WO2024043377A1 - Moisture-condensation-based airborne particle concentrating-measuring device - Google Patents

Moisture-condensation-based airborne particle concentrating-measuring device Download PDF

Info

Publication number
WO2024043377A1
WO2024043377A1 PCT/KR2022/012919 KR2022012919W WO2024043377A1 WO 2024043377 A1 WO2024043377 A1 WO 2024043377A1 KR 2022012919 W KR2022012919 W KR 2022012919W WO 2024043377 A1 WO2024043377 A1 WO 2024043377A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring device
particle concentration
moisture condensation
airborne particle
device based
Prior art date
Application number
PCT/KR2022/012919
Other languages
French (fr)
Korean (ko)
Inventor
장재성
장준범
Original Assignee
울산과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 울산과학기술원 filed Critical 울산과학기술원
Publication of WO2024043377A1 publication Critical patent/WO2024043377A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4022Concentrating samples by thermal techniques; Phase changes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2273Atmospheric sampling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4022Concentrating samples by thermal techniques; Phase changes
    • G01N2001/4033Concentrating samples by thermal techniques; Phase changes sample concentrated on a cold spot, e.g. condensation or distillation

Definitions

  • the present invention relates to a moisture condensation based particle concentration-measuring device in air.
  • Viruses and bacteria (bio-aerosols) floating in the air can cause infectiousness or cause economic losses to livestock operations through various exposure routes for humans or livestock.
  • Bio-aerosols are distributed in various sizes (nanometers - micrometers) in the air and their concentration is also low.
  • the collection device For quick collection and detection, the collection device has high collection efficiency for particles of various sizes at high collection flow rates, thereby highly concentrating the particles. It is important to do it. Additionally, it is important to minimize particle damage during the collection process.
  • Existing collectors include collection devices using particle inertia and filter-based collectors. Inertial-based collection devices are capable of collecting using high flow rates, but damage the particles due to the impact applied to them during collection. Additionally, collection using a filter is difficult for a long time due to the drying and extraction process of the collected particles.
  • viruses or bacteria solutions collected in a liquid phase through a collection device are usually analyzed using methods such as polymerase chain reaction (PCR).
  • PCR polymerase chain reaction
  • the PCR method cannot distinguish whether these people are infectious or not, so it is not only impossible to determine whether they are in a state where they can spread the disease in the air, but also takes a long time for analysis.
  • the present invention is intended to solve the above-mentioned problems, and the purpose of the present invention is to concentrate airborne particles with high collection efficiency at high collection flow rates and minimize the impact on particles during the collection process to eliminate viruses, bacteria, and viruses in the air.
  • the aim is to provide a moisture condensation-based airborne particle concentration-measuring device that can quickly and accurately measure spores, etc.
  • the moisture condensation-based particle concentration-measuring device in the air includes an inlet into which air containing particles flows from the outside; a saturation section that maintains the temperature and humidity conditions necessary for the growth of particles introduced from the inlet section; a growth section that grows particles contained in the air introduced from the saturation section; and a collection unit that collects particles grown from the growth unit.
  • the inlet includes an inlet; and an inlet pipe through which air containing particles flows through the inlet part, the saturation part, the growth part, and the collection part.
  • the inflow pipes may include a plurality, and the plurality of inflow pipes may be connected in parallel.
  • the saturated portion and the growth portion may each be surrounded by a porous ceramic tube.
  • the saturated portion has 1 on the outer wall. to 10 A low-temperature water flow path through which low-temperature constant temperature water flows; Low-temperature water inlet; and a low-temperature water outlet.
  • the saturation part has an internal temperature of 1 to 10 It may be maintained as .
  • the growth portion is 30 times thicker on the outer wall. to 60
  • the growth portion has an internal temperature of 30 to 60 It may be maintained as .
  • a moisture drain hole may be further included at the bottom of the growth portion.
  • the grown particles may be accelerated by a collection nozzle and collected on a liquid, in a liquid, or on a solid.
  • the collecting nozzle may include three nozzles, and each nozzle may be spaced at 120° intervals along the circumference of the circle at the same distance from the center.
  • the radius (R) of the concentric circle surrounding the three nozzles may be 1.5 mm to 10 mm.
  • an immunoassay-based bio-aerosol detection sensor may be further included at the bottom of the collection nozzle.
  • the grown particles may be collected on the bio-aerosol detection sensor.
  • between the saturated portion and the growth portion; and between the growth part and the collecting part; may each be surrounded by an insulating material.
  • the moisture condensation based airborne particle concentration-measuring device may be cylindrical.
  • the particles may contain at least one selected from the group consisting of viruses, bacteria, fungi, spores, and other derived pathogens.
  • the moisture condensation-based airborne particle concentration-measuring device collects bioparticles in the air at an average collection air flow rate of 0.2 m/sec to 10 m/sec and a collection air flow rate of 1 LPM to 10 LPM. It may be captured and concentrated at a concentration ratio of 5 ⁇ 10 3 to 2 ⁇ 10 6 .
  • the moisture condensation-based airborne particle concentration-measuring device is capable of highly concentrating airborne particles with high collection efficiency at a high collection flow rate.
  • viruses, bacteria, and spores in the air can be quickly (on-site) and accurately measured through immunoassay.
  • Figure 1 shows a cross-sectional view of a moisture condensation-based particle concentration-measuring device in air according to an embodiment of the present invention.
  • Figure 2 is a schematic diagram showing a collection nozzle according to an embodiment of the present invention.
  • Figure 3 is a diagram showing the collection method of the moisture condensation-based airborne particle concentration-measuring device according to an embodiment of the present invention.
  • Figure 4 is (a) a size distribution graph of the final particles according to the temperature of the growth zone according to an embodiment of the present invention, and (b) a size distribution graph of the final particles measured while changing the collection flow rate from 3 LPM to 6 LPM.
  • Figure 5 shows the physical collection efficiency at a collection flow rate of 6 LPM calculated using the number concentration of MS2 viruses in the air measured at the inlet and outlet of the moisture condensation-based air particle concentration-measuring device according to an embodiment of the present invention. It's a graph.
  • Figure 6 is a graph showing the relative concentration ratio (RIVC) of the virus collected through the device compared to the initial PFU concentration before aerosolizing the virus using the moisture condensation-based airborne particle concentration-measuring device according to an embodiment of the present invention. .
  • Figure 7 shows the particle collection efficiency according to the nozzle spacing measured from 1 LPM to 6 LPM according to an embodiment of the present invention.
  • first, second, A, B, (a), and (b) may be used. These terms are only used to distinguish the component from other components, and the nature, sequence, or order of the component is not limited by the term.
  • the moisture condensation-based particle concentration-measuring device in the air includes an inlet into which air containing particles flows from the outside; a saturation section that maintains the temperature and humidity conditions necessary for the growth of particles introduced from the inlet section; a growth section that grows particles contained in the air introduced from the saturation section; and a collection unit that collects particles grown from the growth unit.
  • the moisture condensation-based airborne particle concentration-measuring device condenses moisture on the surface of incoming airborne biological particles using heat and mass transfer to increase their size, and these enlarged particles are subjected to inertial force ( speed) and completely collect/concentrate with high collection efficiency. Additionally, these concentrated biological particles can also be measured on-site through antigen-antibody reaction.
  • Figure 1 shows a cross-sectional view of a moisture condensation-based particle concentration-measuring device in air according to an embodiment of the present invention.
  • the moisture condensation-based air particle concentration-measuring device 100 includes an inlet 110, a saturation section 120, a growth section 130, and a collection section ( 140).
  • the moisture condensation-based airborne particle concentration-measuring device 100 may be generally cylindrical.
  • the moisture condensation-based air particle concentration-measuring device 100 may have a cylindrical body in which each of the saturation section 120, the growth section 130, and the collection section 140 consists of a top surface and a side surface.
  • an inlet 110 is formed on the upper surface of the cylindrical body to penetrate the cylindrical body and introduce air into the cylindrical body.
  • the inlet 110 includes an inlet 112; and an inflow pipe 114 through which air containing the particles flows through the inlet 110, saturation section 120, growth section 130, and collection section 140.
  • the inlet 110 receives air containing particles, for example, bio-particles, from the outside.
  • the particles include viruses, bacteria, fungi, spores, and It may contain at least one selected from the group consisting of pathogens of other origin.
  • the viruses include adenovirus, levivirus, enterobacteria phase MS2 (levivirus, enterobacteria phase), vaccinia virus, herpes simplex virus, and parainfluenza virus. ), rhinovirus, varicella Zoster Virus, measle virus, respiratory syncytial virus, Dengue virus, HIV (human immunodeficiency virus), influenza virus, Coronavirus (Covid-19 virus; SARS-CoV-2), common cold coronavirus (HKU1, OC43, NL63, 229E), severe acute respiratory syndrome-related coronavirus (SARS-CoV), Middle East It may include at least one selected from the group consisting of middle east respiratory syndrome coronavirus (MERS-CoV) and variant viruses of these viruses.
  • MERS-CoV middle east respiratory syndrome coronavirus
  • the inflow pipe 114 has a cylindrical shape and passes through the middle of the saturation section 120, the growth section 130, and the collection section 140, forming a flow path through which particles in the air flow. It may be.
  • the inlet pipe 114 may include a plurality.
  • inlet pipe Although only one inlet pipe is shown in the drawing, multiple inflow pipes can be connected in parallel to increase the overall flow rate.
  • each of the saturation section 120, the growth section 130, and the collection section 140 may be cylindrical.
  • between the saturated portion 120 and the growth portion 130; and between the growth part 130 and the collecting part 140; may be surrounded by insulation materials 128 and 138, respectively.
  • the saturation portion 120 and the growth portion 130 may be surrounded by porous ceramic tubes 122 and 132, respectively.
  • the porous ceramic tube may include at least one selected from the group consisting of titania, alumina, silica, and zeolite.
  • the porous ceramic tube may be a porous alumina ceramic tube.
  • the saturation unit 120 may maintain the temperature and humidity conditions necessary for the growth of particles introduced from the inlet.
  • the saturation unit 120 is 1 on the outer wall. to 10 ; One to 8 ; One to 5 ; One to 3 ; 3 to 10 ; 3 to 8 ; 3 to 5 ; 5 to 10 ; 5 to 8 ; or 8 to 10
  • a low-temperature water flow path (not shown) through which low-temperature constant temperature water flows;
  • low-temperature water entering the low-temperature water inlet 124 travels around the outer wall of the saturated portion 120 through the low-temperature water flow path and is discharged through the low-temperature water outlet 126, so that it is always 1. to 10 It may be to maintain a low temperature state.
  • the saturation unit 120 has an internal temperature of 1 to 10 It may be maintained as .
  • the interior of the saturation unit 120 is heated to 1 by low-temperature constant temperature water flowing to the outer wall of the saturation unit 120. to 10 It may be maintained as .
  • the growth section 130 may grow particles contained in the air introduced from the saturation section 120.
  • the growth portion 130 has 30 to 60 A high-temperature water flow path (not shown) through which high-temperature constant temperature water flows; hot water inlet (134); and a hot water outlet 136.
  • the high-temperature water entering the high-temperature water inlet 134 travels around the outer wall of the growth section 130 through the high-temperature water flow path and is discharged through the high-temperature water outlet 136, always reaching 30 degrees Celsius. to 60 ; 30 to 50 ; 30 to 40 ; 40 to 60 ; 40 to 50 ; or 50 to 60 It may be to maintain a high temperature state.
  • the growth portion 130 has an internal temperature of 30 to 60 ; 30 to 50 ; 30 to 40 ; 40 to 60 ; 40 to 50 ; or 50 to 60 It may be maintained as .
  • the inside of the growth part 130 is heated to 30 degrees Celsius by high temperature constant temperature water flowing to the outer wall of the growth part 130. to 60 It may be maintained as .
  • a moisture drain hole 139 may be further included at the bottom of the growth portion 130. Moisture condensed on the inner wall of the porous ceramic tube of the saturation section 120 and the growth section 130 may fall due to gravity and may interfere with flow or particle concentration. Therefore, a drain is formed at the bottom of the growth portion 130 to drain it.
  • the collection unit 140 may collect particles grown from the growth unit.
  • particles whose size has increased due to moisture condensing on the surface are accelerated by a nozzle and collected on/into the liquid or on solids with high efficiency.
  • the water surrounding the particles may alleviate the shock applied to the particles during the collision process, allowing the particles to be collected in an intact state.
  • Figure 2 is a diagram showing a collection nozzle according to an embodiment of the present invention.
  • the collection nozzle 142 includes three nozzles, and each nozzle may be spaced at 120° intervals along the circumference of the circle at the same distance from the center.
  • the radius (R) of a concentric circle surrounding three nozzles is 1.5 mm to 10 mm; 1.5 mm to 8 mm; 1.5 mm to 5 mm; 1.5 mm to 3 mm; 3 mm to 10 mm; 3 mm to 8 mm; 3 mm to 5 mm; 5 mm to 10 mm; 5 mm to 8 mm; 8 mm to 10 mm; It may be.
  • the radius (R) of the concentric circle surrounding the three nozzles with appropriate collection efficiency increases.
  • the radius (R) is too small, there is a problem of poor collection due to mutual collision.
  • the diameter (D n ) of the nozzle is 0.1 mm to 1 mm; 0.1 mm to 0.8 mm; 0.1 mm to 0.5 mm; 0.1 mm to 0.3 mm; 0.3 mm to 1 mm; 0.3 mm to 0.8 mm; 0.3 mm to 0.5 mm; 0.5 mm to 1 mm; 0.5 mm to 0.8 mm; Or it may be 0.8 mm to 1 mm.
  • the grown particles may be accelerated by the collection nozzle 142 and collected on the liquid, in the liquid, or on the solid.
  • Figure 3 is a diagram showing the collection method of the moisture condensation-based airborne particle concentration-measuring device according to an embodiment of the present invention.
  • the air inside the concentration-measuring device contains a large amount of water vapor, causing drying and collision during collection as shown in (c) of FIG. 3. It can be collected even on solids by preventing damage due to damage. Viruses or bacteria collected on a solid are collected and then a concentrated solution (hydrosolization) is created by adding a small amount of liquid. Typically, this concentrated solution is transferred to a sensor to measure biological particles.
  • an immunoassay-based detection sensor for the particles may be further included at the bottom of the collection nozzle.
  • the detection sensor may be provided as any type of immune sensor.
  • the collection site can be understood as the area where the antibody is applied on the detection sensor.
  • the bio-aerosol detection sensor may further include an antibody that binds to particles.
  • the antibody may be an antibody that binds to the particle. Therefore, intact collected concentrated particles can cause an antigen-antibody reaction, enabling detection using a sensor and rapid on-site measurement.
  • the moisture condensation based airborne particle concentration-measuring device has a collection air flow rate of between 0.2 m/sec and 10 m/sec on average; 0.2 m/sec to 8 m/sec; 0.2 m/sec to 6 m/sec; 0.4 m/sec to 10 m/sec; 0.4 m/sec to 8 m/sec; Or it may be 0.6 m/sec to 10 m/sec.
  • the flow rate of collected air in the inlet pipe is very important in performance evaluation.
  • the moisture condensation-based airborne particle concentration-measuring device of the present invention is capable of collecting particles even at an average flow speed of 6 m/sec (20 to 30 times higher than conventional devices). If the flow velocity is high, it is difficult for particles in the air to condense.
  • the moisture condensation based airborne particle concentration-measuring device comprises: a collection air flow rate of 1 LPM to 10 LPM; 1 LPM to 8 LPM; 1 LPM to 5 LPM; 1 LPM to 3 LPM; 3 LPM to 10 LPM; 3 LPM to 8 LPM; 3 LPM to 5 LPM; 5 LPM to 10 LPM; 5 LPM to 8 LPM; Or, at 8 LPM to 10 LPM, bio-particles in the air may be captured and concentrated at a concentration ratio of 5 ⁇ 10 3 to 2 ⁇ 10 6 .
  • the moisture condensation-based airborne particle concentration-measuring device may be combined or connected to various devices applied in the technical field of the present invention, for example, an electrochemical analyzer, for detecting electrochemical signals.
  • an electrochemical analyzer for detecting electrochemical signals.
  • devices and electrodes for detecting and analyzing thermal, optical, electrical, chemical or physical detection signals may be further connected or disposed, but are not specifically mentioned in this specification.
  • the moisture condensation-based airborne particle concentration-measuring device is capable of highly concentrating airborne particles with high collection efficiency at a high collection flow rate.
  • viruses, bacteria, and spores in the air can be quickly (on-site) and accurately measured through immunoassay.
  • the saturation section and the growth section each circulated water at a constant temperature on the outer wall of the porous ceramic tube to keep the temperature and humidity of the inner wall of the tube constant.
  • the saturation part is 1-10 Cold water inside and outside, growing area 30-60 Using warm water inside and outside, moisture condensation occurs due to the temperature difference between the two. The size of the final particles was confirmed through experiments according to the temperature of the saturated zone and the growth zone and the air flow rate entering the inlet zone.
  • Concentration of particles in the air based on moisture condensation - the temperature of the saturated part of the measuring device is 5
  • the collection flow rate was adjusted to 3 LPM to 6 LPM, and the temperature of the growth area was 30 from 45
  • the measured particles were measured while changing the temperature.
  • Figure 4 is (a) a size distribution graph of the final particles according to the temperature of the growth zone according to an embodiment of the present invention, and (b) a size distribution graph of the final particles measured while changing the collection flow rate from 3 LPM to 6 LPM.
  • the temperature of the saturated part is 5 , with the collection flow rate fixed at 3 LPM, the temperature of the growth area was set to 30 from 45 This is a graph of the size distribution of the final particles measured while changing the size.
  • the temperature of the saturated part is 5
  • the temperature of the growth zone is 45
  • the final size (Count median diameter; CMD) decreased as the flow rate increased and was measured at 1.86 ⁇ m at 3 L/min and 1.44 ⁇ m at 6 L/min.
  • the collection efficiency of particles that collided with the solid phase using the nozzle of the collection unit was over 90% in the range of 3-6 L/min.
  • particles whose size has increased due to moisture condensing on the surface are accelerated by the nozzle and collected with high efficiency on/in liquid or on solids. .
  • the collection efficiency of particles and damage during the collection process were confirmed through experiments.
  • Figure 5 shows the physical collection efficiency at a collection flow rate of 6 LPM calculated using the number concentration of MS2 viruses in the air measured at the inlet and outlet of the moisture condensation-based air particle concentration-measuring device according to an embodiment of the present invention. It's a graph.
  • Figure 5 shows the collection efficiency for MS2 virus in the air.
  • Figure 6 shows the relative concentration ratio of the virus collected through the device compared to the initial Plaque Forming Unit (PFU) concentration before aerosolizing the virus using the moisture condensation-based airborne particle concentration-measuring device according to an embodiment of the present invention.
  • PFU Plaque Forming Unit
  • RIVC Infectious Virus Concentration
  • Figure 7 shows the particle collection efficiency according to the nozzle spacing measured from 1 LPM to 6 LPM according to an embodiment of the present invention.
  • the center-nozzle distance was adjusted in the range of 1-3 mm, and as the gap between nozzles narrowed, the particle collection efficiency tended to decrease.
  • the collection efficiency is about 90% when the center-nozzle distance is 3.5 mm, and about 80% when it is 1.5 mm.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Dispersion Chemistry (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

The present invention relates to a moisture-condensation-based airborne particle concentrating-measuring device. The moisture-condensation-based airborne particle concentrating-measuring device, according to an embodiment of the present invention, comprises: an inlet part through which the air including particles is introduced from the outside; a saturation part which maintains the temperature and humidity conditions necessary for the growth of the particles introduced from the inlet part; a growth part which grows the particles included in the air introduced from the saturation part; and a collection part which collects the grown particles from the growth part.

Description

수분 응축 기반 공기 중 입자 농축-측정 장치Airborne particle concentration based on moisture condensation - measurement device
본 발명은 수분 응축 기반 공기 중 입자 농축-측정 장치에 관한 것이다.The present invention relates to a moisture condensation based particle concentration-measuring device in air.
공기 중에 떠다니는 바이러스, 박테리아(바이오-에어로졸)는 인간 또는 가축의 다양한 노출 경로를 통해 감염성을 유발하거나 축산 운영에 경제적 손실을 초래할 수 있다.Viruses and bacteria (bio-aerosols) floating in the air can cause infectiousness or cause economic losses to livestock operations through various exposure routes for humans or livestock.
바이오-에어로졸은 공기 중에 다양한 크기(나노미터-마이크로미터)로 분포하며 그 농도 또한 낮아, 빠른 채집 및 감지를 위해서 채집 장치는 높은 채집 유량에서 다양한 크기의 입자에 대해 높은 채집효율을 가져 입자를 고농축 시키는 것이 중요하다. 또한, 채집과정에서 입자의 손상을 최소화하는 것이 중요하다. 기존의 채집기로는 입자의 관성을 이용한 채집 장치, 필터 기반 채집기 등이 있다. 관성 기반 채집 장치는 높은 유량을 이용한 채집이 가능하지만, 채집 시 입자에 가해지는 충격 때문에 입자들에 손상을 준다. 또한, 필터를 이용한 채집은 채집된 입자들의 건조화 과정과 추출과정 때문에 오랜 시간 채집이 어렵다.Bio-aerosols are distributed in various sizes (nanometers - micrometers) in the air and their concentration is also low. For quick collection and detection, the collection device has high collection efficiency for particles of various sizes at high collection flow rates, thereby highly concentrating the particles. It is important to do it. Additionally, it is important to minimize particle damage during the collection process. Existing collectors include collection devices using particle inertia and filter-based collectors. Inertial-based collection devices are capable of collecting using high flow rates, but damage the particles due to the impact applied to them during collection. Additionally, collection using a filter is difficult for a long time due to the drying and extraction process of the collected particles.
종래의 바이오-에어로졸 감지 시스템의 경우, 대개 채집 장치를 통해 액상에 채집된 바이러스 또는 박테리아 용액을 이용해 중합효소 연쇄 반응(polymerase chain reaction; PCR) 등의 방법을 사용해 분석한다. 하지만, PCR 방식은 이들의 전염성 여부를 구분하지 못해, 공기 중 이들이 병을 옮길 수 있는 상태인지 파악할 수 없을 뿐더러 분석시간이 오랜 걸린다. In the case of conventional bio-aerosol detection systems, viruses or bacteria solutions collected in a liquid phase through a collection device are usually analyzed using methods such as polymerase chain reaction (PCR). However, the PCR method cannot distinguish whether these people are infectious or not, so it is not only impossible to determine whether they are in a state where they can spread the disease in the air, but also takes a long time for analysis.
이때, 면역분석법을 이용할 경우 신속하게 측정이 가능하며, 바이러스의 경우 이들의 전염성 여부를 일부 파악할 수 있으나, 종래의 채집 장치들은 채집과정에서 입자가 손상되어 항원-항체 반응을 일으키기 어렵고, 이로 인해 신속 측정이 어렵다는 단점이 있다.At this time, rapid measurement is possible when using an immunoassay, and in the case of viruses, it is possible to partially determine whether or not they are infectious. However, with conventional collection devices, particles are damaged during the collection process, making it difficult to cause an antigen-antibody reaction, which makes it difficult to quickly The downside is that it is difficult to measure.
본 발명은 상술한 문제점을 해결하기 위한 것으로, 본 발명의 목적은, 높은 채집 유량에서 높은 채집효율로 공기 중 입자를 농축시키고, 채집과정에서 입자에 가해지는 충격을 최소화하여 공기 중 바이러스, 박테리아, 포자 등을 신속, 정확하게 측정 가능한 수분 응축 기반 공기 중 입자 농축-측정 장치를 제공하는 것이다.The present invention is intended to solve the above-mentioned problems, and the purpose of the present invention is to concentrate airborne particles with high collection efficiency at high collection flow rates and minimize the impact on particles during the collection process to eliminate viruses, bacteria, and viruses in the air. The aim is to provide a moisture condensation-based airborne particle concentration-measuring device that can quickly and accurately measure spores, etc.
그러나, 본 발명이 해결하고자 하는 과제는 이상에서 언급한 것들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 해당 분야 통상의 기술자에게 명확하게 이해될 수 있을 것이다.However, the problems to be solved by the present invention are not limited to those mentioned above, and other problems not mentioned will be clearly understood by those skilled in the art from the description below.
본 발명의 일 실시예에 따른 수분 응축 기반 공기 중 입자 농축-측정 장치는, 외부에서 입자가 포함된 공기가 유입되는 유입부; 상기 유입부로부터 유입된 입자의 성장에 필요한 온도 및 습도 조건을 유지하는 포화부; 상기 포화부로부터 유입된 공기에 포함된 입자를 성장시키는 성장부; 및 상기 성장부로부터 성장한 입자를 채집하는 채집부;를 포함한다.The moisture condensation-based particle concentration-measuring device in the air according to an embodiment of the present invention includes an inlet into which air containing particles flows from the outside; a saturation section that maintains the temperature and humidity conditions necessary for the growth of particles introduced from the inlet section; a growth section that grows particles contained in the air introduced from the saturation section; and a collection unit that collects particles grown from the growth unit.
일 실시형태에 있어서, 상기 유입부는, 유입구; 및 입자가 포함된 공기가 유입부, 포화부, 성장부 및 채집부를 관통하여 흐르는 유입관;을 포함하는 것일 수 있다.In one embodiment, the inlet includes an inlet; and an inlet pipe through which air containing particles flows through the inlet part, the saturation part, the growth part, and the collection part.
일 실시형태에 있어서, 상기 유입관은, 복수 개를 포함하고, 상기 복수 개의 유입관은 병렬로 연결된 것일 수 있다.In one embodiment, the inflow pipes may include a plurality, and the plurality of inflow pipes may be connected in parallel.
일 실시형태에 있어서, 상기 포화부 및 상기 성장부는, 각각, 다공성 세라믹 튜브로 둘러싸인 것일 수 있다. In one embodiment, the saturated portion and the growth portion may each be surrounded by a porous ceramic tube.
일 실시형태에 있어서, 상기 포화부는, 외벽에 1
Figure PCTKR2022012919-appb-img-000001
내지 10
Figure PCTKR2022012919-appb-img-000002
의 저온 항온수가 흐르는 저온수 유로; 저온수 주입구; 및 저온수 배출구;를 포함하는 것일 수 있다.
In one embodiment, the saturated portion has 1 on the outer wall.
Figure PCTKR2022012919-appb-img-000001
to 10
Figure PCTKR2022012919-appb-img-000002
A low-temperature water flow path through which low-temperature constant temperature water flows; Low-temperature water inlet; and a low-temperature water outlet.
일 실시형태에 있어서, 상기 포화부는, 내부의 온도가 1
Figure PCTKR2022012919-appb-img-000003
내지 10
Figure PCTKR2022012919-appb-img-000004
로 유지되는 것일 수 있다.
In one embodiment, the saturation part has an internal temperature of 1
Figure PCTKR2022012919-appb-img-000003
to 10
Figure PCTKR2022012919-appb-img-000004
It may be maintained as .
일 실시형태에 있어서, 상기 성장부는, 외벽에 30
Figure PCTKR2022012919-appb-img-000005
내지 60
Figure PCTKR2022012919-appb-img-000006
의 고온 항온수가 흐르는 고온수 유로; 고온수 주입구; 및 고온수 배출구;를 포함하는 것일 수 있다.
In one embodiment, the growth portion is 30 times thicker on the outer wall.
Figure PCTKR2022012919-appb-img-000005
to 60
Figure PCTKR2022012919-appb-img-000006
A high-temperature water flow path through which high-temperature constant temperature water flows; hot water inlet; And it may include a hot water outlet.
일 실시형태에 있어서, 상기 성장부는, 내부의 온도가 30
Figure PCTKR2022012919-appb-img-000007
내지 60
Figure PCTKR2022012919-appb-img-000008
로 유지되는 것일 수 있다.
In one embodiment, the growth portion has an internal temperature of 30
Figure PCTKR2022012919-appb-img-000007
to 60
Figure PCTKR2022012919-appb-img-000008
It may be maintained as .
일 실시형태에 있어서, 상기 성장부 하단에는 수분 배수구;를 더 포함할 수 있다. In one embodiment, a moisture drain hole may be further included at the bottom of the growth portion.
일 실시형태에 있어서, 상기 채집부에서는, 상기 성장한 입자들이 채집 노즐에 의해 가속되어 액체 위, 액체 속 또는 고체 위에서 채집되는 것일 수 있다. In one embodiment, in the collection unit, the grown particles may be accelerated by a collection nozzle and collected on a liquid, in a liquid, or on a solid.
일 실시형태에 있어서, 상기 채집 노즐은, 3 개의 노즐을 포함하고, 각각의 노즐은, 중심으로부터 같은 거리에 원의 둘레를 따라 120 ° 간격으로 이격된 것일 수 있다. In one embodiment, the collecting nozzle may include three nozzles, and each nozzle may be spaced at 120° intervals along the circumference of the circle at the same distance from the center.
일 실시형태에 있어서, 상기 3 개의 노즐을 원주로 하는 동심원의 반지름(R)은, 1.5 mm 내지 10 mm인 것일 수 있다.In one embodiment, the radius (R) of the concentric circle surrounding the three nozzles may be 1.5 mm to 10 mm.
일 실시형태에 있어서, 상기 채집 노즐 하단에 면역분석법(immunoassay) 기반의 바이오-에어로졸 감지 센서;를 더 포함할 수 있다. In one embodiment, an immunoassay-based bio-aerosol detection sensor may be further included at the bottom of the collection nozzle.
일 실시형태에 있어서, 상기 성장한 입자들이 상기 바이오-에어로졸 감지 센서 위에서 채집되는 것일 수 있다. In one embodiment, the grown particles may be collected on the bio-aerosol detection sensor.
일 실시형태에 있어서, 상기 포화부와 상기 성장부 사이; 및 상기 성장부와 상기 채집부 사이;는 각각, 단열재로 둘러싸인 것일 수 있다. In one embodiment, between the saturated portion and the growth portion; and between the growth part and the collecting part; may each be surrounded by an insulating material.
일 실시형태에 있어서, 수분 응축 기반 공기 중 입자 농축-측정 장치는 원통형인 것일 수 있다. In one embodiment, the moisture condensation based airborne particle concentration-measuring device may be cylindrical.
일 실시형태에 있어서, 상기 입자는, 바이러스, 박테리아, 진균, 포자 및 기타 유래의 병원균으로 이루어진 군으로부터 선택되는 적어도 어느 하나를 포함하는 것일 수 있다. In one embodiment, the particles may contain at least one selected from the group consisting of viruses, bacteria, fungi, spores, and other derived pathogens.
일 실시형태에 있어서, 상기 수분 응축 기반 공기 중 입자 농축-측정 장치는, 채집 공기 유속이 평균 0.2 m/sec 내지 10 m/sec이고, 채집 공기 유량 1 LPM 내지 10 LPM에서, 공기 중 바이오 입자를 5 Х 103 내지 2 Х 106의 농축비율로 포집 및 농축하는 것일 수 있다.In one embodiment, the moisture condensation-based airborne particle concentration-measuring device collects bioparticles in the air at an average collection air flow rate of 0.2 m/sec to 10 m/sec and a collection air flow rate of 1 LPM to 10 LPM. It may be captured and concentrated at a concentration ratio of 5 Х 10 3 to 2 Х 10 6 .
본 발명의 일 실시예에 따른 수분 응축 기반 공기 중 입자 농축-측정 장치는, 높은 채집 유량에서 높은 채집효율로 공기 중 입자를 고농축시킬 수 있다. 또한, 채집과정에서 입자에 가해지는 충격을 최소화하여 면역분석법을 통해 공기 중 바이러스, 박테리아, 포자 등을 신속 (현장), 정확하게 측정 가능하다.The moisture condensation-based airborne particle concentration-measuring device according to an embodiment of the present invention is capable of highly concentrating airborne particles with high collection efficiency at a high collection flow rate. In addition, by minimizing the impact on particles during the collection process, viruses, bacteria, and spores in the air can be quickly (on-site) and accurately measured through immunoassay.
도 1은 본 발명의 일 실시예에 따른 수분 응축 기반 공기 중 입자 농축-측정 장치의 단면도를 나타낸다.Figure 1 shows a cross-sectional view of a moisture condensation-based particle concentration-measuring device in air according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 채집 노즐을 나타낸 개략적인 도면이다.Figure 2 is a schematic diagram showing a collection nozzle according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 수분 응축 기반 공기 중 입자 농축-측정 장치의 채집 방식을 나타낸 도면이다. Figure 3 is a diagram showing the collection method of the moisture condensation-based airborne particle concentration-measuring device according to an embodiment of the present invention.
도 4는 본 발명의 실시예에 따른 (a) 성장부의 온도에 따른 최종 입자의 크기 분포 그래프이고, (b) 채집 유량을 3 LPM부터 6 LPM까지 변화시키며 측정한 최종 입자의 크기 분포 그래프이다.Figure 4 is (a) a size distribution graph of the final particles according to the temperature of the growth zone according to an embodiment of the present invention, and (b) a size distribution graph of the final particles measured while changing the collection flow rate from 3 LPM to 6 LPM.
도 5는 본 발명의 실시예에 따른 수분 응축 기반 공기 중 입자 농축-측정 장치의 입구와 출구에서 측정한 공기 중 MS2 바이러스의 수 농도를 이용해서 계산한 채집 유량 6 LPM에서의 물리적 채집효율을 나타낸 그래프이다.Figure 5 shows the physical collection efficiency at a collection flow rate of 6 LPM calculated using the number concentration of MS2 viruses in the air measured at the inlet and outlet of the moisture condensation-based air particle concentration-measuring device according to an embodiment of the present invention. It's a graph.
도 6은 본 발명의 실시예에 따른 수분 응축 기반 공기 중 입자 농축-측정 장치를 이용하여 바이러스를 에어로졸화 시키기 전의 초기 PFU 농도 대비 장치를 통해 채집된 바이러스의 상대적인 농도 비율(RIVC)을 나타낸 그래프이다. Figure 6 is a graph showing the relative concentration ratio (RIVC) of the virus collected through the device compared to the initial PFU concentration before aerosolizing the virus using the moisture condensation-based airborne particle concentration-measuring device according to an embodiment of the present invention. .
도 7은 본 발명의 실시예에 따른 1 LPM부터 6 LPM까지 측정된 노즐의 간격에 따른 입자의 채집 효율을 나타낸다.Figure 7 shows the particle collection efficiency according to the nozzle spacing measured from 1 LPM to 6 LPM according to an embodiment of the present invention.
이하에서, 첨부된 도면을 참조하여 실시예들을 상세하게 설명한다. 그러나, 실시예들에는 다양한 변경이 가해질 수 있어서 특허출원의 권리 범위가 이러한 실시예들에 의해 제한되거나 한정되는 것은 아니다. 실시예들에 대한 모든 변경, 균등물 내지 대체물이 권리 범위에 포함되는 것으로 이해되어야 한다.Hereinafter, embodiments will be described in detail with reference to the attached drawings. However, various changes can be made to the embodiments, so the scope of the patent application is not limited or limited by these embodiments. It should be understood that all changes, equivalents, or substitutes for the embodiments are included in the scope of rights.
실시예에서 사용한 용어는 단지 설명을 목적으로 사용된 것으로, 한정하려는 의도로 해석되어서는 안된다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used in the examples are for descriptive purposes only and should not be construed as limiting. Singular expressions include plural expressions unless the context clearly dictates otherwise. In this specification, terms such as “comprise” or “have” are intended to designate the presence of features, numbers, steps, operations, components, parts, or combinations thereof described in the specification, but are not intended to indicate the presence of one or more other features. It should be understood that this does not exclude in advance the possibility of the existence or addition of elements, numbers, steps, operations, components, parts, or combinations thereof.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless otherwise defined, all terms used herein, including technical or scientific terms, have the same meaning as generally understood by a person of ordinary skill in the technical field to which the embodiments belong. Terms defined in commonly used dictionaries should be interpreted as having a meaning consistent with the meaning in the context of the related technology, and unless explicitly defined in the present application, should not be interpreted in an ideal or excessively formal sense. No.
또한, 첨부 도면을 참조하여 설명함에 있어, 도면 부호에 관계없이 동일한 구성 요소는 동일한 참조부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 실시예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 실시예의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. In addition, when describing with reference to the accompanying drawings, identical components will be assigned the same reference numerals regardless of the reference numerals, and overlapping descriptions thereof will be omitted. In describing the embodiments, if it is determined that detailed descriptions of related known technologies may unnecessarily obscure the gist of the embodiments, the detailed descriptions are omitted.
또한, 실시 예의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다.Additionally, in describing the components of the embodiment, terms such as first, second, A, B, (a), and (b) may be used. These terms are only used to distinguish the component from other components, and the nature, sequence, or order of the component is not limited by the term.
어느 하나의 실시 예에 포함된 구성요소와, 공통적인 기능을 포함하는 구성요소는, 다른 실시 예에서 동일한 명칭을 사용하여 설명하기로 한다. 반대되는 기재가 없는 이상, 어느 하나의 실시 예에 기재한 설명은 다른 실시 예에도 적용될 수 있으며, 중복되는 범위에서 구체적인 설명은 생략하기로 한다.Components included in one embodiment and components including common functions will be described using the same names in other embodiments. Unless stated to the contrary, the description given in one embodiment may be applied to other embodiments, and detailed description will be omitted to the extent of overlap.
이하, 본 발명의 수분 응축 기반 공기 중 입자 농축-측정 장치에 대하여 실시예 및 도면을 참조하여 구체적으로 설명하도록 한다. 그러나, 본 발명이 이러한 실시예 및 도면에 제한되는 것은 아니다.Hereinafter, the moisture condensation-based air particle concentration-measuring device of the present invention will be described in detail with reference to examples and drawings. However, the present invention is not limited to these examples and drawings.
본 발명의 일 실시예에 따른 수분 응축 기반 공기 중 입자 농축-측정 장치는, 외부에서 입자가 포함된 공기가 유입되는 유입부; 상기 유입부로부터 유입된 입자의 성장에 필요한 온도 및 습도 조건을 유지하는 포화부; 상기 포화부로부터 유입된 공기에 포함된 입자를 성장시키는 성장부; 및 상기 성장부로부터 성장한 입자를 채집하는 채집부;를 포함한다.The moisture condensation-based particle concentration-measuring device in the air according to an embodiment of the present invention includes an inlet into which air containing particles flows from the outside; a saturation section that maintains the temperature and humidity conditions necessary for the growth of particles introduced from the inlet section; a growth section that grows particles contained in the air introduced from the saturation section; and a collection unit that collects particles grown from the growth unit.
본 발명의 일 실시예에 따른 수분 응축 기반 공기 중 입자 농축-측정 장치는, 열 및 질량 전달을 이용하여 들어오는 공기 중 생물 입자들의 표면에 수분을 응축시켜 그 크기를 키우고, 이 커진 입자들은 관성력(속도)으로 높은 채집효율로 온전하게 채집/농축시키는 것이다. 또한, 이 농축된 생물입자들을 항원-항체 반응을 통해 현장 측정도 가능하다.The moisture condensation-based airborne particle concentration-measuring device according to an embodiment of the present invention condenses moisture on the surface of incoming airborne biological particles using heat and mass transfer to increase their size, and these enlarged particles are subjected to inertial force ( speed) and completely collect/concentrate with high collection efficiency. Additionally, these concentrated biological particles can also be measured on-site through antigen-antibody reaction.
도 1은 본 발명의 일 실시예에 따른 수분 응축 기반 공기 중 입자 농축-측정 장치의 단면도를 나타낸다.Figure 1 shows a cross-sectional view of a moisture condensation-based particle concentration-measuring device in air according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 일 실시예에 따른 수분 응축 기반 공기 중 입자 농축-측정 장치(100)는, 유입부(110), 포화부(120), 성장부(130) 및 채집부(140)를 포함한다.Referring to FIG. 1, the moisture condensation-based air particle concentration-measuring device 100 according to an embodiment of the present invention includes an inlet 110, a saturation section 120, a growth section 130, and a collection section ( 140).
일 실시형태에 있어서, 수분 응축 기반 공기 중 입자 농축-측정 장치(100)는 전체적으로 원통형인 것일 수 있다. In one embodiment, the moisture condensation-based airborne particle concentration-measuring device 100 may be generally cylindrical.
예를 들어, 상기 수분 응축 기반 공기 중 입자 농축-측정 장치(100)는, 포화부(120), 성장부(130) 및 채집부(140) 각각이 상면과 측면으로 구성된 원통형 몸체를 가지는 것일 수도 있고, 도면에는 도시되어 있지 않지만, 유입부(110), 포화부(120), 성장부(130) 및 채집부(140)를 포함하는 수분 응축 기반 공기 중 입자 농축-측정 장치 전체 몸체가 일체형으로 형성된 상면과, 측면으로 구성된 원통형 몸체를 가지는 것일 수 있다.For example, the moisture condensation-based air particle concentration-measuring device 100 may have a cylindrical body in which each of the saturation section 120, the growth section 130, and the collection section 140 consists of a top surface and a side surface. Although not shown in the drawing, the entire body of the moisture condensation-based airborne particle concentration-measuring device, including the inlet section 110, saturation section 120, growth section 130, and collection section 140, is integrated. It may have a cylindrical body composed of a formed upper surface and a side surface.
일 실시형태에 있어서, 상기 원통형 몸체의 상면에는 원통형 몸체를 관통하도록 형성되어 공기를 내부로 유입하는 유입부(110)가 형성된다.In one embodiment, an inlet 110 is formed on the upper surface of the cylindrical body to penetrate the cylindrical body and introduce air into the cylindrical body.
일 실시형태에 있어서, 상기 유입부(110)는, 유입구(112); 및 상기 입자가 포함된 공기가 유입부(110), 포화부(120), 성장부(130) 및 채집부(140)를 관통하여 흐르는 유입관(114);을 포함할 수 있다.In one embodiment, the inlet 110 includes an inlet 112; and an inflow pipe 114 through which air containing the particles flows through the inlet 110, saturation section 120, growth section 130, and collection section 140.
일 실시형태에 있어서, 상기 유입부(110)는, 외부에서 입자, 예를 들어, 바이오 입자가 포함된 공기가 유입된다.일 실시형태에 있어서, 상기 입자는, 바이러스, 박테리아, 진균, 포자 및 기타 유래의 병원균으로 이루어진 군으로부터 선택되는 적어도 어느 하나를 포함하는 것일 수 있다. In one embodiment, the inlet 110 receives air containing particles, for example, bio-particles, from the outside. In one embodiment, the particles include viruses, bacteria, fungi, spores, and It may contain at least one selected from the group consisting of pathogens of other origin.
예를 들어, 상기 바이러스는, 아데노 바이러스(adenovirus), 레비바이러스 엔테로박테리아 페이즈 MS2(levivirus, enterobacteria phase), 백시니아 바이러스(vaccinia virus), 헤르페스 단순 바이러스(herpes simplex virus), 파라인플루엔자 바이러스(parainfluenza virus), 라이노 바이러스(rhinovirus), 수두 바이러스(varicella Zoster Virus), 홍역 바이러스(measle virus), 호흡기 세포융합 바이러스(respiratory syncytial virus), 뎅기바이러스(Dengue virus), HIV(human immunodeficiency virus), 인플루엔자 바이러스, 코로나 바이러스(Covid-19 virus; SARS-CoV-2), 일반적인 감기 코로나 바이러스(HKU1, OC43, NL63, 229E), 중증급성 호흡기 증후군 코로나 바이러스(severe acute respiratory syndrome-related coronavirus; SARS-CoV), 중동 호흡기 증후군 코로나바이러스(middle east respiratory syndrome coronavirus; MERS-CoV) 및 이들 바이러스의 변종 바이러스로 이루어진 군으로부터 선택되는 적어도 어느 하나를 포함하는 것일 수 있다.For example, the viruses include adenovirus, levivirus, enterobacteria phase MS2 (levivirus, enterobacteria phase), vaccinia virus, herpes simplex virus, and parainfluenza virus. ), rhinovirus, varicella Zoster Virus, measle virus, respiratory syncytial virus, Dengue virus, HIV (human immunodeficiency virus), influenza virus, Coronavirus (Covid-19 virus; SARS-CoV-2), common cold coronavirus (HKU1, OC43, NL63, 229E), severe acute respiratory syndrome-related coronavirus (SARS-CoV), Middle East It may include at least one selected from the group consisting of middle east respiratory syndrome coronavirus (MERS-CoV) and variant viruses of these viruses.
일 실시형태에 있어서, 상기 유입관(114)은 원통형 형상이고, 상기 포화부(120), 성장부(130) 및 채집부(140) 가운데를 관통하는 형태로 공기 중 입자가 흐르는 유로를 형성하는 것일 수 있다.In one embodiment, the inflow pipe 114 has a cylindrical shape and passes through the middle of the saturation section 120, the growth section 130, and the collection section 140, forming a flow path through which particles in the air flow. It may be.
일 실시형태에 있어서, 상기 유입관(114)은, 복수 개를 포함할 수 있다.In one embodiment, the inlet pipe 114 may include a plurality.
도면에는 하나의 유입관만 도시되어 있지만, 복수 개의 유입관이 병렬로 연결되어 전체 유량을 증가시킬 수 있다.Although only one inlet pipe is shown in the drawing, multiple inflow pipes can be connected in parallel to increase the overall flow rate.
일 실시형태에 있어서, 상기 포화부(120), 성장부(130) 및 채집부(140) 각각은 원통형인 것일 수 있다.In one embodiment, each of the saturation section 120, the growth section 130, and the collection section 140 may be cylindrical.
일 실시형태에 있어서, 상기 포화부(120)와 상기 성장부(130) 사이; 및 상기 성장부(130)와 상기 채집부(140) 사이;는 각각, 단열재(128, 138)로 둘러싸인 것일 수 있다. In one embodiment, between the saturated portion 120 and the growth portion 130; and between the growth part 130 and the collecting part 140; may be surrounded by insulation materials 128 and 138, respectively.
일 실시형태에 있어서, 상기 포화부(120) 및 상기 성장부(130)는, 각각, 다공성 세라믹 튜브(122, 132)으로 둘러싸인 것일 수 있다. In one embodiment, the saturation portion 120 and the growth portion 130 may be surrounded by porous ceramic tubes 122 and 132, respectively.
예를 들어, 상기 다공성 세라믹 튜브는, 타이타니아, 알루미나, 실리카 및 제올라이트로 이루어진 군으로부터 선택되는 적어도 어느 하나를 포함하는 것일 수 있다. 바람직하게는, 상기 다공성 세라믹 튜브는, 다공성 알루미나 세라믹 튜브인 것일 수 있다.For example, the porous ceramic tube may include at least one selected from the group consisting of titania, alumina, silica, and zeolite. Preferably, the porous ceramic tube may be a porous alumina ceramic tube.
일 실시형태에 있어서, 상기 포화부(120)는, 상기 유입부로부터 유입된 입자의 성장에 필요한 온도 및 습도 조건을 유지하는 것일 수 있다.In one embodiment, the saturation unit 120 may maintain the temperature and humidity conditions necessary for the growth of particles introduced from the inlet.
일 실시형태에 있어서, 상기 포화부(120)는, 외벽에 1
Figure PCTKR2022012919-appb-img-000009
내지 10
Figure PCTKR2022012919-appb-img-000010
; 1
Figure PCTKR2022012919-appb-img-000011
내지 8
Figure PCTKR2022012919-appb-img-000012
; 1
Figure PCTKR2022012919-appb-img-000013
내지 5
Figure PCTKR2022012919-appb-img-000014
; 1
Figure PCTKR2022012919-appb-img-000015
내지 3
Figure PCTKR2022012919-appb-img-000016
; 3
Figure PCTKR2022012919-appb-img-000017
내지 10
Figure PCTKR2022012919-appb-img-000018
; 3
Figure PCTKR2022012919-appb-img-000019
내지 8
Figure PCTKR2022012919-appb-img-000020
; 3
Figure PCTKR2022012919-appb-img-000021
내지 5
Figure PCTKR2022012919-appb-img-000022
; 5
Figure PCTKR2022012919-appb-img-000023
내지 10
Figure PCTKR2022012919-appb-img-000024
; 5
Figure PCTKR2022012919-appb-img-000025
내지 8
Figure PCTKR2022012919-appb-img-000026
; 또는 8
Figure PCTKR2022012919-appb-img-000027
내지 10
Figure PCTKR2022012919-appb-img-000028
의 저온 항온수가 흐르는 저온수 유로(미도시); 저온수 주입구(124); 및 저온수 배출구(126);를 포함하는 것일 수 있다.
In one embodiment, the saturation unit 120 is 1 on the outer wall.
Figure PCTKR2022012919-appb-img-000009
to 10
Figure PCTKR2022012919-appb-img-000010
; One
Figure PCTKR2022012919-appb-img-000011
to 8
Figure PCTKR2022012919-appb-img-000012
; One
Figure PCTKR2022012919-appb-img-000013
to 5
Figure PCTKR2022012919-appb-img-000014
; One
Figure PCTKR2022012919-appb-img-000015
to 3
Figure PCTKR2022012919-appb-img-000016
; 3
Figure PCTKR2022012919-appb-img-000017
to 10
Figure PCTKR2022012919-appb-img-000018
; 3
Figure PCTKR2022012919-appb-img-000019
to 8
Figure PCTKR2022012919-appb-img-000020
; 3
Figure PCTKR2022012919-appb-img-000021
to 5
Figure PCTKR2022012919-appb-img-000022
; 5
Figure PCTKR2022012919-appb-img-000023
to 10
Figure PCTKR2022012919-appb-img-000024
; 5
Figure PCTKR2022012919-appb-img-000025
to 8
Figure PCTKR2022012919-appb-img-000026
; or 8
Figure PCTKR2022012919-appb-img-000027
to 10
Figure PCTKR2022012919-appb-img-000028
A low-temperature water flow path (not shown) through which low-temperature constant temperature water flows; Low-temperature water inlet (124); and a low-temperature water outlet 126.
예를 들어, 저온수 주입구(124)로 들어온 저온수는 저온수 유로를 통해 상기 포화부(120) 외벽을 돌고, 상기 저온수 배출구(126)를 통해 배출되어 항상 1
Figure PCTKR2022012919-appb-img-000029
내지 10
Figure PCTKR2022012919-appb-img-000030
의 저온 상태를 유지하는 것일 수 있다.
For example, low-temperature water entering the low-temperature water inlet 124 travels around the outer wall of the saturated portion 120 through the low-temperature water flow path and is discharged through the low-temperature water outlet 126, so that it is always 1.
Figure PCTKR2022012919-appb-img-000029
to 10
Figure PCTKR2022012919-appb-img-000030
It may be to maintain a low temperature state.
일 실시형태에 있어서, 상기 포화부(120)는, 내부의 온도가 1
Figure PCTKR2022012919-appb-img-000031
내지 10
Figure PCTKR2022012919-appb-img-000032
로 유지되는 것일 수 있다.
In one embodiment, the saturation unit 120 has an internal temperature of 1
Figure PCTKR2022012919-appb-img-000031
to 10
Figure PCTKR2022012919-appb-img-000032
It may be maintained as .
일 실시형태에 있어서, 상기 포화부(120)의 내부는 상기 포화부(120) 외벽으로 흐르는 저온 항온수에 의해 1
Figure PCTKR2022012919-appb-img-000033
내지 10
Figure PCTKR2022012919-appb-img-000034
로 유지되는 것일 수 있다.
In one embodiment, the interior of the saturation unit 120 is heated to 1 by low-temperature constant temperature water flowing to the outer wall of the saturation unit 120.
Figure PCTKR2022012919-appb-img-000033
to 10
Figure PCTKR2022012919-appb-img-000034
It may be maintained as .
일 실시형태에 있어서, 상기 성장부(130)는, 상기 포화부(120)로부터 유입된 공기에 포함된 입자를 성장시키는 것일 수 있다. In one embodiment, the growth section 130 may grow particles contained in the air introduced from the saturation section 120.
일 실시형태에 있어서, 상기 성장부(130)는, 외벽에 30
Figure PCTKR2022012919-appb-img-000035
내지 60
Figure PCTKR2022012919-appb-img-000036
의 고온 항온수가 흐르는 고온수 유로(미도시); 고온수 주입구(134); 및 고온수 배출구(136);를 포함하는 것일 수 있다.
In one embodiment, the growth portion 130 has 30
Figure PCTKR2022012919-appb-img-000035
to 60
Figure PCTKR2022012919-appb-img-000036
A high-temperature water flow path (not shown) through which high-temperature constant temperature water flows; hot water inlet (134); and a hot water outlet 136.
예를 들어, 고온수 주입구(134)로 들어온 고온수는 고온수 유로를 통해 상기 성장부(130) 외벽을 돌고, 상기 고온수 배출구(136)를 통해 배출되어 항상 30
Figure PCTKR2022012919-appb-img-000037
내지 60
Figure PCTKR2022012919-appb-img-000038
; 30
Figure PCTKR2022012919-appb-img-000039
내지 50
Figure PCTKR2022012919-appb-img-000040
; 30
Figure PCTKR2022012919-appb-img-000041
내지 40
Figure PCTKR2022012919-appb-img-000042
; 40
Figure PCTKR2022012919-appb-img-000043
내지 60
Figure PCTKR2022012919-appb-img-000044
; 40
Figure PCTKR2022012919-appb-img-000045
내지 50
Figure PCTKR2022012919-appb-img-000046
; 또는 50
Figure PCTKR2022012919-appb-img-000047
내지 60
Figure PCTKR2022012919-appb-img-000048
의 고온 상태를 유지하는 것일 수 있다.
For example, the high-temperature water entering the high-temperature water inlet 134 travels around the outer wall of the growth section 130 through the high-temperature water flow path and is discharged through the high-temperature water outlet 136, always reaching 30 degrees Celsius.
Figure PCTKR2022012919-appb-img-000037
to 60
Figure PCTKR2022012919-appb-img-000038
; 30
Figure PCTKR2022012919-appb-img-000039
to 50
Figure PCTKR2022012919-appb-img-000040
; 30
Figure PCTKR2022012919-appb-img-000041
to 40
Figure PCTKR2022012919-appb-img-000042
; 40
Figure PCTKR2022012919-appb-img-000043
to 60
Figure PCTKR2022012919-appb-img-000044
; 40
Figure PCTKR2022012919-appb-img-000045
to 50
Figure PCTKR2022012919-appb-img-000046
; or 50
Figure PCTKR2022012919-appb-img-000047
to 60
Figure PCTKR2022012919-appb-img-000048
It may be to maintain a high temperature state.
일 실시형태에 있어서, 상기 성장부(130)는, 내부의 온도가 30
Figure PCTKR2022012919-appb-img-000049
내지 60
Figure PCTKR2022012919-appb-img-000050
; 30
Figure PCTKR2022012919-appb-img-000051
내지 50
Figure PCTKR2022012919-appb-img-000052
; 30
Figure PCTKR2022012919-appb-img-000053
내지 40
Figure PCTKR2022012919-appb-img-000054
; 40
Figure PCTKR2022012919-appb-img-000055
내지 60
Figure PCTKR2022012919-appb-img-000056
; 40
Figure PCTKR2022012919-appb-img-000057
내지 50
Figure PCTKR2022012919-appb-img-000058
; 또는 50
Figure PCTKR2022012919-appb-img-000059
내지 60
Figure PCTKR2022012919-appb-img-000060
로 유지되는 것일 수 있다.
In one embodiment, the growth portion 130 has an internal temperature of 30
Figure PCTKR2022012919-appb-img-000049
to 60
Figure PCTKR2022012919-appb-img-000050
; 30
Figure PCTKR2022012919-appb-img-000051
to 50
Figure PCTKR2022012919-appb-img-000052
; 30
Figure PCTKR2022012919-appb-img-000053
to 40
Figure PCTKR2022012919-appb-img-000054
; 40
Figure PCTKR2022012919-appb-img-000055
to 60
Figure PCTKR2022012919-appb-img-000056
; 40
Figure PCTKR2022012919-appb-img-000057
to 50
Figure PCTKR2022012919-appb-img-000058
; or 50
Figure PCTKR2022012919-appb-img-000059
to 60
Figure PCTKR2022012919-appb-img-000060
It may be maintained as .
상기 포화부(120)로부터 1
Figure PCTKR2022012919-appb-img-000061
내지 10
Figure PCTKR2022012919-appb-img-000062
내외의 차가운 물과 상기 성장부(130)에서의 30
Figure PCTKR2022012919-appb-img-000063
내지 60
Figure PCTKR2022012919-appb-img-000064
내외의 따뜻한 물을 사용함에 의해, 급격한 온도 차이에 따른 실제 입자의 성장이 일어난다.
1 from the saturation unit 120
Figure PCTKR2022012919-appb-img-000061
to 10
Figure PCTKR2022012919-appb-img-000062
30 in the cold water inside and outside and in the growth area 130
Figure PCTKR2022012919-appb-img-000063
to 60
Figure PCTKR2022012919-appb-img-000064
By using warm water inside and outside, actual particle growth occurs due to rapid temperature differences.
일 실시형태에 있어서, 상기 성장부(130)의 내부는 상기 성장부(130) 외벽으로 흐르는 고온 항온수에 의해 30
Figure PCTKR2022012919-appb-img-000065
내지 60
Figure PCTKR2022012919-appb-img-000066
로 유지되는 것일 수 있다.
In one embodiment, the inside of the growth part 130 is heated to 30 degrees Celsius by high temperature constant temperature water flowing to the outer wall of the growth part 130.
Figure PCTKR2022012919-appb-img-000065
to 60
Figure PCTKR2022012919-appb-img-000066
It may be maintained as .
일 실시형태에 있어서, 상기 성장부(130) 하단에는 수분 배수구(139);를 더 포함할 수 있다. 상기 포화부(120)와 성장부(130)의 다공성 세라믹 튜브 내벽에 맺힌 수분은 중력에 의해 낙하하면서 유동을 방해하거나 입자 농축을 방해할 수 있다. 따라서 성장부(130) 하단에 이를 배수하는 배수구가 형성되는 것이다.In one embodiment, a moisture drain hole 139 may be further included at the bottom of the growth portion 130. Moisture condensed on the inner wall of the porous ceramic tube of the saturation section 120 and the growth section 130 may fall due to gravity and may interfere with flow or particle concentration. Therefore, a drain is formed at the bottom of the growth portion 130 to drain it.
일 실시형태에 있어서, 상기 채집부(140)는, 상기 성장부로부터 성장한 입자를 채집하는 것일 수 있다.In one embodiment, the collection unit 140 may collect particles grown from the growth unit.
일 실시형태에 있어서, 상기 채집부(140)에서는 표면에 수분이 응축되어 크기가 커진 입자들이 노즐에 의해 가속되어 액체 위/액체 속 또는 고체 위에 높은 효율로 채집되는 것일 수 있다. 이때, 입자를 둘러싼 물이 충돌과정에서 입자에 가해지는 충격을 완화해 입자가 온전한 상태로 채집되는 것일 수 있다.In one embodiment, in the collection unit 140, particles whose size has increased due to moisture condensing on the surface are accelerated by a nozzle and collected on/into the liquid or on solids with high efficiency. At this time, the water surrounding the particles may alleviate the shock applied to the particles during the collision process, allowing the particles to be collected in an intact state.
도 2는 본 발명의 일 실시예에 따른 채집 노즐을 나타낸 도면이다.Figure 2 is a diagram showing a collection nozzle according to an embodiment of the present invention.
일 실시형태에 있어서, 상기 채집 노즐(142)은, 3 개의 노즐을 포함하고, 각각의 노즐은, 중심으로부터 같은 거리에 원의 둘레를 따라 120 ° 간격으로 이격된 것일 수 있다. In one embodiment, the collection nozzle 142 includes three nozzles, and each nozzle may be spaced at 120° intervals along the circumference of the circle at the same distance from the center.
예를 들어, 3개의 노즐을 원주로 하는 동심원의 반지름(R)은, 1.5 mm 내지 10 mm; 1.5 mm 내지 8 mm; 1.5 mm 내지 5 mm; 1.5 mm 내지 3 mm; 3 mm 내지 10 mm; 3 mm 내지 8 mm; 3 mm 내지 5 mm; 5 mm 내지 10 mm; 5 mm 내지 8 mm; 8 mm 내지 10 mm; 인 것일 수 있다.For example, the radius (R) of a concentric circle surrounding three nozzles is 1.5 mm to 10 mm; 1.5 mm to 8 mm; 1.5 mm to 5 mm; 1.5 mm to 3 mm; 3 mm to 10 mm; 3 mm to 8 mm; 3 mm to 5 mm; 5 mm to 10 mm; 5 mm to 8 mm; 8 mm to 10 mm; It may be.
유량이 증가함에 따라 적절한 채집효율의 3개의 노즐을 원주로 하는 동심원의 반지름(R)이 커진다. 즉, 상기 반지름(R)이 너무 작으면 상호간의 충돌로 인해 채집이 잘 되지 않는 문제가 있다.As the flow rate increases, the radius (R) of the concentric circle surrounding the three nozzles with appropriate collection efficiency increases. In other words, if the radius (R) is too small, there is a problem of poor collection due to mutual collision.
예를 들어, 노즐의 직경(Dn)은, 0.1 mm 내지 1 mm; 0.1 mm 내지 0.8 mm; 0.1 mm 내지 0.5 mm; 0.1 mm 내지 0.3 mm; 0.3 mm 내지 1 mm; 0.3 mm 내지 0.8 mm; 0.3 mm 내지 0.5 mm; 0.5 mm 내지 1 mm; 0.5 mm 내지 0.8 mm; 또는 0.8 mm 내지 1 mm;인 것일 수 있다.For example, the diameter (D n ) of the nozzle is 0.1 mm to 1 mm; 0.1 mm to 0.8 mm; 0.1 mm to 0.5 mm; 0.1 mm to 0.3 mm; 0.3 mm to 1 mm; 0.3 mm to 0.8 mm; 0.3 mm to 0.5 mm; 0.5 mm to 1 mm; 0.5 mm to 0.8 mm; Or it may be 0.8 mm to 1 mm.
일 실시형태에 있어서, 상기 채집부(140)에서는, 상기 성장한 입자들이 채집 노즐(142)에 의해 가속되어 액체 위, 액체 속 또는 고체 위에서 채집되는 것일 수 있다. In one embodiment, in the collection unit 140, the grown particles may be accelerated by the collection nozzle 142 and collected on the liquid, in the liquid, or on the solid.
도 3은 본 발명의 일 실시예에 따른 수분 응축 기반 공기 중 입자 농축-측정 장치의 채집 방식을 나타낸 도면이다.Figure 3 is a diagram showing the collection method of the moisture condensation-based airborne particle concentration-measuring device according to an embodiment of the present invention.
도 3의 (a)는 액체 위 채집 (Non-immersion impingement), (b)는 액체 속 채집 (Immersion impingement), (c)는 고체 위 채집 (Impaction), (d)는 면역분석법(immunoassay) 기반의 바이오-에어로졸 감지 센서 위에서의 채집 (Impaction onto sensor)을 나타낸다.In Figure 3, (a) is collection on liquid (Non-immersion impingement), (b) is collection on liquid (Immersion impingement), (c) is collection on solid (Impaction), and (d) is based on immunoassay. It represents collection on the bio-aerosol detection sensor (Impaction onto sensor).
종래의 바이오-에어로졸을 채집하는 장치들은, 고체 위에 채집할 경우 채집과정에서 바이러스 또는 박테리아의 표면이 충돌/건조화되어, 주로 액체 위/액체 속에 채집한다. In conventional bio-aerosol collection devices, when collecting on a solid, the surface of the virus or bacteria collides/dries during the collection process, and the bio-aerosol is mainly collected on/in the liquid.
그러나, 본 발명의 일 실시예에 따른 수분 응축 기반 공기 중 입자 농축-측정 장치는, 농축-측정기 내부의 공기가 다량의 수증기를 머금고 있어 도 3의 (c)에서와 같이 채집 시 건조화 및 충돌로 인한 파손을 막아 고체 위에서도 채집할 수 있다. 고체 위에 채집된 바이러스 또는 박테리아는 채집 후 적은 양의 액체를 투입해서 농축된 용액(hydrosolization)이 만들어진다. 일반적으로 이 농축된 용액을 센서로 옮겨 생물입자를 측정한다.However, in the moisture condensation-based airborne particle concentration-measuring device according to an embodiment of the present invention, the air inside the concentration-measuring device contains a large amount of water vapor, causing drying and collision during collection as shown in (c) of FIG. 3. It can be collected even on solids by preventing damage due to damage. Viruses or bacteria collected on a solid are collected and then a concentrated solution (hydrosolization) is created by adding a small amount of liquid. Typically, this concentrated solution is transferred to a sensor to measure biological particles.
일 실시형태에 있어서, 상기 채집 노즐 하단에 면역분석법(immunoassay) 기반의 상기 입자에 대한 감지 센서;를 더 포함할 수 있다. In one embodiment, an immunoassay-based detection sensor for the particles may be further included at the bottom of the collection nozzle.
일 실시형태에 있어서, 상기 감지 센서는, 어떤 형태의 면역 센서로 구비되어도 무방하다. 채집 부위는 상기 감지 센서에서 항체가 도포된 영역으로 이해할 수 있다.In one embodiment, the detection sensor may be provided as any type of immune sensor. The collection site can be understood as the area where the antibody is applied on the detection sensor.
예를 들어, 상기 면역분석법 기반의 감지 센서 표면에 직접적으로 바이오-에어로졸을 채집/측정도 가능하다. For example, it is possible to collect/measure bio-aerosol directly on the surface of the immunoassay-based detection sensor.
일 실시형태에 있어서, 상기 바이오-에어로졸 감지 센서에 입자와 결합하는 항체를 더 포함할 수 있다. 상기 항체는, 상기 입자와 결합하는 항체인 것일 수 있다. 따라서, 온전하게 채집된 농축된 입자들은 항원-항체 반응을 일으켜 센서를 이용한 감지가 가능하고, 신속하게 현장 측정이 가능하다.In one embodiment, the bio-aerosol detection sensor may further include an antibody that binds to particles. The antibody may be an antibody that binds to the particle. Therefore, intact collected concentrated particles can cause an antigen-antibody reaction, enabling detection using a sensor and rapid on-site measurement.
일 실시형태에 있어서, 상기 수분 응축 기반 공기 중 입자 농축-측정 장치는, 채집 공기 유속이 평균 0.2 m/sec 내지 10 m/sec; 0.2 m/sec 내지 8 m/sec; 0.2 m/sec 내지 6 m/sec; 0.4 m/sec 내지 10 m/sec; 0.4 m/sec 내지 8 m/sec; 또는 0.6 m/sec 내지 10 m/sec;인 것일 수 있다. In one embodiment, the moisture condensation based airborne particle concentration-measuring device has a collection air flow rate of between 0.2 m/sec and 10 m/sec on average; 0.2 m/sec to 8 m/sec; 0.2 m/sec to 6 m/sec; 0.4 m/sec to 10 m/sec; 0.4 m/sec to 8 m/sec; Or it may be 0.6 m/sec to 10 m/sec.
유입관 내 채집 공기의 유속이 성능 평가에 매우 중요하다. 본 발명의 수분 응축 기반 공기 중 입자 농축-측정 장치는 평균 유속이 6 m/sec (종래 장치의 20 배 내지 30 배 높음)까지도 입자의 채집이 가능하다. 유속이 큰 경우 공기 중 입자가 응축되기 어렵다.The flow rate of collected air in the inlet pipe is very important in performance evaluation. The moisture condensation-based airborne particle concentration-measuring device of the present invention is capable of collecting particles even at an average flow speed of 6 m/sec (20 to 30 times higher than conventional devices). If the flow velocity is high, it is difficult for particles in the air to condense.
일 실시형태에 있어서, 상기 수분 응축 기반 공기 중 입자 농축-측정 장치는, 채집 공기 유량 1 LPM 내지 10 LPM; 1 LPM 내지 8 LPM; 1 LPM 내지 5 LPM; 1 LPM 내지 3 LPM; 3 LPM 내지 10 LPM; 3 LPM 내지 8 LPM; 3 LPM 내지 5 LPM; 5 LPM 내지 10 LPM; 5 LPM 내지 8 LPM; 또는 8 LPM 내지 10 LPM;에서, 공기 중 바이오 입자를 5 Х 103 내지 2 Х 106의 농축비율로 포집 및 농축하는 것일 수 있다. In one embodiment, the moisture condensation based airborne particle concentration-measuring device comprises: a collection air flow rate of 1 LPM to 10 LPM; 1 LPM to 8 LPM; 1 LPM to 5 LPM; 1 LPM to 3 LPM; 3 LPM to 10 LPM; 3 LPM to 8 LPM; 3 LPM to 5 LPM; 5 LPM to 10 LPM; 5 LPM to 8 LPM; Or, at 8 LPM to 10 LPM, bio-particles in the air may be captured and concentrated at a concentration ratio of 5 Х 10 3 to 2 Х 10 6 .
본 발명의 일 실시예에 따른 수분 응축 기반 공기 중 입자 농축-측정 장치는 전기화학적 신호를 검출하기 위한 본 발명의 기술분야에서 적용되는 다양한 장치, 예를 들어, 전기화학적 분석기가 결합 또는 연결될 수 있고, 이외에도 열적, 광학적, 전기적, 화학적 또는 물리적 검출신호를 감지 및 분석을 위한 장치 및 전극 등이 더 연결 또는 배치될 수 있으나, 본 명세서는 구체적으로 언급하지 않는다.The moisture condensation-based airborne particle concentration-measuring device according to an embodiment of the present invention may be combined or connected to various devices applied in the technical field of the present invention, for example, an electrochemical analyzer, for detecting electrochemical signals. In addition, devices and electrodes for detecting and analyzing thermal, optical, electrical, chemical or physical detection signals may be further connected or disposed, but are not specifically mentioned in this specification.
본 발명의 일 실시예에 따른 수분 응축 기반 공기 중 입자 농축-측정 장치는, 높은 채집 유량에서 높은 채집효율로 공기 중 입자를 고농축시킬 수 있다. 또한, 채집과정에서 입자에 가해지는 충격을 최소화하여 면역분석법을 통해 공기 중 바이러스, 박테리아, 포자 등을 신속 (현장), 정확하게 측정 가능하다.The moisture condensation-based airborne particle concentration-measuring device according to an embodiment of the present invention is capable of highly concentrating airborne particles with high collection efficiency at a high collection flow rate. In addition, by minimizing the impact on particles during the collection process, viruses, bacteria, and spores in the air can be quickly (on-site) and accurately measured through immunoassay.
이하, 실시예 및 비교예에 의하여 본 발명을 더욱 상세히 설명하고자 한다.Hereinafter, the present invention will be described in more detail through examples and comparative examples.
단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.However, the following examples are only for illustrating the present invention, and the content of the present invention is not limited to the following examples.
[실시예][Example]
도 1과 동일한 수분 응축 기반 공기 중 입자 농축-측정 장치를 준비하였다.The same moisture condensation-based airborne particle concentration-measuring device as shown in Figure 1 was prepared.
포화부와 성장부는, 각각, 다공성 세라믹 튜브의 외벽에 일정한 온도의 물을 순환시켜 튜브 내벽의 온도 및 습도를 일정하게 유지시켜 주었다. 이때, 포화부는 1-10
Figure PCTKR2022012919-appb-img-000067
내외의 차가운 물, 성장부는 30-60
Figure PCTKR2022012919-appb-img-000068
내외의 따뜻한 물을 사용하여, 둘 사이의 온도 차에 따른 수분 응축이 일어난다. 포화부와 성장부의 온도 및 유입부로 들어오는 공기 유량에 따른 최종 입자의 크기를 실험을 통해 확인하였다.
The saturation section and the growth section each circulated water at a constant temperature on the outer wall of the porous ceramic tube to keep the temperature and humidity of the inner wall of the tube constant. At this time, the saturation part is 1-10
Figure PCTKR2022012919-appb-img-000067
Cold water inside and outside, growing area 30-60
Figure PCTKR2022012919-appb-img-000068
Using warm water inside and outside, moisture condensation occurs due to the temperature difference between the two. The size of the final particles was confirmed through experiments according to the temperature of the saturated zone and the growth zone and the air flow rate entering the inlet zone.
수분 응축 기반 공기 중 입자 농축-측정 장치의 포화부의 온도는 5
Figure PCTKR2022012919-appb-img-000069
채집 유량은 3 LPM 내지 6 LPM으로 조절하였고, 성장부의 온도를 30
Figure PCTKR2022012919-appb-img-000070
부터 45
Figure PCTKR2022012919-appb-img-000071
까지 변화시키며 측정 입자를 측정하였다.
Concentration of particles in the air based on moisture condensation - the temperature of the saturated part of the measuring device is 5
Figure PCTKR2022012919-appb-img-000069
The collection flow rate was adjusted to 3 LPM to 6 LPM, and the temperature of the growth area was 30
Figure PCTKR2022012919-appb-img-000070
from 45
Figure PCTKR2022012919-appb-img-000071
The measured particles were measured while changing the temperature.
도 4는 본 발명의 실시예에 따른 (a) 성장부의 온도에 따른 최종 입자의 크기 분포 그래프이고, (b) 채집 유량을 3 LPM부터 6 LPM까지 변화시키며 측정한 최종 입자의 크기 분포 그래프이다.Figure 4 is (a) a size distribution graph of the final particles according to the temperature of the growth zone according to an embodiment of the present invention, and (b) a size distribution graph of the final particles measured while changing the collection flow rate from 3 LPM to 6 LPM.
도 4의 (a)를 참조하면, 포화부의 온도가 5
Figure PCTKR2022012919-appb-img-000072
, 채집 유량이 3 LPM으로 고정된 상태에서 성장부의 온도를 30
Figure PCTKR2022012919-appb-img-000073
부터 45
Figure PCTKR2022012919-appb-img-000074
까지 변화시키며 측정한 최종 입자의 크기 분포 그래프이다.
Referring to Figure 4 (a), the temperature of the saturated part is 5
Figure PCTKR2022012919-appb-img-000072
, with the collection flow rate fixed at 3 LPM, the temperature of the growth area was set to 30
Figure PCTKR2022012919-appb-img-000073
from 45
Figure PCTKR2022012919-appb-img-000074
This is a graph of the size distribution of the final particles measured while changing the size.
도 4의 (b)를 참조하면, 포화부의 온도가 5
Figure PCTKR2022012919-appb-img-000075
성장부의 온도가 45
Figure PCTKR2022012919-appb-img-000076
로 고정된 상태에서 채집 유량을 3 LPM부터 6 LPM까지 변화시키며 측정한 최종 입자의 크기 분포 그래프이다.
Referring to Figure 4 (b), the temperature of the saturated part is 5
Figure PCTKR2022012919-appb-img-000075
The temperature of the growth zone is 45
Figure PCTKR2022012919-appb-img-000076
This is a graph of the size distribution of the final particles measured while changing the collection flow rate from 3 LPM to 6 LPM in a fixed state.
도 4의 (a) 및 (b)를 참조하면, 수십 나노미터 크기의 공기 중 입자가 본 발명의 실시예에 따른 수분 응축 기반 공기 중 입자 농축-측정 장치를 통과한 최종 크기(Count median diameter; CMD)는 유량이 증가함에 따라 감소했으며, 3 L/min에서 1.86 ㎛, 6 L/min에서 1.44 ㎛로 측정되었다. 채집부의 노즐을 사용해 고상에 충돌시킨 입자의 채집효율은 3-6 L/min 범위에서 90% 이상을 보였다Referring to Figures 4 (a) and (b), the final size (Count median diameter; CMD) decreased as the flow rate increased and was measured at 1.86 ㎛ at 3 L/min and 1.44 ㎛ at 6 L/min. The collection efficiency of particles that collided with the solid phase using the nozzle of the collection unit was over 90% in the range of 3-6 L/min.
본 발명의 실시예에 따른 수분 응축 기반 공기 중 입자 농축-측정 장치의 채집부에서는 표면에 수분이 응축되어 크기가 커진 입자들이 노즐에 의해 가속되어 액체 위/액체 속 또는 고체 위에 높은 효율로 채집하였다. 입자의 채집효율과 채집과정에서의 손상 여부는 실험을 통해 확인하였다. In the collection unit of the moisture condensation-based air particle concentration-measuring device according to an embodiment of the present invention, particles whose size has increased due to moisture condensing on the surface are accelerated by the nozzle and collected with high efficiency on/in liquid or on solids. . The collection efficiency of particles and damage during the collection process were confirmed through experiments.
도 5는 본 발명의 실시예에 따른 수분 응축 기반 공기 중 입자 농축-측정 장치의 입구와 출구에서 측정한 공기 중 MS2 바이러스의 수 농도를 이용해서 계산한 채집 유량 6 LPM에서의 물리적 채집효율을 나타낸 그래프이다.Figure 5 shows the physical collection efficiency at a collection flow rate of 6 LPM calculated using the number concentration of MS2 viruses in the air measured at the inlet and outlet of the moisture condensation-based air particle concentration-measuring device according to an embodiment of the present invention. It's a graph.
도 5를 참조하면, 고체 위로 바이러스를 채집할 경우 채집 효율이 가장 높은 것을 확인할 수 있다. 도 5는 공기 중의 MS2 바이러스에 대한 채집효율을 나타낸다.Referring to Figure 5, it can be seen that the collection efficiency is highest when collecting viruses on solids. Figure 5 shows the collection efficiency for MS2 virus in the air.
도 6은 본 발명의 실시예에 따른 수분 응축 기반 공기 중 입자 농축-측정 장치를 이용하여 바이러스를 에어로졸화 시키기 전의 초기 Plaque Forming Unit (PFU) 농도 대비 장치를 통해 채집된 바이러스의 상대적인 농도 비율 (Relative Infectious Virus Concentration; RIVC)을 나타낸 그래프이다. Figure 6 shows the relative concentration ratio of the virus collected through the device compared to the initial Plaque Forming Unit (PFU) concentration before aerosolizing the virus using the moisture condensation-based airborne particle concentration-measuring device according to an embodiment of the present invention. This is a graph showing Infectious Virus Concentration (RIVC).
도 6에서, 괄호 안의 숫자는 대표적인 바이오-에어로졸 채집기로 널리 사용되는 SKC BioSampler의 RIVC 값 대비 GVC의 RIVC 값을 나타낸다.In Figure 6, the numbers in parentheses represent the RIVC value of GVC compared to the RIVC value of SKC BioSampler, which is widely used as a representative bio-aerosol collector.
도 6을 참조하면, 채집 유량이 1 - 6 LPM으로 증가할때, 6 LPM에서 채집된 MS2 바이러스의 상대적인 농도 비율이 가장 높은 것을 확인할 수 있다. 즉, 채집 유량이 6 LPM일 때 채집액의 농도가 가장 높다. 그리고 이 경우, SKC BioSampler로 채집한 용액의 농도 대비 60 배 정도이다. Referring to Figure 6, it can be seen that when the collection flow rate increases from 1 to 6 LPM, the relative concentration ratio of the MS2 virus collected at 6 LPM is the highest. In other words, when the collection flow rate is 6 LPM, the concentration of the collected liquid is highest. And in this case, the concentration is about 60 times that of the solution collected with the SKC BioSampler.
도 7은 본 발명의 실시예에 따른 1 LPM부터 6 LPM까지 측정된 노즐의 간격에 따른 입자의 채집 효율을 나타낸다.Figure 7 shows the particle collection efficiency according to the nozzle spacing measured from 1 LPM to 6 LPM according to an embodiment of the present invention.
도 7을 참조하면, 노즐 동심원의 반지름 R에 관해서는, 중심-노즐 거리가 1-3 mm 범위에서 조절되었고, 노즐 사이의 간격이 좁아짐에 따라 입자의 채집효율이 감소하는 경향을 보였다. 채집 유량 6 L/min에서 중심-노즐 거리가 3.5 mm 일 때 채집효율은 90 % 정도, 1.5 mm 일 때 80 % 정도이다.Referring to FIG. 7, regarding the radius R of the nozzle concentric circle, the center-nozzle distance was adjusted in the range of 1-3 mm, and as the gap between nozzles narrowed, the particle collection efficiency tended to decrease. At a collection flow rate of 6 L/min, the collection efficiency is about 90% when the center-nozzle distance is 3.5 mm, and about 80% when it is 1.5 mm.
이를 통하여, 공기 중 입자가 흐르는 관을 여러 개 병렬로 사용할 때 즉, 여러 개의 노즐을 사용해야 할 경우, 채집 효율을 감소시키지 않고도 전체 유량 및 농축비를 증가시킬 수 있음을 확인하였다.Through this, it was confirmed that when multiple pipes through which airborne particles flow are used in parallel, that is, when multiple nozzles are used, the total flow rate and concentration ratio can be increased without reducing collection efficiency.
이상과 같이 실시예들이 비록 한정된 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기를 기초로 다양한 기술적 수정 및 변형을 적용할 수 있다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.Although the embodiments have been described with limited drawings as described above, those skilled in the art can apply various technical modifications and variations based on the above. For example, the described techniques are performed in a different order than the described method, and/or components of the described system, structure, device, circuit, etc. are combined or combined in a different form than the described method, or other components are used. Alternatively, appropriate results may be achieved even if substituted or substituted by an equivalent.
그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 청구범위의 범위에 속한다.Therefore, other implementations, other embodiments, and equivalents of the claims also fall within the scope of the following claims.

Claims (17)

  1. 외부에서 입자가 포함된 공기가 유입되는 유입부;An inlet where air containing particles flows in from the outside;
    상기 유입부로부터 유입된 입자의 성장에 필요한 온도 및 습도 조건을 유지하는 포화부;a saturation section that maintains the temperature and humidity conditions necessary for the growth of particles introduced from the inlet section;
    상기 포화부로부터 유입된 공기에 포함된 입자를 성장시키는 성장부; 및 a growth section that grows particles contained in the air introduced from the saturation section; and
    상기 성장부로부터 성장한 입자를 채집하는 채집부;A collection unit that collects particles grown from the growth unit;
    를 포함하는, Including,
    수분 응축 기반 공기 중 입자 농축-측정 장치.Airborne particle concentration-measuring device based on moisture condensation.
  2. 제1항에 있어서,According to paragraph 1,
    상기 유입부는, The inlet part,
    유입구; 및 inlet; and
    입자가 포함된 공기가 유입부, 포화부, 성장부 및 채집부를 관통하여 흐르는 유입관;an inflow pipe through which air containing particles flows through the inflow section, saturation section, growth section, and collection section;
    을 포함하는 것인, which includes,
    수분 응축 기반 공기 중 입자 농축-측정 장치.Airborne particle concentration-measuring device based on moisture condensation.
  3. 제2항에 있어서,According to paragraph 2,
    상기 유입관은, 복수 개를 포함하고,The inlet pipe includes a plurality of
    상기 복수 개의 유입관은 병렬로 연결된 것인, The plurality of inlet pipes are connected in parallel,
    수분 응축 기반 공기 중 입자 농축-측정 장치.Airborne particle concentration-measuring device based on moisture condensation.
  4. 제1항에 있어서,According to paragraph 1,
    상기 포화부 및 상기 성장부는, 각각, 다공성 세라믹 튜브로 둘러싸인 것인, The saturated portion and the growth portion are each surrounded by a porous ceramic tube,
    수분 응축 기반 공기 중 입자 농축-측정 장치.Airborne particle concentration-measuring device based on moisture condensation.
  5. 제1항에 있어서,According to paragraph 1,
    상기 포화부는, 외벽에 1
    Figure PCTKR2022012919-appb-img-000077
    내지 10
    Figure PCTKR2022012919-appb-img-000078
    의 저온 항온수가 흐르는 저온수 유로;
    The saturated portion has 1 on the outer wall.
    Figure PCTKR2022012919-appb-img-000077
    to 10
    Figure PCTKR2022012919-appb-img-000078
    A low-temperature water flow path through which low-temperature constant temperature water flows;
    저온수 주입구; 및 Low-temperature water inlet; and
    저온수 배출구;cold water outlet;
    를 포함하는 것인, which includes,
    수분 응축 기반 공기 중 입자 농축-측정 장치.Airborne particle concentration-measuring device based on moisture condensation.
  6. 제1항에 있어서,According to paragraph 1,
    상기 포화부는, 내부의 온도가 1
    Figure PCTKR2022012919-appb-img-000079
    내지 10
    Figure PCTKR2022012919-appb-img-000080
    로 유지되는 것인,
    The saturated part has an internal temperature of 1
    Figure PCTKR2022012919-appb-img-000079
    to 10
    Figure PCTKR2022012919-appb-img-000080
    which is maintained as,
    수분 응축 기반 공기 중 입자 농축-측정 장치.Airborne particle concentration-measuring device based on moisture condensation.
  7. 제1항에 있어서,According to paragraph 1,
    상기 성장부는, The growth part,
    외벽에 30
    Figure PCTKR2022012919-appb-img-000081
    내지 60
    Figure PCTKR2022012919-appb-img-000082
    의 고온 항온수가 흐르는 고온수 유로;
    30 on the exterior wall
    Figure PCTKR2022012919-appb-img-000081
    to 60
    Figure PCTKR2022012919-appb-img-000082
    A high-temperature water flow path through which high-temperature constant temperature water flows;
    고온수 주입구; 및 hot water inlet; and
    고온수 배출구;hot water outlet;
    를 포함하는 것인, which includes,
    수분 응축 기반 공기 중 입자 농축-측정 장치.Airborne particle concentration-measuring device based on moisture condensation.
  8. 제1항에 있어서,According to paragraph 1,
    상기 성장부는, 내부의 온도가 30
    Figure PCTKR2022012919-appb-img-000083
    내지 60
    Figure PCTKR2022012919-appb-img-000084
    로 유지되는 것인,
    The growth part has an internal temperature of 30
    Figure PCTKR2022012919-appb-img-000083
    to 60
    Figure PCTKR2022012919-appb-img-000084
    which is maintained as,
    수분 응축 기반 공기 중 입자 농축-측정 장치.Airborne particle concentration-measuring device based on moisture condensation.
  9. 제1항에 있어서,According to paragraph 1,
    상기 성장부 하단에는 수분 배수구;A moisture drain hole at the bottom of the growth part;
    를 더 포함하는, Containing more,
    수분 응축 기반 공기 중 입자 농축-측정 장치.Airborne particle concentration-measuring device based on moisture condensation.
  10. 제1항에 있어서,According to paragraph 1,
    상기 채집부는,The collection unit,
    상기 성장한 입자들이 채집 노즐에 의해 가속되어 액체 위, 액체 속 또는 고체 위에서 채집되는 것인, The grown particles are accelerated by a collection nozzle and collected on, in, or on a liquid,
    수분 응축 기반 공기 중 입자 농축-측정 장치.Airborne particle concentration-measuring device based on moisture condensation.
  11. 제10항에 있어서,According to clause 10,
    상기 채집 노즐은, 3 개의 노즐을 포함하고,The collection nozzle includes three nozzles,
    각각의 노즐은, 중심으로부터 같은 거리에 원의 둘레를 따라 120 ° 간격으로 이격된 것인, Each nozzle is spaced at 120° intervals along the circumference of the circle at equal distances from the center,
    수분 응축 기반 공기 중 입자 농축-측정 장치.Airborne particle concentration-measuring device based on moisture condensation.
  12. 제10항에 있어서,According to clause 10,
    상기 3 개의 노즐을 원주로 하는 동심원의 반지름(R)은, 1.5 mm 내지 10 mm인 것인, The radius (R) of the concentric circle surrounding the three nozzles is 1.5 mm to 10 mm,
    수분 응축 기반 공기 중 입자 농축-측정 장치.Airborne particle concentration-measuring device based on moisture condensation.
  13. 제10항에 있어서,According to clause 10,
    상기 채집 노즐 하단에 면역분석법(immunoassay) 기반의 바이오-에어로졸 감지 센서;An immunoassay-based bio-aerosol detection sensor at the bottom of the collection nozzle;
    를 더 포함하는, Containing more,
    수분 응축 기반 공기 중 입자 농축-측정 장치.Airborne particle concentration-measuring device based on moisture condensation.
  14. 제1항에 있어서,According to paragraph 1,
    상기 포화부와 상기 성장부 사이; 및between the saturated portion and the growth portion; and
    상기 성장부와 상기 채집부 사이;Between the growth part and the collecting part;
    는 단열부;is the insulation part;
    를 더 포함하는, Containing more,
    수분 응축 기반 공기 중 입자 농축-측정 장치.Airborne particle concentration-measuring device based on moisture condensation.
  15. 제1항에 있어서,According to paragraph 1,
    수분 응축 기반 공기 중 입자 농축-측정 장치는 원통형인 것인, The moisture condensation-based airborne particle concentration-measuring device is cylindrical,
    수분 응축 기반 공기 중 입자 농축-측정 장치.Airborne particle concentration-measuring device based on moisture condensation.
  16. 제1항에 있어서,According to paragraph 1,
    상기 입자는, 바이러스, 박테리아, 진균, 포자 및 기타 유래의 병원균으로 이루어진 군으로부터 선택되는 적어도 어느 하나를 포함하는 것인,The particles include at least one selected from the group consisting of viruses, bacteria, fungi, spores and other derived pathogens,
    수분 응축 기반 공기 중 입자 농축-측정 장치.Airborne particle concentration-measuring device based on moisture condensation.
  17. 제1항에 있어서,According to paragraph 1,
    상기 수분 응축 기반 공기 중 입자 농축-측정 장치는, The moisture condensation-based airborne particle concentration-measuring device,
    채집 공기 유속이 평균 0.2 m/sec 내지 10 m/sec이고, The collected air flow rate is on average 0.2 m/sec to 10 m/sec,
    채집 공기 유량 1 LPM 내지 10 LPM에서, 공기 중 바이오 입자를 5 Х 103 내지 2 Х 106의 농축비율로 포집 및 농축하는 것인, At a collection air flow rate of 1 LPM to 10 LPM, bio particles in the air are captured and concentrated at a concentration ratio of 5 Х 10 3 to 2 Х 10 6 ,
    수분 응축 기반 공기 중 입자 농축-측정 장치.Airborne particle concentration-measuring device based on moisture condensation.
PCT/KR2022/012919 2022-08-26 2022-08-30 Moisture-condensation-based airborne particle concentrating-measuring device WO2024043377A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0107358 2022-08-26
KR1020220107358A KR20240029194A (en) 2022-08-26 2022-08-26 Water condensation-based bioaerosol concentration and measurement apparatus

Publications (1)

Publication Number Publication Date
WO2024043377A1 true WO2024043377A1 (en) 2024-02-29

Family

ID=90013595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/012919 WO2024043377A1 (en) 2022-08-26 2022-08-30 Moisture-condensation-based airborne particle concentrating-measuring device

Country Status (2)

Country Link
KR (1) KR20240029194A (en)
WO (1) WO2024043377A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104280273A (en) * 2013-07-02 2015-01-14 香港城市大学 High flow capacity multi-function aerosol-to-hydrosol air sampler and sampling method
KR20190108890A (en) * 2018-03-15 2019-09-25 (주)백년기술 Aerosol Collection Apparatus
KR102291088B1 (en) * 2021-03-19 2021-08-17 연세대학교 산학협력단 Apparatus for sampling bio-particles in air
KR20220002108A (en) * 2020-06-30 2022-01-06 세종대학교산학협력단 Liquid-based collection system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104280273A (en) * 2013-07-02 2015-01-14 香港城市大学 High flow capacity multi-function aerosol-to-hydrosol air sampler and sampling method
KR20190108890A (en) * 2018-03-15 2019-09-25 (주)백년기술 Aerosol Collection Apparatus
KR20220002108A (en) * 2020-06-30 2022-01-06 세종대학교산학협력단 Liquid-based collection system
KR102291088B1 (en) * 2021-03-19 2021-08-17 연세대학교 산학협력단 Apparatus for sampling bio-particles in air

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JANG JUNBEOM; BHARDWAJ JYOTI; JANG JAESUNG: "Efficient measurement of airborne viable viruses using the growth-based virus aerosol concentrator with high flow velocities", JOURNAL OF HAZARDOUS MATERIALS, ELSEVIER, AMSTERDAM, NL, vol. 434, 6 April 2022 (2022-04-06), AMSTERDAM, NL , XP087054892, ISSN: 0304-3894, DOI: 10.1016/j.jhazmat.2022.128873 *
SUSANNE V. HERING, STOLZENBURG MARK R., QUANT FREDERICK R., OBERREIT DEREK R., KEADY PATRICIA B.: "A Laminar-Flow, Water-Based Condensation Particle Counter (WCPC)", AEROSOL SCIENCE AND TECHNOLOGY, ELSEVIER, vol. 39, no. 7, 1 July 2005 (2005-07-01), pages 659 - 672, XP055015215, ISSN: 02786826, DOI: 10.1080/02786820500182123 *

Also Published As

Publication number Publication date
KR20240029194A (en) 2024-03-05

Similar Documents

Publication Publication Date Title
WO2015027546A1 (en) Online detection device and method for sulfur trioxide contained in flue gas
Halstead et al. Evaluation of five methods for respiratory syncytial virus detection
US5824919A (en) Sample conditioning flue gas probe
CN107421787B (en) Sampling device and measuring method for total particulate matters in exhaust gas
Waris et al. Rapid detection of respiratory syncytial virus and influenza A virus in cell cultures by immunoperoxidase staining with monoclonal antibodies
WO2024043377A1 (en) Moisture-condensation-based airborne particle concentrating-measuring device
WO2012102448A1 (en) Apparatus for measuring floating microorganisms in a gas phase in real time using a system for dissolving microorganisms and atp illumination, and method for detecting same<0}
Bell et al. Rapid detection of respiratory syncytial virus with a monoclonal antibody
WO2014104575A1 (en) Condensing boiler having plurality of latent heat exchange portions
CA2872782C (en) Extractive continuous ammonia monitoring system
WO2020032625A1 (en) Apparatus for real-time continuous measurement of suspended microorganisms
Lim et al. Field tests of a particulate impaction curtain on emissions from a high-rise layer barn
WO2016039591A1 (en) Device for checking leakage of live steam from steam trap
WO2022250197A1 (en) Residual gas and surface ion analysis system accompanied by moisture content measurement using condensation temperature
CN113607612B (en) Cloud activation and gap particulate matter measuring device based on unmanned aerial vehicle
McDonald et al. Utility of a respiratory virus panel containing a monoclonal antibody pool for screening of respiratory specimens in nonpeak respiratory syncytial virus season
CN208672400U (en) A kind of flue gas demercuration sampler
Olsen et al. Evaluation of Abbott TestPack RSV for the diagnosis of respiratory syncytial virus infections
CN209182103U (en) A kind of non-heated mode can control flow removes the atmosphere air sample tube of condensed water
Mézière et al. Detection of respiratory syncytial virus antigen after seventy‐two hours of culture
KR100993210B1 (en) Condensation sampler for detecting airborne microorganisms
KR100299678B1 (en) Stack Sampler
CN110849679A (en) Synchronous sampling device for condensable particles and sulfur trioxide in coal-fired flue gas and working method thereof
JPH0337135B2 (en)
TWI755296B (en) gas condensing unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956583

Country of ref document: EP

Kind code of ref document: A1