WO2024045432A1 - 一种基于不同模态回波信号测量螺栓预紧力的方法 - Google Patents

一种基于不同模态回波信号测量螺栓预紧力的方法 Download PDF

Info

Publication number
WO2024045432A1
WO2024045432A1 PCT/CN2022/140693 CN2022140693W WO2024045432A1 WO 2024045432 A1 WO2024045432 A1 WO 2024045432A1 CN 2022140693 W CN2022140693 W CN 2022140693W WO 2024045432 A1 WO2024045432 A1 WO 2024045432A1
Authority
WO
WIPO (PCT)
Prior art keywords
mode
bolt
transit time
ultrasonic
ratio
Prior art date
Application number
PCT/CN2022/140693
Other languages
English (en)
French (fr)
Inventor
苟国庆
闫广隆
邱菲菲
陈兵
秦淑芝
刘恒
张晨昊
朱忠尹
郭沫呈
Original Assignee
西南交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西南交通大学 filed Critical 西南交通大学
Publication of WO2024045432A1 publication Critical patent/WO2024045432A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/24Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for determining value of torque or twisting moment for tightening a nut or other member which is similarly stressed
    • G01L5/246Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for determining value of torque or twisting moment for tightening a nut or other member which is similarly stressed using acoustic waves

Definitions

  • the invention relates to a method for measuring bolt pretightening force based on echo signals of different modes, and belongs to the technical field of ultrasonic bolt axial force.
  • Bolted connection has a simple structure and has good tensile and shear properties compared to other connection methods. It has high reliability, low cost and convenient maintenance, so it is widely used. In actual engineering applications, excessive pretightening force will cause severe plastic deformation of the bolts, leading to fatigue or fracture of the bolts and failure. Insufficient pre-tightening force will cause vibration, relaxation and slippage of structural connections, thereby destroying the integrity of the structure and affecting the normal operation of the equipment.
  • the main ultrasonic testing methods for bolt axial pretightening force include ultrasonic longitudinal wave method and ultrasonic transverse longitudinal wave method.
  • Research on ultrasonic measurement of bolt pretightening force mainly focuses on large-size bolts, such as bolts used in wind power generation, high-speed trains, bridge structures, etc.
  • the bolt diameter is generally larger than 10mm, but there is less research on non-destructive testing methods of small-sized bolt pretightening force.
  • small-sized bolts are widely used in the aviation field, such as aerospace engines and other key components, so the measurement of the pretightening force of small bolts cannot be ignored.
  • the biggest problem with the ultrasonic longitudinal wave method is that it needs to know the initial length under zero stress.
  • the bolts cannot be disassembled, so the longitudinal wave acoustic transit time method cannot be used to measure the pretightening force.
  • the ultrasonic transverse and longitudinal wave method can avoid the problem of unknown initial length under zero stress, but it will cause large errors due to multiple couplings.
  • the measurement of small-size bolts has larger errors.
  • transverse and longitudinal wave method due to the size restrictions of small-sized bolts, a high-frequency transverse wave transducer needs to be used.
  • the maximum frequency of existing transverse wave piezoelectric chips generally does not exceed 3MHz, and the pre-tightening force of fastened small-sized bolts cannot be achieved. Measurement. Therefore, the industry urgently needs a non-destructive testing method for the pretightening force of fastened small-size bolts.
  • the object of the present invention is to provide a method for measuring bolt pre-tightening force based on echo signals of different modes. This method only uses a single longitudinal wave, and can achieve fastening when the length of the bolt and the initial transit time are unknown. Preload measurement of small size bolts.
  • the technical solution adopted by the present invention to achieve its purpose is: a method for measuring bolt pretightening force based on echo signals of different modes. The steps are as follows:
  • step S5 According to the functional relationship between the bolt pretightening force obtained in step S3 and the transit time ratio of A mode and B mode and the transition of A mode and B mode in the ultrasonic echo signal of the bolt to be tested obtained in step S4.
  • the time ratio is used to calculate the pretightening force of the bolt to be tested.
  • the A mode in the ultrasonic echo signal of the present invention refers to the first wave packet in the primary echo wave group, and the transit time corresponding to the peak with the highest amplitude in the first wave packet is the A mode transit time.
  • the B mode in the ultrasonic echo signal refers to the Nth wave packet in the primary echo wave group.
  • the transit time corresponding to the peak with the highest amplitude in the Nth wave packet is the B mode transit time, N ⁇ 3.
  • step S2 of the present invention an ultrasonic transducer is arranged at the center of the head surface of the reference bolt, and a pre-tightening force calibration experiment is performed on the reference bolt to obtain the ultrasonic echo signals of the reference bolt under different pre-tightening forces, and then from The specific method to obtain the A mode and B mode transit time from the ultrasonic echo signal, and calculate the ratio of the A mode and B mode transit time in the ultrasonic echo signal of the reference bolt under different pretightening forces is:
  • the transit time ratio is determined by linearly fitting the ratio of the preload force to the transit time of the corresponding A mode and B mode to determine the values of the stress coefficient K and intercept b.
  • the center frequency of the ultrasonic transducer of the present invention is 5 to 10 MHz.
  • the method of the present invention is used for measuring the pre-tightening force of small-sized bolts with a nominal diameter of 3 to 8 mm and a length of 30 to 50 mm.
  • the ultrasonic transducer of the present invention includes a piezoelectric wafer with a diameter of 3 to 5 mm.
  • the present invention can measure the axial force of the tightened bolt when the length of the bolt and the initial transit time are unknown, breaking the limitation that the traditional ultrasonic longitudinal wave method cannot measure the pretightening force of the assembled bolt.
  • the traditional ultrasonic longitudinal wave method for measuring bolt pre-tightening force is generally based on the acoustic time difference, but the present invention is based on the ratio of different mode transit times. Compared with the traditional acoustic time-difference method, the ratio method can further improve the ultrasonic measurement of small-size bolt pre-tightening force. force accuracy.
  • the present invention is not only applicable to small-sized bolts, but also to conventional large-sized bolts, which improves the applicable scope of traditional ultrasonic measurement of bolt pretightening force.
  • the measurement of this invention is efficient and fast. It only uses longitudinal wave piezoelectric crystals to generate multi-modal echoes. Compared with the traditional method of using transverse wave and longitudinal wave bimorphs to excite transverse and longitudinal waves, it can avoid the problems caused by multiple couplings. error. Moreover, the present invention simplifies the measurement process, has higher accuracy and better operability, and has practical applications in improving the accuracy of measuring the axial stress of the tightened bolts and ensuring the safety and reliability of the tightened bolt connector structure. value, and is of great significance to promote the development of bolt measurement technology.
  • Figure 1 is a schematic diagram of the placement position of the ultrasonic transducer in step S2 of Embodiment 1 of the present invention.
  • Figure 2 is a schematic diagram of a primary echo packet and a schematic diagram of the selection of A-mode and B-mode transit times in step S2 of the first embodiment of the present invention.
  • Figure 3 is a fitting curve of the bolt pretightening force obtained in step S3 of the first embodiment of the present invention and the corresponding transit time ratio of the A mode and the B mode.
  • a method of measuring bolt pretightening force based on echo signals of different modes is as follows:
  • step S5 According to the functional relationship between the bolt pretightening force obtained in step S3 and the transit time ratio of A mode and B mode and the transition of A mode and B mode in the ultrasonic echo signal of the bolt to be tested obtained in step S4.
  • the time ratio is used to calculate the pretightening force of the bolt to be tested.
  • the A mode in the ultrasonic echo signal refers to the first wave packet in the primary echo wave group, and the transit time corresponding to the peak with the highest amplitude in the first wave packet is the A mode transit time.
  • the B mode in the ultrasonic echo signal refers to the Nth wave packet in the primary echo wave group.
  • the transit time corresponding to the peak with the highest amplitude in the Nth wave packet is the B mode transit time, N ⁇ 3 .
  • an ultrasonic transducer is arranged at the center of the head surface of the reference bolt, a pre-tightening force calibration experiment is performed on the reference bolt, and the ultrasonic echo signals of the reference bolt under different pre-tightening forces are obtained, and then the ultrasonic transducer is
  • the specific method to obtain the A mode and B mode transit time from the echo signal, and calculate the ratio of the A mode and B mode transit time in the ultrasonic echo signal of the reference bolt under different pretightening forces is:
  • the ultrasonic echo signal of the reference bolt under different pretightening forces The transit time of the A mode and the B mode is obtained from the ultrasonic echo signal, and the ultrasonic echo signal of the reference bolt under different pretightening forces is calculated. The ratio of the transit time of mode A and mode B.
  • the value of the stress coefficient K and the intercept b is determined by linearly fitting the ratio of the pretightening force to the corresponding transit time of the A mode and the B mode.
  • the center frequency of the ultrasonic transducer is 5 to 10 MHz.
  • the method is used to measure the pre-tightening force of small-sized bolts with a nominal diameter of 3 to 8 mm and a length of 30 to 50 mm.
  • the ultrasonic transducer includes a piezoelectric wafer with a diameter of 3 to 5 mm. .
  • the bolt to be tested is the pretightening force measurement of M5 ⁇ 46 medium carbon quenched and tempered steel bolts. The steps are as follows:
  • Figure 1 shows the ultrasound in step S2 of this example Schematic diagram of the placement of the converter; in the figure, 1 is the metal shell of the magnetic pickup, 2 is the magnet of the magnetic pickup, 3 is the probe of the magnetic pickup, 4 is the filling of the magnetic pickup, and 5 is Piezoelectric chip, 6 is bolt;
  • Transit time, N 4 in this example
  • Figure 2 is a schematic diagram of the primary echo packet in step S2 of this example and a schematic diagram of the selection of the A-mode and B-mode transit times. Table 1 below shows the A and B mode transit times and ratios corresponding to different pretightening forces of the calibrated bolts in this example:
  • Preload force/MPa A mode transit time/ns Transit time of B mode/ns
  • the ratio of transit time between A mode and B mode 0 16756.64 21004.77 0.797754 50 16769.24 21016.64 0.797903 100 16782.88 21029.96 0.798046 150 16796.04 21042.44 0.798198 200 16808.72 21054.52 0.798343 250 16821.60 21066.72 0.798492 300 16834.44 21079.20 0.798628 350 16847.80 21091.52 0.798795
  • step S5 According to the functional relationship between the bolt pretightening force obtained in step S3 and the transit time ratio of A mode and B mode and the transition of A mode and B mode in the ultrasonic echo signal of the bolt to be tested obtained in step S4. Over time ratio, calculate the pre-tightening force of the bolt to be tested, see the data in column 2 of Table 2.
  • the data in column 4 of Table 2 calculates the error between the pre-tightening force measured by the method of the present invention and the real pre-tightening force. The actual measured data can be It can be seen that the maximum error does not exceed ten percent.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

一种基于不同模态回波信号测量螺栓预紧力的方法,步骤如下:S1、选取基准螺栓用于标定实验;S2、对基准螺栓进行预紧力标定实验,得到基准螺栓在不同预紧力下超声回波信号中A模态和B模态渡越时间的比值;S3、通过线性拟合得到螺栓预紧力与A模态和B模态渡越时间比值之间的函数关系;S4、对待测螺栓进行超声波预紧力测量,得到待测螺栓超声回波信号中得到A模态的渡越时间和B模态的渡越时间的比值;S5、根据螺栓预紧力与A模态和B模态渡越时间比值之间的函数关系和待测螺栓超声回波信号中A模态以及B模态的渡越时间比值,计算待测螺栓的预紧力。该方法仅使用单纵波,即可实现螺栓长度及初始渡越时间未知的情况下已紧固螺栓预紧力测量。

Description

一种基于不同模态回波信号测量螺栓预紧力的方法 技术领域
本发明涉及一种基于不同模态回波信号测量螺栓预紧力的方法,属于涉超声波螺栓轴力技术领域。
背景技术
螺栓连接结构简单,相比于其他连接方式具有很好的拉伸和剪切性能,其可靠性高,成本低、维护便捷,因而得到广泛应用。在实际工程应用中过高的预紧力会导致螺栓产生严重的塑性变形,从而导致螺栓疲劳或断裂而失效。预紧力不足会引起结构连接的振动、松弛和滑移,从而破坏结构的完整性,影响设备的正常运行。
目前对螺栓轴向预紧力的超声检测方法主要有超声纵波法、超声横纵波法。超声测量螺栓预紧力的研究主要聚焦于大尺寸螺栓,如风力发电、高速列车、桥梁结构等所用螺栓,螺栓直径普遍大于10mm,但对于小尺寸螺栓预紧力的无损检测方法研究较少。然而小尺寸螺栓在航空领域得到广泛应用,如航空发动机等关键零部件,所以对于小螺栓预紧力的测量也不可忽视。
超声纵波法最大的问题就是需要知道零应力下初始长度,对于已经拧上的小螺栓来说,有的情况螺栓不能拆卸,所以无法用纵波声时差法测量其预紧力。超声横纵波法可以避免零应力下的初始长度未知这个问题,但是会出现多次耦合带来较大误差,小尺寸螺栓相较于大尺寸螺栓测量本身就存在较大误差,加上耦合上的误差也会导致这种方法测量误差过大从而导致无法应用于小螺栓测量。而且,如果使用横纵波法,由于小尺寸螺栓的尺寸限制,需要使用高频横波换能器,现有横波压电晶片最大频率一般不超过3MHz,无法实现已紧固小尺寸螺栓的预紧力测量。因此,业界急需一种针对已紧固小尺寸螺栓预紧力的无损检测方法。
发明内容
本发明的发明目的是提供一种基于不同模态回波信号测量螺栓预紧力的方法,该方法仅使用单纵波,即可在螺栓长度以及初始渡越时间未知的情况下,实现已紧固小尺寸螺栓的预紧力测量。
本发明实现其发明目的所采取的技术方案是:一种基于不同模态回波信号测量螺栓预紧力的方法,其步骤如下:
S1、在与待测螺栓同一批次的螺栓中选取基准螺栓用于标定实验;
S2、在基准螺栓头部表面中心位置布置超声换能器,对基准螺栓进行预紧力标定实验,得到基准螺栓在不同预紧力下的超声回波信号,然后从超声回波信号中得到A模态和B模态渡越时间,并计算基准螺栓在不同预紧力下超声回波信号中A模态和B模态渡越时间比值;
S3、将螺栓预紧力与其所对应的超声回波信号中A模态和B模态渡越时间的比值进行线性拟合, 得到螺栓预紧力与A模态和B模态渡越时间比值之间的函数关系;
S4、在待测螺栓头部表面中心位置布置超声换能器,对待测螺栓进行超声波预紧力测量,得到待测螺栓的超声回波信号,然后从超声回波信号中得到A模态的渡越时间
Figure PCTCN2022140693-appb-000001
和B模态的渡越时间
Figure PCTCN2022140693-appb-000002
并计算待测螺栓超声回波信号中A模态以及B模态的渡越时间比值:
Figure PCTCN2022140693-appb-000003
S5、根据步骤S3得到的螺栓预紧力与A模态和B模态渡越时间比值之间的函数关系和步骤S4得到的待测螺栓超声回波信号中A模态以及B模态的渡越时间比值,计算待测螺栓的预紧力。
进一步,本发明所述超声回波信号中A模态是指一次回波波群中第一个波包,第一个波包中幅值最高的波峰所对应渡越时间为A模态渡越时间;超声回波信号中B模态是指一次回波波群中第N个波包,第N个波包中幅值最高的波峰所对应渡越时间为B模态渡越时间,N≥3。
进一步,本发明所述步骤S2中在基准螺栓头部表面中心位置布置超声换能器,对基准螺栓进行预紧力标定实验,得到基准螺栓在不同预紧力下的超声回波信号,然后从超声回波信号中得到A模态和B模态渡越时间,并计算基准螺栓在不同预紧力下超声回波信号中A模态和B模态渡越时间比值的具体方法是:
S21、在基准螺栓头部表面中心位置布置超声换能器,将基准螺栓使用螺栓夹具夹持在拉伸机上;
S22、在无载荷状态下,通过超声换能器对基准螺栓进行超声波预紧力测试,获得超声回波信号,从超声回波信号中得到A模态和B模态的渡越时间,并计算A模态和B模态渡越时间的比值,即为零预紧力状态下A模态和B模态渡越时间的比值;
S23、在基准螺栓的轴向上加载荷,在不同载荷下对基准螺栓进行超声波预紧力测试,获得不同载荷下的超声回波信号,即为基准螺栓在不同预紧力下的超声回波信号,从超声回波信号中得到A模态和B模态的渡越时间,并计算基准螺栓在不同预紧力下超声回波信号中A模态和B模态渡越时间比值。
进一步,本发明所述螺栓预紧力与A模态和B模态渡越时间比值之间的函数关系为F=KI+b,其中F为预紧力,I为A模态和B模态渡越时间比值,通过将预紧力与其所对应的A模态和B模态渡越时间的比值进行线性拟合,确定应力系数K和截距b的值。
进一步,本发明所述超声换能器中心频率为5~10MHz。
进一步,本发明所述方法用于公称直径为3~8mm、长度为30~50mm的小尺寸螺栓的预紧力测量。
更进一步,本发明所述超声换能器包括直径为3~5mm的压电晶片。
与现有技术相比,本发明的有益效果是:
(1)本发明能够在螺栓长度以及初始渡越时间未知的情况下实现已紧固螺栓轴力测量,打破了传统超声纵波法无法测量已装配螺栓预紧力的限制。
(2)传统超声纵波法测量螺栓预紧力一般基于声时差,而本发明是基于不同模态渡越时间的比值,比值法相较于传统的声时差法能进一步提升超声测量小尺寸螺栓预紧力的精度。
(3)本发明不仅适用于小尺寸螺栓,对于常规大尺寸螺栓也同样适用,提高了传统超声测量螺栓预紧力的适用范围。
(4)本发明测量高效快捷,仅使用纵波压电晶片来产生多模态回波,与传统利用横波和纵波双压电晶片来激发横纵波的方法相比,可避免由于多次耦合带来的误差。并且,本发明简化了测量流程,具有更高的精度以及更好的操作性,对提高已紧固螺栓轴向应力的测量的精度,保障已紧固螺栓连接件结构的安全可靠性具有实际应用价值,同时对推动螺栓测量技术的发展具有重大意义。
下面结合附图,通过对实施例的描述,对本发明的具体实施方式作进一步的说明。
附图说明
图1为本发明实施例一步骤S2中超声换器放置位置示意图。
图2为本发明实施例一步骤S2中一次回波波包示意图以及A模态和B模态渡越时间的选取示意图。
图3为本发明实施例一步骤S3得到的螺栓预紧力与其所对应的A模态和B模态渡越时间比值的拟合曲线。
具体实施方式
实施例
一种基于不同模态回波信号测量螺栓预紧力的方法,其步骤如下:
S1、在与待测螺栓同一批次的螺栓中选取基准螺栓用于标定实验;
S2、在基准螺栓头部表面中心位置布置超声换能器,对基准螺栓进行预紧力标定实验,得到基准螺栓在不同预紧力下的超声回波信号,然后从超声回波信号中得到A模态和B模态渡越时间,并计算基准螺栓在不同预紧力下超声回波信号中A模态和B模态渡越时间比值;
S3、将螺栓预紧力与其所对应的超声回波信号中A模态和B模态渡越时间的比值进行线性拟合,得到螺栓预紧力与A模态和B模态渡越时间比值之间的函数关系;
S4、在待测螺栓头部表面中心位置布置超声换能器,对待测螺栓进行超声波预紧力测量,得到待测螺栓的超声回波信号,然后从超声回波信号中得到A模态的渡越时间
Figure PCTCN2022140693-appb-000004
和B模态的渡越时间
Figure PCTCN2022140693-appb-000005
并计算待测螺栓超声回波信号中A模态以及B模态的渡越时间比值:
Figure PCTCN2022140693-appb-000006
S5、根据步骤S3得到的螺栓预紧力与A模态和B模态渡越时间比值之间的函数关系和步骤S4得到的待测螺栓超声回波信号中A模态以及B模态的渡越时间比值,计算待测螺栓的预紧力。
优选的,所述超声回波信号中A模态是指一次回波波群中第一个波包,第一个波包中幅值最高的波峰所对应渡越时间为A模态渡越时间;超声回波信号中B模态是指一次回波波群中第N个波包,第N个波包中幅值最高的波峰所对应渡越时间为B模态渡越时间,N≥3。
优选的,所述步骤S2中在基准螺栓头部表面中心位置布置超声换能器,对基准螺栓进行预紧力标定实验,得到基准螺栓在不同预紧力下的超声回波信号,然后从超声回波信号中得到A模态和B模态渡越时间,并计算基准螺栓在不同预紧力下超声回波信号中A模态和B模态渡越时间比值的具体方法是:
S21、在基准螺栓头部表面中心位置布置超声换能器,将基准螺栓使用螺栓夹具夹持在拉伸机上;
S22、在无载荷状态下,通过超声换能器对基准螺栓进行超声波预紧力测试,获得超声回波信号,从超声回波信号中得到A模态和B模态的渡越时间,并计算A模态和B模态渡越时间的比值,即为零预紧力状态下A模态和B模态渡越时间的比值;
S23、在基准螺栓的轴向上加载荷,在不同载荷下对基准螺栓进行超声波预紧力测试,获得不同载荷下的超声回波信号,
即为基准螺栓在不同预紧力下的超声回波信号,从超声回波信号中得到A模态和B模态的渡越时间,并计算基准螺栓在不同预紧力下超声回波信号中A模态和B模态渡越时间比值。
优选的,所述螺栓预紧力与A模态和B模态渡越时间比值之间的函数关系为F=KI+b,其中F为预紧力,I为A模态和B模态渡越时间比值,通过将预紧力与其所对应的A模态和B模态渡越时间的比值进行线性拟合,确定应力系数K和截距b的值。
优选的,所述超声换能器中心频率为5~10MHz。
优选的,所述方法用于公称直径为3~8mm、长度为30~50mm的小尺寸螺栓的预紧力测量。
更为优选的,所述超声换能器包括直径为3~5mm的压电晶片。。
实施例一
一种基于不同模态回波信号测量螺栓预紧力的方法,所述待测螺栓为M5×46中碳调质钢螺栓的预紧力测量,其步骤如下:
S1、在与待测螺栓同一批次的螺栓中选取基准螺栓用于标定实验;
S2、在基准螺栓头部表面中心位置布置超声换能器,对基准螺栓进行预紧力标定实验,得到基准螺栓在不同预紧力下的超声回波信号,然后从超声回波信号中得到A模态和B模态渡越时间,并计 算基准螺栓在不同预紧力下超声回波信号中A模态和B模态渡越时间比值,具体方法如下:
S21、在基准螺栓头部表面中心位置粘贴直径为5mm,中心频率为10MHz的压电晶片,粘贴压电晶片之前,需将螺栓头部表面用酒精进行擦拭,若表面不平整或较为粗糙,则需要进行打磨,满足表面粗糙度小于3.2μm的要求。测量时,将磁吸拾取器吸在螺栓上与压电晶片接触,给压电晶片通电,产生超声波;然后将基准螺栓使用螺栓夹具夹持在拉伸机上;图1为本例步骤S2中超声换器放置位置示意图;图中,1为磁吸拾取器的金属外壳,2为磁吸拾取器的磁铁,3为磁吸拾取器的探针,4为磁吸拾取器的填充物,5为压电晶片,6为螺栓;
S22、在无载荷状态下,通过超声换能器对基准螺栓进行超声波预紧力测试,获得超声回波信号,从超声回波信号中得到A模态和B模态的渡越时间,并计算A模态和B模态渡越时间的比值,即为零预紧力状态下A模态和B模态渡越时间的比值;
S23、在基准螺栓的轴向上加载荷,得到从0MPa开始的每间隔50MPa,直至350MPa,在不同载荷下对基准螺栓进行超声波预紧力测试,获得不同载荷下的超声回波信号,即为基准螺栓在不同预紧力下的超声回波信号,从超声回波信号中得到A模态和B模态的渡越时间,并计算基准螺栓在不同预紧力下超声回波信号中A模态和B模态渡越时间比值;其中超声回波信号中A模态是指一次回波波群中第一个波包,第一个波包中幅值最高的波峰所对应渡越时间为A模态渡越时间;超声回波信号中B模态是指一次回波波群中第N个波包,第N个波包中幅值最高的波峰所对应渡越时间为B模态渡越时间,本例中N=4;图2为本例步骤S2中一次回波波包示意图以及A模态和B模态渡越时间的选取示意图。下表1为本例标定螺栓不同预紧力所对应A、B模态渡越时间及比值:
表1
预紧力/MPa A模态的渡越时间/ns B模态的渡越时间/ns A模态和B模态的渡越时间比值
0 16756.64 21004.77 0.797754
50 16769.24 21016.64 0.797903
100 16782.88 21029.96 0.798046
150 16796.04 21042.44 0.798198
200 16808.72 21054.52 0.798343
250 16821.60 21066.72 0.798492
300 16834.44 21079.20 0.798628
350 16847.80 21091.52 0.798795
S3、将螺栓预紧力与其所对应的超声回波信号中A模态和B模态渡越时间的比值进行线性拟合,得到螺栓预紧力与A模态和B模态渡越时间比值之间的函数关系,函数关系为F=KI+b,其中F为预紧力,I为A模态和B模态渡越时间比值,通过将螺栓预紧力与其所对应的A模态和B模态渡越时间的比值进行线性拟合,确定应力系数K和截距b的值;图3为本步骤得到的螺栓预紧力与其所对应的A模态和B模态渡越时间比值的拟合曲线;
S4、在待测螺栓头部表面中心位置布置超声换能器,为了验证本发明测量螺栓预紧力的方法的准 确性,将待测螺栓使用螺栓夹具夹持在拉伸机上,在待测螺栓的轴向上加载荷模拟螺栓在实际服役过程种的受力,在向待测螺栓加载不同载荷的情况下,对待测螺栓进行超声波预紧力测量,得到不同载荷(真实预紧力)下待测螺栓的超声回波信号,并进一步得到待测螺栓在不同载荷下超声回波信号中A模态以及B模态的渡越时间比值:
Figure PCTCN2022140693-appb-000007
见表2第一列数据,表2第3列数据为在待测螺栓上加载的载荷,也就是真实预紧力;
S5、根据步骤S3得到的螺栓预紧力与A模态和B模态渡越时间比值之间的函数关系和步骤S4得到的待测螺栓超声回波信号中A模态以及B模态的渡越时间比值,计算待测螺栓的预紧力,见表2第2列数据,表2第4列数据计算了通过本发明方法测量的预紧力与真实预紧力的误差,通过实测数据可以看出最大误差不超过百分之十。
表2
Figure PCTCN2022140693-appb-000008

Claims (7)

  1. 一种基于不同模态回波信号测量螺栓预紧力的方法,其步骤如下:
    S1、在与待测螺栓同一批次的螺栓中选取基准螺栓用于标定实验;
    S2、在基准螺栓头部表面中心位置布置超声换能器,对基准螺栓进行预紧力标定实验,得到基准螺栓在不同预紧力下的超声回波信号,然后从超声回波信号中得到A模态和B模态渡越时间,并计算基准螺栓在不同预紧力下超声回波信号中A模态和B模态渡越时间比值;
    S3、将螺栓预紧力与其所对应的超声回波信号中模态A和模态B渡越时间的比值进行线性拟合,得到螺栓预紧力与A模态和B模态渡越时间比值之间的函数关系;
    S4、在待测螺栓头部表面中心位置布置超声波换能器,对待测螺栓进行超声波预紧力测量,得到待测螺栓的超声回波信号,然后从超声回波信号中得到A模态的度越时间
    Figure PCTCN2022140693-appb-100001
    和B模态的渡越时间
    Figure PCTCN2022140693-appb-100002
    并计算待测螺栓超声回波信号中A模态以及B模态的渡越时间比值:
    Figure PCTCN2022140693-appb-100003
    S5、根据步骤S3得到的螺栓预紧力与A模态和B模态渡越时间比值之间的函数关系和步骤S4得到的待测螺栓超声回波信号中A模态以及B模态的渡越时间比值,计算待测螺栓的预紧力。
  2. 根据权利要求1所述的一种基于不同模态回波信号测量螺栓预紧力的方法,其特征在于:所述超声回波信号中A模态是指一次回波波群中第一个波包,第一个波包中幅值最高的波峰所对应渡越时间为A模态渡越时间;超声回波信号中B模态是指一次回波波群中第N个波包,第N个波包中幅值最高的波峰所对应渡越时间为B模态渡越时间,N≥3。
  3. 根据权利要求1所述的一种基于不同模态回波信号测量螺栓预紧力的方法,其特征在于:所述步骤S2中在基准螺栓头部表面中心位置布置超声换能器,对基准螺栓进行预紧力标定实验,得到基准螺栓在不同预紧力下的超声回波信号,然后从超声回波信号中得到A模态和B模态渡越时间,并计算基准螺栓在不同预紧力下超声回波信号中A模态和B模态渡越时间比值的具体方法是:
    S21、在基准螺栓头部表面中心位置布置超声换能器,将基准螺栓使用螺栓夹具夹持在拉伸机上;
    S22、在无载荷状态下,通过超声换能器对基准螺栓进行超声波预紧力测试,获得超声回波信号,从超声回波信号中得到A模态和B模态的渡越时间,并计算A模态和B模态渡越时间的比值,即为零预紧力状态下A模态和B模态渡越时间的比值;
    S23、在基准螺栓的轴向上加载荷,在不同载荷下对基准螺栓进行超声波预紧力测试,获得不同载荷下的超声回波信号,即为基准螺栓在不同预紧力下的超声回波信号,从超声回波信号中得到A模态和B模态的渡越时间,并计算基准螺栓在不同预紧力下超声回波信号中A模态和B模态渡越时间比值。
  4. 根据权利要求1所述的一种基于不同模态回波信号测量螺栓预紧力的方法,其特征在于:所 述螺栓预紧力与A模态和B模态渡越时间比值之间的函数关系为F=KI+b,其中F为预紧力,I为A模态和B模态渡越时间比值,通过将预紧力与其所对应的A模态和B模态渡越时间的比值进行线性拟合,确定应力系数K和截距b的值。
  5. 根据权利要求1所述的一种基于不同模态回波信号测量螺栓预紧力的方法,其特征在于:所述超声换能器中心频率为5~10MHz。
  6. 根据权利要求1所述的一种基于不同模态回波信号测量螺栓预紧力的方法,其特征在于:所述方法用于公称直径为3~8mm、长度为30~50mm的小尺寸螺栓的预紧力测量。
  7. 根据权利要求6所述的一种基于不同模态回波信号测量螺栓预紧力的方法,其特征在于:所述超声换能器包括直径为3~5mm的压电晶片。
PCT/CN2022/140693 2022-08-30 2022-12-21 一种基于不同模态回波信号测量螺栓预紧力的方法 WO2024045432A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211048142.6 2022-08-30
CN202211048142.6A CN115389087A (zh) 2022-08-30 2022-08-30 一种基于不同模态回波信号测量螺栓预紧力的方法

Publications (1)

Publication Number Publication Date
WO2024045432A1 true WO2024045432A1 (zh) 2024-03-07

Family

ID=84124324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/140693 WO2024045432A1 (zh) 2022-08-30 2022-12-21 一种基于不同模态回波信号测量螺栓预紧力的方法

Country Status (2)

Country Link
CN (1) CN115389087A (zh)
WO (1) WO2024045432A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115389087A (zh) * 2022-08-30 2022-11-25 西南交通大学 一种基于不同模态回波信号测量螺栓预紧力的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07253368A (ja) * 1994-01-31 1995-10-03 Yoshihisa Mizuguchi ボルト軸力の測定装置及び測定方法
JPH1096673A (ja) * 1996-09-24 1998-04-14 Toshiba Tungaloy Co Ltd ボルトの軸応力計測機
WO2005121773A1 (de) * 2004-06-09 2005-12-22 Pfw Technologies Gmbh Verfahren zur korrektur des einflusses von signalübertragungsleitungen auf signallaufzeitänderungen bei ultraschallmessungen
CN112033597A (zh) * 2020-08-25 2020-12-04 苏州博昇科技有限公司 高强螺栓轴力超声双波快速校准检测方法
CN112461429A (zh) * 2020-11-10 2021-03-09 西南交通大学 一种低弹性模量材质螺栓超声预紧力测量方法
CN114459648A (zh) * 2022-01-19 2022-05-10 哈尔滨工业大学 一种基于多模态Lamb波数据融合的无基线应力在线监测系统及监测方法
CN115389087A (zh) * 2022-08-30 2022-11-25 西南交通大学 一种基于不同模态回波信号测量螺栓预紧力的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109668672A (zh) * 2019-01-08 2019-04-23 中国大唐集团新能源科学技术研究院有限公司 超声螺栓预紧力测量方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07253368A (ja) * 1994-01-31 1995-10-03 Yoshihisa Mizuguchi ボルト軸力の測定装置及び測定方法
JPH1096673A (ja) * 1996-09-24 1998-04-14 Toshiba Tungaloy Co Ltd ボルトの軸応力計測機
WO2005121773A1 (de) * 2004-06-09 2005-12-22 Pfw Technologies Gmbh Verfahren zur korrektur des einflusses von signalübertragungsleitungen auf signallaufzeitänderungen bei ultraschallmessungen
CN112033597A (zh) * 2020-08-25 2020-12-04 苏州博昇科技有限公司 高强螺栓轴力超声双波快速校准检测方法
CN112461429A (zh) * 2020-11-10 2021-03-09 西南交通大学 一种低弹性模量材质螺栓超声预紧力测量方法
CN114459648A (zh) * 2022-01-19 2022-05-10 哈尔滨工业大学 一种基于多模态Lamb波数据融合的无基线应力在线监测系统及监测方法
CN115389087A (zh) * 2022-08-30 2022-11-25 西南交通大学 一种基于不同模态回波信号测量螺栓预紧力的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MOCHENG GUO, CHENBING, ZHUZHONGYIN, QIUFEIFEI: "Ultrasonic Testing of Axial Stress of Bolt Under the Influence of Temperature", NON-DESTRUCTIVE TESTING, SHANG HAI CAI LIAO YAN JIU SUO, CN, vol. 44, no. 3, 10 March 2022 (2022-03-10), CN , pages 45 - 48, 67, XP093143410, ISSN: 1000-6656, DOI: 10.11973/wsjc202203010 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115389087A (zh) * 2022-08-30 2022-11-25 西南交通大学 一种基于不同模态回波信号测量螺栓预紧力的方法

Also Published As

Publication number Publication date
CN115389087A (zh) 2022-11-25

Similar Documents

Publication Publication Date Title
US11131579B2 (en) Piezoelectric patch-based real-time and high-precision bolt preload detection method and system
Kim et al. Measurement of axial stress using mode-converted ultrasound
US20210382014A1 (en) Ultrasonic monitoring probe for internal service stress of a marine structural component
CN109781332B (zh) 基于轴力和伸长量控制螺栓预紧力的方法
WO2024045432A1 (zh) 一种基于不同模态回波信号测量螺栓预紧力的方法
CN109959477A (zh) 一种gis盆式绝缘子环氧试块内应力超声纵波检测方法及系统
CN106813819A (zh) 一种超声波法测量曲面工件残余应力的方法
CN101949894B (zh) 一种双频超声检测界面接触强度的方法
CN107167273B (zh) 基于超声回波的高强螺栓连接节点板压紧度检测方法
US20230228718A1 (en) Non-baseline On-line Stress Monitoring System and Monitoring Method Based on Multi-mode Lamb Wave Data Fusion
US11709152B2 (en) Linkage device, transceiver module and plane stress field measuring device and method capable of achieving synchronous adjustment of distance and angle
CN109959712B (zh) 钢-混组合结构界面粘结滑移的实时监测系统
CN111208207A (zh) 一种螺栓应力检测方法
CN112461429B (zh) 一种低弹性模量材质螺栓超声预紧力测量方法
CN112179553A (zh) 一种超声同步测量螺栓轴向力和剪切力的方法
CN109341912B (zh) 一种超声波平面楔块用于曲面工件的残余应力测量方法
CN112710417B (zh) 试件厚度未知情况的平面应力测量系统及其测量方法
CN114001848A (zh) 一种利用超声测量螺栓剪切力的方法
Kurashkin et al. Ultrasonic evaluation of residual stresses in welded joints of hydroelectric unit rotor frame
CN208902317U (zh) 一种轴类零件表面残余应力检测装置
CN115993399A (zh) 螺栓检测系统及方法
CN203949903U (zh) 一种检测汽轮机发电机合金轴瓦结合状态的超声波探头
Hasegawa et al. Acoustoelastic birefringence effect in wood I: effect of applied stresses on the velocities of ultrasonic shear waves propagating transversely to the stress direction
CN108775984A (zh) 一种无基线的时间反转导波螺栓预紧力监测方法
CN115615591A (zh) 一种多晶元空气耦合换能器及其平面应力超声测量方法、计算机和储存介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22957242

Country of ref document: EP

Kind code of ref document: A1