一种不锈钢复合板智能化埋弧焊焊接方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3552956B2 (ja) * 1999-07-26 2004-08-11 日本ウエルディング・ロッド株式会社 ステンレスクラッド鋼板の溶接方法
SG188645A1 (en) * 2010-09-29 2013-04-30 Esab Ab A welding apparatus and a method for welding
US8895886B2 (en) * 2011-03-15 2014-11-25 General Electric Company Cladding application method and apparatus using hybrid laser process
CN105312738A (zh) * 2015-12-11 2016-02-10 哈尔滨理工大学 Lng储罐tip tig全自动立缝焊接控制方法
CN110605463B (zh) * 2018-06-15 2021-05-18 上海振华重工电气有限公司 用于空间圆弧路径埋弧焊接的机器人自动焊接装置
CN108788412A (zh) * 2018-06-29 2018-11-13 周呈学 一种智能化控制的埋弧焊机
CN112276312B (zh) * 2020-10-10 2021-12-03 吉林大学 瓜瓣焊接轨迹自识别的深窄间隙埋弧焊装置及焊接方法
CN112958956B (zh) * 2021-02-05 2021-11-02 燕山大学 一种自动焊接方法及装置
CN113560701A (zh) * 2021-08-09 2021-10-29 苏州天顺新能源科技有限公司 一种埋弧焊操作步骤及方法
CN217044975U (zh) * 2022-01-17 2022-07-26 沧州市螺旋钢管集团有限公司 一种能够自动跟踪焊缝位置的螺旋钢管焊接装置
CN114888410B (zh) * 2022-05-27 2023-12-01 中建安装集团有限公司 一种双相不锈钢复合板反向焊的焊接工艺

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000351072A (ja) * 1999-06-14 2000-12-19 Kawasaki Heavy Ind Ltd 溶接位置計測装置
CN104057202A (zh) * 2014-07-11 2014-09-24 华南理工大学 基于fpga的远程监控移动式机器人自主焊接系统及方法
CN107081503A (zh) * 2017-05-31 2017-08-22 温州大学 一种弧焊质量的红外无损检测装置及其红外无损检测方法
CN108817616A (zh) * 2018-07-11 2018-11-16 成都熊谷加世电器有限公司 一种基于激光跟踪的焊接系统
CN212286238U (zh) * 2020-03-31 2021-01-05 北京博清科技有限公司 焊枪更换装置及具有其的自动焊接机器人
CN214921287U (zh) * 2021-02-26 2021-11-30 广船国际有限公司 一种自动跟踪调节的埋弧自动焊装置
CN113319408A (zh) * 2021-07-15 2021-08-31 济南时代新纪元科技有限公司 直角坐标式埋弧焊接机器人
CN115302053A (zh) * 2022-08-29 2022-11-08 中建安装集团有限公司 一种不锈钢复合板智能化埋弧焊焊接方法

Also Published As

Publication number Publication date
CN115302053B (zh) 2023-11-14
CN115302053A (zh) 2022-11-08

Similar Documents

Publication Publication Date Title
WO2024045598A1 (zh) 一种不锈钢复合板智能化埋弧焊焊接方法
CN210451490U (zh) 焊接装置及龙门焊接机
CN207205619U (zh) 基于三维激光扫描的波纹焊缝跟踪系统
CN107262926B (zh) 具有ccd检测的自动化激光焊接装置及焊接方法
CN106113049A (zh) 一种位姿自适应机器人的焊接系统及位姿调整方法
CN111496370B (zh) 适用于角接接头的搅拌摩擦焊轨迹自动感知与控制方法
CN206011096U (zh) 一种位姿自适应机器人的焊接系统
CN109822194A (zh) 一种焊缝跟踪装置及焊接方法
CN106238871A (zh) 一种智能龙门焊接装置
CN212526613U (zh) 单面焊双面成型焊接机器人
CN113909639A (zh) 一种基于视觉检测的焊缝偏斜自动补偿埋弧焊小车及方法
CN105414821A (zh) 一种焊接机器人焊缝自动追踪系统
CN102423828B (zh) 列车钩舌自动焊接修复专机
CN104889529A (zh) 一种大尺寸立体曲线焊缝智能焊接设备及方法
CN204234993U (zh) 随焊超声冲击机器人智能测控系统
CN115533273A (zh) 一种智能焊接厚大工件自适应打底层坡口组对误差装置及方法
CN102756198B (zh) 大口径弯头纵缝自动焊接装置
CN105312731A (zh) 基于递送边位移传感的螺旋钢管内焊焊缝自动跟踪方法
CN108311788A (zh) 一种多工位汽车零部件激光焊接设备
CN112388124A (zh) 一种激光追踪伺服控制的内纵焊缝埋弧设备
CN210648953U (zh) 焊接系统
CN108465893B (zh) 一种动态稳定的多自由度焊接机器人
CN202726275U (zh) 大口径弯头纵缝自动焊接装置
CN116100120A (zh) 装有移动定位控制装置的焊接机器人
CN105643158A (zh) 自适应焊缝激光扫描装置及控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23858639

Country of ref document: EP

Kind code of ref document: A1