WO2024045074A1 - 闭环功率调节值确定方法、装置、设备及存储介质 - Google Patents

闭环功率调节值确定方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2024045074A1
WO2024045074A1 PCT/CN2022/116318 CN2022116318W WO2024045074A1 WO 2024045074 A1 WO2024045074 A1 WO 2024045074A1 CN 2022116318 W CN2022116318 W CN 2022116318W WO 2024045074 A1 WO2024045074 A1 WO 2024045074A1
Authority
WO
WIPO (PCT)
Prior art keywords
closed
loop power
trp
adjustment value
terminal
Prior art date
Application number
PCT/CN2022/116318
Other languages
English (en)
French (fr)
Inventor
罗星熠
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202280003118.2A priority Critical patent/CN117957884A/zh
Priority to PCT/CN2022/116318 priority patent/WO2024045074A1/zh
Publication of WO2024045074A1 publication Critical patent/WO2024045074A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/08Closed loop power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/54Signalisation aspects of the TPC commands, e.g. frame structure
    • H04W52/58Format of the TPC bits

Definitions

  • the present application relates to the field of mobile communications, and in particular to a method, device, equipment and storage medium for determining a closed-loop power adjustment value.
  • communication can be carried out between the network device and the terminal, and the network device can also configure power control parameters for the terminal, so that the terminal can perform power control based on the configured power control parameters.
  • the power control parameters configured by the network device for the terminal include open-loop power control parameters and closed-loop power control parameters, and the power control parameters corresponding to each time domain position may be different, so the terminal will accumulate the open-loop power within a certain period of time. control parameters and closed-loop power control parameters, and then perform power control based on the obtained transmit power.
  • Embodiments of the present application provide a closed-loop power adjustment value determination method, device, equipment and storage medium.
  • the terminal performs dynamic transmission power adjustment based on the closed-loop power adjustment value corresponding to each TRP and the actual situation from the terminal to each TRP, so as to facilitate Under the premise of reducing interference, the terminal is guaranteed to perform uplink transmission with a larger transmission power to ensure system throughput.
  • the technical solutions are as follows:
  • a method for determining a closed-loop power adjustment value is provided.
  • the method is executed by a terminal, and the method includes:
  • TPC Transmit Power Control
  • the TPC command is used to configure the closed-loop power adjustment value of multiple transmission reception points TRP for the terminal.
  • the TPC command corresponding to each TRP The corresponding closed-loop power adjustment value is used to determine the uplink transmit power corresponding to the TRP from the terminal.
  • a method for determining a closed-loop power adjustment value is provided, the method is executed by a network device, and the method includes:
  • the TPC command is used to configure the closed-loop power adjustment value of multiple transmission reception points TRP for the terminal.
  • the closed-loop power adjustment value corresponding to the TPC command corresponding to each TRP is used to determine the The uplink transmit power corresponding to the TRP from the terminal.
  • a closed-loop power adjustment value determination device includes:
  • a receiving module configured to receive a transmit power control TPC command sent by the network device.
  • the TPC command is used to configure the closed-loop power adjustment value of multiple transmission reception points TRP for the terminal.
  • the closed-loop power corresponding to the TPC command corresponding to each TRP The adjustment value is used to determine the uplink transmit power corresponding to the TRP from the terminal.
  • a closed-loop power adjustment value determination device includes:
  • a sending module configured to send a transmit power control TPC command to the terminal.
  • the TPC command is used to configure the closed-loop power adjustment value of multiple transmission reception points TRP for the terminal.
  • the closed-loop power adjustment value corresponding to the TPC command corresponding to each TRP Used to determine the uplink transmit power corresponding to the TRP from the terminal.
  • a terminal includes: a processor; a transceiver connected to the processor; a memory for storing executable instructions of the processor; wherein the processor is configured to load and execute The instructions can be executed to implement the closed-loop power adjustment value determination method as described above.
  • a network device includes: a processor; a transceiver connected to the processor; a memory for storing executable instructions of the processor; wherein the processor is configured to load and execute executable instructions to implement the closed-loop power adjustment value determination method as described above.
  • a communication system includes a terminal and a network device.
  • the terminal is used to implement the closed-loop power adjustment value determination method as described in the first aspect.
  • the network device It is used to implement the closed-loop power adjustment value determination method as described in the second aspect above.
  • a computer-readable storage medium stores executable program code.
  • the executable program code is loaded and executed by a processor to achieve the closed-loop power adjustment value as described above. Determine the method.
  • a chip is provided.
  • the chip includes programmable logic circuits and/or program instructions. When the chip is run on a terminal or network device, it is used to implement the closed-loop power adjustment value determination method in the above aspect. .
  • a computer program product is provided.
  • the computer program product is executed by a processor of a terminal or a network device, it is used to implement the closed-loop power adjustment value determination method of the above aspect.
  • the terminal can determine the closed-loop power adjustment value corresponding to each TRP according to the TPC command, and then the terminal performs dynamic transmission based on the closed-loop power adjustment value corresponding to each TRP and the actual situation from the terminal to each TRP. Power adjustment ensures that the terminal performs uplink transmission with greater transmission power to ensure system throughput while ensuring reduced interference.
  • Figure 1 shows a block diagram of a communication system provided by an exemplary embodiment of the present application
  • Figure 2 shows a block diagram of another communication system provided by an exemplary embodiment of the present application
  • Figure 3 shows a flow chart of a closed-loop power adjustment value determination method provided by an exemplary embodiment of the present application
  • Figure 4 shows a schematic diagram of uplink transmission provided by an exemplary embodiment of the present application
  • Figure 5 shows a flow chart of a closed-loop power index configuration method provided by an exemplary embodiment of the present application
  • Figure 6 shows a flow chart of a closed-loop power adjustment value resetting method provided by an exemplary embodiment of the present application
  • Figure 7 shows a flow chart of a closed-loop power adjustment value determination method provided by an exemplary embodiment of the present application
  • Figure 8 shows a flow chart of a closed-loop power adjustment value determination method provided by an exemplary embodiment of the present application
  • Figure 9 shows a block diagram of a closed-loop power adjustment value determination device provided by an exemplary embodiment of the present application.
  • Figure 10 shows a block diagram of a closed-loop power adjustment value determination device provided by an exemplary embodiment of the present application
  • Figure 11 shows a schematic structural diagram of a communication device provided by an exemplary embodiment of the present application.
  • first, second, third, etc. may be used in this application to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other.
  • first information may also be called second information, and similarly, the second information may also be called first information.
  • word “if” as used herein may be interpreted as "when” or “when” or “in response to determining.”
  • the information including but not limited to user equipment information, user personal information, etc.
  • data including but not limited to data used for analysis, stored data, displayed data, etc.
  • signals involved in this application All are authorized by the user or fully authorized by all parties, and the collection, use and processing of relevant data need to comply with relevant laws, regulations and standards of relevant countries and regions.
  • Figure 1 shows a block diagram of a communication system provided by an exemplary embodiment of the present application.
  • the communication system may include: a terminal 10 and a network device 20.
  • the number of terminals 10 is usually multiple, and one or more terminals 10 can be distributed in the cell managed by each network device 20 .
  • the terminal 10 may include various handheld devices, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to wireless modems with wireless communication functions, as well as various forms of user equipment (User Equipment, UE), mobile stations ( Mobile Station, MS) and so on.
  • UE User Equipment
  • MS Mobile Station
  • the network device 20 is a device deployed in the access network to provide wireless communication functions for the terminal 10 .
  • the above-mentioned devices that provide wireless communication functions for the terminal 10 are collectively referred to as network equipment.
  • a connection can be established between the network device 20 and the terminal 10 through an air interface, so that communication, including signaling and data interaction, can be performed through the connection.
  • the number of network devices 20 may be multiple, and communication between two adjacent network devices 20 may also be carried out in a wired or wireless manner.
  • the terminal 10 can send beam reports between different network devices 20 , that is, establish connections with different network devices 20 .
  • the network device 20 may include various forms of macro base stations, micro base stations, relay stations, access points, etc.
  • the names of devices with network device functions may be different.
  • 5G NR New Radio, New Radio
  • they are called gNodeB or gNB.
  • the name "network device” may change.
  • At least two TRPs Transmission Reception Points
  • at least two network devices 20 are provided with at least one TRP on each network device, that is, at least two network devices 20 are provided with There are at least two TRPs. That is, at least two TRPs can be from the same cell or different cells.
  • 4 TRPs are set on the network device 20, and services can be provided for the terminal 10 through the 4 TRPs, then the terminal can perform data transmission based on the 4 TRPs.
  • the two TRPs can transmit data using a time division transmission method.
  • the time-division transmission method means that at a certain time, the terminal transmits uplink data to TRP1, and at another time, the terminal transmits uplink data to TRP2.
  • the terminal when it transmits uplink data to the TRP, it will also determine the uplink transmit power based on the open-loop power control parameters and the closed-loop power control parameters, so as to transmit the uplink data to each TRP according to the determined uplink transmit power.
  • PUSCH Physical Uplink Shared Channel
  • is DCI (Downlink Control Information, downlink control Information) value indicated by the TPC field.
  • l is called the closed loop index
  • i time, used to represent the current moment
  • P CMAX is the maximum transmit power allowed by the terminal
  • P 0 is the target receive power
  • the target receive power is the expected receive power configured by the network device
  • is the partial path compensation factor
  • PL is the path loss
  • is other adjustment quantities.
  • the “5G NR system” in the embodiment of this application may also be called a 5G system or an NR system, but those skilled in the art can understand its meaning.
  • the technical solution described in the embodiments of this application can be applied to the 5G NR system, and can also be applied to the subsequent evolution system of the 5G NR system.
  • Figure 3 shows a flow chart of a closed-loop power adjustment value determination method provided by an exemplary embodiment of the present application.
  • the exemplary method can be applied to the terminal and network equipment shown in Figure 1.
  • the method includes at least the following contents: Part:
  • Step 301 The network device sends a TPC command to the terminal.
  • the TPC command is used to configure the closed-loop power adjustment value of multiple TRPs for the terminal.
  • the closed-loop power adjustment value corresponding to the TPC command corresponding to each TRP is used to determine the uplink transmission corresponding to the terminal to the TRP. power.
  • Step 302 The terminal receives the TPC command sent by the network device.
  • the terminal can perform uplink data transmission through the TRP configured on the network device.
  • the terminal can transmit uplink data to the network device at the same time.
  • the terminal needs to determine the closed-loop power adjustment value corresponding to each TRP, and then perform the adjustment based on the determined uplink transmit power corresponding to each TRP. Uplink data transmission.
  • the method for determining the uplink transmit power by the closed-loop power adjustment value refers to the method for determining the transmission power in the above embodiments.
  • the network device can configure the closed-loop power adjustment value of multiple TRPs for the terminal through the TPC command. After receiving the TPC command, the terminal can determine the closed-loop power adjustment value of each TRP and then based on the TPC command corresponding to each TRP. The closed-loop power adjustment value determines the uplink transmit power corresponding to the TRP from the terminal, so that the terminal can send uplink data to the network device based on the uplink transmit power corresponding to each TRP.
  • the steps performed by the terminal can independently form a new embodiment
  • the steps performed by the network device can independently form a new embodiment, which are not limited by the embodiment of the present application.
  • the terminal can determine the closed-loop power adjustment value corresponding to each TRP according to the TPC command, and then the terminal performs dynamic transmission based on the closed-loop power adjustment value corresponding to each TRP and the actual situation from the terminal to each TRP. Power adjustment ensures that the terminal performs uplink transmission with greater transmission power to ensure system throughput while ensuring reduced interference.
  • the embodiment shown in Figure 3 explains that the terminal needs to determine the closed-loop power adjustment value of each TRP. Next, how the terminal determines the closed-loop power adjustment value of each TRP according to the TPC command is explained.
  • the closed-loop power adjustment value of each TRP is accumulated from the closed-loop power adjustment value indicated by the TPC command corresponding to the TRP.
  • the terminal needs to determine the closed-loop power adjustment value of each TRP, and the closed-loop power adjustment value of each TRP is obtained by accumulating the closed-loop power adjustment values corresponding to the terminal at multiple times. That is to say, the terminal needs to accumulate the closed-loop power adjustment value indicated by the TPC command corresponding to each TRP to obtain the closed-loop power adjustment value of each TRP at the current moment.
  • f (il, t) f (ii 0 , l, t) + ⁇ , where t is the identifier of the TRP, ⁇ is the closed-loop power adjustment value indicated by the TPC command, and i is the time, used to represent the current moment. , f(i, l, t) is the accumulated closed-loop power adjustment value of each TRP.
  • the terminal accumulates the closed-loop power adjustment values indicated by all TPC commands belonging to the same closed loop processes (closed-loop processes) within ⁇ t to obtain the accumulated closed-loop power adjustment value of each TRP.
  • the TPC commands of multiple TRPs are carried in DCI (Downlink Control Information). How the terminal determines the TRP according to the TPC command is described below.
  • the TPC command sent by the network device to the terminal is carried in DCI, and the terminal determines the TRP corresponding to the TPC command based on the TPC command in DCI, and then determines the closed-loop power adjustment value of each TRP.
  • the TPC command can be carried in one DCI or multiple DCIs, and for the terminal, the way to determine the TRP when carried in one DCI or multiple DCIs is also different.
  • the different ways are described below.
  • Type 1 At least two TPC commands are carried in one DCI.
  • the location of the TPC domain included in the DCI has a default mapping relationship with the TRP, and the TRP is determined based on the location of the TPC domain included in the DCI and the default mapping relationship.
  • the network device indicates to the terminal the closed-loop power adjustment values of multiple TRPs by sending a DCI. After receiving the DCI, the terminal can determine the TRP corresponding to the TPC command based on the DCI.
  • the DCI includes multiple TPC domains, and the terminal's default mapping relationship includes the corresponding relationship between TPC domains and TRPs. Therefore, the terminal can determine the corresponding TRP based on the location of the TPC domain and the default mapping relationship.
  • the terminal can determine the TRP corresponding to each TPC domain based on the location and default mapping relationship of the TPC domain included in the DCI, and then the terminal can determine the TPC command indication corresponding to the same TRP.
  • the closed-loop power adjustment value of each TRP is determined.
  • the Nth TPC domain in the DCI corresponds to the Nth TRP, and N is a positive integer. That is to say, if the DCI includes two TPC domains, the first TPC domain corresponds to the first TRP, and the second TPC domain corresponds to the second TRP.
  • the mapping relationship between the TPC domain and the TRP is actually indicated by the TCI (Transmission Configuration Indication) status, which has a corresponding relationship with the TRP. That is to say, the position of the TPC domain included in the DCI indicates the corresponding TRP through the corresponding TCI state.
  • TCI Transmission Configuration Indication
  • the Nth TPC domain corresponds to the Nth TCI state
  • the Nth TCI state corresponds to the Nth TRP. That is to say, the Nth TPC domain corresponds to the Nth TRP.
  • the DCI when at least two TPC commands are carried in one DCI, the DCI includes a mapping identifier.
  • the mapping identifier is used to indicate the mapping relationship between the location of the TPC domain and the TRP.
  • the TRP is based on the TPC domain included in the DCI. The location and the mapping relationship indicated by the indicator are determined.
  • the network device indicates to the terminal the closed-loop power adjustment values of multiple TRPs by sending a DCI. After receiving the DCI, the terminal can determine the TRP corresponding to the TPC command based on the DCI.
  • the DCI includes a mapping identifier, which is used to indicate the mapping relationship between the location of the TPC domain and the TRP. That is to say, the mapping identifier is used to inform the terminal of the mapping relationship between the location of the TPC domain and the TRP, so that the terminal can The position of the TPC domain determines the corresponding TRP.
  • the mapping identifier indicates sequential mapping.
  • the sequential mapping means that the Nth TPC domain corresponds to the Nth TRP, and N is a positive integer. That is to say, if the DCI includes two TPC domains, the first TPC domain corresponds to the first TRP, and the second TPC domain corresponds to the second TRP.
  • the mapping relationship between the TPC domain and the TRP is actually indicated by the TCI status, and the TCI status has a corresponding relationship with the TRP. That is to say, the position of the TPC domain included in the DCI indicates the corresponding TRP through the corresponding TCI state.
  • the Nth TPC domain corresponds to the Nth TCI state
  • the TCI state corresponds to the TRP. That is to say, the Nth TPC domain corresponds to the Nth TRP.
  • the mapping identifier indicates cross-mapping, which means that the first TPC domain corresponds to the second TRP, and the second TPC domain corresponds to the first TRP.
  • the mapping relationship between the TPC domain and the TRP is actually indicated by the TCI status, and the TCI status has a corresponding relationship with the TRP. That is to say, the position of the TPC domain included in the DCI indicates the corresponding TRP through the corresponding TCI state.
  • the first TPC field corresponds to the second TCI state
  • the second TCI state corresponds to the second TRP
  • the second TPC field corresponds to the first TCI state
  • the first TCI state corresponds to the first TRP
  • the TRP is determined based on the indicator included in each DCI, that is, one TPC command is carried in one DCI.
  • the indication mark indicates a TRP, that is to say, each TPC command corresponds to a TRP, and the terminal determines the TRP corresponding to the DCI according to the indication mark included in each DCI.
  • the indication identifier is CORESETPoolIndex (resource set pool identifier), or other identifiers, which are not limited in the embodiment of this application.
  • the TPC command is carried in the DCI, and the terminal can determine the corresponding TRP according to the TPC domain included in the DCI, and then the terminal can determine the closed-loop power adjustment value corresponding to each TRP, ensuring a certain The accuracy of the closed-loop power adjustment value thereby improves the reliability of transmission.
  • the terminal can also accumulate closed-loop power adjustment values according to the closed-loop power index associated with the TPC command.
  • the closed-loop power index associated with TPC commands of different TRPs is different. That is to say, the TPC command of each TRP is associated with the same closed-loop power index.
  • the terminal can determine whether it is the same TRP based on the closed-loop power index associated with the TPC command. If the closed-loop power index associated with the TPC command is the same, determine the TPC The commands correspond to the same TRP.
  • the network device can configure a closed-loop power index for the terminal's TPC command.
  • Figure 5 shows a flow chart of a closed-loop power index configuration method provided by an exemplary embodiment of the present application. The exemplary method can be applied to the terminal and network equipment shown in Figure 1. The method includes at least part of the following content content:
  • Step 501 The network device sends first configuration signaling to the terminal.
  • the first configuration signaling is used to configure different closed-loop power indexes for TPC commands of different TRPs.
  • Step 502 The terminal receives the first configuration signaling.
  • the network device can configure the closed-loop power index of the TPC command of different TRPs through the first configuration signaling. Then, after receiving the first configuration signaling sent by the network device, the terminal can determine each The closed-loop power index of the TPC command of the TRP, and then if the terminal needs to determine the closed-loop power adjustment value of each TRP, the corresponding TRP can be determined based on the closed-loop power index, and then the closed-loop power adjustment value of each TRP can be determined.
  • the first configuration signaling is used to configure the association between the closed-loop power index and the TCI state.
  • the closed-loop power index is associated with the TCI state
  • the source reference signal of the TCI state is the CSI-RS (Channel State Information Reference Signal, channel state information reference signal) of different TRPs or SSB (Synchronization Signal Block) , synchronization signal block)
  • the closed-loop power index associated with the TCI state is also different.
  • the source reference signal of the TCI state is a sounding reference signal, and if the sounding reference signal is a sounding reference signal of a different panel (antenna panel), the closed-loop power index associated with the TCI state is also different.
  • the first configuration signaling is used to configure different open-loop power control parameter sets for different TRPs, and the different open-loop power control parameter sets include different closed-loop power indexes.
  • the closed-loop power index has no correlation with the TCI status.
  • different open-loop power control parameter sets are configured for different TRPs.
  • Different open-loop power control parameter sets include different closed-loop powers. Index, so different closed-loop power indexes can be determined according to the closed-loop power control parameter set.
  • the TPC command includes a closed loop power index. That is to say, both the TPC command and the closed-loop power index are carried in the same signaling to indicate the closed-loop power adjustment value of the TRP. Since the closed-loop power index corresponds to the TPC command, the terminal can also determine the TRP corresponding to the TPC command.
  • the TRP corresponding to the TPC command can be determined through different association methods, and then the terminal can determine the closed-loop power control parameters of each TRP and determine the transmit power of each TRP, ensuring the determined closed-loop power.
  • the accuracy of the adjustment value ensures the reliability of the transmission.
  • Figure 3 illustrates that the terminal can determine the closed-loop power adjustment value.
  • the terminal also resets the closed-loop power adjustment value.
  • Figure 6 shows a flow chart of a closed-loop power adjustment value resetting method provided by an exemplary embodiment of the present application.
  • the exemplary method can be applied to the terminal and network equipment shown in Figure 1.
  • the method includes the following content: At least part of it:
  • Step 601 The network device sends second configuration signaling to the terminal.
  • the second configuration signaling is used to reconfigure the open-loop power parameters.
  • the second configuration signaling is used by the terminal to reset the closed-loop power adjustment value.
  • Step 602 The terminal receives the second configuration signaling sent by the network device.
  • the network device reconfigures the open-loop power parameters for the terminal through the second configuration signaling.
  • the terminal also resets the closed-loop power adjustment value according to the second configuration signaling.
  • the open-loop power parameter includes at least one of P 0 , ⁇ , and PL.
  • P 0 is the target received power.
  • the target received power is the expected received power configured by the network device.
  • is the partial path compensation factor.
  • PL is the path. loss.
  • the terminal resets the closed-loop power adjustment value by default.
  • the second configuration signaling is used by the terminal to reset the closed-loop power adjustment value corresponding to each TRP.
  • the second configuration information does not indicate TRP.
  • the terminal resets the closed-loop power adjustment value corresponding to each TRP.
  • the second configuration signaling is used by the terminal to reset the closed-loop power adjustment value corresponding to the TRP indicated by the second configuration signaling.
  • the second configuration signaling may indicate a TRP.
  • the terminal may reset the closed-loop power adjustment value of the TRP indicated by the second configuration signaling.
  • the terminal may reset the closed-loop power adjustment value of the TRP indicated by the second configuration signaling. , there is no need to reset the closed-loop power adjustment values of other TRPs.
  • the second configuration signaling also includes indication information.
  • the indication information is used to indicate whether to reset the closed-loop power adjustment value.
  • the terminal determines whether to reset the closed-loop power adjustment value through the indication information in the second configuration signaling. Perform a reset.
  • the second configuration signaling is used by the terminal to reset the closed-loop power adjustment value corresponding to each TRP.
  • the second configuration information does not indicate TRP. If the indication information indicates that the closed-loop power adjustment value needs to be reset, in this case, the terminal will reset the closed-loop power adjustment value corresponding to each TRP. Reset.
  • the second configuration signaling is used by the terminal to reset the closed-loop power adjustment value corresponding to the TRP indicated by the second configuration signaling.
  • the second configuration signaling may indicate TRP.
  • the terminal may reset the TRP indicated by the second configuration signaling.
  • the closed-loop power adjustment value is reset.
  • the terminal determines whether to reset the closed-loop power adjustment value of the TPR based on the open-loop power parameter configured by the network device, which improves the accuracy of resetting the closed-loop power adjustment value.
  • Figure 7 shows a flow chart of a closed-loop power adjustment value determination method provided by an exemplary embodiment of the present application.
  • the exemplary method can be applied to the terminal shown in Figure 1.
  • the method includes at least part of the following content:
  • Step 701 The terminal receives the TPC command sent by the network device.
  • the TPC command is used to configure the closed-loop power adjustment value of multiple TRPs for the terminal.
  • the closed-loop power adjustment value corresponding to the TPC command corresponding to each TRP is used to determine the uplink corresponding to the TRP from the terminal. Transmit power.
  • the terminal can perform uplink data transmission through the TRP configured on the network device.
  • the terminal can transmit uplink data to the network device at the same time.
  • the terminal needs to determine the closed-loop power adjustment value corresponding to each TRP, and then perform the adjustment based on the determined uplink transmit power corresponding to each TRP. Uplink data transmission.
  • the method for determining the uplink transmit power by the closed-loop power adjustment value refers to the method for determining the transmission power in the above embodiments.
  • the network device can configure the closed-loop power adjustment value of multiple TRPs for the terminal through the TPC command. After receiving the TPC command, the terminal can determine the closed-loop power adjustment value of each TRP and then based on the TPC command corresponding to each TRP. The closed-loop power adjustment value determines the uplink transmit power corresponding to the TRP from the terminal, so that the terminal can send uplink data to the network device based on the uplink transmit power corresponding to each TRP.
  • the steps performed by the terminal can individually form a new embodiment, and the steps performed by the network device can independently form a new embodiment, which are not limited by the embodiment of the present application.
  • the terminal can determine the closed-loop power adjustment value corresponding to each TRP according to the TPC command, and then the terminal performs dynamic transmission based on the closed-loop power adjustment value corresponding to each TRP and the actual situation from the terminal to each TRP. Power adjustment ensures that the terminal performs uplink transmission with greater transmission power to ensure system throughput while ensuring reduced interference.
  • the embodiment shown in Figure 7 explains that the terminal needs to determine the closed-loop power adjustment value of each TRP. Next, how the terminal determines the closed-loop power adjustment value of each TRP according to the TPC command is explained.
  • the closed-loop power adjustment value of each TRP is obtained by accumulating the closed-loop power adjustment value indicated by the TPC command corresponding to the TRP.
  • the terminal needs to determine the closed-loop power adjustment value of each TRP, and the closed-loop power adjustment value of each TRP is obtained by accumulating the closed-loop power adjustment values corresponding to the terminal at multiple times. That is to say, the terminal needs to accumulate the closed-loop power adjustment value indicated by the TPC command corresponding to each TRP to obtain the closed-loop power adjustment value of each TRP at the current moment.
  • f (i, l, t) f (ii 0 , l, t) + ⁇ , where t is the identifier of the TRP, ⁇ is the closed-loop power adjustment value indicated by the TPC command, and i is the time, used to represent At the current moment, f(i, l, t) is the accumulated closed-loop power adjustment value of each TRP.
  • the terminal will accumulate the closed-loop power adjustment values indicated by all TPC commands belonging to the same closed loop processes within ⁇ t to obtain the accumulated closed-loop power adjustment value of each TRP.
  • TPC commands of multiple TRPs are carried in DCI. How the terminal determines the TRP according to the TPC command is described below.
  • the TPC command sent by the network device to the terminal is carried in DCI, and the terminal determines the TRP corresponding to the TPC command based on the TPC command in DCI, and then determines the closed-loop power adjustment value of each TRP.
  • the TPC command can be carried in one DCI or multiple DCIs, and for the terminal, the way to determine the TRP when carried in one DCI or multiple DCIs is also different.
  • the different ways are described below.
  • Type 1 At least two TPC commands are carried in one DCI.
  • the location of the TPC domain included in the DCI has a default mapping relationship with the TRP, and the TRP is determined based on the location of the TPC domain included in the DCI and the default mapping relationship.
  • the network device indicates to the terminal the closed-loop power adjustment values of multiple TRPs by sending a DCI. After receiving the DCI, the terminal can determine the TRP corresponding to the TPC command based on the DCI.
  • the DCI includes multiple TPC domains, and the terminal's default mapping relationship includes the corresponding relationship between TPC domains and TRPs. Therefore, the terminal can determine the corresponding TRP based on the location of the TPC domain and the default mapping relationship.
  • the terminal can determine the TRP corresponding to each TPC domain based on the location and default mapping relationship of the TPC domain included in the DCI, and then the terminal can determine the TPC command indication corresponding to the same TRP.
  • the closed-loop power adjustment value of each TRP is determined.
  • the Nth TPC domain in the DCI corresponds to the Nth TRP, and N is a positive integer. That is to say, if the DCI includes two TPC domains, the first TPC domain corresponds to the first TRP, and the second TPC domain corresponds to the second TRP.
  • the mapping relationship between the TPC domain and the TRP is actually indicated by the TCI status, and the TCI status has a corresponding relationship with the TRP. That is to say, the position of the TPC domain included in the DCI indicates the corresponding TRP through the corresponding TCI state.
  • the Nth TPC domain corresponds to the Nth TCI state
  • the TCI state corresponds to the TRP. That is to say, the Nth TPC domain corresponds to the Nth TRP.
  • the DCI when at least two TPC commands are carried in one DCI, the DCI includes a mapping identifier.
  • the mapping identifier is used to indicate the mapping relationship between the location of the TPC domain and the TRP.
  • the TRP is based on the TPC domain included in the DCI. The location and the mapping relationship indicated by the indicator are determined.
  • the network device indicates to the terminal the closed-loop power adjustment values of multiple TRPs by sending a DCI. After receiving the DCI, the terminal can determine the TRP corresponding to the TPC command based on the DCI.
  • the DCI includes a mapping identifier, which is used to indicate the mapping relationship between the location of the TPC domain and the TRP. That is to say, the mapping identifier is used to inform the terminal of the mapping relationship between the location of the TPC domain and the TRP, so that the terminal can The position of the TPC domain determines the corresponding TRP.
  • the mapping identifier indicates sequential mapping.
  • the sequential mapping means that the Nth TPC domain corresponds to the Nth TRP, and N is a positive integer. That is to say, if the DCI includes two TPC domains, the first TPC domain corresponds to the first TRP, and the second TPC domain corresponds to the second TRP.
  • the mapping relationship between the TPC domain and the TRP is actually indicated by the TCI status, and the TCI status has a corresponding relationship with the TRP. That is to say, the position of the TPC domain included in the DCI indicates the corresponding TRP through the corresponding TCI state.
  • the Nth TPC domain corresponds to the Nth TCI state
  • the TCI state corresponds to the TRP. That is to say, the Nth TPC domain corresponds to the Nth TRP.
  • the mapping identifier indicates cross-mapping, which means that the first TPC domain corresponds to the second TRP, and the second TPC domain corresponds to the first TRP.
  • the mapping relationship between the TPC domain and the TRP is actually indicated by the TCI status, and the TCI status has a corresponding relationship with the TRP. That is to say, the position of the TPC domain included in the DCI indicates the corresponding TRP through the corresponding TCI state.
  • the first TPC domain corresponds to the second TCI state, which corresponds to the second TRP
  • the second TPC domain corresponds to the first TCI state, which corresponds to the first TRP
  • the TRP is determined based on the indication identifier included in each DCI.
  • the indication mark indicates a TRP, that is to say, each TPC command corresponds to a TRP, and the terminal determines the TRP corresponding to the DCI according to the indication mark included in each DCI.
  • the indication identifier is CORESETPoolIndex (resource set pool identifier), or other identifiers, which are not limited in the embodiment of this application.
  • the TPC command is carried in the DCI, and the terminal can determine the corresponding TRP according to the TPC domain included in the DCI, and then the terminal can determine the closed-loop power adjustment value corresponding to each TRP, ensuring a certain The accuracy of the closed-loop power adjustment value thereby improves the reliability of transmission.
  • the terminal can also accumulate closed-loop power adjustment values according to the closed-loop power index associated with the TPC command.
  • the closed-loop power index associated with TPC commands of different TRPs is different. That is to say, the TPC command of each TRP is associated with the same closed-loop power index.
  • the terminal can determine whether it is the same TRP based on the closed-loop power index associated with the TPC command. If the closed-loop power index associated with the TPC command is the same, determine the TPC The commands correspond to the same TRP.
  • the network device can configure a closed-loop power index for the terminal's TPC command.
  • the network device sends first configuration signaling to the terminal, the first configuration signaling is used to configure different closed-loop power indexes for TPC commands of different TRPs, and the terminal receives the first configuration signaling.
  • the network device can configure the closed-loop power index of the TPC command of different TRPs through the first configuration signaling. Then, after receiving the first configuration signaling sent by the network device, the terminal can determine each The closed-loop power index of the TPC command of the TRP, and then if the terminal needs to determine the closed-loop power adjustment value of each TRP, the corresponding TRP can be determined based on the closed-loop power index, and then the closed-loop power adjustment value of each TRP can be determined.
  • the first configuration signaling is used to configure the association between the closed-loop power index and the TCI state.
  • the closed-loop power index is associated with the TCI state.
  • the source reference signal of the TCI state is the CSI-RS or SSB of different TRPs
  • the closed-loop power index associated with the TCI state is also different.
  • the source reference signal of the TCI state is a sounding reference signal, and if the sounding reference signal is a sounding reference signal of a different panel (antenna panel), the closed-loop power index associated with the TCI state is also different.
  • the first configuration signaling is used to configure different open-loop power control parameter sets for different TRPs, and the different open-loop power control parameter sets include different closed-loop power indexes.
  • the closed-loop power index has no correlation with the TCI status.
  • different open-loop power control parameter sets are configured for different TRPs.
  • Different open-loop power control parameter sets include different closed-loop powers. Index, so different closed-loop power indexes can be determined according to the closed-loop power control parameter set.
  • the TPC command includes a closed loop power index. That is to say, both the TPC command and the closed-loop power index are carried in the same signaling to indicate the closed-loop power adjustment value of the TRP. Since the closed-loop power index corresponds to the TPC command, the terminal can also determine the TRP corresponding to the TPC command.
  • the TRP corresponding to the TPC command can be determined through different association methods, and then the terminal can determine the closed-loop power adjustment value of each TRP, determine the transmit power of each TRP, and ensure the determined closed-loop power The accuracy of the adjustment value ensures the reliability of the transmission.
  • the terminal can determine the closed-loop power adjustment value. In another embodiment, the terminal also resets the closed-loop power adjustment value.
  • the network device sends second configuration signaling to the terminal, the second configuration signaling is used to reconfigure the open-loop power parameters, and the second configuration signaling is used by the terminal to reset the closed-loop power adjustment value,
  • the terminal receives the second configuration signaling sent by the network device.
  • the open-loop power parameter includes at least one of P 0 , ⁇ , and PL.
  • P 0 is the target received power.
  • the target received power is the expected received power configured by the network device.
  • is the partial path compensation factor.
  • PL is the path. loss.
  • the network device reconfigures the open-loop power parameters for the terminal through the second configuration signaling.
  • the terminal also resets the closed-loop power adjustment value according to the second configuration signaling.
  • the terminal resets the closed-loop power adjustment value by default.
  • the second configuration signaling is used by the terminal to reset the closed-loop power adjustment value corresponding to each TRP.
  • the second configuration information does not indicate TRP.
  • the terminal resets the closed-loop power adjustment value corresponding to each TRP.
  • the second configuration signaling is used by the terminal to reset the closed-loop power adjustment value corresponding to the TRP indicated by the second configuration signaling.
  • the second configuration signaling may indicate a TRP.
  • the terminal may reset the closed-loop power adjustment value of the TRP indicated by the second configuration signaling.
  • the terminal may reset the closed-loop power adjustment value of the TRP indicated by the second configuration signaling. , there is no need to reset the closed-loop power adjustment values of other TRPs.
  • the second configuration signaling also includes indication information.
  • the indication information is used to indicate whether to reset the closed-loop power adjustment value.
  • the terminal determines whether to reset the closed-loop power adjustment value through the indication information in the second configuration signaling. Perform a reset.
  • the second configuration signaling is used by the terminal to reset the closed-loop power adjustment value corresponding to each TRP.
  • the second configuration information does not indicate TRP. If the indication information indicates that the closed-loop power adjustment value needs to be reset, in this case, the terminal will reset the closed-loop power adjustment value corresponding to each TRP. Reset.
  • the second configuration signaling is used by the terminal to reset the closed-loop power adjustment value corresponding to the TRP indicated by the second configuration signaling.
  • the second configuration signaling may indicate TRP.
  • the terminal may reset the TRP indicated by the second configuration signaling.
  • the closed-loop power adjustment value is reset.
  • the terminal determines whether to reset the closed-loop power adjustment value of the TPR based on the open-loop power parameter configured by the network device, which improves the accuracy of resetting the closed-loop power adjustment value.
  • Figure 8 shows a flow chart of a closed-loop power adjustment value determination method provided by an exemplary embodiment of the present application.
  • the exemplary method can be applied to the network device shown in Figure 1.
  • the method includes at least part of the following content :
  • Step 801 The network device sends a TPC command to the terminal.
  • the TPC command is used to configure the closed-loop power adjustment value of multiple TRPs for the terminal.
  • the closed-loop power adjustment value corresponding to the TPC command corresponding to each TRP is used to determine the uplink transmission corresponding to the terminal to the TRP. power.
  • the terminal can perform uplink data transmission through the TRP configured on the network device.
  • the terminal can transmit uplink data to the network device at the same time.
  • the terminal needs to determine the closed-loop power adjustment value corresponding to each TRP, and then perform the adjustment based on the determined uplink transmit power corresponding to each TRP. Uplink data transmission.
  • the method for determining the uplink transmit power by the closed-loop power adjustment value refers to the method for determining the transmission power in the above embodiments.
  • the network device can configure the closed-loop power adjustment value of multiple TRPs for the terminal through the TPC command. After receiving the TPC command, the terminal can determine the closed-loop power adjustment value of each TRP and then based on the TPC command corresponding to each TRP. The closed-loop power adjustment value determines the uplink transmit power corresponding to the TRP from the terminal, so that the terminal can send uplink data to the network device based on the uplink transmit power corresponding to each TRP.
  • the steps performed by the terminal can independently form a new embodiment
  • the steps performed by the network device can independently form a new embodiment, which are not limited by the embodiment of the present application.
  • the terminal can determine the closed-loop power adjustment value corresponding to each TRP according to the TPC command, and then the terminal performs dynamic transmission based on the closed-loop power adjustment value corresponding to each TRP and the actual situation from the terminal to each TRP. Power adjustment ensures that the terminal performs uplink transmission with greater transmission power to ensure system throughput while ensuring reduced interference.
  • the embodiment shown in Figure 8 explains that the terminal needs to determine the closed-loop power adjustment value of each TRP. Next, how the terminal determines the closed-loop power adjustment value of each TRP according to the TPC command is explained.
  • the closed-loop power adjustment value of each TRP is obtained by accumulating the closed-loop power adjustment value indicated by the TPC command corresponding to the TRP.
  • the terminal needs to determine the closed-loop power adjustment value of each TRP, and the closed-loop power adjustment value of each TRP is obtained by accumulating the closed-loop power adjustment values corresponding to the terminal at multiple times. That is to say, the terminal needs to accumulate the closed-loop power adjustment value indicated by the TPC command corresponding to each TRP to obtain the closed-loop power adjustment value of each TRP at the current moment.
  • f (i, l, t) f (ii 0 , l, t) + ⁇ , where t is the identifier of the TRP, ⁇ is the closed-loop power adjustment value indicated by the TPC command, and i is the time, used to represent At the current moment, f(i, l, t) is the accumulated closed-loop power adjustment value of each TRP.
  • the terminal will accumulate the closed-loop power adjustment values indicated by all TPC commands belonging to the same closed loop processes within ⁇ t to obtain the accumulated closed-loop power adjustment value of each TRP.
  • TPC commands of multiple TRPs are carried in DCI. How the terminal determines the TRP according to the TPC command is described below.
  • the TPC command sent by the network device to the terminal is carried in DCI, and the terminal determines the TRP corresponding to the TPC command based on the TPC command in DCI, and then determines the closed-loop power adjustment value of each TRP.
  • the TPC command can be carried in one DCI or multiple DCIs, and for the terminal, the way to determine the TRP when carried in one DCI or multiple DCIs is also different.
  • the different ways are described below.
  • Type 1 At least two TPC commands are carried in one DCI.
  • the location of the TPC domain included in the DCI has a default mapping relationship with the TRP, and the TRP is determined based on the location of the TPC domain included in the DCI and the default mapping relationship.
  • the network device indicates to the terminal the closed-loop power adjustment values of multiple TRPs by sending a DCI. After receiving the DCI, the terminal can determine the TRP corresponding to the TPC command based on the DCI.
  • the DCI includes multiple TPC domains, and the terminal's default mapping relationship includes the corresponding relationship between TPC domains and TRPs. Therefore, the terminal can determine the corresponding TRP based on the location of the TPC domain and the default mapping relationship.
  • the terminal can determine the TRP corresponding to each TPC domain based on the location and default mapping relationship of the TPC domain included in the DCI, and then the terminal can determine the TPC command indication corresponding to the same TRP.
  • the closed-loop power adjustment value of each TRP is determined.
  • the Nth TPC domain in the DCI corresponds to the Nth TRP, and N is a positive integer. That is to say, if the DCI includes two TPC domains, the first TPC domain corresponds to the first TRP, and the second TPC domain corresponds to the second TRP.
  • the mapping relationship between the TPC domain and the TRP is actually indicated by the TCI status, and the TCI status has a corresponding relationship with the TRP. That is to say, the position of the TPC domain included in the DCI indicates the corresponding TRP through the corresponding TCI state.
  • the Nth TPC domain corresponds to the Nth TCI state
  • the TCI state corresponds to the TRP. That is to say, the Nth TPC domain corresponds to the Nth TRP.
  • the DCI when at least two TPC commands are carried in one DCI, the DCI includes a mapping identifier.
  • the mapping identifier is used to indicate the mapping relationship between the location of the TPC domain and the TRP.
  • the TRP is based on the TPC domain included in the DCI. The location and the mapping relationship indicated by the indicator are determined.
  • the network device indicates to the terminal the closed-loop power adjustment values of multiple TRPs by sending a DCI. After receiving the DCI, the terminal can determine the TRP corresponding to the TPC command based on the DCI.
  • the DCI includes a mapping identifier, which is used to indicate the mapping relationship between the location of the TPC domain and the TRP. That is to say, the mapping identifier is used to inform the terminal of the mapping relationship between the location of the TPC domain and the TRP, so that the terminal can The position of the TPC domain determines the corresponding TRP.
  • the mapping identifier indicates sequential mapping.
  • the sequential mapping means that the Nth TPC domain corresponds to the Nth TRP, and N is a positive integer. That is to say, if the DCI includes two TPC domains, the first TPC domain corresponds to the first TRP, and the second TPC domain corresponds to the second TRP.
  • the mapping relationship between the TPC domain and the TRP is actually indicated by the TCI status, and the TCI status has a corresponding relationship with the TRP. That is to say, the position of the TPC domain included in the DCI indicates the corresponding TRP through the corresponding TCI state.
  • the Nth TPC domain corresponds to the Nth TCI state
  • the TCI state corresponds to the TRP. That is to say, the Nth TPC domain corresponds to the Nth TRP.
  • the mapping identifier indicates cross-mapping, which means that the first TPC domain corresponds to the second TRP, and the second TPC domain corresponds to the first TRP.
  • the mapping relationship between the TPC domain and the TRP is actually indicated by the TCI status, and the TCI status has a corresponding relationship with the TRP. That is to say, the position of the TPC domain included in the DCI indicates the corresponding TRP through the corresponding TCI state.
  • the first TPC domain corresponds to the second TCI state, which corresponds to the second TRP
  • the second TPC domain corresponds to the first TCI state, which corresponds to the first TRP
  • the TRP is determined based on the indication identifier included in each DCI.
  • the indication mark indicates a TRP, that is to say, each TPC command corresponds to a TRP, and the terminal determines the TRP corresponding to the DCI according to the indication mark included in each DCI.
  • the indication identifier is CORESETPoolIndex (resource set pool identifier), or other identifiers, which are not limited in the embodiment of this application.
  • the TPC command is carried in the DCI, and the terminal can determine the corresponding TRP according to the TPC domain included in the DCI, and then the terminal can determine the closed-loop power adjustment value corresponding to each TRP, ensuring a certain The accuracy of the closed-loop power adjustment value thereby improves the reliability of transmission.
  • the terminal can also accumulate closed-loop power adjustment values according to the closed-loop power index associated with the TPC command.
  • the closed-loop power index associated with TPC commands of different TRPs is different. That is to say, the TPC command of each TRP is associated with the same closed-loop power index.
  • the terminal can determine whether it is the same TRP based on the closed-loop power index associated with the TPC command. If the closed-loop power index associated with the TPC command is the same, determine the TPC The commands correspond to the same TRP.
  • the network device can configure a closed-loop power index for the terminal's TPC command.
  • the network device sends first configuration signaling to the terminal, where the first configuration signaling is used to configure different closed-loop power indexes for TPC commands of different TRPs.
  • the network device can configure the closed-loop power index of the TPC command of different TRPs through the first configuration signaling. Then, after receiving the first configuration signaling sent by the network device, the terminal can determine each The closed-loop power index of the TPC command of the TRP, and then if the terminal needs to determine the closed-loop power adjustment value of each TRP, the corresponding TRP can be determined based on the closed-loop power index, and then the closed-loop power adjustment value of each TRP can be determined.
  • the first configuration signaling is used to configure the association between the closed-loop power index and the TCI state.
  • the closed-loop power index is associated with the TCI state.
  • the source reference signal of the TCI state is the CSI-RS or SSB of different TRPs
  • the closed-loop power index associated with the TCI state is also different.
  • the source reference signal of the TCI state is a sounding reference signal, and if the sounding reference signal is a sounding reference signal of a different panel (antenna panel), the closed-loop power index associated with the TCI state is also different.
  • the first configuration signaling is used to configure different open-loop power control parameter sets for different TRPs, and the different open-loop power control parameter sets include different closed-loop power indexes.
  • the closed-loop power index has no correlation with the TCI status.
  • different open-loop power control parameter sets are configured for different TRPs.
  • Different open-loop power control parameter sets include different closed-loop powers. Index, so different closed-loop power indexes can be determined according to the closed-loop power control parameter set.
  • the TPC command includes a closed loop power index. That is to say, both the TPC command and the closed-loop power index are carried in the same signaling to indicate the closed-loop power adjustment value of the TRP. Since the closed-loop power index corresponds to the TPC command, the terminal can also determine the TRP corresponding to the TPC command.
  • the TRP corresponding to the TPC command can be determined through different association methods, and the terminal can determine the closed-loop power adjustment value of each TRP and determine the transmit power of each TRP, ensuring a determined closed-loop power.
  • the accuracy of the adjustment value ensures the reliability of the transmission.
  • the embodiment shown in Figure 8 illustrates that the terminal can determine the closed-loop power adjustment value. In another embodiment, the terminal also resets the closed-loop power adjustment value.
  • the network device sends second configuration signaling to the terminal.
  • the second configuration signaling is used to reconfigure the open-loop power parameters.
  • the second configuration signaling is used for the terminal to reset the closed-loop power adjustment value.
  • the open-loop power parameter includes at least one of P 0 , ⁇ , and PL.
  • P 0 is the target received power.
  • the target received power is the expected received power configured by the network device.
  • is the partial path compensation factor.
  • PL is the path. loss.
  • the network device reconfigures the open-loop power parameters for the terminal through the second configuration signaling.
  • the terminal also resets the closed-loop power adjustment value according to the second configuration signaling.
  • the terminal resets the closed-loop power adjustment value by default.
  • the second configuration signaling is used by the terminal to reset the closed-loop power adjustment value corresponding to each TRP.
  • the second configuration information does not indicate TRP.
  • the terminal resets the closed-loop power adjustment value corresponding to each TRP.
  • the second configuration signaling is used by the terminal to reset the closed-loop power adjustment value corresponding to the TRP indicated by the second configuration signaling.
  • the second configuration signaling may indicate a TRP.
  • the terminal may reset the closed-loop power adjustment value of the TRP indicated by the second configuration signaling.
  • the terminal may reset the closed-loop power adjustment value of the TRP indicated by the second configuration signaling. , there is no need to reset the closed-loop power adjustment values of other TRPs.
  • the second configuration signaling also includes indication information.
  • the indication information is used to indicate whether to reset the closed-loop power adjustment value.
  • the terminal determines whether to reset the closed-loop power adjustment value through the indication information in the second configuration signaling. Perform a reset.
  • the second configuration signaling is used by the terminal to reset the closed-loop power adjustment value corresponding to each TRP.
  • the second configuration information does not indicate TRP. If the indication information indicates that the closed-loop power adjustment value needs to be reset, in this case, the terminal will reset the closed-loop power adjustment value corresponding to each TRP. Reset.
  • the second configuration signaling is used by the terminal to reset the closed-loop power adjustment value corresponding to the TRP indicated by the second configuration signaling.
  • the second configuration signaling may indicate TRP.
  • the terminal may reset the TRP indicated by the second configuration signaling.
  • the closed-loop power adjustment value is reset.
  • the terminal determines whether to reset the closed-loop power adjustment value of the TPR based on the open-loop power parameter configured by the network device, which improves the accuracy of resetting the closed-loop power adjustment value.
  • Figure 9 shows a block diagram of a closed-loop power adjustment value determination device provided by an exemplary embodiment of the present application.
  • the device includes:
  • the receiving module 901 is used to receive the transmit power control TPC command sent by the network device.
  • the TPC command is used to configure the closed-loop power adjustment value of multiple transmission reception points TRP for the terminal.
  • the closed-loop power adjustment value corresponding to the TPC command corresponding to each TRP is used To determine the uplink transmit power corresponding to the TRP from the terminal.
  • the closed-loop power adjustment value of each TRP is accumulated from the closed-loop power adjustment value indicated by the TPC command corresponding to the TRP.
  • TPC commands of multiple TRPs are carried in downlink control information DCI.
  • the location of the TPC domain included in the DCI has a default mapping relationship with the TRP, and the TRP is determined based on the location of the TPC domain included in the DCI and the default mapping relationship;
  • the DCI includes a mapping identifier.
  • the mapping identifier is used to indicate the mapping relationship between the location of the TPC domain and the TRP.
  • the TRP is based on the location of the TPC domain included in the DCI and the mapping indicated by the indication identifier. The relationship is confirmed.
  • the TRP is determined based on the indicator included in each DCI.
  • the closed-loop power index associated with TPC commands of different TRPs is different.
  • the receiving module 901 is also configured to receive first configuration signaling.
  • the first configuration signaling is used to configure different closed-loop power indexes for TPC commands of different TRPs.
  • the first configuration signaling is used to configure the association between the closed-loop power index and the TCI status or sounding reference signal resource index.
  • the first configuration signaling is used to configure different open-loop power control parameter sets for different TRPs, and the different open-loop power control parameter sets include different closed-loop power indexes.
  • the closed loop power index is associated with an SRS resource set.
  • the TPC command includes a closed loop power index.
  • the receiving module 901 is also configured to receive second configuration signaling sent by the network device, where the second configuration signaling is used to reconfigure the open-loop power parameters;
  • the second configuration signaling is used by the terminal to reset the closed-loop power adjustment value.
  • the second configuration signaling is used by the terminal to reset the closed-loop power adjustment value corresponding to each TRP;
  • the second configuration signaling is used by the terminal to reset the closed-loop power adjustment value corresponding to the TRP indicated by the second configuration signaling.
  • the second configuration signaling also includes indication information, and the indication information is used to indicate whether to reset the closed-loop power adjustment value
  • the second configuration signaling is used by the terminal to reset the closed-loop power adjustment value corresponding to each TRP;
  • the second configuration signaling is used by the terminal to reset the closed-loop power adjustment value corresponding to the TRP indicated by the configuration signaling.
  • Figure 10 shows a block diagram of a closed-loop power adjustment value determination device provided by an exemplary embodiment of the present application.
  • the device includes:
  • the sending module 1001 is used to send a transmit power control TPC command to the terminal.
  • the TPC command is used to configure the closed-loop power adjustment value of multiple transmission reception points TRP for the terminal.
  • the closed-loop power adjustment value corresponding to the TPC command corresponding to each TRP is used to determine The uplink transmit power corresponding to the terminal to TRP.
  • the closed-loop power adjustment value of each TRP is accumulated from the closed-loop power adjustment value indicated by the TPC command corresponding to the TRP.
  • TPC commands of multiple TRPs are carried in downlink control information DCI.
  • the location of the TPC domain included in the DCI has a default mapping relationship with the TRP, and the TRP is determined based on the location of the TPC domain included in the DCI and the default mapping relationship;
  • the DCI includes a mapping identifier.
  • the mapping identifier is used to indicate the mapping relationship between the location of the TPC domain and the TRP.
  • the TRP is based on the location of the TPC domain included in the DCI and the mapping indicated by the indication identifier. The relationship is confirmed.
  • the TRP is determined based on the indicator included in each DCI.
  • the closed-loop power index associated with TPC commands of different TRPs is different.
  • the sending module 1001 is configured to send first configuration signaling, and the first configuration signaling is used to configure different closed-loop power indexes for TPC commands of different TRPs.
  • the first configuration signaling is used to configure the association between the closed-loop power index and the TCI status or sounding reference signal resource index.
  • the first configuration signaling is used to configure different open-loop power control parameter sets for different TRPs, and the different open-loop power control parameter sets include different closed-loop power indexes.
  • the closed loop power index is associated with an SRS resource set.
  • the TPC command includes a closed loop power index.
  • the sending module 1001 is also used to send second configuration signaling to the terminal, where the second configuration signaling is used to reconfigure the open-loop power parameters;
  • the second configuration signaling is used by the terminal to reset the closed-loop power adjustment value.
  • the second configuration signaling is used by the terminal to reset the closed-loop power adjustment value corresponding to each TRP;
  • the second configuration signaling is used by the terminal to reset the closed-loop power adjustment value corresponding to the TRP indicated by the configuration signaling.
  • the second configuration signaling also includes indication information, and the indication information is used to indicate whether to reset the closed-loop power adjustment value
  • the second configuration signaling is used by the terminal to reset the closed-loop power adjustment value corresponding to each TRP;
  • the second configuration signaling is used by the terminal to reset the closed-loop power adjustment value corresponding to the TRP indicated by the second configuration signaling.
  • FIG 11 shows a schematic structural diagram of a communication device provided by an exemplary embodiment of the present application.
  • the communication device includes: a processor 1101, a receiver 1102, a transmitter 1103, a memory 1104 and a bus 1105.
  • the processor 1101 includes one or more processing cores.
  • the processor 1101 executes various functional applications and information processing by running software programs and modules.
  • the receiver 1102 and the transmitter 1103 can be implemented as a communication component, and the communication component can be a communication chip.
  • the memory 1104 is connected to the processor 1101 through a bus 1105.
  • the memory 1104 can be used to store at least one program code, and the processor 1101 is used to execute the at least one program code to implement each step in the above method embodiment.
  • Memory 1104 may be implemented by any type of volatile or non-volatile storage device, or combination thereof, including but not limited to: magnetic or optical disks, electrically erasable programmable read-only Memory (EEPROM), Erasable Programmable Read-Only Memory (EPROM), Static Read-Only Memory (SRAM), Read-Only Memory (ROM), Magnetic Memory, Flash Memory, Programmable Read-Only Memory (PROM).
  • EEPROM electrically erasable programmable read-only Memory
  • EPROM Erasable Programmable Read-Only Memory
  • SRAM Static Read-Only Memory
  • ROM Read-Only Memory
  • Magnetic Memory Flash Memory
  • PROM Programmable Read-Only Memory
  • a computer-readable storage medium is also provided, with executable program code stored in the readable storage medium, and the executable program code is loaded and executed by the processor to implement each of the above methods.
  • the example provides a method for determining the closed-loop power adjustment value performed by communication equipment.
  • a chip is provided.
  • the chip includes programmable logic circuits and/or program instructions. When the chip is run on a terminal or network device, it is used to implement as provided by various method embodiments. Closed-loop power adjustment value determination method.
  • a communication system in an exemplary embodiment, includes a terminal and a network device.
  • the terminal is used to implement the closed-loop power adjustment value determination method as described above.
  • the network device is used to implement the closed-loop power adjustment value determination method as described above. The method for determining the closed-loop power adjustment value described above.
  • a computer program product is provided.
  • the computer program product is executed by a processor of a terminal or a network device, it is used to implement the closed-loop power adjustment value determination method provided by each of the above method embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种闭环功率调节值确定方法、装置、设备及存储介质,涉及移动通信领域。该方法包括:终端接收网络设备发送的发射功率控制TPC命令,TPC命令用于为终端配置多个传输接收点TRP的闭环功率调节值,每个TRP对应的TPC命令对应的闭环功率调节值用于确定终端到TRP对应的上行发射功率。本申请实施例提供的方案中,终端根据TPC命令即可确定每个TRP对应的闭环功率调节值,进而终端基于每个TRP对应的闭环功率调节值以及终端到各个TRP的实际情况,进行动态发射功率调节,以便于在保证减小干扰前提下,保证终端以较大的发送功率进行上行传输,以保证系统吞吐量。

Description

闭环功率调节值确定方法、装置、设备及存储介质 技术领域
本申请涉及移动通信领域,特别涉及一种闭环功率调节值确定方法、装置、设备及存储介质。
背景技术
在移动通信系统中,网络设备与终端之间可以进行通信,并且网络设备还可以为终端配置功率控制参数,以便于终端基于配置的功率控制参数进行功率控制。
具体的,网络设备为终端配置的功率控制参数包括开环功率控制参数和闭环功率控制参数,并且每个时域位置对应的功率控制参数可能不同,因此终端会累计在一定时长内的开环功率控制参数和闭环功率控制参数,进而基于得到的发射功率进行功率控制。
但是,目前提出了一种终端利用多个面板同时与网络设备配置的多个TRP(Transmission Reception Point,传输接收点)传输数据的方案,但是如何针对每个TRP的闭环功率控制参数确定每个TRP对应的发射功率成为亟需解决的问题。
发明内容
本申请实施例提供了一种闭环功率调节值确定方法、装置、设备及存储介质,终端基于每个TRP对应的闭环功率调节值以及终端到各个TRP的实际情况,进行动态发射功率调节,以便于在保证减小干扰前提下,保证终端以较大的发送功率进行上行传输,以保证系统吞吐量。所述技术方案如下:
根据本申请的第一方面,提供了一种闭环功率调节值确定方法,所述方法由终端执行,所述方法包括:
接收网络设备发送的发射功率控制TPC(Transmit Power Control,发射功率控制)命令,所述TPC命令用于为所述终端配置多个传输接收点TRP的闭环功率调节值,每个TRP对应的TPC命令对应的闭环功率调节值用于确定所述终端 到所述TRP对应的上行发射功率。
根据本申请的第二方面,提供了一种闭环功率调节值确定方法,所述方法由网络设备执行,所述方法包括:
向终端发送发射功率控制TPC命令,所述TPC命令用于为所述终端配置多个传输接收点TRP的闭环功率调节值,每个TRP对应的TPC命令对应的闭环功率调节值用于确定所述终端到所述TRP对应的上行发射功率。
根据本申请的第三方面,提供了一种闭环功率调节值确定装置,所述装置包括:
接收模块,用于接收网络设备发送的发射功率控制TPC命令,所述TPC命令用于为所述终端配置多个传输接收点TRP的闭环功率调节值,每个TRP对应的TPC命令对应的闭环功率调节值用于确定所述终端到所述TRP对应的上行发射功率。
根据本申请的第四方面,提供了一种闭环功率调节值确定装置,所述装置包括:
发送模块,用于向终端发送发射功率控制TPC命令,所述TPC命令用于为所述终端配置多个传输接收点TRP的闭环功率调节值,每个TRP对应的TPC命令对应的闭环功率调节值用于确定所述终端到所述TRP对应的上行发射功率。
根据本申请的第五方面,提供了一种终端,终端包括:处理器;与处理器相连的收发器;用于存储处理器的可执行指令的存储器;其中,处理器被配置为加载并执行可执行指令以实现如上述方面的闭环功率调节值确定方法。
根据本申请的第六方面,提供了一种网络设备,网络设备包括:处理器;与处理器相连的收发器;用于存储处理器的可执行指令的存储器;其中,处理器被配置为加载并执行可执行指令以实现如上述方面的闭环功率调节值确定方法。
根据本申请的第七方面,提供了一种通信系统,所述通信系统包括终端和网络设备,所述终端用于实现如上述第一方面所述的闭环功率调节值确定方法,所述网络设备用于实现如上述第二方面所述的闭环功率调节值确定方法。
根据本申请的第八方面,提供了一种计算机可读存储介质,可读存储介质中存储有可执行程序代码,可执行程序代码由处理器加载并执行以实现如上述方面的闭环功率调节值确定方法。
根据本申请的第九方面,提供了一种芯片,芯片包括可编程逻辑电路和/或程序指令,当芯片在终端或网络设备上运行时,用于实现如上述方面的闭环功率调节值确定方法。
根据本申请的第十方面,提供了一种计算机程序产品,当计算机程序产品被终端或网络设备的处理器执行时,其用于实现上述方面的闭环功率调节值确定方法。
本申请实施例提供的方案中,终端根据TPC命令即可确定每个TRP对应的闭环功率调节值,进而终端基于每个TRP对应的闭环功率调节值以及终端到各个TRP的实际情况,进行动态发射功率调节,以便于在保证减小干扰前提下,保证终端以较大的发送功率进行上行传输,以保证系统吞吐量。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了本申请一个示例性实施例提供的通信系统的框图;
图2示出了本申请一个示例性实施例提供的另一种通信系统的框图;
图3示出了本申请一个示例性实施例提供的闭环功率调节值确定方法的流程图;
图4示出了本申请一个示例性实施例提供的上行传输的示意图;
图5示出了本申请一个示例性实施例提供的闭环功率索引配置方法的流程图;
图6示出了本申请一个示例性实施例提供的闭环功率调节值重置方法的流程图;
图7示出了本申请一个示例性实施例提供的闭环功率调节值确定方法的流程图;
图8示出了本申请一个示例性实施例提供的闭环功率调节值确定方法的流程图;
图9示出了本申请一个示例性实施例提供的一种闭环功率调节值确定装置的框图;
图10示出了本申请一个示例性实施例提供的一种闭环功率调节值确定装置的框图;
图11示出了本申请一个示例性实施例提供的通信设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也是旨在包括多数形式,除非上下文清楚地表示其它含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本申请可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本申请范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,例如,在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
需要说明的是,本申请所涉及的信息(包括但不限于用户设备信息、用户个人信息等)、数据(包括但不限于用于分析的数据、存储的数据、展示的数据等)以及信号,均为经用户授权或者经过各方充分授权的,且相关数据的收集、使用和处理需要遵守相关国家和地区的相关法律法规和标准。
首先对本申请的应用场景进行说明:
图1示出了本申请一个示例性实施例提供的通信系统的框图,该通信系统可以包括:终端10和网络设备20。
终端10的数量通常为多个,每一个网络设备20所管理的小区内可以分布一个或多个终端10。终端10可以包括各种具有无线通信功能的手持设备、车载 设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(User Equipment,UE)、移动台(Mobile Station,MS)等等。为方便描述,本申请实施例中,上面提到的设备统称为终端。
网络设备20是一种部署在接入网中用以为终端10提供无线通信功能的装置。为方便描述,本申请实施例中,上述为终端10提供无线通信功能的装置统称为网络设备。网络设备20与终端10之间可以通过空口建立连接,从而通过该连接进行通信,包括信令和数据的交互。网络设备20的数量可以有多个,两个邻近的网络设备20之间也可以通过有线或者无线的方式进行通信。终端10可以在不同的网络设备20之间进行波束报告发送,也即与不同的网络设备20建立连接。
该网络设备20可以包括各种形式的宏基站、微基站、中继站、接入点等等。在采用不同的无线接入技术的系统中,具备网络设备功能的设备的名称可能会有所不同,例如在5G NR(New Radio,新空口)系统中,称为gNodeB或者gNB。随着通信技术的演进,“网络设备”这一名称可能会变化。
可选地,网络设备20上设置有至少两个TRP(Transmission Reception Point,传输接收节点);或者至少两个网络设备20,每个网络设备上设置至少一个TRP,即至少两个网络设备20设置有至少两个TRP。也就是说,至少两个TRP可以来自同一个小区或不同的小区。
在一些实施例中,网络设备20上设置4个TRP,并且可以通过4个TRP为终端10提供服务,则终端可以基于4个TRP进行数据传输。
例如,若网络设备20设置了2个TRP,分别为TRP1和TRP2,参见图2,2个TRP可以采用时分的传输方式进行数据传输。其中,时分的传输方式是指在某个时刻,终端向TRP1传输上行数据,在另一个时刻,终端向TRP2传输上行数据。
目前,提出了一种支持终端在同一时刻同时向多个TRP传输上行数据的方案,也就是说终端在同一时刻不仅可以向TRP1传输上行数据,而且在此时刻,还可以向TRP2传输上行数据。
具体的,终端向TRP传输上行数据时,还会基于开环功率控制参数和闭环功率控制参数确定上行发射功率,以便于根据确定的上行发射功率向每个TRP传输上行数据。
例如,以PUSCH(Physical Uplink Shared Channel,物理上行共享信道)的 功率控制为例,对如何确定PUSCH的传输功率进行说明。其中,采用以下公式确定PUSCH的传输功率:
P=min{P CMAX,P 0+α*PL+f(l)+Δ}
其中,f(l)为功率控制调节(power control adjustment state)值,也被称为闭环功率控制参数。其取值为f(l)=δ(l)或者f(l,i)=f(i-i 0,l)+Σδ,具体由高层参数指示如何计算,其中δ为DCI(Downlink Control Information,下行控制信息)通过TPC域指示的值。l称为闭环索引(closed loop index),i为时间,用于表示当前时刻,P CMAX为终端允许的最大发射功率,P 0为目标接收功率,该目标接收功率为网络设备配置的期望接收功率,α为部分路径补偿因子,PL为路径损耗,Δ为其他调节量。
本申请实施例中的“5G NR系统”也可以称为5G系统或者NR系统,但本领域技术人员可以理解其含义。本申请实施例描述的技术方案可以适用于5G NR系统,也可以适用于5G NR系统后续的演进系统。
图3示出了本申请一个示例性实施例提供的闭环功率调节值确定方法的流程图,示例性的可以应用于如图1所示的终端和网络设备中,该方法包括以下内容中的至少部分内容:
步骤301:网络设备向终端发送TPC命令,TPC命令用于为终端配置多个TRP的闭环功率调节值,每个TRP对应的TPC命令对应的闭环功率调节值用于确定终端到TRP对应的上行发射功率。
步骤302:终端接收网络设备发送的TPC命令。
在本申请实施例中,终端可以通过网络设备配置的TRP进行上行数据传输。而对于终端来说,终端可以在同一时刻向网络设备传输上行数据,则对于终端来说,终端需要确定每个TRP对应的闭环功率调节值,进而基于确定的每个TRP对应的上行发射功率进行上行数据传输。
在一些实施例中,该闭环功率调节值确定上行发射功率的方式请参见上述实施例中的确定传输功率的方式。
网络设备可以通过TPC命令为终端配置多个TRP的闭环功率调节值,则终端在接收该TPC命令后,即可确定每个TRP的闭环功率调节值,进而基于每个TRP对应的TPC命令对应的闭环功率调节值确定终端到TRP对应的上行发射功率,以便于终端基于每个TRP对应的上行发射功率向网络设备发送上行数据。
需要说明的是,本申请实施例中终端所执行的步骤可以单独形成一个新的实施例,网络设备所执行的步骤可以单独形成一个新的实施例,本申请实施例不作限定。
本申请实施例提供的方案中,终端根据TPC命令即可确定每个TRP对应的闭环功率调节值,进而终端基于每个TRP对应的闭环功率调节值以及终端到各个TRP的实际情况,进行动态发射功率调节,以便于在保证减小干扰前提下,保证终端以较大的发送功率进行上行传输,以保证系统吞吐量。
图3所示实施例对终端需要确定每个TRP的闭环功率调节值进行说明。下面,对终端具体如何根据TPC命令确定每个TRP的闭环功率调节值进行说明。
在一些实施例中,每个TRP的闭环功率调节值由TRP对应的TPC命令指示的闭环功率调节值累计得到。
在本申请实施例中,终端需要确定每个TRP的闭环功率调节值,而每个TRP的闭环功率调节值由该终端在多个时刻对应的闭环功率调节值进行累计得到。也就是说,终端需要对每个TRP对应的TPC命令指示的闭环功率调节值进行累计,得到当前时刻每个TRP的闭环功率调节值。
可选地,f(il,t)=f(i-i 0,l,t)+Σδ,其中t为TRP的标识,δ为TPC命令指示的闭环功率调节值,i为时间,用于表示当前时刻,f(i,l,t)为累计得到的每个TRP的闭环功率调节值。
例如,如图4所示,终端会对Δt内所有属于同一closed loop processes(闭环流程)的TPC命令指示的闭环功率调节值进行累计,以得到累计后的每个TRP的闭环功率调节值。
在一些实施例中,多个TRP的TPC命令承载在DCI(Downlink Control Information,下行控制信息)中,下面对终端如何根据TPC命令确定TRP进行说明。
在本申请实施例中,网络设备向终端发送的TPC命令承载在DCI中,则终端会根据DCI中的TPC命令确定TPC命令对应的TRP,进而确定每个TRP的闭环功率调节值。
可选地,TPC命令可以承载在一个DCI或多个DCI中,而对于终端来说,承载在一个DCI或多个DCI中确定TRP的方式也不同,下面对不同的方式进行说明。
第一种:至少两个TPC命令承载在一个DCI中。
在一些实施例中,在至少两个TPC命令承载在一个DCI中的情况下,DCI包括的TPC域的位置与TRP具有默认映射关系,TRP基于DCI包括的TPC域的位置以及默认映射关系确定。
在本申请实施例中,网络设备通过发送一个DCI为终端指示多个TRP的闭环功率调节值,则终端接收到该DCI后,即可根据该DCI确定TPC命令对应的TRP。
其中,该DCI中包括多个TPC域,而终端的默认映射关系包括TPC域与TRP的对应关系,因此终端可以根据TPC域的位置以及默认映射关系确定对应的TRP。
也就是说,终端接收到该DCI后,即可根据该DCI中包括的TPC域的位置以及默认映射关系,确定每个TPC域对应的TRP,进而终端可以基于确定的对应相同TRP的TPC命令指示的闭环功率调节值,确定每个TRP的闭环功率调节值。
例如,该DCI中的第N个TPC域对应第N个TRP,N为正整数。也即是说,若DCI中包括两个TPC域,则第一个TPC域对应第一个TRP,第二个TPC域对应第二个TRP。
可选地,TPC域与TRP的映射关系实际上通过TCI(Transmission Configuration Indication,传输配置指示)状态指示,该TCI状态与TRP具有对应关系。也就是说,该DCI中包括的TPC域的位置通过对应的TCI状态来指示对应的TRP。
例如,第N个TPC域对应第N个TCI状态,该第N个TCI状态对应第N个TRP,也就是说第N个TPC域对应第N个TRP。
在另一些实施例中,在至少两个TPC命令承载在一个DCI中的情况下,DCI包括映射标识,映射标识用于指示TPC域的位置与TRP的映射关系,TRP基于DCI包括的TPC域的位置以及指示标识指示的映射关系确定。
在本申请实施例中,网络设备通过发送一个DCI为终端指示多个TRP的闭环功率调节值,则终端接收到该DCI后,即可根据该DCI确定TPC命令对应的TRP。
其中,该DCI中包括映射标识,该映射标识用于指示TPC域的位置与TRP的映射关系,也就是说,通过该映射标识来告知终端TPC域的位置与TRP的映 射关系,进而终端可以根据TPC域的位置确定对应的TRP。
在一些实施例中,该映射标识指示顺序映射,该顺序映射是指第N个TPC域对应第N个TRP,N为正整数。也即是说,若DCI中包括两个TPC域,则第一个TPC域对应第一个TRP,第二个TPC域对应第二个TRP。
可选地,TPC域与TRP的映射关系实际上通过TCI状态指示,该TCI状态与TRP具有对应关系。也就是说,该DCI中包括的TPC域的位置通过对应的TCI状态来指示对应的TRP。
例如,第N个TPC域对应第N个TCI状态,该TCI状态对应TRP,也就是说第N个TPC域对应第N个TRP。
在一些实施例中,该映射标识指示交叉映射,该交叉映射是指第一个TPC域对应第二个TRP,而第二个TPC域对应第一个TRP。
可选地,TPC域与TRP的映射关系实际上通过TCI状态指示,该TCI状态与TRP具有对应关系。也就是说,该DCI中包括的TPC域的位置通过对应的TCI状态来指示对应的TRP。
例如,第1个TPC域对应第2个TCI状态,该第2个TCI状态对应第2个TRP,第2个TPC域对应第1个TCI状态,该第1个TCI状态对应第1个TRP。
第二种:在多个TPC命令承载在多个DCI中的情况下,TRP基于每个DCI包括的指示标识确定,既一个TPC命令承载在一个DCI中。
在本申请实施例中,该指示标识指示TRP,也就是说每个TPC命令对应一个TRP,终端根据每个DCI中包括的指示标识来确定该DCI对应的TRP。
可选地,该指示标识为CORESETPoolIndex(资源集池标识),或者为其他标识,本申请实施例不作限定。
本申请实施例提供的方案中,通过TPC命令承载在DCI中,终端根据DCI中包括的TPC域即可确定对应的TRP,进而终端可以确定每个TRP对应的闭环功率调节值,保证了确定的闭环功率调节值的准确性,进而提高了传输的可靠性。
在一些实施例中,终端还可以根据TPC命令关联的闭环功率索引进行闭环功率调节值累计。
其中,不同TRP的TPC命令关联的闭环功率索引不同。也就是说,每个TRP的TPC命令关联一个相同的闭环功率索引,终端可以根据TPC命令关联的闭环功率索引确定是否为同一个TRP,在TPC命令关联的闭环功率索引相同的 情况下,确定TPC命令对应相同的TRP。
可选地,网络设备可以为终端的TPC命令配置闭环功率索引。图5示出了本申请一个示例性实施例提供的闭环功率索引配置方法的流程图,示例性的可以应用于如图1所示的终端和网络设备中,该方法包括以下内容中的至少部分内容:
步骤501:网络设备向终端发送第一配置信令,该第一配置信令用于为不同的TRP的TPC命令配置不同的闭环功率索引。
步骤502:终端接收第一配置信令。
在本申请实施例中,网络设备可以通过第一配置信令来配置不同的TRP的TPC命令的闭环功率索引,则终端在接收到网络设备发送的第一配置信令后,即可确定每个TRP的TPC命令的闭环功率索引,进而若终端需要确定每个TRP的闭环功率调节值时,根据闭环功率索引即可确定对应的TRP,进而确定每个TRP的闭环功率调节值。
在一些实施例中,第一配置信令用于配置闭环功率索引与TCI状态关联关系。
在本申请实施例中,闭环功率索引与TCI状态具有关联关系,则TCI状态的源参考信号为不同TRP的CSI-RS(Channel State Information Reference Signal,信道状态信息参考信号)或者SSB(Synchronization Signal Block,同步信号块)时,该TCI状态关联的闭环功率索引也不同。又或者,TCI状态的源参考信号为探测参考信号,且如果探测参考信号为不同panel(天线面板)的探测参考信号时,该TCI状态关联的闭环功率索引也不同。
在另一些实施例中,第一配置信令用于为不同TRP配置不同的开环功率控制参数集,不同的开环功率控制参数集包括不同的闭环功率索引。
在本申请实施例中,闭环功率索引与TCI状态不具有关联关系,则在此情况下,为不同TRP配置不同的开环功率控制参数集,不同的开环功率控制参数集包括不同的闭环功率索引,因此根据闭环功率控制参数集即可确定不同的闭环功率索引。
在另一些实施例中,TPC命令包括闭环功率索引。也就是说,TPC命令和闭环功率索引均携带在同一信令中来指示TRP的闭环功率调节值,由于该闭环功率索引与TPC命令对应,因此终端也可以确定TPC命令对应的TRP。
本申请实施例提供的方案中,通过不同的关联方式均可确定TPC命令对应 的TRP,进而终端可以确定每个TRP的闭环功率控制参数,确定每个TRP的发射功率,保证了确定的闭环功率调节值的准确性,进而保证了传输的可靠性。
图3所示实施例对终端可以确定闭环功率调节值进行说明。而在另一实施例中,终端还会对闭环功率调节值进行重置。图6示出了本申请一个示例性实施例提供的闭环功率调节值重置方法的流程图,示例性的可以应用于如图1所示的终端和网络设备中,该方法包括以下内容中的至少部分内容:
步骤601:网络设备向终端发送第二配置信令,该第二配置信令用于重配开环功率参数,该第二配置信令用于终端对闭环功率调节值进行重置。
步骤602:终端接收网络设备发送的第二配置信令。
在本申请实施例中,网络设备通过第二配置信令为终端重新配置开环功率参数,在此情况下,终端还会根据该第二配置信令,重置闭环功率调节值。
其中,该开环功率参数包括P 0、α、PL中的至少一项,P 0为目标接收功率,该目标接收功率为网络设备配置的期望接收功率,α为部分路径补偿因子,PL为路径损耗。
在一些实施例中,终端通过默认方式对闭环功率调节值进行重置。
可选地,第二配置信令用于终端对每个TRP对应的闭环功率调节值进行重置。
在本申请实施例中,该第二配置信息不指示TRP,在此情况下,终端就会对每个TRP对应的闭环功率调节值进行重置。
可选地,第二配置信令用于终端对第二配置信令指示的TRP对应的闭环功率调节值进行重置。
在本申请实施例中,该第二配置信令可以指示TRP,则对于终端来说,终端可以对该第二配置信令指示的TRP的闭环功率调节值进行重置,而对于其他TRP来说,无需重置其他TRP的闭环功率调节值。
在另一些实施例中,第二配置信令还包括指示信息,指示信息用于指示是否对闭环功率调节值进行重置,终端通过第二配置信令中的指示信息确定是否对闭环功率调节值进行重置。
可选地,在指示信息指示对闭环功率调节值进行重置的情况下,第二配置信令用于终端对每个TRP对应的闭环功率调节值进行重置。
在本申请实施例中,该第二配置信息不指示TRP,若指示信息指示需要对 闭环功率调节值进行重置,则在此情况下,终端就会对每个TRP对应的闭环功率调节值进行重置。
可选地,在指示信息指示对闭环功率调节值进行重置的情况下,第二配置信令用于终端对第二配置信令指示的TRP对应的闭环功率调节值进行重置。
在本申请实施例中,该第二配置信令可以指示TRP,则对于终端来说,若指示信息指示对闭环功率调节值进行重置,则终端可以对该第二配置信令指示的TRP的闭环功率调节值进行重置,而对于其他TRP来说,无需重置其他TRP的闭环功率调节值。
本申请实施例提供的方案中,终端基于网络设备配置的开环功率参数,确定是否对TPR的闭环功率调节值进行重置,提高了闭环功率调节值进行重置的准确性。
需要说明的是,上述实施例可以拆分为新实施例,或与其他实施例互相组合为新实施例,本申请对实施例之间的组合不做限定。
图7示出了本申请一个示例性实施例提供的闭环功率调节值确定方法的流程图,示例性的可以应用于如图1所示的终端中,该方法包括以下内容中的至少部分内容:
步骤701:终端接收网络设备发送的TPC命令,TPC命令用于为终端配置多个TRP的闭环功率调节值,每个TRP对应的TPC命令对应的闭环功率调节值用于确定终端到TRP对应的上行发射功率。
在本申请实施例中,终端可以通过网络设备配置的TRP进行上行数据传输。而对于终端来说,终端可以在同一时刻向网络设备传输上行数据,则对于终端来说,终端需要确定每个TRP对应的闭环功率调节值,进而基于确定的每个TRP对应的上行发射功率进行上行数据传输。
在一些实施例中,该闭环功率调节值确定上行发射功率的方式请参见上述实施例中的确定传输功率的方式。
网络设备可以通过TPC命令为终端配置多个TRP的闭环功率调节值,则终端在接收该TPC命令后,即可确定每个TRP的闭环功率调节值,进而基于每个TRP对应的TPC命令对应的闭环功率调节值确定终端到TRP对应的上行发射功率,以便于终端基于每个TRP对应的上行发射功率向网络设备发送上行数据。
需要说明的是,本申请实施例中终端所执行的步骤可以单独形成一个新的 实施例,网络设备所执行的步骤可以单独形成一个新的实施例,本申请实施例不作限定。
本申请实施例提供的方案中,终端根据TPC命令即可确定每个TRP对应的闭环功率调节值,进而终端基于每个TRP对应的闭环功率调节值以及终端到各个TRP的实际情况,进行动态发射功率调节,以便于在保证减小干扰前提下,保证终端以较大的发送功率进行上行传输,以保证系统吞吐量。
图7所示实施例对终端需要确定每个TRP的闭环功率调节值进行说明。下面,对终端具体如何根据TPC命令确定每个TRP的闭环功率调节值进行说明。
在一些实施例中,每个TRP的闭环功率调节值有TRP对应的TPC命令指示的闭环功率调节值累计得到。
在本申请实施例中,终端需要确定每个TRP的闭环功率调节值,而每个TRP的闭环功率调节值由该终端在多个时刻对应的闭环功率调节值进行累计得到。也就是说,终端需要对每个TRP对应的TPC命令指示的闭环功率调节值进行累计,得到当前时刻每个TRP的闭环功率调节值。
可选地,f(i,l,t)=f(i-i 0,l,t)+Σδ,其中t为TRP的标识,δ为TPC命令指示的闭环功率调节值,i为时间,用于表示当前时刻,f(i,l,t)为累计得到的每个TRP的闭环功率调节值。
例如,如图4所示,终端会对Δt内所有属于同一closed loop processes的TPC命令指示的闭环功率调节值进行累计,以得到累计后的每个TRP的闭环功率调节值。
在一些实施例中,多个TRP的TPC命令承载在DCI中,下面对终端如何根据TPC命令确定TRP进行说明。
在本申请实施例中,网络设备向终端发送的TPC命令承载在DCI中,则终端会根据DCI中的TPC命令确定TPC命令对应的TRP,进而确定每个TRP的闭环功率调节值。
可选地,TPC命令可以承载在一个DCI或多个DCI中,而对于终端来说,承载在一个DCI或多个DCI中确定TRP的方式也不同,下面对不同的方式进行说明。
第一种:至少两个TPC命令承载在一个DCI中。
在一些实施例中,在至少两个TPC命令承载在一个DCI中的情况下,DCI包括的TPC域的位置与TRP具有默认映射关系,TRP基于DCI包括的TPC域 的位置以及默认映射关系确定。
在本申请实施例中,网络设备通过发送一个DCI为终端指示多个TRP的闭环功率调节值,则终端接收到该DCI后,即可根据该DCI确定TPC命令对应的TRP。
其中,该DCI中包括多个TPC域,而终端的默认映射关系包括TPC域与TRP的对应关系,因此终端可以根据TPC域的位置以及默认映射关系确定对应的TRP。
也就是说,终端接收到该DCI后,即可根据该DCI中包括的TPC域的位置以及默认映射关系,确定每个TPC域对应的TRP,进而终端可以基于确定的对应相同TRP的TPC命令指示的闭环功率调节值,确定每个TRP的闭环功率调节值。
例如,该DCI中的第N个TPC域对应第N个TRP,N为正整数。也即是说,若DCI中包括两个TPC域,则第一个TPC域对应第一个TRP,第二个TPC域对应第二个TRP。
可选地,TPC域与TRP的映射关系实际上通过TCI状态指示,该TCI状态与TRP具有对应关系。也就是说,该DCI中包括的TPC域的位置通过对应的TCI状态来指示对应的TRP。
例如,第N个TPC域对应第N个TCI状态,该TCI状态对应TRP,也就是说第N个TPC域对应第N个TRP。
在另一些实施例中,在至少两个TPC命令承载在一个DCI中的情况下,DCI包括映射标识,映射标识用于指示TPC域的位置与TRP的映射关系,TRP基于DCI包括的TPC域的位置以及指示标识指示的映射关系确定。
在本申请实施例中,网络设备通过发送一个DCI为终端指示多个TRP的闭环功率调节值,则终端接收到该DCI后,即可根据该DCI确定TPC命令对应的TRP。
其中,该DCI中包括映射标识,该映射标识用于指示TPC域的位置与TRP的映射关系,也就是说,通过该映射标识来告知终端TPC域的位置与TRP的映射关系,进而终端可以根据TPC域的位置确定对应的TRP。
在一些实施例中,该映射标识指示顺序映射,该顺序映射是指第N个TPC域对应第N个TRP,N为正整数。也即是说,若DCI中包括两个TPC域,则第一个TPC域对应第一个TRP,第二个TPC域对应第二个TRP。
可选地,TPC域与TRP的映射关系实际上通过TCI状态指示,该TCI状态与TRP具有对应关系。也就是说,该DCI中包括的TPC域的位置通过对应的TCI状态来指示对应的TRP。
例如,第N个TPC域对应第N个TCI状态,该TCI状态对应TRP,也就是说第N个TPC域对应第N个TRP。
在一些实施例中,该映射标识指示交叉映射,该交叉映射是指第一个TPC域对应第二个TRP,而第二个TPC域对应第一个TRP。
可选地,TPC域与TRP的映射关系实际上通过TCI状态指示,该TCI状态与TRP具有对应关系。也就是说,该DCI中包括的TPC域的位置通过对应的TCI状态来指示对应的TRP。
例如,第1个TPC域对应第2个TCI状态,该TCI状态对应第2个TRP,第2个TPC域对应第1个TCI状态,该TCI状态对应第1个TRP。
第二种:在多个TPC命令承载在多个DCI中的情况下,TRP基于每个DCI包括的指示标识确定。
在本申请实施例中,该指示标识指示TRP,也就是说每个TPC命令对应一个TRP,终端根据每个DCI中包括的指示标识来确定该DCI对应的TRP。
可选地,该指示标识为CORESETPoolIndex(资源集池标识),或者为其他标识,本申请实施例不作限定。
本申请实施例提供的方案中,通过TPC命令承载在DCI中,终端根据DCI中包括的TPC域即可确定对应的TRP,进而终端可以确定每个TRP对应的闭环功率调节值,保证了确定的闭环功率调节值的准确性,进而提高了传输的可靠性。
在一些实施例中,终端还可以根据TPC命令关联的闭环功率索引进行闭环功率调节值累计。
其中,不同TRP的TPC命令关联的闭环功率索引不同。也就是说,每个TRP的TPC命令关联一个相同的闭环功率索引,终端可以根据TPC命令关联的闭环功率索引确定是否为同一个TRP,在TPC命令关联的闭环功率索引相同的情况下,确定TPC命令对应相同的TRP。
可选地,网络设备可以为终端的TPC命令配置闭环功率索引。在一些实施例中,网络设备向终端发送第一配置信令,该第一配置信令用于为不同的TRP的TPC命令配置不同的闭环功率索引,终端接收第一配置信令。
在本申请实施例中,网络设备可以通过第一配置信令来配置不同的TRP的TPC命令的闭环功率索引,则终端在接收到网络设备发送的第一配置信令后,即可确定每个TRP的TPC命令的闭环功率索引,进而若终端需要确定每个TRP的闭环功率调节值时,根据闭环功率索引即可确定对应的TRP,进而确定每个TRP的闭环功率调节值。
在一些实施例中,第一配置信令用于配置闭环功率索引与TCI状态的关联关系。
在本申请实施例中,闭环功率索引与TCI状态具有关联关系,则TCI状态的源参考信号为不同TRP的CSI-RS或者SSB时,该TCI状态关联的闭环功率索引也不同。又或者,TCI状态的源参考信号为探测参考信号,且如果探测参考信号为不同panel(天线面板)的探测参考信号时,该TCI状态关联的闭环功率索引也不同。
在另一些实施例中,第一配置信令用于为不同TRP配置不同的开环功率控制参数集,不同的开环功率控制参数集包括不同的闭环功率索引。
在本申请实施例中,闭环功率索引与TCI状态不具有关联关系,则在此情况下,为不同TRP配置不同的开环功率控制参数集,不同的开环功率控制参数集包括不同的闭环功率索引,因此根据闭环功率控制参数集即可确定不同的闭环功率索引。
在另一些实施例中,TPC命令包括闭环功率索引。也就是说,TPC命令和闭环功率索引均携带在同一信令中来指示TRP的闭环功率调节值,由于该闭环功率索引与TPC命令对应,因此终端也可以确定TPC命令对应的TRP。
本申请实施例提供的方案中,通过不同的关联方式均可确定TPC命令对应的TRP,进而终端可以确定每个TRP的闭环功率调节值,确定每个TRP的发射功率,保证了确定的闭环功率调节值的准确性,进而保证了传输的可靠性。
图6所示实施例对终端可以确定闭环功率调节值进行说明。而在另一实施例中,终端还会对闭环功率调节值进行重置。
在一些实施例中,网络设备向终端发送第二配置信令,该第二配置信令用于重配开环功率参数,该第二配置信令用于终端对闭环功率调节值进行重置,终端接收网络设备发送的第二配置信令。
其中,该开环功率参数包括P 0、α、PL中的至少一项,P 0为目标接收功率,该目标接收功率为网络设备配置的期望接收功率,α为部分路径补偿因子,PL 为路径损耗。
在本申请实施例中,网络设备通过第二配置信令为终端重新配置开环功率参数,在此情况下,终端还会根据该第二配置信令,重置闭环功率调节值。
在一些实施例中,终端通过默认方式对闭环功率调节值进行重置。
可选地,第二配置信令用于终端对每个TRP对应的闭环功率调节值进行重置。
在本申请实施例中,该第二配置信息不指示TRP,在此情况下,终端就会对每个TRP对应的闭环功率调节值进行重置。
可选地,第二配置信令用于终端对第二配置信令指示的TRP对应的闭环功率调节值进行重置。
在本申请实施例中,该第二配置信令可以指示TRP,则对于终端来说,终端可以对该第二配置信令指示的TRP的闭环功率调节值进行重置,而对于其他TRP来说,无需重置其他TRP的闭环功率调节值。
在另一些实施例中,第二配置信令还包括指示信息,指示信息用于指示是否对闭环功率调节值进行重置,终端通过第二配置信令中的指示信息确定是否对闭环功率调节值进行重置。
可选地,在指示信息指示对闭环功率调节值进行重置的情况下,第二配置信令用于终端对每个TRP对应的闭环功率调节值进行重置。
在本申请实施例中,该第二配置信息不指示TRP,若指示信息指示需要对闭环功率调节值进行重置,则在此情况下,终端就会对每个TRP对应的闭环功率调节值进行重置。
可选地,在指示信息指示对闭环功率调节值进行重置的情况下,第二配置信令用于终端对第二配置信令指示的TRP对应的闭环功率调节值进行重置。
在本申请实施例中,该第二配置信令可以指示TRP,则对于终端来说,若指示信息指示对闭环功率调节值进行重置,则终端可以对该第二配置信令指示的TRP的闭环功率调节值进行重置,而对于其他TRP来说,无需重置其他TRP的闭环功率调节值。
本申请实施例提供的方案中,终端基于网络设备配置的开环功率参数,确定是否对TPR的闭环功率调节值进行重置,提高了闭环功率调节值进行重置的准确性。
图8示出了本申请一个示例性实施例提供的闭环功率调节值确定方法的流程图,示例性的可以应用于如图1所示的网络设备中,该方法包括以下内容中的至少部分内容:
步骤801:网络设备向终端发送TPC命令,TPC命令用于为终端配置多个TRP的闭环功率调节值,每个TRP对应的TPC命令对应的闭环功率调节值用于确定终端到TRP对应的上行发射功率。
在本申请实施例中,终端可以通过网络设备配置的TRP进行上行数据传输。而对于终端来说,终端可以在同一时刻向网络设备传输上行数据,则对于终端来说,终端需要确定每个TRP对应的闭环功率调节值,进而基于确定的每个TRP对应的上行发射功率进行上行数据传输。
在一些实施例中,该闭环功率调节值确定上行发射功率的方式请参见上述实施例中的确定传输功率的方式。
网络设备可以通过TPC命令为终端配置多个TRP的闭环功率调节值,则终端在接收该TPC命令后,即可确定每个TRP的闭环功率调节值,进而基于每个TRP对应的TPC命令对应的闭环功率调节值确定终端到TRP对应的上行发射功率,以便于终端基于每个TRP对应的上行发射功率向网络设备发送上行数据。
需要说明的是,本申请实施例中终端所执行的步骤可以单独形成一个新的实施例,网络设备所执行的步骤可以单独形成一个新的实施例,本申请实施例不作限定。
本申请实施例提供的方案中,终端根据TPC命令即可确定每个TRP对应的闭环功率调节值,进而终端基于每个TRP对应的闭环功率调节值以及终端到各个TRP的实际情况,进行动态发射功率调节,以便于在保证减小干扰前提下,保证终端以较大的发送功率进行上行传输,以保证系统吞吐量。
图8所示实施例对终端需要确定每个TRP的闭环功率调节值进行说明。下面,对终端具体如何根据TPC命令确定每个TRP的闭环功率调节值进行说明。
在一些实施例中,每个TRP的闭环功率调节值有TRP对应的TPC命令指示的闭环功率调节值累计得到。
在本申请实施例中,终端需要确定每个TRP的闭环功率调节值,而每个TRP的闭环功率调节值由该终端在多个时刻对应的闭环功率调节值进行累计得到。也就是说,终端需要对每个TRP对应的TPC命令指示的闭环功率调节值进行累计,得到当前时刻每个TRP的闭环功率调节值。
可选地,f(i,l,t)=f(i-i 0,l,t)+Σδ,其中t为TRP的标识,δ为TPC命令指示的闭环功率调节值,i为时间,用于表示当前时刻,f(i,l,t)为累计得到的每个TRP的闭环功率调节值。
例如,如图4所示,终端会对Δt内所有属于同一closed loop processes的TPC命令指示的闭环功率调节值进行累计,以得到累计后的每个TRP的闭环功率调节值。
在一些实施例中,多个TRP的TPC命令承载在DCI中,下面对终端如何根据TPC命令确定TRP进行说明。
在本申请实施例中,网络设备向终端发送的TPC命令承载在DCI中,则终端会根据DCI中的TPC命令确定TPC命令对应的TRP,进而确定每个TRP的闭环功率调节值。
可选地,TPC命令可以承载在一个DCI或多个DCI中,而对于终端来说,承载在一个DCI或多个DCI中确定TRP的方式也不同,下面对不同的方式进行说明。
第一种:至少两个TPC命令承载在一个DCI中。
在一些实施例中,在至少两个TPC命令承载在一个DCI中的情况下,DCI包括的TPC域的位置与TRP具有默认映射关系,TRP基于DCI包括的TPC域的位置以及默认映射关系确定。
在本申请实施例中,网络设备通过发送一个DCI为终端指示多个TRP的闭环功率调节值,则终端接收到该DCI后,即可根据该DCI确定TPC命令对应的TRP。
其中,该DCI中包括多个TPC域,而终端的默认映射关系包括TPC域与TRP的对应关系,因此终端可以根据TPC域的位置以及默认映射关系确定对应的TRP。
也就是说,终端接收到该DCI后,即可根据该DCI中包括的TPC域的位置以及默认映射关系,确定每个TPC域对应的TRP,进而终端可以基于确定的对应相同TRP的TPC命令指示的闭环功率调节值,确定每个TRP的闭环功率调节值。
例如,该DCI中的第N个TPC域对应第N个TRP,N为正整数。也即是说,若DCI中包括两个TPC域,则第一个TPC域对应第一个TRP,第二个TPC域对应第二个TRP。
可选地,TPC域与TRP的映射关系实际上通过TCI状态指示,该TCI状态与TRP具有对应关系。也就是说,该DCI中包括的TPC域的位置通过对应的TCI状态来指示对应的TRP。
例如,第N个TPC域对应第N个TCI状态,该TCI状态对应TRP,也就是说第N个TPC域对应第N个TRP。
在另一些实施例中,在至少两个TPC命令承载在一个DCI中的情况下,DCI包括映射标识,映射标识用于指示TPC域的位置与TRP的映射关系,TRP基于DCI包括的TPC域的位置以及指示标识指示的映射关系确定。
在本申请实施例中,网络设备通过发送一个DCI为终端指示多个TRP的闭环功率调节值,则终端接收到该DCI后,即可根据该DCI确定TPC命令对应的TRP。
其中,该DCI中包括映射标识,该映射标识用于指示TPC域的位置与TRP的映射关系,也就是说,通过该映射标识来告知终端TPC域的位置与TRP的映射关系,进而终端可以根据TPC域的位置确定对应的TRP。
在一些实施例中,该映射标识指示顺序映射,该顺序映射是指第N个TPC域对应第N个TRP,N为正整数。也即是说,若DCI中包括两个TPC域,则第一个TPC域对应第一个TRP,第二个TPC域对应第二个TRP。
可选地,TPC域与TRP的映射关系实际上通过TCI状态指示,该TCI状态与TRP具有对应关系。也就是说,该DCI中包括的TPC域的位置通过对应的TCI状态来指示对应的TRP。
例如,第N个TPC域对应第N个TCI状态,该TCI状态对应TRP,也就是说第N个TPC域对应第N个TRP。
在一些实施例中,该映射标识指示交叉映射,该交叉映射是指第一个TPC域对应第二个TRP,而第二个TPC域对应第一个TRP。
可选地,TPC域与TRP的映射关系实际上通过TCI状态指示,该TCI状态与TRP具有对应关系。也就是说,该DCI中包括的TPC域的位置通过对应的TCI状态来指示对应的TRP。
例如,第1个TPC域对应第2个TCI状态,该TCI状态对应第2个TRP,第2个TPC域对应第1个TCI状态,该TCI状态对应第1个TRP。
第二种:在多个TPC命令承载在多个DCI中的情况下,TRP基于每个DCI包括的指示标识确定。
在本申请实施例中,该指示标识指示TRP,也就是说每个TPC命令对应一个TRP,终端根据每个DCI中包括的指示标识来确定该DCI对应的TRP。
可选地,该指示标识为CORESETPoolIndex(资源集池标识),或者为其他标识,本申请实施例不作限定。
本申请实施例提供的方案中,通过TPC命令承载在DCI中,终端根据DCI中包括的TPC域即可确定对应的TRP,进而终端可以确定每个TRP对应的闭环功率调节值,保证了确定的闭环功率调节值的准确性,进而提高了传输的可靠性。
在一些实施例中,终端还可以根据TPC命令关联的闭环功率索引进行闭环功率调节值累计。
其中,不同TRP的TPC命令关联的闭环功率索引不同。也就是说,每个TRP的TPC命令关联一个相同的闭环功率索引,终端可以根据TPC命令关联的闭环功率索引确定是否为同一个TRP,在TPC命令关联的闭环功率索引相同的情况下,确定TPC命令对应相同的TRP。
可选地,网络设备可以为终端的TPC命令配置闭环功率索引。
网络设备向终端发送第一配置信令,该第一配置信令用于为不同的TRP的TPC命令配置不同的闭环功率索引。
在本申请实施例中,网络设备可以通过第一配置信令来配置不同的TRP的TPC命令的闭环功率索引,则终端在接收到网络设备发送的第一配置信令后,即可确定每个TRP的TPC命令的闭环功率索引,进而若终端需要确定每个TRP的闭环功率调节值时,根据闭环功率索引即可确定对应的TRP,进而确定每个TRP的闭环功率调节值。
在一些实施例中,第一配置信令用于配置闭环功率索引与TCI状态的关联关系。
在本申请实施例中,闭环功率索引与TCI状态具有关联关系,则TCI状态的源参考信号为不同TRP的CSI-RS或者SSB时,该TCI状态关联的闭环功率索引也不同。又或者,TCI状态的源参考信号为探测参考信号,且如果探测参考信号为不同panel(天线面板)的探测参考信号时,该TCI状态关联的闭环功率索引也不同。
在另一些实施例中,第一配置信令用于为不同TRP配置不同的开环功率控制参数集,不同的开环功率控制参数集包括不同的闭环功率索引。
在本申请实施例中,闭环功率索引与TCI状态不具有关联关系,则在此情况下,为不同TRP配置不同的开环功率控制参数集,不同的开环功率控制参数集包括不同的闭环功率索引,因此根据闭环功率控制参数集即可确定不同的闭环功率索引。
在另一些实施例中,TPC命令包括闭环功率索引。也就是说,TPC命令和闭环功率索引均携带在同一信令中来指示TRP的闭环功率调节值,由于该闭环功率索引与TPC命令对应,因此终端也可以确定TPC命令对应的TRP。
本申请实施例提供的方案中,通过不同的关联方式均可确定TPC命令对应的TRP,进而终端可以确定每个TRP的闭环功率调节值,确定每个TRP的发射功率,保证了确定的闭环功率调节值的准确性,进而保证了传输的可靠性。
图8所示实施例对终端可以确定闭环功率调节值进行说明。而在另一实施例中,终端还会对闭环功率调节值进行重置。
在一些实施例中,网络设备向终端发送第二配置信令,该第二配置信令用于重配开环功率参数,该第二配置信令用于终端对闭环功率调节值进行重置。
其中,该开环功率参数包括P 0、α、PL中的至少一项,P 0为目标接收功率,该目标接收功率为网络设备配置的期望接收功率,α为部分路径补偿因子,PL为路径损耗。
在本申请实施例中,网络设备通过第二配置信令为终端重新配置开环功率参数,在此情况下,终端还会根据该第二配置信令,重置闭环功率调节值。
在一些实施例中,终端通过默认方式对闭环功率调节值进行重置。
可选地,第二配置信令用于终端对每个TRP对应的闭环功率调节值进行重置。
在本申请实施例中,该第二配置信息不指示TRP,在此情况下,终端就会对每个TRP对应的闭环功率调节值进行重置。
可选地,第二配置信令用于终端对第二配置信令指示的TRP对应的闭环功率调节值进行重置。
在本申请实施例中,该第二配置信令可以指示TRP,则对于终端来说,终端可以对该第二配置信令指示的TRP的闭环功率调节值进行重置,而对于其他TRP来说,无需重置其他TRP的闭环功率调节值。
在另一些实施例中,第二配置信令还包括指示信息,指示信息用于指示是否对闭环功率调节值进行重置,终端通过第二配置信令中的指示信息确定是否 对闭环功率调节值进行重置。
可选地,在指示信息指示对闭环功率调节值进行重置的情况下,第二配置信令用于终端对每个TRP对应的闭环功率调节值进行重置。
在本申请实施例中,该第二配置信息不指示TRP,若指示信息指示需要对闭环功率调节值进行重置,则在此情况下,终端就会对每个TRP对应的闭环功率调节值进行重置。
可选地,在指示信息指示对闭环功率调节值进行重置的情况下,第二配置信令用于终端对第二配置信令指示的TRP对应的闭环功率调节值进行重置。
在本申请实施例中,该第二配置信令可以指示TRP,则对于终端来说,若指示信息指示对闭环功率调节值进行重置,则终端可以对该第二配置信令指示的TRP的闭环功率调节值进行重置,而对于其他TRP来说,无需重置其他TRP的闭环功率调节值。
本申请实施例提供的方案中,终端基于网络设备配置的开环功率参数,确定是否对TPR的闭环功率调节值进行重置,提高了闭环功率调节值进行重置的准确性。
图9示出了本申请一个示例性实施例提供的一种闭环功率调节值确定装置的框图,参见图9,该装置包括:
接收模块901,用于接收网络设备发送的发射功率控制TPC命令,TPC命令用于为终端配置多个传输接收点TRP的闭环功率调节值,每个TRP对应的TPC命令对应的闭环功率调节值用于确定终端到TRP对应的上行发射功率。
在一些实施例中,每个TRP的闭环功率调节值由TRP对应的TPC命令指示的闭环功率调节值累计得到。
在一些实施例中,多个TRP的TPC命令承载在下行控制信息DCI中。
在一些实施例中,在至少两个TPC命令承载在一个DCI中的情况下,DCI包括的TPC域的位置与TRP具有默认映射关系,TRP基于DCI包括的TPC域的位置以及默认映射关系确定;
或者,
在至少两个TPC命令承载在一个DCI中的情况下,DCI包括映射标识,映射标识用于指示TPC域的位置与TRP的映射关系,TRP基于DCI包括的TPC域的位置以及指示标识指示的映射关系确定。
在一些实施例中,在多个TPC命令承载在多个DCI中的情况下,TRP基于每个DCI包括的指示标识确定。
在一些实施例中,不同TRP的TPC命令关联的闭环功率索引不同。
在一些实施例中,接收模块901,还用于接收第一配置信令,第一配置信令用于为不同的TRP的TPC命令配置不同的闭环功率索引。
在一些实施例中,第一配置信令用于配置闭环功率索引与TCI状态或探测参考信号资源索引的关联关系。
在一些实施例中,第一配置信令用于为不同TRP配置不同的开环功率控制参数集,不同的开环功率控制参数集包括不同的闭环功率索引。
在一些实施例中,闭环功率索引与SRS资源集关联。
在一些实施例中,TPC命令包括闭环功率索引。
在一些实施例中,接收模块901,还用于接收网络设备发送的第二配置信令,第二配置信令用于重配开环功率参数;
第二配置信令用于终端对闭环功率调节值进行重置。
在一些实施例中,第二配置信令用于终端对每个TRP对应的闭环功率调节值进行重置;
或者,
第二配置信令用于终端对第二配置信令指示的TRP对应的闭环功率调节值进行重置。
在一些实施例中,第二配置信令还包括指示信息,指示信息用于指示是否对闭环功率调节值进行重置;
在指示信息指示对闭环功率调节值进行重置的情况下,第二配置信令用于终端对每个TRP对应的闭环功率调节值进行重置;
或者,
在指示信息指示对闭环功率调节值进行重置的情况下,第二配置信令用于终端对配置信令指示的TRP对应的闭环功率调节值进行重置。
需要说明的是,上述实施例提供的装置,在实现其功能时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将设备的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的装置与方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
图10示出了本申请一个示例性实施例提供的一种闭环功率调节值确定装置的框图,参见图10,该装置包括:
发送模块1001,用于向终端发送发射功率控制TPC命令,TPC命令用于为终端配置多个传输接收点TRP的闭环功率调节值,每个TRP对应的TPC命令对应的闭环功率调节值用于确定终端到TRP对应的上行发射功率。
在一些实施例中,每个TRP的闭环功率调节值由TRP对应的TPC命令指示的闭环功率调节值累计得到。
在一些实施例中,多个TRP的TPC命令承载在下行控制信息DCI中。
在一些实施例中,在至少两个TPC命令承载在一个DCI中的情况下,DCI包括的TPC域的位置与TRP具有默认映射关系,TRP基于DCI包括的TPC域的位置以及默认映射关系确定;
或者,
在至少两个TPC命令承载在一个DCI中的情况下,DCI包括映射标识,映射标识用于指示TPC域的位置与TRP的映射关系,TRP基于DCI包括的TPC域的位置以及指示标识指示的映射关系确定。
在一些实施例中,在多个TPC命令承载在多个DCI中的情况下,TRP基于每个DCI包括的指示标识确定。
在一些实施例中,不同TRP的TPC命令关联的闭环功率索引不同。
在一些实施例中,发送模块1001,用于发送第一配置信令,第一配置信令用于为不同的TRP的TPC命令配置不同的闭环功率索引。
在一些实施例中,第一配置信令用于配置闭环功率索引与TCI状态或探测参考信号资源索引的关联关系。
在一些实施例中,第一配置信令用于为不同TRP配置不同的开环功率控制参数集,不同的开环功率控制参数集包括不同的闭环功率索引。
在一些实施例中,闭环功率索引与SRS资源集关联。
在一些实施例中,TPC命令包括闭环功率索引。
在一些实施例中,发送模块1001,还用于向终端发送第二配置信令,第二配置信令用于重配开环功率参数;
第二配置信令用于终端对闭环功率调节值进行重置。
在一些实施例中,第二配置信令用于终端对每个TRP对应的闭环功率调节 值进行重置;
或者,
第二配置信令用于终端对配置信令指示的TRP对应的闭环功率调节值进行重置。
在一些实施例中,第二配置信令还包括指示信息,指示信息用于指示是否对闭环功率调节值进行重置;
在指示信息指示对闭环功率调节值进行重置的情况下,第二配置信令用于终端对每个TRP对应的闭环功率调节值进行重置;
或者,
在指示信息指示对闭环功率调节值进行重置的情况下,第二配置信令用于终端对第二配置信令指示的TRP对应的闭环功率调节值进行重置。
需要说明的是,上述实施例提供的装置,在实现其功能时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将设备的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的装置与方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
图11示出了本申请一个示例性实施例提供的通信设备的结构示意图,该通信设备包括:处理器1101、接收器1102、发射器1103、存储器1104和总线1105。
处理器1101包括一个或者一个以上处理核心,处理器1101通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器1102和发射器1103可以实现为一个通信组件,该通信组件可以是一块通信芯片。
存储器1104通过总线1105与处理器1101相连。
存储器1104可用于存储至少一个程序代码,处理器1101用于执行该至少一个程序代码,以实现上述方法实施例中的各个步骤。
此外,通信设备可以为终端或网络设备。存储器1104可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),静态随时存取存储器(SRAM),只读存储器(ROM),磁存储器,快闪存储器,可编程只读存储器(PROM)。
在示例性实施例中,还提供了一种计算机可读存储介质,所述可读存储介质中存储有可执行程序代码,所述可执行程序代码由处理器加载并执行以实现上述各个方法实施例提供的由通信设备执行的闭环功率调节值确定方法。
在示例性实施例中,提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片在终端或网络设备上运行时,用于实现如各个方法实施例提供的闭环功率调节值确定方法。
在示例性实施例中,提供了一种通信系统,所述通信系统包括终端和网络设备,所述终端用于实现如上述所述的闭环功率调节值确定方法,所述网络设备用于实现如上述所述的闭环功率调节值确定方法。
在示例性实施例中,提供了计算机程序产品,当所述计算机程序产品被终端或网络设备的处理器执行时,其用于实现上述各个方法实施例提供的闭环功率调节值确定方法。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (32)

  1. 一种闭环功率调节值确定方法,其特征在于,所述方法由终端执行,所述方法包括:
    接收网络设备发送的发射功率控制TPC命令,所述TPC命令用于为所述终端配置多个传输接收点TRP的闭环功率调节值,每个TRP对应的TPC命令对应的闭环功率调节值用于确定所述终端到所述TRP对应的上行发射功率。
  2. 根据权利要求1所述的方法,其特征在于,所述每个TRP的闭环功率调节值由所述TRP对应的TPC命令指示的闭环功率调节值累计得到。
  3. 根据权利要求2所述的方法,其特征在于,所述多个TRP的TPC命令承载在下行控制信息DCI中。
  4. 根据权利要求3所述的方法,其特征在于,在至少两个所述TPC命令承载在一个DCI中的情况下,所述DCI包括的TPC域的位置与TRP具有默认映射关系,所述TRP基于所述DCI包括的TPC域的位置以及所述默认映射关系确定;
    或者,
    在至少两个所述TPC命令承载在一个DCI中的情况下,所述DCI包括映射标识,所述映射标识用于指示TPC域的位置与TRP的映射关系,所述TRP基于所述DCI包括的TPC域的位置以及所述指示标识指示的映射关系确定。
  5. 根据权利要求3所述的方法,其特征在于,
    在多个所述TPC命令承载在多个DCI中的情况下,所述TRP基于每个DCI包括的指示标识确定。
  6. 根据权利要求2所述的方法,其特征在于,不同TRP的TPC命令关联的闭环功率索引不同。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    接收第一配置信令,所述第一配置信令用于为不同的TRP的TPC命令配置不同的闭环功率索引。
  8. 根据权利要求7所述的方法,其特征在于,所述第一配置信令用于配置所述闭环功率索引与TCI状态或探测参考信号资源索引的关联关系。
  9. 根据权利要求7所述的方法,其特征在于,所述第一配置信令用于为不同TRP配置不同的开环功率控制参数集,不同的开环功率控制参数集包括不同的闭环功率索引。
  10. 根据权利要求6所述的方法,其特征在于,所述TPC命令包括所述闭环功率索引。
  11. 根据权利要求1至10任一所述的方法,其特征在于,所述方法还包括:
    接收所述网络设备发送的第二配置信令,所述第二配置信令用于重配开环功率参数;
    所述第二配置信令用于所述终端对所述闭环功率调节值进行重置。
  12. 根据权利要求11所述的方法,其特征在于,
    所述第二配置信令用于所述终端对每个TRP对应的所述闭环功率调节值进行重置;
    或者,
    所述第二配置信令用于所述终端对所述第二配置信令指示的TRP对应的闭环功率调节值进行重置。
  13. 根据权利要求11所述的方法,其特征在于,所述第二配置信令还包括指示信息,所述指示信息用于指示是否对所述闭环功率调节值进行重置;
    在所述指示信息指示对所述闭环功率调节值进行重置的情况下,所述第二配置信令用于所述终端对每个TRP对应的所述闭环功率调节值进行重置;
    或者,
    在所述指示信息指示对所述闭环功率调节值进行重置的情况下,所述第二配置信令用于所述终端对所述配置信令指示的TRP对应的闭环功率调节值进行重置。
  14. 一种闭环功率调节值确定方法,其特征在于,所述方法由网络设备执行,所述方法包括:
    向终端发送发射功率控制TPC命令,所述TPC命令用于为所述终端配置多个传输接收点TRP的闭环功率调节值,每个TRP对应的TPC命令对应的闭环功率调节值用于确定所述终端到所述TRP对应的上行发射功率。
  15. 根据权利要求14所述的方法,其特征在于,所述每个TRP的闭环功率调节值由所述TRP对应的TPC命令指示的闭环功率调节值累计得到。
  16. 根据权利要求15所述的方法,其特征在于,所述多个TRP的TPC命令承载在下行控制信息DCI中。
  17. 根据权利要求16所述的方法,其特征在于,在至少两个所述TPC命令承载在一个DCI中的情况下,所述DCI包括的TPC域的位置与TRP具有默认映射关系,所述TRP基于所述DCI包括的TPC域的位置以及所述默认映射关系确定;
    或者,
    在至少两个所述TPC命令承载在一个DCI中的情况下,所述DCI包括映射标识,所述映射标识用于指示TPC域的位置与TRP的映射关系,所述TRP基于所述DCI包括的TPC域的位置以及所述指示标识指示的映射关系确定。
  18. 根据权利要求16所述的方法,其特征在于,在多个所述TPC命令承载在多个DCI中的情况下,所述TRP基于每个DCI包括的指示标识确定。
  19. 根据权利要求15所述的方法,其特征在于,不同TRP的TPC命令关联 的闭环功率索引不同。
  20. 根据权利要求19所述的方法,其特征在于,所述方法还包括:
    发送第一配置信令,所述第一配置信令用于为不同的TRP的TPC命令配置不同的闭环功率索引。
  21. 根据权利要求20所述的方法,其特征在于,所述第一配置信令用于配置所述闭环功率索引与TCI状态或探测参考信号资源索引的关联关系。
  22. 根据权利要求20所述的方法,其特征在于,所述第一配置信令用于为不同TRP配置不同的开环功率控制参数集,不同的开环功率控制参数集包括不同的闭环功率索引。
  23. 根据权利要求19所述的方法,其特征在于,所述TPC命令包括所述闭环功率索引。
  24. 根据权利要求14至23任一所述的方法,其特征在于,所述方法还包括:
    向所述终端发送第二配置信令,所述第二配置信令用于重配开环功率参数;
    所述第二配置信令用于所述终端对所述闭环功率调节值进行重置。
  25. 根据权利要求24所述的方法,其特征在于,所述第二配置信令用于所述终端对每个TRP对应的所述闭环功率调节值进行重置;
    或者,
    所述第二配置信令用于所述终端对所述配置信令指示的TRP对应的闭环功率调节值进行重置。
  26. 根据权利要求24所述的方法,其特征在于,所述第二配置信令还包括指示信息,所述指示信息用于指示是否对所述闭环功率调节值进行重置;
    在所述指示信息指示对所述闭环功率调节值进行重置的情况下,所述第二配置信令用于所述终端对每个TRP对应的所述闭环功率调节值进行重置;
    或者,
    在所述指示信息指示对所述闭环功率调节值进行重置的情况下,所述第二配置信令用于所述终端对所述第二配置信令指示的TRP对应的闭环功率调节值进行重置。
  27. 一种闭环功率调节值确定装置,其特征在于,所述装置包括:
    接收模块,用于接收网络设备发送的发射功率控制TPC命令,所述TPC命令用于为所述终端配置多个传输接收点TRP的闭环功率调节值,每个TRP对应的TPC命令对应的闭环功率调节值用于确定所述终端到所述TRP对应的上行发射功率。
  28. 一种闭环功率调节值确定装置,其特征在于,所述装置包括:
    发送模块,用于向终端发送发射功率控制TPC命令,所述TPC命令用于为所述终端配置多个传输接收点TRP的闭环功率调节值,每个TRP对应的TPC命令对应的闭环功率调节值用于确定所述终端到所述TRP对应的上行发射功率。
  29. 一种终端,其特征在于,所述终端包括:
    处理器;
    与所述处理器相连的收发器;
    其中,所述处理器被配置为加载并执行可执行指令以实现如权利要求1至13任一所述的闭环功率调节值确定方法。
  30. 一种网络设备,其特征在于,所述网络设备包括:
    处理器;
    与所述处理器相连的收发器;
    其中,所述处理器被配置为加载并执行可执行指令以实现如权利要求14至26任一所述的闭环功率调节值确定方法。
  31. 一种通信系统,其特征在于,所述通信系统包括终端和网络设备,所述 终端用于实现如权利要求1至13任一所述的闭环功率调节值确定方法,所述网络设备用于实现如权利要求14至26任一所述的闭环功率调节值确定方法。
  32. 一种计算机可读存储介质,其特征在于,所述可读存储介质中存储有可执行程序代码,所述可执行程序代码由处理器加载并执行以实现如权利要求1至26任一所述的闭环功率调节值确定方法。
PCT/CN2022/116318 2022-08-31 2022-08-31 闭环功率调节值确定方法、装置、设备及存储介质 WO2024045074A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280003118.2A CN117957884A (zh) 2022-08-31 2022-08-31 闭环功率调节值确定方法、装置、设备及存储介质
PCT/CN2022/116318 WO2024045074A1 (zh) 2022-08-31 2022-08-31 闭环功率调节值确定方法、装置、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/116318 WO2024045074A1 (zh) 2022-08-31 2022-08-31 闭环功率调节值确定方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2024045074A1 true WO2024045074A1 (zh) 2024-03-07

Family

ID=90099886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116318 WO2024045074A1 (zh) 2022-08-31 2022-08-31 闭环功率调节值确定方法、装置、设备及存储介质

Country Status (2)

Country Link
CN (1) CN117957884A (zh)
WO (1) WO2024045074A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110710281A (zh) * 2017-05-04 2020-01-17 Lg 电子株式会社 无线通信系统中发送和接收上行链路的方法及其装置
WO2021260658A1 (en) * 2020-06-26 2021-12-30 Telefonaktiebolaget Lm Ericsson (Publ) Power control for uplink transmissions towards multiple trps
CN114258120A (zh) * 2020-09-22 2022-03-29 中国移动通信有限公司研究院 上行信道功率控制方法、装置、相关设备及存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110710281A (zh) * 2017-05-04 2020-01-17 Lg 电子株式会社 无线通信系统中发送和接收上行链路的方法及其装置
WO2021260658A1 (en) * 2020-06-26 2021-12-30 Telefonaktiebolaget Lm Ericsson (Publ) Power control for uplink transmissions towards multiple trps
CN114258120A (zh) * 2020-09-22 2022-03-29 中国移动通信有限公司研究院 上行信道功率控制方法、装置、相关设备及存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MODERATOR (NOKIA, NOKIA SHANGHAI BELL): "Summary #2 of Multi-TRP PUCCH and PUSCH Enhancements", 3GPP DRAFT; R1-2108299, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210816 - 20210827, 23 August 2021 (2021-08-23), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052042114 *
ZTE: "Multi-TRP enhancements for PDCCH, PUCCH and PUSCH", 3GPP DRAFT; R1-2106542, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210816 - 20210827, 7 August 2021 (2021-08-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052041691 *

Also Published As

Publication number Publication date
CN117957884A (zh) 2024-04-30

Similar Documents

Publication Publication Date Title
US11463147B2 (en) Method and apparatus for determining physical uplink channel power control parameter values for use after a beam failure recovery
CN109661833B (zh) 用于副链路数据复制的方法和设备
WO2020206619A1 (zh) 直连通信的参数确定方法、装置、终端及可读存储介质
WO2021155541A1 (zh) 发送功率确定方法、装置、设备及存储介质
US20220116882A1 (en) Reference signal determination method and device, and ue
KR20200035789A (ko) 무선 통신 시스템에서 송신전력 제어 방법 및 장치
WO2023201547A1 (zh) Tci状态确定方法、装置、设备及存储介质
WO2022047792A1 (zh) 控制资源集合池索引更新方法、装置、终端、网络设备
US20220053427A1 (en) Srs power control method and device
CN115699654A (zh) 探测参考信号时间绑定方法
US20230027631A1 (en) Method for transmitting power headroom, terminal device, and network device
WO2024045074A1 (zh) 闭环功率调节值确定方法、装置、设备及存储介质
WO2023155168A1 (zh) 资源确定方法、装置、设备及存储介质
WO2022253150A1 (zh) 数据传输方法及装置
WO2023070468A1 (zh) 随机接入方法、装置、设备及存储介质
WO2023184419A1 (zh) 功率控制方法、装置、设备及存储介质
WO2024050816A1 (zh) Tci状态确定方法、装置、设备及存储介质
WO2024045171A1 (zh) 信息指示方法、装置、设备及存储介质
WO2022141071A1 (zh) 小数据传输方法、装置、设备及介质
WO2022236526A1 (zh) 载波确定方法、装置、设备及存储介质
WO2023184428A1 (zh) Csi处理方式的切换方法、装置、介质、产品及芯片
WO2023155174A1 (zh) 通信方法、装置、设备及可读存储介质
WO2024065569A1 (en) Systems and methods for ue capability report
WO2022236558A1 (zh) 用于数据传输的方法、装置、设备及存储介质
CN116438897A (zh) 上行发射功率调节方法、装置、设备及存储介质

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280003118.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956900

Country of ref document: EP

Kind code of ref document: A1