WO2024045578A1 - 空调器控制方法、空调器控制系统 - Google Patents

空调器控制方法、空调器控制系统 Download PDF

Info

Publication number
WO2024045578A1
WO2024045578A1 PCT/CN2023/083306 CN2023083306W WO2024045578A1 WO 2024045578 A1 WO2024045578 A1 WO 2024045578A1 CN 2023083306 W CN2023083306 W CN 2023083306W WO 2024045578 A1 WO2024045578 A1 WO 2024045578A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioner
temperature
indoor ambient
target temperature
ambient temperature
Prior art date
Application number
PCT/CN2023/083306
Other languages
English (en)
French (fr)
Inventor
张立智
李书佳
曹师增
闫红波
李建萍
李雅婷
孟相宏
黄罡
Original Assignee
青岛海尔空调器有限总公司
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2024045578A1 publication Critical patent/WO2024045578A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present application relates to the technical field of air conditioner control, and in particular to an air conditioner control method and an air conditioner control system.
  • Air conditioners regulate and control parameters such as temperature, humidity, and flow rate of ambient air in buildings or structures. , which meets people’s needs for the surrounding environment.
  • air conditioners are divided into hanging air conditioners and vertical air conditioners based on their installation methods.
  • Cabinet air conditioners are more common among vertical air conditioners.
  • cabinet air conditioners The air outlet of the air conditioner is extended vertically, and the wind is thrown out from the air outlet through the cross-flow fan arranged vertically in the air conditioner to realize the air discharge.
  • vertical swing leaves are also installed in the air outlet channel of the cabinet air conditioner. The vertical swing leaves swing left and right to achieve the purpose of swinging the air left and right.
  • the control mode of the air conditioner is too single and cannot meet people's control needs for wind speed and temperature on special occasions, resulting in a poor experience in using the air conditioner.
  • This application provides an air conditioner control method and air conditioner control system to solve the problem that a single air conditioner control mode cannot meet individual needs and realize multi-mode operation according to user needs.
  • This application provides an air conditioner control method, including:
  • the wind speed and blowing direction are adjusted according to the target temperature, which specifically includes:
  • the fan speed of the air conditioner is changed to adjust the wind speed, and the deflection direction of the guide plate and the vertical swing blade of the air conditioner are adjusted to adjust the blowing direction.
  • changing the fan speed of the air conditioner to adjust the wind speed according to the temperature range specifically includes:
  • the fan speed of the air conditioner is reduced.
  • changing the deflection direction of the guide plate and the deflection direction of the vertical swing blades of the air conditioner to adjust the blowing direction specifically includes:
  • the working mode is switched until the indoor ambient temperature is the same as the target temperature, which specifically includes:
  • the working mode is switched
  • adjusting the working state of the air conditioner in the switched working mode until the indoor ambient temperature is the same as the target temperature specifically includes:
  • This application also provides an air conditioner control system, which includes:
  • the data acquisition module is used to obtain the preset working mode, target temperature and indoor ambient temperature of the air conditioner;
  • a state adjustment module used to adjust the wind speed and blowing direction according to the target temperature
  • the mode switching module is used to switch the working mode until the indoor ambient temperature is the same as the target temperature when it is determined that the indoor ambient temperature meets the set temperature threshold condition.
  • This application also provides an electronic device, including a memory, a processor, and a computer program stored in the memory and executable on the processor.
  • the processor executes the program, it implements any one of the above air conditioner controls. method.
  • the present application also provides a non-transitory computer-readable storage medium on which a computer program is stored.
  • a computer program is stored on which a computer program is stored.
  • the computer program is executed by a processor, any one of the air conditioner control methods described above is implemented.
  • the present application also provides a computer program product, which includes a computer program.
  • a computer program product which includes a computer program.
  • the computer program When executed by a processor, it implements any one of the above air conditioner control methods.
  • This application provides an air conditioner control method and air conditioner control system.
  • the wind speed and blowing angle are controlled according to the target temperature.
  • the indoor ambient temperature meets the set temperature threshold condition
  • switch the working mode to meet the user's personalized needs. According to different scenarios, the blowing speed and blowing angle are automatically adjusted to improve the user's experience.
  • FIG 1 is one of the flow diagrams of an air conditioner control method provided by this application.
  • FIG. 2 is the second schematic flow diagram of an air conditioner control method provided by this application.
  • FIG. 3 is the third schematic flow chart of an air conditioner control method provided by this application.
  • Figure 4 is the fourth schematic flow chart of an air conditioner control method provided by this application.
  • FIG. 5 is a schematic diagram of module connections of an air conditioner control system provided by this application.
  • Figure 6 is a schematic diagram of the positions of the upper guide plate and the lower guide plate in the closed state provided by this application;
  • Figure 7 is a schematic diagram of the positions of the upper and lower guide plates in the first stage of cooling mode provided by this application.
  • Figure 8 is a schematic diagram of the positions of the upper and lower guide plates in the second stage of cooling mode provided by this application.
  • Figure 9 is a schematic diagram of the positions of the upper and lower guide plates in the first stage of the heating mode provided by this application.
  • Figure 10 is a schematic diagram of the positions of the upper and lower guide plates in the second stage of the heating mode provided by this application;
  • Figure 11 is a schematic structural diagram of an electronic device provided by this application.
  • the air conditioner After the air conditioner is turned on, it obtains the working mode currently selected by the user and the set target temperature. After determining the working mode, it collects the indoor ambient temperature through the temperature sensing device of the air conditioner;
  • the target temperature After the target temperature is determined, it can be determined that the wind speed and blowing direction need to be adjusted to meet user needs.
  • S300 Determine that the indoor ambient temperature meets the set temperature threshold condition, and switch the working mode until the indoor ambient temperature is the same as the target temperature.
  • the mode After judging that the indoor ambient temperature reaches the set temperature threshold condition, the mode will be switched in time to provide a more comfortable experience.
  • Adjust the wind speed and blowing direction according to the target temperature including:
  • the user feels hot indoors due to different physical conditions, and just after the air conditioner is turned on, the indoor ambient temperature is higher. After determining the target temperature, quickly adjust the wind speed and blowing angle to help quickly cool down and meet user needs.
  • the temperature range changes the fan speed of the air conditioner to adjust the wind speed, specifically including:
  • the fan speed of the air conditioner is reduced.
  • the upper guide plate 1 and the lower guide plate 2 of the air conditioner are both installed at the air outlet and can be rotated and adjusted.
  • the horizontal blowing angle is changed by adjusting the rotation angle of the upper guide plate 1 and the lower guide plate 2.
  • the vertical swing blade is installed in the air outlet, and the blowing angle in the vertical direction is changed by adjusting the rotation angle of the vertical swing blade.
  • the initial target temperature in the first stage is set to 20°C
  • the fan speed of the air conditioner is adjusted to the maximum, so that the wind speed reaches the maximum strong wind force
  • the upper guide plate 1 of the air conditioner is controlled.
  • the lower guide plate 2 rotates 52° counterclockwise based on the closed state.
  • the vertical swing blade is in the maximum air outlet position.
  • the left edge wind of the vertical swing blade is 60° and the right edge wind is 60°. , quickly reduce the indoor ambient temperature.
  • the working mode is switched until The indoor ambient temperature is the same as the target temperature, including:
  • Adjust the working status of the air conditioner in the switched working mode until the indoor ambient temperature is the same as the target temperature including:
  • the air conditioner in the cooling mode, after the initial target temperature is set, the air conditioner starts working. After working for three minutes, the indoor ambient temperature is collected, the temperature threshold is set to 23°C, and it is judged whether the indoor ambient temperature is less than or equal to 23°C. When the indoor ambient temperature is When the ambient temperature is greater than 23°C, the air conditioner continues to work according to the current working state. When the indoor ambient temperature is less than or equal to 23°C, the working mode of the air conditioner is adjusted.
  • the target temperature is 24°C.
  • Adjust the upper guide plate 1 to rotate counterclockwise 65 degrees based on the closed state.
  • ° adjust the lower guide plate 2 to keep it closed without rotating.
  • the vertical swing blade is in the maximum wind outlet position, the left edge wind of the vertical swing blade is 45°, and the right edge wind is 45°.
  • the indoor ambient temperature is collected.
  • the set temperature threshold in the second stage is 25°C. It is judged whether the indoor ambient temperature is less than or equal to 25°C. When the indoor ambient temperature is greater than 25°C, the air conditioner continues to work in the current working state. Carry out work and adjust the working mode of the air conditioner when the indoor ambient temperature is less than or equal to 25°C.
  • the target temperature is 26°C.
  • the fan of the air conditioner is adjusted to work at a low speed to blow out low-speed wind to avoid direct blowing to people.
  • Adjust the upper guide plate 1 to rotate 65° counterclockwise based on the closed state, and adjust the lower guide plate 2 to rotate 10° clockwise based on the closed state.
  • the vertical swing blade is in the left and right automatic swing state.
  • the left edge wind of the vertical swing blade is 30° and the right edge wind is 30°. until the indoor ambient temperature reaches the target temperature.
  • the initial target temperature in the first stage is set to 29°C
  • the fan speed of the air conditioner is adjusted to the maximum, so that the wind speed reaches the maximum Strong wind
  • control the upper guide plate 1 of the air conditioner to rotate 100° counterclockwise based on the closed state
  • the lower guide 2 to rotate 105° clockwise based on the closed state
  • the vertical swing blade is at the maximum wind outlet position.
  • the left edge wind of the leaf is 60°
  • the right edge wind is 60°, which quickly increases the indoor ambient temperature.
  • the heating mode collect the indoor ambient temperature after working for three minutes, set the temperature threshold to 28°C, and determine whether the indoor ambient temperature is greater than or equal to 28°C.
  • the air conditioner continues to work in the current working state Carry out work and adjust the working mode of the air conditioner when the indoor ambient temperature is greater than or equal to 28°C.
  • the target temperature is 27°C.
  • the fan speed of the air conditioner is adjusted to blow out automatic wind to prevent direct blowing. Referring to Figure 10, adjust the upper guide plate 1 to rotate 20° clockwise based on the closed state, and adjust the lower guide plate 2 to rotate 85° clockwise based on the closed state.
  • the vertical swing blade is in the left and right automatic swing state.
  • the left edge wind of the vertical swing blade is 45° and the right edge wind is 45°. until the indoor ambient temperature reaches the target temperature.
  • This application provides an air conditioner control method that, by acquiring a preset working mode, controls the wind speed and blowing angle according to the target temperature in the current working mode.
  • the working mode is switched. , to meet the personalized needs of users, and automatically adjust the blowing speed and blowing angle according to different scenarios to improve the user experience.
  • an air conditioner control system which includes:
  • the data acquisition module 110 is used to acquire the preset operating mode, target temperature and indoor ambient temperature of the air conditioner;
  • the state adjustment module 120 is used to adjust the wind speed and blowing direction according to the target temperature
  • the mode switching module 130 is used to determine that the indoor ambient temperature meets the set temperature threshold condition, and to switch the working mode until the indoor ambient temperature is the same as the target temperature.
  • the data acquisition module 110 acquires the working mode currently selected by the user and the set target temperature after the air conditioner is turned on, and collects the indoor ambient temperature through the temperature sensing device of the air conditioner after determining the working mode.
  • the average of the three measurement results within the set time period is taken as the indoor ambient temperature value at the current moment. Obtaining accurate data helps to subsequently adjust the air conditioner's working mode to meet actual needs.
  • the state adjustment module 120 determines the temperature interval in which the target temperature is located
  • the fan speed of the air conditioner is changed to adjust the wind speed, and the deflection direction of the guide plate and the vertical swing blade of the air conditioner are changed to adjust the blowing direction.
  • the user feels hot indoors due to different physical conditions, and just after the air conditioner is turned on, the indoor ambient temperature is higher. After determining the target temperature, quickly adjust the wind speed and blowing angle to help quickly cool down and meet user needs.
  • Change the fan speed of the air conditioner to adjust the wind speed according to the temperature range including:
  • the fan speed of the air conditioner is reduced.
  • the mode switching module 130 compares the indoor ambient temperature with the set temperature threshold condition
  • the working mode is switched
  • the indoor ambient temperature is constantly approaching the target temperature to meet the different needs of users and achieve the best experience.
  • This application provides an air conditioner control system that, by acquiring a preset working mode, controls the wind speed and blowing angle according to the target temperature in the current working mode.
  • the working mode is switched. , to meet the personalized needs of users. According to different scenarios, the blowing speed and blowing angle are automatically adjusted to improve the user experience.
  • Figure 11 illustrates a schematic diagram of the physical structure of an electronic device.
  • the electronic device may include: a processor 1110, a communications interface 1120, a memory 1130, and a communications bus 1140.
  • the processor 1110, the communications interface 1120, and the memory 1130 complete communication with each other through the communications bus 1140.
  • the processor 1110 can call logical instructions in the memory 1130 to execute an air conditioner control method, which method includes: obtaining the air conditioner preset operating mode, target temperature and indoor ambient temperature;
  • the working mode is switched until the indoor ambient temperature is the same as the target temperature.
  • the above-mentioned logical instructions in the memory 1130 can be implemented in the form of software functional units and can be stored in a computer-readable storage medium when sold or used as an independent product.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which can be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program code. .
  • the present application also provides a computer program product.
  • the computer program product includes a computer program.
  • the computer program can be stored on a non-transitory computer-readable storage medium.
  • the computer can Executing an air conditioner control method provided by each of the above methods, the method includes: obtaining the preset working mode, target temperature and indoor ambient temperature of the air conditioner;
  • the working mode is switched until the indoor ambient temperature is the same as the target temperature.
  • the present application also provides a non-transitory computer-readable storage medium on which a computer program is stored.
  • the computer program is implemented when executed by a processor to execute an air conditioner control method provided by each of the above methods.
  • the method includes: obtaining the preset working mode, target temperature and indoor ambient temperature of the air conditioner;
  • the working mode is switched until the indoor ambient temperature is the same as the target temperature.
  • the device embodiments described above are only illustrative.
  • the units described as separate components may or may not be physically separated.
  • the components shown as units may or may not be physical units, that is, they may be located in One location, or it can be distributed across multiple network units. Some or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. Persons of ordinary skill in the art can understand and implement the method without any creative effort.
  • each embodiment can be implemented by software plus a necessary general hardware platform, and of course, it can also be implemented by hardware.
  • the computer software product can be stored in a computer-readable storage medium, such as ROM/RAM, magnetic disc, optical disk, etc., including a number of instructions to cause a computer device (which can be a personal computer, a server, or a network device, etc.) to execute the methods described in various embodiments or certain parts of the embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Fluid Mechanics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本申请提供空调器控制方法、空调器控制系统,包括:获取空调器预设工作模式、目标温度和室内环境温度;根据所述目标温度调整风速大小和吹风方向;确定所述室内环境温度满足设定温度阈值条件,进行工作模式的切换,直至室内环境温度与目标温度相同。本申请解决了空调器控制模式单一无法满足个性化需求的问题,实现根据用户需求进行多模式工作。

Description

空调器控制方法、空调器控制系统
相关申请的交叉引用
本申请要求于2022年08月29日提交的申请号为202211042661.1,发明名称为“空调器控制方法、空调器控制系统”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本申请涉及空调器控制技术领域,尤其涉及一种空调器控制方法、空调器控制系统。
背景技术
随着社会的发展,人们的生活水平不断提高,空调器已经成为人们日常生活中必不可少的电器设备,空调器通过对建筑或构筑物内环境空气的温度、湿度、流速等参数进行调节和控制,满足了人们对于周围环境的需求。
现有技术中,空调器以其安装方式分为挂式空调器和立式空调器,而立式空调器中又以柜式空调器较为常见,并且,为了增加出风区域,柜式空调器的出风口是竖向延伸布置的,通过空调器内竖向布置的贯流风扇将风从出风口甩出,实现出风。此外,在柜式空调器的出风通道内还会设置竖摆叶,竖摆叶通过左右摆动,来实现左右摆风的目的。但是空调器控制模式过于单一,无法满足人们在特殊场合下对风速和温度的控制需求,导致空调器的使用体验不佳。
发明内容
本申请提供一种空调器控制方法、空调器控制系统,用以解决空调器控制模式单一无法满足个性化需求的问题,实现根据用户需求进行多模式工作。
本申请提供一种空调器控制方法,包括:
获取空调器预设工作模式、目标温度和室内环境温度;
根据所述目标温度调整风速大小和吹风方向;
确定所述室内环境温度满足设定温度阈值条件,进行工作模式的切换,直至室内环境温度与目标温度相同。
根据本申请提供的一种空调器控制方法,根据所述目标温度调整风速大小和吹风方向,具体包括:
判断所述目标温度所处的温度区间;
根据所述温度区间改变空调器的风机转速调节风速大小,调整空调器的导板偏转方向和竖摆叶偏转方向调整吹风方向。
根据本申请提供的一种空调器控制方法,根据所述温度区间改变空调器的风机转速调节风速大小,具体包括:
确定目标温度所处的温度区间与室内环境温度差值大于第一阈值时,增大空调器的风机转速;
确定目标温度所处的温度区间与室内环境温度差值小于第一阈值时,降低空调器的风机转速。
根据本申请提供的一种空调器控制方法,所述改变空调器的导板偏转方向和竖摆叶偏转方向调整吹风方向,具体包括:
根据目标温度所处的温度区间改变空调器的上导板和下导板转动的角度;
根据目标温度所处的温度区间改变竖摆叶位置调节左右两侧边际风的吹风角度。
根据本申请提供的一种空调器控制方法,当所述室内环境温度满足设定温度阈值条件时,进行工作模式的切换,直至室内环境温度与目标温度相同,具体包括:
将室内环境温度与设定温度阈值条件进行比对;
确定室内环境温度满足设定温度阈值条件时,切换工作模式;
在切换后的工作模式下调整空调器工作状态,直至室内环境温度与目标温度相同。
根据本申请提供的一种空调器控制方法,所述在切换后的工作模式下调整空调器工作状态,直至室内环境温度与目标温度相同,具体包括:
在工作模式切换后,生成新的目标温度;
根据新的目标温度调整风速大小和吹风方向,直至室内环境温度与目标温度相同。
本申请还提供一种空调器控制系统,所述系统包括:
数据获取模块,用于获取空调器预设工作模式、目标温度和室内环境温度;
状态调整模块,用于根据所述目标温度调整风速大小和吹风方向;
模式切换模块,用于确定所述室内环境温度满足设定温度阈值条件时,进行工作模式的切换,直至室内环境温度与目标温度相同。
本申请还提供一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如上述任一种所述空调器控制方法。
本申请还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如上述任一种所述空调器控制方法。
本申请还提供一种计算机程序产品,包括计算机程序,所述计算机程序被处理器执行时实现如上述任一种所述空调器控制方法。
本申请提供的一种空调器控制方法、空调器控制系统,通过获取预设工作模式,在当前工作模式下,根据目标温度控制风速大小和吹风角度,当室内环境温度满足设定的温度阈值条件后,切换工作模式,满足用户的个性化需求,根据场景不同,吹风速度和吹风角度进行自动调整,提升用户的使用体验。
附图说明
为了更清楚地说明本申请或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作以简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请提供的一种空调器控制方法的流程示意图之一;
图2是本申请提供的一种空调器控制方法的流程示意图之二;
图3是本申请提供的一种空调器控制方法的流程示意图之三;
图4是本申请提供的一种空调器控制方法的流程示意图之四;
图5是本申请提供的一种空调器控制系统的模块连接示意图;
图6是本申请提供的闭合状态下上导板和下导板位置示意图;
图7是本申请提供的制冷模式下第一阶段上导板和下导板位置示意图
图8是本申请提供的制冷模式下第二阶段上导板和下导板位置示意图
图9是本申请提供的制热模式下第一阶段上导板和下导板位置示意图
图10是本申请提供的制热模式下第二阶段上导板和下导板位置示意图;
图11是本申请提供的电子设备的结构示意图。
附图标记:
1:上导板;2:下导板;110:数据获取模块;120:状态调整模块;
130:模式切换模块;
1110:处理器;1120:通信接口;1130:存储器;1140:通信总线。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
下面结合图1-图4描述本申请的一种空调器控制方法,包括:
S100、获取空调器预设工作模式、目标温度和室内环境温度;
空调器在开启后获取用户当前选择的工作模式和设定的目标温度,确定工作模式后通过空调器自带的温度传感设备采集室内环境温度;
S200、根据所述目标温度调整风速大小和吹风方向;
目标温度确定后能够确定需要对风速和吹风方向进行调整,满足用户需求。
S300、确定所述室内环境温度满足设定温度阈值条件,进行工作模式的切换,直至室内环境温度与目标温度相同。
判断室内环境温度达到设定温度阈值条件后,及时切换模式,以提供更加舒适的体验。
根据所述目标温度调整风速大小和吹风方向,具体包括:
S201、判断所述目标温度所处的温度区间;
S202、根据所述温度区间改变空调器的风机转速调节风速大小,调整空调器的导板偏转方向和竖摆叶偏转方向调整吹风方向。
在制冷模式下,用户在室内由于体感状态不同,并且空调刚开启后,室内环境温度较高,体感热。确定目标温度后,快速调整风速大小和吹风角度,有助于快速降温,满足用户需求。
所述温度区间改变空调器的风机转速调节风速大小,具体包括:
确定目标温度所处的温度区间与室内环境温度差值大于第一阈值时,增大空调器的风机转速;
确定目标温度所处的温度区间与室内环境温度差值小于第一阈值时,降低空调器的风机转速。
改变空调器的导板偏转方向和竖摆叶偏转方向调整吹风方向,具体包括:
根据目标温度所处的温度区间调整空调器的上导板1和下导板2转动的角度;
根据目标温度所处的温度区间调整竖摆叶位置调节左右两侧边际风的吹风角度。
本申请中,空调器的上导板1和下导板2均安装在出风口,能够进行旋转调节。通过调节上导板1和下导板2的旋转角度改变水平方向吹风角度。竖摆叶安装在出风口内,通过调节竖摆叶的旋转角度改变竖直方向上吹风角度。
本申请中,在制冷模式下,参考图6和图7,第一阶段初始目标温度设定20℃,调节空调器的风机转速最大,使风速达到最大的强劲风力,控制空调器的上导板1以闭合状态为基准逆时针旋转100°,下导板2以闭合状态为基准逆时针旋转52°,竖摆叶处于最大出风位置,竖摆叶左侧边际风60°,右侧边际风60°,快速降低室内环境温度。
室内环境温度满足设定温度阈值条件时,进行工作模式的切换,直至 室内环境温度与目标温度相同,具体包括:
S301、将室内环境温度与设定温度阈值条件进行比对;
S302、当室内环境温度满足设定温度阈值条件时,切换工作模式;
S303、在切换后的工作模式下调整空调器工作状态,直至室内环境温度与目标温度相同。
在切换后的工作模式下调整空调器工作状态,直至室内环境温度与目标温度相同,具体包括:
S3031、在工作模式切换后,生成新的目标温度;
S3032、根据新的目标温度调整风速大小和吹风方向,直至室内环境温度与目标温度相同。
本申请中,在制冷模式下,初始目标温度设定后,空调器进行工作,工作三分钟后采集室内环境温度,设定温度阈值为23℃,判断室内环境温度是否小于等于23℃,当室内环境温度大于23℃时,空调器继续按照当前的工作状态进行工作,当室内环境温度小于等于23℃时,调节空调器的工作模式。
在工作模式切换后,进入第二阶段,参考图8,目标温度为24℃,调整空调器的风机按照中速进行工作,吹出中速风,调整上导板1以闭合状态为基准逆时针旋转65°,调整下导板2保持闭合状态,无需旋转。竖摆叶处于最大出风位置,竖摆叶左侧边际风45°,右侧边际风45°。
在运行十分钟后,采集室内环境温度,第二阶段的设定温度阈值为25℃,判断室内环境温度是否小于等于25℃,当室内环境温度大于25℃时,空调器继续按照当前的工作状态进行工作,当室内环境温度小于等于25℃时,调节空调器的工作模式。
工作模式切换后,进入第三阶段,目标温度为26℃,调整空调器的风机按照低速进行工作,吹出低速风,避免对人直吹。调整上导板1以闭合状态为基准逆时针旋转65°,调整下导板2以闭合状态为基准顺时针旋转10°。竖摆叶处于左右自动摆风状态,竖摆叶左侧边际风30°,右侧边际风30°。直至室内环境温度达到目标温度。
当用户选择进入制热模式时,为了快速提升室内环境温度,第一阶段初始目标温度设定29℃,调节空调器的风机转速最大,使风速达到最大的 强劲风力,参考图9,控制空调器的上导板1以闭合状态为基准逆时针旋转100°,下导板2以闭合状态为基准顺时针旋转105°,竖摆叶处于最大出风位置,竖摆叶左侧边际风60°,右侧边际风60°,快速提升室内环境温度。
在制热模式下,工作三分钟后采集室内环境温度,设定温度阈值为28℃,判断室内环境温度是否大于等于28℃,当室内环境温度小于28℃时,空调器继续按照当前的工作状态进行工作,当室内环境温度大于等于28℃时,调节空调器的工作模式。
在工作模式切换后,进入第二阶段,目标温度为27℃,调整空调器的风机转速,吹出自动风,实现防直吹。参考图10,调整上导板1以闭合状态为基准顺时针旋转20°,调整下导板2以闭合状态为基准顺时针旋转85°。竖摆叶处于左右自动摆风状态,竖摆叶左侧边际风45°,右侧边际风45°。直至室内环境温度达到目标温度。
本申请提供的一种空调器控制方法,通过获取预设工作模式,在当前工作模式下,根据目标温度控制风速大小和吹风角度,当室内环境温度满足设定的温度阈值条件后,切换工作模式,满足用户的个性化需求,根据场景不同,吹风速度和吹风角度进行自动调整,提升用户的使用体验。
参考图5,本申请还公开了一种空调器控制系统,所述系统包括:
数据获取模块110,用于获取空调器预设工作模式、目标温度和室内环境温度;
状态调整模块120,用于根据所述目标温度调整风速大小和吹风方向;
模式切换模块130,用于确定所述室内环境温度满足设定温度阈值条件,进行工作模式的切换,直至室内环境温度与目标温度相同。
数据获取模块110,在空调器开启后获取用户当前选择的工作模式和设定的目标温度,确定工作模式后通过空调器自带的温度传感设备采集室内环境温度。
室内环境温度由于干扰因素存在测量误差,则取设定时间周期内三次测量结果的平均值,作为当前时刻室内环境温度值。通过获取准确的数据有助于后续进行空调器工作模式的调节,满足实际需求。
状态调整模块120,判断所述目标温度所处的温度区间;
根据所述温度区间改变空调器的风机转速调节风速大小,改变空调器的导板偏转方向和竖摆叶偏转方向调整吹风方向。
在制冷模式下,用户在室内由于体感状态不同,并且空调刚开启后,室内环境温度较高,体感热。确定目标温度后,快速调整风速大小和吹风角度,有助于快速降温,满足用户需求。
根据温度区间改变空调器的风机转速调节风速大小,具体包括:
确定目标温度所处的温度区间与室内环境温度差值大于第一阈值时,增大空调器的风机转速;
确定目标温度所处的温度区间与室内环境温度差值小于第一阈值时,降低空调器的风机转速。
改变空调器的导板偏转方向和竖摆叶偏转方向调整吹风方向,具体包括:
根据目标温度所处的温度区间调整空调器的上导板1和下导板2转动的角度;
根据目标温度所处的温度区间调整竖摆叶位置调节左右两侧边际风的吹风角度。
模式切换模块130,将室内环境温度与设定温度阈值条件进行比对;
当室内环境温度满足设定温度阈值条件时,切换工作模式;
在切换后的工作模式下调整空调器工作状态,直至室内环境温度与目标温度相同。
在工作模式切换后,生成新的目标温度;
根据新的目标温度调整调整风速大小和吹风方向,直至室内环境温度与目标温度相同。
随着模式的切换,室内环境温度也在不断趋近于目标温度,满足用户在不同需求,以达到最佳的体验状态。
本申请提供的一种空调器控制系统,通过获取预设工作模式,在当前工作模式下,根据目标温度控制风速大小和吹风角度,当室内环境温度满足设定的温度阈值条件后,切换工作模式,满足用户的个性化需求,根据场景不同,吹风速度和吹风角度进行自动调整,提升用户的使用体验。
图11示例了一种电子设备的实体结构示意图,如图11所示,该电子 设备可以包括:处理器(processor)1110、通信接口(Communications Interface)1120、存储器(memory)1130和通信总线1140,其中,处理器1110,通信接口1120,存储器1130通过通信总线1140完成相互间的通信。处理器1110可以调用存储器1130中的逻辑指令,以执行一种空调器控制方法,该方法包括:获取空调器预设工作模式、目标温度和室内环境温度;
根据所述目标温度调整风速大小和吹风方向;
当所述室内环境温度满足设定温度阈值条件时,进行工作模式的切换,直至室内环境温度与目标温度相同。
此外,上述的存储器1130中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
另一方面,本申请还提供一种计算机程序产品,所述计算机程序产品包括计算机程序,计算机程序可存储在非暂态计算机可读存储介质上,所述计算机程序被处理器执行时,计算机能够执行上述各方法所提供的一种空调器控制方法,该方法包括:获取空调器预设工作模式、目标温度和室内环境温度;
根据所述目标温度调整风速大小和吹风方向;
当所述室内环境温度满足设定温度阈值条件时,进行工作模式的切换,直至室内环境温度与目标温度相同。
又一方面,本申请还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现以执行上述各方法提供的一种空调器控制方法,该方法包括:获取空调器预设工作模式、目标温度和室内环境温度;
根据所述目标温度调整风速大小和吹风方向;
当所述室内环境温度满足设定温度阈值条件时,进行工作模式的切换,直至室内环境温度与目标温度相同。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (10)

  1. 一种空调器控制方法,包括:
    获取空调器预设工作模式、目标温度和室内环境温度;
    根据所述目标温度调整风速大小和吹风方向;
    确定所述室内环境温度满足设定温度阈值条件,进行工作模式的切换,直至室内环境温度与目标温度相同。
  2. 根据权利要求1所述的空调器控制方法,其中,根据所述目标温度调整风速大小和吹风方向,具体包括:
    判断所述目标温度所处的温度区间;
    根据所述温度区间改变空调器的风机转速调节风速大小,调整空调器的导板偏转方向和竖摆叶偏转方向调整吹风方向。
  3. 根据权利要求2所述的空调器控制方法,其中,根据所述温度区间改变空调器的风机转速调节风速大小,具体包括:
    确定目标温度所处的温度区间与室内环境温度差值大于第一阈值时,增大空调器的风机转速;
    确定目标温度所处的温度区间与室内环境温度差值小于第一阈值时,降低空调器的风机转速。
  4. 根据权利要求2所述的空调器控制方法,其中,所述调整空调器的导板偏转方向和竖摆叶偏转方向调整吹风方向,具体包括:
    根据目标温度所处的温度区间调整空调器的上导板和下导板转动的角度;
    根据目标温度所处的温度区间调整竖摆叶位置调节左右两侧边际风的吹风角度。
  5. 根据权利要求1所述的空调器控制方法,其中,当所述室内环境温度满足设定温度阈值条件时,进行工作模式的切换,直至室内环境温度与目标温度相同,具体包括:
    将室内环境温度与设定温度阈值条件进行比对;
    确定室内环境温度满足设定温度阈值条件时,切换工作模式;
    在切换后的工作模式下调整空调器工作状态,直至室内环境温度与目标温度相同。
  6. 根据权利要求5所述的空调器控制方法,其中,所述在切换后的工作模式下调整空调器工作状态,直至室内环境温度与目标温度相同,具体包括:
    在工作模式切换后,生成新的目标温度;
    根据新的目标温度调整风速大小和吹风方向,直至室内环境温度与目标温度相同。
  7. 一种空调器控制系统,所述系统包括:
    数据获取模块,用于获取空调器预设工作模式、目标温度和室内环境温度;
    状态调整模块,用于根据所述目标温度调整风速大小和吹风方向;
    模式切换模块,用于确定所述室内环境温度满足设定温度阈值条件,进行工作模式的切换,直至室内环境温度与目标温度相同。
  8. 一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其中,所述处理器执行所述程序时实现如权利要求1至6任一项所述空调器控制方法。
  9. 一种非暂态计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现如权利要求1至6任一项所述空调器控制方法。
  10. 一种计算机程序产品,包括计算机程序,其中,所述计算机程序被处理器执行时实现如权利要求1至6任一项所述空调器控制方法。
PCT/CN2023/083306 2022-08-29 2023-03-23 空调器控制方法、空调器控制系统 WO2024045578A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211042661.1 2022-08-29
CN202211042661.1A CN115523640A (zh) 2022-08-29 2022-08-29 空调器控制方法、空调器控制系统

Publications (1)

Publication Number Publication Date
WO2024045578A1 true WO2024045578A1 (zh) 2024-03-07

Family

ID=84696859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/083306 WO2024045578A1 (zh) 2022-08-29 2023-03-23 空调器控制方法、空调器控制系统

Country Status (2)

Country Link
CN (1) CN115523640A (zh)
WO (1) WO2024045578A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115523640A (zh) * 2022-08-29 2022-12-27 青岛海尔空调器有限总公司 空调器控制方法、空调器控制系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190309970A1 (en) * 2018-04-10 2019-10-10 Lg Electronics Inc. Air-conditioner based on parameter learning using artificial intelligence, cloud server, and method of operating and controlling thereof
CN113405240A (zh) * 2021-06-24 2021-09-17 海信(山东)空调有限公司 同步一拖多空调的控制方法和控制装置及空调和存储介质
CN114623572A (zh) * 2022-02-09 2022-06-14 青岛海尔空调器有限总公司 用于空调器的控制方法、控制装置、空调器和存储介质
CN114893894A (zh) * 2022-05-12 2022-08-12 重庆海尔空调器有限公司 空调器送风控制方法、系统及空调器
CN115523640A (zh) * 2022-08-29 2022-12-27 青岛海尔空调器有限总公司 空调器控制方法、空调器控制系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190309970A1 (en) * 2018-04-10 2019-10-10 Lg Electronics Inc. Air-conditioner based on parameter learning using artificial intelligence, cloud server, and method of operating and controlling thereof
CN113405240A (zh) * 2021-06-24 2021-09-17 海信(山东)空调有限公司 同步一拖多空调的控制方法和控制装置及空调和存储介质
CN114623572A (zh) * 2022-02-09 2022-06-14 青岛海尔空调器有限总公司 用于空调器的控制方法、控制装置、空调器和存储介质
CN114893894A (zh) * 2022-05-12 2022-08-12 重庆海尔空调器有限公司 空调器送风控制方法、系统及空调器
CN115523640A (zh) * 2022-08-29 2022-12-27 青岛海尔空调器有限总公司 空调器控制方法、空调器控制系统

Also Published As

Publication number Publication date
CN115523640A (zh) 2022-12-27

Similar Documents

Publication Publication Date Title
WO2024045578A1 (zh) 空调器控制方法、空调器控制系统
JP6902623B2 (ja) エアコンおよびその制御方法、制御装置
CN109612013B (zh) 空调器的控制方法、装置、空调器及存储介质
WO2022218014A1 (zh) 用于家电控制的方法、装置和家电
WO2022227529A1 (zh) 一种空调智能控制方法、控制装置及空调系统
CN112984720A (zh) 用于空调的控制方法及装置、空调
CN106679104B (zh) 空调器风速控制方法、控制器及空调器
CN111780241A (zh) 一种双出风口的空调器
WO2023231454A1 (zh) 空调送风控制方法、控制装置、电子设备及空调
CN110173856A (zh) 空调器的控制方法、空调器及计算机可读存储介质
WO2023065685A1 (zh) 用于控制空调出风的方法及装置、空调、存储介质
CN111351186A (zh) 空调器的运行方法、装置、空调器和计算机可读存储介质
WO2022252719A1 (zh) 用于空调的控制方法及装置、空调
WO2023005218A1 (zh) 空调器控制方法、控制装置及空调器
CN113623733B (zh) 一种无风感控制方法、装置及空调器
CN114843661A (zh) 储能系统及其热管理控制方法
CN112944624B (zh) 用于空调控制的方法和空调
WO2023221484A1 (zh) 一种空调器的控制方法、装置及空调器
WO2023236550A1 (zh) 空调器的控制方法、装置及空调器
WO2023246115A1 (zh) 运行控制方法、装置、设备、介质及空调器
WO2024007593A1 (zh) 空调器及其控制方法、装置、存储介质
WO2023029535A1 (zh) 柜机空调的控制方法、控制系统、电子设备和存储介质
CN115325670B (zh) 空调及其制冷控制方法
EP3604959B1 (en) Automatic wind-free control method and device, and computer readable storage medium
CN114995543B (zh) 一种通过人工智能ai控制环境调节设备的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23858620

Country of ref document: EP

Kind code of ref document: A1