WO2024045562A1 - 一种煅白真空碳热还原炼镁设备及方法 - Google Patents

一种煅白真空碳热还原炼镁设备及方法 Download PDF

Info

Publication number
WO2024045562A1
WO2024045562A1 PCT/CN2023/082065 CN2023082065W WO2024045562A1 WO 2024045562 A1 WO2024045562 A1 WO 2024045562A1 CN 2023082065 W CN2023082065 W CN 2023082065W WO 2024045562 A1 WO2024045562 A1 WO 2024045562A1
Authority
WO
WIPO (PCT)
Prior art keywords
condensation
chamber
magnesium
condensation chamber
reaction chamber
Prior art date
Application number
PCT/CN2023/082065
Other languages
English (en)
French (fr)
Inventor
田阳
马廷壮
杨斌
徐宝强
蒋文龙
王飞
李一夫
王立鹏
梁栋
余镕
Original Assignee
昆明理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆明理工大学 filed Critical 昆明理工大学
Publication of WO2024045562A1 publication Critical patent/WO2024045562A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/20Obtaining alkaline earth metals or magnesium
    • C22B26/22Obtaining magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/10Dry methods smelting of sulfides or formation of mattes by solid carbonaceous reducing agents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/16Dry methods smelting of sulfides or formation of mattes with volatilisation or condensation of the metal being produced

Definitions

  • the present invention relates to the technical field of magnesium metallurgy, and in particular to a white calcined vacuum carbothermal reduction magnesium smelting equipment and method.
  • Magnesium and magnesium alloys are known as "21st century green engineering materials” and "revolutionary medical metal materials”. As the lightest structural metal in industrial applications, magnesium has the advantages of light weight, high specific strength, large specific stiffness, good biomechanical properties and low corrosion rate. It is widely used in aerospace, military industry, nuclear energy industry, Automobile industry, 3C industry, sacrificial anode, biomedicine and other fields.
  • the world's demand for magnesium is increasing by 10% every year, which has good development prospects.
  • the main commercial method for producing magnesium in the world is the Pidgeon process.
  • China's annual output of raw magnesium accounts for more than 80% of the world's total, of which raw magnesium produced by the Pidgeon process accounts for more than 90% of this ratio.
  • the Pidgeon method has the disadvantages of high energy consumption, low production efficiency, high labor intensity, and the production of large amounts of sulfur oxides and carbon oxide gases.
  • the reducing agent ferrosilicon used is not only expensive, but also causes serious environmental pollution during the preparation process. , seriously violates the national policy of "carbon peaking and carbon neutrality" and restricts the development of this process.
  • the vacuum carbothermal reduction method uses cheap carbon as the reducing agent. It is an efficient and green new smelting technology. It has the characteristics of high efficiency, low carbon reducing agent cost, low solid waste discharge, no slag formation, and no pollution.
  • Chinese Patent Publication No. CN1769505A discloses a smelting method for extracting metallic magnesium by thermal reduction of magnesia ore coal, using raw materials with a magnesium oxide mass content of more than 95% for vacuum carbothermal reduction. , but the purity of the obtained product magnesium is only about 90%, which seriously restricts the subsequent processing and application of the product magnesium.
  • the first aspect of this application provides a calcined vacuum carbothermal reduction magnesium equipment, including a reaction chamber, a condensation chamber, a first temperature control module and a pressure control module.
  • the first temperature control module is used to control the temperature in the reaction chamber.
  • Adjustment, the air pressure control module is used to adjust the air pressure in the reaction chamber.
  • the reaction chamber is connected to the condensation chamber through a drainage pipeline.
  • the drainage pipeline is used to control the flow of gas products in the reaction chamber into the condensation chamber to achieve condensation.
  • the condensation chamber is equipped with multiple condensation zones connected in sequence along the gas product flow direction.
  • the equipment further includes a second temperature control module, which is used to control the temperature of the condensation chamber.
  • the second temperature control module cooperates with the drainage pipeline to achieve a dynamic balance of the condensation process of gas products in the condensation chamber.
  • condensation chamber is arranged above the reaction chamber.
  • condensation zones in the condensation chamber are arranged sequentially along the longitudinal direction.
  • a heat insulation member is provided between the reaction chamber and the condensation chamber.
  • the heat insulating member is a heat insulating cover
  • the reaction chamber is arranged in the heat insulating cover.
  • the equipment further includes a shell, and the reaction chamber, condensation chamber, and heat shield are respectively arranged in the shell.
  • baffles are provided in the condensation chamber, the baffles divide the condensation chamber into multi-stage condensation areas, and a condensation groove is provided on the top of the baffles.
  • the equipment further includes a cooling system, which is used to cool down the reaction chamber.
  • the second aspect of this application provides a method for magnesium smelting by vacuum carbothermal reduction of calcined white, which includes the following steps: mixing calcined white, coking coal and reduction catalyst, then performing a pressing process, and then placing the pressed mixture in an inert gas.
  • the insulation reaction is carried out at 1473K ⁇ 1723K.
  • the gas products are guided into the multi-stage condensation zone in the condensation chamber, and the temperature of the condensation chamber is controlled to allow the The temperature is maintained at 643K ⁇ 733K to achieve a dynamic balance of the gas product condensation process in the condensation chamber; along the flow direction of the gas product, the temperatures of the condensation zones at all levels in the condensation chamber gradually increase. reduce.
  • calcined white coal and coking coal are mixed at a molar ratio of MgO and C of 1:1.8, and/or the mass percentage of sodium fluoride in the mixture is 1% to 13%.
  • the mass percentage of sodium fluoride in the mixture is 3% to 13%.
  • the mass percentage of sodium fluoride in the mixture is 5% to 13%.
  • the temperature ranges of each stage of the multi-stage condensation zone are 733K ⁇ 713K, 713K ⁇ 693K, 693K ⁇ 673K, and 673K ⁇ 643K.
  • the temperature intervals of each stage of the multi-stage condensation zone are arranged in sequence along the longitudinal direction.
  • the method is performed based on the above equipment.
  • the present invention at least has the following technical effects:
  • This invention uses different condensation zones to condense different components in the gas product in order of high and low dew points, effectively avoiding the condensation process in which impurities are mixed into the magnesium.
  • the gas product enters the condensation chamber.
  • different components stably exist in the corresponding condensation zones, and the classification is obviously stable.
  • the condensation zone corresponding to magnesium is located in the middle section, silicon and aluminum are located at the front end, and sodium, potassium and CO are mainly concentrated at the end. In this way, even during the entire condensation process All gas products are concentrated in the condensation chamber and are not led out, which can also ensure that magnesium is efficiently condensed and collected in the middle condensation zone.
  • Figure 1 is a schematic structural diagram of the white calcined vacuum carbothermal reduction magnesium production equipment in Example 1;
  • Figure 2 is a front cross-sectional view of the whitened vacuum carbothermal reduction magnesium smelting equipment in Example 1;
  • Figure 3 is a sectional view of the connection structure of the condensation chamber and the reaction chamber in Figure 1;
  • Figure 4 is a flow chart of the whitened vacuum carbothermal reduction magnesium production method in Example 2.
  • Figure 5 is an XRD detection chart of the residue in the reaction chamber in Example 4.
  • Figure 6 is an SEM detection picture of the residue in the reaction chamber in Example 4.
  • Figure 7 is an XRD detection chart of the condensation product in the third condensation zone from bottom to top in the condensation chamber in Example 4;
  • Figure 8 is an SEM detection picture of the condensation product in the third condensation zone from bottom to top in the condensation chamber in Example 4.
  • Figure 9 is an SEM detection picture of the condensation product in the fourth condensation zone from bottom to top in the condensation chamber in Example 4.
  • Figure 10 is an SEM detection picture of the condensation product in the condensation chamber in the control experiment of Example 4.
  • connection In the present invention, unless otherwise clearly stated and limited, the terms “installation”, “connection”, “connection”, “fixing” and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interaction between two elements.
  • connection connection
  • fixing and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interaction between two elements.
  • the specific meanings of the above terms in the present invention can be understood according to specific circumstances.
  • the terms “first”, “second”, “third”, etc. are only used to distinguish descriptions and shall not be understood as indicating or implying relative importance.
  • the first feature being above or below the second feature may include the first and second features being in direct contact, or the first and second features not being in direct contact. is through additional characteristic contact between them.
  • the first feature on, above and above the second feature includes the first feature directly above and diagonally above the second feature, or simply means that the first feature is higher level than the second feature.
  • the first feature below, below and below the second feature includes the first feature directly below and diagonally below the second feature, or simply means that the first feature has a smaller horizontal height than the second feature.
  • the embodiment of the present application provides a calcined vacuum carbothermal reduction magnesium equipment, as shown in Figures 1 to 3, including a reaction chamber 40, a condensation chamber 20, a first temperature control module 70 and a pressure control module.
  • a temperature control module 70 is used to adjust the temperature in the reaction chamber 40.
  • the air pressure control module is used to adjust the air pressure in the reaction chamber 40.
  • the reaction chamber 40 is connected to the condensation chamber 20 through the drainage pipeline 30.
  • the drainage pipeline 30 is used to control the flow of gas products in the reaction chamber 40 into the condensation chamber 20 to achieve a dynamic balance of the condensation process of the gas products in the condensation chamber 20.
  • the condensation chamber 20 is provided with a plurality of gas products connected in sequence along the flow direction of the gas products. Condensation zone.
  • a condenser In the existing calcined white vacuum carbothermal reduction magnesium smelting technology, a condenser is generally directly used to control the condensation temperature of 600°C to 680°C to condense and collect the gaseous products produced during the calcined white vacuum carbothermal reduction magnesium smelting process.
  • the gas products In addition to magnesium vapor, it also contains impurities such as CO, AL, Si, Na, and K.
  • Direct condensation of the gas product will cause the impurities to be mixed into the condensation process of magnesium, resulting in a reduction in the purity of magnesium in the condensation product; and in this embodiment
  • a drainage pipeline 30 is provided to connect the reaction chamber 40 and the condensation chamber 20.
  • the drainage pipeline 30 is used to control the flow rate of the gas product in the reaction chamber 40 into the condensation chamber 20, and the drainage pipeline 30 restricts the flow rate of the gas product into the condensation chamber 20.
  • the gas products in the reaction chamber 40 can continuously enter the condensation chamber 20, and then Achieve a continuous and stable balance between reduction reaction and product condensation collection, achieving the technical effect of improving product purity; in addition, based on the dynamic balance of the gas product condensation process in the condensation chamber 20, the different components of the gas product after entering the condensation chamber 20 are stable Exists in the corresponding condensation zone, the classification is obviously stable.
  • the condensation zone corresponding to magnesium is located in the middle section, silicon and aluminum are located at the front end, and sodium, potassium and CO are mainly concentrated at the end.
  • the equipment also includes a second temperature control module.
  • the second temperature control module is used to control the temperature of the condensation chamber 20.
  • the second temperature control module cooperates with the drainage pipeline 30 to realize the condensation process of the gas product in the condensation chamber 20. dynamic balance.
  • the length of the drainage pipeline 30 needs to be controlled, and the reaction chamber 40 and the condensation chamber 20 need to be located close to each other. Therefore, The heat generated by the high-temperature reaction conditions in the reaction chamber 40 will affect the condensation chamber 20 temperature, in order to ensure the dynamic balance of the gas product condensation process in the condensation chamber 20, by using the second temperature control module to regulate the temperature of the condensation chamber 20, it can avoid the thermal radiation of the reaction chamber 40 from destroying the balance in the condensation chamber 20, At the same time, the second temperature control module and the drainage pipeline 30 can also realize the dynamic balance of the gas product condensation process in the condensation chamber 20, further limit and reduce the temperature fluctuation in the condensation chamber 20, and ensure the continuity and stability of the condensation and purification process in the condensation chamber 20. conduct.
  • the condensation chamber 20 is disposed above the reaction chamber 40 .
  • the condensation chamber 20 By arranging the condensation chamber 20 above the reaction chamber 40 and utilizing the principle of hot air rising, there is no need to add an additional power source.
  • the gas products in the reaction chamber 40 will automatically flow into the condensation chamber 20 through the drainage pipe 30, achieving seamless Power automatically pulls the gas product to transfer to the condensation chamber 20, simplifying the equipment structure and improving the ease of use of the equipment.
  • the condensation zones in the condensation chamber 20 are arranged sequentially along the longitudinal direction.
  • the output port of the drainage pipe 30 is located at the bottom of the condensation chamber 20, thereby allowing the gas product to flow from bottom to top, and the thermal radiation of the reaction chamber 40 and the gas product bring about The thermal energy also gradually decreases from bottom to top, so that the temperature range of the condensation zone automatically gradually decreases from bottom to top, thereby eliminating the need for additional sorting of gas products.
  • the gas products After entering the condensation chamber 20, the gas products pass through condensation with gradually lowering temperatures. Zone, different components in the gas product are automatically condensed in the condensation zone of the corresponding temperature range, realizing automatic condensation and purification of magnesium without power, simplifying the equipment structure and improving the convenience of use of the equipment.
  • the temperature ranges of the condensation zone in the condensation chamber 20 are 733K to 713K, 713K to 693K, 693K to 673K, and 673K to 643K.
  • silicon and aluminum are mainly processed in the condensation zones corresponding to the temperature ranges of 733K ⁇ 713K and 713K ⁇ 693K.
  • a heat insulation member 50 is provided between the reaction chamber 40 and the condensation chamber 20 . Since the reaction chamber 40 There is a large temperature difference between the reaction chamber 40 and the condensation chamber 20. In order to reduce the impact of the thermal radiation of the reaction chamber 40 on the condensation chamber 20 and the workload of the second temperature control module, the reaction chamber 40 and the condensation chamber 20 are separated by using a heat insulator 50. The amount of heat transferred from the reaction chamber 40 to the condensation chamber 20 is reduced.
  • the heat insulation member 50 is a heat shield, and the reaction chamber 40 is disposed in the heat shield.
  • the heat insulation member 50 is set as a heat shield, and the reaction chamber 40 is inspected by using the heat shield. Covering reduces the heat loss of the reaction chamber 40 and confines most of the heat energy in the heat shield to assist in insulating the reaction chamber 40, thereby effectively reducing the workload of the first temperature control module 70 during the insulation reaction process.
  • a thermal insulation layer 70 is provided inside the heat shield.
  • the loss of heat energy from the heat shield is further reduced and the energy utilization rate is improved.
  • the thermal insulation layer 70 can be at least one of organic thermal insulation materials, inorganic thermal insulation materials, and metal thermal insulation materials.
  • the thermal insulation layer 70 is preferably a carbon felt thermal insulation layer.
  • the equipment also includes a housing 10, and the reaction chamber 40, the condensation chamber 30, and the heat insulation member 50 are respectively arranged in the housing 10.
  • the shell 10 is used to protect the reaction process, reduce the impact of the environment during the reaction process, and improve the safety of the equipment; in addition, the shell The body 10 can also reduce the heat exchange between the reaction chamber 40, the condensation chamber 20, etc. and the external environment, reduce the workload of the first temperature control module 70 and the second temperature control module, and reduce the temperature fluctuations of the reaction chamber 40 and the condensation chamber 20. Promote the stable progress of magnesium condensation purification.
  • baffles 210 are provided in the condensation chamber 20 .
  • the baffles 210 divide the condensation chamber into multi-stage condensation areas.
  • a condensation groove 220 is provided on the top of the baffles 210 .
  • the equipment further includes a cooling system, which is used to cool down the reaction chamber 40 .
  • the cooling system is turned on to cool down the reaction chamber 40 to lower the reaction chamber 40 and the condensation chamber 20 to normal temperature, and then the air pressure control module is controlled to cool down the reaction chamber 40 and the condensation chamber 20. Adjust to normal pressure, and then collect the condensation products from the condensation chamber 20.
  • the air pressure control module is a low-pressure air source.
  • the air pressure control module preferably uses a vacuum pump;
  • the first temperature control module 70 is an electric heating device.
  • the first temperature control module 70 is preferably A graphite heating body driven by electric energy is used; in this embodiment, it is preferred to use water-cooling equipment as the second temperature control module and the cooling system respectively.
  • a first cooling chamber 80 is provided in the inner wall of the shell 10 corresponding to the condensation chamber 20.
  • the first cooling cavity 80 is filled with the first heat exchange medium.
  • the first cooling cavity 80 is cyclically connected with the first circulating refrigeration system.
  • the first circulating refrigeration system cools the first heat exchange medium. After cooling, the first heat exchange medium is cooled.
  • the heat medium passes into the first cooling chamber 80 to cool the condensation chamber 20, and then the first heat exchange medium is recycled back to the first cycle refrigeration system for cooling;
  • a second cooling chamber 90 is provided in the inner wall of the shell 10 corresponding to the reaction chamber 40 , fill the second cooling cavity 90 with the second heat exchange medium, and at the same time allow the second cooling cavity 90 to be cyclically connected with the second circulating refrigeration system.
  • the second circulating refrigeration system cools the second heat exchange medium, and the cooled second heat exchange medium is The second heat exchange medium flows into the second cooling chamber 90 to cool the reaction chamber 40, and then the second heat exchange medium is recycled back to the second cycle refrigeration system for cooling.
  • first circulation refrigeration system and the second circulation refrigeration system adopt existing water-cooling refrigeration systems, and the first heat exchange medium and the second heat exchange medium are oil or water respectively.
  • a first liquid outlet 820 is provided at the top of the first cooling cavity 80
  • a first liquid inlet 810 is provided at the bottom of the first cooling cavity 80
  • a second liquid inlet 810 is provided at the top of the second cooling cavity 90
  • a liquid outlet 920 and a second liquid inlet 910 are provided at the bottom of the second cooling cavity 90 .
  • the device further includes a temperature detection unit 110 , which is used to detect the temperature of the condensation zone and/or the reaction chamber 40 in the condensation chamber 20 .
  • the temperature detection unit 110 is a thermocouple.
  • five temperature detection units 110 are provided in the equipment. The four temperature detection units 110 perform temperature detection on one layer of condensation zones respectively, and the fifth temperature detection unit 110 detects the reaction temperature. Chamber 40 performs temperature detection.
  • the conduit of the drainage pipeline 30 is preferably provided with a control valve.
  • the embodiment of the present application provides a method for magnesium smelting by calcining vacuum carbothermal reduction, as shown in Figure 4.
  • the equipment in Example 1 performs magnesium smelting by vacuum carbothermal reduction, including the following steps: the existing forged white and coking coal are crushed and ground to 250 mesh (the MgO mass content in the whitened white is 20.93%, produced by Xingtai Kaimei, Hebei Provided by New Material Technology Co., Ltd., the fixed carbon in coking coal is ⁇ 63.58% and is produced by Yunnan Shizong Dashe Zhenxing.
  • the same calcined white coal and coking coal are used), divided into eight groups, and the calcined white coal, coking coal and reduction catalyst CaF 2 Mix, the calcined white coal and coking coal in the mixture are mixed according to the MgO and C molar ratio of 1:1.8.
  • the mass percentage of sodium fluoride in the mixture is 0%, 1%, 3%, 5%, 7%, 9%, 11%, 13%, after mixing evenly, press the lump material under a pressure of 10MPa ⁇ 15MPa to enhance the contact between carbon and magnesium oxide, prevent the lump material from loosening during the subsequent vacuuming process, and promote the solid-solid reaction ; Then, the eight groups of pressed mixtures are respectively carried by crucibles and placed together in a reaction chamber 40 protected by inert gas argon and with a vacuum degree of 70Pa ⁇ 120Pa, and heated to a temperature rise rate of 10K/min ⁇ 15K/min. 1473K ⁇ 1723K, perform a heat preservation reaction at 1473K ⁇ 1723K for 1 hour.
  • the purity of crystallized magnesium was 96.64%; the weight loss rates corresponding to the eight groups of crucibles were 21.5%, 27.0%, 35.8%, 39.2%, 40.0%, 40.4%, 39.0%, 39.6%. It can be seen that after adding calcium fluoride catalyst, the weight loss rate of the raw material increases significantly, and the degree of reduction of whitened vacuum carbothermal reduction magnesium is improved. .
  • the embodiments of the present application provide a method for whitening vacuum carbothermal reduction of magnesium. Based on the equipment in Example 1, whitening vacuum carbothermal reduction of magnesium is performed, including the following steps: the existing whitening and coking coal are crushed and then ground into fine particles. to 250 mesh; divide into eight groups, mix the forged white, coking coal and reduction catalyst NaF, and mix the forged white, coking coal and reduction catalyst NaF. Coking coal is mixed according to the MgO and C molar ratio of 1:1.8. The mass percentage of sodium fluoride in the mixture is 0%, 1%, 3%, 5%, 7%, 9%, 11%, and 13%. Mix evenly.
  • the block material is then pressed into shape under a pressure of 10MPa to 15MPa, and then the eight groups of pressed mixed materials are respectively carried by crucibles and placed together in a reaction chamber 40 protected by inert gas argon and with a vacuum degree of 70Pa to 120Pa. , heating to 1473K to 1723K at a heating rate of 10K/min to 15K/min, and performing a heat preservation reaction at 1473K to 1723K for 1 hour.
  • the gas product is guided into the multi-stage condensation zone in the condensation chamber 20, and
  • the temperature of the condensation chamber 20 is controlled to maintain the temperature of the condensation chamber 20 at 643K ⁇ 733K to achieve a dynamic balance of the gas product condensation process in the condensation chamber 20; along the flow direction of the gas product, four condensation zones are provided in the condensation chamber 20 ;
  • the reaction chamber 40 and the condensation chamber 20 are restored to normal temperature and pressure, and then the condensation products in the condensation chamber 20 are collected, and the products in the third condensation zone from bottom to top are detected.
  • the purity of the crystallized magnesium is 95.59%; the corresponding weight loss rates of the eight groups of crucibles are 21.5%, 33.9%, 40.9%, 43.4%, 44.6%, 45.0%, 45.4%, and 46.3%.
  • the catalytic effect of sodium fluoride catalyst is significantly better than that of calcium fluoride catalyst, especially when the catalyst addition amount is higher than 5%.
  • the embodiments of the present application provide a method for whitening vacuum carbothermal reduction of magnesium. Based on the equipment in Example 1, whitening vacuum carbothermal reduction of magnesium is performed, including the following steps: the existing whitening and coking coal are crushed and then ground into fine particles. to 250 mesh; divide into eight groups, mix calcined white, coking coal and reduction catalyst NaF. The calcined white and coking coal in the mixture are mixed according to the MgO and C molar ratio of 1:1.8.
  • the mass percentage of sodium fluoride in the mixture is 0 %, 1%, 3%, 5%, 7%, 9%, 11%, 13%, after mixing evenly, press and process the block material under a pressure of 10MPa ⁇ 15MPa, and then press the eight groups of mixed materials They are respectively carried by crucibles and placed together in a reaction chamber 40 protected by inert gas argon and with a vacuum degree of 70Pa to 120Pa, heated to 1473K to 1723K at a heating rate of 10K/min to 15K/min, and performed at 1473K to 1723K.
  • the heat preservation reaction is for 2 hours.
  • the gas product is guided into the multi-stage condensation zone in the condensation chamber 20, and the temperature of the condensation chamber 20 is controlled to maintain the temperature of the condensation chamber 20 at 643K ⁇ 733K to achieve the purpose of condensation chamber 20.
  • the dynamic balance of the condensation process of the internal gas product; along the flow direction of the gas product, the condensation chamber 20 is equipped with There are four condensation zones; after the insulation reaction is completed, the reaction chamber 40 and the condensation chamber 20 are restored to normal temperature and pressure, and then the condensation products in the condensation chamber 20 are collected, and the products in the third condensation zone from bottom to top are detected.
  • the purity of crystallized magnesium is 97.78%; the weight loss rates corresponding to the eight groups of crucibles are 30.5%, 37.5%, 44.6%, 46.8%, 48.0%, 48.6%, 49.1%, and 49.8%.
  • Example 3 it can be obtained It was found that with the extension of catalyst addition amount and holding time, the degree of reduction of magnesium produced by vacuum carbothermal reduction of white calcined powder was further enhanced.
  • the residues in the reaction chamber 40 in this embodiment are subjected to XRD and SEM detection respectively, and the detection results are shown in Figures 5 and 6; in this embodiment, the condensation products in the third condensation zone from bottom to top in the condensation chamber are XRD and SEM detection were carried out, and the detection results are shown in Figures 7 and 8; the condensation products in the fourth condensation zone from bottom to top in the condensation chamber in this embodiment were subjected to SEM detection, and the detection results were shown in Figure 9.
  • the control experiment The condensation products in the medium condensation chamber were inspected by SEM, and the inspection results are shown in Figure 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明涉及镁冶金技术领域,尤其是涉及一种煅白真空碳热还原炼镁设备及方法,设备包括反应室、冷凝室、第一温度调控模块和气压调控模块,反应室通过引流管路与冷凝室连通,引流管路用于实现冷凝室内气体产物冷凝过程的动态平衡,冷凝室内设有多个冷凝区。本发明利用不同的冷凝区按露点高低次序依次对气体产物进行冷凝,有效避免杂质混入镁的冷凝过程,同时,基于冷凝室内气体产物冷凝过程的动态平衡,不仅能够保证镁在中间段冷凝区得到高效冷凝收集,还能避免镁与CO在镁冷凝区发生逆反应,提升冷凝提纯效果;另外,在进行煅白真空碳热还原炼镁时,催化剂的加入能够明显提升反应还原程度,同时氟化钠催化剂的催化效果显著优于氟化钙催化剂。

Description

一种煅白真空碳热还原炼镁设备及方法 技术领域
本发明涉及镁冶金技术领域,尤其是涉及一种煅白真空碳热还原炼镁设备及方法。
背景技术
镁及镁合金被誉为“21世纪绿色工程材料”,“革命性的医用金属材料”。镁作为工业应用中最轻的结构金属,具有重量轻、比强度高、比刚度大、良好的生物力学性能和较低的腐蚀速率等优点,被广泛运用于航空航天、军事工业、核能工业、汽车工业、3C产业、牺牲阳极、生物医学等领域。现今,随着工业的飞速发展,世界对镁的需求每年增长10%,具有良好的发展前景。
目前,世界上生产镁的商业方法主要是皮江法。中国每年产出原镁量占世界的80%以上,其中以皮江法生产的原镁年占该比值的90%以上。然而,皮江法具有能耗高、生产效率低、劳动强度大、产生大量硫氧化物和碳氧化物气体等缺点,特别是所用的还原剂硅铁,不仅昂贵,而且制备过程对环境污染严重,严重违背国家提出的“碳达峰、碳中和”政策,制约该工艺的发展。真空碳热还原法采用廉价的碳作为还原剂,是一种高效、绿色的新冶炼技术,具有效率高、碳还原剂成本低、固体废物排量少、不成渣、无污染等特点。
而现有真空碳热还原炼镁技术中,如中国专利公开号CN1769505A公开的一种氧化镁矿煤炭热还原提取金属镁的冶炼方法,采用氧化镁质量含量95%以上的原料进行真空碳热还原,但获得产物镁的纯度仅约90%,严重制约了产物镁的后续加工应用。
发明内容
本申请的目的是提供一种煅白真空碳热还原炼镁设备及方法,来解决现有 技术中存在的上述技术问题,主要包括以下两个方面:
本申请第一方面提供了一种煅白真空碳热还原炼镁设备,包括反应室、冷凝室、第一温度调控模块和气压调控模块,所述第一温度调控模块用于对反应室内温度进行调节,所述气压调控模块用于对反应室内气压进行调节,所述反应室通过引流管路与冷凝室连通,所述引流管路用于控制反应室内气体产物进入冷凝室的流量,以实现冷凝室内气体产物冷凝过程的动态平衡,冷凝室内设有多个沿气体产物流动方向依次连通的冷凝区。
进一步地,所述设备还包括第二温度调控模块,第二温度调控模块用于对冷凝室的温度进行调控,第二温度调控模块与引流管路配合实现冷凝室内气体产物冷凝过程的动态平衡。
进一步地,所述冷凝室设置在反应室的上方。
进一步地,所述冷凝室中冷凝区沿纵向依次设置。
进一步地,所述反应室和冷凝室之间设置有隔热件。
进一步地,所述隔热件为隔热罩,所述反应室设置在隔热罩内。
进一步地,所述设备还包括壳体,所述反应室、冷凝室、隔热罩分别设置在壳体内。
进一步地,,所述冷凝室内设置有多个折流板,所述折流板将冷凝室分隔为多级冷凝区,所述折流板顶部设置有冷凝槽。
进一步地,所述设备还包括冷却系统,所述冷却系统用于对反应室进行降温处理。
本申请第二方面提供了一种煅白真空碳热还原炼镁的方法,包括以下步骤:将煅白、焦煤和还原催化剂混合后进行压型处理,然后将压型后混合料置于惰性气体保护、真空度120Pa以下的反应室中,在1473K~1723K下进行保温反应,在保温反应过程中导引气体产物进入冷凝室内的多级冷凝区,并对冷凝室进行温度调控,让冷凝室的温度保持在643K~733K,以实现冷凝室内气体产物冷凝过程的动态平衡;沿气体产物流动方向,冷凝室内各级冷凝区的温度逐渐 降低。
进一步地,将煅白、焦煤按MgO和C摩尔比1:1.8进行混合,和/或,混合料中氟化钠的质量百分比为1%~13%。
进一步地,混合料中氟化钠的质量百分比为3%~13%。
进一步地,混合料中氟化钠的质量百分比为5%~13%。
进一步地,沿气体产物流动方向,所述多级冷凝区的各级温度区间依次为733K~713K、713K~693K、693K~673K、673K~643K。
进一步地,多级冷凝区的各级温度区间沿纵向依次设置。
进一步地,所述方法基于上述设备进行。
本发明相对于现有技术至少具有如下技术效果:
本发明分别利用不同的冷凝区按露点高低次序依次对气体产物中不同成分进行冷凝,有效避免杂质混入镁的冷凝过程,同时,基于冷凝室内气体产物冷凝过程的动态平衡,使得气体产物进入冷凝室后不同组分稳定存在于对应的冷凝区内,分级明显稳定,镁对应的冷凝区位于中间段,硅、铝位于前端,钠、钾和CO主要集中在末端,这样,即使在整个冷凝过程中所有气体产物都集中在冷凝室内不向外引出,也能够保证镁在中间段冷凝区得到高效冷凝收集,同时还能避免镁与CO在镁蒸气冷凝区发生逆反应,进一步提高镁的纯度;另外,在进行煅白真空碳热还原炼镁时,催化剂的加入能够明显提升反应还原程度,同时氟化钠催化剂的催化效果显著优于氟化钙催化剂。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是实施例1中煅白真空碳热还原炼镁设备的结构示意图;
图2是实施例1中煅白真空碳热还原炼镁设备的主视剖视图;
图3是图1中冷凝室和反应室连接结构的剖示图;
图4是实施例2中煅白真空碳热还原炼镁方法的流程图;
图5是实施例4中反应室内残留物的XRD检测图;
图6是实施例4中反应室内残留物的SEM检测图;
图7是实施例4中冷凝室内自下而上第三层冷凝区内冷凝产物的XRD检测图;
图8是实施例4中冷凝室内自下而上第三层冷凝区内冷凝产物的SEM检测图;
图9是实施例4中冷凝室内自下而上第四层冷凝区内冷凝产物的SEM检测图;
图10是实施例4对照实验中冷凝室内冷凝产物的SEM检测图;
图中,
10、壳体;110、温度检测单元;20、冷凝室;210、折流板;220、冷却槽;30、引流管路;40、反应室;50、隔热件;60、保温层;70、第一温度调节模块;80、第一冷却腔;810、第一进液口;820、第一出液口;90、第二冷却腔;910、第二进液口;920、第二出液口。
具体实施方式
以下的说明提供了许多不同的实施例、或是例子,用来实施本发明的不同特征。以下特定例子所描述的元件和排列方式,仅用来精简的表达本发明,其仅作为例子,而并非用以限制本发明。
为使本发明实施方式的目的、技术方案和优点更加清楚,下面将结合本发明实施方式中的附图,对本发明实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式是本发明一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下 所获得的所有其他实施方式,都属于本发明保护的范围。因此,以下对在附图中提供的本发明的实施方式的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施方式。基于本发明中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。此外,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之上或之下可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征之上、上方和上面包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征之下、下方和下面包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
实施例1:
本申请实施例提供了一种煅白真空碳热还原炼镁设备,如图1~图3所示,包括反应室40、冷凝室20、第一温度调控模块70和气压调控模块,所述第一温度调控模块70用于对反应室40内温度进行调节,所述气压调控模块用于对反应室40内气压进行调节,所述反应室40通过引流管路30与冷凝室20连通,所述引流管路30用于控制反应室40内气体产物进入冷凝室20的流量,以实现冷凝室20内气体产物冷凝过程的动态平衡,冷凝室20内设有多个沿气体产物流动方向依次连通的冷凝区。
在现有煅白真空碳热还原炼镁技术中,一般直接采用冷凝器控制冷凝温度600℃~680℃下对煅白真空碳热还原炼镁过程中产生气体产物进行冷凝收集镁,而气体产物中除了镁蒸气外,还包含有CO、AL、Si、Na、K等杂质,直接对气体产物进行冷凝,会使得杂质混入镁的冷凝过程,造成冷凝产物中镁的纯度降低;而本实施例通过采用在冷凝室20内设置多个沿气体产物流动方向依次连通的冷凝区,分别利用不同的冷凝区按露点高低次序依次对气体产物中不同成分进行冷凝,有效避免杂质混入镁的冷凝过程,同时,设置引流管路30将反应室40与冷凝室20连通,利用引流管路30控制反应室40内气体产物进入冷凝室20的流量,由引流管路30约束气体产物进入冷凝室20的流量,使得新进入冷凝室20的气体产物带来的热量,与冷凝室20在冷凝过程中的热散失保持平衡,进而既可以实现气体产物进入冷凝室20后快速冷凝,同时冷凝室20始终保持在一个较低的、稳定的温度区间,冷凝室20与反应室40之间就持续存在温差和压差,在温差和压差作用下,反应室40内气体产物又能连续进入冷凝室20,进而实现一个持续、稳定的还原反应和产物冷凝收集的平衡,达到提高产物纯度的技术效果;此外,基于冷凝室20内气体产物冷凝过程的动态平衡,使得气体产物进入冷凝室20后不同组分稳定存在于对应的冷凝区内,分级明显稳定,镁对应的冷凝区位于中间段,硅、铝位于前端,钠、钾和CO主要集中在末端,这样,即使在整个冷凝过程中所有气体产物都集中在冷凝室20内不向外引出,也能够保证镁在中间段冷凝区得到高效冷凝收集,还能避免镁与CO在镁蒸气冷凝区发生逆反应,进一步提高产物结晶镁的纯度。
具体地,所述设备还包括第二温度调控模块,第二温度调控模块用于对冷凝室20的温度进行调控,第二温度调控模块与引流管路30配合实现冷凝室20内气体产物冷凝过程的动态平衡。
为避免气体产物在引流管路30内冷凝,在不对引流管路30增设保温设备的基础上,需要控制引流管路30的长度,进而反应室40和冷凝室20之间需临近设置,因此,反应室40内高温反应条件产生的热量就会影响到冷凝室20的 温度,为保证冷凝室20内气体产物冷凝过程的动态平衡,通过采用第二温度调控模块对冷凝室20的温度进行调控,既可以避免反应室40的热辐射对冷凝室20内平衡的破坏,同时第二温度调控模块与引流管路30配合还能够实现冷凝室20内气体产物冷凝过程的动态平衡,将冷凝室20内温度波动进一步限定缩小,保证冷凝室20内冷凝提纯过程的持续、稳定进行。
具体地,所述冷凝室20设置在反应室40的上方。通过将冷凝室20设置在反应室40的上方,利用热空气上升的原理,因此不需要额外增设动力源,反应室40内气体产物自动会通过引流管路30流动至冷凝室20内,实现无动力自动化牵引气体产物向冷凝室20转移,简化设备结构,提高设备的使用便捷性。
具体地,所述冷凝室20中冷凝区沿纵向依次设置。通过将冷凝室20中冷凝区沿纵向依次设置,让引流管路30的输出端口位于冷凝室20的底部,进而使得气体产物自下而上流动,反应室40的热辐射和气体产物带来的热能同时也自下而上逐渐降低,使得冷凝区的温度区间自下而上自动逐渐降低,进而不需要额外对气体产物进行分选,气体产物在进入冷凝室20后依次通过温度逐渐降低的冷凝区,气体产物中不同组分自动在对应地温度区间的冷凝区进行冷凝,实现无动力自动进行镁的冷凝提纯,简化设备结构,提高设备的使用便捷性。
具体地,沿气体产物流动方向,冷凝室20内冷凝区的温度区间依次为733K~713K、713K~693K、693K~673K、673K~643K。通过将冷凝室20内冷凝区的温度区间依次设置为733K~713K、713K~693K、693K~673K、673K~643K,使得硅、铝主要在733K~713K、713K~693K温度区间对应的冷凝区进行冷凝,而镁则在中间段693K~673K温度区间对应的冷凝区进行冷凝,钠、钾和CO主要集中在末端673K~643K温度区间对应的冷凝区进行冷凝,通过采用较低的冷凝温度,配合气体产物本身的热能,既能保证对气体产物中不同组分在冷凝室20内不同冷凝区内进行冷凝,还能提高气体产物的冷凝效率和冷凝效果,实现镁的高效分级冷凝提纯。
具体地,所述反应室40和冷凝室20之间设置有隔热件50。由于反应室40 和冷凝室20温度要求差异大,为减少反应室40热辐射对冷凝室20的影响和第二温度调控模块的工作负荷,通过采用隔热件50对反应室40和冷凝室20进行分隔,进而减少从反应室40传递至冷凝室20的热量。
具体地,所述隔热件50为隔热罩,所述反应室40设置在隔热罩内。为降低保温反应过程中第一温度调控模块70的工作负荷,同时减少从反应室40传递至冷凝室20的热量,通过隔热件50设置为隔热罩,利用隔热罩对反应室40进行笼罩,减少反应室40的热散失,并将大部分热能约束在隔热罩内,辅助对反应室40进行保温,进而有效减少保温反应过程中第一温度调控模块70的工作负荷。
具体地,所述隔热罩内设置有保温层70。通过设置保温层70,进一步减少热能从隔热罩中散失,提高能源利用率。
需要说明的是,所述保温层70可以是有机隔热保温材料、无机隔热保温材料、金属隔热保温材料中至少一种,本实施例中优选保温层70采用碳毡保温层。
具体地,所述设备还包括壳体10,所述反应室40、冷凝室30、隔热件50分别设置在壳体10内。通过将反应室40、冷凝室20、隔热件50分别设置在壳体10内,利用壳体10对反应过程进行保护,减小反应过程中环境的影响,提高设备使用安全性;此外,壳体还10能够减少反应室40、冷凝室20等与外部环境的热交换,减小第一温度调控模块70、第二温度调控模块的工作负荷,缩小反应室40和冷凝室20的温度波动,促进镁冷凝提纯的稳定进行。
具体地,所述冷凝室20内设置有多个折流板210,所述折流板210将冷凝室分20隔为多级冷凝区,所述折流板210顶部设置有冷凝槽220。在气体产物中不同组分于相应的冷凝区发生冷凝时,由冷凝槽220对冷凝后的产物进行收集。
具体地,所述设备还包括冷却系统,所述冷却系统用于对反应室40进行降温处理。在保温反应结束后,开启冷却系统对反应室40进行降温处理,将反应室40和冷凝室20降至常温,然后控制气压调控模块将反应室40和冷凝室20 调控至常压,然后再从冷凝室20收集冷凝产物。
需要说明的是,所述气压调控模块为低压气源,本实施例中气压调控模块优选采用真空泵;所述第一温度调控模块70为电加热装置,本实施例中第一温度调控模块70优选采用电能驱动的石墨加热体;本实施例中优选将水冷设备分别作为第二温度调控模块和冷却系统,具体地,在与冷凝室20对应的壳体10内壁中设置第一冷却腔80,在第一冷却腔80内填充第一换热介质,同时让第一冷却腔80与第一循环制冷系统循环连通,由第一循环制冷系统对第一换热介质进行降温,降温后的第一换热介质通入第一冷却腔80对冷凝室20进行冷却,而后第一换热介质再循环回第一循环制冷系统降温;在与反应室40对应的壳体10内壁中设置第二冷却腔90,在第二冷却腔90内填充第二换热介质,同时让第二冷却腔90与第二循环制冷系统循环连通,由第二循环制冷系统对第二换热介质进行降温,降温后的第二换热介质通入第二冷却腔90对反应室40进行冷却,而后第二换热介质再循环回第二循环制冷系统降温。
需要说明的是,所述第一循环制冷系统、第二循环制冷系统采用现有的水冷制冷系统,所述第一换热介质、第二换热介质分别为油或水。
具体地,所述第一冷却腔80的顶部设置有第一出液口820,第一冷却腔80的底部设置有第一进液口810;所述第二冷却腔90的顶部设置有第二出液口920,第二冷却腔90的底部设置有第二进液口910。
具体地,所述设备还包括温度检测单元110,所述温度检测单元110用于检测冷凝室20内冷凝区和/或反应室40的温度。优选地,所述温度检测单元110为热电偶。对于冷凝室20内设有四层冷凝区的结构,设备中相应设置五个温度检测单元110,四个温度检测单元110分别对一层冷凝区进行温度检测,第五个温度检测单元110对反应室40进行温度检测。
具体地,所述引流管路30的导管,优选地,所述导管上设置有控制阀。
实施例2
本申请实施例提供了一种煅白真空碳热还原炼镁的方法,如图4所示,基 于实施例1中设备进行煅白真空碳热还原炼镁,包括以下步骤:现有将煅白、焦煤破碎后磨细至250目(煅白中MgO质量含量为20.93%,由河北邢台凯镁新材料科技有限公司提供,焦煤中固定碳≥63.58%,由云南师宗大舍振兴生产,后续实施例中采用相同煅白和焦煤),分八组,将煅白、焦煤和还原催化剂CaF2混合,混合料中煅白、焦煤按MgO和C摩尔比1:1.8进行混合,混合料中氟化钠的质量百分比依次为0%、1%、3%、5%、7%、9%、11%、13%,混合均匀后在10MPa~15MPa压力下进行压型处理位块状料,增强碳与氧化镁的接触,避免块状料在后续抽真空过程中松散,促进了固-固反应;然后将八组压型后混合料分别由坩埚承载,共同置于一个由惰性气体氩气保护、真空度70Pa~120Pa的反应室40中,以升温速率为10K/min~15K/min加热至1473K~1723K,在1473K~1723K下进行保温反应1h,在高温情况下焦煤形成热稳定性很好的胶质体包裹原料,游离的F-可以取代O2-的位置,破坏MgO表面晶格结构,使MgO晶体发生畸变,增大MgO晶体的活性,促进C-O键的形成,增强还原反应;在保温反应过程中导引气体产物进入冷凝室20内的多级冷凝区,并对冷凝室20进行温度调控,让冷凝室20的温度保持在643K~733K,以实现冷凝室20内气体产物冷凝过程中气体产物冷凝结晶速度、新进入冷凝室20的气体产物、以及冷凝室20内温度的动态平衡;沿气体产物流动方向,冷凝室20内设有四个冷凝区;保温反应结束后,将反应室40和冷凝室20恢复至常温、常压,然后收集冷凝室20内冷凝产物,对自下而上第三层冷凝区的产物进行检测,结晶镁的纯度为96.64%;八组坩埚对应的失重率依次为21.5%、27.0%、35.8%、39.2%、40.0%、40.4%、39.0%、39.6%,由此可见,添加氟化钙催化剂后,原料的失重率明显升高,煅白真空碳热还原炼镁的还原程度得到提升。。
实施例3
本申请实施例提供了一种煅白真空碳热还原炼镁的方法,基于实施例1中设备进行煅白真空碳热还原炼镁,包括以下步骤:现有将煅白、焦煤破碎后磨细至250目;分八组,将煅白、焦煤和还原催化剂NaF混合,混合料中煅白、 焦煤按MgO和C摩尔比1:1.8进行混合,混合料中氟化钠的质量百分比依次为0%、1%、3%、5%、7%、9%、11%、13%,混合均匀后在10MPa~15MPa压力下进行压型处理位块状料,然后将八组压型后混合料分别由坩埚承载,共同置于一个由惰性气体氩气保护、真空度70Pa~120Pa的反应室40中,以升温速率为10K/min~15K/min加热至1473K~1723K,在1473K~1723K下进行保温反应1h,在保温反应过程中导引气体产物进入冷凝室20内的多级冷凝区,并对冷凝室20进行温度调控,让冷凝室20的温度保持在643K~733K,以实现冷凝室20内气体产物冷凝过程的动态平衡;沿气体产物流动方向,冷凝室20内设有四个冷凝区;保温反应结束后,将反应室40和冷凝室20恢复至常温、常压,然后收集冷凝室20内冷凝产物,对自下而上第三层冷凝区的产物进行检测,结晶镁的纯度为95.59%;八组坩埚对应的失重率依次为21.5%、33.9%、40.9%、43.4%、44.6%、45.0%、45.4%、46.3%,相较于实施例2中采用的氟化钙催化剂,可以得出,氟化钠催化剂的催化效果显著优于氟化钙催化剂,特别是当催化剂添加量高于5%时。
实施例4
本申请实施例提供了一种煅白真空碳热还原炼镁的方法,基于实施例1中设备进行煅白真空碳热还原炼镁,包括以下步骤:现有将煅白、焦煤破碎后磨细至250目;分八组,将煅白、焦煤和还原催化剂NaF混合,混合料中煅白、焦煤按MgO和C摩尔比1:1.8进行混合,混合料中氟化钠的质量百分比依次为0%、1%、3%、5%、7%、9%、11%、13%,混合均匀后在10MPa~15MPa压力下进行压型处理位块状料,然后将八组压型后混合料分别由坩埚承载,共同置于一个由惰性气体氩气保护、真空度70Pa~120Pa的反应室40中,以升温速率为10K/min~15K/min加热至1473K~1723K,在1473K~1723K下进行保温反应2h,在保温反应过程中导引气体产物进入冷凝室20内的多级冷凝区,并对冷凝室20进行温度调控,让冷凝室20的温度保持在643K~733K,以实现冷凝室20内气体产物冷凝过程的动态平衡;沿气体产物流动方向,冷凝室20内设 有四个冷凝区;保温反应结束后,将反应室40和冷凝室20恢复至常温、常压,然后收集冷凝室20内冷凝产物,对自下而上第三层冷凝区的产物进行检测,结晶镁的纯度为97.78%;八组坩埚对应的失重率依次为30.5%、37.5%、44.6%、46.8%、48.0%、48.6%、49.1%、49.8%,相较于实施例3,可以得出,随着催化剂添加量和保温时间的延长,煅白真空碳热还原炼镁的还原程度进一步增强。
基于与本实施例相同的实验条件,不同在于,冷凝室20内只有一个冷凝区,进行对照实验;
然后将本实施例中反应室40内残留物分别进行XRD、SEM检测,检测结果如图5和图6所示;将本实施例中将冷凝室内自下而上第三层冷凝区内冷凝产物进行XRD、SEM检测,检测结果如图7和8所示;将本实施例中冷凝室内自下而上第四层冷凝区内冷凝产物进行SEM检测,检测结果如图9所示,将对照实验中冷凝室内冷凝产物进行SEM检测,检测结果如图10所示。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种煅白真空碳热还原炼镁设备,其特征在于,包括反应室、冷凝室、第一温度调控模块和气压调控模块,所述第一温度调控模块用于对反应室内温度进行调节,所述气压调控模块用于对反应室内气压进行调节,所述反应室通过引流管路与冷凝室连通,所述引流管路用于控制反应室内气体产物进入冷凝室的流量,以实现冷凝室内气体产物冷凝过程的动态平衡,冷凝室内设有多个沿气体产物流动方向依次连通的冷凝区。
  2. 如权利要求1所述的煅白真空碳热还原炼镁设备,其特征在于,所述设备还包括第二温度调控模块,第二温度调控模块用于对冷凝室的温度进行调控,第二温度调控模块与引流管路配合实现冷凝室内气体产物冷凝过程的动态平衡。
  3. 如权利要求1所述的煅白真空碳热还原炼镁设备,其特征在于,所述冷凝室设置在反应室的上方。
  4. 如权利要求3所述的煅白真空碳热还原炼镁设备,其特征在于,所述冷凝室中冷凝区沿纵向依次设置。
  5. 如权利要求1~4任意一项所述的煅白真空碳热还原炼镁设备,其特征在于,所述反应室和冷凝室之间设置有隔热件。
  6. 如权利要求5所述的煅白真空碳热还原炼镁设备,其特征在于,所述隔热件为隔热罩,所述反应室设置在隔热罩内。
  7. 如权利要求6所述的煅白真空碳热还原炼镁设备,其特征在于,所述设备还包括壳体,所述反应室、冷凝室、隔热罩分别设置在壳体内。
  8. 如权利要求1~4任意一项所述的煅白真空碳热还原炼镁设备,其特征在于,所述冷凝室内设置有多个折流板,所述折流板将冷凝室分隔为多级冷凝区,所述折流板顶部设置有冷凝槽。
  9. 如权利要求1~4任意一项所述的煅白真空碳热还原炼镁设备,其特征在于,所述设备还包括冷却系统,所述冷却系统用于对反应室进行降温处理。
  10. 一种煅白真空碳热还原炼镁的方法,基于权利要求1~9任意一项所述的 煅白真空碳热还原炼镁设备,所述方法包括以下步骤:将煅白、焦煤和还原催化剂混合后进行压型处理,然后将压型后混合料置于惰性气体保护、真空度120Pa以下的反应室中,在1473K~1723K下进行保温反应,其特征在于,在保温反应过程中导引气体产物进入冷凝室内的多级冷凝区,并对冷凝室进行温度调控,让冷凝室的温度保持在643K~733K,以实现冷凝室内气体产物冷凝过程的动态平衡;沿气体产物流动方向,冷凝室内各级冷凝区的温度逐渐降低。
PCT/CN2023/082065 2022-08-30 2023-03-17 一种煅白真空碳热还原炼镁设备及方法 WO2024045562A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211055386.7 2022-08-30
CN202211055386.7A CN115449648A (zh) 2022-08-30 2022-08-30 一种煅白真空碳热还原炼镁设备及方法

Publications (1)

Publication Number Publication Date
WO2024045562A1 true WO2024045562A1 (zh) 2024-03-07

Family

ID=84301300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/082065 WO2024045562A1 (zh) 2022-08-30 2023-03-17 一种煅白真空碳热还原炼镁设备及方法

Country Status (2)

Country Link
CN (1) CN115449648A (zh)
WO (1) WO2024045562A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115449648A (zh) * 2022-08-30 2022-12-09 昆明理工大学 一种煅白真空碳热还原炼镁设备及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996026297A1 (en) * 1995-02-21 1996-08-29 Materials Research Corporation Ultra high purity magnesium and vacuum distillation purification method and apparatus
CN1769505A (zh) * 2005-10-08 2006-05-10 昆明理工大学 真空煤炭热还原氧化镁矿提取金属镁的方法
CN102706144A (zh) * 2012-05-25 2012-10-03 吉首大学 一种分级冷凝真空炉
CN204063931U (zh) * 2014-08-05 2014-12-31 昆明理工大学 一种适用于间歇式真空炉的冷凝装置
CN104561601A (zh) * 2015-01-01 2015-04-29 江西省中镁装备有限公司 真空高温液态下的炼镁装置以及炼镁方法
JP5945373B1 (ja) * 2016-01-13 2016-07-05 オリコン・エナジー株式会社 マイクロ波を利用したマグネシウム製錬装置及び製錬方法
CN107723472A (zh) * 2017-12-06 2018-02-23 湖南工业大学 一种小型间歇式还原蒸馏装置
CN115449648A (zh) * 2022-08-30 2022-12-09 昆明理工大学 一种煅白真空碳热还原炼镁设备及方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996026297A1 (en) * 1995-02-21 1996-08-29 Materials Research Corporation Ultra high purity magnesium and vacuum distillation purification method and apparatus
CN1769505A (zh) * 2005-10-08 2006-05-10 昆明理工大学 真空煤炭热还原氧化镁矿提取金属镁的方法
CN102706144A (zh) * 2012-05-25 2012-10-03 吉首大学 一种分级冷凝真空炉
CN204063931U (zh) * 2014-08-05 2014-12-31 昆明理工大学 一种适用于间歇式真空炉的冷凝装置
CN104561601A (zh) * 2015-01-01 2015-04-29 江西省中镁装备有限公司 真空高温液态下的炼镁装置以及炼镁方法
JP5945373B1 (ja) * 2016-01-13 2016-07-05 オリコン・エナジー株式会社 マイクロ波を利用したマグネシウム製錬装置及び製錬方法
CN107723472A (zh) * 2017-12-06 2018-02-23 湖南工业大学 一种小型间歇式还原蒸馏装置
CN115449648A (zh) * 2022-08-30 2022-12-09 昆明理工大学 一种煅白真空碳热还原炼镁设备及方法

Also Published As

Publication number Publication date
CN115449648A (zh) 2022-12-09

Similar Documents

Publication Publication Date Title
WO2024045562A1 (zh) 一种煅白真空碳热还原炼镁设备及方法
CN108165768A (zh) 一种真空金属热还原制取锂的装置与方法
WO2017143697A1 (zh) 铝工业固体废料回收/石油焦高温脱硫装置及其使用方法
CN105603216B (zh) 铝工业固体废料回收/石油焦高温脱硫装置及其使用方法
CN110512094B (zh) 一种清洁、连续还原金属镁的工艺
WO2017031798A1 (zh) 一种处理及回收铝电解固体废料的装置
KR20110076565A (ko) 수직형 마그네슘 제조 장치 및 이를 이용한 마그네슘 제조 방법
WO2021135398A1 (zh) 一种真空热还原法制备高纯金属锂的方法
WO2021135399A1 (zh) 一种气态共冷凝法生产镁锂合金的方法
CN107235509A (zh) 一种沸腾氯化法氧氯化锆生产装置及方法
WO2024056108A1 (zh) 一种绿色环保的铝热法还原镁生产装置
CN104692459A (zh) 制备二氧化钛的方法和系统
CN201292397Y (zh) 一种适用于碳热还原氧化镁制取金属镁的真空冶金炉
CN106219488B (zh) 一种制备盐酸并提纯石英砂的方法及装置
CN108529616A (zh) 一种天然石墨的高温提纯工艺与装置
CN100575512C (zh) 一种锰矿粉的微波加热固态还原气化脱磷方法
CN1644720A (zh) 高富氧炼锌法
WO2024056107A1 (zh) 一种绿色环保的铝热法还原镁生产方法
CN106966394A (zh) 一种电石炉
CN102634679A (zh) 一种金属镁真空精炼提纯的方法
CN216786227U (zh) 一种全连续热还原法金属镁冶炼装置
CN107937029A (zh) 一种煤基电石制乙炔的方法和系统
CN102583387B (zh) 一种采用二次合金法提纯多晶硅的方法
CN206705695U (zh) 一种脱除氧化镁的电石炉
Li et al. Dechlorination of zinc oxide dust from waelz kiln by microwave roasting

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23858604

Country of ref document: EP

Kind code of ref document: A1