WO2024045491A1 - 一种基于相变材料-硅混合集成波导的片上起偏器 - Google Patents
一种基于相变材料-硅混合集成波导的片上起偏器 Download PDFInfo
- Publication number
- WO2024045491A1 WO2024045491A1 PCT/CN2023/074088 CN2023074088W WO2024045491A1 WO 2024045491 A1 WO2024045491 A1 WO 2024045491A1 CN 2023074088 W CN2023074088 W CN 2023074088W WO 2024045491 A1 WO2024045491 A1 WO 2024045491A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- waveguide
- phase change
- silicon
- change material
- light
- Prior art date
Links
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 87
- 239000010703 silicon Substances 0.000 title claims abstract description 86
- 230000008859 change Effects 0.000 title claims abstract description 33
- 239000012782 phase change material Substances 0.000 claims abstract description 73
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 57
- 230000005540 biological transmission Effects 0.000 claims description 40
- 239000012071 phase Substances 0.000 claims description 33
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 26
- 230000010287 polarization Effects 0.000 claims description 18
- 238000005253 cladding Methods 0.000 claims description 13
- 235000012239 silicon dioxide Nutrition 0.000 claims description 13
- 239000000377 silicon dioxide Substances 0.000 claims description 13
- 239000000463 material Substances 0.000 claims description 10
- 239000000758 substrate Substances 0.000 claims description 9
- 239000010949 copper Substances 0.000 claims description 4
- 239000010931 gold Substances 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical group [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052737 gold Inorganic materials 0.000 claims description 3
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 claims description 3
- 229910044991 metal oxide Inorganic materials 0.000 claims description 3
- 150000004706 metal oxides Chemical class 0.000 claims description 3
- 239000012074 organic phase Substances 0.000 claims description 3
- 150000004770 chalcogenides Chemical class 0.000 claims 1
- 230000003287 optical effect Effects 0.000 description 17
- 230000008878 coupling Effects 0.000 description 6
- 238000010168 coupling process Methods 0.000 description 6
- 238000005859 coupling reaction Methods 0.000 description 6
- 239000000835 fiber Substances 0.000 description 5
- 239000013307 optical fiber Substances 0.000 description 5
- 238000013461 design Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000005265 energy consumption Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 230000008033 biological extinction Effects 0.000 description 2
- 150000001786 chalcogen compounds Chemical class 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000010365 information processing Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/12004—Combinations of two or more optical elements
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/0136—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour for the control of polarisation, e.g. state of polarisation [SOP] control, polarisation scrambling, TE-TM mode conversion or separation
- G02F1/0144—TE-TM mode separation
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B2006/12083—Constructional arrangements
- G02B2006/12116—Polariser; Birefringent
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B2006/12133—Functions
- G02B2006/12147—Coupler
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B2006/12133—Functions
- G02B2006/1215—Splitter
Definitions
- the invention belongs to an on-chip polarizer in the field of optical communication, and specifically relates to an on-chip polarizer based on a phase change material-silicon hybrid integrated waveguide.
- Optical networks have become the first choice for the next generation of high-speed broadband networks due to their large capacity and scalability, and are increasingly favored by people.
- silicon photonic chips are compatible with CMOS processes and have the potential to realize ultra-large-scale photonic integrated chips, which have attracted much attention in recent years.
- the preparation of silicon photonic devices can achieve low-cost mass production without high investment, and has huge room for development.
- Phase change materials are a type of material with special properties. Their properties are that they exist in two very stable states, which we call crystalline and amorphous states. Phase change materials can reversibly convert between these two states. Phase change materials are used in many fields such as electronics, physics and materials, and have achieved commercial success especially in the field of optical storage, such as optical discs for storing data, digital versatile discs and Blu-ray discs.
- phase-change materials can convert between crystalline and amorphous states without requiring other energy to maintain this characteristic, they can be used in the resonance, conversion, and storage of light.
- Phase change materials have good electrical and optical properties, and have nanoscale phase transition speeds, which can greatly reduce reaction time and energy consumption.
- the conversion between crystalline and amorphous states of phase change materials can be achieved by electrical pulses or light pulses.
- the technical problem to be solved by the present invention is to achieve low power consumption of the device, reduce thermal crosstalk between integrated devices, and avoid the problem that integrated photonic devices require continuous energy supply during regulation.
- the present invention proposes an on-chip polarizer based on phase change material-silicon hybrid integrated waveguide.
- the polarizer uses phase change material to assist the silicon waveguide, and then is combined with other integrated photonic devices to form a mature and practical phase change-based polarizer.
- Material-Si hybrid integrated waveguide for on-chip polarizer realizes the selective passage of polarized light by adjusting the state of the phase change material, avoids continuous heating, and greatly reduces the energy consumption when controlling the optical path. It is not only more conducive to saving energy, but also greatly reduces the heat between integrated optics.
- the on-chip polarizer of the present invention has simple technical implementation It has the advantages of simple, stable properties, compact structure, easy on-chip integration, simple production and very mature manufacturing process of phase change materials. It has strong practicability and can be widely used in optical communications, optical sensing, optical storage, and optical quantum computing. , optical quantum information processing and artificial intelligence and other fields, it has broad application and development prospects.
- the invention includes a polarizing beam splitter, a TE light selective passing coupler, a TM light selective passing coupler and a polarizing beam combiner.
- the initial polarized light is input to the input end of the polarizing beam splitter.
- the first output end is connected to the first input end of the TE light selective pass coupler
- the second output end of the polarizing beam splitter is connected to the first input end of the TM light selective pass coupler
- the TE light selective pass coupler The first output end of the detector and the first output end of the TM light selective pass coupler are connected to the two input ends of the polarization beam combiner, and the output end of the polarization beam combiner outputs the final polarized light.
- the structure of the TE light-selective coupler and the TM light-selective coupler are the same, including a silicon substrate, a silicon dioxide cladding, a hybrid waveguide and a first transmission waveguide; the silicon substrate and the silicon dioxide cladding are on top and bottom In a stacked arrangement, the hybrid waveguide and the first transmission waveguide are embedded in the silicon dioxide cladding. The hybrid waveguide and the first transmission waveguide are arranged in parallel and spaced apart. The two ends of the first transmission waveguide serve as the first input end of the coupler.
- the hybrid waveguide is composed of an electrode layer, a first silicon waveguide and a first phase change material layer, the first silicon waveguide is connected to the first phase change material layer, and the first phase change material layer is connected to the electrode layer , the two ends of the first silicon waveguide serve as the second input end and the second output end of the coupler respectively.
- the first phase change material layer is disposed on the outer surface and/or the interior of the first silicon waveguide, and the first phase change material layer is disposed on the upper surface, lower surface, left surface, right surface, or both of the outer surfaces of the first silicon waveguide. surface and above; when the first phase change material layer is arranged on the outer side of the first silicon waveguide, the electrode layer is arranged on the side of the first phase change material layer away from the first silicon waveguide; the first phase change material layer is arranged on the first silicon waveguide Internally, the electrode layer is embedded in the first phase change material layer.
- the first phase change material layer is a metal oxide, a chalcogen compound or an organic phase change material.
- the material of the electrode layer is gold, copper, aluminum or indium tin oxide.
- the first transmission waveguide and the first silicon waveguide are silicon waveguides or doped waveguides.
- the polarization Between the polarizing beam splitter and the TE light selective passing coupler, between the polarizing light combiner and the TE light selective passing coupler, between the polarizing beam splitter and the TM light selective passing coupler, the polarization
- the optical beam combiner and the TM optical selective pass-through coupler are also connected through a connecting waveguide.
- the connecting waveguide is a straight waveguide or a curved waveguide.
- the first transmission waveguide and/or the first silicon waveguide is a straight waveguide or a curved waveguide.
- the working principle of the on-chip polarizer based on phase change material-silicon hybrid integrated waveguide the electrode layer covering the phase change material is used to regulate the phase change material, and Joule heat is used to induce the phase change material to change between crystalline and non-crystalline states. Conversion between crystalline states, because there is a large difference between the real part and the imaginary part of the effective refractive index between the crystalline state and the amorphous state, is used to control the selective passage of TE or TM light. In the amorphous state of the phase change material, the phase is matched in the directional coupler composed of the hybrid waveguide and the transmission waveguide.
- phase change material converts to the crystalline state, the effective refractive index increases sharply, and a phase mismatch occurs between the hybrid waveguide and the transmission waveguide. There is no coupling between the two, and the TM (TE) light can pass through the transmission waveguide and reach the polarized waveguide. After the beam combiner, it is output through the output fiber. Therefore, by applying appropriate electrical pulse signals to the electrode layer on the hybrid waveguide, the phase change material can be converted between the crystalline and amorphous states, thereby achieving on-chip polarization selection.
- the present invention combines a phase change material with a silicon waveguide to form a hybrid waveguide, which can control the selective passage of TE light or TM light through changes in the refractive index of the phase change material, and has very high practicability.
- the on-chip polarizer based on phase change material-silicon hybrid integrated waveguide only consumes energy when converting the phase change material state. Once the state is converted, it can maintain a stable state without applying any energy, which is in line with the development trend of integrated photonic devices.
- On-chip polarizers based on phase-change material-silicon hybrid integrated waveguides can theoretically control light of any wavelength through structural design, and the loss is relatively small, so it has broad application prospects.
- the hybrid waveguide covering the phase change material layer in the present invention only plays an auxiliary role and does not participate in the transmission of target light, which greatly avoids the absorption of light by the phase change material.
- Figure 1 is a schematic top view of an on-chip polarizer based on a phase change material-silicon hybrid integrated waveguide of the present invention.
- Figure 2 is a schematic cross-sectional view of the TE light selective pass-through coupler based on the phase change material-silicon hybrid integrated waveguide of the present invention.
- Figure 3 is a schematic cross-sectional view of the TM light-selective pass-through coupler based on the phase change material-silicon hybrid integrated waveguide of the present invention.
- Figure 4 is a 3D model diagram of the on-chip polarizer based on the phase change material-silicon hybrid integrated waveguide of the present invention.
- Figure 5 is a light field distribution diagram of Embodiment 1 of a TE light selective pass coupler based on a phase change material-silicon hybrid integrated waveguide of the present invention.
- Figure 6 is a light field distribution diagram of TM light selective pass coupler based on phase change material-silicon hybrid integrated waveguide according to the present invention 1.
- silicon substrate 1 silicon dioxide cladding 2
- first silicon waveguide 3 first transmission waveguide 4
- first phase change material layer 5 second phase change material layer 6
- second silicon waveguide 7 2.
- the present invention includes a polarizing beam splitter, a TE light selective passing coupler, a TM light selective passing coupler and a polarizing light combiner.
- the initial polarized light is input to the polarized light splitter through the input optical fiber.
- the input end of the beam splitter, the input fiber is generally a single-mode optical fiber, the first output end of the polarizing beam splitter is connected to the first input end of the TE light selective pass-through coupler, and the second input end of the TE light selective pass-through coupler end is vacant, the second output end of the polarizing beam splitter is connected to the first input end of the TM light selective pass-through coupler, the second input end of the TM light selective pass-through coupler is vacant, and the TE light selective pass-through coupler is The first output end of the TE light selective pass coupler is connected to the first output end of the TM light selective pass coupler and the two input ends of the polarized light combiner.
- the second output end of the TE light selective pass coupler is connected to the first output end of the TM light selective pass coupler.
- the second output end is left vacant or connected to other optical fibers, and the output end of the polarization beam combiner outputs the final polarized light after passing through the output optical fiber.
- the structure of the polarizing light combiner is very similar to that of the polarizing beam splitter, but by connecting the input end and the output end in reverse, the light from the upper and lower paths can be combined and output through the output fiber.
- TE light selective pass couplers and TM light selective pass couplers are the same, including silicon substrate 1, silicon dioxide cladding 2, hybrid waveguide and first transmission waveguide 4; silicon substrate 1 and silicon dioxide cladding
- the layers 2 are stacked up and down.
- the hybrid waveguide and the first transmission waveguide 4 are embedded in the silicon dioxide cladding layer 2.
- the hybrid waveguide and the first transmission waveguide 4 are arranged in parallel and spaced apart.
- the two ends of the first transmission waveguide 4 are respectively The first input end and the first output end of the coupler;
- the hybrid waveguide is composed of an electrode layer, a first silicon waveguide 3 and a first phase change material layer 5.
- the first silicon waveguide 3 and the first phase change material layer 5 are connected.
- a phase change material layer 5 is connected to the electrode layer, and the two ends of the first phase change material layer 5 and the first silicon waveguide 3 serve as the second input end and the second output end of the coupler respectively.
- the end surfaces at both ends of the first silicon waveguide 3 are flush with the end surfaces at both ends of the first transmission waveguide 4 respectively.
- the first phase change material layer 5 is disposed on the outer surface and/or the interior of the first silicon waveguide 3 .
- the first phase change material layer 5 is disposed on the upper surface, lower surface, left surface, right surface or the outer surface of the first silicon waveguide 3 .
- a silicon waveguide 3 does not contact; when the first phase change material layer 5 is arranged inside the first silicon waveguide 3, the electrode layer is embedded in the first phase change material layer 5 , that is, the electrode layer is not in contact with the first silicon waveguide 3 .
- the material of the electrode layer is gold (Au), copper (Cu), aluminum (Al) or indium tin oxide (ITO).
- Phase change materials are metal oxides, chalcogen compounds or organic phase change materials, including but not limited to: GeSbTe-225, Sb 2 S 3 , Sb 2 Se 3 , GSST, VO 2 , Si, Ge x Sb y Te z .
- the first transmission waveguide 4 and the first silicon waveguide 3 are silicon waveguides or doped waveguides (such as silicon nitride).
- the first transmission waveguide 4 and/or the first silicon waveguide 3 are straight waveguides or curved waveguides, and the specific shapes are set according to actual needs.
- the selective pass couplers, the polarization beam combiner and the TM light selective pass coupler, and the polarization beam combiner and the output optical fiber are also connected through connecting waveguides.
- the connecting waveguide is a straight waveguide or a curved waveguide.
- Figure 2 is a schematic cross-sectional view of the TE light-selective pass-through coupler based on the phase change material-silicon hybrid integrated waveguide of the present invention.
- the figure shows that silicon is used as the substrate, and the upper and lower cladding layers are both silicon dioxide.
- the purpose of using silicon dioxide as the upper cladding layer is to facilitate the addition of electrode layers to generate Joule heat on the phase change material, thereby causing the phase change material to convert between crystalline and amorphous states.
- On the left is the phase change material - silicon.
- phase change material converts to the crystalline state, the effective refractive index increases sharply, and a phase mismatch occurs between the hybrid waveguide and the transmission waveguide. There is no coupling between the two, and TM (TE) light can pass through the transmission waveguide (silicon waveguide). After the transmission waveguide reaches the polarization combiner, it is output through the output fiber. Therefore, by applying appropriate electrical pulse signals to the electrodes at both ends of the hybrid waveguide, the phase change material can be converted between the crystalline and amorphous states, thereby achieving on-chip polarization selection.
- Figure 3 is a schematic cross-sectional view of the TM light-selective coupler based on the phase change material-silicon hybrid integrated waveguide of the present invention.
- the transmission waveguide is on the left and the hybrid waveguide is on the right.
- the crystallization of the phase change material is also controlled through electrodes. and amorphous state to achieve phase matching or phase mismatch between the two waveguides to control the transmission of target light.
- the silicon substrate 1 has a thickness of 5 ⁇ m and the silicon dioxide cladding 2 has a height of 2 ⁇ m.
- the phase change material is Ge
- the real part of the effective refractive index in the crystalline state is 4.21048, and the imaginary part of the effective refractive index is 0.0566i.
- the heights of the waveguides in the polarized light splitter (combiner), the first transmission waveguide 4 and the second transmission waveguide 8, and the first silicon waveguide 3 and the second silicon waveguide 7 in the hybrid waveguide are all the same, Both are 220 nm, and the upper surface of the waveguide is flush.
- the heights of the first phase change material layer 5 and the second phase change material layer 6 are the same, both 40 nm.
- waveguide widths vary.
- the width of the first transmission waveguide 4 is 600 nm
- the width of the first silicon waveguide 3 in the hybrid waveguide is 500 nm
- the width of the first phase change material layer 5 is 260 nm.
- the width of the second transmission waveguide 8 is 730 nm
- the width of the second silicon waveguide 7 is 360 nm
- the width of the second phase change material layer 6 is 180 nm.
- the design goal of the present invention is to make the loss of the polarizer smaller and the extinction ratio higher. Taking into account the effects of the extinction ratio, device footprint and insertion loss, the total length of the TE light selective pass-through coupler is 80 ⁇ m. The total length of the TM light-selective pass-through coupler is 60 ⁇ m.
- the phase change material (GST) layer is designed as a curved structure to avoid signal light reflection.
- the total design length is 80 ⁇ m, of which the leftmost one is straight
- the waveguide length is 5 ⁇ m, followed by a curved waveguide with a length of 20 ⁇ m and a height of 4 ⁇ m, a straight waveguide with a length of 30 ⁇ m in the middle, and then a curved waveguide of 20 ⁇ m with a height of 4 ⁇ m, and finally a straight waveguide length of 5 ⁇ m.
- the entire TE light selects through-type coupling.
- the structure of the device is centrally symmetrical.
- the phase change material (GST) layer is designed as a curved structure to avoid signal light reflection.
- the total design length is 60 ⁇ m, of which the leftmost one is straight
- the waveguide length is 5 ⁇ m, followed by a curved waveguide with a length of 20 ⁇ m and a height of 4 ⁇ m, a straight waveguide with a length of 10 ⁇ m in the middle, and then a curved waveguide of 20 ⁇ m with a height of 4 ⁇ m, and finally a straight waveguide length of 5 ⁇ m.
- the entire TE light selects through-type coupling
- the structure of the device is centrally symmetrical.
- phase change material GST changes from an amorphous state to a crystalline state. Since the refractive index difference between the crystalline state and the amorphous state is relatively large, a shorter waveguide can be used to transmit TE light or TM light.
- Figure 5 is the light field distribution diagram of the TE light selective pass coupler based on phase change material-silicon hybrid integrated waveguide.
- Figure 6 is the light field distribution of the TM light selective pass coupler based on phase change material-silicon hybrid integrated waveguide. picture.
- the on-chip polarizer based on the phase change material-silicon hybrid integrated waveguide has the characteristics of low energy consumption, no need for continuous energy supply to maintain the state, easy on-chip integration, low loss, and no crosstalk between each other. It is very It is suitable for very popular research fields such as reconfigurable optical devices and photonic information processing.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Optical Integrated Circuits (AREA)
Abstract
一种基于相变材料-硅混合集成波导的片上起偏器,初始偏振光输入到偏振光分束器的输入端,偏振光分束器的第一输出端与TE光选择通过型耦合器的第一输入端相连,偏振光分束器的第二输出端与TM光选择通过型耦合器的第一输入端相连,TE光选择通过型耦合器的第一输出端和TM光选择通过型耦合器的第一输出端与偏振光合束器的两个输入端相连,偏振光合束器的输出端输出最终偏振光,通过电极控制混合波导的定向耦合器上相变材料的晶态或者非晶态,可以实现TE光或TM光的选择性通过。
Description
本发明属于光通信领域的一种片上起偏器,具体涉及一种基于相变材料-硅混合集成波导的片上起偏器。
光通信作为一种新兴技术,引起了广泛关注并且发展迅速,其以大容量,低功耗和可重构等优点,有望未来代替电互联技术。光网络以大容量以及可拓展特性,已经成为下一代高速宽带网络的首选,越来越受到人们的青睐。
众所周知,硅光子芯片与CMOS工艺兼容,具有实现超大规模光子集成芯片的潜力,近年来备受关注。硅光子器件的制备,无需高投入就可以实现低成本的批量生产,具有巨大的发展空间。
相变材料是一类具有特殊性质的材料,其性质是存在两种十分稳定的状态,我们称之为晶态与非晶态,相变材料可以在这两种状态之间可逆地转换。相变材料应用于如电子,物理和材料等诸多领域,尤其是在光储存领域取得了商业化成功,比如储存数据的光盘,数字多功能光盘和蓝光光盘等。
由于相变材料可以在晶态与非晶态之间相互转换,且不需要其他能量维持该特性,因此可以应用于光的谐振,转换和储存等方面。相变材料拥有很好的电学特性和光学特性,并且其拥有纳米级的相态转换速度,可以大大减少反应时间以及能源消耗。相变材料的晶态与非晶态的转换可以通过电脉冲或光脉冲的方法实现。
发明内容
本发明所要解决的技术问题是实现器件的低功耗,减少集成器件之间的热串扰,避免集成光子器件在调控时需要持续供能的问题。本发明提出了一种基于相变材料-硅混合集成波导的片上起偏器,该起偏器采用相变材料辅助硅波导,再与其他集成光子器件组合,形成一个成熟且实用的基于相变材料-硅混合集成波导的片上起偏器。本发明通过调节相变材料状态实现偏振光的选择性通过,避免了持续加热,极大缩减了在控制光路时的能耗,不仅更利于节约能源,还可以大大减少集成光学器之间的热串扰。本发明的片上起偏器具有技术实现简
单、性质稳定、结构紧凑等优点,便于片上集成,制作简单并且相变材料的制作工艺非常成熟等优点,有强的实用性,可广泛适用于光通信、光传感、光存储、光量子计算、光量子信息处理和人工智能等领域中,有广阔的应用和发展前景。
本发明解决如上技术问题所采用的技术方案为:
本发明包括偏振光分束器、TE光选择通过型耦合器、TM光选择通过型耦合器和偏振光合束器,初始偏振光输入到偏振光分束器的输入端,偏振光分束器的第一输出端与TE光选择通过型耦合器的第一输入端相连,偏振光分束器的第二输出端与TM光选择通过型耦合器的第一输入端相连,TE光选择通过型耦合器的第一输出端和TM光选择通过型耦合器的第一输出端与偏振光合束器的两个输入端相连,偏振光合束器的输出端输出最终偏振光。
所述TE光选择通过型耦合器和TM光选择通过型耦合器的结构相同,包括硅衬底、二氧化硅包层、混合波导和第一传输波导;硅衬底和二氧化硅包层上下层叠布置,二氧化硅包层中嵌装有混合波导和第一传输波导,混合波导和第一传输波导之间平行且间隔布置,第一传输波导的两端分别作为耦合器的第一输入端和第一输出端;所述混合波导由电极层、第一硅波导和第一相变材料层组成,第一硅波导和第一相变材料层相连,第一相变材料层与电极层相连,第一硅波导的两端分别作为耦合器的第二输入端和第二输出端。
所述第一相变材料层设置在第一硅波导外侧面和/或内部,第一相变材料层设置在第一硅波导外侧面的上表面、下表面、左表面、右表面或者两个表面及以上;第一相变材料层设置在第一硅波导外侧面时,电极层设置在第一相变材料层远离第一硅波导的一面;第一相变材料层设置在第一硅波导内部时,电极层嵌装在第一相变材料层中。
所述第一相变材料层为金属氧化物、硫属化合物或者有机相变材料。
所述的电极层的材料为金、铜、铝或氧化铟锡。
所述第一传输波导与第一硅波导为硅波导或掺杂波导。
所述偏振光分束器与TE光选择通过型耦合器之间、偏振光合束器与TE光选择通过型耦合器之间、偏振光分束器与TM光选择通过型耦合器之间、偏振光合束器与TM光选择通过型耦合器之间还通过连接波导进行连接。
所述连接波导为直波导或弯曲波导。
所述第一传输波导和/或第一硅波导为直波导或弯曲波导。
基于相变材料-硅混合集成波导的片上起偏器工作原理:利用覆盖在相变材料上的电极层,对相变材料进行调控,通过焦耳热来诱导相变材料在晶态和非
晶态之间进行转换,由于晶态和非晶态下有效折射率的实部和虚部有较大差异,以此来控制TE或TM光的选择性通过。相变材料在非晶态状态下,混合波导与传输波导组成的定向耦合器中相位匹配,此时两根波导之间发生耦合,传输波导中的TM(TE)光耦合到混合波导中,此时没有TM(TE)光传输到偏振合成器中,达到了偏振选择的目的。而当相变材料转换为晶态时,有效折射率急剧增大,混合波导与传输波导发生相位失配,两者之间没有耦合,TM(TE)光可以通过传输波导,经传输波导到达偏振合束器后,再经输出光纤输出。因此,通过在混合波导上的电极层施加适当的电脉冲信号即可实现相变材料在晶态和非晶态之间的转换,从而实现片上的偏振选择。
与现有技术相比,本发明的有益效果是:
1.本发明将相变材料与硅波导相结合,形成混合波导,可以通过相变材料的折射率变化,控制TE光或TM光的选择性通过,具有非常高的实用性。
2.基于相变材料-硅混合集成波导的片上起偏器,仅在转换相变材料状态时消耗能量,状态一经转换不需要施加任何能量即可维持稳定状态,符合集成光子器件的发展趋势。
3.基于相变材料-硅混合集成波导的片上起偏器,理论上可以通过结构设计对任意波长的光进行调控,且损耗比较小,具有广阔的应用前景。
4.与传统的片上集成光子器件相比,前者需要施加持续能量来维持材料状态,容易产生热串扰,使芯片性能下降,基于相变材料-硅混合集成波导的片上起偏器,不需要持续供能,可以大大减少热量对集成器件带来的干扰。
5.由于相变材料虚部的存在,会对光有一定的吸收。与其他相变材料混合集成光子器件相比,本发明中覆盖相变材料层的混合波导仅起到辅助作用,不参与目标光的传输,极大的避免了相变材料对光的吸收。
图1为本发明基于相变材料-硅混合集成波导的片上起偏器的俯视示意图。
图2为本发明基于相变材料-硅混合集成波导的TE光选择通过型耦合器模剖视示意图。
图3为本发明基于相变材料-硅混合集成波导的TM光选择通过型耦合器模剖视示意图。
图4为本发明基于相变材料-硅混合集成波导的片上起偏器的3D模型图。
图5为本发明基于相变材料-硅混合集成波导的TE光选择通过型耦合器实施例1的光场分布图。
图6为本发明基于相变材料-硅混合集成波导的TM光选择通过型耦合器实施例1的光场分布图。
图中:硅衬底1,二氧化硅包层2,第一硅波导3,第一传输波导4,第一相变材料层5,第二相变材料层6,第二硅波导7,第二传输波导8。
下面结合附图和实施例对本发明作进一步阐述,但不应以此限制本发明的保护范围。
如图1和图4所示,本发明包括偏振光分束器、TE光选择通过型耦合器、TM光选择通过型耦合器和偏振光合束器,初始偏振光经输入光纤输入到偏振光分束器的输入端,输入光纤一般为单模光纤,偏振光分束器的第一输出端与TE光选择通过型耦合器的第一输入端相连,TE光选择通过型耦合器的第二输入端空置,偏振光分束器的第二输出端与TM光选择通过型耦合器的第一输入端相连,TM光选择通过型耦合器的第二输入端空置,TE光选择通过型耦合器的第一输出端和TM光选择通过型耦合器的第一输出端与偏振光合束器的两个输入端相连,TE光选择通过型耦合器的第二输出端和TM光选择通过型耦合器的第二输出端空置或与其他光纤相连,偏振光合束器的输出端经输出光纤后输出最终偏振光。偏振光合成器与偏振光分束器的结构极相同,但是将输入端与输出端反接,可将上下两路的光合成后由输出光纤输出。
TE光选择通过型耦合器和TM光选择通过型耦合器的结构相同,包括硅衬底1、二氧化硅包层2、混合波导和第一传输波导4;硅衬底1和二氧化硅包层2上下层叠布置,二氧化硅包层2中嵌装有混合波导和第一传输波导4,混合波导和第一传输波导4之间平行且间隔布置,第一传输波导4的两端分别作为耦合器的第一输入端和第一输出端;混合波导由电极层、第一硅波导3和第一相变材料层5组成,第一硅波导3和第一相变材料层5相连,第一相变材料层5与电极层相连,第一相变材料层5第一硅波导3的两端分别作为耦合器的第二输入端和第二输出端。第一硅波导3两端的端面分别与第一传输波导4两端的端面齐平。
第一相变材料层5设置在第一硅波导3外侧面和/或内部,第一相变材料层5设置在第一硅波导3外侧面的上表面、下表面、左表面、右表面或者两个外表面及以上;第一相变材料层5设置在第一硅波导3外侧面时,电极层设置在第一相变材料层5远离第一硅波导3的一面,即电极层与第一硅波导3不接触;第一相变材料层5设置在第一硅波导3内部时,电极层嵌装在第一相变材料层5
中,即电极层与第一硅波导3不接触。
电极层的材料为金(Au)、铜(Cu)、铝(Al)或氧化铟锡(ITO)。
相变材料为金属氧化物、硫属化合物或者有机相变材料,包括但不限于:GeSbTe-225、Sb2S3、Sb2Se3、GSST、VO2、Si、GexSbyTez。
第一传输波导4与第一硅波导3为硅波导或掺杂波导(如氮化硅)。第一传输波导4和/或第一硅波导3为直波导或弯曲波导,具体形状根据实际需求进行设置。
输入光纤与偏振光分束器之间、偏振光分束器与TE光选择通过型耦合器之间、偏振光合束器与TE光选择通过型耦合器之间、偏振光分束器与TM光选择通过型耦合器之间、偏振光合束器与TM光选择通过型耦合器之间以及偏振光合束器与输出光纤之间还通过连接波导进行连接。连接波导为直波导或弯曲波导。
图2为本发明基于相变材料-硅混合集成波导的TE光选择通过型耦合器模剖视示意图,图中展示了以硅为衬底,上包层和下包层皆为二氧化硅,以二氧化硅作为上包层的目的是为了方便加电极层,使相变材料上产生焦耳热,进而使相变材料在晶态和非晶态之间相互转换,左边为相变材料-硅混合波导,右边为传输波导。相变材料在非晶态状态下,混合波导与传输波导组成的定向耦合器中相位匹配,此时两根波导之间发生耦合,传输波导中的TM(TE)光耦合到混合波导中,此时没有TM(TE)光传输到偏振合成器中,达到了偏振选择的目的。而当相变材料转换为晶态时,有效折射率急剧增大,混合波导与传输波导发生相位失配,两者之间没有耦合,TM(TE)光可以通过传输波导(硅波导),经传输波导到达偏振合束器后,再经输出光纤输出。因此,通过在混合波导两端的电极施加适当的电脉冲信号即可实现相变材料在晶态和非晶态之间的转换,从而实现片上的偏振选择。
参阅图3,图3为本发明基于相变材料-硅混合集成波导的TM光选择通过型耦合器模剖视示意图,左边为传输波导,右边为混合波导,同样通过电极控制相变材料的晶态和非晶态进而实现两根波导之间的相位匹配或相位失配,用来控制目标光的传输。
本发明的具体实施例如下:
在此具体实施例中,硅衬底1的厚度为5μm,二氧化硅包层2的高度为2μm。
在此具体实施例中,相变材料为GexSbyTez(GST),该材料在晶态时的有效折射率实部为7.00531,有效折射率的虚部为1.08939i,该材料在非晶态时的有效折射率实部为4.21048,有效折射率的虚部为0.0566i。
在此具体实施例中,偏振光分(合)束器中的波导,第一传输波导4和第二传输波导8,混合波导中第一硅波导3和第二硅波导7的高度均相同,均为220nm,且上述波导的上表面平齐,第一相变材料层5和第二相变材料层6的高度相同,均为40nm。但波导宽度各不相同。在TE光定向耦合器DC1中,第一传输波导4的宽度为600nm,混合波导中第一硅波导3的宽度为500nm,第一相变材料层5的宽度为260nm。在TM光定向耦合器DC2中,第二传输波导8的宽度为730nm,第二硅波导7的宽度为360nm,第二相变材料层6的宽度为180nm。
本发明的设计目标是使该起偏器的损耗更小,消光比更高,考虑到消光比,器件占地面积和插入损耗等方面的影响,TE光选择通过型耦合器的总长为80μm,TM光选择通过型耦合器的总长为60μm。TE光选择通过型耦合器中,在传输波导宽度W1=600nm的情况下,将相变材料(GST)层设计为弯曲结构,来避免信号光反射,设计总长为80μm,其中最左边为直波导长度为5μm,其次是弯曲波导长度为20μm,高度为4μm,中间为直波导长度为30μm,然后再连接弯曲波导20μm,高度为4μm,最后为直波导长度5μm,整个TE光选择通过型耦合器结构中心对称。TM光选择通过型耦合器中,在传输波导宽度W1=730nm的情况下,将相变材料(GST)层设计为弯曲结构,来避免信号光反射,设计总长为60μm,其中最左边为直波导长度为5μm,其次是弯曲波导长度为20μm,高度为4μm,中间为直波导长度为10μm,然后再连接弯曲波导20μm,高度为4μm,最后为直波导长度5μm,整个TE光选择通过型耦合器结构中心对称。
在外加电压的作用下,相变材料GST发生从非晶态到晶态的转变,由于晶态与非晶态的折射率差距比较大,故采用较短的波导就可以TE光或TM光的选择性通过。图5为基于相变材料-硅混合集成波导的TE光选择通过型耦合器的光场分布图,图6为基于相变材料-硅混合集成波导的TM光选择通过型耦合器的光场分布图。
综上,因此当相变材料受到电极施加的电压信号激励时,GST相变材料性质发生转变,导致混合波导的有效折射率发生改变,引起相位匹配或失配,最终实现光的调制。本发明的应用价值:基于相变材料-硅混合集成波导的片上起偏器具有能耗低,不需要持续供能维持状态,便于片上集成,损耗较低,相互之间无串扰等特点,非常适用于可重构光学器件和光子信息处理等十分热门的研究领域。
上述实施例用来解释说明本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明作出的任何修改和改变,都落入本发
明的保护范围。
Claims (9)
- 一种基于相变材料-硅混合集成波导的片上起偏器,其特征在于,包括偏振光分束器、TE光选择通过型耦合器、TM光选择通过型耦合器和偏振光合束器,初始偏振光输入到偏振光分束器的输入端,偏振光分束器的第一输出端与TE光选择通过型耦合器的第一输入端相连,偏振光分束器的第二输出端与TM光选择通过型耦合器的第一输入端相连,TE光选择通过型耦合器的第一输出端和TM光选择通过型耦合器的第一输出端与偏振光合束器的两个输入端相连,偏振光合束器的输出端输出最终偏振光。
- 根据权利要求1所述的一种基于相变材料-硅混合集成波导的片上起偏器,其特征在于,所述TE光选择通过型耦合器和TM光选择通过型耦合器的结构相同,包括硅衬底(1)、二氧化硅包层(2)、混合波导和第一传输波导(4);硅衬底(1)和二氧化硅包层(2)上下层叠布置,二氧化硅包层(2)中嵌装有混合波导和第一传输波导(4),混合波导和第一传输波导(4)之间平行且间隔布置,第一传输波导(4)的两端分别作为耦合器的第一输入端和第一输出端;所述混合波导由电极层、第一硅波导(3)和第一相变材料层(5)组成,第一硅波导(3)和第一相变材料层(5)相连,第一相变材料层(5)与电极层相连,第一硅波导(3)的两端分别作为耦合器的第二输入端和第二输出端。
- 根据权利要求2所述的一种基于相变材料-硅混合集成波导的片上起偏器,其特征在于,所述第一相变材料层(5)设置在第一硅波导(3)外侧面和/或内部,第一相变材料层(5)设置在第一硅波导(3)外侧面的上表面、下表面、左表面、右表面或者两个表面及以上;第一相变材料层(5)设置在第一硅波导(3)外侧面时,电极层设置在第一相变材料层(5)远离第一硅波导(3)的一面;第一相变材料层(5)设置在第一硅波导(3)内部时,电极层嵌装在第一相变材料层(5)中。
- 根据权利要求2或3所述的一种基于相变材料-硅混合集成波导的片上起偏器,其特征在于,所述第一相变材料层(5)为金属氧化物、硫属化合物或者有机相变材料。
- 根据权利要求2或3所述的一种基于相变材料-硅混合集成波导的片上起偏器,其特征在于,所述的电极层的材料为金、铜、铝或氧化铟锡。
- 根据权利要求1所述的一种基于相变材料-硅混合集成波导的片上起偏器,其特征在于,所述第一传输波导(4)与第一硅波导(3)为硅波导或掺杂波导。
- 根据权利要求1所述的一种基于相变材料-硅混合集成波导的片上起偏器,其特征在于,所述偏振光分束器与TE光选择通过型耦合器之间、偏振光合束器与TE光选择通过型耦合器之间、偏振光分束器与TM光选择通过型耦合器之间、偏振光合束器与TM光选择通过型耦合器之间还通过连接波导进行连接。
- 根据权利要求7所述的一种基于相变材料-硅混合集成波导的片上起偏器,其特征在于,所述连接波导为直波导或弯曲波导。
- 根据权利要求2所述的一种基于相变材料-硅混合集成波导的片上起偏器,其特征在于,所述第一传输波导(4)和/或第一硅波导(3)为直波导或弯曲波导。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211055192.7 | 2022-08-30 | ||
CN202211055192.7A CN115308837A (zh) | 2022-08-30 | 2022-08-30 | 一种基于相变材料-硅混合集成波导的片上起偏器 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024045491A1 true WO2024045491A1 (zh) | 2024-03-07 |
Family
ID=83864847
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/074088 WO2024045491A1 (zh) | 2022-08-30 | 2023-02-01 | 一种基于相变材料-硅混合集成波导的片上起偏器 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115308837A (zh) |
WO (1) | WO2024045491A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115308837A (zh) * | 2022-08-30 | 2022-11-08 | 浙江大学 | 一种基于相变材料-硅混合集成波导的片上起偏器 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009128718A (ja) * | 2007-11-26 | 2009-06-11 | Keio Gijuku | 光スイッチ |
CN111999957A (zh) * | 2020-07-17 | 2020-11-27 | 宁波大学 | 基于锗锑碲化合物相变材料辅助的偏振不敏感光开关 |
US10996398B1 (en) * | 2019-12-04 | 2021-05-04 | Globalfoundries U.S. Inc. | Switchable polarization splitters |
CN114815324A (zh) * | 2022-06-28 | 2022-07-29 | 中山大学 | 一种基于硅基相变材料的偏振调控装置 |
CN217181269U (zh) * | 2021-12-21 | 2022-08-12 | 苏州大学 | 一种基于相变材料的2×2光波导开关 |
CN115308837A (zh) * | 2022-08-30 | 2022-11-08 | 浙江大学 | 一种基于相变材料-硅混合集成波导的片上起偏器 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105973221B (zh) * | 2016-05-10 | 2018-08-21 | 东南大学 | 一种基于表面等离子激元波导的可调谐自校准光学陀螺 |
CN112180624B (zh) * | 2020-09-21 | 2021-08-03 | 华中科技大学 | 基于相变材料的非易失可重构集成光耦合器及其调谐方法 |
CN113534504B (zh) * | 2021-07-27 | 2023-06-02 | 华中科技大学 | 一种基于薄膜铌酸锂的电控可调偏振分束方法及器件 |
CN113655565B (zh) * | 2021-08-28 | 2023-07-28 | 北京工业大学 | 一种基于相变材料调控的y分支波导结构偏振分束器 |
CN114721176B (zh) * | 2022-03-10 | 2024-04-12 | 浙江大学 | 一种基于片上模式转换的偏振控制器 |
-
2022
- 2022-08-30 CN CN202211055192.7A patent/CN115308837A/zh active Pending
-
2023
- 2023-02-01 WO PCT/CN2023/074088 patent/WO2024045491A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009128718A (ja) * | 2007-11-26 | 2009-06-11 | Keio Gijuku | 光スイッチ |
US10996398B1 (en) * | 2019-12-04 | 2021-05-04 | Globalfoundries U.S. Inc. | Switchable polarization splitters |
CN111999957A (zh) * | 2020-07-17 | 2020-11-27 | 宁波大学 | 基于锗锑碲化合物相变材料辅助的偏振不敏感光开关 |
CN217181269U (zh) * | 2021-12-21 | 2022-08-12 | 苏州大学 | 一种基于相变材料的2×2光波导开关 |
CN114815324A (zh) * | 2022-06-28 | 2022-07-29 | 中山大学 | 一种基于硅基相变材料的偏振调控装置 |
CN115308837A (zh) * | 2022-08-30 | 2022-11-08 | 浙江大学 | 一种基于相变材料-硅混合集成波导的片上起偏器 |
Also Published As
Publication number | Publication date |
---|---|
CN115308837A (zh) | 2022-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106324865A (zh) | 一种基于相变材料三维集成光开关 | |
WO2024045491A1 (zh) | 一种基于相变材料-硅混合集成波导的片上起偏器 | |
CN109445132B (zh) | 一种基于相变材料的非易失性可调谐方向耦合器 | |
CN108279511A (zh) | 一种基于相变材料的电光调制器 | |
CN111983753B (zh) | 一种应用于3d光互连的层间偏振分束器 | |
CN109324372B (zh) | 一种硅光波导端面耦合器 | |
CN110187521A (zh) | 谐振腔辅助相变可重构光信号处理芯片 | |
CN113640913A (zh) | 一种与单模光纤直接耦合的lnoi基模斑转换器 | |
CN112394542A (zh) | 基于二维材料/相变材料/半导体的集成光相移器 | |
WO2021258616A1 (zh) | 偏振无关的光开关 | |
CN105720475B (zh) | 一种基于光子晶体的全光二极管单向光传输方法及装置 | |
CN113933931A (zh) | 一种基于二氧化钒纳米线的环形腔光调制器 | |
CN111240051A (zh) | 一种基于表面等离子定向耦合式电光调制器 | |
CN113985522B (zh) | 基于硅-氮化硅三维集成的微环光开关 | |
Zhang et al. | Photonic crystal based on mott phase change material as all-optical bandgap switch and composite logic gate | |
CN204129403U (zh) | 基于垂直耦合微环激光器光学双稳态的全光异或逻辑门 | |
CN116679503A (zh) | 基于相变材料-硅混合集成波导的超紧凑光开关及阵列 | |
CN115857098B (zh) | 一种硅基片上光学环行器 | |
CN208013478U (zh) | 基于光子晶体的非互易光传输装置 | |
CN115877507A (zh) | 基于GaAs混合等离子体结构的三波导中红外基模选择器 | |
CN104360561B (zh) | 基于垂直耦合微环激光器光学双稳态的全光异或逻辑门 | |
CN110618486B (zh) | 基于对称三波导与亚波长结构的偏振无关的功率分配器 | |
CN110989080B (zh) | 一种基于反向耦合原理的光栅辅助型起偏器 | |
CN113109902A (zh) | 片上铌酸锂薄膜偏振分集器及其制备方法 | |
CN114296181B (zh) | 一种基于硅基光波导的双层开关阵列 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23858534 Country of ref document: EP Kind code of ref document: A1 |