WO2024044943A1 - 电池单体、电池以及用电装置 - Google Patents

电池单体、电池以及用电装置 Download PDF

Info

Publication number
WO2024044943A1
WO2024044943A1 PCT/CN2022/115749 CN2022115749W WO2024044943A1 WO 2024044943 A1 WO2024044943 A1 WO 2024044943A1 CN 2022115749 W CN2022115749 W CN 2022115749W WO 2024044943 A1 WO2024044943 A1 WO 2024044943A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery cell
hole
sensor
wall
cell according
Prior art date
Application number
PCT/CN2022/115749
Other languages
English (en)
French (fr)
Inventor
陈龙
林蹬华
郑于炼
王鹏
金海族
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/115749 priority Critical patent/WO2024044943A1/zh
Publication of WO2024044943A1 publication Critical patent/WO2024044943A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, and more specifically, to a battery cell, a battery and an electrical device.
  • Battery cells are widely used in electronic devices, such as mobile phones, laptops, battery cars, electric cars, electric airplanes, electric ships, electric toy cars, electric toy ships, electric toy airplanes, electric tools, etc.
  • This application provides a battery cell, a battery and an electrical device, which can improve safety.
  • a battery cell including a casing, an electrode assembly and a detection component.
  • the shell has a receiving cavity.
  • the electrode assembly is received in the containing cavity.
  • the detection component includes a sensor and a connector.
  • the sensor is connected to the housing through the connector.
  • the sensor is used to detect the status information of the battery cell and generate a signal.
  • the connector is used to transmit the signal.
  • the sensor can detect the status information of the battery cell in real time, thereby regulating the battery cell according to the status information of the battery cell, improving the cycle performance of the battery cell, reducing safety risks, and extending the cycle life of the battery cell.
  • the connector can simultaneously perform the functions of fixing the sensor and transmitting signals, thereby simplifying the structure of the battery cell and reducing the risk of sensor damage.
  • the status information of the battery cell includes at least one of the internal air pressure of the battery cell, the temperature of the battery cell, the internal gas composition of the battery cell, and the deformation amount of the electrode assembly.
  • the connector includes optical fiber.
  • Optical fiber sensing technology has high sensitivity and can achieve real-time monitoring. It can promptly alarm when there is a problem with a battery cell, making it easy to replace the problem battery cell, extending the life of the battery and saving costs.
  • the senor includes at least one of a Bragg grating and a Fabry-Perot resonant cavity.
  • a Bragg grating changes in temperature and stress inside the battery cell can be easily tested.
  • the Fabry-Perot resonant cavity as an air pressure sensor, the air pressure inside the battery cell can be accurately monitored in real time.
  • the housing includes a first wall, and the first wall is provided with a first through hole communicating with the receiving chamber.
  • the sensor is located on a side of the first wall facing away from the accommodation cavity, and the sensor is configured to detect status information of the battery cell through the first through hole.
  • Arranging the sensor on the outside of the first wall can facilitate the installation and replacement of the sensor and simplify the assembly process.
  • the sensor By opening a first through hole in the first wall, the sensor can detect the status information inside the battery cell.
  • the senor is opposite to the first through hole in an axial direction of the first through hole.
  • the detection signal sent by the sensor can enter the accommodation cavity through the first through hole, so that the sensor can detect the status information inside the battery cell.
  • the senor is connected to the first wall and covers the first through hole. Connecting the sensor to the first wall can reduce the risk of the sensor shaking when the battery cell vibrates, improves the stability of the sensor, and improves the accuracy of sensor detection.
  • the sensor can cover the first through hole to reduce the risk of electrolyte leakage through the first through hole and improve safety.
  • the detection component further includes a fixing part, and the connecting part is connected to the first wall through the fixing part.
  • a surface of the fixing member facing the first wall butts against the first wall and the fixing member is provided with a receiving recess recessed from the surface of the fixing member facing the first wall, and the receiving recess is connected to the first through hole.
  • the sensor is accommodated in the accommodation recess, and the connecting piece is connected to the fixing piece and passes through the fixing piece.
  • the fixing piece can protect the sensor from the outside, reduce the risk of the sensor being contaminated and damaged by external impurities, and improve the accuracy of the sensor.
  • the connecting piece passes through the fixing piece to facilitate connection with devices outside the fixing piece.
  • the bottom wall of the accommodation recess is provided with a second through hole, and the connecting member passes through the fixing member via the second through hole.
  • the connecting piece that enters the receiving recess through the second through hole can pull up the sensor to connect the sensor to the fixing piece, thereby improving the stability of the detection component.
  • the detection component further includes a sealing member, the sealing member connects the hole wall of the second through hole and the connecting member, and seals the second through hole.
  • the sealing member seals the second through hole to reduce the risk of electrolyte leakage through the second through hole and improve safety.
  • the sealing member can simultaneously perform the function of connecting the fixing member and the connecting member and the sealing function, thereby simplifying the structure of the detection component.
  • the sealing member is bonded to the wall of the second through hole and the connecting member.
  • the bonding process is easy to implement, reduces the risk of damage to the connectors, and improves the accuracy of signal transmission.
  • the fastener is welded to the first wall. Welding increases the strength of the connection between the fixture and improves sealing, reducing the risk of electrolyte leakage through the gap between the fixture and the first wall.
  • a positioning recess is provided on a side of the first wall facing away from the accommodation cavity, and the first through hole penetrates the bottom wall of the positioning recess. At least part of the fixing member is received in the positioning recess.
  • the positioning recess can play a positioning role when assembling the fixing part and the first wall, simplifying the assembly process and improving assembly efficiency.
  • the positioning recess can also accommodate at least part of the fixing piece to reduce the size of the fixing piece protruding from the first wall, reduce the space occupied by the fixing piece, and improve the energy density of the battery cell.
  • the fixing component includes a fixing body and a flange surrounding the outside of the fixing body, the fixing body is provided with a receiving recess, at least part of the flange is received in the positioning recess, and the outer peripheral surface of the flange is connected to the positioning recess. side walls.
  • the distance between the side wall of the positioning recess and the fixed body can be increased, thereby reducing the risk of damaging the fixed body when connecting the flange and the side wall of the positioning recess, and improving the sealing performance.
  • the flange offsets the bottom wall of the positioning recess to increase the contact area between the first wall and the fixing component and improve the stability of the connection between the first wall and the fixing component.
  • the receiving recess is step-shaped and includes a first section and a second section, and the second section is located on a side of the first section away from the first through hole.
  • the cross section of the first section perpendicular to the axial direction of the first through hole is smaller than the cross section of the second section perpendicular to the axial direction of the first through hole.
  • the sensor is housed in the second section.
  • the second section has a larger cross-sectional area to provide sufficient space for the sensor.
  • the accommodating recess is arranged in a step shape to reduce the size of the opening of the accommodating recess close to the first through hole, thereby increasing the contact area between the fixing body and the first wall, and improving stability.
  • the housing further includes an electrode terminal disposed on the first wall, the electrode assembly includes a tab, and the electrode terminal is electrically connected to the tab. In a direction perpendicular to the first wall, one end of the fixing member facing away from the first wall does not exceed the electrode terminal.
  • the above technical solution can use the space occupied by the electrode terminal in the direction perpendicular to the first wall to install the fixing part.
  • the fixing part will not additionally increase the size of the battery cell in the direction perpendicular to the first wall, thereby increasing the battery cell size.
  • the space utilization and energy density of the body can be used to increase the space occupied by the electrode terminal in the direction perpendicular to the first wall.
  • the battery cell is configured to inject electrolyte via the first through hole.
  • the first through hole is used as the liquid injection hole of the battery cell, and the detection component is used to seal the first through hole. This can reduce the opening of the casing and eliminate the conventional sealing sheet, thereby simplifying the structure of the battery cell.
  • the housing is provided with an outlet through hole communicating with the accommodation cavity.
  • the sensor is accommodated in the accommodation cavity, and at least part of the connector is accommodated in the lead-out through hole and connected to the housing.
  • Disposing the sensor in the accommodation cavity can improve the utilization of the internal space of the battery cell and improve the accuracy of the sensor in detecting the status information inside the battery cell.
  • the lead-out through hole By providing the lead-out through hole, at least part of the connector can be exposed, which facilitates the connector to transmit signals to the outside of the housing.
  • the detection component further includes a sealing member, the sealing member connects the hole wall of the lead-out through hole and the connector, and seals the lead-out through hole.
  • the sealing member seals the lead-out through hole to reduce the risk of electrolyte leakage through the lead-out through hole and improve safety.
  • the sealing member can simultaneously serve the function of connecting the hole wall and the connector of the lead-out through hole and the sealing function, thereby simplifying the structure of the detection component.
  • the surface of the sensor facing the electrode assembly is provided with an insulating layer.
  • an insulating layer By setting up an insulating layer, when the battery cell vibrates, the risk of the sensor connecting the positive and negative electrodes can be reduced and safety improved.
  • the housing includes a first wall
  • the sensor is located on a side of the first wall facing the electrode assembly and spaced apart from the first wall. Setting the sensor at a distance from the first wall can provide space for the sensor to move, thereby reducing the stress on the connection between the sensor and the connector when the battery cell vibrates, and reducing the risk of failure of the connection between the sensor and the connector. Improve the safety of battery cells.
  • the battery cells are configured to inject electrolyte via the lead-through holes.
  • the lead-out through hole is used as the liquid injection hole of the battery cell, and the detection component is used to seal the first through hole. This can reduce the opening of the casing and eliminate the conventional sealing sheet, thereby simplifying the structure of the battery cell.
  • the battery cell further includes an insulating component disposed on a surface of the first wall facing the electrode assembly.
  • the sensor is located on the side of the insulating component facing away from the first wall.
  • the insulating component is provided with a first escape hole opposite to the lead-out through hole, and the connecting member extends into the lead-out through hole through the first escape hole.
  • the insulating component is used to insulate and isolate the first wall from the electrode assembly to reduce the risk that the first wall conducts the positive and negative electrodes of the electrode assembly and improve safety. By opening the first escape hole, the risk of interference between the insulating component and the connecting piece is reduced.
  • the insulating component is spaced apart from the sensor. Setting the sensor and the insulating component at intervals can provide space for the sensor to move, thereby reducing the stress on the connection between the sensor and the connector when the battery cell vibrates, reducing the risk of connection failure between the sensor and the connector, and improving The safety of battery cells.
  • a part of the connecting member extends to the outside of the housing through the lead-out through hole, so that the connecting member can be connected to a device outside the housing.
  • the housing includes a housing having an opening and an end cap for covering the opening.
  • the end cap is the first wall of the enclosure.
  • the end cover has a larger thickness. Setting the detection component on the end cover can provide stable support for the detection component and improve the stability of the detection component.
  • the housing includes electrode terminals, the electrode assembly includes tabs, and the electrode terminals are electrically connected to the tabs.
  • the lead-out through hole is arranged on the electrode terminal, and the sensor is arranged on the side of the electrode terminal facing the electrode assembly. Arranging the lead-out through holes on the electrode terminals can improve the space utilization of the battery cells.
  • the battery cell further includes an adapter component for connecting the tabs and electrode terminals.
  • the adapter component includes a terminal connection portion abutting a surface of the electrode terminal facing the electrode assembly, and the terminal connection portion is provided with a second escape hole opposite to the lead-out through hole.
  • the sensor is located on a side of the terminal connection part away from the electrode terminal, and the connecting piece extends into the lead-out through hole through the second escape hole.
  • the terminal connections are spaced apart from the sensor. Setting the sensor and the terminal connection part at intervals can provide space for the sensor to move, thereby reducing the stress on the connection between the sensor and the connector when the battery cell vibrates, and reducing the risk of failure of the connection between the sensor and the connector. Improve the safety of battery cells.
  • the connector does not protrude beyond the surface of the electrode terminal facing away from the electrode assembly.
  • the surface of the electrode terminal away from the electrode assembly usually needs to be connected to the bus component. The above technical solution can reduce the risk of interference between the connector and the bus component.
  • the adapter component includes an adapter body and an adapter protrusion.
  • the adapter body is connected to the tab, and the adapter protrusion protrudes from a surface of the adapter body facing the electrode terminal.
  • the adapter component forms an adapter recess at a position corresponding to the adapter convex part, and the bottom wall of the adapter recess forms a terminal connection part.
  • the sensor is accommodated in the adapter recess. Placing the sensor in the transfer recess can improve space utilization.
  • the side wall of the adapter recess can limit the position of the sensor to reduce the amplitude of the sensor shaking when the battery cell vibrates.
  • the battery cells are cylindrical battery cells or prismatic battery cells.
  • embodiments of the present application provide a battery, including a plurality of battery cells provided in any embodiment of the first aspect.
  • embodiments of the present application provide an electrical device, including the battery cell provided in any embodiment of the first aspect, and the battery cell is used to provide electric energy.
  • Figure 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • Figure 2 is an exploded schematic diagram of a battery provided by some embodiments of the present application.
  • Figure 3 is a schematic three-dimensional structural diagram of a battery cell provided by some embodiments of the present application.
  • Figure 4 is a schematic cross-sectional view of the battery cell shown in Figure 3;
  • Figure 5 is an enlarged schematic diagram of Figure 4 at circular frame A;
  • Figure 6 is a partial cross-sectional schematic diagram of a battery cell provided by other embodiments of the present application.
  • Figure 7 is a partial cross-sectional schematic diagram of a battery cell provided by other embodiments of the present application.
  • Figure 8 is a schematic cross-sectional view of a battery cell provided by other embodiments of the present application.
  • Figure 9 is a schematic three-dimensional structural diagram of a battery cell provided by other embodiments of the present application.
  • Figure 10 is a schematic cross-sectional view of the battery cell shown in Figure 9;
  • Figure 11 is a schematic three-dimensional structural diagram of a battery cell provided by other embodiments of the present application.
  • Figure 12 is a schematic cross-sectional view of the battery cell shown in Figure 11;
  • Figure 13 is an enlarged schematic diagram of Figure 12 at circular frame B;
  • Figure 14 is a schematic cross-sectional view of a battery cell provided by other embodiments of the present application.
  • Figure 15 is a schematic cross-sectional view of a battery cell provided by other embodiments of the present application.
  • Figure 16 is an enlarged schematic view of Figure 15 at circular frame C.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment may be included in at least one embodiment of the application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments.
  • connection should be understood in a broad sense.
  • connection can be a fixed connection, It can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • connection can be a fixed connection
  • connection can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • connection can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • “Plural” appearing in this application means two or more (including two).
  • battery cells may include lithium ion secondary battery cells, lithium ion primary battery cells, lithium sulfur battery cells, sodium lithium ion battery cells, sodium ion battery cells or magnesium ion battery cells, etc.
  • the embodiments of the present application are not limited to this.
  • the battery cell may be in the shape of a cylinder, a flat body, a rectangular parallelepiped or other shapes, and the embodiments of the present application are not limited to this.
  • battery cells may include lithium ion secondary battery cells, lithium ion primary battery cells, lithium sulfur battery cells, sodium lithium ion battery cells, sodium ion battery cells or magnesium ion battery cells, etc.
  • the embodiments of the present application are not limited to this.
  • the battery cell may be in the shape of a cylinder, a flat body, a rectangular parallelepiped or other shapes, and the embodiments of the present application are not limited to this.
  • the battery mentioned in the embodiments of this application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in this application may include a battery module or a battery pack.
  • Batteries generally include a box for packaging one or more battery cells. The box can prevent liquid or other foreign matter from affecting the charging or discharging of the battery cells.
  • the battery cell includes an electrode assembly and an electrolyte.
  • the electrode assembly includes a positive electrode piece, a negative electrode piece and a separator. Battery cells mainly rely on the movement of metal ions between the positive and negative electrodes to work.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector; the positive electrode current collector includes a positive electrode coating area and a positive electrode tab connected to the positive electrode coating area.
  • the positive electrode coating area The positive electrode active material layer is coated, and the positive electrode tab is not coated with the positive electrode active material layer.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material layer includes a positive electrode active material.
  • the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganate, etc.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode current collector;
  • the negative electrode current collector includes a negative electrode coating area and a negative electrode tab connected to the negative electrode coating area.
  • the negative electrode coating area The negative electrode active material layer is coated, and the negative electrode tab is not coated with the negative electrode active material layer.
  • the negative electrode current collector may be made of copper, and the negative electrode active material layer may include a negative electrode active material.
  • the negative electrode active material may be carbon or silicon.
  • the material of the isolator can be PP (polypropylene, polypropylene) or PE (polyethylene, polyethylene), etc.
  • the battery cell also includes a casing, and a receiving cavity for accommodating the electrode assembly is formed inside the casing.
  • the shell can protect the electrode assembly from the outside to prevent external foreign matter from affecting the charging or discharging of the electrode assembly.
  • abnormal conditions may occur. For example, after a battery cell undergoes multiple charge and discharge cycles, side reactions may occur inside the battery cell and continue to produce gas. The gas will increase the air pressure inside the battery cell, thereby causing the risk of deformation and rupture of the casing. For another example, when a short circuit occurs inside a battery cell, the battery cell generates heat and heats up, thereby causing the risk of thermal runaway of the battery cell.
  • the inventor tried to install a detection component on the circuit board of the battery to detect the working status of the battery cell in real time, thereby determining whether the battery cell is abnormal.
  • the inventor found that the space on the circuit board was limited, making it difficult to individually detect each battery cell, resulting in deviations in the detection results.
  • embodiments of the present application provide a technical solution that integrates detection components into battery cells to detect the status information of each battery cell in real time, so as to monitor the battery cells according to the status information of the battery cells. Control and improve the cycle performance of battery cells, reduce safety risks, and extend the cycle life of battery cells.
  • Electrical devices can be vehicles, cell phones, portable devices, laptops, ships, spacecraft, electric toys and power tools, etc.
  • Vehicles can be fuel vehicles, gas vehicles or new energy vehicles, and new energy vehicles can be pure electric vehicles, hybrid vehicles or extended-range vehicles, etc.
  • spacecraft include aircraft, rockets, space shuttles, spaceships, etc.
  • electric toys include fixed Type or mobile electric toys, such as game consoles, electric car toys, electric ship toys, electric airplane toys, etc.
  • electric tools include metal cutting electric tools, grinding electric tools, assembly electric tools and railway electric tools, for example, Electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, planers and more.
  • Electric drills Electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, planers and more.
  • the following embodiments take the electrical device as a vehicle as an example.
  • Figure 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • a battery 2 is provided inside the vehicle 1 , and the battery 2 can be provided at the bottom, head, or tail of the vehicle 1 .
  • the battery 2 may be used to power the vehicle 1 , for example, the battery 2 may be used as an operating power source for the vehicle 1 .
  • the vehicle 1 may also include a controller 3 and a motor 4.
  • the controller 3 is used to control the battery 2 to provide power to the motor 4, for example, to meet the power requirements for starting, navigation and driving of the vehicle 1.
  • the battery 2 can not only be used as the operating power source of the vehicle 1, but also can be used as the driving power source of the vehicle 1, replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1.
  • Figure 2 is an exploded schematic diagram of a battery provided by some embodiments of the present application.
  • the battery 2 includes a case 5 and a battery cell 6 (not shown).
  • the battery cell 6 is accommodated in the case 5 .
  • the box 5 is used to accommodate the battery cells 6, and the box 5 can be of various structures.
  • the box body 5 may include a first box body part 5a and a second box body part 5b.
  • the first box body part 5a and the second box body part 5b cover each other.
  • the first box body part 5a and the second box body part 5b cover each other.
  • the two box portions 5b jointly define an accommodating space 5c for accommodating the battery cells 6.
  • the second box part 5b can be a hollow structure with one end open, and the first box part 5a is a plate-like structure.
  • the first box part 5a is covered with the opening side of the second box part 5b to form a receiving space 5c.
  • the box body 5; the first box body part 5a and the second box body part 5b can also be a hollow structure with one side open, and the opening side of the first box body part 5a is covered with the opening side of the second box body part 5b , to form a box 5 having an accommodation space 5c.
  • the first box part 5a and the second box part 5b can be in various shapes, such as cylinder, rectangular parallelepiped, etc.
  • a sealing member may also be provided between the first box part 5a and the second box part 5b, such as sealant, sealing ring, etc. .
  • the first box part 5a can also be called an upper box cover, and the second box part 5b can also be called a lower box.
  • the battery 2 there may be one battery cell 6 or a plurality of battery cells 6 . If there are multiple battery cells 6 , the multiple battery cells 6 can be connected in series, in parallel, or in mixed connection. Mixed connection means that the multiple battery cells 6 are connected in series and in parallel. Multiple battery cells 6 can be directly connected in series or in parallel or mixed together, and then the whole composed of multiple battery cells 6 can be accommodated in the box 5; of course, multiple battery cells 6 can also be connected in series first. They are connected in parallel or mixed to form a battery module, and multiple battery modules are connected in series, parallel or mixed to form a whole, and are accommodated in the box 5 .
  • Figure 3 is a schematic three-dimensional structural view of a battery cell provided by some embodiments of the present application
  • Figure 4 is a schematic cross-sectional view of the battery cell shown in Figure 3
  • Figure 5 is an enlarged schematic view of the circular frame A in Figure 4.
  • a battery cell 6 which includes a casing 20 , an electrode assembly 10 and a detection component 30 .
  • the housing 20 has a receiving cavity 20a.
  • the electrode assembly 10 is received in the accommodation cavity 20a.
  • the detection component 30 is connected to the housing 20 and used to detect status information of the battery cell 6 .
  • the casing 20 has a hollow structure, and an accommodation cavity 20a for accommodating the electrode assembly 10 and the electrolyte is formed inside.
  • the shape of the housing 20 can be determined according to the specific shape of the electrode assembly 10 . For example, if the electrode assembly 10 has a rectangular parallelepiped structure, a rectangular parallelepiped housing can be used; if the electrode assembly 10 has a cylindrical structure, a cylindrical housing can be used.
  • the housing 20 can be made of various materials.
  • the housing 20 can be made of metal or plastic.
  • the material of the housing 20 can be copper, iron, aluminum, steel, aluminum
  • the electrode assembly 10 includes a positive electrode piece and a negative electrode piece.
  • the electrode assembly 10 generates electrical energy through oxidation and reduction reactions during the insertion/extraction of ions in the positive electrode piece and the negative electrode piece.
  • the electrode assembly 10 further includes an isolation film, which is used to insulate and isolate the positive electrode piece and the negative electrode piece.
  • the electrode assembly 10 may be a wound electrode assembly, a laminated electrode assembly, or other types of electrode assemblies.
  • Electrode assembly 10 There may be one electrode assembly 10 or multiple electrode components 10 . When there are multiple electrode assemblies 10 , the plurality of electrode assemblies 10 may be arranged in a stack.
  • the status information of the battery cell 6 is information that represents the working status of the battery cell 6.
  • the status information of the battery cell 6 may include the internal air pressure of the battery cell, the temperature of the battery cell, and the internal temperature of the battery cell.
  • At least one of state information such as gas composition, deformation amount of the electrode assembly, deformation amount of the casing, dendrite growth status inside the electrode assembly, and electric charge inside the battery cell.
  • the detection component 30 may be integrally disposed inside the housing 20 , or may be integrally disposed outside the housing 20 . Alternatively, part of the detection component 30 may be provided inside the housing 20 and part may be provided outside the housing 20 .
  • the detection component 30 can be directly connected to the housing 20 or indirectly connected to the housing 20 through other components.
  • the detection component 30 is integrated into the battery cell 6 to detect the status information of the battery cell 6 in real time, thereby regulating the battery cell 6 according to the status information of the battery cell 6 and improving the battery cell.
  • the cycle performance of the battery cell 6 is reduced, safety risks are reduced, and the cycle life of the battery cell 6 is extended.
  • the detection component 30 includes a sensor 31 and a connector 32.
  • the sensor 31 is connected to the housing 20 through the connector 32, and the sensor 31 is used to detect the status information of the battery cell 6 and generate a signal.
  • the connector 32 is used to Transmission signal.
  • the sensor 31 may be a resistive sensor, an inductive sensor, a capacitive sensor, a piezoelectric sensor, a magnetoelectric sensor, a pyroelectric sensor, a photoelectric sensor, a digital sensor, an optical fiber sensor, an ultrasonic sensor, a thermal sensor or other type of sensor.
  • the sensor 31 of the detection component 30 may be one or multiple.
  • the sensor 31 may be disposed in the receiving cavity 20 a of the housing 20 , or may be disposed outside the housing 20 .
  • the connecting piece 32 can be directly connected to the housing 20 or indirectly connected to the housing 20 through other components.
  • the sensor 31 is fixed to the housing 20 via a connection 32 .
  • Connector 32 can be used to transmit signals.
  • the connection member 32 can be used to transmit the signal generated by the sensor 31 to the data processing unit of the battery, and can also transmit the signal generated by the data processing unit to the sensor 31 .
  • signal transmission between the connecting member 32 and the data processing unit may be accomplished through cables, or may be accomplished through wireless transmission technology.
  • the senor 31 can detect the status information of the battery cell 6 in real time, thereby regulating the battery cell 6 according to the status information of the battery cell 6, improving the cycle performance of the battery cell 6, and reducing safety risks. Extend the cycle life of the battery cell 6.
  • the connector 32 can simultaneously serve the function of fixing the sensor 31 and transmitting signals, thereby simplifying the structure of the battery cell 6 and reducing the risk of damage to the sensor 31 .
  • the status information of the battery cell 6 includes at least one of the internal air pressure of the battery cell, the temperature of the battery cell, the internal gas composition of the battery cell, and the deformation amount of the electrode assembly.
  • the senor 31 may include a temperature sensor, which may be disposed outside the housing 20 and in contact with the housing 20 to detect the temperature of the housing 20 .
  • the temperature sensor may also be disposed in the receiving cavity 20 a of the housing 20 and detect the temperature inside the battery cell 6 .
  • sensor 31 may include a hydrogen gas sensor.
  • the hydrogen sensor 31 may be disposed in the accommodation cavity 20 a of the housing 20 to detect the hydrogen component inside the battery cell 6 .
  • the hydrogen sensor can also be disposed outside the housing 20 , and a channel can be opened on the housing 20 , and the gas inside the battery cell 6 can act on the hydrogen sensor through the channel.
  • the senor 31 may also include sensors for detecting other components.
  • sensor 31 may include an air pressure sensor.
  • the air pressure sensor may be disposed in the accommodation cavity 20a of the housing 20 to detect the air pressure inside the battery cell 6.
  • the air pressure sensor can also be disposed outside the housing 20 , and a channel can be opened on the housing 20 , through which the gas inside the battery cell 6 can act on the air pressure sensor.
  • sensor 31 may include a displacement sensor.
  • the displacement sensor can be disposed in the receiving cavity 20a of the housing 20 and offset against the electrode assembly 10.
  • the displacement sensor can measure the expansion and deformation of the electrode assembly 10 during charging and discharging.
  • sensor 31 may include a stress sensor.
  • the stress sensor may be inserted between the positive and negative electrode pieces of the electrode assembly 10 to measure stress changes between the positive and negative electrode pieces.
  • connector 32 includes optical fiber.
  • the optical fiber and sensor 31 constitute a fiber optic sensor.
  • optical fiber a thin wire of glass at the center of which light waves can propagate.
  • Optical fiber mainly consists of three parts: core, cladding and protective layer.
  • the cladding can reflect stray light waves emitted by the fiber core back into the fiber core to ensure that the light waves have the lowest transmission loss in the fiber core.
  • the principle behind this function is that the optical refractive index of the core is higher than the refractive index of the cladding, so total internal reflection occurs when the light wave propagates from the core to the cladding.
  • the outermost protective layer provides protection from damage to the optical fiber caused by the external environment or external forces.
  • the diameter of the optical fiber is between 10 ⁇ m and 10mm.
  • the material is high-purity quartz glass or all-plastic optical fiber.
  • the length can be customized according to needs.
  • the protective layer material outside the optical fiber is made of acrylate, silicone rubber, nylon, polyimide and other materials.
  • Optical fiber sensing technology has high sensitivity and can achieve real-time monitoring. It can promptly alarm when there is a problem with the battery cell 6, making it easy to replace the battery cell 6 with problems, extending the life of the battery and saving costs.
  • sensor 31 includes at least one of a Bragg grating and a Fabry-Perot resonant cavity.
  • FBG refers to fiber Bragg grating, which is a spatial phase periodic grating formed in the fiber core. Its essence is to form a narrow-band filter and reflector in the fiber core.
  • Fiber Bragg Grating (FBG) sensor is the most frequently used and widest range of optical fiber sensors. This sensor can change the wavelength of its reflected light waves according to changes in ambient temperature and/or strain.
  • Fiber Bragg grating uses holographic interference method or phase mask method to expose a short section of light-sensitive optical fiber to a light wave with a periodic distribution of light intensity. In this way, the light refractive index of the optical fiber will permanently change according to the intensity of the light wave it is illuminated with.
  • the periodic changes in the refractive index of light caused by this method are called fiber Bragg gratings.
  • each small section of the fiber after the light refractive index is changed will only reflect light waves of a specific wavelength, which is called the Bragg wavelength. This characteristic makes the fiber Bragg grating only reflect light waves of a specific wavelength, while light waves of other wavelengths will be transmitted.
  • Tilted Bragg fiber grating has been a hot research topic in optical fiber sensors in recent years. Using optical methods to write tilted Bragg fiber grating on the fiber core can break the cylindrical symmetry of the mode coupling process and promote light coupling from the fiber core to different claddings. mold.
  • the spectrum of this fiber grating sensor is an excellent narrow-band resonance peak comb spectrum, which provides a high-precision measurement tool for monitoring various small modulation changes.
  • the cut-off mode in the cladding mode of the tilted Bragg fiber grating has deeper evanescent wave light field intensity and penetration depth, and is very sensitive to changes in the environmental refractive index. Therefore, the cut-off mode can be used to realize the refractive index and branch changes of the external environment. Measurement of dendrite growth, etc., provides a high-precision measurement method for the growth of dendrites on the internal electrode surface of the battery.
  • F-P resonant cavity Fabry-Pérot cavity
  • Fabry-Pérot cavity is a type of optical resonant cavity, consisting of two parallel plane mirrors, and is often used in semiconductor lasers.
  • the optical fiber sensor will change one or several properties of the light wave it propagates, such as intensity, phase, polarization state, frequency, etc., according to changes in the external environmental parameters being tested.
  • Non-intrinsic (hybrid) optical fiber sensors only use optical fibers as the transmission medium for light waves between the device and the sensing element, while intrinsic optical fiber sensors use the optical fiber itself as the sensing element.
  • a Fabry-Perot cavity interferometer is a multi-beam interferometer consisting of two parallel glass plates with high reflectivity on opposing inner surfaces.
  • the Fabry-Perot interferometer is also often called a Fabry-Perot resonant cavity, F-P cavity or Fabry-Perot cavity, and when two glass plates are fixed by a fixed length of hollow spacer, it is also called Bryperot etalons may be simply referred to as etalons, but these terms are not strictly distinguished when used.
  • the characteristic of this interferometer is that when the frequency of the incident light meets its resonance condition, its transmission spectrum will have a very high peak, corresponding to a very high transmittance.
  • the resonance characteristics of the Fabry-Perot interferometer are the same as those utilized by dichroic filters.
  • the air pressure inside the battery cell 6 can be accurately monitored in real time.
  • the housing 20 includes a housing 21 having an opening and an end cap 22 for covering the opening.
  • the housing 21 and the end cover 22 enclose to form a receiving cavity 20a.
  • the housing 21 can be of various shapes and sizes, such as rectangular parallelepiped, cylinder, hexagonal prism, etc. Specifically, the shape of the housing 21 can be determined according to the specific shape and size of the electrode assembly 10 .
  • the housing 21 can be made of a variety of materials, such as copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc., which are not particularly limited in the embodiments of the present application.
  • the shape of the end cap 22 can be adapted to the shape of the housing 21 to fit the housing 21 .
  • the end cap 22 can be made of a material with a certain hardness and strength (such as aluminum alloy). In this way, the end cap 22 is less likely to deform when subjected to extrusion and collision, so that the battery cell 6 can have higher durability. Structural strength and safety performance can also be improved.
  • the end cap 22 is connected to the housing 21 by welding, bonding, snapping or other methods.
  • the housing 21 may have a structure with an opening on one side, and the end cover 22 is provided as one and covers the opening of the housing 21 .
  • the housing 21 may also have a structure with openings on both sides, and two end caps 22 are provided, and the two end caps 22 cover the two openings of the housing 21 respectively.
  • battery cell 6 is a cylindrical battery cell.
  • the housing 20 of the battery cell 6 is cylindrical.
  • the battery cells 6 are prismatic battery cells.
  • the casing 20 of the battery cell 6 is in the shape of a rectangular parallelepiped.
  • the housing 20 includes a first wall 20b, and the first wall 20b is provided with a first through hole 221 communicating with the accommodation cavity 20a.
  • the sensor 31 is located on a side of the first wall 20b away from the accommodation cavity 20a, and the sensor 31 is configured to detect status information of the battery cell 6 through the first through hole 221.
  • the first wall 20b can be the end cover 22 or a part of the housing 21.
  • Arranging the sensor 31 outside the first wall 20b facilitates the installation and replacement of the sensor 31 and simplifies the assembly process.
  • the sensor 31 can detect the status information inside the battery cell 6.
  • the sensor 31 may detect the air pressure, temperature, gas composition or other status information inside the battery cell 6 .
  • the senor 31 is opposite to the first through hole 221 in the axial direction X of the first through hole 221 .
  • the projection of the sensor 31 and the projection of the first through hole 221 at least partially overlap.
  • the sensor 31 may close the first through hole 221; alternatively, the sensor 31 may also be spaced apart from the first through hole 221 in the axial direction X of the first through hole 221.
  • the detection signal (for example, light) emitted by the sensor 31 can enter the accommodation cavity 20 a through the first through hole 221 , so that the sensor 31 can detect the status information inside the battery cell 6 .
  • the detection component 30 further includes a fixing part 33, and the connecting part 32 is connected to the first wall 20b through the fixing part 33.
  • the fixing part 33 can be fixed to the first wall 20b by welding, bonding, snapping or other methods.
  • the connecting piece 32 can be directly connected to the fixing piece 33 or indirectly connected to the fixing piece 33 through other components.
  • the connecting piece 32 can be bonded with glue, or can be integrally formed with the fixing piece 33 by hot melting.
  • the fixing part 33, the sensor 31 and the connecting part 32 of the detection component 30 may be pre-assembled together.
  • the fixing part 33, the sensor 31 and the connecting part 32 of the detection component 30 may be pre-assembled together.
  • the surface of the fixing part 33 facing the first wall 20b is against the first wall 20b, and the fixing part 33 is provided with an accommodating recess 331 that is recessed from the surface of the fixing part 33 facing the first wall 20b.
  • the accommodating recess 331 is in contact with the first wall 20b.
  • the first through holes 221 are connected.
  • the sensor 31 is accommodated in the accommodation recess 331 , and the connecting piece 32 is connected to the fixing piece 33 and passes through the fixing piece 33 .
  • the connecting piece 32 can pass through the bottom wall of the accommodating recess 331 , or can pass through the side wall of the accommodating recess 331 .
  • the fixing member 33 can protect the sensor 31 from the outside, reduce the risk of the sensor 31 being contaminated and damaged by external impurities, and improve the accuracy of the sensor 31 .
  • the connecting piece 32 passes through the fixing piece 33 to facilitate connection with devices outside the fixing piece 33 .
  • the bottom wall of the receiving recess 331 is provided with a second through hole 332 through which the connecting member 32 passes through the fixing member 33 .
  • the connecting piece 32 entering the receiving recess 331 through the second through hole 332 can pull up the sensor 31 to connect the sensor 31 to the fixing piece 33 , thereby improving the stability of the detection component 30 .
  • the connecting member 32 may be connected to a side of the sensor 31 facing away from the first through hole 221 .
  • the connecting member 32 may adopt a flexible structure.
  • the connecting piece 32 can pull the sensor 31 from above, so the flexible connecting piece 32 can also fix the sensor 31 .
  • the flexible connecting piece 32 is deformable to facilitate connection with other components.
  • the detection component 30 further includes a sealing member 34 that connects the hole wall of the second through hole 332 and the connecting member 32 and seals the second through hole 332 .
  • the sealing member 34 may be connected to the hole wall of the second through hole 332 and the connecting member 32 through adhesion, interference, welding or other means.
  • the sealing member 34 seals the second through hole 332 to reduce the risk of electrolyte leakage through the second through hole 332 and improve safety.
  • the sealing member 34 can simultaneously perform the function of connecting the fixing member 33 and the connecting member 32 and the sealing function, thereby simplifying the structure of the detection component 30 .
  • the sealing member 34 is bonded to the hole wall of the second through hole 332 and the connecting member 32 .
  • colloid can be filled between the hole wall of the second through hole 332 and the connecting member 32, and the sealing member 34 is formed after the colloid is solidified.
  • the bonding process is easy to implement, can reduce the risk of damage to the connecting piece 32, and improves the accuracy of signal transmission.
  • the fixing member 33 is welded to the first wall 20b. Welding can increase the connection strength of the fixing part 33, improve sealing, and reduce the risk of electrolyte leakage through the gap between the fixing part 33 and the first wall 20b.
  • the fixing part 33 may be a metal part or a plastic part.
  • the fixing part 33 is a metal part, and the metal part has high strength to stably support the connecting part 32 and the sensor 31 .
  • a positioning recess 222 is provided on the side of the first wall 20b away from the accommodation cavity 20a, and the first through hole 221 penetrates the bottom wall of the positioning recess 222. At least part of the fixing member 33 is received in the positioning recess 222 .
  • the positioning recess 222 can play a positioning role when assembling the fixing member 33 and the first wall 20b, simplifying the assembly process and improving assembly efficiency.
  • the positioning recess 222 can also accommodate at least part of the fixing member 33 to reduce the size of the fixing member 33 protruding from the first wall 20b, reduce the space occupied by the fixing member 33, and improve the energy density of the battery cell 6.
  • the fixing member 33 includes a fixing body 333 and a flange 334 surrounding the outside of the fixing body 333 .
  • the fixed body 333 is provided with a receiving recess 331 , at least part of the flange 334 is received in the positioning recess 222 , and the outer peripheral surface of the flange 334 is connected to the side wall of the positioning recess 222 .
  • the distance between the side wall of the positioning recess 222 and the fixing body 333 can be increased, thereby reducing the risk of damaging the fixing body 333 when connecting the flange 334 and the side wall of the positioning recess 222, and improving the sealing performance.
  • the laser can act on the intersection of the flange 334 and the side wall of the positioning recess 222 to weld the flange 334 and the side wall of the positioning recess 222 .
  • the distance between the side wall of the positioning recess 222 and the fixing body 333 can be increased, thereby reducing the risk of interference between the fixing body 333 and the welding equipment.
  • the flange 334 offsets the bottom wall of the positioning recess 222 to increase the contact area between the first wall 20b and the fixing part 33 and improve the stability of the connection between the first wall 20b and the fixing part 33.
  • the flange 334 and the fixing body 333 are bonded to the bottom wall of the positioning recess 222 .
  • the surface of the flange 334 facing the bottom wall of the positioning recess 222 is flush with the surface of the fixing body 333 facing the bottom wall of the positioning recess 222 .
  • end cap 22 is first wall 20b of housing 20 . Compared with the housing 21, the end cover 22 has a larger thickness. Providing the detection component 30 on the end cover 22 can stably support the detection component 30 and improve the stability of the detection component 30.
  • the battery cell 6 is configured to inject electrolyte via the first through hole 221 .
  • electrolyte needs to be injected into the interior of the casing.
  • a sealing sheet needs to be provided on the casing to seal the liquid injection hole.
  • the first through hole 221 is used as the liquid injection hole of the battery cell 6, and the detection component 30 is used to seal the first through hole 221. This can reduce the opening of the housing 20 and eliminate the need for conventional sealing. pieces, thereby simplifying the structure of the battery cell 6.
  • Figure 6 is a partial cross-sectional schematic view of a battery cell provided by other embodiments of the present application.
  • the receiving recess 331 is stepped and includes a first section 331 a and a second section 331 b.
  • the second section 331 b is located on a side of the first section 331 a away from the first through hole 221 .
  • the cross section of the first section 331a perpendicular to the axial direction X of the first through hole 221 is smaller than the cross section of the second section 331b perpendicular to the axial direction X of the first through hole 221.
  • the sensor 31 is housed in the second section 331b.
  • the second section 331b has a larger cross-sectional area to provide sufficient accommodation space for the sensor 31.
  • the accommodating recess 331 is provided in a step shape to reduce the size of the opening of the accommodating recess 331 close to the first through hole 221, thereby increasing the contact area between the fixing body 333 and the first wall 20b, and improving stability.
  • the fixing body 333 may be bonded to the first wall 20b.
  • the bonding area between the fixing body 333 and the first wall 20b can be increased.
  • Figure 7 is a partial cross-sectional schematic diagram of a battery cell provided by other embodiments of the present application.
  • the senor 31 is connected to the first wall 20b and covers the first through hole 221 .
  • Connecting the sensor 31 to the first wall 20b can reduce the risk of the sensor 31 shaking when the battery cell 6 vibrates, improve the stability of the sensor 31, and improve the detection accuracy of the sensor 31.
  • the sensor 31 can cover the first through hole 221 to reduce the risk of electrolyte leakage through the first through hole 221 and improve safety.
  • sensor 31 is bonded to first wall 20b.
  • Figure 8 is a schematic cross-sectional view of a battery cell provided by other embodiments of the present application.
  • the housing 20 further includes an electrode terminal 23 disposed on the first wall 20 b, the electrode assembly 10 includes a tab 11 , and the electrode terminal 23 is electrically connected to the tab 11 .
  • the electrode terminal 23 is electrically connected to the tab 11 in a direction perpendicular to the first wall 20b, one end of the fixing member 33 facing away from the first wall 20b does not exceed the electrode terminal 23.
  • the electrode terminal 23 is used to electrically connect the electrode assembly 10 to the circuit outside the battery cell 6 to realize charging and discharging of the electrode assembly 10 .
  • the electrode terminals 23 are used to connect with bus components to achieve electrical connection between the battery cells 6 .
  • the electrode terminal 23 may protrude from the outer surface of the first wall 20b away from the accommodation cavity 20a, so as to facilitate the connection of the electrode terminal 23 with the bus component and reduce the risk of the first wall 20b interfering with the bus component.
  • the space occupied by the electrode terminal 23 in the direction perpendicular to the first wall 20b can be used to dispose the fixing part 33. That is to say, the fixing part 33 will not additionally increase the size of the battery cell 6 perpendicular to the first wall. The size in the direction of 20b thereby improves the space utilization and energy density of the battery cell 6 .
  • the battery cells 6 are prismatic battery cells.
  • FIG. 9 is a schematic three-dimensional structural view of a battery cell provided by other embodiments of the present application;
  • FIG. 10 is a schematic cross-sectional view of the battery cell shown in FIG. 9 .
  • the battery cells 6 are cylindrical battery cells.
  • the same detection component may be used for cylindrical battery cells and prismatic battery cells.
  • the casing 20 of the battery cell 6 includes a top wall, a side wall and a bottom wall.
  • the side wall may be cylindrical, and both the top wall and the bottom wall are disc-shaped, and are respectively connected to two ends of the side wall. end.
  • the first wall 20b may be a top wall or a bottom wall
  • Figure 11 is a schematic three-dimensional structural view of a battery cell provided by other embodiments of the present application
  • Figure 12 is a schematic cross-sectional view of the battery cell shown in Figure 11
  • Figure 13 is an enlarged schematic view of the circular frame B in Figure 12.
  • the housing 20 is provided with an outlet through hole 40 that communicates with the accommodation cavity 20 a.
  • the sensor 31 is accommodated in the accommodation cavity 20 a, and at least part of the connecting member 32 is accommodated in the lead-out through hole 40 and connected to the housing 20 .
  • the connecting piece 32 may or may not protrude to the outside of the housing 20 via the lead-out through hole 40 .
  • Disposing the sensor 31 in the accommodation cavity 20 a can improve the utilization of the internal space of the battery cell 6 and improve the accuracy of the sensor 31 in detecting the status information inside the battery cell 6 .
  • By providing the lead-out through hole 40 at least part of the connector 32 can be exposed, so that the connector 32 can transmit signals to the outside of the housing 20 .
  • the connector 32 is located on a side of the sensor 31 facing the lead-out through hole 40 .
  • the detection component 30 further includes a sealing member 34 , the sealing member 34 connects the hole wall of the lead-out through hole 40 and the connector 32 , and seals the lead-out through hole 40 .
  • the sealing member 34 may be connected to the hole wall of the lead-out through hole 40 and the connecting member 32 through adhesion, interference, welding or other means.
  • the sealing member 34 seals the lead-out through hole 40 to reduce the risk of electrolyte leakage through the lead-out through hole 40 and improve safety.
  • the sealing member 34 can simultaneously serve the function of connecting the hole wall of the lead-out through hole 40 and the connector 32 and the sealing function, thereby simplifying the structure of the detection component 30 .
  • the sealing member 34 is bonded to the hole wall of the lead-out through hole 40 and the connecting member 32 .
  • colloid can be filled between the hole wall of the lead-out through hole 40 and the connecting member 32, and the sealing member 34 is formed after the colloid is solidified.
  • the surface of the sensor 31 facing the electrode assembly 10 is provided with an insulating layer 35 .
  • the risk of the sensor 31 connecting the positive and negative electrode plates can be reduced, thereby improving safety.
  • other surfaces of the sensor 31 may be provided with an insulating layer 35 .
  • the surface of the sensor 31 facing away from the electrode assembly 10 may also be provided with an insulating layer 35 .
  • the insulating layer 35 may be formed by spraying an insulating material on the surface of the sensor 31 .
  • the housing 20 includes a first wall 20b, and the sensor 31 is located on a side of the first wall 20b facing the electrode assembly 10 and spaced apart from the first wall 20b.
  • the first wall 20b can be the end cover 22 or a part of the housing 21.
  • first wall 20b is end cap 22 .
  • the sensor 31 is in contact with the first wall 20b, when the battery cell 6 vibrates, stress concentration may occur at the connection between the sensor 31 and the connector 32, causing the risk of failure of the connection between the sensor 31 and the connector 32.
  • the sensor 31 is spaced apart from the first wall 20b, which can provide space for the sensor 31 to move, thereby reducing the force at the connection between the sensor 31 and the connecting piece 32 when the battery cell 6 vibrates, thereby reducing the stress on the sensor 31.
  • the risk of failure of the connection with the connecting piece 32 improves the safety of the battery cell 6 .
  • the connecting member 32 can be bonded to the first wall 20b, or can be integrally heat-melted with the first wall 20b.
  • the battery cells 6 are configured to inject electrolyte via the lead-through holes 40 .
  • the lead-out through hole 40 is used as the liquid injection hole of the battery cell 6, and the detection component 30 is used to seal the first through hole 221. This can reduce the opening of the casing 20 and eliminate the conventional sealing sheet, thus simplifying the battery cell 6. Structure.
  • the battery cell 6 further includes an insulating component 50 disposed on a surface of the first wall 20b facing the electrode assembly 10 .
  • the sensor 31 is located on the side of the insulating component 50 facing away from the first wall 20b.
  • the insulating component 50 is provided with a first escape hole 51 opposite to the lead-out through hole 40, and the connecting member 32 extends into the lead-out through hole 40 through the first escape hole 51.
  • the first escape hole 51 and the lead-out through hole 40 at least partially overlap.
  • the insulating component 50 is used to insulate and isolate the first wall 20b from the electrode assembly 10, so as to reduce the risk that the first wall 20b conducts the positive and negative electrodes of the electrode assembly 10 and improve safety. By opening the first escape hole 51 , the risk of interference between the insulation component 50 and the connector 32 is reduced.
  • the insulating component 50 is spaced apart from the sensor 31 .
  • the sensor 31 and the insulating member 50 are spaced apart to provide space for the sensor 31 to move, thereby reducing the force at the connection between the sensor 31 and the connector 32 when the battery cell 6 vibrates, and reducing the friction between the sensor 31 and the connector 32.
  • the risk of connection failure between the battery cells 6 is improved, thereby improving the safety of the battery cells 6 .
  • a portion of the connecting member 32 extends to the outside of the housing 20 via the lead-out through hole 40 .
  • the connector 32 protrudes from the outer surface of the housing 20 .
  • the connecting piece 32 protrudes from the outer surface of the first wall 20b.
  • the connecting member 32 extends to the outside of the housing 20 to facilitate connection with devices outside the housing 20 .
  • Figure 14 is a schematic cross-sectional view of a battery cell provided by other embodiments of the present application.
  • the battery cell 6 is a cylindrical battery cell.
  • the housing 20 is provided with an outlet through hole 40 that communicates with the accommodation cavity 20a.
  • the sensor 31 is accommodated in the accommodation cavity 20 a, and at least part of the connecting member 32 is accommodated in the lead-out through hole 40 and connected to the housing 20 .
  • FIG. 15 is a schematic cross-sectional view of a battery cell provided by other embodiments of the present application;
  • FIG. 16 is an enlarged schematic view of the circular frame C in FIG. 15 .
  • the housing 20 includes electrode terminals 23
  • the electrode assembly 10 includes tabs 11
  • the electrode terminals 23 are electrically connected to the tabs 11 .
  • the lead-out through hole 40 is provided on the electrode terminal 23
  • the sensor 31 is provided on the side of the electrode terminal 23 facing the electrode assembly 10 .
  • the electrode terminal 23 can be installed on the end cover 22 or on the housing 21 .
  • the electrode terminal 23 is mounted on the end cap 22 .
  • Providing the lead-out through holes 40 on the electrode terminals 23 can improve the space utilization of the battery cells 6 .
  • the electrode terminal 23 has higher strength. Providing the lead-out through hole 40 on the electrode terminal 23 can improve the stability of the detection component 30 .
  • the connecting member 32 can be bonded to the electrode terminal 23 , or can be integrally heat-melted with the electrode terminal 23 .
  • the battery cell 6 further includes an adapter component 60 for connecting the tab 11 and the electrode terminal 23 .
  • the adapter component 60 includes a terminal connection portion 611 which abuts the surface of the electrode terminal 23 facing the electrode assembly 10 .
  • the terminal connection portion 611 is provided with a second escape hole 612 opposite to the lead-out through hole 40 .
  • the sensor 31 is located on a side of the terminal connection portion 611 away from the electrode terminal 23 , and the connector 32 extends into the lead-out through hole 40 through the second escape hole 612 .
  • the second escape hole 612 and the lead-out through hole 40 at least partially overlap.
  • the terminal connection portion 611 is spaced apart from the sensor 31 .
  • the sensor 31 and the terminal connection part 611 are spaced apart to provide space for the sensor 31 to move, thereby reducing the force at the connection between the sensor 31 and the connector 32 when the battery cell 6 vibrates, and reducing the stress on the sensor 31 and the connector 32
  • the risk of connection failure increases the safety of the battery cells 6 .
  • the connector 32 does not protrude beyond the surface of the electrode terminal 23 facing away from the electrode assembly 10 .
  • the surface of the electrode terminal 23 facing away from the electrode assembly 10 usually needs to be connected to a busing member.
  • the embodiment of the present application can reduce the risk of interference between the connecting piece 32 and the bus component.
  • the adapter component 60 includes an adapter body 62 and an adapter protrusion 61 .
  • the adapter body 62 is connected to the tab 11 .
  • the adapter protrusion 61 protrudes from a surface of the adapter body 62 facing the electrode terminal 23 .
  • the adapter component 60 forms an adapter recess 63 at a position corresponding to the adapter convex portion 61 , and the bottom wall of the adapter recess 63 forms a terminal connection portion 611 .
  • the sensor 31 is accommodated in the adapter recess 63 .
  • Arranging the sensor 31 in the transfer recess 63 can improve space utilization.
  • the side wall of the adapter recess 63 can limit the position of the sensor 31, so as to reduce the shaking amplitude of the sensor 31 when the battery cell 6 vibrates.
  • the terminal connection portion 611 is welded to the electrode terminal 23 .
  • the thickness of the terminal connection part 611 can be reduced, thereby reducing the difficulty of welding the terminal connection part 611 and the electrode terminal 23 .
  • the present application also provides a battery including a plurality of battery cells according to any of the above embodiments.
  • the present application also provides an electrical device, including the battery cell of any of the above embodiments, and the battery cell is used to provide electrical energy to the electrical device.
  • the power-consuming device can be any of the aforementioned devices or systems using battery cells.
  • the battery cell 6 provides a square battery cell 6 , which includes a housing 20 , an electrode assembly 10 and a detection component 30 .
  • the housing 20 includes a housing 21 and an end cover 22.
  • the housing 21 has an opening, and the end cover 22 is used to cover the opening.
  • the housing 21 and the end cover 22 enclose to form a receiving cavity 20a.
  • the electrode assembly 10 is received in the accommodation cavity 20a.
  • the end cover 22 is provided with a first through hole 221 communicating with the accommodation cavity 20a.
  • the detection component 30 includes a sensor 31 , a connecting piece 32 and a fixing piece 33 .
  • the connector 32 includes an optical fiber.
  • the connector 32 is connected to the sensor 31 and forms an optical fiber sensor 31 with the sensor 31 .
  • the surface of the fixing member 33 facing the end cover 22 is against the end cover 22 , and the fixing member 33 is welded to the end cover 22 .
  • the fixing part 33 is provided with a receiving recess 331 which is recessed from the surface of the fixing part 33 facing the end cover 22 .
  • the receiving recess 331 is connected with the first through hole 221 .
  • the bottom wall of the accommodation recess 331 is provided with a second through hole 332 .
  • the sensor 31 is accommodated in the accommodation recess 331 , and the connecting piece 32 is connected to the fixing piece 33 and passes through the second through hole 332 .
  • the sensor 31 is used to detect the status information of the battery cell 6 and generate a signal, and the connector 32 is used to transmit the signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本申请实施例提供一种电池单体、电池以及用电装置。电池单体包括外壳、电极组件和检测部件。外壳具有容纳腔。电极组件收容于容纳腔内。检测部件包括传感器和连接件,传感器通过连接件连接于外壳,且传感器用于检测电池单体的状态信息并生成信号,连接件用于传输信号。传感器可以实时检测电池单体的状态信息,从而根据电池单体的状态信息对电池单体进行调控,改善电池单体的循环性能,降低安全风险,延长电池单体的循环寿命。

Description

电池单体、电池以及用电装置 技术领域
本申请涉及电池技术领域,并且更具体地,涉及一种电池单体、电池以及用电装置。
背景技术
电池单体广泛用于电子设备,例如手机、笔记本电脑、电瓶车、电动汽车、电动飞机、电动轮船、电动玩具汽车、电动玩具轮船、电动玩具飞机和电动工具等等。
如何提高电池单体的安全性,是电池技术中的一个研究方向。
发明内容
本申请提供了一种电池单体、电池以及用电装置,其能提高安全性。
第一方面,本申请实施例提供了一种电池单体,包括外壳、电极组件和检测部件。外壳具有容纳腔。电极组件收容于容纳腔内。检测部件包括传感器和连接件,传感器通过连接件连接于外壳,且传感器用于检测电池单体的状态信息并生成信号,连接件用于传输信号。
传感器可以实时检测电池单体的状态信息,从而根据电池单体的状态信息对电池单体进行调控,改善电池单体的循环性能,降低安全风险,延长电池单体的循环寿命。连接件可同时起到固定传感器的功能和传输信号的功能,从而简化电池单体的结构,并减少传感器损伤的风险。
在一些实施例中,电池单体的状态信息包括电池单体的内部气压、电池单体的温度、电池单体的内部气体成分以及电极组件的变形量中的至少一种。
在一些实施例中,连接件包括光纤。光纤传感技术的灵敏度高,可实现实时监测,能够在电池单体出现问题的情况下及时地报警,便于更换出现问题的电池单体,提高了电池的寿命,节约了成本。
在一些实施例中,传感器包括布拉格光栅和法布里珀罗谐振腔中的至少一者。通过设置布拉格光栅,能够方便地测试电池单体内部的温度和应力等的变化。通过设置法布里珀罗谐振腔作为气压传感器,能够实时准确地监测电池单体内部的气压。
在一些实施例中,外壳包括第一壁,第一壁设有与容纳腔连通的第一通孔。传感器位于第一壁背离容纳腔的一侧,且传感器被配置为通过第一通孔检测电池单体的状态信息。
将传感器设置在第一壁的外侧,可便于实现传感器的安装和更换,简化装配工艺。通过在第一壁上开设第一通孔,可使传感器能够检测电池单体内部的状态信息。
在一些实施例中,在第一通孔的轴向上,传感器与第一通孔相对。传感器发出的探测信号可经由第一通孔进入到容纳腔内,以便于传感器检测电池单体内部的状态信息。
在一些实施例中,传感器连接于第一壁并覆盖第一通孔。将传感器连接于第一壁,可降低传感器在电池单体震动时晃动的风险,提高传感器的稳定性,改善传感器检测的精度。传感器可以覆盖第一通孔,以降低电解液经由第一通孔泄露的风险,提高安全性。
在一些实施例中,检测部件还包括固定件,连接件通过固定件连接于第一壁。
在一些实施例中,固定件面向第一壁的表面与第一壁相抵,且固定件设有从固定件面向第一壁的表面凹陷的容纳凹部,容纳凹部与第一通孔连通。传感器容纳于容纳凹部,连接件连接于固定件并穿过固定件。
固定件可以从外侧保护传感器,降低传感器被外部杂质污染、损伤的风险,提高传感器的精度。连接件穿过固定件,以便于与固定件外部的器件连接。
在一些实施例中,容纳凹部的底壁设有第二通孔,连接件经由第二通孔穿过固定件。经由第二通孔进入容纳凹部的连接件可以上拉传感器,以将传感器连接到固定件,进而提高检测部件的稳定性。
在一些实施例中,检测部件还包括密封件,密封件连接第二通孔的孔壁和连接件,并密封第二通孔。密封件将第二通孔密封,以降低电解液经由第二通孔泄露的风险,提高安全性。密封件可以同时起到连接固定件和连接件的功能和密封功能,从而简化检测部件的结构。
在一些实施例中,密封件粘接于第二通孔的孔壁和连接件。粘接工艺易于实现,并可降低连接件损伤的风险,提高信号传输的准确性。
在一些实施例中,固定件焊接于第一壁。焊接可以提高固定件的连接强度,并改善密封,降低电解液经由固定件和第一壁之间的缝隙泄露的风险。
在一些实施例中,第一壁背离容纳腔的一侧设有定位凹部,第一通孔贯通定位凹部的底壁。固定件的至少部分容纳于定位凹部。
定位凹部可以在装配固定件和第一壁时起到定位的作用,简化装配工艺,提高装配效率。定位凹部还可以容纳固定件的至少部分,以减小固定件凸出第一壁的尺寸,降低固定件占用的空间,提高电池单体的能量密度。
在一些实施例中,固定件包括固定主体和环绕在固定主体的外侧的凸缘,固定主体设有容纳凹部,凸缘的至少部分容纳于定位凹部,且凸缘的外周面连接于定位凹部的侧壁。
通过设置凸缘,可增大定位凹部的侧壁与固定主体的间距,降低在连接凸缘和定位凹部的侧壁时损伤固定主体的风险,改善密封性。
在一些实施例中,凸缘与定位凹部的底壁相抵,以增大第一壁与固定件的接触面积,提高第一壁和固定件连接的稳定性。
在一些实施例中,容纳凹部为台阶状且包括第一段和第二段,第二段位于第一段远离第一通孔的一侧。第一段的垂直于第一通孔的轴向的截面小于第二段的垂直于 第一通孔的轴向的截面。传感器容纳于第二段。
第二段具有较大的横截面积,以为传感器提供足够的容纳空间。将容纳凹部设置为台阶状,以减小容纳凹部的靠近第一通孔的开口的大小,进而增大固定主体与第一壁接触的面积,提高稳定性。
在一些实施例中,外壳还包括设置于第一壁的电极端子,电极组件包括极耳,电极端子电连接于极耳。在垂直于第一壁的方向上,固定件背离第一壁的一端不超出电极端子。
上述技术方案可以利用电极端子在垂直于第一壁的方向上占用的空间来设置固定件,固定件不会额外增大电池单体在垂直于第一壁的方向上的尺寸,从而提高电池单体的空间利用率和能量密度。
在一些实施例中,电池单体被配置为经由第一通孔注入电解液。以第一通孔作为电池单体的注液孔,并利用检测部件来密封第一通孔,这样可以减少外壳的开孔并省去常规的密封片,从而简化电池单体的结构。
在一些实施例中,外壳设有与容纳腔连通的引出通孔。传感器容纳于容纳腔,连接件的至少部分容纳于引出通孔并连接于外壳。
将传感器设置于容纳腔内,可以提高电池单体内部空间的利用率,并提高传感器检测电池单体内部的状态信息的精度。通过设置引出通孔,可以将连接件的至少部分露出,便于连接件将信号传输到外壳的外部。
在一些实施例中,检测部件还包括密封件,密封件连接引出通孔的孔壁和连接件,并密封引出通孔。密封件将引出通孔密封,以降低电解液经由引出通孔泄露的风险,提高安全性。密封件可以同时起到连接引出通孔的孔壁和连接件的功能和密封功能,从而简化检测部件的结构。
在一些实施例中,传感器面向电极组件的表面设有绝缘层。通过设置绝缘层,可在电池单体震动时,降低传感器将正负极片导通的风险,提高安全性。
在一些实施例中,外壳包括第一壁,传感器位于第一壁面向电极组件的一侧并与第一壁间隔设置。将传感器与第一壁间隔设置,可以为传感器提供活动空间,从而在电池单体震动时,减小传感器与连接件的连接处的受力,降低传感器和连接件之间的连接失效的风险,提高电池单体的安全性。
在一些实施例中,电池单体被配置为经由引出通孔注入电解液。以引出通孔作为电池单体的注液孔,并利用检测部件来密封第一通孔,这样可以减少外壳的开孔并省去常规的密封片,从而简化电池单体的结构。
在一些实施例中,电池单体还包括绝缘部件,设置于第一壁的面向电极组件的表面。传感器位于绝缘部件背离第一壁的一侧。绝缘部件设有与引出通孔相对的第一避让孔,连接件经由第一避让孔伸入引出通孔。
绝缘部件用于将第一壁与电极组件绝缘隔离,以降低第一壁将电极组件的正负极导通的风险,提高安全性。通过开设第一避让孔,以降低绝缘部件与连接件干涉的风险。
在一些实施例中,绝缘部件与传感器间隔设置。将传感器与绝缘部件间隔设置, 可以为传感器提供活动空间,从而在电池单体震动时,减小传感器与连接件的连接处的受力,降低传感器和连接件之间的连接失效的风险,提高电池单体的安全性。
在一些实施例中,连接件的一部分经由引出通孔伸到外壳的外部,,以便于连接件与外壳外部的器件连接。
在一些实施例中,外壳包括壳体和端盖,壳体具有开口,端盖用于盖合开口。端盖为外壳的第一壁。相较于壳体,端盖具有较大的厚度,在端盖上设置检测部件,可使检测部件得到稳定的支撑,提高检测部件的稳定性。
在一些实施例中,外壳包括电极端子,电极组件包括极耳,电极端子电连接于极耳。引出通孔设置于电极端子,传感器设置于电极端子面向电极组件的一侧。将引出通孔设置在电极端子上,可提高电池单体的空间利用率。
在一些实施例中,电池单体还包括转接部件,用于连接极耳和电极端子。转接部件包括与电极端子的面向电极组件的表面相抵的端子连接部,端子连接部设有与引出通孔相对的第二避让孔。传感器位于端子连接部背离电极端子的一侧,连接件经由第二避让孔伸入引出通孔。通过开设第二避让孔,以降低转接部件干涉连接件的风险,进而使连接件能够顺畅地伸入引出通孔。
在一些实施例中,端子连接部与传感器间隔设置。将传感器与端子连接部间隔设置,可以为传感器提供活动空间,从而在电池单体震动时,减小传感器与连接件的连接处的受力,降低传感器和连接件之间的连接失效的风险,提高电池单体的安全性。
在一些实施例中,连接件不凸出于电极端子背离电极组件的表面。电极端子背离电极组件的表面通常需要与汇流部件连接,上述技术方案可以降低连接件与汇流部件干涉的风险。
在一些实施例中,转接部件包括转接主体和转接凸部,转接主体连接于极耳,转接凸部凸出于转接主体面向电极端子的表面。转接部件在与转接凸部相对应的位置形成转接凹部,转接凹部的底壁形成端子连接部。传感器容纳于转接凹部。将传感器设置于转接凹部,可以提高空间利用率。转接凹部可侧壁可以对传感器进行限位,以在电池单体震动时,减小传感器晃动的幅度。
在一些实施例中,电池单体为圆柱电池单体或方形电池单体。
第二方面,本申请实施例提供了一种电池,包括多个第一方面任一实施例提供的电池单体。
第三方面,本申请实施例提供了一种用电装置,包括第一方面任一实施例提供的电池单体,电池单体用于提供电能。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为本申请一些实施例提供的车辆的结构示意图;
图2为本申请一些实施例提供的电池的爆炸示意图
图3为本申请一些实施例提供的电池单体的立体结构示意图;
图4为图3所示的电池单体的剖视示意图;
图5为图4在圆框A处的放大示意图;
图6为本申请另一些实施例提供的电池单体的局部剖视示意图;
图7为本申请另一些实施例提供的电池单体的局部剖视示意图;
图8为本申请另一些实施例提供的电池单体的剖视示意图;
图9为本申请另一些实施例提供的电池单体的立体结构示意图;
图10为图9所示的电池单体的剖视示意图;
图11为本申请另一些实施例提供的电池单体的立体结构示意图;
图12为图11所示的电池单体的剖视示意图;
图13为图12在圆框B处的放大示意图;
图14为本申请另一些实施例提供的电池单体的剖视示意图;
图15为本申请另一些实施例提供的电池单体的剖视示意图;
图16为图15在圆框C处的放大示意图。
在附图中,附图并未按照实际的比例绘制。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理 解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中出现的“多个”指的是两个以上(包括两个)。
本申请中,电池单体可以包括锂离子二次电池单体、锂离子一次电池单体、锂硫电池单体、钠锂离子电池单体、钠离子电池单体或镁离子电池单体等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。
本申请中,电池单体可以包括锂离子二次电池单体、锂离子一次电池单体、锂硫电池单体、钠锂离子电池单体、钠离子电池单体或镁离子电池单体等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括电极组件和电解液,电极组件包括正极极片、负极极片和隔离件。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面;正极集流体包括正极涂覆区和连接于正极涂覆区的正极极耳,正极涂覆区涂覆有正极活性物质层,正极极耳未涂覆正极活性物质层。以锂离子电池单体为例,正极集流体的材料可以为铝,正极活性物质层包括正极活性物质,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面;负极集流体包括负极涂覆区和连接于负极涂覆区的负极极耳,负极涂覆区涂覆有负极活性物质层,负极极耳未涂覆负极活性物质层。负极集流体的材料可以为铜,负极活性物质层包括负极活性物质,负极活性物质可以为碳或硅等。隔离件的材质可以为PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等。
电池单体还包括外壳,外壳内部形成用于容纳电极组件的容纳腔。外壳可以从外侧保护电极组件,以避免外部的异物影响电极组件的充电或放电。
在电池单体的循环过程中,可能会出现异常状况。比如,电池单体在经过多次充放电循环后,电池单体内部可能会发生副反应并持续产生气体,气体会增大电池单体内部的气压,进而引发外壳变形、破裂的风险。再比如,电池单体内部出现短路时, 电池单体产热升温,进而引发电池单体热失控的风险。
在电池的使用过程中,如果不能检测到电池单体的异常情况并及时处理,那么将会导致电池单体恶化,引发安全事故。
发明人尝试在电池的电路板上设置检测部件,以实时检测电池单体的工作状态,从而判断电池单体是否出现异常。然而,发明人发现,电路板上的空间有限,难以对每个电池单体都进行单独检测,造成检测结果存在偏差。
鉴于此,本申请实施例提供了一种技术方案,其通过将检测部件集成到电池单体上,以实时检测每个电池单体的状态信息,从而根据电池单体的状态信息对电池单体进行调控,改善电池单体的循环性能,降低安全风险,延长电池单体的循环寿命。
本申请实施例描述的技术方案适用于电池以及使用电池的用电装置。
用电装置可以是车辆、手机、便携式设备、笔记本电脑、轮船、航天器、电动玩具和电动工具等等。车辆可以是燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等;航天器包括飞机、火箭、航天飞机和宇宙飞船等等;电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等;电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨等等。本申请实施例对上述用电装置不做特殊限制。
以下实施例为了方便说明,以用电装置为车辆为例进行说明。
图1为本申请一些实施例提供的车辆的结构示意图。
如图1所示,车辆1的内部设置有电池2,电池2可以设置在车辆1的底部或头部或尾部。电池2可以用于车辆1的供电,例如,电池2可以作为车辆1的操作电源。
车辆1还可以包括控制器3和马达4,控制器3用来控制电池2为马达4供电,例如,用于车辆1的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池2不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,代替或部分地代替燃油或天然气为车辆1提供驱动动力。
图2为本申请一些实施例提供的电池的爆炸示意图。
如图2所示,电池2包括箱体5和电池单体6(未示出),电池单体6容纳于箱体5内。
箱体5用于容纳电池单体6,箱体5可以是多种结构。在一些实施例中,箱体5可以包括第一箱体部5a和第二箱体部5b,第一箱体部5a与第二箱体部5b相互盖合,第一箱体部5a和第二箱体部5b共同限定出用于容纳电池单体6的容纳空间5c。第二箱体部5b可以是一端开口的空心结构,第一箱体部5a为板状结构,第一箱体部5a盖合于第二箱体部5b的开口侧,以形成具有容纳空间5c的箱体5;第一箱体部5a和第二箱体部5b也均可以是一侧开口的空心结构,第一箱体部5a的开口侧盖合于第二箱体部5b的开口侧,以形成具有容纳空间5c的箱体5。当然,第一箱体部5a和第二箱体部5b可以是多种形状,比如,圆柱体、长方体等。
为提高第一箱体部5a与第二箱体部5b连接后的密封性,第一箱体部5a与第二箱体部5b之间也可以设置密封件,比如,密封胶、密封圈等。
假设第一箱体部5a盖合于第二箱体部5b的顶部,第一箱体部5a亦可称之为上箱盖,第二箱体部5b亦可称之为下箱体。
在电池2中,电池单体6可以是一个,也可以是多个。若电池单体6为多个,多个电池单体6之间可串联或并联或混联,混联是指多个电池单体6中既有串联又有并联。多个电池单体6之间可直接串联或并联或混联在一起,再将多个电池单体6构成的整体容纳于箱体5内;当然,也可以是多个电池单体6先串联或并联或混联组成电池模块,多个电池模块再串联或并联或混联形成一个整体,并容纳于箱体5内。
图3为本申请一些实施例提供的电池单体的立体结构示意图;图4为图3所示的电池单体的剖视示意图;图5为图4在圆框A处的放大示意图。
参照图3至图5,本申请实施例提供了一种电池单体6,其包括外壳20、电极组件10和检测部件30。外壳20具有容纳腔20a。电极组件10收容于容纳腔20a内。检测部件30连接于外壳20并用于检测电池单体6的状态信息。
外壳20为空心结构,其内部形成用于容纳电极组件10和电解液的容纳腔20a。外壳20的形状可根据电极组件10的具体形状来确定。比如,若电极组件10为长方体结构,则可选用长方体外壳;若电极组件10为圆柱结构,则可选用圆柱外壳。
外壳20的材质可以是多种,比如,外壳20的材质可以是金属或塑料。可选地,外壳20的材质可以是铜、铁、铝、钢、铝
电极组件10包括正极极片和负极极片。示例性地,电极组件10通过离子在正极极片和负极极片中的嵌入/脱出时的氧化和还原反应来产生电能。可选地,电极组件10还包括隔离膜,隔离膜用于将正极极片和负极极片绝缘隔离。
电极组件10可以是卷绕式电极组件、叠片式电极组件或其它类型的电极组件。
电极组件10可以为一个,也可以为多个。当电极组件10为多个时,多个电极组件10可以层叠布置。
电池单体6的状态信息为表征电池单体6的工作状态的信息,示例性地,电池单体6的状态信息可包括电池单体的内部气压、电池单体的温度、电池单体的内部气体成分、电极组件的变形量、外壳的变形量、电极组件内部枝晶生长状况、电池单体内部的电量等状态信息中的至少一种。
检测部件30可以整体设置于外壳20的内部,也可以整体设置于外壳20的外部。可替代地,检测部件30的一部分可设置于外壳20的内部,一部分设置于外壳20的外部。
检测部件30可以直接连接于外壳20,也可以通过其它构件间接地连接于外壳20。
在申请实施例中,通过将检测部件30集成到电池单体6上,以实时检测电池单体6的状态信息,从而根据电池单体6的状态信息对电池单体6进行调控,改善电池单体6的循环性能,降低安全风险,延长电池单体6的循环寿命。
在一些实施例中,检测部件30包括传感器31和连接件32,传感器31通过连 接件32连接于外壳20,且传感器31用于检测电池单体6的状态信息并生成信号,连接件32用于传输信号。
传感器31可以是电阻式传感器、电感式传感器、电容式传感器、压电式传感器、磁电式传感器、热电式传感器、光电式传感器、数字式传感器、光纤式传感器、超声波传感器、热敏传感器或其它类型的传感器。
检测部件30的传感器31可以为一个,也可以为多个。
传感器31可以设置于外壳20的容纳腔20a内,也可以设置在外壳20的外部。
连接件32可以直接连接于外壳20,也可通过其它部件间接地连接外壳20。传感器31通过连接件32固定到外壳20。
连接件32可用于传输信号。示例性地,连接件32可以用于将传感器31产生的信号传输到电池的数据处理单元,也可将数据处理单元发出的信号传输至传感器31。示例性地,连接件32与数据处理单元之间可通过线缆实现信号的传输,也可通过无线传输技术实现信号的传输。
在本申请实施例中,传感器31可以实时检测电池单体6的状态信息,从而根据电池单体6的状态信息对电池单体6进行调控,改善电池单体6的循环性能,降低安全风险,延长电池单体6的循环寿命。连接件32可同时起到固定传感器31的功能和传输信号的功能,从而简化电池单体6的结构,并减少传感器31损伤的风险。
在一些实施例中,电池单体6的状态信息包括电池单体的内部气压、电池单体的温度、电池单体的内部气体成分以及电极组件的变形量中的至少一种。
示例性地,传感器31可包括温度传感器,温度传感器可设置在外壳20的外部并与外壳20相接触,以检测外壳20的温度。可替代地,温度传感器也可设置外壳20的容纳腔20a内,并检测电池单体6内部的温度。
示例性地,传感器31可包括氢气传感器。氢气传感器31可设置在外壳20的容纳腔20a内,以检测电池单体6内部的氢气成分。可替代地,氢气传感器也可设置在外壳20外,外壳20上可开设通道,电池单体6内部的气体可经由通道作用在氢气传感器上。
当然,传感器31也可包括用于检测其它其它成分的传感器。
示例性地,传感器31可包括气压传感器。气压传感器可设置在外壳20的容纳腔20a内,以检测电池单体6内部的气压。可替代地,气压传感器也可设置在外壳20外,外壳20上可开设通道,电池单体6内部的气体可经由通道作用在气压传感器上。
示例性地,传感器31可包括位移传感器。位移传感器可设置外壳20的容纳腔20a内并与电极组件10相抵。位移传感器可测量电极组件10在充放电过程中膨胀变形量。
示例性地,传感器31可包括应力传感器。应力传感器可插置在电极组件10的正负极片之间,以测量正负极片之间的应力变化。
在一些实施例中,连接件32包括光纤。示例性地,光纤和传感器31构成光纤传感器。
光纤传感技术的核心是光纤–一条纤细的玻璃线,光波能够在其中心进行传播。 光纤主要由三个部分组成:纤芯、包层和保护层。其中包层能够将纤芯发出的杂散光波反射回纤芯中,以保证光波在纤芯中具有最低的传输损耗。这个功能的实现原理是纤芯的光折射率比包层的折射率高,这样光波从纤芯传播到包层的时候会发生全内反射。最外面的保护层提供保护作用,避免外界环境或外力对光纤造成损坏。
光纤直径为10μm-10mm之间,材料为高纯度石英玻璃或者为全塑光纤,长度可以根据需要定制。光纤外面的保护层材料为丙烯酸酯、硅橡胶、尼龙、聚酰亚胺等材质。
光纤传感技术的灵敏度高,可实现实时监测,能够在电池单体6出现问题的情况下及时地报警,便于更换出现问题的电池单体6,提高了电池的寿命,节约了成本。
在一些实施例中,传感器31包括布拉格光栅和法布里珀罗谐振腔中的至少一者。
FBG是指光纤布拉格光栅,其在光纤芯内形成的空间相位周期性光栅,其实质就是在光纤纤芯内形成窄带的滤波器和反射镜。
光纤布拉格光栅(Fiber Bragg Grating,FBG)传感器是一种使用频率最高,范围最广的光纤传感器,这种传感器能根据环境温度以及/或者应变的变化来改变其反射的光波的波长。光纤布拉格光栅是通过全息干涉法或者相位掩膜法来将一小段光敏感的光纤暴露在一个光强周期分布的光波下面。这样光纤的光折射率就会根据其被照射的光波强度而永久改变。这种方法造成的光折射率的周期性变化就叫做光纤布拉格光栅。
当一束广谱的光束被传播到光纤布拉格光栅的时候,光折射率被改变以后的每一小段光纤就只会反射一种特定波长的光波,这个波长称为布拉格波长。这种特性就使光纤布拉格光栅只反射一种特定波长的光波,而其它波长的光波都会被传播。
倾斜布拉格光纤光栅,是近些年来光纤传感器的研究热点,用光学方法在光纤纤芯上刻写倾斜布拉格光纤光栅可以打破了模式耦合过程的圆柱对称性,促使光从纤芯耦合到不同的包层模。这种光纤光栅传感器的光谱是一个优良的窄带共振峰梳状谱,为监测各种微小的调制变化提供了一个高精度的测量工具。倾斜布拉格光纤光栅的包层模式中的截止模式具有较深的倏逝波光场强度和穿透深度,对环境折射率的变化具有非常高的灵敏度,因此可以利用截止模式实现对外界环境折射率和枝晶生长等进行测量,为电池内部电极表面枝晶的生长提供一种高精度测量手段。
通过设置布拉格光栅,能够方便地测试电池单体6内部的温度和应力等的变化。
F-P谐振腔,即法布里珀罗谐振腔(Fabry–Pérot cavity),是光学谐振腔的一种,由两个平行平面反射镜组成,常应用于半导体激光器。
从基本原理来看,光纤传感器会根据所测试的外部环境参数的变化来改变其传播的光波的一个或几个属性,比如强度、相位、偏振状态以及频率等。非固有型(混合型)光纤传感器仅仅将光纤作为光波在设备与传感元件之间的传输介质,而固有型光纤传感器则将光纤本身作为传感元件使用。
在光学中,法布里珀罗谐振腔干涉仪是一种由两块平行的玻璃板组成的多光束干涉仪,其中两块玻璃板相对的内表面都具有高反射率。法布里珀罗干涉仪也经常称 作法布里珀罗谐振腔、F-P腔或法-珀腔,并且当两块玻璃板间用固定长度的空心间隔物来间隔固定时,它也被称作法布里珀罗标准具或直接简称为标准具,但这些术语在使用时并不严格区分。这一干涉仪的特性为,当入射光的频率满足其共振条件时,其透射频谱会出现很高的峰值,对应着很高的透射率。法布里珀罗干涉仪的共振特性和二项色性的滤镜所利用的共振特性是相同的。
通过设置法布里珀罗谐振腔作为气压传感器,能够实时准确地监测电池单体6内部的气压。
在一些实施例中,外壳20包括壳体21和端盖22,壳体21具有开口,端盖22用于盖合开口。
壳体21和端盖22围合形成容纳腔20a。
壳体21可以是多种形状和多种尺寸的,例如长方体形、圆柱体形、六棱柱形等。具体地,壳体21的形状可以根据电极组件10的具体形状和尺寸大小来确定。壳体21的材质可以是多种,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施例对此不作特殊限制。
端盖22的形状可以与壳体21的形状相适应以配合壳体21。可选地,端盖22可以由具有一定硬度和强度的材质(如铝合金)制成,这样,端盖22在受挤压碰撞时就不易发生形变,使电池单体6能够具备更高的结构强度,安全性能也可以有所提高。端盖22通过焊接、粘接、卡接或其它方式连接于壳体21。
壳体21可为一侧开口的结构,端盖22设置为一个并盖合于壳体21的开口。可替代地,壳体21也可为两侧开口的结构,端盖22设置为两个,两个端盖22分别盖合于壳体21的两个开口。
在一些实施例中,电池单体6为圆柱电池单体。示例性地,电池单体6的外壳20为圆柱状。
在一些实施例中,电池单体6为方形电池单体。示例性地,电池单体6的外壳20为长方体状。
在一些实施例中,外壳20包括第一壁20b,第一壁20b设有与容纳腔20a连通的第一通孔221。传感器31位于第一壁20b背离容纳腔20a的一侧,且传感器31被配置为通过第一通孔221检测电池单体6的状态信息。
第一壁20b可以是端盖22,也可以是壳体21的一部分。
第一通孔221可以为一个,也可以为多个。
将传感器31设置在第一壁20b的外侧,可便于实现传感器31的安装和更换,简化装配工艺。通过在第一壁20b上开设第一通孔221,可使传感器31能够检测电池单体6内部的状态信息。
示例性地,传感器31可以检测电池单体6内部的气压、温度、气体成分或其它状态信息。
在一些实施例中,在第一通孔221的轴向X上,传感器31与第一通孔221相对。
在第一通孔221的轴向X上,传感器31的投影与第一通孔221的投影至少部分 地重叠。
传感器31可以封闭第一通孔221;可替代地,在第一通孔221的轴向X上,传感器31也可以与第一通孔221间隔设置。
传感器31发出的探测信号(例如光)可经由第一通孔221进入到容纳腔20a内,以便于传感器31检测电池单体6内部的状态信息。
在一些实施例中,检测部件30还包括固定件33,连接件32通过固定件33连接于第一壁20b。
固定件33可以通过焊接、粘接、卡接或其它方式固定到第一壁20b。
连接件32可以直接连接于固定件33,也可以通过其它构件间接地连接于固定件33。示例性地,连接件32可通过胶体粘接,也可通过与固定件33一体热熔成型。
示例性地,检测部件30的固定件33、传感器31和连接件32可预先装配在一起。在装配检测部件30和外壳20时,将固定件33固定到外壳20的第一壁20b即可。
在一些实施例中,固定件33面向第一壁20b的表面与第一壁20b相抵,且固定件33设有从固定件33面向第一壁20b的表面凹陷的容纳凹部331,容纳凹部331与第一通孔221连通。传感器31容纳于容纳凹部331,连接件32连接于固定件33并穿过固定件33。
连接件32可以从容纳凹部331的底壁穿过,也可以从容纳凹部331的侧壁穿过。
固定件33可以从外侧保护传感器31,降低传感器31被外部杂质污染、损伤的风险,提高传感器31的精度。连接件32穿过固定件33,以便于与固定件33外部的器件连接。
在一些实施例中,容纳凹部331的底壁设有第二通孔332,连接件32经由第二通孔332穿过固定件33。
经由第二通孔332进入容纳凹部331的连接件32可以上拉传感器31,以将传感器31连接到固定件33,进而提高检测部件30的稳定性。
示例性地,连接件32可连接于传感器31背离第一通孔221的一侧。
示例性地,连接件32可以采用柔性结构。连接件32可以从上拉传感器31,所以柔性的连接件32也可以实现传感器31的固定。柔性的连接件32可变形,便于与其它部件连接。
在一些实施例中,检测部件30还包括密封件34,密封件34连接第二通孔332的孔壁和连接件32,并密封第二通孔332。
密封件34可通过粘接、过盈、熔接或其它方式连接于第二通孔332的孔壁和连接件32。
密封件34将第二通孔332密封,以降低电解液经由第二通孔332泄露的风险,提高安全性。密封件34可以同时起到连接固定件33和连接件32的功能和密封功能,从而简化检测部件30的结构。
在一些实施例中,密封件34粘接于第二通孔332的孔壁和连接件32。
示例性地,可在第二通孔332的孔壁和连接件32之间填充胶体,胶体固化后形 成密封件34。
粘接工艺易于实现,并可降低连接件32损伤的风险,提高信号传输的准确性。
在一些实施例中,固定件33焊接于第一壁20b。焊接可以提高固定件33的连接强度,并改善密封,降低电解液经由固定件33和第一壁20b之间的缝隙泄露的风险。
在一些实施例中,固定件33可为金属件或塑胶件。可选地,固定件33为金属件,金属件具有较高的强度,以稳定地支撑连接件32和传感器31。
在一些实施例中,第一壁20b背离容纳腔20a的一侧设有定位凹部222,第一通孔221贯通定位凹部222的底壁。固定件33的至少部分容纳于定位凹部222。
定位凹部222可以在装配固定件33和第一壁20b时起到定位的作用,简化装配工艺,提高装配效率。定位凹部222还可以容纳固定件33的至少部分,以减小固定件33凸出第一壁20b的尺寸,降低固定件33占用的空间,提高电池单体6的能量密度。
在一些实施例中,固定件33包括固定主体333和环绕在固定主体333的外侧的凸缘334。固定主体333设有容纳凹部331,凸缘334的至少部分容纳于定位凹部222,且凸缘334的外周面连接于定位凹部222的侧壁。
通过设置凸缘334,可增大定位凹部222的侧壁与固定主体333的间距,降低在连接凸缘334和定位凹部222的侧壁时损伤固定主体333的风险,改善密封性。
示例性地,激光可作用在凸缘334和定位凹部222的侧壁的交界处,以将凸缘334和定位凹部222的侧壁焊接。通过设置凸缘334,可增大定位凹部222的侧壁与固定主体333的间距,降低固定主体333与焊接设备干涉的风险。
在一些实施例中,凸缘334与定位凹部222的底壁相抵,以增大第一壁20b与固定件33的接触面积,提高第一壁20b和固定件33连接的稳定性。
在一些实施例中,凸缘334和固定主体333粘接于定位凹部222的底壁。
在一些实施例中,凸缘334面向定位凹部222的底壁的表面与固定主体333向定位凹部222的底壁的表面齐平。
在一些实施例中,端盖22为外壳20的第一壁20b。相较于壳体21,端盖22具有较大的厚度,在端盖22上设置检测部件30,可使检测部件30得到稳定的支撑,提高检测部件30的稳定性。
在一些实施例中,电池单体6被配置为经由第一通孔221注入电解液。
在电池单体的生产过程中,需要向外壳的内部注入电解液。为了实现电解液的注入,通常需要在电池单体上开设注液孔。当与注液孔相关的工艺完成后,需要在外壳上设置密封片,以密封注液孔。
在本申请实施例中,以第一通孔221作为电池单体6的注液孔,并利用检测部件30来密封第一通孔221,这样可以减少外壳20的开孔并省去常规的密封片,从而简化电池单体6的结构。
图6为本申请另一些实施例提供的电池单体的局部剖视示意图。
如图6所示,在一些实施例中,容纳凹部331为台阶状且包括第一段331a和第二段331b,第二段331b位于第一段331a远离第一通孔221的一侧。第一段331a的垂直于第一通孔221的轴向X的截面小于第二段331b的垂直于第一通孔221的轴向X的 截面。传感器31容纳于第二段331b。
第二段331b具有较大的横截面积,以为传感器31提供足够的容纳空间。将容纳凹部331设置为台阶状,以减小容纳凹部331的靠近第一通孔221的开口的大小,进而增大固定主体333与第一壁20b接触的面积,提高稳定性。
在一些实施例中,固定主体333可粘接于第一壁20b。通过将容纳凹部331设置为台阶状,可以增大固定主体333与第一壁20b之间的粘接面积。
图7为本申请另一些实施例提供的电池单体的局部剖视示意图。
如图7所示,在一些实施例中,传感器31连接于第一壁20b并覆盖第一通孔221。
将传感器31连接于第一壁20b,可降低传感器31在电池单体6震动时晃动的风险,提高传感器31的稳定性,改善传感器31检测的精度。传感器31可以覆盖第一通孔221,以降低电解液经由第一通孔221泄露的风险,提高安全性。
在一些实施例中,传感器31粘接于第一壁20b。
图8为本申请另一些实施例提供的电池单体的剖视示意图。
如图8所示,在一些实施例中,外壳20还包括设置于第一壁20b的电极端子23,电极组件10包括极耳11,电极端子23电连接于极耳11。在垂直于第一壁20b的方向上,固定件33背离第一壁20b的一端不超出电极端子23。
电极端子23用于将电极组件10与电池单体6外部的电路电连接,以实现电极组件10的充放电。可选地,电极端子23用于与汇流部件连接,以实现电池单体6之间的电连接。
示例性地,电极端子23可凸出于第一壁20b的背离容纳腔20a的外表面,以便于电极端子23与汇流部件连接,降低第一壁20b干涉汇流部件的风险。
本申请实施例可以利用电极端子23在垂直于第一壁20b的方向上占用的空间来设置固定件33,也就是说,固定件33不会额外增大电池单体6在垂直于第一壁20b的方向上的尺寸,从而提高电池单体6的空间利用率和能量密度。
在一些实施例中,电池单体6为方形电池单体。
图9为本申请另一些实施例提供的电池单体的立体结构示意图;图10为图9所示的电池单体的剖视示意图。
如图9和图10所示,在一些实施例中,电池单体6为圆柱电池单体。
在一些实施例中,圆柱电池单体可与方形电池单体可采用相同的检测部件。
在一些实施例中,电池单体6的外壳20包括顶壁、侧壁和底壁,侧壁可为圆筒状,顶壁和底壁均为圆板状,且分别连接于侧壁的两端。可选地,第一壁20b可为顶壁或底壁
图11为本申请另一些实施例提供的电池单体的立体结构示意图;图12为图11所示的电池单体的剖视示意图;图13为图12在圆框B处的放大示意图。
如图11至图13所示,在一些实施例中,外壳20设有与容纳腔20a连通的引出通孔40。传感器31容纳于容纳腔20a,连接件32的至少部分容纳于引出通孔40并连接于外壳20。
连接件32可经由引出通孔40伸出到外壳20的外部,也可不伸出到外壳20的外部。
将传感器31设置于容纳腔20a内,可以提高电池单体6内部空间的利用率,并提高传感器31检测电池单体6内部的状态信息的精度。通过设置引出通孔40,可以将连接件32的至少部分露出,便于连接件32将信号传输到外壳20的外部。
在一些实施例中,连接件32位于传感器31面向引出通孔40的一侧。
在一些实施例中,检测部件30还包括密封件34,密封件34连接引出通孔40的孔壁和连接件32,并密封引出通孔40。
密封件34可通过粘接、过盈、熔接或其它方式连接于引出通孔40的孔壁和连接件32。
密封件34将引出通孔40密封,以降低电解液经由引出通孔40泄露的风险,提高安全性。密封件34可以同时起到连接引出通孔40的孔壁和连接件32的功能和密封功能,从而简化检测部件30的结构。
在一些实施例中,密封件34粘接于引出通孔40的孔壁和连接件32。示例性地,可在引出通孔40的孔壁和连接件32之间填充胶体,胶体固化后形成密封件34。
在一些实施例中,传感器31面向电极组件10的表面设有绝缘层35。
通过设置绝缘层35,可在电池单体6震动时,降低传感器31将正负极片导通的风险,提高安全性。
在一些实施例中,传感器31的其它表面可设置有绝缘层35。例如,传感器31背离电极组件10的表面也可设有绝缘层35。示例性地,可通过在传感器31的表面喷涂绝缘材料来形成绝缘层35。
在一些实施例中,外壳20包括第一壁20b,传感器31位于第一壁20b面向电极组件10的一侧并与第一壁20b间隔设置。
第一壁20b可以是端盖22,也可以是壳体21的一部分。示例性地,第一壁20b为端盖22。
如果传感器31与第一壁20b接触,那么当电池单体6震动时,传感器31和连接件32的连接处可能会产生应力集中,引发传感器31和连接件32之间的连接失效的风险。本申请实施例将传感器31与第一壁20b间隔设置,可以为传感器31提供活动空间,从而在电池单体6震动时,减小传感器31与连接件32的连接处的受力,降低传感器31和连接件32之间的连接失效的风险,提高电池单体6的安全性。
在一些实施例中,连接件32可以和第一壁20b粘接,也可与第一壁20b一体热熔成型。
在一些实施例中,电池单体6被配置为经由引出通孔40注入电解液。
以引出通孔40作为电池单体6的注液孔,并利用检测部件30来密封第一通孔221,这样可以减少外壳20的开孔并省去常规的密封片,从而简化电池单体6的结构。
在一些实施例中,电池单体6还包括绝缘部件50,设置于第一壁20b的面向电极组件10的表面。传感器31位于绝缘部件50背离第一壁20b的一侧。绝缘部件50设有与引出通孔40相对的第一避让孔51,连接件32经由第一避让孔51伸入引出通孔 40。
在引出通孔40的轴向Y上,第一避让孔51和引出通孔40至少部分地重叠。
绝缘部件50用于将第一壁20b与电极组件10绝缘隔离,以降低第一壁20b将电极组件10的正负极导通的风险,提高安全性。通过开设第一避让孔51,以降低绝缘部件50与连接件32干涉的风险。
在一些实施例中,绝缘部件50与传感器31间隔设置。
将传感器31与绝缘部件50间隔设置,可以为传感器31提供活动空间,从而在电池单体6震动时,减小传感器31与连接件32的连接处的受力,降低传感器31和连接件32之间的连接失效的风险,提高电池单体6的安全性。
在一些实施例中,连接件32的一部分经由引出通孔40伸到外壳20的外部。
示例性地,连接件32凸出于外壳20的外表面。可选地,连接件32凸出于第一壁20b的外表面。
连接件32伸到外壳20的外部,以便于与外壳20外部的器件连接。
图14为本申请另一些实施例提供的电池单体的剖视示意图。
如图14所示,在一些实施例中,电池单体6为圆柱电池单体。
在一些实施例中,外壳20设有与容纳腔20a连通的引出通孔40。传感器31容纳于容纳腔20a,连接件32的至少部分容纳于引出通孔40并连接于外壳20。
图15为本申请另一些实施例提供的电池单体的剖视示意图;图16为图15在圆框C处的放大示意图。
如图15和图16所示,在一些实施例中,外壳20包括电极端子23,电极组件10包括极耳11,电极端子23电连接于极耳11。引出通孔40设置于电极端子23,传感器31设置于电极端子23面向电极组件10的一侧。
电极端子23可以安装于端盖22,也可以安装于壳体21。示例性地,电极端子23安装于端盖22。
将引出通孔40设置在电极端子23上,可提高电池单体6的空间利用率。
相较于壳体21和端盖22,电极端子23具有较高的强度。将引出通孔40设置在电极端子23上,可提高检测部件30的稳定性。
在一些实施例中,连接件32可以粘接于电极端子23,也可与电极端子23一体热熔成型。
在一些实施例中,电池单体6还包括转接部件60,用于连接极耳11和电极端子23。转接部件60包括与电极端子23的面向电极组件10的表面相抵的端子连接部611,端子连接部611设有与引出通孔40相对的第二避让孔612。传感器31位于端子连接部611背离电极端子23的一侧,连接件32经由第二避让孔612伸入引出通孔40。
在引出通孔40的轴向Y上,第二避让孔612和引出通孔40至少部分地重叠。
通过开设第二避让孔612,以降低转接部件60干涉连接件32的风险,进而使连接件32能够顺畅地伸入引出通孔40。
在一些实施例中,端子连接部611与传感器31间隔设置。
将传感器31与端子连接部611间隔设置,可以为传感器31提供活动空间,从 而在电池单体6震动时,减小传感器31与连接件32的连接处的受力,降低传感器31和连接件32之间的连接失效的风险,提高电池单体6的安全性。
在一些实施例中,连接件32不凸出于电极端子23背离电极组件10的表面。
电极端子23背离电极组件10的表面通常需要与汇流部件连接。本申请实施例可以降低连接件32与汇流部件干涉的风险。
在一些实施例中,转接部件60包括转接主体62和转接凸部61,转接主体62连接于极耳11,转接凸部61凸出于转接主体62面向电极端子23的表面。转接部件60在与转接凸部61相对应的位置形成转接凹部63,转接凹部63的底壁形成端子连接部611。传感器31容纳于转接凹部63。
将传感器31设置于转接凹部63,可以提高空间利用率。转接凹部63可侧壁可以对传感器31进行限位,以在电池单体6震动时,减小传感器31晃动的幅度。
在一些实施例中,端子连接部611焊接于电极端子23。通过开设转接凹部63,可减小端子连接部611的厚度,从而减小端子连接部611与电极端子23焊接的难度。
根据本申请的一些实施例,本申请还提供了一种电池,包括多个以上任一实施例的电池单体。
根据本申请的一些实施例,本申请还提供了一种用电装置,包括以上任一实施例的电池单体,电池单体用于为用电装置提供电能。用电装置可以是前述任一应用电池单体的设备或系统。
参照图3至图5,根据本申请实施例的电池单体6提供了一种方形的电池单体6,其包括外壳20、电极组件10和检测部件30。外壳20包括壳体21和端盖22,壳体21具有开口,端盖22用于盖合开口。壳体21和端盖22围合形成容纳腔20a。电极组件10收容于容纳腔20a内。端盖22设有与容纳腔20a连通的第一通孔221。
检测部件30包括传感器31、连接件32和固定件33。连接件32包括光纤,连接件32连接于传感器31并与传感器31构成光纤传感器31。
固定件33面向端盖22的表面与端盖22相抵,且固定件33焊接于端盖22。固定件33设有从固定件33面向端盖22的表面凹陷的容纳凹部331,容纳凹部331与第一通孔221连通。容纳凹部331的底壁设有第二通孔332。传感器31容纳于容纳凹部331,连接件32连接于固定件33并穿过第二通孔332。
传感器31用于检测电池单体6的状态信息并生成信号,连接件32用于传输信号。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,但这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (36)

  1. 一种电池单体,包括:
    外壳,具有容纳腔;
    电极组件,收容于所述容纳腔内;以及
    检测部件,包括传感器和连接件,所述传感器通过所述连接件连接于所述外壳,且所述传感器用于检测所述电池单体的状态信息并生成信号,所述连接件用于传输所述信号。
  2. 根据权利要求1所述的电池单体,其中,所述电池单体的状态信息包括所述电池单体的内部气压、所述电池单体的温度、所述电池单体的内部气体成分以及所述电极组件的变形量中的至少一种。
  3. 根据权利要求1或2所述的电池单体,其中,所述连接件包括光纤。
  4. 根据权利要求1-3中任一项所述的电池单体,其中,所述传感器包括布拉格光栅和法布里珀罗谐振腔中的至少一者。
  5. 根据权利要求1-4任一项所述的电池单体,其中,所述外壳包括第一壁,所述第一壁设有与所述容纳腔连通的第一通孔;
    所述传感器位于所述第一壁背离所述容纳腔的一侧,且所述传感器被配置为通过所述第一通孔检测所述电池单体的状态信息。
  6. 根据权利要求5所述的电池单体,其中,在所述第一通孔的轴向上,所述传感器与所述第一通孔相对。
  7. 根据权利要求6所述的电池单体,其中,所述传感器连接于所述第一壁并覆盖所述第一通孔。
  8. 根据权利要求5或6所述的电池单体,其中,所述检测部件还包括固定件,所述连接件通过所述固定件连接于所述第一壁。
  9. 根据权利要求8所述的电池单体,其中,所述固定件面向所述第一壁的表面与所述第一壁相抵,且所述固定件设有从所述固定件面向所述第一壁的表面凹陷的容纳凹部,所述容纳凹部与所述第一通孔连通;
    所述传感器容纳于所述容纳凹部,所述连接件连接于所述固定件并穿过所述固定件。
  10. 根据权利要求9所述的电池单体,其中,所述容纳凹部的底壁设有第二通孔,所述连接件经由所述第二通孔穿过所述固定件。
  11. 根据权利要求10所述的电池单体,其中,所述检测部件还包括密封件,所述密封件连接所述第二通孔的孔壁和所述连接件,并密封所述第二通孔。
  12. 根据权利要求11所述的电池单体,其中,所述密封件粘接于所述第二通孔的孔壁和所述连接件。
  13. 根据权利要求9-12任一项所述的电池单体,其中,所述固定件焊接于所述第一壁。
  14. 根据权利要求9-13任一项所述的电池单体,其中,所述第一壁背离所述容纳腔的一侧设有定位凹部,所述第一通孔贯通所述定位凹部的底壁;
    所述固定件的至少部分容纳于所述定位凹部。
  15. 根据权利要求14所述的电池单体,其中,所述固定件包括固定主体和环绕在所述固定主体的外侧的凸缘,所述固定主体设有所述容纳凹部,所述凸缘的至少部分容纳于所述定位凹部,且所述凸缘的外周面连接于所述定位凹部的侧壁。
  16. 根据权利要求15所述的电池单体,其中,所述凸缘与所述定位凹部的底壁相抵。
  17. 根据权利要求9-16任一项所述的电池单体,其中,所述容纳凹部为台阶状且包括第一段和第二段,所述第二段位于所述第一段远离所述第一通孔的一侧;
    所述第一段的垂直于所述第一通孔的轴向的截面小于所述第二段的垂直于所述第一通孔的轴向的截面;
    所述传感器容纳于所述第二段。
  18. 根据权利要求9-17任一项所述的电池单体,其中,所述外壳还包括设置于所述第一壁的电极端子,所述电极组件包括极耳,所述电极端子电连接于所述极耳;
    在垂直于所述第一壁的方向上,所述固定件背离所述第一壁的一端不超出所述电极端子。
  19. 根据权利要求5-18任一项所述的电池单体,被配置为经由所述第一通孔注入电解液。
  20. 根据权利要求1-4任一项所述的电池单体,其中,所述外壳设有与所述容纳腔连通的引出通孔;
    所述传感器容纳于所述容纳腔,所述连接件的至少部分容纳于所述引出通孔并连接于所述外壳。
  21. 根据权利要求20所述的电池单体,其中,所述检测部件还包括密封件,所述密封件连接所述引出通孔的孔壁和所述连接件,并密封所述引出通孔。
  22. 根据权利要求20或21所述的电池单体,其中,所述传感器面向所述电极组件的表面设有绝缘层。
  23. 根据权利要求20-22任一项所述的电池单体,其中,所述外壳包括第一壁,所述传感器位于所述第一壁面向所述电极组件的一侧并与所述第一壁间隔设置。
  24. 根据权利要求23所述的电池单体,被配置为经由所述引出通孔注入电解液。
  25. 根据权利要求23或24所述的电池单体,还包括绝缘部件,设置于所述第一壁的面向所述电极组件的表面;
    所述传感器位于所述绝缘部件背离所述第一壁的一侧;所述绝缘部件设有与所述引出通孔相对的第一避让孔,所述连接件经由所述第一避让孔伸入所述引出通孔。
  26. 根据权利要求25所述的电池单体,其中,所述绝缘部件与所述传感器间隔设置。
  27. 根据权利要求23-26任一项所述的电池单体,其中,所述连接件的一部分经由所述引出通孔伸到所述外壳的外部。
  28. 根据权利要求5-19以及23-27中任一项所述的电池单体,其中,所述外壳包括壳体和端盖,所述壳体具有开口,所述端盖用于盖合所述开口;
    所述端盖为所述外壳的第一壁。
  29. 根据权利要求20-22任一项所述的电池单体,其中,所述外壳包括电极端子,所述电极组件包括极耳,所述电极端子电连接于所述极耳;
    所述引出通孔设置于所述电极端子,所述传感器设置于所述电极端子面向所述电极组件的一侧。
  30. 根据权利要求29所述的电池单体,还包括转接部件,用于连接所述极耳和所述电极端子;
    所述转接部件包括与所述电极端子的面向所述电极组件的表面相抵的端子连接部,所述端子连接部设有与所述引出通孔相对的第二避让孔;
    所述传感器位于所述端子连接部背离所述电极端子的一侧,所述连接件经由所述第二避让孔伸入所述引出通孔。
  31. 根据权利要求30所述的电池单体,其中,所述端子连接部与所述传感器间隔设置。
  32. 根据权利要求30或31所述的电池单体,其中,所述连接件不凸出于所述电极端子背离所述电极组件的表面。
  33. 根据权利要求30-32任一项所述的电池单体,其中,所述转接部件包括转接主体和转接凸部,所述转接主体连接于所述极耳,所述转接凸部凸出于所述转接主体面向所述电极端子的表面;
    所述转接部件在与所述转接凸部相对应的位置形成转接凹部,所述转接凹部的底壁形成所述端子连接部;
    所述传感器容纳于所述转接凹部。
  34. 根据权利要求1-33任一项所述的电池单体,其中,所述电池单体为圆柱电池单体或方形电池单体。
  35. 一种电池,包括多个根据权利要求1-34中任一项所述的电池单体。
  36. 一种用电装置,包括根据权利要求1-34中任一项所述的电池单体,所述电池单体用于提供电能。
PCT/CN2022/115749 2022-08-30 2022-08-30 电池单体、电池以及用电装置 WO2024044943A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/115749 WO2024044943A1 (zh) 2022-08-30 2022-08-30 电池单体、电池以及用电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/115749 WO2024044943A1 (zh) 2022-08-30 2022-08-30 电池单体、电池以及用电装置

Publications (1)

Publication Number Publication Date
WO2024044943A1 true WO2024044943A1 (zh) 2024-03-07

Family

ID=90100225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115749 WO2024044943A1 (zh) 2022-08-30 2022-08-30 电池单体、电池以及用电装置

Country Status (1)

Country Link
WO (1) WO2024044943A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201266657Y (zh) * 2008-09-25 2009-07-01 上海纳米技术及应用国家工程研究中心有限公司 内置压力感应器的蓄电池
US20120276427A1 (en) * 2011-04-26 2012-11-01 Duk-Jung Kim Rechargeable battery
CN103868533A (zh) * 2012-12-17 2014-06-18 英飞凌科技股份有限公司 传感器模块和电池元件
JP2014192104A (ja) * 2013-03-28 2014-10-06 Mitsubishi Electric Corp 電池
DE102014106056A1 (de) * 2014-04-30 2015-11-05 Elringklinger Ag Elektrochemische Zelle
CN105742740A (zh) * 2016-02-24 2016-07-06 宁德时代新能源科技股份有限公司 锂离子电池测温结构
CN217182205U (zh) * 2022-03-30 2022-08-12 宁德时代新能源科技股份有限公司 电池的电极组件、电池单体、电池和用电设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201266657Y (zh) * 2008-09-25 2009-07-01 上海纳米技术及应用国家工程研究中心有限公司 内置压力感应器的蓄电池
US20120276427A1 (en) * 2011-04-26 2012-11-01 Duk-Jung Kim Rechargeable battery
CN103868533A (zh) * 2012-12-17 2014-06-18 英飞凌科技股份有限公司 传感器模块和电池元件
JP2014192104A (ja) * 2013-03-28 2014-10-06 Mitsubishi Electric Corp 電池
DE102014106056A1 (de) * 2014-04-30 2015-11-05 Elringklinger Ag Elektrochemische Zelle
CN105742740A (zh) * 2016-02-24 2016-07-06 宁德时代新能源科技股份有限公司 锂离子电池测温结构
CN217182205U (zh) * 2022-03-30 2022-08-12 宁德时代新能源科技股份有限公司 电池的电极组件、电池单体、电池和用电设备

Similar Documents

Publication Publication Date Title
JP4580037B1 (ja) 電池システム、及び電池の安全警報システム
WO2021209961A1 (en) Battery block comprising battery cells and a fiber-optic sensing systems for the in situ monitoring of said battery cells
CN216085200U (zh) 电池单体、电池以及用电装置
CN217182205U (zh) 电池的电极组件、电池单体、电池和用电设备
EP2620995A1 (en) Battery module and battery system
JP2011233343A (ja) 電池システム、及び電池の安全警報システム
CN216085053U (zh) 电池和用电设备
CN216872123U (zh) 盖板组件、电池单体、电池和用电设备
CN212323099U (zh) 可无线测温的电池包
WO2023142894A1 (zh) 电池单体、电池及用电装置
WO2024044943A1 (zh) 电池单体、电池以及用电装置
CN116315205A (zh) 储能设备检测系统、方法、设备及存储介质
CN218919083U (zh) 电池单体的端盖组件、电池单体、电池以及用电装置
WO2023025104A1 (zh) 电池单体、电池以及用电装置
US20230207992A1 (en) Battery cell, method and system for manufacturing same, battery, and electrical device
CN217158301U (zh) 供电装置以及用电装置
WO2023050289A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
CN115876232A (zh) 电池单体以及用于该电池单体的光纤
WO2024114076A1 (zh) 电池单体、电池以及用电装置
CN220341479U (zh) 电池和用电装置
CN116508197A (zh) 电池单体、电池、用电设备以及制备电池单体的方法和装置
CN116368393A (zh) 电池、用电装置和制备电池的方法
CN111697183A (zh) 可无线测温的电池包
WO2024065514A1 (zh) 电池单体的端盖组件、电池单体、电池以及用电装置
CN218919088U (zh) 电池单体的端盖组件、电池单体、电池以及用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956777

Country of ref document: EP

Kind code of ref document: A1