WO2024044911A1 - 一种雨刮系统的测试装置 - Google Patents

一种雨刮系统的测试装置 Download PDF

Info

Publication number
WO2024044911A1
WO2024044911A1 PCT/CN2022/115594 CN2022115594W WO2024044911A1 WO 2024044911 A1 WO2024044911 A1 WO 2024044911A1 CN 2022115594 W CN2022115594 W CN 2022115594W WO 2024044911 A1 WO2024044911 A1 WO 2024044911A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiper
motor assembly
simulation
simulation cabinet
resistance
Prior art date
Application number
PCT/CN2022/115594
Other languages
English (en)
French (fr)
Inventor
王辉
任思佳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2022/115594 priority Critical patent/WO2024044911A1/zh
Publication of WO2024044911A1 publication Critical patent/WO2024044911A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/04Wipers or the like, e.g. scrapers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring

Definitions

  • the present application relates to the field of automotive electronics technology, and in particular to a test device for a wiper system.
  • the vehicle's wiper system mainly includes a control system, wiper motor assembly, wiper mechanism and other components. It is used to wipe away rain, snow, dust and other visual obstacles attached to the vehicle windshield to improve vehicle driving.
  • the function of driving vision and ensuring driving safety is very important. Therefore, during the vehicle development stage, testing the performance of the wiper system becomes particularly important.
  • the wiper system and windshield need to be installed on a test bench, and the clamping and other devices used to install the wiper system and windshield need to be customized. Since the wiper systems, windshields and other components of different vehicles may have different sizes, when testing different wiper systems, it is necessary to customize clamping and other devices separately, which results in high testing costs. And because a complete wiper system and windshield need to be installed on the test bench, the test cannot be carried out until the wiper system is completely manufactured, and the testing process is lagging behind.
  • This application provides a test device for a wiper system, which is used in the forward test process and reduces test costs.
  • a test device for a wiper system includes: a simulation cabinet and a load motor system.
  • the simulation cabinet is connected to the load motor system.
  • the simulation cabinet and the load motor system are respectively connected to
  • the wiper system is connected, the wiper system includes a wiper controller and a wiper motor assembly, the wiper controller is connected to the wiper motor assembly, wherein: the simulation cabinet is used to provide the The wiper system sends a first instruction, which is used to instruct the movement of the wiper motor assembly; the wiper controller is used to receive the first instruction and drive the wiper motor assembly according to the first instruction.
  • the wiper motor assembly moves; the simulation cabinet is also used to determine resistance information according to the movement parameters of the wiper motor assembly, and send the resistance information to the load motor system; the load motor system , used to apply resistance to the wiper motor assembly based on the resistance information, and the resistance is used to hinder the movement of the wiper motor assembly; the simulation cabinet is also used to collect the data of the wiper system. Actual working data to complete testing of the wiper system.
  • the load (resistance information) that the wiper motor assembly needs to operate can be determined through the simulation cabinet based on the motion parameters of the wiper motor assembly, and then the load motor system can generate a generator based on the load.
  • Corresponding resistance is applied to the wiper motor assembly to hinder the movement of the wiper motor assembly, so that the wiper system test can be completed without the need to install the complete wiper system and windshield on the test bench.
  • the wiper system to be tested can only include the wiper motor assembly, and does not need to include other components of the wiper system. Therefore, the wiper system can be tested without waiting for the wiper system to be completely manufactured. This moves the testing process forward, and has It is helpful to obtain test results as early as possible, so as to have more time to improve the wiper system.
  • the test device further includes a coupling, the wiper motor assembly and the load motor system are connected through the coupling, and the coupling is used to provide the The wiper motor assembly transmits the load to the motor system to apply the resistance.
  • the wiper motor assembly and the load motor system are mechanically connected through a coupling, so that the resistance generated by the load motor system can act on the wiper motor assembly through hardware devices, producing real resistance and hindering the wiper motor assembly. exercise, the test results are more accurate.
  • the coupling is also used to transmit motion information of the output shaft of the wiper motor assembly to the load motor system.
  • the wiper motor assembly transmits the real motion information of the output shaft of the wiper motor assembly to the load motor system through the coupling, which helps to improve test accuracy.
  • the load motor system is also used to determine motion parameters based on the motion information, and send the motion parameters to the simulation cabinet, where the motion parameters are used for the simulation cabinet to determine the motion parameters.
  • the resistance information, the motion parameter includes a first rotation angle of the output shaft, and the first rotation angle is used to indicate the angle at which the output shaft deviates from a preset position.
  • the motion parameters of the output shaft of the wiper motor assembly obtained by the load motor system through the coupling are more accurate, so that the resistance information that the simulation cabinet can determine based on the motion parameters is also more accurate, which helps to improve test accuracy. .
  • the simulation cabinet includes a simulation system, which is used to run a resistance model, a linkage mechanism dynamic model and a wiper wiper dynamics model motor model, wherein: the linkage mechanism The dynamic model is used to determine a second rotation angle of the first wiper arm in the wiper system based on the first rotation angle, and determine a third rotation angle of the second wiper arm; the resistance model is used to determine a third rotation angle.
  • multiple models are run through the simulation system, and the resistance information is determined based on the calculation results of the multiple models.
  • the angle between the link mechanism and the first wiper arm and the second wiper arm is simulated through the linkage mechanism dynamic model.
  • the relationship between friction resistance and air resistance is simulated through the resistance model, such as simulating the friction resistance between the wiper blade on the wiper arm and the glass and the air resistance experienced by the wiper arm, and simulating the first rain through the wiper blade dynamics model.
  • the movement of the wiper blade and the second wiper blade makes it possible to move the wiper system forward during the test of the wiper system without installing linkage mechanisms, wiper arms and other devices, thereby saving testing costs.
  • these multiple models can simulate the movement of link mechanisms, wiper arms and other devices in different wiper systems, so that the test device can be used to test different wiper systems and has good system compatibility.
  • the resistance information includes first resistance information corresponding to the first wiper blade and second resistance information corresponding to the second wiper blade.
  • the wiper system generally includes two left and right wiper blades (such as the first wiper blade and the second wiper blade mentioned above).
  • the wipers on the left and right sides move.
  • the rotation angles of the wipers on the left and right sides may be the same or different during the movement. Therefore, by separately determining the resistance information corresponding to each wiper arm, a more accurate determination can be made. Resistance information helps improve test accuracy.
  • the wiper system further includes an electric drive unit connected to the wiper motor assembly for generating a driving voltage that drives the wiper motor assembly to move.
  • an electric drive unit connected to the wiper motor assembly for generating a driving voltage that drives the wiper motor assembly to move.
  • the simulation cabinet also includes a signal simulation board for simulating the output signal of a wiper sensor in the wiper system.
  • the wiper sensor includes a rain sensor, a wind speed sensor and a light sensor. of one or more.
  • the signal simulation board is used to simulate the output signals of various sensors in the wiper system, so that there is no need to install various sensors during the test process, saving test costs, and the signal simulation board can output abnormal signals of the wiper sensor. It can test the fault handling ability of the wiper system, such as whether it can stop working in time, and the test results are relatively comprehensive.
  • the simulation cabinet further includes an electrical fault injection board for outputting an electrical fault signal.
  • the electrical fault signal is used to indicate that the wiper motor assembly has an electrical fault.
  • the electrical fault Including short circuit or open circuit.
  • the test device further includes a host computer connected to the simulation cabinet, configured to send the first instruction to the simulation cabinet.
  • a host computer connected to the simulation cabinet, configured to send the first instruction to the simulation cabinet.
  • the simulation cabinet further includes a signal acquisition board for collecting the actual working data.
  • the actual working data of the wiper system is collected through the signal acquisition board, so that a test report can be generated based on the actual working data and preset working data, which facilitates testers to find problems and helps improve test efficiency.
  • a test device for a wiper system including: a simulation cabinet and a DC electronic load device, the simulation cabinet is connected to the DC electronic load device, and the simulation cabinet and the DC electronic load device are respectively connected to The wiper system is connected.
  • the wiper system includes a wiper controller and an electric drive unit. The wiper controller is connected to the electric drive unit, wherein: the simulation cabinet is used to send signals to the wiper system.
  • the second instruction is used to instruct the electric drive unit to generate a driving voltage
  • the wiper controller is used to control the electric drive unit to generate a driving voltage based on the second instruction
  • the simulation cabinet and further used to determine the energy consumption information of the wiper system according to the driving voltage, and send the energy consumption information to the DC electronic load device
  • the DC electronic load device is used to determine the energy consumption information based on the energy consumption information.
  • Generate a load current which is used to indicate the load of the electric drive unit
  • the simulation cabinet is also used to collect actual working data of the wiper system to complete testing of the wiper system.
  • the load generated by the DC electronic load device replaces the energy consumed by the wiper motor assembly in the wiper system, and the electric drive unit can be tested, for example, to test whether the electric drive unit has a fault. This enables electrical power level testing of the wiper system.
  • the simulation cabinet includes a simulation system, the simulation system is used to run a motor model and a wiper dynamics model, wherein: the motor model is used to determine the drive wiper based on the drive voltage.
  • the driving force of the movement of the motor assembly and simulating the movement of the wiper motor assembly based on the driving force;
  • the wiper dynamics model used to simulate the wiper based on the movement of the wiper motor assembly
  • the dynamic characteristics of the mechanical components driven by the motor assembly, the mechanical components including the linkage mechanism, the wiper arm and the wiper blade, the dynamic characteristics include the sixth rotation angle of the output shaft of the wiper motor assembly ;
  • the motor model is used to determine the energy consumption information based on the driving voltage and the sixth rotation angle.
  • the simulation cabinet further includes a signal simulation board for simulating the output signal of the wiper sensor in the wiper system.
  • the sensor includes one or more of a rain sensor, a wind speed sensor and a light sensor.
  • the signal simulation board is used to simulate the output signals of various sensors in the wiper system, so that there is no need to install various sensors during the test process, saving test costs, and the signal simulation board can be used to output abnormal signals of the wiper sensor, which can be tested
  • the test results are relatively comprehensive regarding the wiper system's fault handling capabilities, such as whether it can stop working in time.
  • the simulation cabinet also includes an electrical fault injection board for outputting an electrical fault signal.
  • the electrical fault signal is used to indicate that the electric drive unit generates an electrical fault.
  • the electrical fault includes a short circuit. Or open a path.
  • the simulation cabinet further includes a signal acquisition board for collecting the actual working data.
  • the actual working data of the wiper system is collected through the signal acquisition board, so that a test report can be generated based on the actual working data and preset working data, which facilitates testers to find problems and helps improve test efficiency.
  • the test device further includes a host computer connected to the simulation cabinet, configured to send the second instruction to the simulation cabinet.
  • a host computer connected to the simulation cabinet, configured to send the second instruction to the simulation cabinet.
  • a third aspect provides a test method for a wiper system.
  • the test method can be applied to the simulation cabinet described in the first aspect.
  • the method includes: sending a first instruction to the wiper system, and the first instruction is used to Instructs to drive the movement of the wiper motor assembly in the wiper system; determines resistance information according to the movement parameters of the wiper motor assembly, and sends the resistance information to the load motor system, so that the load motor system is based on
  • the resistance information applies resistance to the wiper motor assembly, and the resistance is used to hinder the movement of the wiper motor assembly; the actual working data of the wiper system is collected to complete the analysis of the wiper system. test.
  • the method before determining the resistance information based on the motion parameters of the wiper motor assembly, the method further includes: receiving motion parameters from the load motor system, where the motion parameters are based on the motion parameters of the load motor system.
  • the motion parameters include a first rotation angle of the output shaft, and the first rotation angle is used to indicate the angle at which the output shaft deviates from a preset position.
  • a second rotation angle of the first wiper arm in the wiper system is determined based on the first rotation angle, and a third rotation angle of the second wiper arm is determined; the first wiper arm is determined The friction resistance and air resistance between the wiper blade and the second wiper blade and the glass, the first wiper blade is the wiper blade corresponding to the first wiper arm, the second wiper blade is the wiper blade corresponding to the second wiper arm; the fourth rotation angle of the first wiper blade is determined based on the second rotation angle, the third rotation angle, the friction resistance and the air resistance. , and determining a fifth rotation angle of the second wiper blade; determining the resistance information based on the second rotation angle, the third rotation angle, the fourth rotation angle and the fifth rotation angle.
  • the resistance information includes first resistance information corresponding to the first wiper blade and second resistance information corresponding to the second wiper blade.
  • the method further includes: outputting a wiper sensor signal, where the wiper sensor includes one or more of a rain sensor, a wind speed sensor, and a light sensor.
  • the method further includes: outputting an electrical fault signal, the electrical fault signal being used to indicate that the wiper motor assembly has an electrical fault, and the electrical fault includes a short circuit or an open circuit.
  • the method further includes: receiving the first instruction sent by the host computer.
  • a fourth aspect provides a test method for a wiper system.
  • the test method can be applied to the simulation cabinet described in the second aspect.
  • the method includes: sending a second instruction to the wiper system, and the second instruction is used to Instruct the electric drive unit in the wiper system to generate a driving voltage; determine the energy consumption information of the wiper system according to the driving voltage, and send the energy consumption information to the DC electronic load device, so that the DC electronic load device
  • the load device generates a load current based on the energy consumption information, and the load current is used to indicate the load of the electric drive unit; the actual working data of the wiper system is collected to complete the test of the wiper system.
  • determining the energy consumption information of the wiper system based on the driving voltage includes determining a driving force that drives the movement of the wiper motor assembly based on the driving voltage, and simulating the movement of the wiper motor assembly based on the driving force.
  • the movement of the wiper motor assembly; the dynamic characteristics of the mechanical components driven by the wiper motor assembly are determined based on the movement of the wiper motor assembly, and the mechanical components include a linkage mechanism, a wiper arm and a wiper arm.
  • Wiper wiper the dynamic characteristics include a sixth rotation angle of the output shaft of the wiper motor assembly; the energy consumption information is determined based on the driving voltage and the sixth rotation angle.
  • the method further includes: receiving the second instruction sent by the host computer.
  • the method further includes: outputting a wiper sensor signal, where the wiper sensor includes one or more of a rain sensor, a wind speed sensor, and a light sensor.
  • the method further includes: outputting an electrical fault signal, the electrical fault signal being used to indicate that the electric drive unit generates an electrical fault, and the electrical fault includes a short circuit or an open circuit.
  • a computer-readable storage medium is provided.
  • the computer-readable storage medium is used to store a computer program.
  • the computer program When the computer program is run on a computer, it causes the computer to execute the above-mentioned third aspect or fourth aspect. methods provided.
  • a sixth aspect provides a computer program product, including a computer program, which when the computer program is run on a computer, causes the computer to execute the method described in the third or fourth aspect.
  • Figure 1 is a structural block diagram of a test device for a wiper system provided by an embodiment of the present application
  • Figure 2 is a structural block diagram of another test device for a wiper system provided by an embodiment of the present application.
  • Figure 3 is a structural block diagram of a wiper system provided by an embodiment of the present application.
  • Figure 4 is a structural block diagram of another test device for a wiper system provided by an embodiment of the present application.
  • FIG. 5 is a structural block diagram of a load motor system provided by an embodiment of the present application.
  • Figure 6 is a structural block diagram of a simulation cabinet provided by an embodiment of the present application.
  • Figure 7 is a schematic diagram of a link mechanism provided by an embodiment of the present application.
  • Figure 8 is a structural block diagram of a wiper wiper dynamic model provided by an embodiment of the present application.
  • FIG. 9 is a structural block diagram of another load motor system provided by an embodiment of the present application.
  • Figure 10 is a structural block diagram of another simulation cabinet provided by an embodiment of the present application.
  • Figure 11 is a schematic flow chart of a test method for a wiper system according to an embodiment of the present application.
  • Figure 12 is a structural block diagram of another wiper system test device provided by an embodiment of the present application.
  • Figure 13 is a structural block diagram of another test device for a wiper system provided by an embodiment of the present application.
  • Figure 14 is a structural block diagram of another simulation cabinet provided by an embodiment of the present application.
  • Figure 15 is a structural block diagram of a wiper dynamic model provided by an embodiment of the present application.
  • Figure 16 is a structural block diagram of another simulation cabinet provided by an embodiment of the present application.
  • FIG. 17 is a schematic flowchart of another testing method for a wiper system according to an embodiment of the present application.
  • 300-load motor system 300-load motor system, 301-load motor assembly, 302-speed/sensor, 303-torque sensor, 304-load motor control and drive unit;
  • 600-simulation cabinet 601-simulation system, 601-1 wiper dynamics model, 601-2-motor model, 602-signal model board, 603-signal acquisition board, 604-electrical fault injection board; 601- 1-1-Link mechanism dynamic model, 601-1-2-Resistance model, 601-1-3-Wiper blade dynamic model;
  • 700-wiper system 701-electric drive unit, 702-wiper controller
  • embodiments of the present application provide a test device for a wiper system, which is used to test the wiper system.
  • FIG. 1 is a structural block diagram of a wiper system test device provided by an embodiment of the present application.
  • the test device can implement mechanical power level testing of the wiper system.
  • the test device may include a simulation cabinet 100 and a load motor system 300 .
  • the simulation cabinet 100 is connected to the load motor system 300, and the simulation cabinet 100 and the load motor system 300 are respectively connected to the wiper system 200.
  • the wiper system 200 may include a wiper motor assembly 201 and a wiper controller 202, and the wiper motor assembly 201 and the wiper controller 202 are connected.
  • the wiper motor assembly 201 includes a wiper motor and a reduction assembly (not shown in the figure).
  • the reduction assembly is connected to the output end of the wiper motor.
  • the wiper motor rotates at a constant speed, and the deceleration assembly can reduce the rotation speed of the output shaft of the wiper motor assembly 201 to a required speed to achieve reciprocating motion of the wiper arm and wiper blade.
  • the simulation cabinet 100 may be initialized before testing the wiper system 200.
  • the simulation cabinet 100 may send a first instruction to the wiper system 200 (for example, to the wiper controller 202 in the wiper system 200).
  • the first instruction may instruct the wiper controller 202 to drive the wiper motor assembly. into the 201 movement.
  • the wiper motor assembly 201 may include one or more motion gears, including intermittent gears, low speed gears, and high speed gears. Among them, different gears correspond to different movement speeds of the wiper motor assembly 201 . Therefore, optionally, the first instruction may indicate the movement gear of the wiper motor assembly 201, and the wiper motor assembly 201 may move based on the movement gear indicated by the first instruction.
  • the first instruction may include first indication information and second indication information, the first indication information may instruct the wiper controller 202 to drive the wiper motor assembly 201 to move, and the second indication information may indicate a certain gear; or, The first instruction may include first indication information, and the first indication information may indicate a certain gear.
  • the gear it is equivalent to implicitly instructing the wiper controller 202 to drive the wiper motor assembly 201 to move.
  • the wiper motor assembly 201 can be tested as required, which helps to improve testing efficiency.
  • the first instruction may be directly sent by the simulation cabinet 100 to the wiper system 200 , for example, the simulation cabinet 100 generates the first instruction and sends it to the wiper system 200 .
  • the simulation cabinet 100 can directly generate the first instruction.
  • the simulation cabinet 100 may include a communication board (not shown in the figure), and the simulation cabinet 100 may generate a first instruction through the communication board and send the first instruction to the wiper system 200 .
  • the simulation cabinet 100 can provide an input interface through which the user can input a test command. After receiving the test command, the simulation cabinet 100 can send the first command to the wiper system 200 .
  • the communication board can receive a test command input by the user through the input interface, and after receiving the test command, send the first command to the wiper system 200 .
  • the communication board can generate the first instruction based on a preset test rule, which is, for example, preset by the user or preconfigured by the simulation cabinet 100 .
  • the preset test rule is to perform a high-speed gear test.
  • the communication board can generate a first signal based on the test rule to instruct the wiper controller 202 to drive the wiper motor assembly 201 to perform high-speed movement. instruction.
  • the preset test rule is to conduct a multi-gear test, and the test process under this test rule is intermittent gear - low speed gear - high speed gear, indicating that during one round of testing, the wiper motor assembly 201 needs to be Movement in different gears.
  • the communication board can generate a first instruction for instructing the wiper controller 202 to drive the wiper motor assembly 201 to perform intermittent movement based on the test process; after completing the intermittent gear test, the communication board Based on the test process, the card generates a first instruction for instructing the wiper controller 202 to drive the wiper motor assembly 201 to perform low-speed movement; after completing the low-speed gear test, the communication board generates a first instruction for instructing the wiper control based on the test process.
  • the first instruction is the controller 202 driving the wiper motor assembly 201 to perform high-speed movement; after completing the high-speed gear test, this round of testing process is completed.
  • the wiper motor assembly 201 is tested in multiple gears. The test process is relatively comprehensive and helps to improve the accuracy of the test results.
  • the number of devices in the test device can be reduced, and the information interaction between the simulation cabinet 100 and other devices can be reduced.
  • the first command is directly sent by the simulation cabinet 100 to the wiper system 200 , or the first command can also be forwarded by the simulation cabinet 100 to the wiper system 200 .
  • the test device may also include a host computer 400 connected to the simulation cabinet 100 .
  • the first instruction may be sent by the host computer 400 to the simulation cabinet 100 , and then the simulation cabinet 100 forwards it to the wiper system 200 .
  • the host computer 400 is a user operation unit. The user can select the motion gear of the wiper motor assembly 201 through the host computer 400.
  • the host computer 400 generates a first instruction according to the user's selection.
  • the host computer 400 can send the first instruction to the communication board in the simulation cabinet 100 , and the communication board can forward the first instruction to the wiper system 200 .
  • the communication board can forward the first instruction to the wiper system 200 .
  • the wiper controller 202 can drive the wiper motor assembly 201 to move according to the first instruction.
  • the wiper system 200 may also include an electric drive unit 203 connected to the wiper motor assembly 201 .
  • the wiper controller 202 may operate based on the first instruction.
  • the instruction controls the electric drive unit 203 to generate a driving voltage to drive the wiper motor assembly 201 to move.
  • the electric drive unit 203 can be integrated in the wiper controller 202, or the electric drive unit 203 can also be provided separately from the wiper controller 202, but connected to the wiper controller 202.
  • the wiper motor assembly 201 can send the movement information of the output shaft of the wiper motor assembly 201 to the simulation cabinet 100 .
  • the motion information can be transferred to the load motor system 300 so that the load motor system 300 determines motion parameters based on the motion information and sends the motion parameters to the simulation cabinet 100 .
  • the motion information includes, for example, rotation information of the output shaft of the wiper motor assembly 201 .
  • the test device may also include a coupling 500.
  • the wiper motor assembly 201 and the load motor system 300 may be connected through the coupling 500. After the wiper motor assembly 201 starts to move, the motion information of the output shaft can be transmitted to the load motor system 300 through the coupling 500 .
  • the coupling 500 is a hardware device, and the motion information is transmitted through the hardware device, so that the motion parameters obtained by the load motor system 300 based on the motion information are more accurate, which helps to improve the test accuracy.
  • the load motor system 300 may determine motion parameters based on the motion information and send the motion parameters to the simulation cabinet 100 .
  • the motion parameter includes the first rotation angle of the output shaft of the wiper motor assembly 201 .
  • the first rotation angle is used to indicate the angle at which the output shaft deviates from the preset position.
  • the load motor system 300 may also include a load motor assembly 301 and a speed/rotation angle sensor 302 .
  • the load motor assembly 301 and the wiper motor assembly 201 are connected through a coupling 500.
  • the load motor assembly 301 can obtain the motion information transmitted by the wiper motor assembly 201 through the coupling 500; the rotation speed/rotation angle sensor 302
  • the first rotation angle may be determined based on the motion information.
  • the motion parameters sensed by the rotation angle/speed sensor are more accurate, which helps to improve the test accuracy.
  • the simulation cabinet 100 can determine the resistance information based on the motion parameters, for example, determine the load information that the wiper motor assembly 201 needs to operate in the current motion state.
  • the simulation cabinet 100 may include a simulation system 101.
  • the simulation cabinet 100 may determine the resistance information through the simulation system 101.
  • the simulation system 101 may include a resistance model 101-1 and a link mechanism dynamics model 101-2. and wiper wiper dynamics model 101-3.
  • the simulation system 101 can determine the resistance information by running these models.
  • the linkage mechanism dynamic model 101-2 can simulate the movement of the linkage mechanism in the wiper system 200, for example, simulating the connection between the linkage mechanism and the first wiper arm (for example, the wiper arm located on the right side of the vehicle) in the wiper system 200. , that is, the angle relationship between the right wiper arm) and the second wiper arm (for example, the wiper arm located on the left side of the vehicle, that is, the left wiper arm), for example, simulating the rotation angle of the first wiper arm (which can be called the third wiper arm).
  • the second corner) and the second wiper arm corner can be called the third corner).
  • the linkage mechanism in the wiper system 200 includes a crank rocker and a double rocker.
  • the crank rocker is directly driven by the wiper motor assembly 201.
  • the crank rocker can drive the double rockers to drive the left and right wipers. arm movement.
  • FIG. 7 is a schematic diagram of a link mechanism provided by an embodiment of the present application.
  • L1, L2 and L5 are crank rockers
  • L3 is a double rocker that drives the movement of the right wiper arm
  • L4 is a double rocker that drives the movement of the left wiper arm
  • is the output of the wiper motor assembly 201
  • the rotation angle of the shaft is the first rotation angle
  • ⁇ 1 is the second rotation angle
  • ⁇ 2 is the third rotation angle.
  • the second corner and the third corner can be described by the following functions:
  • f 1 is the function of the rotation angle of the output shaft of the wiper motor assembly 201 and the rotation angle of the first wiper arm
  • g is the function of the rotation angle of the first wiper arm and the second wiper arm
  • f 2 is The function of the rotation angle of the output shaft of the wiper motor assembly 201 and the rotation angle of the second wiper arm.
  • the resistance model 101-1 can determine the friction resistance between the first wiper blade and the second wiper blade and the glass during the movement of the wiper motor assembly 201, and determine the friction resistance between the first wiper blade and the second wiper blade.
  • the first wiper blade is a wiper blade corresponding to the first wiper arm
  • the second wiper blade is a wiper blade corresponding to the second wiper arm.
  • the user can pre-set the test environment parameters of the wiper system 200 in the simulation cabinet 100, such as rainfall simulation parameters, wind volume simulation parameters, light simulation parameters, vehicle driving speed and other parameters, and the resistance model 101-1 can be based on the parameters.
  • the test environment parameters determine this friction resistance and air resistance.
  • the resistance model 101-1 may be based on the rain simulation parameters in the test environment parameters (such as the glass dryness and humidity described below), the fourth rotation angle of the first wiper blade, and the fifth rotation angle of the second wiper blade.
  • the friction resistance is determined, for example, f f (w, ⁇ i ), and the air resistance can be determined based on the wind volume simulation parameters in the test environment parameters (such as the wind speed described below) and the driving speed of the vehicle, the The air resistance is, for example, f a (v V , v W ).
  • w is the dry humidity of the glass
  • i 1 or 2
  • is the rotation angle of the wiper blade.
  • ⁇ i is the fourth rotation angle (that is, the rotation angle of the first wiper blade)
  • ⁇ i is the fifth rotation angle (that is, the rotation angle of the second wiper blade)
  • v V is the vehicle's driving speed
  • v W is the wind speed
  • f f is the friction resistance
  • f a is the air resistance.
  • the wiper blade dynamic model 101-3 can simulate the motion of the wiper blade in the wiper system 200 based on the second rotation angle, the third rotation angle, friction resistance and air resistance, for example, simulate the fourth motion of the first wiper blade. corner, and a fifth corner that simulates a second wiper blade.
  • the wiper dynamics model 101-3 may include a first wiper dynamics model 101-3-1 and a second wiper dynamics model 101-3-2.
  • the first wiper wiper dynamic model 101-3-1 is used to simulate the fourth rotation angle of the first wiper wiper
  • the second wiper wiper dynamic model 101-3-2 is used to simulate the second wiper wiper dynamic model 101-3-1.
  • the fifth corner of the wiper blade is used to simulate the fourth rotation angle of the first wiper wiper, and the second wiper wiper dynamic model 101-3-2.
  • the rotation angle of the first wiper blade i.e., the fourth rotation angle
  • the rotation angle of the second wiper blade i.e., the fifth rotation angle
  • i 1, 2.
  • J i is the first moment of inertia of the first wiper blade
  • k i is the stiffness of the first wiper blade
  • c i is the first wiper blade.
  • the damping of , ⁇ i is the fourth rotation angle, ⁇ i is the second rotation angle, is the first speed of the first wiper blade, is the second rotation speed of the first wiper arm, is the first corner acceleration of the first wiper blade.
  • the first rotational speed can be obtained by differential operation of the fourth rotation angle
  • the second rotational speed can be obtained by differential operation of the second rotation angle
  • the third rotational speed can be obtained by differential operation of the fifth rotation angle
  • the fourth rotational speed can be obtained by The third rotation angle is obtained by differential operation.
  • the first rotation angle acceleration can be obtained by differential operation of the first rotation speed.
  • the second rotation angle acceleration can be obtained by differential operation of the third rotation speed.
  • the simulation system 101 can determine the resistance information based on the parameters simulated by the above model. For example, the simulation system 101 can determine the resistance information based on the second rotation angle, the third rotation angle, the fourth rotation angle, the fifth rotation angle, the first rotation speed, the second rotation speed, the third rotation speed and The fourth rotational speed determines the resistance information.
  • the resistance information may include first resistance information corresponding to the first wiper blade and second resistance information corresponding to the second wiper blade.
  • the simulation system 101 may determine the first resistance information based on the second rotation angle, the fourth rotation angle, the first rotation speed, and the third rotation speed, and determine the second resistance information based on the third rotation angle, the fifth rotation angle, the second rotation speed, and the fourth rotation speed. .
  • the simulation system 101 can determine the resistance information based on the following relationship:
  • M r1 is the first resistance information
  • M r2 is the second resistance information
  • M r is the resistance information
  • the resistance indicated by the resistance information is the sum of the resistance indicated by the first resistance information and the second resistance information.
  • the simulation system 101 may send the sum of the resistance indicated by the first resistance information and the second resistance information to the load motor system 300, or may also send the first resistance information to the load motor system 300.
  • the resistance information and the second resistance information are sent to the load motor system 300 respectively.
  • the simulation system 101 can send the sum of the resistance, or the first resistance information and the second resistance information to the load motor system 300 through the communication board.
  • the simulation system 101 simulates the movement of the link mechanism, wiper arm and wiper blade in the wiper system 200 by running the linkage mechanism dynamics model 101-2 and the wiper wiper dynamics model 101-3. , so that when the wiper system 200 is tested, the test can be carried out after the wiper motor assembly 201, the wiper controller 202 and the electric drive unit 203 are developed, without having to wait for the development of other components included in the wiper system 200. , the test process is moved forward, and the test data of the wiper system 200 can be obtained earlier.
  • the load motor assembly 301 can apply resistance to the wiper motor assembly 201 based on the resistance information to hinder the movement of the wiper motor assembly 201.
  • the load motor assembly 301 can generate a load with equal resistance based on the resistance information and apply it to the wiper motor assembly 201 to increase the difficulty of movement of the wiper motor assembly 201 .
  • the load motor assembly 301 can apply resistance to the wiper motor assembly 201 through the coupling 500 as shown in FIG. 4 . In this way, the load that needs to be operated during the movement of the wiper motor assembly 200 is generated through the load motor system 300. There is no need to build a wiper system, windshield and other devices on the test bench, which effectively reduces the test cost.
  • the simulation cabinet 100 can collect the actual working data of the wiper system 200.
  • the actual working data is the test data of the wiper system 200, thus completing the test of the wiper system 200. Test of scraping system 200.
  • the load motor system 300 can also transmit the output shaft of the wiper motor assembly 201 based on the coupling 500 as shown in Figure 4.
  • the motion information determines the output torque of the output shaft.
  • the load motor system 300 can determine whether the output torque is the same as the preset target output torque. If it is different, the load motor assembly 301 can be adjusted to the wiper motor assembly. 201 resistance exerted.
  • the load motor system 300 may also include a torque sensor 303 and a load motor control and drive unit 304.
  • the torque sensor 303 may determine the output torque of the output shaft based on the motion information.
  • the load motor system 300 If it is determined that the output torque is greater than the preset target output torque, it means that the resistance applied by the load motor assembly 301 to the wiper motor assembly 201 is less than the resistance indicated by the resistance information mentioned above, and the load motor control and drive unit 304 The voltage applied to the load motor assembly 301 may be increased to increase the resistance the load motor assembly 301 applies to the wiper motor assembly 201 .
  • the simulation cabinet 100 may also include a signal simulation board 102 and a signal acquisition board 103 .
  • the signal simulation board 102 can simulate the output signal of the wiper sensor based on the test environment parameters mentioned above.
  • the wiper sensor includes one or more sensors such as a rain sensor, a wind speed sensor, a vehicle speed sensor, etc., for example, the signal simulation board 102 may simulate the output signal of the rain sensor based on the aforementioned rain simulation parameters.
  • the signal acquisition board 103 can collect actual working data of the wiper system 200 , for example, collect data such as the first rotation angle of the wiper motor assembly 201 and bus signal status. In this way, the output signals of various sensors in the wiper system 200 are simulated through the signal simulation board 102, so that there is no need to install various sensors during the test process, thereby saving test costs.
  • the test process of the wiper system 200 may also include an abnormality test, that is, testing whether the wiper system 200 responds to a fault, such as issuing an alarm or turning off the wiper motor assembly 201 .
  • the simulation cabinet 100 can use the signal simulation board 102 to simulate the output signal of the wiper sensor when it is abnormal, for example, simulate the output signal of the wiper sensor output voltage/resistance value that fluctuates beyond the limit or fluctuates, and tests the wiper. Whether system 200 can respond to failures.
  • the simulation cabinet 100 may also include an electrical fault injection board 104 .
  • the simulation cabinet 100 may output an electrical fault signal indicating an electrical fault in the wiper motor assembly through the electrical fault injection board 104 , such as a short circuit. or an open circuit signal to test whether the wiper system 200 can respond to a fault.
  • the simulation cabinet 100 can also generate a wiper test report based on the actual working data and preset working data of the wiper system 200 collected by the signal acquisition board 103 .
  • the simulation cabinet 100 can also send a signal to the host computer 400 to collect the actual working data collected by the card 103, so that the host computer 400 can generate a signal based on the actual working data and the preset working data. Wiper test report.
  • the actual working data of the wiper system 200 is collected through the signal acquisition board 103, so that a test report can be generated based on the actual working data and the preset working data, which facilitates testers to find problems and helps improve testing efficiency.
  • the test can be carried out after the development of the wiper motor assembly 201 is completed, without waiting for the development of other components included in the wiper system 200. Move forward. By simplifying the testing process, test data can be obtained earlier. Moreover, during the test process, the load that needs to be operated during the movement of the wiper motor assembly 200 is generated through the load motor system 300. There is no need to build a wiper system, windshield and other devices on the test bench, which effectively reduces the test cost.
  • embodiments of the present application provide a testing method for a wiper system.
  • the method can be implemented by the testing device as shown in any one of FIGS. 1 to 10 . Please refer to Figure 11 for a flow chart of this method.
  • S1101 The simulation cabinet 100 sends the first command to the wiper system 200.
  • the first instruction is used to instruct the drive wiper motor assembly 201 to move.
  • the manner in which the simulation cabinet 100 sends the first command to the wiper system 200 may refer to the implementation in which the simulation cabinet 100 sends the first command to the wiper system 200 in the embodiment described in FIG. 1 or 2 .
  • the first instruction may be generated by a communication board in the simulation cabinet 100 and sent to the wiper system 200 , or forwarded to the wiper system 200 by the communication board.
  • the wiper controller 202 receives the first instruction and drives the wiper motor assembly 201 to move according to the first instruction.
  • the wiper controller 202 can drive the wiper motor assembly 201 to move according to the first instruction. For example, the wiper controller 202 can drive the wiper motor assembly based on the high-speed gear indication in the first instruction. 201 performs high-speed movements.
  • the simulation cabinet 100 determines the load torque based on the motion parameters of the output shaft of the wiper motor assembly 201, and sends the load torque to the load motor system 300.
  • the load motor system 300 receives the load torque from the simulated cabinet 100 .
  • the load torque is the aforementioned resistance information.
  • the way in which the simulation cabinet 100 determines the resistance information can refer to the embodiments described in FIGS. 6 to 8 , and the description will not be repeated here.
  • the load motor system 300 generates a load based on the load torque to hinder the movement of the wiper motor assembly 201.
  • the load motor system 300 can generate a corresponding load based on the load torque from the simulation cabinet 100.
  • the load motor 301 in the load motor system 300 can generate a corresponding torque (ie, the aforementioned resistance) based on the load torque. This resistance exerts resistance to the wiper motor assembly 201 through the coupling 500, hindering the movement of the wiper motor assembly 201.
  • S1105 The simulation cabinet 100 collects the actual working data of the wiper system 200 to complete the test of the wiper system 200.
  • the connecting rod mechanism dynamic model 101-2 and the wiper wiper dynamic model 101-3 run by the simulation system 101 are used to simulate the connecting rod in the wiper motor assembly 201.
  • the movement of the mechanism, wiper arm and wiper blade can realize the mechanical power level test of the wiper system 200, and when the wiper system 201 is tested through the test device, the wiper motor assembly 201, wiper The controller 202 and the electric drive unit 203 can be tested after they are developed, without having to wait for the development of other components included in the wiper system 200. This moves the testing process forward and can obtain test data earlier.
  • the load that needs to be operated during the movement of the wiper motor assembly 200 is generated through the load motor system 300. There is no need to build a complete wiper system, windshield and other devices on the test bench, which effectively reduces the test cost.
  • the test device can implement electrical power level testing of the wiper system.
  • the test device may include a simulation cabinet 600 and a DC electronic load device 800.
  • the simulation cabinet 600 is connected to the DC electronic load device 800, and the simulation cabinet 600 and the DC electronic load device 800 are respectively connected to the wiper system 700.
  • the wiper system 700 may include an electric drive unit 701 and a wiper controller 702, and the wiper controller 702 is connected to the electric drive unit 701.
  • the simulation cabinet 600 may be initialized before testing the wiper system 700.
  • the simulation cabinet 600 may send a second instruction to the wiper system 700 (for example, to the wiper controller 702 in the wiper system 700).
  • the second instruction may instruct the electric drive unit 701 to generate a driving voltage.
  • the second instruction may be directly sent by the simulation cabinet 600 to the wiper system 700 , for example, the simulation cabinet 600 generates the second instruction and sends it to the wiper system 700 .
  • the simulation cabinet 600 can directly generate the second instruction.
  • the simulation cabinet 600 may include a communication board (not shown in the figure), and the simulation cabinet 600 may generate a second instruction through the communication board and send the second instruction to the wiper system 700 .
  • the simulation cabinet 600 can provide an input interface through which the user can input a test command. After receiving the test command, the simulation cabinet 600 can send a second command to the wiper system 700 .
  • the communication board can receive a test command input by the user through the input interface, and after receiving the test command, send the second command to the wiper system 700 .
  • the second command is sent by the simulation cabinet 600 to the wiper system 700.
  • the second command can also be forwarded by the simulation cabinet 600 to the wiper system 700.
  • the test device can also include
  • the second instruction may be sent by the host computer 900 to the simulation cabinet 600 , and the simulation cabinet 600 then forwards it to the wiper system 700 .
  • the host computer 900 is a user operation unit. The user can select the electric drive unit 701 to generate a driving voltage through the host computer 900 , and the host computer 900 generates a second instruction according to the user's selection.
  • the host computer 900 can send the second command to the communication board in the simulation cabinet 600 , and the communication board can forward the second command to the wiper system 700 .
  • the host computer 900 can generate the second instruction based on the user's selection, testing can be performed based on the user's needs, and the testing efficiency is high.
  • the wiper controller 702 may control the electric driving unit 701 to generate a driving voltage based on the second instruction.
  • the electric drive unit 701 may be integrated into the wiper controller 702 , or the electric drive unit 701 may be provided separately from the wiper controller 702 but connected to the wiper controller 702 .
  • the wiper system 700 can send the generated driving voltage to the simulation cabinet 600 .
  • the simulation cabinet 600 may determine energy consumption information based on the driving voltage, such as a target current that may act on the wiper motor assembly.
  • the simulation cabinet 600 may include a simulation system 601 , and the simulation cabinet 600 may determine the energy consumption information through the simulation system 601 .
  • the simulation system 601 may include a wiper dynamics model 601-1 and a motor model 601-2, and the simulation system 601 may determine the energy consumption information by running these models.
  • the motor model 601-2 may determine the driving force that drives the movement of the wiper motor assembly based on the driving voltage, and simulate the movement of the wiper motor assembly based on the driving force.
  • the wiper dynamics model 601-1 can simulate the dynamic characteristics of the mechanical components driven by the wiper motor assembly based on the motion of the wiper motor assembly. For example, the rotation angle of the output shaft of the wiper motor assembly is simulated (which may be called the sixth rotation angle), where the mechanical component includes a linkage mechanism, a wiper arm and a wiper blade.
  • the wiper dynamics model 601-1 may include a linkage mechanism dynamics model 601-1-1, a resistance model 601-1-2 and a wiper wiper dynamics model 601-1- 3.
  • the link mechanism dynamic model 601-1-1 can simulate the angular relationship between the link mechanism and the left and right wiper arms (i.e., the rotation angles of the left and right wiper arms) based on the driving force.
  • the wiper wiper dynamic model 601 -1-3 can simulate the rotation angles of the left and right wiper blades based on the rotation angles of the left and right wiper arms, and the resistance model 601-1-2 can determine the left and right wiper blades based on the rotation angles of the left and right wiper arms.
  • the friction resistance and air resistance between the wiper brush and the glass are used to obtain the sixth rotation angle of the output shaft of the wiper motor assembly.
  • the sixth rotation angle refers to the rotation angle of the output shaft of the wiper motor assembly under the interaction of the driving force and load torque of the wiper motor assembly, where the load torque refers to the wiper motor assembly.
  • the torque corresponding to the load that needs to be operated during the movement of the motor assembly.
  • the user can pre-set the test environment parameters of the wiper system 700 in the simulation cabinet 600, such as rainfall simulation parameters, wind volume simulation parameters, light simulation parameters, vehicle driving speed and other parameters.
  • the resistance model 601-1-2 can The friction resistance and air resistance are determined based on the test environment parameters.
  • the resistance model 601-1-2 can determine the friction resistance based on the rainfall simulation parameters in the test environment parameters (such as the glass dryness and humidity described below) and the rotation angles of the left and right wiper arms.
  • the friction resistance is, for example, f f (w, ⁇ i ), and the air resistance can be determined based on the wind volume simulation parameters in the test environment parameters (such as the wind speed described below) and the driving speed of the vehicle.
  • the air resistance can be determined, for example, f a (v V ,v W ).
  • w is the dry humidity of the glass
  • i 1 or 2
  • is the rotation angle of the wiper blade.
  • v V is the vehicle's driving speed
  • v W is the wind speed
  • f f is the friction resistance
  • f a is the air resistance.
  • the wiper dynamics model 601 can determine the sixth rotation angle through the following relationship:
  • J d is the equivalent moment of inertia of the wiper motor assembly
  • ⁇ d is the sixth rotation angle
  • the fifth speed of the output shaft of the wiper motor assembly is the equivalent angular acceleration of the wiper motor assembly
  • M d is the driving force.
  • the fifth speed is obtained by differential operation of the sixth rotation angle
  • the equivalent rotation angle acceleration is obtained by differential operation of the fifth rotation speed.
  • the motor model 601-2 may also determine the energy consumption information based on the sixth rotation angle and the driving voltage.
  • the motor model 601-2 can determine the energy consumption information through the following relationship:
  • u is the driving voltage
  • f c is the function of driving force and current
  • c is the current (ie the aforementioned energy consumption information).
  • the simulation system 601 simulates the movement of the wiper motor assembly by running the motor model 601-2, and simulates the movement of the mechanical components driven by the wiper motor assembly by running the wiper dynamics model 601-1, so that the rain is effectively controlled.
  • a closed-loop test of the electric power level of the wiper system can be implemented, for example, to test whether there is a fault in the electric drive unit.
  • the simulation cabinet 600 can send the energy consumption information to the DC electronic load device 800.
  • the simulation cabinet 600 can send the energy consumption information to the DC electronic load device 800 through the communication board.
  • the DC electronic load device 800 can generate a load current based on the energy consumption information, and the load current can indicate the load of the electric drive unit 701.
  • the load current generated by the DC electronic load device 800 indicates the energy that the wiper motor assembly in the wiper system 700 can consume, and the test of the electric drive unit 701 can be implemented, for example, to test whether the electric drive unit 701 has a fault, thereby The electrical power level test of the wiper system 700 can be implemented.
  • the simulation cabinet 600 can collect the actual working data of the wiper system 700 , which is the test data of the electric drive unit 701 , thus completing the test of the wiper system 700 .
  • the simulation cabinet 600 may also include a signal simulation board 602 and a signal acquisition board 603 .
  • the signal simulation board 602 can simulate the output signal of the wiper sensor based on the test environment parameters mentioned above.
  • the wiper sensor includes one or more of the rain sensor, wind speed sensor, vehicle speed sensor and other sensors.
  • the signal simulation board 602 may simulate the output signal of the rain sensor based on the aforementioned rain simulation parameters.
  • the signal acquisition board 603 can collect the actual working data of the wiper system 700, for example, the driving voltage generated by the electric drive unit 701 and the bus signal status and other data. In this way, the output signals of various sensors in the wiper system 700 are simulated through the signal simulation board 602, so that there is no need to install various sensors during the test process, thereby saving test costs.
  • the test process of the wiper system 700 may also include an abnormality test, that is, testing whether the wiper system 700 responds to a fault, such as issuing an alarm or controlling the electric drive unit 701 to stop generating driving voltage.
  • the simulation cabinet 600 can simulate the output signal when the wiper sensor is abnormal through the signal simulation board 602 to test whether the wiper system 700 can respond to the fault.
  • the simulation cabinet 600 may also include an electrical fault injection board 604.
  • the simulation cabinet 600 may output an electrical fault signal indicating that the electric drive unit 701 generates an electrical fault, such as a short circuit or an electrical fault through the electrical fault injection board 604.
  • An open circuit signal is used to test whether the wiper system 700 can respond to a fault.
  • the simulation cabinet 600 can also generate a wiper test report based on the actual working data and preset working data of the wiper system 700 collected by the signal acquisition board 603.
  • the simulation cabinet 600 can also send a signal to the host computer 900 to collect the actual working data collected by the board 605, so that the host computer 900 can generate a signal based on the actual working data and the preset working data. Wiper test report.
  • the actual working data of the wiper system 700 is collected through the signal acquisition board 603, so that a test report can be generated based on the actual working data and preset working data, which facilitates testers to find problems and helps improve testing efficiency.
  • the load generated by the DC electronic load device 800 indicates the energy that the wiper motor assembly in the wiper system 700 can consume, and the electric drive unit can be tested.
  • the test of 701 realizes the electric power level test of the wiper system 700.
  • the embodiments of the present application provide a testing method for a wiper system.
  • This method can be implemented by the testing device as shown in Figures 12 to 16. In the following embodiments, this method is used as shown in Figures.
  • the test device shown in Figure 12 is implemented as an example. Please refer to Figure 17, which is a flow chart of this method.
  • the second instruction is used to instruct the electric driving unit 701 to generate a driving voltage.
  • the manner in which the simulation cabinet 600 sends the second command to the wiper system 700 may refer to the implementation in which the simulation cabinet 600 sends the second command to the wiper system 700 in the embodiment described in FIG. 12 or 13 .
  • the second instruction may be generated by the communication board in the simulation cabinet 600 and sent to the wiper system 700 , or forwarded to the wiper system 700 by the communication board.
  • the wiper controller 202 receives the second instruction and controls the electric drive unit 701 to generate a driving voltage according to the second instruction.
  • the wiper controller 202 can control the electric driving unit 701 to generate a driving voltage according to the first instruction.
  • the simulation cabinet 600 determines the energy consumption information based on the driving voltage, and sends the energy consumption information to the DC electronic load device 800.
  • the DC electronic load device 800 receives energy consumption information from the simulated cabinet.
  • simulation cabinet 600 determines the energy consumption information may refer to the embodiments described in Figures 14 and 15, and the description will not be repeated here.
  • the DC electronic load device 800 generates a load current based on the energy consumption information.
  • the load current generated by the DC electronic load device 800 can indicate the load of the electric drive unit 701, and can realize the test of the electric drive unit, thereby realizing the electric power level test of the wiper system 700.
  • S1705 The simulation cabinet 600 collects the actual working data of the wiper system 700 to complete the test of the wiper system 700.
  • the movement of the wiper motor assembly is simulated through the motor model run by the simulation system, and the wiper dynamics model simulates the wiper motor assembly, link mechanism, wiper arm and
  • the movement of the wiper blades can implement an electric power level test of the wiper system 700 , for example, to test whether the electric drive unit 701 has a fault.
  • the mechanical-level power test and electrical power-level test of the wiper system can be implemented through the above two test devices, and the test is more comprehensive.
  • the above two test devices can also be integrated into one test device.
  • the one test device includes a wiper system, a simulation cabinet, a load motor system and a DC electronic device.
  • the simulation cabinet and wiper system, The load motor system and the DC electronic load device are connected respectively, and the wiper system, the load motor system and the DC electronic device are connected respectively.
  • the simulation cabinet can include a simulation system that can run motor models, connecting rod dynamics models, resistance models, wiper blade dynamics models, etc.
  • the wiper system may include a wiper controller, an electric drive unit and a wiper motor assembly.
  • the electric drive unit may be integrated into the wiper controller, or the electric drive unit may also be integrated with the wiper control unit.
  • the wiper controller is provided separately but connected to the wiper controller.
  • the electric drive unit can be integrated into the wiper controller as an example (for example, it is the first wiper controller).
  • the first wiper controller is respectively connected to the DC electronic load device and the wiper motor assembly, and the wiper motor assembly is connected to the load motor system.
  • connection between the first wiper controller, the DC electronic load device and the wiper motor assembly can be controlled through a single pole double throw switch.
  • the switch reaches the wiper motor assembly, the first wiper controller
  • the connection with the wiper motor assembly is turned on, and the connection between the first wiper controller and the DC electronic load device is disconnected; when the switch is turned on the DC electronic load device, the first wiper controller and the DC electronic load device are connected.
  • the connection between the load devices is turned on, and the connection between the first wiper controller and the wiper motor assembly is disconnected.
  • the tester can turn the aforementioned single-pole double-throw switch to the wiper motor assembly to conduct the connection between the first wiper controller and the wiper motor assembly.
  • the simulation cabinet sends the first command to the wiper system, instructing the wiper motor assembly to move. After the wiper motor assembly moves, the movement information is sent to the simulation cabinet. For example, the wiper motor assembly transmits motion information to the load motor system, and the load motor system determines motion parameters based on the motion information, and forwards the motion parameters to the simulation cabinet.
  • the simulation cabinet When the simulation cabinet receives motion parameters from the load motor system, it can run the connecting rod dynamics model, resistance model and wiper wiper dynamics model through the simulation system, and determine the resistance through these models based on the motion information of the wiper motor assembly. information, and sends the determined resistance information to the load motor system, so that the load motor system applies resistance to the wiper motor assembly based on the resistance information.
  • the tester can turn the aforementioned single-pole double-throw switch to the electric drive unit, conduct the connection between the first wiper controller and the DC electronic load device, and simulate the cabinet to the rain
  • the wiper system sends a second instruction to instruct the electric drive unit to generate the drive voltage.
  • the wiper system can send the drive voltage to the simulation cabinet. For example, the wiper system sends the drive voltage to the simulated cabinet through the first information. Simulation cabinet.
  • the simulation cabinet When the simulation cabinet receives the first information from the wiper system, it can determine the energy consumption information by running the motor model, connecting rod dynamics model, resistance model and wiper blade dynamics model through the simulation system, and store the energy consumption information Sent to the DC electronic load device so that the DC electronic load device generates load current.
  • the test device can also be a host computer, a coupling, etc.
  • the host computer and coupling have the same functions as the host computer and coupling in the above embodiments, and will not be described again here.
  • the simulation cabinet may also include modules such as signal simulation boards, signal acquisition boards, electrical fault injection boards, and communication boards.
  • modules such as signal simulation boards, signal acquisition boards, electrical fault injection boards, and communication boards. The functions of these modules are the same as those in the above embodiments. Here, No longer.
  • An embodiment of the present application also provides a computer program product, which includes a computer program.
  • a computer program product which includes a computer program.
  • the computer program When the computer program is run on a computer, it causes the computer to execute the method in the above embodiment.
  • An embodiment of the present application also provides a chip system, including a processor and an interface.
  • the processor is configured to call and run instructions from the interface, so that the chip system implements the method in the above embodiment.
  • the simulation cabinet may include a hardware structure and/or a software module to implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module. Whether one of the above functions is performed as a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • the term “when” may be interpreted to mean “if” or “after” depending on the context.
  • the phrase “when determining" may be interpreted to mean “if it is determined" or “in response to determining" depending on the context.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated.
  • the available media may be magnetic media (eg, floppy disk, hard disk, tape), optical media (eg, DVD), or semiconductor media (eg, solid state drive), etc.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

提供了一种雨刮系统的测试装置,用于前移测试阶段、降低测试成本。测试装置包括:仿真机柜(100)和负载电机系统(300),仿真机柜(100)和负载电机系统(300)连接,仿真机柜(100)和负载电机系统(300)分别与雨刮系统(200)连接,雨刮系统(200)包括雨刮控制器(202)和雨刮电机总成(201),雨刮控制器(202)和雨刮电机总成(201)连接。仿真机柜(100)用于向雨刮系统(200)发送第一指令;雨刮控制器(202),用于接收第一指令,并根据第一指令驱动雨刮电机总成(201)运动;仿真机柜(100),还用于根据雨刮电机总成(201)的运动参数确定阻力信息,并向负载电机系统(300)发送阻力信息;负载电机系统(300),用于基于阻力信息向雨刮电机总成(201)施加阻力,阻碍雨刮电机总成(201)的运动;仿真机柜(100),还用于采集雨刮系统(200)的实际工作数据,以完成对雨刮系统(200)的测试。

Description

一种雨刮系统的测试装置 技术领域
本申请涉及汽车电子化技术领域,尤其涉及一种雨刮系统的测试装置。
背景技术
车辆的雨刮系统主要包括控制系统、雨刮电机总成、刮刷机构等部件,用于刮除雨水、积雪、灰尘等附着于车辆挡风玻璃上的视觉障碍物,以改善车辆驾乘人员行车视野,确保行车安全,其功能较为重要,因此在车辆的研发阶段,对雨刮系统性能的测试变得尤为重要。
目前,对车辆的雨刮系统进行性能测试时,需要将该雨刮系统和挡风玻璃安装在试验台,而用于安装雨刮系统和挡风玻璃的装夹等装置则需要定制。由于不同车辆的雨刮系统和挡风玻璃等部件的尺寸可能不同,因此在对不同的雨刮系统进行测试时,需要分别定制装夹等装置,测试成本较高。且由于需要在试验台安装完整的雨刮系统和挡风玻璃等,因此需要等到雨刮系统全部制造完成之后才能进行测试,测试环节较为滞后。
发明内容
本申请提供一种雨刮系统的测试装置,用于前移测试过程,且降低测试成本。
第一方面,提供一种雨刮系统的测试装置,该测试装置包括:仿真机柜和负载电机系统,所述仿真机柜和所述负载电机系统连接,所述仿真机柜和所述负载电机系统分别与雨刮系统连接,所述雨刮系统包括雨刮控制器和雨刮电机总成,所述雨刮控制器和所述雨刮电机总成连接,其中:所述仿真机柜,用于向所述雨刮系统发送第一指令,所述第一指令用于指示驱动所述雨刮电机总成运动;所述雨刮控制器,用于接收所述第一指令,并根据所述第一指令驱动所述雨刮电机总成运动;所述仿真机柜,还用于根据所述雨刮电机总成的运动参数确定阻力信息,并向所述负载电机系统发送所述阻力信息;所述负载电机系统,用于基于所述阻力信息向所述雨刮电机总成施加阻力,所述阻力用于阻碍所述雨刮电机总成的运动;所述仿真机柜,还用于采集所述雨刮系统的实际工作数据,以完成对所述雨刮系统的测试。
本申请实施例在对雨刮系统进行测试时,可以通过仿真机柜根据雨刮电机总成的运动参数确定雨刮电机总成需要运行的负载(阻力信息),然后通过负载电机系统基于该负载产生相应的阻力施加在雨刮电机总成上以阻碍雨刮电机总成运动,从而就能完成对雨刮系统的测试,而不需要将完整的雨刮系统和挡风玻璃等安装在试验台,减少了测试成本。并且被测试的雨刮系统可以仅包括雨刮电机总成,不必包括雨刮系统的其他部件,因此不必等到雨刮系统全部制造完成就可以对雨刮系统进行测试,前移了测试过程,有利于及早获得测试结果,从而有更充分的时间对雨刮系统进行改进。
在一种可能的设计中,所述测试装置还包括联轴器,所述雨刮电机总成与所述负载电机系统通过所述联轴器连接,所述联轴器,用于向所述雨刮电机总成传递所述负载电机系统施加所述阻力。其中,通过联轴器将雨刮电机总成和负载电机系统机械连接,使得负载电机系统产生的阻力可以通过硬件器件作用于雨刮电机总成,产生真实的阻力,阻碍雨刮 电机总成的运动,测试结果较为准确。
在一种可能的设计中,所述联轴器,还用于向所述负载电机系统传递所述雨刮电机总成的输出轴的运动信息。雨刮电机总成通过联轴器向负载电机系统传递雨刮电机总成的输出轴的真实的运动信息,有助于提升测试精度。
在一种可能的设计中,所述负载电机系统,还用于基于所述运动信息确定运动参数,并向所述仿真机柜发送所述运动参数,所述运动参数用于所述仿真机柜确定所述阻力信息,所述运动参数包括所述输出轴的第一转角,所述第一转角用于指示所述输出轴偏离预设位置的角度。负载电机系统通过联轴器获取的雨刮电机总成的输出轴的运动参数准确性较高,使得仿真机柜可以基于该运动参数确定的阻力信息的准确性也越高,有助于提升测试精度。
在一种可能的设计中,所述仿真机柜包括仿真系统,所述仿真系统用于运行阻力模型、连杆机构动力学模型和雨刮刮刷动力学模型电机模型,其中:所述连杆机构动力学模型用于基于所述第一转角确定所述雨刮系统中第一雨刮臂的第二转角,以及确定所述第二雨刮臂的第三转角;所述阻力模型用于确定第一雨刮刮刷和第二雨刮刮刷与玻璃之间的摩擦阻力和空气阻力,所述第一雨刮刮刷为所述第一雨刮臂对应的雨刮刮刷,所述第二雨刮刮为所述第二雨刮臂对应的雨刮刮刷;所述雨刮刮刷动力学模型用于基于所述第二转角、所述第三转角、所述摩擦阻力和所述空气阻力确定所述第一雨刮刮刷的第四转角,以及确定所述第二雨刮刮刷的第五转角;所述仿真系统,具体用于:基于所述第二转角、所述第三转角、所述第四转角和所述第五转角确定所述阻力信息。也就是说,通过仿真系统运行多个模型,根据多个模型的计算结果确定该阻力信息,例如通过连杆机构动力学模型模拟连杆机构与第一雨刮臂和第二雨刮臂的角度关系,通过阻力模型模拟摩擦阻力和空气阻力,例如模拟雨刮臂上的刮刷与玻璃之间的摩擦阻力和雨刮臂受到的空气阻力,以及通过雨刮刮刷动力学模型模拟第一雨刮刮刷和第二雨刮刮刷的运动,使得在对雨刮系统测试的过程中,可以不安装连杆机构和雨刮臂等装置,节约测试成本,前移雨刮系统的测试。且该多个模型可以模拟不同的雨刮系统中的连杆机构和雨刮臂等装置的运动,使得该测试装置可以用于测试不同的雨刮系统,具备良好的系统兼容性。
在一种可能的设计中,所述阻力信息包括所述第一雨刮刮刷对应的第一阻力信息和所述第二雨刮刮刷对应的第二阻力信息。雨刮系统一般包括左右两个雨刮刮刷(例如前述的第一雨刮刮刷和第二雨刮刮刷),雨刮电机总成运动时,雨刮电机总成的输出轴需要同时带动左右两侧雨刮刮刷运动,左右两侧的雨刮刮刷在运动过程中的转角可能相同也可能不同,因此通过分别确定每个雨刮臂对应的阻力信息的方式,可以更准确的确定阻力信息,有助于提升测试的准确性。
在一种可能的设计中,所述雨刮系统还包括与所述雨刮电机总成连接的电驱动单元,用于生成驱动所述雨刮电机总成运动的驱动电压。这样,通过电驱动单元产生的驱动电压驱动雨刮电机总成运动可以实现对雨刮系统的机械功率级的测试。
在一种可能的设计中,所述仿真机柜还包括信号模拟板卡,用于模拟所述雨刮系统中雨刮传感器的输出信号,所述雨刮传感器包括雨量传感器、风速传感器和光线传感器中的一种或多种。其中,通过信号模拟板卡模拟雨刮系统中各种传感器的输出信号,使得在测试过程中不需要安装各种传感器,节约测试成本,并且可以通过信号模拟板卡输出雨刮传感器异常的信号,可以测试雨刮系统的故障处理能力,例如是否能够及时停止工作,测试结果比较全面。
在一种可能的设计中,所述仿真机柜还包括电气故障注入板卡,用于输出电气故障信号,所述电气故障信号用于指示所述雨刮电机总成产生电气故障,所述电气故障包括短路或开路。通过电气故障注入板卡注入故障信号,可以测试雨刮系统的故障处理能力,例如是否能够及时停止工作,测试结果比较全面。
在一种可能的设计中,所述测试装置还包括与所述仿真机柜连接的上位机,用于向所述仿真机柜发送所述第一指令。这样,可以根据测试人员的需求有针对性的对雨刮系统进行测试,有助于提升测试效率。
在一种可能的设计中,所述仿真机柜还包括信号采集板卡,用于采集所述实际工作数据。通过信号采集板卡采集雨刮系统的实际工作数据,从而可以基于该实际工作数据和预设工作数据生成测试报告,方便测试人员发现问题,有助于提升测试效率。
第二方面,提供一种雨刮系统的测试装置,包括:仿真机柜和直流电子负载装置,所述仿真机柜和所述直流电子负载装置连接,所述仿真机柜和所述直流电子负载装置分别与雨刮系统连接,所述雨刮系统包括雨刮控制器和电驱动单元,所述雨刮控制器和所述电驱动单元连接,其中:所述仿真机柜,用于向所述雨刮系统发送第二指令,所述第二指令用于指示所述电驱动单元产生驱动电压;所述雨刮控制器,用于基于所述第二指令控制所述电驱动单元产生驱动电压;所述仿真机柜,还用于根据所述驱动电压确定所述雨刮系统的能耗信息,并向所述直流电子负载装置发送所述能耗信息;所述直流电子负载装置,用于基于所述能耗信息产生负载电流,所述负载电流用于指示所述电驱动单元的负载;所述仿真机柜,还用于采集所述雨刮系统的实际工作数据,以完成对所述雨刮系统的测试。
对雨刮系统进行测试时,通过直流电子负载装置产生的负载替代雨刮系统中雨刮电机总成可消耗的能量,可以实现对电驱动单元的测试,例如,测试电驱动单元是否存在故障,从而可以实现对雨刮系统的电功率级测试。
在一种可能的设计中,所述仿真机柜包括仿真系统,所述仿真系统用于运行电机模型和雨刮动力学模型,其中:所述电机模型,用于基于所述驱动电压确定驱动雨刮电机总成运动的驱动力,并基于所述驱动力模拟所述雨刮电机总成的运动;所述雨刮动力学模型,用于基于所述雨刮电机总成的运动模拟所述雨刮电机总成驱动的机械部件的动力学特性,所述机械部件包括连杆机构、雨刮臂和雨刮刮刷,所述动力学特性包括所述雨刮电机总成的输出轴的第六转角;所述电机模型,用于基于所述驱动电压和所述第六转角确定所述能耗信息。这样,通过仿真机柜运行多个模型,模拟雨刮电机总成和雨刮电机总成驱动的机械部件的运动,可以实现对雨刮系统的电功率级闭环测试,例如,测试电驱动单元是否存在故障。
在一种可能的设计中,所述仿真机柜还包括信号模拟板卡,所述仿真机柜还包括信号模拟板卡,用于模拟所述雨刮系统中雨刮传感器的输出信号,所述雨刮传感器包括雨量传感器、风速传感器和光线传感器中的一种或多种。通过信号模拟板卡模拟雨刮系统中各种传感器的输出信号,使得在测试过程中不需要安装各种传感器,节约测试成本,并且可以通过信号模拟板卡输出雨刮传感器异常的信号,可以测试雨刮系统的故障处理能力,例如是否能够及时停止工作,测试结果比较全面。
在一种可能的设计中,所述仿真机柜还包括电气故障注入板卡,用于输出电气故障信号,所述电气故障信号用于指示所述电驱动单元产生电气故障,所述电气故障包括短路或开路。通过电气故障注入板卡注入故障信号,可以检测雨刮系统的故障处理能力,例如是 否能够及时停止工作,测试结果比较全面。
在一种可能的设计中,所述仿真机柜还包括信号采集板卡,用于采集所述实际工作数据。通过信号采集板卡采集雨刮系统的实际工作数据,从而可以基于该实际工作数据和预设工作数据生成测试报告,方便测试人员发现问题,有助于提升测试效率。
在一种可能的设计中,所述测试装置还包括所述仿真机柜连接的上位机,用于向所述仿真机柜发送所述第二指令。这样,可以根据测试人员的需求有针对性的对雨刮系统进行测试,有助于提升测试效率。
第三方面,提供一种雨刮系统的测试方法,该测试方法可以应用于第一方面所述的仿真机柜,所述方法包括:向雨刮系统发送第一指令,所述第一指令用于指示驱动所述雨刮系统中的雨刮电机总成运动;根据所述雨刮电机总成的运动参数确定阻力信息,并向负载电机系统发送所述阻力信息,以使所述负载电机系统基于所述阻力信息向所述雨刮电机总成施加阻力,所述阻力用于阻碍所述雨刮电机总成的运动;采集所述雨刮系统的实际工作数据,以完成对所述雨刮系统的测试。
在一种可能的设计中,根据所述雨刮电机总成的运动参数确定阻力信息之前,还包括:接收来自所述负载电机系统的运动参数,所述运动参数为所述负载电机系统基于所述雨刮电机总成的输出轴的运动信息确定的,所述运动参数包括所述输出轴的第一转角,所述第一转角用于指示所述输出轴偏离预设位置的角度。
在一种可能的设计中,基于所述第一转角确定所述雨刮系统中第一雨刮臂的第二转角,以及确定所述第二雨刮臂的第三转角;确定第一雨刮刮刷和第二雨刮刮刷与玻璃之间的摩擦阻力和空气阻力,所述第一雨刮刮刷为所述第一雨刮臂对应的雨刮刮刷,所述第二雨刮刮为所述第二雨刮臂对应的雨刮刮刷;基于所述第二转角、所述第三转角、所述摩擦阻力和所述空气阻力确定所述第一雨刮刮刷的第四转角,以及确定所述第二雨刮刮刷的第五转角;基于所述第二转角、所述第三转角、所述第四转角和所述第五转角确定所述阻力信息。
在一种可能的设计中,所述阻力信息包括所述第一雨刮刮刷对应的第一阻力信息和所述第二雨刮刮刷对应的第二阻力信息。
在一种可能的设计中,所述方法还包括:输出雨刮传感器信号,所述雨刮传感器包括雨量传感器、风速传感器和光线传感器中的一种或多种。
在一种可能的设计中,所述方法还包括:输出电气故障信号,所述电气故障信号用于指示所述雨刮电机总成产生电气故障,所述电气故障包括短路或开路。
在一种可能的设计中,所述方法还包括:接收上位机发送的所述第一指令。
关于第三方面或各种可选的实施方式所带来的技术效果,可参考对于第一方面或相应实施方式的技术效果的介绍。
第四方面,提供一种雨刮系统的测试方法,该测试方法可以应用于第二方面所述的仿真机柜,所述方法包括:向雨刮系统发送第二指令,所述第二指令用于指示所述雨刮系统中的电驱动单元产生驱动电压;根据所述驱动电压确定所述雨刮系统的能耗信息,并向直流电子负载装置发送所述能耗信息,以使所述直流电子负载装置基于所述能耗信息产生负载电流,所述负载电流用于指示电驱动单元的负载;采集所述雨刮系统的实际工作数据,以完成对所述雨刮系统的测试。
在一种可能的设计中,根据所述驱动电压确定所述雨刮系统的能耗信息,包括基于所述驱动电压确定驱动雨刮电机总成运动的驱动力,并基于所述驱动力模拟所述雨刮电机总 成的运动;基于所述雨刮电机总成的运动确定所述雨刮电机总成驱动的机械部件的动力学特性,所述机械部件包括连杆机构、雨刮臂和雨刮刮刷,所述动力学特性包括雨刮电机总成的输出轴的第六转角;基于所述驱动电压和所述第六转角确定所述能耗信息。
在一种可能的设计中,所述方法还包括:接收上位机发送的所述第二指令。
在一种可能的设计中,所述方法还包括:输出雨刮传感器信号,所述雨刮传感器包括雨量传感器、风速传感器和光线传感器中的一种或多种。
在一种可能的设计中,所述方法还包括:输出电气故障信号,所述电气故障信号用于指示所述电驱动单元产生电气故障,所述电气故障包括短路或开路。
关于第四方面或各种可选的实施方式所带来的技术效果,可参考对于第二方面或相应实施方式的技术效果的介绍。
第五方面,提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如上述第三方面或第四方面提供的方法。
第六方面,提供一种计算机程序产品,包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如上述第三方面或第四方面所述的方法。
附图说明
图1为本申请实施例提供的一种雨刮系统的测试装置的结构框图;
图2为本申请实施例提供的另一种雨刮系统的测试装置的结构框图;
图3为本申请实施例提供的一种雨刮系统的结构框图;
图4为本申请实施例提供的另一种雨刮系统的测试装置的结构框图;
图5为本申请实施例提供的一种负载电机系统的结构框图;
图6为本申请实施例提供的一种仿真机柜的结构框图;
图7为本申请实施例提供的一种连杆机构的示意图;
图8为本申请实施例提供的一种雨刮刮刷动力学模型的结构框图;
图9为本申请实施例提供的另一种负载电机系统的结构框图;
图10为本申请实施例提供的另一种仿真机柜的结构框图;
图11为本申请实施例提供一种雨刮系统的测试方法的流程示意图;
图12为本申请实施例提供的另一种雨刮系统的测试装置的结构框图;
图13为本申请实施例提供的另一种雨刮系统的测试装置的结构框图;
图14为本申请实施例提供的另一种仿真机柜的结构框图;
图15为本申请实施例提供的一种雨刮动力学模型的结构框图;
图16为本申请实施例提供的另一种仿真机柜的结构框图;
图17为本申请实施例提供另一种雨刮系统的测试方法的流程示意图。
附图标记:
100-仿真机柜,101-仿真系统,101-1-阻力模型,101-2-连杆机构动力学模型,101-3-雨刮刮刷动力学模型,102-信号模拟板卡,103-信号采集板卡,104-电气故障注入板卡;101-3-1-第一雨刮刮刷动力学模型,101-3-2-第二雨刮刮刷动力学模型;
200-雨刮系统,201-雨刮电机总成,202-雨刮控制器,203-电驱动单元;
300-负载电机系统,301-负载电机总成,302-转速/传感器,303-转矩传感器,304-负载电机控制与驱动单元;
400-上位机;
500-联轴器;
600-仿真机柜,601-仿真系统,601-1雨刮动力学模型,601-2-电机模型,602-信号模型板卡,603-信号采集板卡,604-电气故障注入板卡;601-1-1-连杆机构动力学模型,601-1-2-阻力模型,601-1-3-雨刮刮刷动力学模型;
700-雨刮系统,701-电驱动单元,702-雨刮控制器;
800-直流电子负载装置;
900-上位机。
具体实施方式
下面将结合附图,对本申请实施例进行详细描述。以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
在车辆的研发阶段,往往需要对雨刮系统做各种基本性能的测试,以保证其在实际应用中的可靠性。为此,本申请实施例提供了雨刮系统的测试装置,用于实现对雨刮系统的测试。
请参考图1,为本申请实施例提供的一种雨刮系统的测试装置的结构框图,该测试装置可以实现对雨刮系统的机械功率级测试。该测试装置可包括仿真机柜100和负载电机系统300。仿真机柜100和负载电机系统300连接,仿真机柜100和负载电机系统300分别与雨刮系统200连接。雨刮系统200可包括雨刮电机总成201和雨刮控制器202,雨刮电机总成201和雨刮控制器202连接。
其中,雨刮电机总成201包括雨刮电机和减速总成(图中未示出),该减速总成与雨刮电机的输出端连接,在雨刮电机总成201运动过程中,雨刮电机进行匀速转动,该减速总成可以将雨刮电机总成201的输出轴的转动速度降低为需要的速度,以实现雨刮臂和雨刮刮刷的往复运动。
可选的,在对雨刮系统200进行测试之前,可以对仿真机柜100进行初始化。在初始化完成之后,仿真机柜100可以向雨刮系统200(例如是向雨刮系统200中的雨刮控制器202)发送第一指令,第一指令可以指示雨刮控制器202驱动雨刮电机总成201运动。例如雨刮电机总成201可包括一种或多种运动挡位,例如包括间歇挡、低速挡和高速挡。其中,不同的挡位对应雨刮电机总成201不同的运动速度。因此可选的,第一指令可以指示 雨刮电机总成201的运动挡位,雨刮电机总成201可以基于该第一指令指示的运动挡位进行运动。例如,第一指令可以包括第一指示信息和第二指示信息,第一指示信息可指示雨刮控制器202驱动雨刮电机总成201运动,第二指示信息可指示某个挡位;或者,第一指令可以包括第一指示信息,第一指示信息可以指示某个挡位,通过指示挡位也就相当于隐式指示了雨刮控制器202驱动雨刮电机总成201运动。通过第一指令指示雨刮电机总成201的运动挡位,可以根据需求对雨刮电机总成201进行测试,有助于提升测试效率。
可选的,该第一指令可以是仿真机柜100直接发送给雨刮系统200的,例如仿真机柜100生成第一指令并发送给雨刮系统200。例如,在测试装置上电时,仿真机柜100可以直接生成第一指令。例如,该仿真机柜100可以包括通讯板卡(图中未示出),仿真机柜100可以通过该通讯板卡生成第一指令,并将该第一指令发送给雨刮系统200。或者,仿真机柜100可以提供输入界面,用户可通过该输入界面输入测试指令,仿真机柜100接收该测试指令后就可以向雨刮系统200发送第一指令。例如,该通讯板卡可以接收用户通过该输入界面输入的测试指令,并在接收到该测试指令后将第一指令发送给雨刮系统200。
以通讯板卡生成第一指令为例。例如,通讯板卡可以基于预设的测试规则生成该第一指令,该测试规则例如由用户预先设置,或者由仿真机柜100预先配置。例如,预设的测试规则为进行高速挡测试,在测试装置上电时,通讯板卡可以基于该测试规则生成用于指示雨刮控制器202驱动雨刮电机总成201进行高速运动的第一指令。
或者,预设的测试规则为进行多挡位测试,且在该测试规则下的测试流程为间歇挡-低速挡-高速挡,表明在一轮测试过程中,需要雨刮电机总成201分别以不同挡位运动。例如,在测试装置上电时,通讯板卡可基于该测试流程生成用于指示雨刮控制器202驱动雨刮电机总成201进行间歇运动的第一指令;在完成间歇挡测试后,通讯板卡基于该测试流程生成用于指示雨刮控制器202驱动雨刮电机总成201进行低速运动的第一指令;在完成低速挡测试后,通讯板卡基于该测试流程生成用于指示雨刮控制器202驱动雨刮电机总成201进行高速运动的第一指令;在完成高速挡测试后,本轮测试过程完成。对雨刮电机总成201进行多挡位的测试,测试过程较为全面,有助于提升测试结果的准确性。
上述实施例中,通过仿真机柜100直接生成第一指令的方式,可以减少测试装置中设备的数量,以及减少仿真机柜100与其它设备的信息交互。
在前文介绍中,第一指令是仿真机柜100直接发送给雨刮系统200的,或者,第一指令也可以由仿真机柜100转发给雨刮系统200。例如请参考图2,该测试装置还可以包括与仿真机柜100连接的上位机400。该第一指令可以是上位机400发送给仿真机柜100,仿真机柜100再转发给雨刮系统200。例如,上位机400为用户操作单元,用户可以通过上位机400选择雨刮电机总成201的运动挡位,上位机400根据用户的选择生成第一指令。例如,上位机400可以将第一指令发送给仿真机柜100中的通讯板卡,该通讯板卡可将第一指令转发给雨刮系统200。通过上位机400基于用户的选择生成第一指令,可以基于用户的需求进行测试,测试效率高。
雨刮控制器202接收第一指令后,可以根据第一指令驱动雨刮电机总成201运动。可选的,请参考图3,该雨刮系统200还可以包括与雨刮电机总成201连接的电驱动单元203,雨刮控制器202在接收到该第一指令后,可以基于该第一指令控制电驱动单元203产生驱动电压,以驱动雨刮电机总成201运动。可选的,该电驱动单元203可以集成在雨刮控制器202中,或者,该电驱动单元203还可以和雨刮控制器202分开设置,但与该雨刮控制 器202连接。
雨刮电机总成201开始运动后,雨刮电机总成201可将雨刮电机总成201的输出轴的运动信息发送给仿真机柜100。例如,雨刮电机总成201开始运动之后,可以将该运动信息传递给负载电机系统300,以通过负载电机系统300基于该运动信息确定运动参数,并将该运动参数发送给仿真机柜100。该运动信息例如包括雨刮电机总成201的输出轴的转动信息。
可选的,请参考图4,该测试装置还可以包括联轴器500,雨刮电机总成201与负载电机系统300可以通过联轴器500连接。雨刮电机总成201开始运动后,可以通过该联轴器500将该输出轴的运动信息传递给负载电机系统300。其中,联轴器500为硬件装置,通过硬件装置传递运动信息,使得负载电机系统300基于该运动信息获取的运动参数准确性更高,有助于提升测试精度。
负载电机系统300在接收到该运动信息之后,可以基于该运动信息确定运动参数,并将该运动参数发送给仿真机柜100。可选的,运动参数包括雨刮电机总成201的输出轴的第一转角。其中,第一转角用于指示该输出轴偏离预设位置的角度。
可选的,请参考图5,负载电机系统300还可以包括负载电机总成301和转速/转角传感器302。其中,负载电机总成301与雨刮电机总成201通过联轴器500连接,负载电机总成301可以通过该联轴器500获取雨刮电机总成201传递的运动信息;转速/转角传感器302可以基于该运动信息确定该第一转角。其中,通过转角/转速传感器感知的运动参数准确性较高,有助于提升测试精度。
仿真机柜100接收运动参数后,可基于该运动参数确定阻力信息,例如,确定雨刮电机总成201在当前运动状态下需要运行的负载信息。
请参考图6,仿真机柜100可以包括仿真系统101,仿真机柜100可以通过仿真系统101确定该阻力信息,例如,该仿真系统101可以包括阻力模型101-1、连杆机构动力学模型101-2和雨刮刮刷动力学模型101-3,仿真系统101可以通过运行这些模型来确定该阻力信息。
连杆机构动力学模型101-2可以模拟雨刮系统200中的连杆机构的运动,例如,模拟雨刮系统200中连杆机构与第一雨刮臂(例如位于车辆右侧的雨刮臂,即右侧雨刮臂)和第二雨刮臂(例如位于车辆左侧的雨刮臂,即左侧雨刮臂)的角度关系,例如模拟第一雨刮臂的转角(可称为第二转角)和第二雨刮臂的转角(可称为第三转角)。
可选的,雨刮系统200中的连杆机构包括曲柄摇杆和双摇杆,曲柄摇杆由雨刮电机总成201直接驱动,曲柄摇杆可以带动双摇杆驱动该左右两侧雨刮臂运动。请参考图7,为本申请实施例提供的一种连杆机构的示意图。其中,L1、L2和L5为曲柄摇杆,L3为驱动右侧雨刮臂运动的双摇杆,L4为驱动左侧雨刮臂运动的双摇杆,α为雨刮电机总成201的输出轴的转角,即第一转角,β 1为第二转角,β 2为第三转角。
可选的,第二转角和第三转角可以通过如下函数进行描述:
β 1=f 1(α)                (公式1)
β 2=g(β 1)=f 2(α)           (公式2)
其中,f 1为雨刮电机总成201的输出轴的转角与第一雨刮臂的转角的函数,g为第一雨刮臂的转角与第二雨刮臂的转角的函数,f 2为雨刮电机总成201的输出轴的转角与第二雨刮臂的转角的函数。
阻力模型101-1可以确定雨刮电机总成201运动过程中,第一雨刮刮刷和第二雨刮刮刷与玻璃之间的摩擦阻力,以及确定第一雨刮刮刷和第二雨刮刮刷需要克服的空气阻力。其中,第一雨刮刮刷为第一雨刮臂对应的雨刮刮刷,第二雨刮刮刷为第二雨刮臂对应的雨刮刮刷。
可选的,用户可以预先在仿真机柜100中设置雨刮系统200的测试环境参数,例如雨量仿真参数、风量仿真参数、光线仿真参数和车辆的行驶速度等参数,阻力模型101-1可以基于该测试环境参数确定该摩擦阻力和空气阻力。
例如,阻力模型101-1可以基于该测试环境参数中的雨量仿真参数(例如下文所述的玻璃干湿度)、第一雨刮刮刷的第四转角和第二雨刮刮刷的第五转角确定该摩擦阻力,该摩擦阻力例如为f f(w,θ i),以及可以基于该测试环境参数中的风量仿真参数(例如下文所述的风速)和车辆的行驶速度确定该空气阻力,该空气阻力例如为f a(v V,v W)。其中,w为玻璃干湿度,i=1或2,θ为雨刮刮刷的转角,例如,当i=1时,θ i为第四转角(即第一雨刮刮刷的转角),当i=2时,θ i为第五转角(即第二雨刮刮刷的转角),v V为车辆的行驶速度,v W为风速,f f为摩擦阻力,f a为空气阻力。
雨刮刮刷动力学模型101-3可以基于第二转角、第三转角、摩擦阻力和空气阻力模拟雨刮系统200中雨刮刮刷的运动,例如,模拟第一雨刮刮刷的第四转角,以及模拟第二雨刮刮刷的第五转角。
可选的,请参考图8,雨刮刮刷动力学模型101-3可以包括第一雨刮刮刷动力学模型101-3-1和第二雨刮刮刷动力学模型101-3-2,该第一雨刮刮刷动力学模型101-3-1用于模拟第一雨刮刮刷的第四转角,该第二雨刮刮刷动力学模型101-3-2用于模拟第二雨刮刮刷的第五转角。
可选的,可以通过如下关系确定第一雨刮刮刷的转角(即第四转角)和第二雨刮刮刷的转角(即第五转角):
Figure PCTCN2022115594-appb-000001
其中,i=1、2,当i=1时,J i为第一雨刮刮刷的第一转动惯量,k i为第一雨刮刮刷的刚度,c i为第一雨刮刮刷的阻尼,θ i为第四转角,β i为第二转角,
Figure PCTCN2022115594-appb-000002
为第一雨刮刮刷的第一转速,
Figure PCTCN2022115594-appb-000003
为第一雨刮臂的第二转速,
Figure PCTCN2022115594-appb-000004
为第一雨刮刮刷的第一转角加速度。当i=2时,J i为第二雨刮刮刷的第一转动惯量,k i为第二雨刮刮刷的刚度,c i为第二雨刮刮刷的阻尼,θ i为第五转角,β i为第三转角,
Figure PCTCN2022115594-appb-000005
为第二雨刮刮刷的第三转速,
Figure PCTCN2022115594-appb-000006
为第二雨刮臂的第四转速,
Figure PCTCN2022115594-appb-000007
为第二雨刮刮刷的第二转角加速度。其中,该第一转速可以通过对第四转角进行微分运算得到,第二转速可以通过对第二转角进行微分运算得到,第三转速可以通过对第五转角进行微分运算得到,第四转速可以通过对第三转角进行微分运算得到,第一转角加速度可以通过对第一转速进行微分运算得到,第二转角加速度可以通过对第三转速进行微分运算得到。
仿真系统101可以基于上述模型模拟的参数确定该阻力信息,例如,仿真系统101可以基于第二转角、第三转角、第四转角、第五转角、第一转速、第二转速、第三转速和第四转速确定阻力信息。
可选的,该阻力信息可以包括第一雨刮刮刷对应的第一阻力信息和第二雨刮刮刷对应的第二阻力信息。仿真系统101可以基于第二转角、第四转角、第一转速和第三转速确定该第一阻力信息,以及基于第三转角、第五转角、第二转速和第四转速确定该第二阻力信息。
可选的,仿真系统101可以基于如下关系确定阻力信息:
Figure PCTCN2022115594-appb-000008
Figure PCTCN2022115594-appb-000009
其中,M r1为第一阻力信息,M r2为第二阻力信息,M r为阻力信息,例如该阻力信息指示的阻力为第一阻力信息和第二阻力信息指示的阻力之和,公式4中的其它参数可以参考公式3对应的参数的解释。
可选的,仿真系统101在确定第一阻力信息和第二阻力信息之后,可以将第一阻力信息和第二阻力信息指示的阻力之和发送给负载电机系统300,或者,也可以将第一阻力信息和第二阻力信息分别发送给负载电机系统300。
可选的,仿真系统101在确定第一阻力信息和第二阻力信息之后,可以通过通讯板卡将该阻力之和,或,该第一阻力信息和第二阻力信息发送给负载电机系统300。
上述实施例中,仿真系统101通过运行连杆机构动力学模型101-2、雨刮刮刷动力学模型101-3模拟雨刮系统200中连杆机构、雨刮臂和雨刮刮刷的运动,使得对雨刮系统200进行测试时,在雨刮电机总成201、雨刮控制器202和电驱动单元203开发完成即可进行测试,而不必等待雨刮系统200所包括的其他部件的开发,前移了测试过程,能够更早地获得雨刮系统200的测试数据。
负载电机系统300接收到来自仿真机柜100的阻力信息之后,负载电机总成301可以基于该阻力信息向雨刮电机总成201施加阻力,以阻碍雨刮电机总成201的运动。例如,负载电机总成301可基于该阻力信息生成同等阻力的负载施加给雨刮电机总成201,以增加雨刮电机总成201的运动难度。可选的,负载电机总成301可以通过如图4所示的联轴器500向雨刮电机总成201施加阻力。这样,通过负载电机系统300产生雨刮电机总成200运动过程中需要运行的负载,不需要在试验台搭建雨刮系统和挡风玻璃等装置,有效降低了测试成本。
在负载电机总成301向雨刮电机总成201施加阻力后,仿真机柜100可以采集雨刮系统200的实际工作数据,该实际工作数据就是雨刮系统200的测试数据,这样就完成了对雨刮系统200的测试。
在一些实施例中,负载电机总成301向雨刮电机总成201施加阻力后,负载电机系统300还可以基于如图4所示的联轴器500传递的雨刮电机总成201的输出轴的运动信息确定该输出轴的输出转矩,负载电机系统300可以判断该输出转矩是否与预设的目标输出转矩相同,如果不同,则可以调整负载电机总成301向雨刮电机总成201施加的阻力。例如,请参考图9,负载电机系统300中还可以包括转矩传感器303和负载电机控制与驱动单元304,转矩传感器303可以基于该运动信息确定该输出轴的输出转矩,负载电机系统300如果确定该输出转矩大于预设的目标输出转矩,则表明负载电机总成301向雨刮电机总成201施加的阻力小于前文所述的阻力信息指示的阻力,负载电机控制与驱动单元304可以增加施加到负载电机总成301的电压以增加负载电机总成301向雨刮电机总成201施加的阻力。
在一些实施例中,请参考图10,仿真机柜100还可以包括信号模拟板卡102和信号采集板卡103。信号模拟板卡102可以基于前文所述的测试环境参数模拟雨刮传感器的输出信号,雨刮传感器包括雨量传感器、风速传感器和车速传感器等传感器中的一种或多种, 例如,信号模拟板卡102可以基于前述的雨量仿真参数模拟雨量传感器的输出信号。信号采集板卡103可以采集雨刮系统200的实际工作数据,例如,采集雨刮电机总成201的第一转角和总线信号状态等数据。这样,通过信号模拟板卡102模拟雨刮系统200中各种传感器的输出信号,使得在测试过程中不需要安装各种传感器,节约测试成本。
可选的,对雨刮系统200的测试过程还可以包括异常测试,即测试雨刮系统200是否会对故障做出故障响应,例如进行告警或关闭雨刮电机总成201等响应。例如,在测试过程中,仿真机柜100可以通过信号模拟板卡102模拟雨刮传感器异常时的输出信号,例如,模拟雨刮传感器输出电压/电阻值波动超限或波动的输出信号,测试雨刮系统200是否能做出故障响应。又例如,请继续参考图10,仿真机柜100还可以包括电气故障注入板卡104,仿真机柜100可以通过电气故障注入板卡104输出指示雨刮电机总成产生电气故障的电气故障信号,例如短路或开路信号,测试雨刮系统200是否能做出故障响应。
可选的,在完成对雨刮系统200的测试之后,仿真机柜100还可以基于信号采集板卡103采集的雨刮系统200的实际工作数据和预设工作数据生成雨刮测试报告。或者,如果该测试装置中存在上位机400,仿真机柜100还可以向上位机400发送信号采集板卡103采集的该实际工作数据,以通过上位机400基于该实际工作数据和预设工作数据生成雨刮测试报告。这样,通过信号采集板卡103采集雨刮系统200的实际工作数据,从而可以基于该实际工作数据和预设工作数据生成测试报告,方便测试人员发现问题,有助于提升测试效率。
可见,本申请实施例通过该测试装置对雨刮系统200进行测试时,在雨刮电机总成201开发完成即可进行测试,而不必等待雨刮系统200所包括的其他部件的开发,前移了测试过程,能够更早地获得测试数据。且测试过程中通过负载电机系统300产生雨刮电机总成200运动过程中需要运行的负载,不需要在试验台搭建雨刮系统和挡风玻璃等装置,有效降低了测试成本。
结合上述实施例及相关附图,本申请实施例提供一种雨刮系统的测试方法,该方法可以由如图1~图10中的任一个附图所述的测试装置实现。请参考图11,为该方法的流程图。
S1101:仿真机柜100向雨刮系统200发送第一指令。
其中,第一指令用于指示驱动雨刮电机总成201运动。仿真机柜100向雨刮系统200发送第一指令的方式可以参考前述图1或图2所述的实施例中仿真机柜100向雨刮系统200发送第一指令的实施方式。例如,第一指令可以是仿真机柜100中的通讯板卡生成并发送给雨刮系统200的,或者是由该通讯板卡转发给雨刮系统200的。
S1102:雨刮控制器202接收该第一指令,并根据该第一指令驱动雨刮电机总成201运动。
雨刮控制器202接收该第一指令之后,可以根据该第一指令驱动雨刮电机总成201运动,例如,雨刮控制器202可以基于第一指令中的高速挡指示驱动雨刮电机总成201进行高速运动。
S1103:仿真机柜100基于雨刮电机总成201的输出轴的运动参数确定负载转矩,并将该负载转矩发送给负载电机系统300。相应的,负载电机系统300接收来自仿真机柜100的负载转矩。
其中,负载转矩即为前述的阻力信息。仿真机柜100确定该阻力信息的方式可以参考图6~图8所述的实施例,在此不再重复说明。
S1104:负载电机系统300基于该负载转矩生成负载,以阻碍雨刮电机总成201的运动。
其中,负载电机系统300可以基于来自仿真机柜100的负载转矩生成相应的负载,例如,负载电机系统300中的负载电机301可以基于该负载转矩生成相应的力矩(即前述的阻力),将该阻力通过联轴器500向雨刮电机总成201施加阻力,阻碍雨刮电机总成201的运动。
S1105:仿真机柜100采集雨刮系统200的实际工作数据,以完成对雨刮系统200的测试。
上述实施例中,对雨刮系统200进行测试时,通过仿真系统101运行的连杆机构动力学模型101-2、雨刮刮刷动力学模型101-3模拟雨刮电机总成201中连杆机构、雨刮臂和雨刮刮刷的运动,可以实现对雨刮系统200的机械功率级测试,且通过该测试装置对雨刮系统201进行测试时,在雨刮电机总成201、雨刮控制器202和电驱动单元203开发完成即可进行测试,而不必等待雨刮系统200所包括的其他部件的开发,前移了测试过程,能够更早地获得测试数据。且测试过程中通过负载电机系统300产生雨刮电机总成200运动过程中需要运行的负载,不需要在试验台搭建完整的雨刮系统和挡风玻璃等装置,有效降低了测试成本。
接下来,本申请实施例提供另一种测试装置,可参考图12,该测试装置可实现对雨刮系统的电功率级测试。该测试装置可包括仿真机柜600和直流电子负载装置800。仿真机柜600和直流电子负载装置800连接,仿真机柜600和直流电子负载装置800分别与雨刮系统700连接。雨刮系统700中可包括电驱动单元701和雨刮控制器702,雨刮控制器702和电驱动单元701连接。
可选的,在对雨刮系统700进行测试之前,可以对仿真机柜600进行初始化。在初始化完成之后,仿真机柜600可以向雨刮系统700(例如是向雨刮系统700中的雨刮控制器702)发送第二指令,第二指令可以指示电驱动单元701产生驱动电压。可选的,该第二指令可以是仿真机柜600直接发送给雨刮系统700的,例如仿真机柜600生成第二指令并发送给雨刮系统700。例如,在测试装置上电时,仿真机柜600可以直接生成第二指令。例如,该仿真机柜600可以包括通讯板卡(图中未示出),仿真机柜600可以通过该通讯板卡生成第二指令,并将该第二指令发送给雨刮系统700。或者,仿真机柜600可以提供输入界面,用户可通过该输入界面输入测试指令,仿真机柜600接收该测试指令后就可以向雨刮系统700发送第二指令。例如,该通讯板卡可以接收用户通过该输入界面输入的测试指令,并在接收到该测试指令后将第二指令发送给雨刮系统700。
在前文介绍中,第二指令是仿真机柜600发送给雨刮系统700的,或者,第二指令也可以由仿真机柜600转发给雨刮系统700,例如请参考图13,该测试装置还可以包括与仿真机柜600连接的上位机900,该第二指令可以是上位机900发送给仿真机柜600,仿真机柜600再转发给雨刮系统700。例如,上位机900为用户操作单元,用户可以通过上位机900选择电驱动单元701产生驱动电压,上位机900根据用户的选择生成第二指令。例如,上位机900可以将第二指令发送给仿真机柜600中的通讯板卡,该通讯板卡可将第二指令转发给雨刮系统700。通过上位机900基于用户的选择生成第二指令,可以基于用户的需求进行测试,测试效率高。
雨刮控制器702接收第二指令后,可以基于该第二指令控制电驱动单元701产生驱动电压。可选的,该电驱动单元701可以集成在雨刮控制器702中,或者,该电驱动单元701还可以和雨刮控制器702分开设置,但与该雨刮控制器702连接。
电驱动单元701产生驱动电压后,雨刮系统700可以将产生的驱动电压发送给仿真机柜600。仿真机柜600可基于该驱动电压确定能耗信息,该能耗信息例如是可作用于雨刮电机总成的目标电流。
请参考图14,仿真机柜600可以包括仿真系统601,仿真机柜600可以通过仿真系统601确定该能耗信息。例如,该仿真系统601可以包括雨刮动力学模型601-1和电机模型601-2,仿真系统601可以通过运行这些模型来确定该能耗信息。
电机模型601-2可以基于该驱动电压确定驱动雨刮电机总成运动的驱动力,并基于该驱动力模拟雨刮电机总成的运动。
雨刮动力学模型601-1可以基于该雨刮电机总成的运动模拟雨刮电机总成驱动的机械部件的动力学特性。例如,模拟雨刮电机总成的输出轴的转角(可称为第六转角),其中,该机械部件包括连杆机构、雨刮臂和雨刮刮刷。
可选的,请参考图15,雨刮动力学模型601-1可以包括连杆机构动力学模型601-1-1、阻力模型601-1-2和雨刮刮刷动力学模型601-1-3。连杆机构动力学模型601-1-1可以基于该驱动力模拟连杆机构与左右两侧雨刮臂的角度关系(即左右两侧雨刮臂的转角),雨刮刮刷动力学模型601-1-3可以基于该左右两侧雨刮臂的转角模拟左右两侧雨刮刮刷的转角,阻力模型601-1-2可以基于该左右两侧雨刮刮刷的转角确定左右两侧雨刮刮刷与玻璃之间的摩擦阻力和空气阻力,从而得到该雨刮电机总成的输出轴的第六转角。需要说明的是,该第六转角是指该雨刮电机总成在该驱动力和负载转矩相互作用下,雨刮电机总成的输出轴的转角,其中,该负载转矩是指雨刮电机总成运动过程中需要运行的负载对应的力矩。
可选的,用户可以预先在仿真机柜600中设置雨刮系统700的测试环境参数,例如雨量仿真参数、风量仿真参数、光线仿真参数和车辆的行驶速度等参数,阻力模型601-1-2可以基于该测试环境参数确定该摩擦阻力和空气阻力。
例如,阻力模型601-1-2可以基于该测试环境参数中的雨量仿真参数(例如下文所述的玻璃干湿度)和该左右两侧雨刮臂的转角确定摩擦阻力,该摩擦阻力例如为f f(w,θ i),以及可以基于该测试环境参数中的风量仿真参数(例如下文所述的风速)和车辆的行驶速度确定该空气阻力,该空气阻力例如为f a(v V,v W)。其中,w为玻璃干湿度,i=1或2,θ为雨刮刮刷的转角,例如,当i=1时,θ i为左侧雨刮刮刷的转角,当i=2时,θ i为右侧雨刮刮刷的转角,v V为车辆的行驶速度,v W为风速,f f为摩擦阻力,f a为空气阻力。
可选的,雨刮动力学模型601可以通过如下关系确定该第六转角:
Figure PCTCN2022115594-appb-000010
其中,J d为雨刮电机总成的等效转动惯量,θ d为第六转角,
Figure PCTCN2022115594-appb-000011
为雨刮电机总成的输出轴的第五转速,
Figure PCTCN2022115594-appb-000012
为雨刮电机总成的等效转角加速度,M d为驱动力。其中,该第五速度通过对第六转角进行微分运算得到,该等效转角加速度通过对第五转速进行微分运算得到。
电机模型601-2还可以基于该第六转角和驱动电压确定该能耗信息。可选的,电机模型601-2可以通过如下关系确定该能耗信息:
M d=f c(c)           (公式7)
Figure PCTCN2022115594-appb-000013
其中,u为驱动电压,f c为驱动力与电流的函数,c为电流(即前述的能耗信息)。
上述实施例中,仿真系统601通过运行电机模型601-2模拟雨刮电机总成的运动,以及运行雨刮动力学模型601-1模拟雨刮电机总成驱动的机械部件的运动,使得对雨刮系统700测试时,可以实现对雨刮系统的电功率级闭环测试,例如,测试电驱动单元是否存在故障。
仿真系统601在确定该能耗信息之后,仿真机柜600可以将该能耗信息发送给直流电子负载装置800,例如,仿真机柜600可以通过通讯板卡将该能耗信息发送给直流电子负载装置800。直流电子负载装置800接收到来自仿真机柜600的能耗信息之后,可以基于该能耗信息生成负载电流,该负载电流可以指示电驱动单元701的负载。这样,通过直流电子负载装置800产生的负载电流指示雨刮系统700中雨刮电机总成可消耗的能量,可以实现对电驱动单元701的测试,例如,测试电驱动单元701是否存在故障,从而可以实现对雨刮系统700的电功率级测试。
在直流电子装置800产生负载之后,仿真机柜600可以采集雨刮系统700的实际工作数据,该实际工作数据就是电驱动单元701的测试数据,这样就完成了对雨刮系统700的测试。
在一些实施例中,请参考图16,仿真机柜600还可以包括信号模拟板卡602和信号采集板卡603。信号模拟板卡602可以基于前文所述的测试环境参数模拟雨刮传感器的输出信号,雨刮传感器包括雨量传感器、风速传感器和车速传感器等传感器中的一种或多种,例如,信号模拟板卡602可以基于前述的雨量仿真参数模拟雨量传感器的输出信号。信号采集板卡603可以采集雨刮系统700的实际工作数据,例如,采集电驱动单元701产生的驱动电压和总线信号状态等数据。这样,通过信号模拟板卡602模拟雨刮系统700中各种传感器的输出信号,使得在测试过程中不需要安装各种传感器,节约测试成本。
可选的,对雨刮系统700的测试过程还可以包括异常测试,即测试雨刮系统700是否会对故障做出故障响应,例如进行告警或控制电驱动单元701停止产生驱动电压等响应。例如,在测试过程中,仿真机柜600可以通过信号模拟板卡602模拟雨刮传感器异常时的输出信号,测试雨刮系统700是否能做出故障响应。又例如,请继续参考图16,仿真机柜600还可以包括电气故障注入板卡604,仿真机柜600可以通过电气故障注入板卡604输出指示电驱动单元701产生电气故障的电气故障信号,例如短路或开路信号,测试雨刮系统700是否能做出故障响应。
可选的,在完成对雨刮系统700的测试之后,仿真机柜600还可以基于信号采集板卡603采集的雨刮系统700的实际工作数据和预设工作数据生成雨刮测试报告。或者,如果该测试装置中存在上位机900,仿真机柜600还可以向上位机900发送信号采集板卡605采集的该实际工作数据,以通过上位机900基于该实际工作数据和预设工作数据生成雨刮测试报告。通过信号采集板卡603采集雨刮系统700的实际工作数据,从而可以基于该实际工作数据和预设工作数据生成测试报告,方便测试人员发现问题,有助于提升测试效率。
可见,本申请实施例通过该测试装置对雨刮系统700进行测试时,通过直流电子负载装置800产生的负载指示雨刮系统700中雨刮电机总成可消耗的能量,可以实现对电驱动单元701的测试,实现对雨刮系统700的电功率级测试。
结合上述实施例及相关附图,本申请实施例提供一种雨刮系统的测试方法,该方法可 以由如图12~图16所述的测试装置实现,下面实施例中,以该方法由图12所示的测试装置实现为例,请参考图17所示,为该方法的流程图。
S1701:仿真机柜600向雨刮系统700发送第二指令。
其中,第二指令用于指示电驱动单元701产生驱动电压。仿真机柜600向雨刮系统700发送第二指令的方式可以参考前述图12或图13所述的实施例中仿真机柜600向雨刮系统700发送第二指令的实施方式。例如,第二指令可以是仿真机柜600中的通讯板卡生成并发送给雨刮系统700的,或者是由该通讯板卡转发给雨刮系统700的。
S1702:雨刮控制器202接收该第二指令,并根据该第二指令控制电驱动单元701产生驱动电压。
雨刮控制器202接收该第一指令之后,可以根据该第一指令控制电驱动单元701产生驱动电压。
S1703:仿真机柜600基于该驱动电压确定能耗信息,并将该能耗信息发送给直流电子负载装置800。相应的,直流电子负载装置800接收来自仿真机柜的能耗信息。
其中,仿真机柜600确定能耗信息的方式可以参考图14和15所述的实施例,此处不再重复说明。
S1704:直流电子负载装置800基于该能耗信息生成负载电流。
其中,直流电子负载装置800产生的负载电流可以指示电驱动单元701的负载,可以实现对电驱动单元的测试,从而实现对雨刮系统700的电功率级测试。
S1705:仿真机柜600采集雨刮系统700的实际工作数据,以完成对雨刮系统700的测试。
上述实施例中,对雨刮系统700进行测试时,通过仿真系统运行的电机模型模拟雨刮电机总成的运动,雨刮动力学模型模拟雨刮电机总成、连杆机构、雨刮臂和雨刮刮刷的运动,可以实现对雨刮系统700的电功率级测试,例如,测试电驱动单元701是否存在故障。
在本申请实施例中,通过上述两种测试装置可以实现对雨刮系统的机械级功率测试电功率级测试,测试更为全面。在一些实施例中,还可以将上述两个测试装置集成为一个测试装置,此时该一个测试装置中包括雨刮系统、仿真机柜、负载电机系统和直流电子装置,仿真机柜与雨刮系统、负载电机系统和直流电子负载装置分别连接,雨刮系统和负载电机系统和直流电子装置分别连接。
仿真机柜中可以包括仿真系统,该仿真系统可以运行电机模型、连杆动力学模型、阻力模型和雨刮刮刷动力学模型等。
雨刮系统中可以包括雨刮控制器、电驱动单元和雨刮电机总成,可选的,该电驱动单元可以集成在雨刮控制器中,或者,该电驱动单元还可以和雨刮控制器分开设置,但与该雨刮控制器连接,在本申请实施例中,以电驱动单元可以集成在雨刮控制器中为例(例如为第一雨刮控制器)。第一雨刮控制器分别与直流电子负载装置和雨刮电机总成连接,雨刮电机总成与负载电机系统连接。
可选的,第一雨刮控制器与直流电子负载装置和雨刮电机总成的连接可以通过一个单刀双掷开关进行控制,当开关打到雨刮电机总成时,第一雨刮控制器与雨刮电机总成之间的连接导通,第一雨刮控制器与直流电子负载装置之间的连接断开;当开关打到直流电子负载装置时,第一雨刮控制器与直流电子负载装置之间的连接导通,第一雨刮控制器与雨 刮电机总成之间的连接断开。
当需要对雨刮系统进行机械级功率测试时,测试人员可以将前述的单刀双掷开关打到雨刮电机总成,导通第一雨刮控制器与雨刮电机总成之间的连接,仿真机柜向雨刮系统发送第一指令,指示雨刮电机总成运动,雨刮电机总成运动之后将运动信息发送给仿真机柜。例如,雨刮电机总成将运动信息传递给负载电机系统,通过负载电机系统基于该运动信息确定运动参数,并将该运动参数转发给仿真机柜。仿真机柜在接收到来自负载电机系统的运动参数时,可以通过仿真系统运行连杆动力学模型、阻力模型和雨刮刮刷动力学模型,通过这些模型基于雨刮电机总成的运动信息确定阻力信息,并将确定的阻力信息发送给负载电机系统,以使负载电机系统基于该阻力信息向雨刮电机总成施加阻力。
当需要对雨刮系统进行电功率级测试时,测试人员可以将前述的单刀双掷开关打到电驱动单元,导通第一雨刮控制器和直流电子负载装置之间的连接,仿真机柜向雨刮系统发送第二指令,指示电驱动单元产生驱动电压,电驱动单元产生驱动电压之后,雨刮系统可以将驱动电压发送给仿真机柜,例如,雨刮系统通过第一信息将该驱动电压发送给仿真机柜。仿真机柜在接收到来自雨刮系统的第一信息时,可以通过仿真系统运行电机模型、连杆动力学模型、阻力模型和雨刮刮刷动力学模型确定能耗信息,并将该能耗信息发送给直流电子负载装置,以使直流电子负载装置产生负载电流。
在一些实施例中,该测试装置还可以上位机,联轴器等,该上位机和联轴器与上述实施例中上位机和联轴器的作用相同,在此不再赘述。
在一些实施例中,仿真机柜还可以包括信号模拟板卡,信号采集板卡,电气故障注入板卡和通讯板卡等模块,这些模块的作用与上述实施例中这些模块的作用相同,在此不再赘述。
本申请实施例还提供一种计算机程序产品,包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如上述实施例中的方法。
本申请实施例还提供一种芯片系统,包括处理器和接口,所述处理器用于从所述接口调用并运行指令,以使所述芯片系统实现上述实施例中的方法。
为了实现上述本申请实施例提供的方法中的各功能,仿真机柜可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
上述实施例中所用,根据上下文,术语“当…时”可以被解释为意思是“如果…”或“在…后”。类似地,根据上下文,短语“在确定…时”可以被解释为意思是“如果确定…”或“响应于确定…”。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、 数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如DVD)、或者半导体介质(例如固态硬盘)等。
为了解释的目的,前面的描述是通过参考具体实施例来进行描述的。然而,上面的示例性的讨论并非意图是详尽的,也并非意图要将本申请限制到所公开的精确形式。根据以上教导内容,很多修改形式和变型形式都是可能的。选择和描述实施例是为了充分阐明本申请的原理及其实际应用,以由此使得本领域的其他技术人员能够充分利用具有适合于所构想的特定用途的各种修改的本申请以及各种实施例。

Claims (17)

  1. 一种雨刮系统的测试装置,其特征在于,包括:仿真机柜和负载电机系统,所述仿真机柜和所述负载电机系统连接,所述仿真机柜和所述负载电机系统分别与雨刮系统连接,所述雨刮系统包括雨刮控制器和雨刮电机总成,所述雨刮控制器和所述雨刮电机总成连接,其中:
    所述仿真机柜,用于向所述雨刮系统发送第一指令,所述第一指令用于指示驱动所述雨刮电机总成运动;
    所述雨刮控制器,用于接收所述第一指令,并根据所述第一指令驱动所述雨刮电机总成运动;
    所述仿真机柜,还用于根据所述雨刮电机总成的运动参数确定阻力信息,并向所述负载电机系统发送所述阻力信息;
    所述负载电机系统,用于基于所述阻力信息向所述雨刮电机总成施加阻力,所述阻力用于阻碍所述雨刮电机总成的运动;
    所述仿真机柜,还用于采集所述雨刮系统的实际工作数据,以完成对所述雨刮系统的测试。
  2. 如权利要求1所述的测试装置,其特征在于,所述测试装置还包括联轴器,所述雨刮电机总成与所述负载电机系统通过所述联轴器连接,所述联轴器,用于向所述雨刮电机总成传递所述负载电机系统施加所述阻力。
  3. 如权利要求2所述的测试装置,其特征在于,所述联轴器,还用于向所述负载电机系统传递所述雨刮电机总成的输出轴的运动信息。
  4. 如权利要求3所述的测试装置,其特征在于,所述负载电机系统,还用于基于所述运动信息确定运动参数,并向所述仿真机柜发送所述运动参数,所述运动参数用于所述仿真机柜确定所述阻力信息,所述运动参数包括所述输出轴的第一转角,所述第一转角用于指示所述输出轴偏离预设位置的角度。
  5. 如权利要求4所述的测试装置,其特征在于,所述仿真机柜包括仿真系统,所述仿真系统用于运行阻力模型、连杆机构动力学模型和雨刮刮刷动力学模型,其中:
    所述连杆机构动力学模型用于基于所述第一转角确定所述雨刮系统中第一雨刮臂的第二转角,以及确定所述第二雨刮臂的第三转角;
    所述阻力模型用于确定第一雨刮刮刷和第二雨刮刮刷与玻璃之间的摩擦阻力和空气阻力,所述第一雨刮刮刷为所述第一雨刮臂对应的雨刮刮刷,所述第二雨刮刮为所述第二雨刮臂对应的雨刮刮刷;
    所述雨刮刮刷动力学模型用于基于所述第二转角、所述第三转角、所述摩擦阻力和所述空气阻力确定所述第一雨刮刮刷的第四转角,以及确定所述第二雨刮刮刷的第五转角;
    所述仿真系统,具体用于:
    基于所述第二转角、所述第三转角、所述第四转角和所述第五转角确定所述阻力信息。
  6. 如权利要求5所述的测试装置,其特征在于,所述阻力信息包括所述第一雨刮刮刷对应的第一阻力信息和所述第二雨刮刮刷对应的第二阻力信息。
  7. 如权利要求1~6任一项所述的测试装置,其特征在于,所述雨刮系统还包括与所述雨刮电机总成连接的电驱动单元,用于生成驱动所述雨刮电机总成运动的驱动电压。
  8. 如权利要求1~7任一项所述的测试装置,其特征在于,所述仿真机柜还包括信号模拟板卡,用于模拟所述雨刮系统中雨刮传感器的输出信号,所述雨刮传感器包括雨量传感器、风速传感器和光线传感器中的一种或多种。
  9. 如权利要求1~8任一项所述的测试装置,其特征在于,所述仿真机柜还包括电气故障注入板卡,用于输出电气故障信号,所述电气故障信号用于指示所述雨刮电机总成产生电气故障,所述电气故障包括短路或开路。
  10. 如权利要求1~9任一项所述的测试装置,其特征在于,所述测试装置还包括与所述仿真机柜连接的上位机,用于向所述仿真机柜发送所述第一指令。
  11. 如权利要求1~10任一项所述的测试装置,其特征在于,所述仿真机柜还包括信号采集板卡,用于采集所述实际工作数据。
  12. 一种雨刮系统的测试装置,其特征在于,包括:仿真机柜和直流电子负载装置,所述仿真机柜和所述直流电子负载装置连接,所述仿真机柜和所述直流电子负载装置分别与雨刮系统连接,所述雨刮系统包括雨刮控制器和电驱动单元,所述雨刮控制器和所述电驱动单元连接,其中:
    所述仿真机柜,用于向所述雨刮系统发送第二指令,所述第二指令用于指示所述电驱动单元产生驱动电压;
    所述雨刮控制器,用于基于所述第二指令控制所述电驱动单元产生驱动电压;
    所述仿真机柜,还用于根据所述驱动电压确定所述雨刮系统的能耗信息,并向所述直流电子负载装置发送所述能耗信息;
    所述直流电子负载装置,用于基于所述能耗信息产生负载电流,所述负载电流用于指示所述电驱动单元的负载;
    所述仿真机柜,还用于采集所述雨刮系统的实际工作数据,以完成对所述雨刮系统的测试。
  13. 如权利要求12所述的测试装置,其特征在于,所述仿真机柜包括仿真系统,所述仿真系统用于运行电机模型和雨刮动力学模型,其中:
    所述电机模型,用于基于所述驱动电压确定驱动雨刮电机总成运动的驱动力,并基于所述驱动力模拟所述雨刮电机总成的运动;
    所述雨刮动力学模型,用于基于所述雨刮电机总成的运动模拟所述雨刮电机总成驱动的机械部件的动力学特性,所述机械部件包括连杆机构、雨刮臂和雨刮刮刷,所述动力学特性包括所述雨刮电机总成的输出轴的第六转角;
    所述电机模型,用于基于所述驱动电压、所述第六转角确定所述能耗信息。
  14. 如权利要求12或13所述的测试装置,其特征在于,所述仿真机柜还包括信号模拟板卡,用于模拟所述雨刮系统中雨刮传感器的输出信号,所述雨刮传感器包括雨量传感器、风速传感器和光线传感器中的一种或多种。
  15. 如权利要求12~14任一项所述的测试装置,其特征在于,所述仿真机柜还包括电气故障注入板卡,用于输出电气故障信号,所述电气故障信号用于指示所述电驱动单元产生电气故障,所述电气故障包括短路或开路。
  16. 如权利要求12~15任一项所述的测试装置,其特征在于,所述仿真机柜还包括信号采集板卡,用于采集所述实际工作数据。
  17. 如权利要求12~16任一项所述的测试装置,其特征在于,所述测试装置还包括所述仿真机柜连接的上位机,用于向所述仿真机柜发送所述第二指令。
PCT/CN2022/115594 2022-08-29 2022-08-29 一种雨刮系统的测试装置 WO2024044911A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/115594 WO2024044911A1 (zh) 2022-08-29 2022-08-29 一种雨刮系统的测试装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/115594 WO2024044911A1 (zh) 2022-08-29 2022-08-29 一种雨刮系统的测试装置

Publications (1)

Publication Number Publication Date
WO2024044911A1 true WO2024044911A1 (zh) 2024-03-07

Family

ID=90100213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115594 WO2024044911A1 (zh) 2022-08-29 2022-08-29 一种雨刮系统的测试装置

Country Status (1)

Country Link
WO (1) WO2024044911A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118107518A (zh) * 2024-04-30 2024-05-31 上海技涵电子科技有限公司 一种新能源汽车的雨刮集成控制方法和雨刮控制系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021024452A (ja) * 2019-08-06 2021-02-22 株式会社ミツバ ワイパ制御パラメータの適合装置、ワイパ制御パラメータの適合方法およびワイパ制御パラメータの適合プログラム
CN113125956A (zh) * 2021-04-23 2021-07-16 成都华川电装有限责任公司 雨刮电机组件变载测试装置
CN213875966U (zh) * 2020-12-22 2021-08-03 长沙艾克赛普仪器设备有限公司 一种整车辅助电源产品试验台
CN113325734A (zh) * 2021-06-10 2021-08-31 中国第一汽车股份有限公司 自动雨刮的仿真测试系统、方法、装置、设备和存储介质
CN114019934A (zh) * 2021-09-16 2022-02-08 阿尔特汽车技术股份有限公司 一种基于雨刮负载模型的雨刮电机控制器hil测试方法
CN114838963A (zh) * 2022-03-22 2022-08-02 吉林大学 一种高速机车刮雨器的动态测试台及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021024452A (ja) * 2019-08-06 2021-02-22 株式会社ミツバ ワイパ制御パラメータの適合装置、ワイパ制御パラメータの適合方法およびワイパ制御パラメータの適合プログラム
CN213875966U (zh) * 2020-12-22 2021-08-03 长沙艾克赛普仪器设备有限公司 一种整车辅助电源产品试验台
CN113125956A (zh) * 2021-04-23 2021-07-16 成都华川电装有限责任公司 雨刮电机组件变载测试装置
CN113325734A (zh) * 2021-06-10 2021-08-31 中国第一汽车股份有限公司 自动雨刮的仿真测试系统、方法、装置、设备和存储介质
CN114019934A (zh) * 2021-09-16 2022-02-08 阿尔特汽车技术股份有限公司 一种基于雨刮负载模型的雨刮电机控制器hil测试方法
CN114838963A (zh) * 2022-03-22 2022-08-02 吉林大学 一种高速机车刮雨器的动态测试台及方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118107518A (zh) * 2024-04-30 2024-05-31 上海技涵电子科技有限公司 一种新能源汽车的雨刮集成控制方法和雨刮控制系统

Similar Documents

Publication Publication Date Title
WO2024044911A1 (zh) 一种雨刮系统的测试装置
Huang et al. PC-based PID speed control in DC motor
CN105912028A (zh) 云台控制系统和控制方法
CN113325734B (zh) 自动雨刮的仿真测试系统、方法、装置、设备和存储介质
WO2020057084A1 (zh) 显示模组测试平台
CN109459254B (zh) 一种多关节机器人动力学半物理仿真平台
CN102436184B (zh) 一种基于嵌入式处理器双目标机的控制实时仿真系统
CN201251880Y (zh) 可控动态转矩的机械模拟负载装置
CN104215370A (zh) 空调箱体风门机械传动扭矩及极限位置的测量方法及系统
CN102495344B (zh) 一种晶粒探测方法和系统
CN106019944B (zh) 一种基于自适应摩擦力矩模型的动量轮模拟器
CN116754876B (zh) 雨刮自动测试系统、方法、设备及存储介质
CN114019934A (zh) 一种基于雨刮负载模型的雨刮电机控制器hil测试方法
JP4885639B2 (ja) Hils装置
CN202583815U (zh) 无人飞行器运行状态总线监测装置
CN201689341U (zh) 一种便携式低速风洞模型姿态控制装置
CN110053048B (zh) 远程控制方法
CN113252933B (zh) 一种螺旋桨来流速度检测装置及方法
CN109774918A (zh) 一种无人机控制装置和无人机
CN115542158A (zh) 一种无人机电机测试系统
CN111045424B (zh) 一种智能船舶决策指令解读模块的测试系统
CN214586522U (zh) 一种集成plc、视觉或力反馈的智能伺服系统
CN102684584A (zh) 一种基于以太网的远程步进电机控制系统
CN112324747A (zh) 一种静液压传动单元测试系统及测试方法
CN201322621Y (zh) 一种节气门位置传感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956746

Country of ref document: EP

Kind code of ref document: A1