WO2024045508A1 - 光互连接口、芯片和服务器 - Google Patents

光互连接口、芯片和服务器 Download PDF

Info

Publication number
WO2024045508A1
WO2024045508A1 PCT/CN2023/076530 CN2023076530W WO2024045508A1 WO 2024045508 A1 WO2024045508 A1 WO 2024045508A1 CN 2023076530 W CN2023076530 W CN 2023076530W WO 2024045508 A1 WO2024045508 A1 WO 2024045508A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
optical interconnection
lens
focusing
interconnection interface
Prior art date
Application number
PCT/CN2023/076530
Other languages
English (en)
French (fr)
Inventor
徐哲
张新
李辰
Original Assignee
浪潮电子信息产业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浪潮电子信息产业股份有限公司 filed Critical 浪潮电子信息产业股份有限公司
Publication of WO2024045508A1 publication Critical patent/WO2024045508A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/006Manipulation of neutral particles by using radiation pressure, e.g. optical levitation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12102Lens

Definitions

  • This application relates to the field of optical chips, and in particular to an optical interconnect interface, chip and server.
  • Optical fiber communication uses light waves as carriers and uses optical fibers as transmission media to transmit information from one place to another for communication.
  • Fiber optic communication technology has developed rapidly in the past few decades and is widely used in long-distance and large-capacity communication network structures. .
  • space optical interconnection technology based on traditional optical fibers can no longer meet the needs of on-chip high-density integration and short-distance high-speed communication.
  • Optical interconnection technology uses waveguides to transmit data, which has the characteristics of low signal transmission loss, fast speed, and small delay.
  • photons have multiple physical dimensions such as frequency, polarization, time, complex amplitude, spin angular momentum, and spatial structure. , can be developed into a multi-dimensional hybrid multiplexing technology to further enhance the bandwidth of optical interconnection.
  • Optical Tweezers also known as single-beam gradient force optical trap, is a technology that uses a three-dimensional potential well formed by a highly focused laser beam to capture, manipulate and control tiny particles.
  • Optical tweezers technology can be used to move In terms of cells or virus particles, pinch cells into various shapes, or cool atoms.
  • optical tweezers technology has been successfully used for many years, the chips currently using optical tweezers technology include small nano-sized particles, but the nano-sized particles can only be adsorbed on the surface of the chip structure and cannot be suspended in space. It also cannot achieve on-chip optical interconnection effects and cannot meet future high-speed optical communications and high-bandwidth interconnection requirements.
  • the purpose of this application is to provide an optical interconnection interface, a chip and a server to achieve on-chip optical interconnection.
  • an optical interconnection interface including:
  • Two transmission devices for transmitting light beams the end faces of the two transmission devices are arranged oppositely;
  • Two focusing devices for focusing the light beam emitted from the transmission device and forming a focused light beam are connected to two opposite end faces respectively;
  • the interconnection medium is captured by the capturing light field between the focusing devices and is located between the two focusing devices.
  • the transmission device in the optical interconnection interface, is a waveguide.
  • the focusing device is a nanofocusing lens.
  • the interconnection medium is a nanowire, and the angle between the long axis of the nanowire and the axis of the transmission device is adjusted according to the polarization characteristics of the focused beam.
  • the nanowires include at least two different sizes of nanowires.
  • the materials of the waveguide, the nanofocusing lens, and the nanowire are all non-metallic materials.
  • the waveguide, the nanofocusing lens, and the nanowire are all made of silicon.
  • the focal points of the two nanofocusing lenses intersect at the same point.
  • the distance between the focal points of two nanofocusing lenses in the optical interconnect is greater than zero.
  • two transmission devices are provided on the same chip.
  • the two transmission devices are provided on different chips.
  • the cross-sectional shape of the nanowire is any one of circular, elliptical, rectangular, triangular, and hexagonal.
  • the cross-sectional diameter of the nanowire is between 10 nm and 250 nm.
  • the end surface of the waveguide is located within the surface range connected to the nanofocusing lens.
  • the thickness of the waveguide is between 50nm and 300nm, and the width is between 50nm and 300nm.
  • the nanofocusing lens in the optical interconnection interface, is hemispherical, and the diameter of the nanofocusing lens is between 50nm and 350nm.
  • the focusing device and the connected transmission device have an integrated structure.
  • This application also provides a chip, which includes any of the above optical interconnection interfaces.
  • This application also provides a server, which includes the above-mentioned chip.
  • An optical interconnection interface provided by this application includes two transmission devices for transmitting light beams, the end faces of the two transmission devices are arranged oppositely; and two focusing devices for focusing the light beams emitted by the transmission devices and forming a focused beam. , the two focusing devices are connected to two opposite end faces respectively; the interconnection medium is in a suspended state; among them, when it is necessary to realize the interconnection and communication of signals, the interconnection medium is captured by the capturing light field between the focusing devices and is located between the two between focusing devices.
  • the optical interconnection interface in this application includes a transmission device, a focusing device and an interconnection medium.
  • the focusing device is connected to the end face of the transmission device.
  • the interconnection medium is suspended in space and will not be adsorbed on the surface of a certain component.
  • the focusing device focuses the light beam emitted from the transmission device to form a focused beam, forming a captured light field.
  • Optical force and torque will be generated near the focus of the focused beam, so that when signal interconnection and communication are required, the captured light field will suspend the interconnection in space.
  • the medium is captured between the focusing devices, so that the light wave signal in one transmission device is transmitted to another transmission device through the interconnection medium, realizing optical interconnection.
  • this application also provides a chip and server with the above advantages.
  • Figure 1 shows the basic principle diagram of optical tweezers technology
  • Figure 2 is a side view of an optical interconnection interface provided by an embodiment of the present application.
  • Figure 3 is a top view of an optical interconnection interface provided by an embodiment of the present application.
  • Figure 4 is a schematic diagram of the focus formed by two nano-focusing lenses in the embodiment of the present application.
  • Figure 5 is another schematic diagram of the focus formed by two nano-focusing lenses in the embodiment of the present application.
  • Figure 6 is a diagram showing the positional relationship between the nanowires and the first waveguide and the second waveguide when the polarization direction of the laser beam is along the horizontal direction in the embodiment of the present application;
  • Figure 7 is a diagram showing the positional relationship between the nanowires and the first waveguide and the second waveguide when the polarization direction of the laser beam is along the vertical direction in the embodiment of the present application;
  • optical tweezers technology The basic principle diagram of optical tweezers technology is shown in Figure 1.
  • the dielectric particles will be attracted to the center of the beam focus point.
  • the magnitude of the force acting on the object is proportional to the distance of the object from the center of the beam, like a spring system.
  • Optical tweezers technology is a type of advanced laser technology.
  • the core of the technology lies in the mechanical and torque effects generated by the momentum transfer between light and material particles, thereby achieving three-dimensional high-precision manipulation of microscopic objects.
  • optical tweezers technology relies on the tiny force generated by the interaction between light and matter to capture, move and arrange the spatial position of matter. This process is non-contact, low-damage and Strong penetration and other advantages.
  • nanoscale particles can only be adsorbed on the surface of the chip structure, and cannot achieve suspension in space, nor can they achieve on-chip optical interconnection effects.
  • Optical interconnect interfaces include:
  • Two transmission devices 1 for transmitting light beams the end faces of the two transmission devices 1 are arranged oppositely;
  • the interconnection medium 3 is captured by the capturing light field between the focusing devices 2 and is located between the two focusing devices 2 .
  • the transmission device 1 and the focusing device 2 may be disposed on the substrate 4, which includes but is not limited to a glass substrate.
  • the position of the focusing device 2 is two opposite end surfaces of the transmission device 1, that is, the two focusing devices 2 are also arranged oppositely, as shown in Figures 2 and 3.
  • the end faces of the two transmission devices 1 are arranged oppositely, that is, the axes of the two transmission devices 1 are on the same straight line, as shown in Figures 2 and 3.
  • the interconnection medium 3 is in a suspended state and does not contact any components. When interconnection and communication of signals are not performed, the position of the interconnection medium 3 is not fixed in space.
  • the focusing device 2 focuses the light beam emitted from the transmission device 1 to form a focused beam, forming a capturing light field.
  • Optical force and torque will be generated near the focus of the focused beam, thereby capturing the suspended interconnected medium 3 between the two focusing devices 2 .
  • the transmission device 1 is a waveguide.
  • it can also be other devices that can transmit laser beams, and is not specifically limited in this application.
  • the focusing device 2 is a nano-focusing lens.
  • it can also be other devices that can focus the laser beam, which is not specifically limited in this application.
  • the interconnection medium 3 is a nanowire, and the angle between the long axis of the nanowire and the axis of the transmission device 1 is adjusted according to the polarization characteristics of the focused beam.
  • the end face shape of the waveguide is not specifically limited in this application and can be set by oneself.
  • the end face shape of the waveguide can be rectangular, square, trapezoidal, hexagonal, circular, etc.
  • the thickness of the waveguide can be between 50nm-300nm (nanometer).
  • the thickness of the waveguide can be 50nm, 80nm, 100nm, 150nm, 200nm, 210nm, 220nm, 230nm, 240nm, 280nm, 300nm, etc.
  • the width of the waveguide It can be between 50nm and 300nm.
  • the width of the waveguide can be 50nm, 80nm, 100nm, 150nm, 200nm, 210nm, 220nm, 230nm, 240nm, 280nm, 300nm, etc.
  • the shape of the nano-focusing lens can be hemispherical, and the diameter of the nano-focusing lens can be between 50nm-350nm.
  • the diameter of the nano-focusing lens can be 50nm, 80nm, 100nm, 150nm, 200nm, 210nm, 220nm, 230nm, 240nm, 250nm, 280nm, 330nm, 350nm, etc.
  • the cross-sectional shape of the nanowires is not specifically limited in this application and can be set by yourself.
  • the cross-sectional shape of the nanowire includes, but is not limited to, any of a circle, an ellipse, a rectangle, a triangle, and a hexagon.
  • the cross-sectional shape of the nanowire is preferably circular, that is, the shape of the nanowire is cylindrical.
  • the cross-sectional diameter of the nanowire can be between 10nm and 250nm.
  • the cross-sectional diameter of the nanowire can be 10nm, 30nm, 50nm, 60nm, 70nm, 80nm, 90nm, 100nm, 110nm. , 120nm, 130nm, 140nm, 150nm, 200nm, 230nm, 250nm, etc.
  • the two waveguides are called the first waveguide and the second waveguide respectively.
  • the nanofocusing lens connected to the end face of the first waveguide is called the first nanofocusing lens
  • the nanofocusing lens connected to the end face of the first waveguide is called the first nanofocusing lens
  • the nanofocusing lens connected to the end face of the waveguide is called the second nanofocusing lens.
  • the excitation light source of the first waveguide and the second waveguide is a laser, and the laser can be either a single-mode fiber laser or a multi-mode fiber laser.
  • the laser emits a laser beam into the first waveguide and the second waveguide.
  • the laser beam propagates in the first waveguide and the second waveguide respectively.
  • the beam in the first waveguide is emitted from the first waveguide and is focused by the first nanometer lens. Focusing forms a focused beam.
  • the light beam in the second waveguide is emitted from the second waveguide and is focused by the second nanofocusing lens to form a focused beam.
  • a beam is formed between the first nanofocusing lens and the second nanofocusing lens. Trapping nanowires capture light field.
  • Two focused beams intersect in space at a certain angle, similar to the convergent beam produced by traditional space optical tweezers technology. Therefore, optical force and torque are generated near the focused beam, which is used to capture and manipulate nanowires suspended in space. . It can be understood that when there is no light wave signal in the first waveguide and the second waveguide, an optical focus will not be formed between the first nanofocusing lens and the second nanofocusing lens, and therefore, the trapped nanowires are also released. , suspended in space again.
  • the nanowires that can be captured by the capturing light field vary according to the wavelength of the laser beam emitted by the laser.
  • the wavelength of the laser beam can be set according to the size of the nanowire and the position where it is suspended in space.
  • the excitation light source of the first waveguide and the second waveguide is a single-mode fiber laser with a wavelength of 1550 nm.
  • the distance between the first nanofocusing lens and the second nanofocusing lens is not limited in this application and depends on the situation.
  • Figure 4 is a schematic diagram of the focus formed by two nanofocus lenses in the embodiment of the present application.
  • the focus points of the two nanofocus lenses intersect at the same point, that is, the first
  • the focused beam formed by focusing by the nano-focusing lens intersects at the same point with the focused beam formed by focusing by the second nano-focusing lens.
  • Figure 5 is another schematic diagram of the focus formed by two nanofocus lenses in the embodiment of the present application.
  • the distance between the focus points of the two nanofocus lenses is greater than zero. , that is, the focal points of the first nanofocusing lens and the second nanofocusing lens do not intersect at the same point.
  • the focused beam formed by the focus of the first nanofocusing lens and the focused beam formed by the focus of the second nanofocusing lens have two intersection points in space. .
  • the distance between the first waveguide and the second waveguide that is, adjusting the first nanofocus lens and the second nanofocus lens
  • the distance between them allows you to adjust the shape of the captured light field.
  • the distance between the first nanofocus lens and the second nanofocus lens is relatively short, a very compact captured light field can be formed between the first nanofocus lens and the second nanofocus lens.
  • the captured light field between the first nanofocusing lens and the second nanofocusing lens is stretched in the axial direction.
  • FIG. 6 is a diagram showing the positional relationship between the nanowire and the first waveguide and the second waveguide when the polarization direction of the laser beam is along the horizontal direction.
  • Figure 7 is a diagram showing the positional relationship between the nanowire and the first waveguide and the second waveguide when the polarization direction of the laser beam is along the vertical direction.
  • the long axis of the nanowire When the first waveguide and the second waveguide When the polarization direction of the laser beam transmitted in the waveguide is the vertical direction, the long axis of the nanowire is also along the vertical direction, and the angle between the long axis of the nanowire and the axes of the first waveguide and the second waveguide is 90°; when the first waveguide and the second waveguide transmit circularly polarized light, the nanowire will spin near the focus of the first nanofocusing lens and the second nanofocusing lens.
  • the first nanometer focusing lens and the second nanometer focusing lens are both a pair of focusing lenses and a pair of optical tweezers devices.
  • the nanowires will be captured by optical force near the focus formed by the first nanofocusing lens and the second nanofocusing lens.
  • the polarization characteristics of the focused beam near the focus can spatially rotate and adjust the nanowires. Control. That is, the chip interface in this application is based on on-chip optical tweezers composed of a first nanometer focusing lens and a second nanometer focusing lens, which achieves signal interconnection and communication by capturing and manipulating nanowires.
  • the first nanometer focusing lens and the second nanometer focusing lens The focus position of the focusing lens is adjustable and controllable, and the position and angle of the nanowires are adjustable and controllable.
  • Nanowires are similar to wires in electronic circuits, capable of transmitting light waves and signals from a first wave conductor to a second wave conductor, or transmitting light waves and signals from a second wave conductor to a first wave conductor. Nanowires transfer light waves and signals to the first wave conductor. , an interconnection bridge is built between the second wave conductor. When the angle between the long axis of the nanowire and the axes of the first and second waveguides is 0°, that is, when the long axis of the nanowire is in the same direction as the first and second waveguides, there is no Obvious discontinuities in the light field will occur, so efficient on-chip interconnects can be achieved.
  • the angle between the long axis of the nanowire and the axes of the first waveguide and the second waveguide is not 0°, that is, when the long axis of the nanowire is inconsistent with the directions of the first and second waveguides, at Materials with different refractive indexes will appear on the propagating light path (the first waveguide, the second waveguide, the first nanofocusing lens, the second nanofocusing lens, the medium around the nanowire, such as air, water, etc.), so when propagating light There is a sudden change in the refractive index on the road, which reduces the optical interconnection efficiency.
  • the optical interconnection Efficiency is minimal.
  • the transmission process is explained.
  • a laser beam is emitted into the first waveguide, and the laser beam enters the nanowire after passing through the first nanofocusing lens, and then is transmitted from the nanowire to the second nanofocusing lens, and is transmitted from the second nanofocusing lens to the second waveguide.
  • the relevant signal analysis component can analyze the signal received in the second waveguide.
  • the signal transmitted next time can be transmitted to the second waveguide after there is no signal transmitted last time in the second waveguide, or it can be When there are signals transmitted last time in the second wave conductor, they are transmitted to the second wave conductor, that is, the transmitted signals are all in the second wave conductor and overlap.
  • the optical interconnection interface in this application is a point-to-point on-chip optical communication link. It is a pure optical path design and uses optical control light technology to avoid the optical-electrical-optical signal conversion problem that exists in traditional interconnection technology. For modern High-speed and large-capacity optical communication network The development of the Internet is of great significance.
  • This link connects the two computing cores on the chip (laser beams in two waveguides) through optical tweezers technology, which can achieve high-speed data transmission and can effectively improve the reliability of data communication and processing of on-chip optical network systems.
  • the interface has a compact structure, low loss, simple structure, and is easy to implement.
  • the optical interconnection interface in this application includes a transmission device, a focusing device and an interconnection medium.
  • the focusing device is connected to the end face of the transmission device.
  • the interconnection medium is suspended in space and will not be adsorbed on the surface of a certain component.
  • the focusing device focuses the light beam emitted from the transmission device to form a focused beam, forming a captured light field.
  • Optical force and torque will be generated near the focus of the focused beam, so that when signal interconnection and communication are required, the captured light field will suspend the interconnection in space.
  • the medium is captured between the focusing devices, so that the light wave signal in one transmission device is transmitted to another transmission device through the interconnection medium, realizing optical interconnection.
  • the nanowires in the optical interconnection interface are single-sized nanowires.
  • the capturing light field between the first nanofocusing lens and the second nanofocusing lens only captures nanowires of one size.
  • the first The excitation light source (laser) of the waveguide and the second waveguide only needs to emit laser light of one wavelength.
  • the nanowires in the optical interconnection interface include at least two nanowires of different sizes.
  • nanowires include but are not limited to cross-sectional diameter and length.
  • the nanowires can also have various cross-sectional shapes, which are all within the protection scope of this application.
  • the optical interconnection interface includes a variety of nanowires of different sizes, all the nanowires are suspended in space. Nanowires of different sizes require different capture light fields to control and adjust their positions.
  • N N is greater than or equal to 2 prototype nanowires with cross-sectional shapes
  • the first size of nanowires has a length of L1 and a circular cross-section diameter of D1
  • the second size of nanowires has a length of L1 and a circular cross-section diameter of D1.
  • the length of the nanowire is L2 and the diameter of the circular cross-section is D2.
  • the length of the nanowire of the third size is L3 and the diameter of the circular cross-section is D3.
  • the length of the nanowire of the Nth size is LN and the diameter of the circular cross-section is DN. .
  • a capturing light field is required to capture the nanowires of the first size, and adjust the position of the nanowires of the first size to the first nanofocusing lens and the second nanofocusing lens.
  • a second capture light field is needed to capture the second size nanowire, and adjust the position of the second size nanowire to the first nanofocusing lens and the second nanofocusing lens, and so on, when the Nth size nanowire is required, the Nth capture light field is required to capture the Nth size nanowire, and the Nth size nanowire is captured. The position is adjusted to between the first nanofocusing lens and the second nanofocusing lens.
  • Factors that affect the light field captured between the first nanofocus lens and the second nanofocus lens include the wavelength of the focused beam, That is, when it is necessary to capture nanowires of the first size, the excitation light source (laser) of the waveguide can be controlled to emit a laser beam with a wavelength of ⁇ 1; when it is necessary to capture nanowires of the second size, the excitation of the waveguide can be controlled.
  • the light source (laser) emits a laser beam with a wavelength of ⁇ 2; when it is necessary to capture the third size of nanowire, the excitation light source (laser) of the waveguide can be controlled to emit a laser beam with a wavelength of ⁇ 3, and so on, when it is necessary to capture the Nth nanowire
  • the excitation light source (laser) of the waveguide can be controlled to emit a laser beam with a wavelength of ⁇ N.
  • the emission wavelengths of the excitation light source lasers of the first waveguide and the second waveguide can be adjusted through computer software programming, thereby realizing multi-functional dynamic adjustment of the characteristics of the optical tweezers and having certain tuning and reconstruction functions.
  • the optical interconnection interface in this embodiment is programmable, which facilitates system upgrade.
  • the materials of the waveguide, the nanofocusing lens, and the nanowire are all non-metallic materials, that is, the first waveguide, the second waveguide
  • the materials of the body, the first nanofocusing lens, the second nanofocusing lens and all the nanowires are non-metallic materials.
  • non-metallic materials are not limited in this application, and all non-metallic materials are within the protection scope of this application.
  • the materials of the waveguide, the nanofocusing lens, and the nanowire are all silicon, that is, the first waveguide and the second waveguide are respectively the first silicon waveguide and the second silicon waveguide.
  • the first nano-focusing lens and the second nano-focusing lens are respectively the first silicon nano-focusing lens and the second silicon nano-focusing lens, and the nanowires are silicon nanowires.
  • the optical interconnection interface is made of all silicon material, which can not only avoid chip heating Moreover, silicon is a material with large storage capacity in nature and low cost. Silicon is almost transparent in the near-infrared band and even in the mid-infrared band. At the same time, the material loss is extremely low. The large relative refractive index difference of silicon insulator waveguide is also more conducive to devices.
  • the silicon material is compatible with the existing mature electrical CMOS (Complementary Metal Oxide Semiconductor) process, so that the optical interconnection interface in this application does not need to develop a separate manufacturing process , more conducive to production.
  • CMOS Complementary Metal Oxide Semiconductor
  • the end surface of the waveguide is located within the surface range connected to the nano-focusing lens, that is, the end surface of the first waveguide is located within the surface range connected to it.
  • the projection on the first nanofocusing lens is completely located within the surface connected to the first nanofocusing lens, and the projection of the end surface of the second waveguide on the second nanofocusing lens connected to it is completely located within the surface connected to the second nanofocusing lens. within the connected surfaces.
  • the size relationship between the end face of the waveguide and the surface connecting the nanofocus lens and the waveguide includes two types.
  • the first one is that the end face size of the waveguide is smaller than that of the nanofocus lens and the waveguide.
  • the size of the surface connecting the waveguide body and the second type is that the end face size of the waveguide body is equal to the size of the surface connecting the nanofocusing lens and the waveguide body.
  • the end face size of the waveguide can also be smaller than the size of the surface where the nanofocusing lens is connected to the waveguide.
  • the endface size of the waveguide, the difference between the nanofocusing lens and the waveguide The size difference between the two surfaces should not be too different. It is necessary to ensure that the laser beam transmitted within the waveguide can enter the nanofocusing lens.
  • the nanofocusing lens can focus all the laser beams transmitted in the waveguide to the greatest extent.
  • two transmission devices 1 of the optical interconnection interface are provided on the same chip, that is, when the transmission device 1 is a waveguide and the focusing device 2 is a nanometer
  • the first waveguide, the first nanofocus lens connected to the end surface of the first waveguide, the second waveguide and the second nanofocus lens connected to the end surface of the second waveguide are all located on one chip.
  • the interconnection within the chip can be realized through the optical interconnection interface in this application.
  • this application does not specifically limit this.
  • the two transmission devices 1 are provided on different chips, that is, when the transmission device 1 is a waveguide and the focusing device 2 is a nanofocusing lens , the first waveguide and the first nanofocusing lens connected to the end face of the first waveguide are arranged on one chip, and the second waveguide and the second nanofocusing lens connected to the end face of the second waveguide are arranged on another chip.
  • the interconnection between chips can be realized through the optical interconnection interface in this application.
  • the focusing device 2 and the connected transmission device 1 are integrated formula structure. That is, when the transmission device 1 is a waveguide and the focusing device 2 is a nanofocusing lens, the first waveguide and the first nanofocusing lens connected to the end surface of the first waveguide are an integrated structure, and the second waveguide and the second nanofocusing lens are connected to the end surface of the first waveguide.
  • the second nanofocusing lens connected to the end face of the waveguide has an integrated structure.
  • first waveguide and the second waveguide as a rectangular parallelepiped as an example
  • first waveguide and the second waveguide when making an optical interconnection interface, prepare a silicon strip body, and make the part of the silicon strip body corresponding to the first waveguide body into the required size.
  • a wave conductor and then make a hemispherical first nano focusing lens from the part corresponding to the first nano focusing lens.
  • prepare another silicon strip body and make the part of the silicon strip body corresponding to the second wave conductor.
  • the second waveguide of the required size is then made into a hemispherical second nanofocusing lens for the part corresponding to the second nanofocusing lens. It is understandable that since the nanowires are suspended and not in contact with any components, the nanowires need to be produced separately.
  • the first nanometer focusing lens and the first waveguide are seamlessly integrated, and the second nanometer focusing lens and the second waveguide are seamlessly integrated, large-scale integration is facilitated and the manufacturing efficiency of the optical interconnection interface is improved.
  • the focusing device of the optical interconnection interface and the connected transmission device are connected in the form of glue. That is, the first waveguide and the first waveguide connected to the end surface of the first waveguide The nano-focusing lenses are connected together by adhesive, and the second waveguide and the second nano-focus lens connected to the end surface of the second waveguide are connected together by adhesive.
  • the optical interconnection interface in this embodiment, it is necessary to separately make the first waveguide, the second waveguide, the first nanofocusing lens and the second nanofocusing lens, and then use adhesive to connect the end face of the first waveguide to the second nanofocusing lens.
  • the first nanometer focusing lens is connected, and then the end surface of the second waveguide is connected to the second nanometer focusing lens using adhesive.
  • this embodiment requires additional gluing steps to produce The process is relatively complicated.
  • the optical interconnection interface includes a first silicon strip waveguide, a second silicon strip waveguide, a first hemispherical silicon nanofocusing lens, a second hemispherical silicon nanofocusing lens and silicon nanowires, the first silicon stripe waveguide and the second
  • the end faces of the silicon strip waveguide are arranged oppositely, the first hemispherical silicon nanofocusing lens is connected to the end face of the first silicon stripe waveguide opposite to the second silicon stripe waveguide, and the second hemispherical silicon nanofocusing lens is connected to the second silicon stripe waveguide.
  • the end face of the waveguide opposite to the first silicon strip waveguide is connected, the silicon nanowire is suspended in the space, and the shape of the silicon nanowire is cylindrical.
  • the ambient medium can be air or water.
  • the first silicon strip waveguide and the second silicon strip waveguide are placed on the glass substrate.
  • the thickness of the first silicon strip waveguide and the second silicon strip waveguide is between 200nm and 240nm.
  • the first silicon strip waveguide and the second silicon strip waveguide are The width of the two-silicon strip waveguide is between 200nm and 240nm; the diameter of the first hemispherical silicon nanofocusing lens and the second hemispherical silicon nanofocusing lens is between 200nm and 250nm; the diameter of the silicon nanowire is between 50nm and 150nm. between.
  • the first silicon strip waveguide, the second silicon strip waveguide, the first hemispherical silicon nanofocusing lens, the second hemispherical silicon nanofocusing lens and the silicon nanowires are all made of silicon, so there is no chip heating problem.
  • the advantages of silicon material are large storage capacity in nature, low cost, almost transparency in the near-infrared band and even mid-infrared band, and extremely low material loss.
  • the large relative refractive index difference of silicon insulator waveguide is also more conducive to high-density integration of devices, and is more Importantly, the silicon material is compatible with existing mature electrical CMOS processes.
  • the optical interconnection interface in this implementation is based on on-chip optical tweezers composed of a first hemispherical silicon nanofocusing lens and a second hemispherical silicon nanofocusing lens. It realizes signal interconnection and manipulation by capturing and manipulating silicon nanowires. Communication; the optical controllability of optical force and torque forms the programmable characteristics of the chip. Through computer software programming, the characteristics of optical tweezers can be multi-functional and dynamically adjusted. It has the advantages of programmability and easy system upgrade.
  • the optical tweezers characteristics of the chip interface and the relative position of the silicon nanowires will also be adjusted to achieve better focusing of the beam and the silicon nanowires. Multi-function control, designing a chip with excellent performance.
  • the optical interconnection interface has a compact structure, all-optical implementation, low loss, simple structure, and easy implementation.
  • the first silicon strip The waveguide and the first hemispherical silicon nanofocusing lens can be seamlessly integrated, and the second silicon strip waveguide and the second hemispherical silicon nanofocusing lens can be seamlessly integrated, facilitating large-scale integration.
  • this application can also be expanded to biological sensing, quantum computing, weak physical field detection, etc., with a wide range of applications and strong scalability.
  • This application also provides a chip, which includes the optical interconnection interface of any of the above embodiments.
  • the number of chips can be one, and the optical interconnection interface is provided on this chip. At this time, interconnection within the chip can be realized.
  • the number of chips can be two, and the two transmission devices 1 in the optical interconnection interface are provided on different chips. That is, when the transmission device 1 is a waveguide and the focusing device 2 is a nanofocusing lens, the first waveguide The body and the first nanofocusing lens connected to the end face of the first waveguide are arranged on one chip, and the second waveguide and the second nanofocusing lens connected to the end face of the second waveguide are arranged on another chip. At this time, the interconnection between chips can be realized through the optical interconnection interface in this application.
  • the optical interconnection interface includes a transmission device, a focusing device and an interconnection medium.
  • the focusing device is connected to the end face of the transmission device.
  • the interconnection medium is suspended in space and will not be adsorbed to a certain location. The surface of a part.
  • the focusing device focuses the light beam emitted from the transmission device to form a focused beam, forming a captured light field.
  • Optical force and torque will be generated near the focus of the focused beam, so that when signal interconnection and communication are required, the captured light field will suspend the interconnection in space.
  • the medium is captured between the focusing devices, so that the light wave signal in one transmission device is transmitted to another transmission device through the interconnection medium, realizing optical interconnection.
  • This application also provides a server, which includes the chip of the above embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

本申请公开了一种光互连接口、芯片和服务器,涉及光芯片领域,包括两个用于传输光束的传输装置,两个传输装置的端面相对设置;两个用于聚焦由传输装置出射的光束并形成聚焦光束的聚焦装置,两个聚焦装置分别与两个相对的端面连接;呈悬浮态的互联介质;其中,当需要实现信号的互联和通信时,互联介质由聚焦装置之间的捕获光场捕获,并位于两个聚焦装置之间。光互连接口中互联介质悬浮在空间中,聚焦装置聚焦传输装置出射的光束,形成捕获光场,聚焦光束焦点附近的光力和力矩将纳米线捕获至两个聚焦装置之间,使得一个传输装置内的光波信号经过互联介质传递至另一个传输装置中,实现光学互联。

Description

光互连接口、芯片和服务器
相关申请的交叉引用
本申请要求于2022年9月2日提交中国专利局,申请号为202211068225.1,申请名称为“一种光互连接口、芯片和服务器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光芯片领域,特别是涉及一种光互连接口、芯片和服务器。
背景技术
光纤通信利用光波作载波,以光纤作为传输媒质将信息从一处传至另一处进行通信,光纤通信技术在过去几十年内获得了飞速的发展,广泛用于长距离大容量通信网络结构中。但随着光计算技术由空间发展到芯片领域,基于传统光纤的空间光互联技术已无法满足片上高密度集成和短距离高速通信的需要。
光互连技术采用波导方式传输数据,具有信号传输的损耗低、速度快、延迟小的特点,同时,光子具有频率、偏振、时间、复振幅、自旋角动量及空间结构等多个物理维度,可发展为多维混合复用技术,进一步提升光互连的带宽。
光镊技术(Optical Tweezers,OTs),又称为单光束梯度力光阱,是用一束高度汇聚的激光形成的三维势阱来俘获、操纵控制微小粒子的技术,光镊技术可以用于移动细胞或病毒颗粒等方面,把细胞捏成各种形状,或者冷却原子。虽然光镊技术已经成功应用多年,但是对于目前应用光镊技术的芯片,该芯片中包括纳米级小颗粒,但是纳米级颗粒只能吸附在芯片结构的表面,并不能实现在空间上的悬浮,也不能实现片上光学互联效应,无法满足未来高速光通信和高带宽的互联要求。
申请内容
本申请的目的是提供一种光互连接口、芯片和服务器,以实现片上光学互联。
为解决上述技术问题,本申请提供一种光互连接口,包括:
两个用于传输光束的传输装置,两个传输装置的端面相对设置;
两个用于聚焦由传输装置出射的光束并形成聚焦光束的聚焦装置,两个聚焦装置分别与两个相对的端面连接;
呈悬浮态的互联介质;
其中,当需要实现信号的互联和通信时,互联介质由聚焦装置之间的捕获光场捕获,并位于两个聚焦装置之间。
在一个实施方式中,的光互连接口中,传输装置为波导体。
在一个实施方式中,的光互连接口中,聚焦装置为纳米聚焦透镜。
在一个实施方式中,的光互连接口中,互联介质为纳米线,纳米线的长轴与传输装置的轴线夹角根据聚焦光束的偏振特性调节。
在一个实施方式中,的光互连接口中,纳米线包括至少两种不同尺寸的纳米线。
在一个实施方式中,的光互连接口中,波导体、纳米聚焦透镜、纳米线的材料均为非金属材料。
在一个实施方式中,的光互连接口中,波导体、纳米聚焦透镜、纳米线的材料均为硅。
在一个实施方式中,的光互连接口中,两个纳米聚焦透镜的焦点相交于同一点。
在一个实施方式中,的光互连接口中,两个纳米聚焦透镜的焦点之间的距离大于零。
在一个实施方式中,的光互连接口中,两个传输装置设于同一芯片上。
在一个实施方式中,的光互连接口中,两个传输装置设于不同的芯片上。
在一个实施方式中,的光互连接口中,纳米线的截面形状为圆形、椭圆形、矩形、三角形、六角形中的任一种。
在一个实施方式中,的光互连接口中,纳米线的截面形状为圆形时,纳米线的截面直径在10nm-250nm之间。
在一个实施方式中,的光互连接口中,波导体的端面位于与纳米聚焦透镜相连接的表面范围内。
在一个实施方式中,的光互连接口中,波导体的厚度在50nm-300nm之间,宽度在50nm-300nm之间。
在一个实施方式中,的光互连接口中,纳米聚焦透镜呈半球状,纳米聚焦透镜的直径在50nm-350nm之间。
在一个实施方式中,的光互连接口中,聚焦装置与相连接的传输装置为一体式结构。
本申请还提供一种芯片,芯片包括上述任一种的光互连接口。
本申请还提供一种服务器,服务器包括上述的芯片。
本申请所提供的一种光互连接口,包括两个用于传输光束的传输装置,两个传输装置的端面相对设置;两个用于聚焦由传输装置出射的光束并形成聚焦光束的聚焦装置,两个聚焦装置分别与两个相对的端面连接;呈悬浮态的互联介质;其中,当需要实现信号的互联和通信时,互联介质由聚焦装置之间的捕获光场捕获,并位于两个聚焦装置之间。
可见,本申请中的光互连接口包括传输装置、聚焦装置和互联介质,聚焦装置与传输装置的端面连接,互联介质是悬浮在空间中的,并不会吸附在某一部件的表面。聚焦装置对传输装置出射的光束聚焦形成聚焦光束,形成捕获光场,聚焦光束焦点附近会产生光力和力矩,从而在需要进行信号的互联和通信时,捕获光场将悬浮在空间中的互联介质捕获至聚焦装置之间,使得一个传输装置内的光波信号经过互联介质传递至另一个传输装置中,实现光学互联。
此外,本申请还提供一种具有上述优点的芯片和服务器。
附图说明
为了更清楚的说明本申请实施例或现有技术的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为光镊技术的基本原理图;
图2为本申请实施例所提供的一种光互连接口的侧视图;
图3为本申请实施例所提供的一种光互连接口的俯视图;
图4为本申请实施例中两个纳米聚焦透镜形成的焦点的一种示意图;
图5为本申请实施例中两个纳米聚焦透镜形成的焦点的另一种示意图;
图6为本申请实施例中激光光束的偏振方向沿着水平方向时,纳米线与第一波导体、第二波导体的位置关系图;
图7为本申请实施例中激光光束的偏振方向沿着竖直方向时,纳米线与第一波导体、第二波导体的位置关系图;
图中,1.传输装置、2.聚焦装置、3.互联介质、4.衬底。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面结合附图和具体实施方式对本申 请作进一步的详细说明。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是本申请还可以采用其他不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本申请内涵的情况下做类似推广,因此本申请不受下面公开的具体实施例的限制。
光镊技术的基本原理图如图1所示,介电质颗粒会吸引到光束聚焦点中心。作用于物体上力的大小与物体到光束中心的距离成正比,就像弹簧系统。光镊技术属于先进激光技术的一种,技术核心在于光与物质颗粒之间通过动量传递所产生的力学和力矩效应,并以此实现对微观物体的三维高精度操控。不同于传统意义上的机械夹持,光镊技术凭借光与物质之间相互作用所产生的微小作用力对物质进行捕获、移动和排列等空间位置的操控,该过程具有非接触、低损伤和强穿透等优点。
正如背景技术部分所述,对于目前的片上光镊技术,纳米级颗粒只能吸附在芯片结构的表面,并不能实现在空间上的悬浮,也不能实现片上光学互联效应。
有鉴于此,本申请提供了一种光互连接口,请参考图2和图3,图2和图3分别为本申请实施例所提供的一种光互连接口的侧视图、俯视图,该光互连接口包括:
两个用于传输光束的传输装置1,两个传输装置1的端面相对设置;
两个用于聚焦由传输装置1出射的光束并形成聚焦光束的聚焦装置2,两个聚焦装置2分别与两个相对的端面连接;
呈悬浮态的互联介质3;
其中,当需要实现信号的互联和通信时,互联介质3由聚焦装置2之间的捕获光场捕获,并位于两个聚焦装置2之间。
传输装置1和聚焦装置2可以设置在衬底4上,衬底4包括但不限于玻璃衬底。
聚焦装置2的位置为传输装置1两个相对的端面,即两个聚焦装置2也是相对设置的,如图2和图3中所示。两个传输装置1的端面相对设置,也即两个传输装置1的轴线是在同一条直线上的,如图2和图3中所示。
互联介质3是呈悬浮态的,不与任何部件接触。当不进行信号的互联和通信时,互联介质3的位置在空间是不固定的。
聚焦装置2对传输装置1出射的光束聚焦形成聚焦光束,形成捕获光场,聚焦光束焦点附近会产生光力和力矩,从而可以将悬浮的互联介质3捕获至两个聚焦装置2之间。
在一个可实施方式中,传输装置1为波导体,当然也可以为其他可以传输激光光束的装置,本申请中不做具体限定。
在一个可实施方式中,聚焦装置2为纳米聚焦透镜,当然也可以为其他可以聚焦激光光束的装置,本申请中不做具体限定。
在一个可实施方式中,互联介质3为纳米线,纳米线的长轴与传输装置1的轴线夹角根据聚焦光束的偏振特性调节。
需要说明的是,本申请中对波导体的端面形状不做具体限定,可以自行设置。例如,波导体的端面形状可以为长方形、正方形、梯形、六边形、圆形等等。
波导体的厚度可以在50nm-300nm(纳米)之间,例如,波导体的厚度可以为50nm、80nm、100nm、150nm、200nm、210nm、220nm、230nm、240nm、280nm、300nm等,波导体的宽度可以在50nm-300nm之间,例如,波导体的宽度可以为50nm、80nm、100nm、150nm、200nm、210nm、220nm、230nm、240nm、280nm、300nm等。
纳米聚焦透镜的形状可以为半球状,纳米聚焦透镜的直径可以在50nm-350nm之间,例如,纳米聚焦透镜的直径可以为50nm、80nm、100nm、150nm、200nm、210nm、220nm、230nm、240nm、250nm、280nm、330nm、350nm等。
还需要说明的是,本申请中对纳米线的截面形状也不做具体限定,可以自行设置。例如,纳米线的截面形状包括但不限于圆形、椭圆形、矩形、三角形、六角形中的任一种。
为了简化纳米线的制作工艺,纳米线的截面形状优选为圆形,即纳米线的形状为圆柱状。
当纳米线的截面形状为圆形时,纳米线的截面直径可以在10nm-250nm之间,例如,纳米线的截面直径可以为10nm、30nm、50nm、60nm、70nm、80nm、90nm、100nm、110nm、120nm、130nm、140nm、150nm、200nm、230nm、250nm等等。
为了便于描述,将两个波导体分别称为第一波导体和第二波导体,对应的,将与第一波导体的端面连接的纳米聚焦透镜称为第一纳米聚焦透镜,将与第二波导体的端面连接的纳米聚焦透镜称为第二纳米聚焦透镜。
第一波导体和第二波导体的激发光源为激光器,激光器既可以为单模光纤激光器,也可以为多模光纤激光器。激光器向第一波导体和第二波导体中发射激光光束,激光光束分别在第一波导体和第二波导体内传播,第一波导体内的光束从第一波导体射出后被第一纳米聚焦透镜聚焦形成一束聚焦光束,第二波导体内的光束从第二波导体射出后被第二纳米聚焦透镜聚焦形成一束聚焦光束,在第一纳米聚焦透镜和第二纳米聚焦透镜之间形成用于捕获纳米线 的捕获光场。两束聚焦光束以一定的角度在空间内相交,类似于传统空间光镊技术产生的汇聚光束,因此,在聚焦光束附近会产生光力和力矩,用于捕获和操纵悬浮在空间中的纳米线。可以理解的是,当第一波导体和第二波导体中没有光波信号时,第一纳米聚焦透镜和第二纳米聚焦透镜之间不会形成光学焦点,因此,被捕获的纳米线也被释放,再次悬浮在空间中。
捕获光场可以捕获的纳米线根据激光器发射的激光束的波长不同而不同,可以根据纳米线的尺寸以及在空间中悬浮的位置,来设置激光光束的波长。例如,第一波导体和第二波导体的激发光源为单模光纤激光器,波长为1550nm。
需要指出的是,本申请中对第一纳米聚焦透镜和第二纳米聚焦透镜之间的距离不做限定,视情况而定。
在本申请的一个实施例中,请参考图4,图4为本申请实施例中两个纳米聚焦透镜形成的焦点的一种示意图,两个纳米聚焦透镜的焦点相交于同一点,即第一纳米聚焦透镜聚焦形成的聚焦光束与第二纳米聚焦透镜聚焦形成的聚焦光束相交于同一点。
在本申请的另一个实施例中,请参考图5,图5为本申请实施例中两个纳米聚焦透镜形成的焦点的另一种示意图,两个纳米聚焦透镜的焦点之间的距离大于零,即第一纳米聚焦透镜和第二纳米聚焦透镜的焦点并不相交于同一点,第一纳米聚焦透镜聚焦形成的聚焦光束与第二纳米聚焦透镜聚焦形成的聚焦光束在空间中有两个交点。
无论第一纳米聚焦透镜和第二纳米聚焦透镜的焦点是否相交于同一点,通过调整第一波导体和第二波导体之间的距离,也即调整第一纳米聚焦透镜和第二纳米聚焦透镜之间的距离,便可以实现对捕获光场的形状的调整。当第一纳米聚焦透镜和第二纳米聚焦透镜之间的距离比较短,可以在第一纳米聚焦透镜和第二纳米聚焦透镜之间形成很紧凑的捕获光场,随着第一纳米聚焦透镜和第二纳米聚焦透镜之间的距离的延长,第一纳米聚焦透镜和第二纳米聚焦透镜之间的捕获光场在轴向进行拉伸。
激光器向第一波导体和第二波导体中发射的激光光束的偏振特性的不同,对纳米线的操控动作不同。例如,当第一波导体和第二波导体中传输的是线偏振光,纳米线的长轴会因为力矩的作用而沿着偏振方向,如图6和图7所示。在图6中,图6为激光光束的偏振方向沿着水平方向时,纳米线与第一波导体、第二波导体的位置关系图,当第一波导体和第二波导体中传输的激光光束的偏振方向沿着水平方向时,纳米线的长轴也是沿着水平方向,纳米线的长轴与第一波导体、第二波导体的轴线之间的夹角为0°;在图7中,图7为激光光束的偏振方向沿着竖直方向时,纳米线与第一波导体、第二波导体的位置关系图,当第一波导体和第二 波导体中传输的激光光束的偏振方向为竖直方向时,纳米线的长轴也是沿着竖直方向,纳米线的长轴与第一波导体、第二波导体的轴线之间的夹角为90°;当第一波导体和第二波导体中传输的是圆偏振光,纳米线会在第一纳米聚焦透镜和第二纳米聚焦透镜的焦点附近自旋转。
第一纳米聚焦透镜和第二纳米聚焦透镜既是一对聚焦透镜对,也是一对光镊器件。根据光镊技术理论,纳米线会被光学力捕获到第一纳米聚焦透镜和第二纳米聚焦透镜形成的焦点附近,同时,焦点附近的聚焦光束的光的偏振特性能够对纳米线进行空间旋转和操控。即,本申请中的芯片接口基于第一纳米聚焦透镜和第二纳米聚焦透镜组成的片上光镊,通过对纳米线的捕获和操纵实现信号的互联和通信,第一纳米聚焦透镜和第二纳米聚焦透镜的焦点位置可调可控,纳米线位置和角度可调可控。
纳米线类似于电子电路的导线,能够将光波和信号从第一波导体传递到第二波导体,或者将光波和信号从第二波导体传递到第一波导体,纳米线给第一波导体、第二波导体之间搭建了互联的桥梁。当纳米线的长轴与第一波导体、第二波导体的轴线夹角为0°,也即纳米线的长轴与第一波导体、第二波导体方向一致时,在传播光路上不会出现光场的明显的不连续现象,因此可以实现高效率的片上互联。相反的,当纳米线的长轴与第一波导体、第二波导体的轴线夹角不为0°,也即纳米线的长轴与第一波导体、第二波导体方向不一致时,在传播光路上会出现折射率不同的材料(第一波导体、第二波导体、第一纳米聚焦透镜、第二纳米聚焦透镜、纳米线周围的介质,比如空气、水等),因此在传播光路上存在折射率的突变,光互连效率也因此降低。当纳米线的长轴方向垂直于波导方向,也即纳米线的长轴与第一波导体、第二波导体的轴线夹角为90°,如图7中所示,此时,光互连效率为最低。通过空间悬浮的纳米线,完成第一波导体、第二波导体之间的光学互联和信号交互。
以第一波导体向第二波导体传递光波信号为例,对传输过程进行阐述。向第一波导体中发射激光光束,激光光束经过第一纳米聚焦透镜后进入纳米线中,再从纳米线中传输至第二纳米聚焦透镜中,由第二纳米聚焦透镜传输至第二波导体中,由相关的信号解析部件对第二波导体中接收到的信号进行解析即可。需要指出的是,当需要向第二波导体中多次传递信号时,下一次传递的信号既可以在第二波导体中没有上一次传递的信号后再传递至第二波导体中,也可以在第二波导体中还有上一次传递的信号时传递到第二波导体中,即传递的信号都在第二波导体中,发生重叠。
本申请中的光互连接口为一种点对点的片上光通信链路,为纯光路设计,采用光控光技术,避免了传统互联技术中存在的光-电-光的信号转换问题,对于现代高速大容量光通信网 络的发展具有十分重要的意义。该链路通过光镊技术连接芯片上的两个计算核心(两个波导体内的激光光束),可以实现数据的高速传输,可以有效提升片上光网络系统数据通信和处理的可靠性。并且,该接口结构紧凑,损耗低,结构简单,容易实现。
本申请中的光互连接口包括传输装置、聚焦装置和互联介质,聚焦装置与传输装置的端面连接,互联介质是悬浮在空间中的,并不会吸附在某一部件的表面。聚焦装置对传输装置出射的光束聚焦形成聚焦光束,形成捕获光场,聚焦光束焦点附近会产生光力和力矩,从而在需要进行信号的互联和通信时,捕获光场将悬浮在空间中的互联介质捕获至聚焦装置之间,使得一个传输装置内的光波信号经过互联介质传递至另一个传输装置中,实现光学互联。
在上述实施例的基础上,在本申请的一个实施例中,光互连接口中的纳米线为单一尺寸的纳米线。此时第一纳米聚焦透镜、第二纳米聚焦透镜之间的捕获光场只捕获一种尺寸的纳米线,当需要在第一波导体、第二波导体之间进行进行信号传递时,第一波导体、第二波导体的激发光源(激光器)只需发射一种波长的激光即可。
目前大多数芯片光处理器件只能完成特定的单一光处理功能,灵活性比较差,而随着对光信号处理应用的需求,通常要求片上光处理器件具有一定的调谐和重构功能。为了解决该问题,在本申请的一个实施例中,光互连接口中的纳米线包括至少两种不同尺寸的纳米线。
纳米线的尺寸包括但不限于截面直径、长度。当然,纳米线的截面形状也可以有多种,均在本申请的保护范围内。
当光互连接口中包括多种不同尺寸的纳米线时,所有的纳米线均是悬浮在空间中的,不同尺寸的纳米线需要不同的捕获光场才能进行操控,调整位置。例如,当光互连接口中包括N(N大于等于2)种截面形状为原型的纳米线,第一种尺寸的纳米线长度为L1、圆形截面直径为D1,第二种尺寸的纳米线长度为L2、圆形截面直径为D2,第三种尺寸的纳米线长度为L3、圆形截面直径为D3,以此类推,第N种尺寸的纳米线长度为LN、圆形截面直径为DN。
当需要第一种尺寸的纳米线时,需要一种捕获光场将第一种尺寸的纳米线捕获,并将第一种尺寸的纳米线的位置调整至第一纳米聚焦透镜和第二纳米聚焦透镜之间;当需要第二种尺寸的纳米线时,需要第二种捕获光场将第二种尺寸的纳米线捕获,并将第二种尺寸的纳米线的位置调整至第一纳米聚焦透镜和第二纳米聚焦透镜之间,依次类推,当需要第N种尺寸的纳米线时,需要第N种捕获光场将第N种尺寸的纳米线捕获,并将第N种尺寸的纳米线的位置调整至第一纳米聚焦透镜和第二纳米聚焦透镜之间。
影响第一纳米聚焦透镜和第二纳米聚焦透镜之间捕获光场的因素包括聚焦光束的波长, 也即当需要捕获第一种尺寸的纳米线时,可以控制波导体的激发光源(激光器)发射波长为λ1的激光光束;当需要捕获第二种尺寸的纳米线时,可以控制波导体的激发光源(激光器)发射波长为λ2的激光光束;当需要捕获第三种尺寸的纳米线时,可以控制波导体的激发光源(激光器)发射波长为λ3的激光光束,依次类推,当需要捕获第N种尺寸的纳米线时,可以控制波导体的激发光源(激光器)发射波长为λN的激光光束。
第一波导体、第二波导体的激发光源激光器的发射波长可以通过计算机软件编程进行调整,从而实现对光镊特性进行多功能动态调整,具有一定的调谐和重构功能。本实施例中的光互连接口具有可编程性,便于系统升级。
为了避免光互连接口出现焦耳热效应、等离子效应,在本申请的一个实施例中,波导体、纳米聚焦透镜、纳米线的材料均为非金属材料,也即,第一波导体、第二波导体、第一纳米聚焦透镜、第二纳米聚焦透镜和所有的纳米线的材料都是非金属材料。
需要指出的是,本申请中对非金属材料不做限定,只要是非金属的材料均在本申请的保护范围内。
优选地,在本申请的一个实施例中,波导体、纳米聚焦透镜、纳米线的材料均为硅,即第一波导体、第二波导体分别为第一硅波导体、第二硅波导体,第一纳米聚焦透镜、第二纳米聚焦透镜分别为第一硅纳米聚焦透镜、第二硅纳米聚焦透镜,纳米线为硅纳米线。
当第一波导体、第二波导体、第一纳米聚焦透镜、第二纳米聚焦透镜和所有的纳米线的材料均为硅时,即光互连接口为全硅材料,不仅可以避免出现芯片发热的问题;并且,硅是自然界储存量大的材料、成本低廉,硅在近红外波段乃至中红外波段都几乎透明,同时材料损耗极低,硅绝缘体波导较大的相对折射率差也更利于器件的高密度集成,更为重要的是,硅材料与现有成熟的电学CMOS(Complementary Metal Oxide Semiconductor,互补金属氧化物半导体)工艺相兼容,使得本申请中的光互连接口无需单独开发制作工艺,更利于生产。
在上述任一实施例的基础上,在本申请的一个实施例中,波导体的端面位于与纳米聚焦透镜相连接的表面范围内,也即,第一波导体的端面在与之相连接的第一纳米聚焦透镜上的投影完全位于与第一纳米聚焦透镜相连接的表面内,第二波导体的端面在与之相连接的第二纳米聚焦透镜上的投影完全位于与第二纳米聚焦透镜相连接的表面内。
需要指出的是,本实施例中波导体的端面、纳米聚焦透镜与波导体相连接的表面两者之间的尺寸关系包括两种,第一种为波导体的端面尺寸小于纳米聚焦透镜与波导体相连接的表面的尺寸,第二种为波导体的端面尺寸等于与纳米聚焦透镜与波导体相连接的表面的尺寸。 但是,本申请对此并不做具体限定,波导体的端面尺寸也可以小于纳米聚焦透镜与波导体相连接的表面的尺寸,但需要注意的是,波导体的端面尺寸、纳米聚焦透镜与波导体相连接的表面的尺寸两者之间的尺寸差值不要差太多,需要保证波导体内传输的激光光束可以进入到纳米聚焦透镜内才行。
当波导体的端面位于与纳米聚焦透镜相连接的表面范围内时,纳米聚焦透镜可以最大程度的将波导体内传输的激光光束全部进行聚焦。
在上述任一实施例的基础上,在本申请的一个实施例中,光互连接口的两个传输装置1设于同一芯片上,即,当传输装置1为波导体,聚焦装置2为纳米聚焦透镜时,第一波导体、与第一波导体的端面连接的第一纳米聚焦透镜、第二波导体和与第二波导体的端面连接的第二纳米聚焦透镜均设于一个芯片上,此时通过本申请中的光互连接口可以实现芯片内的互联。但是,本申请对此并不做具体限定,在本申请的其他实施例中,两个传输装置1设于不同的芯片上,即当传输装置1为波导体,聚焦装置2为纳米聚焦透镜时,将第一波导体、与第一波导体的端面连接的第一纳米聚焦透镜设置在一个芯片上,将第二波导体、与第二波导体的端面连接的第二纳米聚焦透镜设置在另一个芯片上,此时通过本申请中的光互连接口可以实现芯片之间的互联。
为了简化光互连接口的制作工艺,提升光互连接口的制作效率,在上述任一实施例的基础上,在本申请的一个实施例中,聚焦装置2与相连接的传输装置1为一体式结构。即当传输装置1为波导体,聚焦装置2为纳米聚焦透镜时,第一波导体和与第一波导体的端面连接的第一纳米聚焦透镜为一体式结构,第二波导体和与第二波导体的端面连接的第二纳米聚焦透镜为一体式结构。
以第一波导体和第二波导体的形状为长方体为例,在制作光互连接口时,准备一个硅条形体,将硅条形体对应制作第一波导体的部分制成所需尺寸的第一波导体,然后对对应制作第一纳米聚焦透镜的部分制作成半球状的第一纳米聚焦透镜,同样的,准备另一个硅条形体,将硅条形体对应制作第二波导体的部分制成所需尺寸的第二波导体,然后对对应制作第二纳米聚焦透镜的部分制作成半球状的第二纳米聚焦透镜。可以理解的是,由于纳米线是悬浮的,不与任何部件接触连接,纳米线需要单独制作出来。当第一纳米聚焦透镜和第一波导体无缝集成、第二纳米聚焦透镜和第二波导体无缝集成时,便于规模化集成,提升光互连接口的制作效率。
在上述任一实施例的基础上,在本申请的一个实施例中,光互连接口的聚焦装置与相连接的传输装置之间通过胶粘的形式连接。即,第一波导体和与第一波导体的端面连接的第一 纳米聚焦透镜之间通过胶粘的形式连接在一起,第二波导体和与第二波导体的端面连接的第二纳米聚焦透镜之间通过胶粘的形式连接在一起。
在制作本实施例中的光互连接口时,需要单独制作出第一波导体、第二波导体、第一纳米聚焦透镜和第二纳米聚焦透镜,然后利用胶粘剂将一波导体的端面与第一纳米聚焦透镜连接起来,再利用胶粘剂将第二波导体的端面与第二纳米聚焦透镜连接起来。相较于上述实施例中第一波导体和第一纳米聚焦透镜为一体式结构,第二波导体和第二纳米聚焦透镜为一体式结构,本实施例中需要额外增加胶粘的步骤,制作过程相对复杂一些。
下面以一具体情况对本申请中的光互连接口进行介绍。
光互连接口包括第一硅条形波导、第二硅条形波导、第一半球形硅纳米聚焦透镜、第二半球形硅纳米聚焦透镜和硅纳米线,第一硅条形波导和第二硅条形波导的端面相对设置,第一半球形硅纳米聚焦透镜与第一硅条形波导上与第二硅条形波导相对的端面连接,第二半球形硅纳米聚焦透镜与第二硅条形波导上与第一硅条形波导相对的端面连接,硅纳米线悬浮在空间中,硅纳米线的形状为圆柱形。周围环境介质可以为空气或者水。
第一硅条形波导和第二硅条形波导置于玻璃衬底上,第一硅条形波导和第二硅条形波导的厚度在200nm-240nm之间,第一硅条形波导和第二硅条形波导的宽度在200nm-240nm之间;第一半球形硅纳米聚焦透镜、第二半球形硅纳米聚焦透镜的直径在200nm-250nm之间;硅纳米线的直径在50nm-150nm之间。
本实施例中的光互连接口具有以下优势:
第一,第一硅条形波导、第二硅条形波导、第一半球形硅纳米聚焦透镜、第二半球形硅纳米聚焦透镜和硅纳米线的材料均为硅,无芯片发热问题。硅材料的优势是自然界储存量大、成本低廉、在近红外波段乃至中红外波段都几乎透明、材料损耗极低,硅绝缘体波导较大的相对折射率差也更利于器件的高密度集成,更为重要的是,硅材料与现有成熟的电学CMOS工艺相兼容。
第二,本实施中的光互连接口,基于第一半球形硅纳米聚焦透镜、第二半球形硅纳米聚焦透镜组成的片上光镊,通过对硅纳米线的捕获和操纵实现信号的互联和通信;光力和力矩的光学可控性形成了芯片的可编程特性,通过计算机软件编程,就可以对光镊特性进行多功能动态调整,具有可编程性,便于系统升级的优点。通过调整第一硅条形波导和第二硅条形波导中的光场模式,也会调整芯片接口的光镊特性和硅纳米线的相对位置,来实现对光束更好的聚焦和硅纳米线的多功能操控,设计出性能优异的芯片。
第三,光互连接口的结构紧凑,全光实现,损耗低,结构简单,容易实现,第一硅条形 波导和第一半球形硅纳米聚焦透镜可以无缝集成,第二硅条形波导和第二半球形硅纳米聚焦透镜可以无缝集成,便于规模化集成。
第四,基于光镊技术实现片上互联,本申请还可拓展应用到生物传感,量子计算、微弱物理场探测等方面,应用范围广,可拓展性强。
本申请中还提供一种芯片,芯片包括上述任一实施例的光互连接口。
芯片的数量可以为一个,光互连接口设置在这一个芯片上,此时可以实现芯片内的互联。或者,芯片的数量可以为两个,光互连接口中的两个传输装置1设于不同的芯片上,即当传输装置1为波导体,聚焦装置2为纳米聚焦透镜时,将第一波导体、与第一波导体的端面连接的第一纳米聚焦透镜设置在一个芯片上,将第二波导体、与第二波导体的端面连接的第二纳米聚焦透镜设置在另一个芯片上,此时通过本申请中的光互连接口可以实现芯片之间的互联。
本实施例中芯片的光互连接口中,光互连接口包括传输装置、聚焦装置和互联介质,聚焦装置与传输装置的端面连接,互联介质是悬浮在空间中的,并不会吸附在某一部件的表面。聚焦装置对传输装置出射的光束聚焦形成聚焦光束,形成捕获光场,聚焦光束焦点附近会产生光力和力矩,从而在需要进行信号的互联和通信时,捕获光场将悬浮在空间中的互联介质捕获至聚焦装置之间,使得一个传输装置内的光波信号经过互联介质传递至另一个传输装置中,实现光学互联。
本申请还提供一种服务器,服务器包括上述实施例的芯片。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其它实施例的不同之处,各个实施例之间相同或相似部分互相参见即可。
以上对本申请所提供的光互连接口、芯片和服务器进行了详细介绍。本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方案及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以对本申请进行若干改进和修饰,这些改进和修饰也落入本申请权利要求的保护范围内。

Claims (21)

  1. 一种光互连接口,其特征在于,包括:
    两个用于传输光束的传输装置,两个所述传输装置的端面相对设置;
    两个用于聚焦由所述传输装置出射的光束并形成聚焦光束的聚焦装置,两个所述聚焦装置分别与两个相对的所述端面连接;
    呈悬浮态的互联介质;
    其中,当需要实现信号的互联和通信时,所述互联介质由所述聚焦装置之间的捕获光场捕获,并位于两个所述聚焦装置之间。
  2. 如权利要求1所述的光互连接口,其特征在于,所述传输装置为波导体。
  3. 如权利要求2所述的光互连接口,其特征在于,所述聚焦装置为纳米聚焦透镜。
  4. 如权利要求3所述的光互连接口,其特征在于,所述互联介质为纳米线,所述纳米线的长轴与所述传输装置的轴线夹角根据所述聚焦光束的偏振特性调节。
  5. 如权利要求4所述的光互连接口,其特征在于,所述纳米线包括至少两种不同尺寸的纳米线。
  6. 如权利要求4所述的光互连接口,其特征在于,所述波导体、所述纳米聚焦透镜、所述纳米线的材料均为非金属材料。
  7. 如权利要求6所述的光互连接口,其特征在于,所述波导体、所述纳米聚焦透镜、所述纳米线的材料均为硅。
  8. 如权利要求3所述的光互连接口,其特征在于,两个所述纳米聚焦透镜的焦点相交于同一点。
  9. 如权利要求3所述的光互连接口,其特征在于,两个所述纳米聚焦透镜的焦点之间的距离大于零。
  10. 如权利要求1所述的光互连接口,其特征在于,两个所述传输装置设于同一芯片上。
  11. 如权利要求1所述的光互连接口,其特征在于,两个所述传输装置设于不同的芯片上。
  12. 如权利要求4所述的光互连接口,其特征在于,所述纳米线的截面形状为圆形、椭圆形、矩形、三角形、六角形中的任一种。
  13. 如权利要求12所述的光互连接口,其特征在于,所述纳米线的截面形状为圆形 时,所述纳米线的截面直径在10nm-250nm之间。
  14. 如权利要求3所述的光互连接口,其特征在于,所述波导体的端面位于与所述纳米聚焦透镜相连接的表面范围内。
  15. 如权利要求2所述的光互连接口,其特征在于,所述波导体的厚度在50nm-300nm之间,宽度在50nm-300nm之间。
  16. 如权利要求2所述的光互连接口,其特征在于,所述波导体的端面形状为长方形、正方形、梯形、六边形、圆形中的任一种。
  17. 如权利要求3所述的光互连接口,其特征在于,所述纳米聚焦透镜呈半球状,所述纳米聚焦透镜的直径在50nm-350nm之间。
  18. 如权利要求1至17任一项所述的光互连接口,其特征在于,所述聚焦装置与相连接的所述传输装置为一体式结构。
  19. 如权利要求1至17任一项所述的光互连接口,其特征在于,所述聚焦装置与相连接的所述传输装置之间通过胶粘的形式连接。
  20. 一种芯片,其特征在于,所述芯片包括如权利要求1至19任一项所述的光互连接口。
  21. 一种服务器,其特征在于,所述服务器包括如权利要求20所述的芯片。
PCT/CN2023/076530 2022-09-02 2023-02-16 光互连接口、芯片和服务器 WO2024045508A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211068225.1A CN115144961B (zh) 2022-09-02 2022-09-02 一种光互连接口、芯片和服务器
CN202211068225.1 2022-09-02

Publications (1)

Publication Number Publication Date
WO2024045508A1 true WO2024045508A1 (zh) 2024-03-07

Family

ID=83416343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/076530 WO2024045508A1 (zh) 2022-09-02 2023-02-16 光互连接口、芯片和服务器

Country Status (2)

Country Link
CN (1) CN115144961B (zh)
WO (1) WO2024045508A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115144961B (zh) * 2022-09-02 2023-02-28 浪潮电子信息产业股份有限公司 一种光互连接口、芯片和服务器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150180572A1 (en) * 2013-12-19 2015-06-25 International Business Machines Corporation Optical interconnect device, information processing device and data transmission method
CN111261312A (zh) * 2020-01-18 2020-06-09 江苏锐精光电研究院有限公司 基于自聚焦透镜对的微型光镊装置及方法
CN111295607A (zh) * 2017-10-30 2020-06-16 莱森格斯株式会社 光学互连件及其制造方法
CN111816343A (zh) * 2020-07-01 2020-10-23 浙江大学 一种利用正弦相位调制实现多位置光阱的方法和装置
CN114826851A (zh) * 2022-06-27 2022-07-29 之江实验室 一种基于悬浮微粒的信号通讯方法和装置
CN115144961A (zh) * 2022-09-02 2022-10-04 浪潮电子信息产业股份有限公司 一种光互连接口、芯片和服务器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201918314U (zh) * 2010-12-16 2011-08-03 东南大学 选通开关阵列
US20220157483A1 (en) * 2019-04-18 2022-05-19 King Abdullah University Of Science And Technology Reconfigurable counterpropagating holographic optical tweezers with low-na lens
CN114678760B (zh) * 2022-03-25 2023-11-07 苏州浪潮智能科技有限公司 一种纳米线激光器
CN114414552B (zh) * 2022-03-28 2022-08-09 之江实验室 一种微粒光散射谱分析装置及其应用方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150180572A1 (en) * 2013-12-19 2015-06-25 International Business Machines Corporation Optical interconnect device, information processing device and data transmission method
CN111295607A (zh) * 2017-10-30 2020-06-16 莱森格斯株式会社 光学互连件及其制造方法
CN111261312A (zh) * 2020-01-18 2020-06-09 江苏锐精光电研究院有限公司 基于自聚焦透镜对的微型光镊装置及方法
CN111816343A (zh) * 2020-07-01 2020-10-23 浙江大学 一种利用正弦相位调制实现多位置光阱的方法和装置
CN114826851A (zh) * 2022-06-27 2022-07-29 之江实验室 一种基于悬浮微粒的信号通讯方法和装置
CN115144961A (zh) * 2022-09-02 2022-10-04 浪潮电子信息产业股份有限公司 一种光互连接口、芯片和服务器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DONATO MARIA G., BRZOBOHATÝ OTO, SIMPSON STEPHEN H., IRRERA ALESSIA, LEONARDI ANTONIO A., LO FARO MARIA J., SVAK VOJTĚCH, MARAGÒ O: "Optical Trapping, Optical Binding, and Rotational Dynamics of Silicon Nanowires in Counter-Propagating Beams", NANO LETTERS, AMERICAN CHEMICAL SOCIETY, US, vol. 19, no. 1, 9 January 2019 (2019-01-09), US , pages 342 - 352, XP093143720, ISSN: 1530-6984, DOI: 10.1021/acs.nanolett.8b03978 *
YU SHAOLIANG, LU JINSHENG, GINIS VINCENT, KHEIFETS SIMON, LIM SOON WEI DANIEL, QIU MIN, GU TIAN, HU JUEJUN, CAPASSO FEDERICO: "On-chip optical tweezers based on freeform optics", OPTICA, THE OPTICAL SOCIETY, US, vol. 8, no. 3, 20 March 2021 (2021-03-20), US , pages 409, XP093143721, ISSN: 2334-2536, DOI: 10.1364/OPTICA.418837 *

Also Published As

Publication number Publication date
CN115144961A (zh) 2022-10-04
CN115144961B (zh) 2023-02-28

Similar Documents

Publication Publication Date Title
CN101359071B (zh) 光耦合器件
CN109073910B (zh) 用于从入射电磁波形成近区中的至少一个聚焦波束的设备
WO2024045508A1 (zh) 光互连接口、芯片和服务器
US20080212921A1 (en) Optical interconnect devices and structures based on metamaterials
CN109791255B (zh) 包括法拉第旋转器的光学耦合器
CN111983753B (zh) 一种应用于3d光互连的层间偏振分束器
US7027689B2 (en) Optical routers based on surface plasmons
US20150362673A1 (en) Surface-normal coupler for silicon-on-insulator platforms
CN109613632B (zh) 基于柔性表面等离激元耦合器的可调谐振腔及其制备方法
CN109324372B (zh) 一种硅光波导端面耦合器
CN101162279A (zh) 一种单模光子晶体偏振分束器
CN112305676B (zh) 基于静电梳驱动的硅基mems光开关及n×n阵列
CN109791251A (zh) 光束斑点尺寸转换器
CN101702046A (zh) 金属纳米线与纳米光纤、光学纳米线耦合的复合导波结构
WO2015139612A1 (zh) 基于光子晶体波导的十字红外偏振光桥
CN110045459A (zh) 在光子集成芯片的波导内传输轨道角动量的方法
WO2013104302A1 (zh) 光子晶体波导tm-偏振分离器
CN102737713A (zh) 基于线性阵列多芯光纤的二维集成式光纤在线存储器
Yu et al. Seamless hybrid-integrated interconnect network (SHINE)
CN110133940A (zh) 一种提高激光扫描角度的声光偏转器装置
Zahid et al. Asymmetric transmission through single-layered all-dielectric metasurface
CN105301806B (zh) 一种保偏光纤声光光开关
Kaur et al. Deep subwavelength power concentration-based hyperbolic metamaterials
CN107991737A (zh) 一种应用于半导体发光器件的单偏振光纤微透镜制作方法
CN104932120A (zh) 一种基于二维光子晶体的微粒精密控制器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23858551

Country of ref document: EP

Kind code of ref document: A1