WO2024045284A1 - 电池和电池模组 - Google Patents

电池和电池模组 Download PDF

Info

Publication number
WO2024045284A1
WO2024045284A1 PCT/CN2022/125247 CN2022125247W WO2024045284A1 WO 2024045284 A1 WO2024045284 A1 WO 2024045284A1 CN 2022125247 W CN2022125247 W CN 2022125247W WO 2024045284 A1 WO2024045284 A1 WO 2024045284A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
battery
collecting plate
grooves
current collecting
Prior art date
Application number
PCT/CN2022/125247
Other languages
English (en)
French (fr)
Inventor
赵芬芬
张雷
鲁海旭
赵赫
黄利明
Original Assignee
湖北亿纬动力有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖北亿纬动力有限公司 filed Critical 湖北亿纬动力有限公司
Priority to KR1020237016512A priority Critical patent/KR20240032693A/ko
Priority to EP22822845.8A priority patent/EP4358195A1/en
Publication of WO2024045284A1 publication Critical patent/WO2024045284A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/78Shapes other than plane or cylindrical, e.g. helical
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/317Re-sealable arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/35Gas exhaust passages comprising elongated, tortuous or labyrinth-shaped exhaust passages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/35Gas exhaust passages comprising elongated, tortuous or labyrinth-shaped exhaust passages
    • H01M50/367Internal gas exhaust passages forming part of the battery cover or case; Double cover vent systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the field of power storage equipment, such as a battery and a battery module.
  • the current collecting plate plays the role of collecting current.
  • the current collecting plate is set up in such a way that the entire current collecting plate is tightly welded to the surface of the battery lug.
  • the current collecting plate will block the pressure relief port due to the deformation of the battery core, causing the active materials and gases inside the battery core to be unable to be released in time, causing the battery thermal runaway and resulting in safety issues such as fire and explosion.
  • This application provides a battery and battery module with good quality and high safety factor.
  • a battery including:
  • An electric core the electric core is arranged in the accommodation cavity;
  • a current collecting plate has a first side and a second side arranged oppositely, the first side is connected to the end face of the battery core, and the second side is connected to the bottom of the accommodation cavity,
  • the first side is provided with a first groove, the first groove is spaced from the end face of the battery core, the second side is provided with a second groove, and the pressure relief valve is connected to the second groove.
  • the grooves are positioned facing each other, and the edge of the collecting plate is spaced apart from the wall of the accommodation cavity to form a connecting channel, and the first groove and the second groove are connected through the connecting channel.
  • a wetting hole is provided at the bottom of the first groove, and the wetting hole penetrates the collecting plate.
  • the cross-sectional shape of the wetting hole is the same as the cross-sectional shape of the first groove.
  • first grooves there are multiple first grooves and multiple second grooves, the plurality of first grooves are spaced around the axis of the collecting plate, and the second grooves are facing The spacing area between two adjacent first grooves.
  • a third groove is provided in the middle area of the first side, the groove bottom of the third groove is spaced apart from the end face of the battery core, and the plurality of first grooves are all spaced apart from the end surface of the battery core.
  • the third grooves are connected.
  • the first groove is in the shape of a sector ring; and/or,
  • the second groove is in the shape of a fan ring.
  • the first groove and the second groove have the same size.
  • the end surface of the battery core close to the current collecting plate is flat.
  • the distance between the bottom of the first groove and the second side is L1
  • embodiments of the present application provide a battery module, including the above-mentioned battery.
  • Beneficial effects of this application By arranging the first groove, the connecting channel and the second groove to communicate, it can be ensured that the pressure relief valve is connected with the inside of the battery core, so that the pressure relief valve can promptly sense changes in the air pressure in the accommodation cavity. Relieve the pressure in time; when the battery core expands, the first groove can provide expansion release space for the battery core, and the gas generated inside the battery core can flow into the second groove through the first groove and the connecting channel, and finally pass through The pressure relief valve on the casing performs pressure relief.
  • the setting of the second groove can ensure that there is a gap between the collecting plate and the pressure relief valve, preventing the collecting plate from deforming and clogging the pressure relief valve, and preventing the internal pressure of the battery from not being released in time. In the event of fire, explosion and other safety issues, ensure the safety of the battery.
  • Figure 1 is an exploded schematic diagram of a battery core and a current collecting plate provided by an embodiment of the present application
  • Figure 2 is a cross-sectional schematic diagram of a battery provided by an embodiment of the present application.
  • Figure 3 is a schematic diagram of a current collecting plate provided by an embodiment of the present application.
  • Figure 4 is a schematic diagram of another current collecting plate provided by an embodiment of the present application.
  • connection should be understood in a broad sense.
  • it can be a fixed connection, a detachable connection, or an integral body; it can be It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components or an interaction between two components.
  • connection can be a fixed connection, a detachable connection, or an integral body; it can be It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components or an interaction between two components.
  • a battery provided by this application includes a casing 1, a battery core 2 and a current collecting plate 3.
  • the casing 1 is provided with a receiving cavity, and the casing 1 is provided with a pressure relief valve ( (not shown in the figure), the electric core 2 is arranged in the accommodation cavity;
  • the current collecting plate 3 has a first side 31 and a second side 32 arranged oppositely, the first side 31 is connected to the end surface of the electric core 2, and the second side 32 Connected to the bottom of the accommodation cavity, the first side 31 is provided with a first groove 311, which is spaced apart from the end face of the battery core 2.
  • the second side 32 is provided with a second groove 321, and the pressure relief valve is connected to the first groove 311.
  • the two grooves 321 are positioned facing each other, and the edge of the collecting plate 3 is spaced apart from the wall of the accommodation cavity to form a connecting channel 4.
  • the first groove 311 and the second groove 321 are connected through the connecting channel 4.
  • the first groove 311 can provide a release space for the battery core 2 to expand, and the gas generated inside the battery core 2 can flow into the second groove through the first groove 311 and the connecting channel 4 321, the pressure is finally released through the pressure relief valve on the housing 1.
  • the setting of the second groove 321 can ensure that the collecting plate 3 and the pressure relief valve are separated, preventing the collecting plate 3 from deforming and blocking the pressure relief valve. , to avoid safety problems such as fire and explosion caused by delayed release of the internal pressure of the battery, and to ensure the safety of the battery.
  • a wetting hole 33 is provided at the bottom of the first groove 311 , and the wetting hole 33 penetrates the collecting plate 3 .
  • the electrolyte can only flow into the battery core 2 through the connecting channel 4; in this solution, a wetting hole 33 is provided on the current collecting plate 3.
  • the electrolyte can flow into the battery through the wetting hole 33.
  • the flow rate of the electrolyte is increased, the electrolyte infiltrates into the active material, and the injection time is shortened; compared with the connection channel 4, the infiltration hole 33 is closer to the center of the battery core 2. Therefore, the infiltration hole 33 can be provided to The electrolyte can more easily wet the inside of the battery core 2 .
  • first grooves 311 and a plurality of second grooves 321 There are a plurality of first grooves 311 and a plurality of second grooves 321 .
  • the plurality of first grooves 311 are arranged at intervals around the axis of the collecting plate 3 .
  • the second grooves 321 face two adjacent first grooves 311 the space between them.
  • multiple concave and convex structures can be formed on the current collecting plate 3, which can increase the strength of the current collecting plate 3 and reduce the deformation of the current collecting plate 3;
  • the two grooves 321 face the space between the two adjacent first grooves 311, which can thin the overall thickness of the current collecting plate 3, which is beneficial to reducing the volume and weight of the battery and increasing the energy density of the battery.
  • the collecting plate 3 is formed by stamping.
  • a third groove 312 is provided in the middle area of the first side 31.
  • the bottom of the third groove 312 is spaced from the end face of the battery core 2. All first grooves 311 All are connected with the third groove 312.
  • the third groove 312 can connect all the first grooves 311.
  • the gas can flow out from any first groove 311 to avoid gas congestion in a third groove. If the local pressure cavity in one groove 311 is too large, the arrangement of the third groove 312 can facilitate the exhaust and pressure relief of the battery core 2; in this embodiment, the third groove 312 is circular.
  • the shape of the first groove 311 is a fan ring
  • the shape of the second groove 321 is also a fan ring.
  • the shapes of the first groove 311 and the second groove 321 can be adapted to the shape of the collecting plate 3 itself, which facilitates processing.
  • the edge of the second groove 321 is consistent with the radial direction of the collecting plate 3 , which helps to strengthen the strength of the collecting plate 3 itself.
  • the cross-sectional shape of the wetting hole 33 is the same as the cross-sectional shape of the first groove 311 .
  • the size of the wetting hole 33 can be increased as much as possible and the liquid injection efficiency can be improved.
  • Both the wetting hole 33 and the first groove 311 are fan rings. The fan ring is the remaining shape of the large fan minus the concentric small fan.
  • the first groove 311 and the second groove 321 have the same size. By setting the first groove 311 and the second groove 321 to have the same size, the first groove 311 and the second groove 321 can be evenly distributed on the current collecting plate 3, so that the uneven structure on the current collecting plate 3 is uniform. Improve the strength of many places on the collector plate 3.
  • the distance between the bottom of the first groove 311 and the second side 32 is L1
  • the end surface of the battery core 2 close to the current collecting plate 3 is flat.
  • the end surface of the battery core 2 is spaced apart from the first groove 311 of the current collecting plate 3, and the spaced area between the two is connected to the pressure relief valve on the housing 1 through the connection channel 4 and the second groove 321.
  • the valve is connected, and the end surface of the end of the battery core 2 close to the current collecting plate 3 is set to be flat, which can ensure the area of the separation area between the battery core 2 and the current collecting plate 3.
  • the first groove 311 has Enough space can absorb the expansion of the battery core 2 and smoothly release the pressure through the pressure relief valve to balance the air pressure in the accommodation cavity to ensure the safety performance of the battery.
  • This embodiment also provides a battery module, including the battery in any of the above embodiments.
  • the pressure relief valve on the battery case 1 can promptly relieve the pressure generated by the expansion of the battery core 2.
  • the battery is not prone to explosion and other safety issues. Therefore, the battery module containing this battery has a high safety factor and good quality.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

本申请提供一种电池和电池模组。电池包括壳体、电芯和集流盘,壳体内设置有容纳腔,壳体上设置有泄压阀;电芯设置在容纳腔内;集流盘具有相对设置的第一侧面和第二侧面,第一侧面与电芯的端面连接,第二侧面与容纳腔的腔底连接,第一侧面设置有第一凹槽,第一凹槽与电芯的端面间隔,第二侧面设置有第二凹槽,泄压阀与第二凹槽位置正对,集流盘的边缘与容纳腔的腔壁间隔形成连接通道,第一凹槽和第二凹槽通过连接通道连通。

Description

电池和电池模组
本申请要求在2022年09月01日提交中国专利局、申请号为202222332225.X的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及储电设备领域,例如涉及一种电池和电池模组。
背景技术
在圆柱形锂离子电池中,集流盘起到汇集电流的作用。经研究发现,集流盘的结构设计与电芯安全有非常强的相关性,集流盘的设置方式是将集流盘整体紧紧焊接在电芯极耳表面。电芯发生热失控时,集流盘随电芯变形堵塞在泄压口,导致电芯内部活性物质及气体无法及时泄放,从而引发电池热失控,出现起火、爆炸等安全问题。
发明内容
本申请提供了一种电池和电池模组,其质量好,安全系数高。
第一方面,本申请实施例提供了一种电池,包括:
壳体,所述壳体内设置有容纳腔,所述壳体上设置有泄压阀;
电芯,所述电芯设置在所述容纳腔内;
集流盘,所述集流盘具有相对设置的第一侧面和第二侧面,所述第一侧面与所述电芯的端面连接,所述第二侧面与所述容纳腔的腔底连接,所述第一侧面设置有第一凹槽,所述第一凹槽与所述电芯的端面间隔,所述第二侧面设置有第二凹槽,所述泄压阀与所述第二凹槽位置正对,所述集流盘的边缘与所述容纳腔的腔壁间隔形成连接通道,所述第一凹槽和所述第二凹槽通过所述连接通道连通。
在一实施例中,所述第一凹槽的槽底设置有浸润孔,所述浸润孔贯穿所述集流盘。
作为电池的一种优选方案,所述浸润孔的横截面与所述第一凹槽的横截面形状相同。
在一实施例中,所述第一凹槽和所述第二凹槽均设置有多个,多个第一凹槽绕所述集流盘的轴线间隔布置,所述第二凹槽正对相邻两个第一凹槽之间的 间隔区域。
在一实施例中,所述第一侧面的中部区域设置有第三凹槽,所述第三凹槽的槽底与所述电芯的端面间隔布置,所述多个第一凹槽均与所述第三凹槽连通。
在一实施例中,所述第一凹槽的形状呈扇环;和/或,
所述第二凹槽的形状呈扇环。
在一实施例中,所述第一凹槽和所述第二凹槽的尺寸相同。
在一实施例中,所述电芯靠近所述集流盘一端的端面为平面。
在一实施例中,所述第一凹槽槽底与所述第二侧面的距离为L1,所述第二凹槽的槽底与所述第一侧面的距离为L2,L1=L2。
第二方面,本申请实施例提供了一种电池模组,包括上述的电池。
本申请的有益效果:通过设置第一凹槽、连接通道和第二凹槽连通,可以保证泄压阀与电芯的内部是连通的,使得泄压阀能够及时感应容纳腔内气压的变化,及时进行泄压;当电芯发生膨胀时,第一凹槽可以为电芯提供膨胀的释放空间,电芯内部产生的气体可以经第一凹槽、连接通道流入第二凹槽内,最后经壳体上的泄压阀进行泄压,第二凹槽的设置可以保证集流盘与泄压阀之间是间隔的,避免集流盘变形堵塞泄压阀,避免电池内部压力释放不及时导致出现起火、爆炸等安全问题,保证电池的使用安全。
附图说明
图1为本申请实施例提供的一种电芯和集流盘的分解示意图;
图2为本申请实施例提供的一种电池剖视示意图;
图3为本申请实施例提供的一种集流盘示意图;
图4为本申请实施例提供的另一种集流盘示意图。
图中:
1、壳体;2、电芯;3、集流盘;31、第一侧面;311、第一凹槽;312、第三凹槽;32、第二侧面;321、第二凹槽;33、浸润孔;4、连接通道。
具体实施方式
在本申请的描述中,除非另有规定和限定,术语“相连”、“连接”、“固定”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间 接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据情况理解上述术语在本申请中的含义。
如图1至图3所示,本申请提供的一种电池,包括壳体1、电芯2和集流盘3,壳体1内设置有容纳腔,壳体1上设置有泄压阀(图中未示出),电芯2设置在容纳腔内;集流盘3具有相对设置的第一侧面31和第二侧面32,第一侧面31与电芯2的端面连接,第二侧面32与容纳腔的腔底连接,第一侧面31设置有第一凹槽311,第一凹槽311与电芯2的端面间隔,第二侧面32设置有第二凹槽321,泄压阀与第二凹槽321位置正对,集流盘3的边缘与容纳腔的腔壁间隔形成连接通道4,第一凹槽311和第二凹槽321通过连接通道4连通。通过设置第一凹槽311、连接通道4和第二凹槽321连通,可以保证泄压阀与电芯2的内部是连通的,使得泄压阀能够及时感应容纳腔内气压的变化,及时进行泄压;当电芯2发生膨胀时,第一凹槽311可以为电芯2提供膨胀的释放空间,电芯2内部产生的气体可以经第一凹槽311、连接通道4流入第二凹槽321内,最后经壳体1上的泄压阀进行泄压,第二凹槽321的设置可以保证集流盘3与泄压阀之间是间隔的,避免集流盘3变形堵塞泄压阀,避免电池内部压力释放不及时导致出现起火、爆炸等安全问题,保证电池的使用安全。
参照图4,第一凹槽311的槽底设置有浸润孔33,浸润孔33贯穿集流盘3。在未设置浸润孔33时,电解液只能够通过连接通道4流入电芯2;本方案在集流盘3上设置浸润孔33,在对电池注液期间,电解液可以通过浸润孔33流入电芯2内,提高电解液的流动速度,加速电解液浸润活性物质,缩短注液时间;相比于连接通道4,浸润孔33更靠近电芯2的中心,因此,设置浸润孔33,可以使电解液更容易润湿电芯2的内部。
第一凹槽311和第二凹槽321均设置有多个,多个第一凹槽311绕集流盘3的轴线间隔布置,第二凹槽321正对相邻两个第一凹槽311之间的间隔区域。通过设置多个第一凹槽311和第二凹槽321,可以在集流盘3上形成多个凹凸结构,这样可以增大集流盘3的强度,减少集流盘3的变形;将第二凹槽321正对相邻两个第一凹槽311之间的间隔区域,可以减薄集流盘3的整体厚度,有利于减小电池的体积和重量,提升电池的能量密度。一实施例中,集流盘3通过冲压的方式加工成型。
参照图2和图3,一实施例中,第一侧面31的中部区域设置有第三凹槽312,第三凹槽312的槽底与电芯2的端面间隔,所有的第一凹槽311均与第三凹槽312连通。通过设置第三凹槽312,第三凹槽312可以将所有的第一凹槽311连通,当电芯2产生膨胀时,气体可以从任意一个第一凹槽311流出,避免气体拥堵在一个第一凹槽311内造成局部压腔过大,第三凹槽312的设置可以方便 电芯2排气泄压;在本实施例中,第三凹槽312呈圆形。
第一凹槽311的形状呈扇环,第二凹槽321的形状也呈扇环。通过设置扇环的第一凹槽311和第二凹槽321,可以使得第一凹槽311和第二凹槽321的形状适应集流盘3本身的形状,方便加工,第一凹槽311和第二凹槽321的边缘与集流盘3的径向方向一致,有助于加强集流盘3自身的强度。
在本实施例中,浸润孔33的横截面与第一凹槽311的横截面形状相同。通过设置浸润孔33的横截面与第一凹槽311的横截面形状相同,可以尽可能地增大浸润孔33的尺寸,提高注液效率。浸润孔33和第一凹槽311均为扇环。扇环即为大扇形减去与其同心的小扇形剩余的形状。
第一凹槽311和第二凹槽321的尺寸相同。通过设置第一凹槽311和第二凹槽321尺寸相同,可以使得第一凹槽311和第二凹槽321能够均匀分布在集流盘3上,使得集流盘3上的凹凸结构均匀,提升集流盘3上多处的强度。
在本实施例中,参照图2,第一凹槽311槽底与第二侧面32的距离为L1,第二凹槽321槽底与第一侧面31的距离为L2,L1=L2。通过设置第一凹槽311槽底与第二侧面32的距离等于第二凹槽321槽底与第一侧面31的距离,可以尽可能地使集流盘3多处厚度均匀,减少集流盘3的受力变形。
电芯2靠近集流盘3一端的端面为平面。在本实施例中,电芯2的端面与集流盘3的第一凹槽311之间间隔设置,两者的间隔区域通过连接通道4和第二凹槽321与壳体1上的泄压阀连通,设置电芯2靠近集流盘3一端的端面为平面,可以保证电芯2与集流盘3之间间隔区域的面积,当电芯2发生膨胀时,第一凹槽311内有足够的空间能够吸收电芯2的膨胀,并通过泄压阀顺利泄压平衡容纳腔内的气压,保证电池的安全性能。
本实施例还提供了一种电池模组,包括上述任一实施例中的电池,在使用过程中,电池壳体1上的泄压阀能够及时对电芯2膨胀产生的压力进行泄压,电池不容易发生爆炸等安全问题,因此,含有此电池的电池模组的安全系数高,质量好。
于本文的描述中,术语“上”、“下”、“左”、“右”、等方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述和简化操作,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”,仅仅用于在描述上加以区分,并没有特殊的含义。
在本说明书的描述中,参考术语“一实施例”、“示例”等的描述意指结合该实施例或示例描述的特征、结构、材料或者特点包含于本申请的至少一个 实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。
此外,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,多个实施例中的技术方案也可以适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (10)

  1. 一种电池,包括:
    壳体,所述壳体内设置有容纳腔,所述壳体上设置有泄压阀;
    电芯,所述电芯设置在所述容纳腔内;
    集流盘,所述集流盘具有相对设置的第一侧面和第二侧面,所述第一侧面与所述电芯的端面连接,所述第二侧面与所述容纳腔的腔底连接,所述第一侧面设置有第一凹槽,所述第一凹槽与所述电芯的端面间隔,所述第二侧面设置有第二凹槽,所述泄压阀与所述第二凹槽位置正对,所述集流盘的边缘与所述容纳腔的腔壁间隔形成连接通道,所述第一凹槽和所述第二凹槽通过所述连接通道连通。
  2. 根据权利要求1所述的电池,其中,所述第一凹槽的槽底设置有浸润孔,所述浸润孔贯穿所述集流盘。
  3. 根据权利要求2所述的电池,其中,所述浸润孔的横截面与所述第一凹槽的横截面形状相同。
  4. 根据权利要求1-3任一项所述的电池,其中,所述第一凹槽和所述第二凹槽均设置有多个,多个第一凹槽绕所述集流盘的轴线间隔布置,所述第二凹槽正对相邻两个第一凹槽之间的间隔区域。
  5. 根据权利要求4所述的电池,其中,所述第一侧面的中部区域设置有第三凹槽,所述第三凹槽的槽底与所述电芯的端面间隔布置,所述多个第一凹槽均与所述第三凹槽连通。
  6. 根据权利要求4所述的电池,满足以下至少之一:
    所述第一凹槽的形状呈扇环;
    所述第二凹槽的形状呈扇环。
  7. 根据权利要求4所述的电池,其中,所述第一凹槽和所述第二凹槽的尺寸相同。
  8. 根据权利要求1-3任一项所述的电池,其中,所述电芯靠近所述集流盘一端的端面为平面。
  9. 根据权利要求1-3任一项所述的电池,其中,所述第一凹槽的槽底与所述第二侧面的距离为L1,所述第二凹槽的槽底与所述第一侧面的距离为L2,L1=L2。
  10. 一种电池模组,包括如权利要求1-9任一项所述的电池。
PCT/CN2022/125247 2022-09-01 2022-10-14 电池和电池模组 WO2024045284A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020237016512A KR20240032693A (ko) 2022-09-01 2022-10-14 배터리와 배터리 모듈
EP22822845.8A EP4358195A1 (en) 2022-09-01 2022-10-14 Battery and battery module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202222332225.XU CN218471987U (zh) 2022-09-01 2022-09-01 电池和电池模组
CN202222332225.X 2022-09-01

Publications (1)

Publication Number Publication Date
WO2024045284A1 true WO2024045284A1 (zh) 2024-03-07

Family

ID=85139415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125247 WO2024045284A1 (zh) 2022-09-01 2022-10-14 电池和电池模组

Country Status (5)

Country Link
EP (1) EP4358195A1 (zh)
JP (1) JP2024035073A (zh)
KR (1) KR20240032693A (zh)
CN (1) CN218471987U (zh)
WO (1) WO2024045284A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1694279A (zh) * 2004-03-24 2005-11-09 三星Sdi株式会社 可充电电池
CN1700495A (zh) * 2004-05-19 2005-11-23 三星Sdi株式会社 集电板和使用其的蓄电池
CN1753214A (zh) * 2004-09-21 2006-03-29 三星Sdi株式会社 具有撞击缓冲作用的可再充电电池
CN212136595U (zh) * 2020-07-02 2020-12-11 上海比耐信息科技有限公司 一种集流组件及其制作的大容量电池
CN113678294A (zh) * 2019-01-30 2021-11-19 三星Sdi株式会社 二次电池
CN216793829U (zh) * 2022-01-24 2022-06-21 蜂巢能源科技(无锡)有限公司 圆柱电池及电池包
CN217009498U (zh) * 2022-03-25 2022-07-19 厦门海辰新能源科技有限公司 用于二次电池的集流盘及具有其的二次电池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1694279A (zh) * 2004-03-24 2005-11-09 三星Sdi株式会社 可充电电池
CN1700495A (zh) * 2004-05-19 2005-11-23 三星Sdi株式会社 集电板和使用其的蓄电池
CN1753214A (zh) * 2004-09-21 2006-03-29 三星Sdi株式会社 具有撞击缓冲作用的可再充电电池
CN113678294A (zh) * 2019-01-30 2021-11-19 三星Sdi株式会社 二次电池
CN212136595U (zh) * 2020-07-02 2020-12-11 上海比耐信息科技有限公司 一种集流组件及其制作的大容量电池
CN216793829U (zh) * 2022-01-24 2022-06-21 蜂巢能源科技(无锡)有限公司 圆柱电池及电池包
CN217009498U (zh) * 2022-03-25 2022-07-19 厦门海辰新能源科技有限公司 用于二次电池的集流盘及具有其的二次电池

Also Published As

Publication number Publication date
KR20240032693A (ko) 2024-03-12
JP2024035073A (ja) 2024-03-13
EP4358195A1 (en) 2024-04-24
CN218471987U (zh) 2023-02-10

Similar Documents

Publication Publication Date Title
WO2020042411A1 (zh) 电池模组
WO2023087909A1 (zh) 电池包
WO2023207798A1 (zh) 热管理部件、电池及用电装置
JP2004207028A (ja) 燃料電池
WO2023227076A1 (zh) 热管理部件、电池以及用电装置
CN111900430B (zh) 一种绝缘板及电堆
WO2024045284A1 (zh) 电池和电池模组
CN214625274U (zh) 一种电池包和电动车
WO2022037128A1 (zh) 一种二次电池及电池包
WO2021000781A1 (zh) 二次电池
CN217903346U (zh) 一种电池包
WO2023134273A1 (zh) 电池和用电设备
WO2020133674A1 (zh) 电池模组以及电池包
TWM641262U (zh) 可提高散熱效果的電池設備
CN216389569U (zh) 储能单体、储能簇及储能装置
US20240079602A1 (en) Battery and battery module
JP2023514326A (ja) 電池ケース、電池、電池パック、電池モジュール及び車両
JP2022500810A (ja) バッテリーモジュール
CN219873822U (zh) 电池壳体结构、电池组及电池包
CN220065814U (zh) 电池包组件和用电装置
CN217955959U (zh) 一种电池以及电池包
JP3276649B2 (ja) 燃料電池
CN217507568U (zh) 电池包
CN216648441U (zh) 储能单体、簇及装置
CN220138471U (zh) 电池的外壳及电池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022822845

Country of ref document: EP

Effective date: 20230118