WO2024043425A1 - 메타구조가 적용된 로봇용 소프트 피복구조체 - Google Patents

메타구조가 적용된 로봇용 소프트 피복구조체 Download PDF

Info

Publication number
WO2024043425A1
WO2024043425A1 PCT/KR2023/004730 KR2023004730W WO2024043425A1 WO 2024043425 A1 WO2024043425 A1 WO 2024043425A1 KR 2023004730 W KR2023004730 W KR 2023004730W WO 2024043425 A1 WO2024043425 A1 WO 2024043425A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
covering
covering structure
pattern
soft
Prior art date
Application number
PCT/KR2023/004730
Other languages
English (en)
French (fr)
Inventor
이선희
정임주
박예은
김종욱
최영림
Original Assignee
동아대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동아대학교 산학협력단 filed Critical 동아대학교 산학협력단
Publication of WO2024043425A1 publication Critical patent/WO2024043425A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/08Gripping heads and other end effectors having finger members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators

Definitions

  • the present invention relates to a soft covering structure that is coupled to the outer surface of a robot to form an exoskeleton. More specifically, it is coupled to cover the outer surface of the hand of the robot or any part of the robot, providing elasticity and flexibility. , It is about a soft covering structure for a robot using a metastructure produced by 3D printing method.
  • Wearable robots can be divided into rigid material robots and flexible material robots depending on the material.
  • Flexible material robots are robots made of flexible materials such as elastomer, fabric, and gel, and even include cases where rigid materials are combined with flexible materials.
  • wearable robots are used for military purposes, industrial work, disaster relief, rehabilitation treatment, and daily life assistance.
  • the parts worn are the upper limbs, lower limbs, whole body, hands, wrists, feet, and hands. It can be applied to the ankle area.
  • smart gloves are one of the flexible material wearable robots that are worn on a person's hand.
  • the development of products mainly for rehabilitation treatment, daily life assistance, and communication for the visually and hearing impaired is in progress.
  • research and product development on soft wearable robot rehabilitation devices for hand rehabilitation are actively underway. .
  • the hand is an organ in the body that contains the most joints and degrees of freedom in the smallest space, and is always needed for movements using the upper limbs in daily life, so it plays an important role.
  • the hand is located at the very end of the upper extremity, so it suffers the most severe aftereffects from diseases such as stroke, spinal cord injury, and cerebral palsy, and is one of the most difficult parts to receive rehabilitation treatment.
  • Most hand rehabilitation involves separate rehabilitation exercises for the shoulder, elbow, and wrist, as well as hand rehabilitation treatment.
  • Flexible material wearable robots for hand rehabilitation mainly use flexible materials such as neoprene and Velcro fasteners to reduce bulk and weight, and are equipped with DC motors and push-pull actuator devices to assist finger strength.
  • the entire robot, or at least the part in contact with the body be made of a soft and flexible material.
  • a flexible cloth or resin covering structure is used by combining the outer surface of a rigid robot.
  • the conventional covering structure has low tensile strength, shock absorption, and elasticity, is not durable, and makes it difficult to implement robot movements. there is a problem.
  • the present invention is intended to solve the above problems, and the purpose of the present invention is to create a robot with a meta structure that is coupled to the outer surface of a rigid robot and operates together with the robot, and has excellent tensile strength, shock absorption, lightness, and elasticity.
  • the purpose is to provide a soft covering structure for use.
  • the soft covering structure for a robot according to one form of the present invention to achieve the above object is made of an elastic resin material and is connected to the surface of the robot, and is a grid in which a plurality of through holes are formed by continuously arranging a certain pattern. Includes a covering having a shape.
  • the pattern of the covering may be an auxetic pattern with a Poisson's ratio of -0.5 to 0.
  • the covering may be made to have a certain pattern by printing a filament made of thermoplastic polyurethane (TPU), thermoplastic rubber (TPE), or shape memory polymer (SMP) with an FDM 3D printer.
  • TPU thermoplastic polyurethane
  • TPE thermoplastic rubber
  • SMP shape memory polymer
  • the soft covering structure for a robot includes a coupling cap that is fixed to one end of the covering, has a cylindrical shape with at least one side open, and is coupled by inserting the end of the robot through the open one side. It can be included.
  • the soft covering structure for a robot is a covering structure that is coupled to the surface of a robot in a shape corresponding to a human hand, and is made of an elastic resin material to cover the palm or back of the hand of the robot and the fingers of the robot.
  • a coupling cap that is fixed to the end of the portion of the covering body that is connected to the robot's finger has a cylindrical shape with at least one side open, and is coupled by inserting the tip of the robot's finger through the open side.
  • the pattern of the covering may be an auxetic pattern with a Poisson's ratio of -0.5 to 0.
  • the covering may be made to have a certain pattern by printing a filament made of thermoplastic polyurethane (TPU), thermoplastic rubber (TPE), or shape memory polymer (SMP) with an FDM 3D printer.
  • TPU thermoplastic polyurethane
  • TPE thermoplastic rubber
  • SMP shape memory polymer
  • the covering of the soft covering structure is made of a lattice structure with an auxetic pattern and has excellent elasticity, lightness, and high tensile strength, and when the robot is moved to grab an object or perform various actions, the covering is connected to the robot. Together, they perform elastic behavior smoothly, allowing the robot to move naturally.
  • a coupling cap that is inserted and coupled to the robot at one end of the covering is fixedly formed, so that the covering structure can be easily installed and used on the robot using the coupling cap.
  • Figure 1 is a perspective view showing a soft covering structure for a robot according to an embodiment of the present invention.
  • Figure 2 is a photograph of a soft covering structure for a robot according to an embodiment of the present invention.
  • Figure 3 is a diagram showing a state in which the soft covering structure for a robot according to an embodiment of the present invention is worn on the robot hand.
  • Figure 4 is a diagram showing an example of a soft covering structure for a robot elastically deformed by the motion of a robot hand according to an embodiment of the present invention.
  • the soft covering structure for a robot shown in FIGS. 1 to 4 shows an example of application as a covering structure coupled to the surface of a robot (hereinafter referred to as 'robot hand') in a shape corresponding to a human hand, but the present invention
  • the soft covering structure for robots can be applied to various robots in addition to robot hands.
  • the soft covering structure 100 for a robot includes a covering body 110 that is connected to the palm or back of the hand of the robot hand (R) and the surface of the robot's fingers. ) and a coupling cap 120 fixed to the end of the portion of the covering body 110 that is connected to the fingers of the robot hand (R).
  • the covering body 110 includes a body portion 111 connected to the back surface of the hand of the robot hand (R), and a strip extending forward from the front end of the body portion 111 and connected to the surface of the fingers of the robot hand (R). It may include a plurality of finger portions 112 in the form of.
  • the body portion 111 and the finger portion 112 of the covering 110 are made of thermoplastic resin with excellent elasticity, such as thermoplastic polyurethane (TPU), thermoplastic elastomer (TPE), or shape memory polymer (SMP). It is made of a material and has a grid shape in which a certain pattern is arranged continuously and a plurality of through holes are formed.
  • TPU thermoplastic polyurethane
  • TPE thermoplastic elastomer
  • SMP shape memory polymer
  • the covering body 110 can be made to have a predetermined pattern by printing a thermoplastic resin filament with an FDM-type 3D printer.
  • the thermoplastic resin filament may be made of thermoplastic polyurethane (TPU), thermoplastic rubber (TPE), or shape memory polymer ( A filament made of SMP can be used.
  • shape memory polymer (SMP) filament superior mechanical properties can be obtained compared to when using thermoplastic polyurethane (TPU) filament or thermoplastic rubber (TPE).
  • the body portion 111 and the finger portion 112 of the covering 110 may be manufactured by 3D printing independently and then bonded to each other to be integrated.
  • the pattern forming the covering body 110 is an auxetic pattern with a Poisson's ratio of -0.5 to 0 because when a displacement extending in the load direction occurs, a displacement extending in a direction perpendicular to the load direction occurs. It is desirable.
  • various re-entrant patterns such as arrow-shaped re-entrant pattern, star-shaped re-entrant pattern, and hexagonal re-entrant pattern. Various chiral honeycomb patterns, etc. may be applied.
  • the covering 110 is made of a lattice structure with an auxetic pattern, the covering 110 is easily elastically deformed according to the movement of the robot hand and expands simultaneously in the longitudinal and width directions, thereby expanding the robot hand.
  • the force resisting the movement of (R) can be minimized.
  • the covering body 110 can be coupled to the robot hand (R) by the coupling cap 120.
  • the coupling cap 120 is in the form of a cylinder with one side open and is inserted and coupled to the fingertips of the robot hand (R) through the open side.
  • the coupling cap 120 may be made of the same thermoplastic polyurethane (TPU), thermoplastic rubber (TPE), or shape memory polymer (SMP) resin as the covering body 110, and can be 3D printed like the covering body 110. It can be produced in this way.
  • the covering body 110 produced by 3D printing has a lattice structure with an organic pattern and is made of an elastic material such as thermoplastic polyurethane (TPU), thermoplastic rubber (TPE), or shape memory polymer (SMP) resin to provide high tensile strength. It was confirmed that it has strength, is very small in weight, and has high elasticity.
  • TPU thermoplastic polyurethane
  • TPE thermoplastic rubber
  • SMP shape memory polymer
  • the covering body 110 performs elastic behavior smoothly together with the robot hand (R), allowing the robot hand (R) to operate naturally.
  • the present invention relates to a soft covering structure that is coupled to the outer surface of a robot to form an exoskeleton, and can be applied as a covering for various robots such as wearable robots and industrial robots that can be worn on the human body.

Abstract

본 발명은 로봇 손 또는 로봇의 임의의 부분의 외면을 덮도록 결합되면서 탄성 및 유연성을 제공하며, 3D 프린팅 방식으로 제작되는 메타구조가 적용된 로봇용 소프트 피복구조체에 관한 것으로, 본 발명에 따른 로봇용 소프트 피복구조체는, 탄력성이 있는 수지 재질로 되어 로봇의 손바닥 또는 손등과 로봇의 손가락의 표면에 연접하게 결합되며, 일정한 패턴이 연속적으로 배열되면서 복수의 통공이 형성된 격자 형태를 갖는 피복체; 및, 상기 피복체 중 로봇의 손가락에 연접하게 결합되는 부분의 끝단부에 고정되며, 적어도 일측면이 개방된 통 형태로 되어 개방된 일측면을 통해 로봇의 손가락 끝단이 삽입되면서 결합되는 커플링캡;을 포함할 수 있다.

Description

메타구조가 적용된 로봇용 소프트 피복구조체
본 발명은 로봇의 외면에 결합되어 외골격을 형성하는 소프트 피복구조체에 관한 것으로, 더욱 상세하게는 로봇의 손에 해당하는 부분 또는 로봇의 임의의 부분의 외면을 덮도록 결합되면서 탄성 및 유연성을 제공하며, 3D 프린팅 방식으로 제작되는 메타구조가 적용된 로봇용 소프트 피복구조체에 관한 것이다.
웨어러블 로봇은 재료에 따라 강체 소재 로봇과 유연 소재 로봇으로 나눌 수 있으며, 유연 소재 로봇은 엘라 스토머, 직물, 겔과 같은 유연한 소재로 이루어진 로봇으로 강체 소재에 유연 소재를 결합한 경우까지 포함한다. 센서, 제어, 소프트웨어 기술이 발전하면서 웨어러블 로봇은 군용, 산업 작업용, 재난 구조용, 재활 치료용, 일상생활 보조용 등의 용도로 사용되며, 착용 부위는 상지, 하지, 전신, 손·손목, 발·발목 부위에 적용이 가능하다.
이 중 스마트 장갑은 유연 소재 웨어러블 로봇 중 하나로 사람의 손에 착용되는 형태를 갖는다. 주로 재활치료용, 일 상생활 보조용, 시각·청각 약자를 위한 소통용 등의 제품 개발이 진행되고 있으며, 이 중 손 재활을 위한 소프트 웨어러블 로봇 재활장치에 대한 연구 및 제품 개발이 활발히 진행되고 있다.
손은 신체 중 가장 작은 공간에 가장 많은 관절과 자유도(degree of freedom)가 포함되어 있는 기관이며, 일상생활의 상지를 활용한 동작에는 항상 필요로 되어 중요한 역할을 맡는다. 손은 상지의 가장 말단에 위치하여 뇌졸중(stroke), 척추손상(spinal cord injury), 뇌성마비(cerebral palsy)등의 질환 후 가장 후유증이 심하게 나타나며, 재활 치료가 가장 어려운 부위 중 하나이다. 손 재활은 대부분 어깨, 팔꿈치, 손목 등의 재활운동과 손 재활치료가 따로 이루어진다. 손 재활을 위한 유연 소재 웨어러블 로봇은 부피와 무게를 감소시키기 위해 네오프렌, 벨크로 파스너 등의 유연한 소재가 주로 사용되며, 손가락의 힘을 보조해주는 DC 모터, push-pull 구동기 장치가 부착된다.
이러한 웨어러블 로봇은 인간의 신체에 착용되어 신체 활동을 보조하기 때문에 전체 또는 적어도 신체와 접촉하는 부분이 부드럽고 유연한 소재로 이루어지는 것이 바람직하다.
이에 종래에는 강체로 된 로봇의 외면에 유연한 천이나 수지 피복구조체를 결합하여 사용하고 있으나, 종래의 피복구조체는 인장강도와 충격 흡수성, 탄력성이 낮고, 내구성이 좋지 않으며, 로봇의 동작 구현을 어렵게 하는 문제가 있다.
본 발명은 상기한 문제를 해결하기 위한 것으로, 본 발명의 목적은 강체로 된 로봇의 외면에 결합되어 로봇과 함께 동작하며, 우수한 인장강도와 충격 흡수성, 경량성 및 탄력성을 갖는 메타구조가 적용된 로봇용 소프트 피복구조체를 제공하는 것이다.
상기한 목적을 달성하기 위한 본 발명의 한 형태에 따른 로봇용 소프트 피복구조체는, 탄력성이 있는 수지 재질로 되어 로봇의 표면에 연접하게 결합되며, 일정한 패턴이 연속적으로 배열되면서 복수의 통공이 형성된 격자 형태를 갖는 피복체;를 포함한다.
상기 피복체의 패턴은 푸아송비(Poisson's ratio)가 -0.5 ~ 0인 오그제틱(Auxetic) 패턴일 수 있다.
상기 피복체는, 열가소성 폴리우레탄(TPU) 또는 열가소성 고무(TPE), 형상기억 고분자(SMP)로 된 필라멘트를 FDM 방식의 3D 프린터로 출력하여 일정한 패턴을 갖도록 만들어진 것일 수 있다.
본 발명에 따른 로봇용 소프트 피복구조체는, 상기 피복체의 일단부에 고정되며, 적어도 일측면이 개방된 통 형태로 되어 개방된 일측면을 통해 로봇의 끝단부가 삽입되면서 결합되는 커플링캡;을 더 포함할 수 있다.
본 발명의 다른 한 형태에 따른 로봇용 소프트 피복구조체는, 사람의 손과 대응하는 형태로 된 로봇의 표면에 결합되는 피복구조체로서, 탄력성이 있는 수지 재질로 되어 로봇의 손바닥 또는 손등과 로봇의 손가락의 표면에 연접하게 결합되며, 일정한 패턴이 연속적으로 배열되면서 복수의 통공이 형성된 격자 형태를 갖는 피복체; 및, 상기 피복체 중 로봇의 손가락에 연접하게 결합되는 부분의 끝단부에 고정되며, 적어도 일측면이 개방된 통 형태로 되어 개방된 일측면을 통해 로봇의 손가락 끝단이 삽입되면서 결합되는 커플링캡;을 포함할 수 있다.
상기 피복체의 패턴은 푸아송비(Poisson's ratio)가 -0.5 ~ 0인 오그제틱(Auxetic) 패턴일 수 있다.
또한 상기 피복체는, 열가소성 폴리우레탄(TPU) 또는 열가소성 고무(TPE), 형상기억 고분자(SMP)로 된 필라멘트를 FDM 방식의 3D 프린터로 출력하여 일정한 패턴을 갖도록 만들어진 것일 수 있다.
본 발명에 따르면, 소프트 피복구조체의 피복체가 오그제틱(Auxetic) 패턴을 갖는 격자 구조로 이루어져 우수한 탄력성과 경량성, 높은 인장강도를 가지며, 로봇을 움직여서 물건을 잡거나 다양한 동작을 취할 때 피복체가 로봇과 함께 원활하게 탄성 거동하여 로봇이 자연스럽게 동작할 수 있다.
그리고 소프트 피복구조체의 피복체에 패턴에 의한 복수의 통공이 격자 형태로 배열되므로 사람이 로봇을 착용한 상태에서 항상 공기가 통하여 쾌적함과 편안함을 느낄 수 있는 효과도 있다.
또한 피복체의 일단에 로봇에 끼워져 결합되는 커플링캡을 고정되게 형성하여, 커플링캡을 이용하여 피복구조체를 로봇에 용이하게 설치하여 사용할 수 있다.
도 1은 본 발명의 일 실시예에 따른 로봇용 소프트 피복구조체를 나타낸 사시도이다.
도 2는 본 발명의 일 실시예에 따른 로봇용 소프트 피복구조체의 사진이다.
도 3은 본 발명의 일 실시예에 따른 로봇용 소프트 피복구조체가 로봇 손에 착용된 상태를 나타낸 도면이다.
도 4는 본 발명의 일 실시예에 따른 로봇용 소프트 피복구조체가 로봇 손의 동작에 의해 탄성 변형된 예를 나타낸 도면이다.
본 명세서에 기재된 실시예와 도면에 도시된 구성은 개시된 발명의 바람직한 일 예에 불과할 뿐이며, 본 출원의 출원시점에 있어서 본 명세서의 실시예와 도면을 대체할 수 있는 다양한 변형 예들이 있을 수 있다.
이하에서는 첨부된 도면을 참조하여 메타구조가 적용된 로봇용 소프트 피복구조체를 후술된 실시예들에 따라 구체적으로 설명하도록 한다. 도면에서 동일한 부호는 동일한 구성 요소를 나타낸다.
도 1 내지 도 4에 도시한 로봇용 소프트 피복구조체는, 사람의 손과 대응하는 형태로 된 로봇(이하 '로봇 손'이라 함)의 표면에 결합되는 피복구조체로서 적용된 예를 나타낸 것이지만, 본 발명의 로봇용 소프트 피복구조체는 로봇 손 외에도 다양한 로봇에 적용될 수 있을 것이다.
도 1 내지 도 4에 도시한 본 발명의 일 실시예에 따른 로봇용 소프트 피복구조체(100)는, 로봇 손(R)의 손바닥 또는 손등과 로봇의 손가락의 표면에 연접하게 결합되는 피복체(110)와, 상기 피복체(110) 중 로봇 손(R)의 손가락에 연접하게 결합되는 부분의 끝단부에 고정되는 커플링캡(120)을 포함할 수 있다.
피복체(110)는 로봇 손(R)의 손등 표면에 연접하는 바디부(111)와, 상기 바디부(111)의 전단부에 전방으로 연장되어 로봇 손(R)의 손가락 표면과 연접하는 스트립 형태의 복수의 핑거부(112)를 포함할 수 있다.
피복체(110)의 바디부(111)와 핑거부(112)는 열가소성 폴리우레탄(TPU; thermoplastic polyurethane) 또는 열가소성 고무(TPE; thermoplastic elastomer), 형상기억 고분자(SMP)와 같이 탄력성이 우수한 열가소성 수지 재질로 이루어지며, 일정한 패턴이 연속적으로 배열되면서 복수의 통공이 형성된 격자 형태를 갖는다.
상기 피복체(110)는 열가소성 수지 필라멘트를 FDM 방식의 3D 프린터로 출력하여 소정의 패턴을 갖게 만들어질 수 있는데, 열가소성 수지 필라멘트로서 열가소성 폴리우레탄(TPU) 또는 열가소성 고무(TPE), 형상기억 고분자(SMP)로 된 필라멘트를 사용할 수 있다. 특히 형상기억 고분자(SMP) 필라멘트를 사용할 경우, 열가소성 폴리우레탄(TPU) 필라멘트 또는 열가소성 고무(TPE)를 사용할 경우보다 우수한 기계적 특성을 얻을 수 있다.
상기 피복체(110)의 바디부(111)와 핑거부(112)들은 독립적으로 3D 프린팅되어 제작된 후 서로 접합되어 일체화될 수 있다.
피복체(110)를 이루는 패턴은 하중방향으로 확장되는 변위가 발생할 때 하중방향과 직각인 방향에서도 확장되는 변위가 발생하여 푸아송비(Poisson's ratio)가 -0.5 ~ 0인 오그제틱(Auxetic) 패턴인 것이 바람직하다. 오그제틱 패턴으로서 이 실시예에서 적용된 나비 형태의 Re-entrant 패턴 외에도, 화살 모양 Re-entrant 패턴, 별(star) 모양 Re-entrant 패턴, 육각형(hexagonal) Re-entrant 패턴 등 다양한 Re-entrant 패턴이나 다양한 카이랄 하니컴(chiral honeycomb) 패턴 등을 적용할 수 있을 것이다.
이와 같이 피복체(110)가 오그제틱(Auxetic) 패턴을 갖는 격자 구조로 이루어지면, 로봇 손의 움직임에 따라 피복체(110)가 용이하게 탄성 변형되면서 길이방향과 폭방향으로 동시에 확장되어 로봇 손(R)의 움직임에 저항하는 힘을 최소화할 수 있다.
그리고 피복체(110)에 복수의 통공이 격자 형태로 배열되어 있으므로 사람이 로봇 손을 착용한 상태에서 항상 공기가 통하여 쾌적함과 편안함을 느낄 수 있는 이점도 있다.
상기 피복체(110)는 커플링캡(120)에 의해 로봇 손(R)에 결합될 수 있다. 커플링캡(120)은 일측면이 개방된 통 형태로 되어 개방된 일측면을 통해 로봇 손(R)의 손가락 끝단에 삽입되면서 결합된다. 커플링캡(120)은 피복체(110)와 동일한 열가소성 폴리우레탄(TPU; thermoplastic polyurethane) 또는 열가소성 고무(TPE), 형상기억 고분자(SMP) 수지로 이루어질 수 있으며, 피복체(110)와 마찬가지로 3D 프린팅 방식으로 제작될 수 있다.
3D 프린팅 방식으로 제작된 피복체(110)는 오그제틱 패턴의 격자 구조로 이루어지며, 열가소성 폴리우레탄(TPU) 또는 열가소성 고무(TPE), 형상기억 고분자(SMP) 수지와 같은 탄성 재질로 이루어져 높은 인장강도를 가짐과 동시에 무게가 매우 작고, 높은 탄력성을 갖는 것으로 확인되었다.
따라서 로봇 손(R)의 손가락을 움직여서 물건을 잡거나 다양한 동작을 취할 때 피복체(110)가 로봇 손(R)과 함께 원활하게 탄성 거동하여 로봇 손(R)이 자연스럽게 동작할 수 있다.
이상에서 본 발명은 실시예를 참조하여 상세히 설명되었으나, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 상기에서 설명된 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 부가 및 변형이 가능할 것임은 당연하며, 이와 같은 변형된 실시 형태들 역시 아래에 첨부한 특허청구범위에 의하여 정하여지는 본 발명의 보호 범위에 속하는 것으로 이해되어야 할 것이다.
본 발명은 로봇의 외면에 결합되어 외골격을 형성하는 소프트 피복구조체에 관한 것으로, 인간의 신체에 착용 가능한 웨어러블 로봇, 산업용 로봇 등 다양한 로봇의 피복체로서 적용될 수 있다.

Claims (7)

  1. 탄력성이 있는 수지 재질로 되어 로봇의 표면에 연접하게 결합되며, 일정한 패턴이 연속적으로 배열되면서 복수의 통공이 형성된 격자 형태를 갖는 피복체;
    를 포함하는 로봇용 소프트 피복구조체.
  2. 제1항에 있어서, 상기 피복체의 패턴은 푸아송비(Poisson's ratio)가 -0.5 ~ 0인 오그제틱(Auxetic) 패턴인 로봇용 소프트 피복구조체.
  3. 제1항 또는 제2항에 있어서, 상기 피복체는, 열가소성 폴리우레탄(TPU) 또는 열가소성 고무(TPE), 형상기억 고분자(SMP)로 된 필라멘트를 FDM 방식의 3D 프린터로 출력하여 일정한 패턴을 갖도록 만들어진 로봇용 소프트 피복구조체.
  4. 제1항 또는 제2항에 있어서, 상기 피복체의 일단부에 고정되며, 적어도 일측면이 개방된 통 형태로 되어 개방된 일측면을 통해 로봇의 끝단부가 삽입되면서 결합되는 커플링캡;을 더 포함하는 로봇용 소프트 피복구조체.
  5. 사람의 손과 대응하는 형태로 된 로봇의 표면에 결합되는 피복구조체로서,
    탄력성이 있는 수지 재질로 되어 로봇의 손바닥 또는 손등과 로봇의 손가락의 표면에 연접하게 결합되며, 일정한 패턴이 연속적으로 배열되면서 복수의 통공이 형성된 격자 형태를 갖는 피복체; 및,
    상기 피복체 중 로봇의 손가락에 연접하게 결합되는 부분의 끝단부에 고정되며, 적어도 일측면이 개방된 통 형태로 되어 개방된 일측면을 통해 로봇의 손가락 끝단이 삽입되면서 결합되는 커플링캡;
    을 포함하는 로봇용 소프트 피복구조체.
  6. 제5항에 있어서, 상기 피복체의 패턴은 푸아송비(Poisson's ratio)가 -0.5 ~ 0인 오그제틱(Auxetic) 패턴인 로봇용 소프트 피복구조체.
  7. 제5항 또는 제6항에 있어서, 상기 피복체는, 열가소성 폴리우레탄(TPU) 또는 열가소성 고무(TPE), 형상기억 고분자(SMP)로 된 필라멘트를 FDM 방식의 3D 프린터로 출력하여 일정한 패턴을 갖도록 만들어진 로봇용 소프트 피복구조체.
PCT/KR2023/004730 2022-08-23 2023-04-07 메타구조가 적용된 로봇용 소프트 피복구조체 WO2024043425A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0105531 2022-08-23
KR20220105531 2022-08-23

Publications (1)

Publication Number Publication Date
WO2024043425A1 true WO2024043425A1 (ko) 2024-02-29

Family

ID=90013455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/004730 WO2024043425A1 (ko) 2022-08-23 2023-04-07 메타구조가 적용된 로봇용 소프트 피복구조체

Country Status (1)

Country Link
WO (1) WO2024043425A1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015521303A (ja) * 2012-03-30 2015-07-27 ザ ボード オブ トラスティーズ オブ ザ ユニヴァーシ 表面への形状適合可能な付属物装着可能電子デバイス
KR20180127201A (ko) * 2017-05-18 2018-11-28 서울대학교산학협력단 엄지 손가락 움직임이 향상된 착용형 손 로봇
CN110587662A (zh) * 2019-10-07 2019-12-20 华东交通大学 一种多功能聚合物机器人皮肤及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015521303A (ja) * 2012-03-30 2015-07-27 ザ ボード オブ トラスティーズ オブ ザ ユニヴァーシ 表面への形状適合可能な付属物装着可能電子デバイス
KR20180127201A (ko) * 2017-05-18 2018-11-28 서울대학교산학협력단 엄지 손가락 움직임이 향상된 착용형 손 로봇
CN110587662A (zh) * 2019-10-07 2019-12-20 华东交通大学 一种多功能聚合物机器人皮肤及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JUNG IMJOO, PARK YE-EUN, CHOI YOUNG-RIM, KIM JONG-WOOK, LEE SUNHEE: "A Study on the Motion Control of 3D Printed Fingers", FASHION & TEXTILE RESEARCH JOURNAL, vol. 24, no. 3, 30 June 2022 (2022-06-30), pages 333 - 345, XP093144327, ISSN: 1229-2060, DOI: 10.5805/SFTI.2022.24.3.333 *
SHINTAKE JUN, NAGAI TOSHIAKI, OGISHIMA KEITA: "Sensitivity Improvement of Highly Stretchable Capacitive Strain Sensors by Hierarchical Auxetic Structures", FRONTIERS IN ROBOTICS AND AI, vol. 6, 1 November 2019 (2019-11-01), pages 127, XP093144323, ISSN: 2296-9144, DOI: 10.3389/frobt.2019.00127 *
UIDE ENGINEERING STUDENT: "[New material review] Auxetic structure for wearable devices", NAVER BLOG, 14 September 2020 (2020-09-14), Korea, XP009553163, Retrieved from the Internet <URL:https://blog.naver.com/study_together_/222089484742> *
최영림 등. 3D 프린팅 메타구조체가 적용된 손가락의 동작 제어에 관한 연구. 한국의류산업학회 춘계학술대회. 21 May 2022, pp. 140-143, non-official translation (CHOI, Young-Lim et al. A Study on Motion Control of Fingers Applied with 3D Printing Metastructure. The Society of Fashion & Textile Industry Spring Conference.) *

Similar Documents

Publication Publication Date Title
US20200230804A1 (en) Pneumatic exomuscle system and method
US20210079935A1 (en) Multi-Segment Reinforced Actuators and Applications
Gopura et al. Mechanical designs of active upper-limb exoskeleton robots: State-of-the-art and design difficulties
Kang et al. Development of a polymer-based tendon-driven wearable robotic hand
US9827667B2 (en) Pneumatic exomuscle system and method
US5323490A (en) Glove having stress relief areas
US10860014B2 (en) Jacket for embodied interaction with virtual or distal robotic device
WO2018136004A1 (en) A fluid-driven actuator and its applications
US20100186142A1 (en) Glove
Kim et al. Cable actuated dexterous (cadex) glove for effective rehabilitation of the hand for patients with neurological diseases
WO2015040583A1 (en) Facial rehabilitative device based on robogami (robotic origami) platform
US20210196555A1 (en) Wearable robot for assisting upper limb movement by using artificial muscle
JP2021501645A (ja) 手外骨格装置
CN109475196B (zh) 防护手套
Pyka et al. On the use of textile materials in robotics
WO2024043425A1 (ko) 메타구조가 적용된 로봇용 소프트 피복구조체
Matheson et al. Augmented robotic device for EVA hand manoeuvres
WO2010028504A1 (en) Variable volume garments
US20230321814A1 (en) Hand exoskeleton for rehabilitation and assistance of hand motor functions
KR102516170B1 (ko) 수부 재활장치
JP7389958B2 (ja) 配線基板及び配線基板の製造方法
JP2009062649A (ja) 手保護具及び指保護具
CN219290037U (zh) 一种用于辅助关节运动的气动手套
KR20210042003A (ko) 손가락 움직임 보조용 장갑
WO2020226518A1 (en) Device for hand rehabilitation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23857466

Country of ref document: EP

Kind code of ref document: A1