WO2024043282A1 - エステル化タンパク質及びその製造方法 - Google Patents

エステル化タンパク質及びその製造方法 Download PDF

Info

Publication number
WO2024043282A1
WO2024043282A1 PCT/JP2023/030366 JP2023030366W WO2024043282A1 WO 2024043282 A1 WO2024043282 A1 WO 2024043282A1 JP 2023030366 W JP2023030366 W JP 2023030366W WO 2024043282 A1 WO2024043282 A1 WO 2024043282A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
modified protein
base material
modified
producing
Prior art date
Application number
PCT/JP2023/030366
Other languages
English (en)
French (fr)
Inventor
ジェイコブ リチャード ハウザー
一樹 坂田
秀樹 加賀田
拓 高見
Original Assignee
Spiber株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Spiber株式会社 filed Critical Spiber株式会社
Publication of WO2024043282A1 publication Critical patent/WO2024043282A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/02General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length in solution
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/107General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D105/00Coating compositions based on polysaccharides or on their derivatives, not provided for in groups C09D101/00 or C09D103/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D189/00Coating compositions based on proteins; Coating compositions based on derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J105/00Adhesives based on polysaccharides or on their derivatives, not provided for in groups C09J101/00 or C09J103/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J189/00Adhesives based on proteins; Adhesives based on derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins

Definitions

  • the present invention relates to an esterified protein and a method for producing the same.
  • biodegradable protein materials have been attracting attention as an alternative to petroleum-derived materials. Since protein materials exhibit physical properties depending on the type of protein, it is necessary to prepare proteins that have the physical properties required depending on the intended use.
  • Patent Document 1 discloses that a modified spider silk protein is obtained by preparing a modified nucleic acid so as to express a desired amino acid sequence as a protein used in medicine or cosmetics. It has been disclosed that substances such as polypeptides, polysaccharides, marker molecules, quantum dots, metals, nucleic acids, lipids, and low-molecular drugs can be further bonded to the molecules. In this way, by binding other substances using lysine, serine, and/or cysteine, properties other than those inherent to the protein can be imparted.
  • an object of the present invention is to provide a new method for producing modified proteins.
  • the present inventors have discovered that desired modified proteins can be obtained by acylating proteins under mechanochemical conditions. That is, the present invention provides the following (1) to (66).
  • a method for producing a modified protein comprising a step of treating a mixture containing a protein and an acylating agent by a mechanochemical method to obtain a modified protein.
  • the mixture further contains a solvent.
  • the method according to (3), wherein the amount of the solvent is 1 to 100% by weight based on the amount of protein.
  • the acylating agent contains a hydrophobic group.
  • the acylating agent contains at least one selected from the group consisting of an alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, and an aryl group.
  • a modified protein composition comprising the modified protein according to (26).
  • a molding material comprising the modified protein according to (26).
  • the modified protein molded article according to (28), wherein the modified protein molded article is any one of the group consisting of fibers, films, gels, porous bodies, particles, and resins.
  • a method for producing protein fibers comprising the steps of: treating a mixture containing a protein and an acylating agent with a mechanochemical method to obtain a modified protein; and spinning the obtained modified protein.
  • a method for producing a solution adhesive comprising the step of dissolving the modified protein obtained by the method described in (1) in a solvent.
  • a method for producing a water-dispersible adhesive comprising the step of dispersing the modified protein obtained by the method described in (1) in an aqueous medium.
  • a method for producing a film adhesive comprising the step of forming a film from a solution in which the modified protein obtained by the method described in (1) is dissolved.
  • (41-1) A method for producing a film adhesive, comprising the steps of obtaining a modified protein by the method described in (1), and dissolving the obtained modified protein in a solvent to form a film.
  • a method for producing a powder adhesive comprising the step of obtaining a powder containing the modified protein obtained by the method described in (1).
  • a method for producing a powdered adhesive comprising a step of powdering the modified protein obtained by the method described in (1).
  • (42-2) A method for producing a powder adhesive comprising the steps of obtaining a modified protein by the method described in (1), and powdering the obtained modified protein.
  • (42-3) A method for producing a powdered adhesive comprising the step of obtaining a powder composition containing the modified protein obtained by the method described in (1) and an adhesion improver or an adhesion improver.
  • a powder adhesive comprising a step of obtaining a modified protein by the method described in (1), and a step of obtaining a powder composition containing the obtained modified protein and an adhesion improver or an adhesion improver. Production method.
  • a method for producing a powder adhesive comprising: (43)
  • the modified protein is at least one selected from the group consisting of maleate-esterified proteins, succinate-esterified proteins, sulfonate-esterified proteins, and phosphorylated proteins, (39) to (42) )
  • the modified protein is at least one selected from the group consisting of maleate-esterified proteins, succinate-esterified proteins, sulfonate-esterified proteins, and phosphoric-esterified proteins, and the solvent is a basic aqueous solution.
  • the modified protein is at least one selected from the group consisting of maleate-esterified proteins, succinate-esterified proteins, sulfonate-esterified proteins, and phosphoric-esterified proteins, and the step of forming the film is , the method for producing a film adhesive according to (41) or (41-1), which comprises dissolving the modified protein in a basic aqueous solution.
  • a solution obtained by dissolving the modified protein obtained by the method described in (1) in a solvent is interposed between a plurality of adherends, and then the solvent is removed from the solution and the modified protein is A method for producing an adhesive body, which includes bonding adherends together by solidifying a protein.
  • a method for producing an adhesive body comprising the step of adhering adherends to each other by removing the solvent from the solution and solidifying the modified protein.
  • An aqueous dispersion obtained by dispersing the modified protein obtained by the method described in (1) in an aqueous medium is interposed between a plurality of adherends, and then the aqueous dispersion is mixed with the aqueous medium.
  • a method for producing an adhesive body comprising bonding adherends together by removing the modified protein and solidifying the modified protein.
  • (47-1) A step of obtaining a modified protein by the method described in (1), a step of dispersing the obtained modified protein in an aqueous medium to obtain an aqueous dispersion, and a step of dispersing the obtained aqueous dispersion in a plurality of coatings.
  • a method for producing an adhesive body comprising the step of interposing the modified protein between the adherends, and then removing the aqueous medium from the aqueous dispersion to solidify the modified protein, thereby adhering the adherends to each other.
  • a method for manufacturing an adhesive body comprising the step of bonding the adherends together by pressurizing and solidifying the powder through the adherend.
  • a method for manufacturing an adhesive body comprising the steps of heating the powder and pressing the powder through the adherend to solidify the powder, thereby bonding the adherends together.
  • the step of adhering the adherends by heating the powder composition and applying pressure to the powder composition through the adherend to solidify the powder composition while being interposed between the adherends.
  • a method for producing an adhesive body (49-4) A step of adding an adhesion improver or an adhesion improver to the modified protein obtained by the method described in (1) to obtain a composition, a step of powdering the obtained composition, and a step of powdering the obtained composition.
  • a method for manufacturing an adhesive body which includes a step of bonding adherends together.
  • a step of obtaining a modified protein by the method described in (1) a step of obtaining a powder composition containing the obtained modified protein and an adhesion improver or an adhesion improver, and the obtained powder composition is interposed between a plurality of adherends, the powder composition is heated, and the powder composition is pressurized through the adherends to solidify the adherends.
  • a method for producing an adhesive body including the step of bonding.
  • the modified protein is at least one selected from the group consisting of maleate-esterified proteins, succinate-esterified proteins, sulfonate-esterified proteins, and phosphorylated proteins (46) to (49).
  • the method for producing an adhesive body as described in (51) The modified protein is at least one selected from the group consisting of maleate-esterified proteins, succinate-esterified proteins, sulfonate-esterified proteins, and phosphoric-esterified proteins, and the solvent is a basic aqueous solution.
  • the film contains at least one modified protein selected from the group consisting of maleic esterified proteins, succinic esterified proteins, sulfonic esterified proteins, and phosphoric esterified proteins dissolved in a basic aqueous solution.
  • the method for producing an adhesive body according to (48) which is obtained by cast molding a solution.
  • the modified protein is at least one selected from the group consisting of maleic esterified proteins, succinic esterified proteins, sulfonic esterified proteins, and phosphoric esterified proteins, and a step of forming a film.
  • a method for producing a solution coating agent comprising a step of dissolving the modified protein obtained by the method described in (1) in a solvent.
  • a method for producing a solution coating agent comprising the steps of obtaining a modified protein by the method described in (1), and dissolving the obtained modified protein in a solvent.
  • a method for producing a water-dispersible coating agent comprising a step of dispersing the modified protein obtained by the method described in (1) in an aqueous medium.
  • a method for producing a water-dispersible coating agent comprising the steps of obtaining a modified protein by the method described in (1), and dispersing the obtained modified protein in an aqueous medium.
  • a method for producing a film-like coating agent comprising the step of forming a film from a solution in which the modified protein obtained by the method described in (1) is dissolved.
  • a method for producing a film-like coating agent comprising the steps of obtaining a modified protein by the method described in (1), and dissolving the obtained modified protein in a solvent to form a film.
  • a method for producing a powder coating agent comprising the step of obtaining a powder containing the modified protein obtained by the method described in (1).
  • (56-1) A method for producing a powder coating agent, which includes a step of powdering the modified protein obtained by the method described in (1).
  • (56-2) A method for producing a powder coating agent, comprising the steps of obtaining a modified protein by the method described in (1), and powdering the obtained modified protein.
  • (56-3) A method for producing a powder coating agent, comprising the step of obtaining a powder composition containing the modified protein obtained by the method described in (1) and an adhesion improver or an adhesion improver.
  • a method for producing a powder coating agent. (56-5) A powder coating agent comprising a step of obtaining a modified protein by the method described in (1) and a step of obtaining a powder composition containing the obtained modified protein and an adhesion improver or an adhesion improver. Production method. (56-6) A step of obtaining a modified protein by the method described in (1), a step of adding an adhesion improver or an adhesion improver to the obtained modified protein to obtain a composition, and a step of powdering the obtained composition.
  • a method for producing a powder coating agent comprising: (57) The modified protein is at least one selected from the group consisting of maleate-esterified proteins, succinate-esterified proteins, sulfonate-esterified proteins, and phosphorylated proteins (41) to (44). ) The method for manufacturing the coating agent described in . (58) The modified protein is at least one selected from the group consisting of maleate-esterified proteins, succinate-esterified proteins, sulfonate-esterified proteins, and phosphoric-esterified proteins, and the solvent is a basic aqueous solution.
  • the modified protein is at least one selected from the group consisting of maleate-esterified proteins, succinate-esterified proteins, sulfonate-esterified proteins, and phosphoric-esterified proteins, and the modified protein is made basic.
  • a method for producing a laminate comprising a base material and a coating layer laminated on at least a portion of the surface of the base material, wherein the modified protein obtained by the method described in (1) is used in a solvent.
  • a method for producing a laminate comprising forming the coating layer on at least a portion of the surface of the base material by solidifying the protein.
  • (60-1) A method for producing a laminate comprising a base material and a coating layer formed on at least a portion of the surface of the base material, the method comprising: obtaining a modified protein by the method described in (1); , a step of dissolving the obtained modified protein in a solvent to obtain a solution, and supplying the solution to at least a portion of the surface of the substrate to coat at least a portion of the surface of the substrate with the solution. and removing the solvent from the coating to form the coating layer.
  • (61) A method for producing a laminate comprising a base material and a coating layer laminated on at least a portion of the surface of the base material, wherein the modified protein obtained by the method described in (1) is aqueous.
  • a method for producing a laminate comprising forming a coating layer on at least a portion of the surface of the base material by removing the medium and solidifying the modified protein.
  • a method for producing a laminate comprising a base material and a coating layer formed on at least a portion of the surface of the base material, the method comprising: obtaining a modified protein by the method described in (1); , a step of dispersing the obtained modified protein in an aqueous medium to obtain an aqueous dispersion, and supplying the aqueous dispersion to at least a portion of the surface of the base material to disperse at least a portion of the surface of the base material.
  • a method for producing a laminate comprising the steps of coating with the aqueous dispersion, and removing the aqueous medium from the coating to form the coating layer.
  • a method for producing a laminate comprising a base material and a coating layer laminated on at least a portion of the surface of the base material, the method comprising a modified protein obtained by the method according to (1).
  • the film is softened by swelling or heating, placed on at least a portion of the surface of the base material, and then cured while the film is in pressure contact with the base material, thereby softening at least the surface of the base material.
  • a method for producing a laminate comprising a base material and a coating layer formed on at least a portion of the surface of the base material comprising: obtaining a modified protein by the method described in (1); , a step of dissolving the obtained modified protein in a solvent to form a film, a step of softening the film by swelling or heating, and placing it on at least a part of the surface of the substrate; A method for manufacturing a laminate, comprising the step of forming the coating layer by curing the coating layer in pressure contact with a base material.
  • (63) A method for producing a laminate comprising a base material and a coating layer laminated on at least a portion of the surface of the base material, the method comprising a modified protein obtained by the method according to (1).
  • a method for producing a laminate comprising forming a coating layer on at least a portion of the surface of the material.
  • a method for producing a laminate comprising a base material and a coating layer formed on at least a portion of the surface of the base material, the method comprising: a modified protein obtained by the method described in (1); a step of pulverizing the powder, heating the powder while placing the obtained powder on at least a part of the surface of the base material, and pressurizing the powder between a pressurizing body and the base material.
  • a method for producing a laminate comprising: forming a coating layer on at least a portion of the surface of the base material by solidifying the base material.
  • (63-2) A method for producing a laminate comprising a base material and a coating layer formed on at least a portion of the surface of the base material, the method comprising: obtaining a modified protein by the method described in (1); , a step of powdering the obtained modified protein, heating the powder with the obtained powder placed on at least a part of the surface of the base material, and connecting a pressurizing body and the base material.
  • a method for manufacturing a laminate characterized in that a coating layer is formed on at least a portion of the surface of the base material by pressurizing and solidifying the powder between the base materials.
  • a method for producing a laminate comprising a base material and a coating layer formed on at least a portion of the surface of the base material, the method comprising: a modified protein obtained by the method according to (1); , a step of obtaining a powder composition containing an adhesion improver or an adhesion improver, and heating the powder composition while the obtained powder composition is placed on at least a portion of the surface of the base material.
  • a laminate characterized in that a coating layer is formed on at least a part of the surface of the base material by pressurizing the powder composition between a pressurizing body and the base material and solidifying the powder composition. Production method.
  • a method for producing a laminate comprising a base material and a coating layer formed on at least a part of the surface of the base material, the method comprising: a modified protein obtained by the method according to (1); A step of obtaining a composition by adding an adhesion improver or an adhesion improver, a step of pulverizing the obtained composition, and a state in which the obtained powder composition is placed on at least a portion of the surface of the base material. Then, a coating layer is laminated on at least a part of the surface of the base material by heating the powder composition and pressurizing the powder composition between a pressurizing body and the base material to solidify the powder composition.
  • a method for producing a laminate comprising: forming a laminate.
  • a method for producing a laminate comprising a base material and a coating layer formed on at least a portion of the surface of the base material, the method comprising: obtaining a modified protein by the method described in (1); , obtaining a powder composition containing the obtained modified protein and an adhesion improver or an adhesion improver; and with the obtained powder composition placed on at least a part of the surface of the base material, A coating layer is formed on at least a portion of the surface of the base material by heating the composition and pressing the powder composition between a pressurizing body and the base material to solidify it.
  • a method for producing a featured laminate comprising: obtaining a modified protein by the method described in (1); , obtaining a powder composition containing the obtained modified protein and an adhesion improver or an adhesion improver; and with the obtained powder composition placed on at least a part of the surface of the base material, A coating layer is formed on at least a portion of the surface of the base material by heating the composition and pressing the powder composition between a pressurizing body
  • a method for producing a laminate comprising a base material and a coating layer formed on at least a portion of the surface of the base material, the method comprising: obtaining a modified protein by the method described in (1); , a step of adding an adhesion improver or an adhesion improver to the obtained modified protein to obtain a composition; a step of powdering the obtained composition; and a step of applying the obtained powder composition to at least the surface of the substrate. While the powder composition is placed on a portion of the base material, the powder composition is heated and pressed between a pressurizing body and the base material to solidify the powder composition.
  • a method for producing a laminate comprising forming a coating layer on a portion thereof.
  • a method for producing a laminate comprising a base material and a coating layer formed on at least a portion of the surface of the base material, the method comprising: a modified protein obtained by the method described in (1); a step of powdering, a step of adding an adhesion improver or an adhesion improver to the obtained modified protein to obtain a powder composition, and heating the powder composition and applying it to at least a part of the surface of the substrate.
  • a method for producing a laminate comprising the steps of: placing the powder composition thereon; and pressurizing the powder composition between a pressurizing body and the base material to form the coating layer.
  • the modified protein is at least one selected from the group consisting of maleate-esterified proteins, succinate-esterified proteins, sulfonate-esterified proteins, and phosphorylated proteins (60) to (63). ) The method for manufacturing the laminate described in . (65) The modified protein is at least one selected from the group consisting of maleate-esterified proteins, succinate-esterified proteins, sulfonate-esterified proteins, and phosphoric-esterified proteins, and the solvent is a basic aqueous solution. A method for manufacturing a laminate according to (60).
  • the film contains at least one modified protein selected from the group consisting of maleate-esterified proteins, succinate-esterified proteins, sulfonate-esterified proteins, and phosphorylated proteins dissolved in a basic aqueous solution.
  • the modified protein is at least one selected from the group consisting of maleate-esterified proteins, succinate-esterified proteins, sulfonate-esterified proteins, and phosphoric-esterified proteins, and forms a film.
  • the method for producing a laminate according to (62), wherein the step is to dissolve the modified protein in a basic aqueous solution and mold it.
  • a new method for producing modified proteins can be provided, and compared to conventional protein modification performed in a solvent, the degree of freedom in reaction conditions is higher and a wider variety of modified proteins can be obtained. can. Further, according to the present invention, a modified protein having appropriate physical properties depending on a desired use can be produced.
  • Non-patent Document 1 As for esterification using mechanochemical methods, acetylation of cellulose (see Non-patent Document 1) and selective esterification of lignin model compounds using enzymes (see Non-patent Document 2) are known. There are no known cases in which it has been applied to
  • (a) is a photograph showing the appearance of the modified proteins of Comparative Examples 1 and 2 and Examples 1 and 2.
  • (b) is a graph comparing the retention times in GPC of unmodified protein PRT966 and modified protein. .
  • (a) is an IR spectrum of Comparative Example 1 and unmodified protein PRT966, and
  • (b) is a GPC chromatogram of Comparative Example 1 and unmodified protein PRT966.
  • (a) is an IR spectrum of Comparative Example 2 and unmodified protein PRT966, and (b) is a GPC chromatogram of Comparative Example 2 and unmodified protein PRT966.
  • (a) is an IR spectrum of Example 1 and unmodified protein PRT966, and (b) is a GPC chromatogram of Example 1 and unmodified protein PRT966.
  • (a) is an IR spectrum of Example 2 and unmodified protein PRT966, and (b) is a GPC chromatogram of Example 2 and unmodified protein PRT966.
  • (a) is an IR spectrum of Example 3 and unmodified protein PRT2882, and (b) is a GPC chromatogram of Example 3 and unmodified protein PRT2882.
  • (a) is an IR spectrum of Example 4 and unmodified protein PRT2841, and (b) is a GPC chromatogram of Example 4 and unmodified protein PRT2841.
  • (a) is an IR spectrum of Example 5 and unmodified protein PRT2662, and (b) is a GPC chromatogram of Example 5 and unmodified protein PRT2662.
  • (a) is an IR spectrum of Example 6 and unmodified protein PRT1000, and (b) is a GPC chromatogram of Example 6 and unmodified protein PRT1000.
  • (a) is an IR spectrum of Example 7 and unmodified protein PRT918, and (b) is a GPC chromatogram of Example 7 and unmodified protein PRT918.
  • (a) is an IR spectrum of Example 8 and unmodified protein PRT966, and (b) is a GPC chromatogram of Example 8 and unmodified protein PRT966.
  • (a) is an IR spectrum of Example 9 and unmodified protein PRT966, and (b) is a GPC chromatogram of Example 9 and unmodified protein PRT966.
  • (a) is an IR spectrum of Example 10 and unmodified protein PRT966, and (b) is a GPC chromatogram of Example 10 and unmodified protein PRT966.
  • (a) is an IR spectrum of Example 11 and unmodified protein PRT966, and (b) is a GPC chromatogram of Example 11 and unmodified protein PRT966.
  • (a) is an IR spectrum of Example 12 and unmodified protein PRT966, and (b) is a GPC chromatogram of Example 12 and unmodified protein PRT966.
  • (a) is an IR spectrum of Example 13 and unmodified protein PRT966, and (b) is a GPC chromatogram of Example 13 and unmodified protein PRT966.
  • (a) is an IR spectrum of Example 14 and unmodified protein PRT966, and (b) is a GPC chromatogram of Example 14 and unmodified protein PRT966.
  • (a) is an IR spectrum of Example 15 and unmodified protein PRT966, and (b) is a GPC chromatogram of Example 15 and unmodified protein PRT966.
  • (a) is an IR spectrum of Example 16 and unmodified protein PRT966, and (b) is a GPC chromatogram of Example 16 and unmodified protein PRT966.
  • (a) is an IR spectrum of Example 17 and unmodified protein PRT966, and (b) is a GPC chromatogram of Example 17 and unmodified protein PRT966.
  • (a) is an IR spectrum of Example 18 and unmodified protein PRT966, and (b) is a GPC chromatogram of Example 18 and unmodified protein PRT966.
  • (a) is an IR spectrum of Example 19 and unmodified protein PRT966, and (b) is a GPC chromatogram of Example 19 and unmodified protein PRT966.
  • (a) is an IR spectrum of Example 20 and unmodified protein PRT966, and (b) is a GPC chromatogram of Example 20 and unmodified protein PRT966.
  • (a) is an IR spectrum of Example 21 and unmodified protein PRT966, and (b) is a GPC chromatogram of Example 21 and unmodified protein PRT966.
  • (a) is an IR spectrum of Example 22 and unmodified protein PRT966, and (b) is a GPC chromatogram of Example 22 and unmodified protein PRT966.
  • (a) is a photograph showing a state in which water is added to a protein or modified protein
  • (b) is a photograph showing a state in which acetone is added to a protein or modified protein
  • (c) is a photograph showing a state in which acetone is added to a protein or modified protein.
  • (a) is a photograph showing the state of the protein immediately after adding DMSO
  • (b) is a photograph showing the state dissolved in DMSO
  • (c) is a photograph showing the state of gelation of each protein. It's a photo.
  • (a) is an IR spectrum of Example 24 and unmodified protein PRT966, and
  • (b) is a GPC chromatogram of Example 24 and unmodified protein PRT966.
  • (a) is an IR spectrum of Example 25 and unmodified protein PRT966, and (b) is a GPC chromatogram of Example 25 and unmodified protein PRT966.
  • FC indicates a forward conveying element
  • R indicates a reversing element
  • K indicates a kneading element
  • C indicates a compression element.
  • (a) is an IR spectrum of Example 26 and unmodified protein PRT966, and (b) is a GPC chromatogram of Example 26 and unmodified protein PRT966.
  • (a) is an IR spectrum of Example 27 and unmodified protein PRT966, and (b) is a GPC chromatogram of Example 27 and unmodified protein PRT966.
  • (a) is an IR spectrum of Example 28 and unmodified protein PRT966, and (b) is a GPC chromatogram of Example 28 and unmodified protein PRT966.
  • (a) is an IR spectrum of Example 29 and unmodified protein PRT966, and (b) is a GPC chromatogram of Example 29 and unmodified protein PRT966.
  • (a) is an IR spectrum of Example 30 and unmodified protein PRT966, and (b) is a GPC chromatogram of Example 30 and unmodified protein PRT966.
  • (a) is an IR spectrum of Example 31 and unmodified protein PRT966, and (b) is a GPC chromatogram of Example 31 and unmodified protein PRT966.
  • (a) is an IR spectrum of Example 32 and unmodified protein PRT966, and (b) is a GPC chromatogram of Example 32 and unmodified protein PRT966.
  • a to d are photographs showing cast films of PRT966, Ac-PRT, Succ-PRT, and St-PRT, respectively.
  • (a) is a graph showing the combustion time of each sample, and (b) is a graph showing the mass loss of each sample. It is a graph showing the softening point, Tg onset, and melting temperature Tm of unmodified PRT966 and each modified protein.
  • the materials exemplified in this specification can be used alone or in combination of two or more. If there are multiple substances corresponding to each component in the composition, the content of each component in the composition means the total amount of the multiple substances present in the composition, unless otherwise specified. .
  • a first embodiment of the present invention is a method for producing a modified protein, which includes a step of treating a mixture containing a protein and an acylating agent by a mechanochemical method to obtain a modified protein.
  • modified protein refers to a protein in which at least some or all of the lysine residues, serine residues, threonine residues, tyrosine residues, or cysteine residues in the raw protein are acylated. be. That is, the protein used as a raw material has at least one lysine residue, serine residue, threonine residue, tyrosine residue, or cysteine residue in its amino acid sequence.
  • the protein may be a natural protein or an artificial protein.
  • a protein having physical properties close to those required for a desired use can be employed.
  • examples of the protein include proteins that can be used for industrial purposes, proteins that can be used for medical purposes, and the like.
  • the term "usable for industrial use” means, for example, that the material can be used for various general-purpose materials used indoors or outdoors.
  • Specific examples of proteins that can be used for industrial purposes include structural proteins.
  • Specific examples of structural proteins include spider silk, silkworm silk, keratin, collagen, elastin, resilin, and proteins derived from these.
  • the protein used may be artificial fibroin or artificial spider silk fibroin (artificially modified spider silk fibroin).
  • proteins that can be used for medical purposes include enzymes, regulatory proteins, receptors, peptide hormones, cytokines, membrane or transport proteins, antigens for vaccination, vaccines, antigen-binding proteins, immunostimulatory proteins, allergens, Mention may be made of long antibodies or antibody fragments or derivatives.
  • Artificial proteins include recombinant proteins and synthetic proteins. That is, as used herein, "artificial protein” means a protein that is artificially produced.
  • the artificial protein may be a protein whose domain sequence is different from the amino acid sequence of a naturally-derived protein, or may be a protein whose domain sequence is the same as the amino acid sequence of a naturally-derived protein.
  • an “artificial protein” may be one that uses the amino acid sequence of a naturally-derived protein as is, or one that relies on the amino acid sequence of a naturally-derived protein and has its amino acid sequence modified (for example, a cloned natural protein).
  • the amino acid sequence may be modified by modifying the gene sequence of the derived protein), or it may be one that is artificially designed and synthesized without relying on naturally derived proteins (for example, a protein that encodes the designed amino acid sequence).
  • the desired amino acid sequence may be obtained by chemically synthesizing a nucleic acid.
  • the amino acid sequence of artificial proteins can be freely designed, so when such artificial proteins are contained in the molding material or molded object of this embodiment described below, By appropriately designing the amino acid sequence of an artificial protein, it is possible to arbitrarily control the functions, characteristics, physical properties, etc. of molding materials and molded bodies.
  • the number of amino acid residues in the protein and modified protein according to this embodiment is not particularly limited, but may be, for example, 50 or more. Further, the number of amino acid residues is, for example, 100 or more, 150 or more, 200 or more, 250 or more, 300 or more, 350 or more, 400 or more, 450 or more, or 500 or more. The number of amino acid residues may be, for example, 5000 or less, 4500 or less, 4000 or less, 3500 or less, 3000 or less, 2500 or less, 2000 or less, 1500 or less, or 1000 or less. The smaller the number of amino acid residues, the higher the solubility in solvents.
  • the molecular weight of the protein according to this embodiment is not particularly limited, but may be, for example, 2 kDa or more and 500 kDa or less. Further, the molecular weight of the protein according to the present embodiment is, for example, 2 kDa or more, 3 kDa or more, 4 kDa or more, 5 kDa or more, 6 kDa or more, 7 kDa or more, 8 kDa or more, 9 kDa or more, 10 kDa or more, 20 kDa or more, 30 kDa or more, 40 kDa or more, It may be 50 kDa or more, 60 kDa or more, 70 kDa or more, 80 kDa or more, 90 kDa or more, or 100 kDa or more, and may be 500 kDa or less, 400 kDa or less, less than 360 kDa, 300 kDa or less, or 200 kDa or less.
  • the protein according to this embodiment contains at least one nucleophilic functional group such as a serine residue, a threonine residue, a tyrosine residue, a lysine residue, or a cysteine residue.
  • nucleophilic functional group such as a serine residue, a threonine residue, a tyrosine residue, a lysine residue, or a cysteine residue.
  • the hydroxyl group of a serine residue, threonine residue, or tyrosine residue, the amino group of a lysine residue, or the sulfhydryl group of a cysteine residue in the protein is acylated.
  • a protein has a serine residue, a threonine residue, or a tyrosine residue, it can be more efficiently acylated by an acylating agent.
  • proteins should be The ratio of the total number of serine residues, threonine residues, and tyrosine residues to the total number of residues) may be, for example, 4% or more, 4.5% or more, or 5% or more. , 5.5% or more, 6% or more, 6.5% or more, 7% or more.
  • the upper limit of the total content of serine residues, threonine residues, and tyrosine residues is not particularly limited; Considering the amino acid composition, it may be, for example, 35% or less, 33% or less, 30% or less, 25% or less, 20% or less.
  • the protein may be, for example, a hydrophobic protein.
  • a hydrophobic protein when the protein is a hydrophobic protein, when a molded article is produced using the modified protein as at least a part of the raw material, the water resistance of the molded article is improved, and, for example, the molded article can be used as a general-purpose industrial material. In this case, the service life can be advantageously extended.
  • a functional substance when a functional substance is bound to a modified protein, by controlling the hydrophobicity or hydrophilicity of the functional substance, it is possible to control the hydrophobicity or hydrophilicity of the entire combination of the functional substance and the modified protein. can be arbitrarily adjusted.
  • the entire conjugate can be shifted to the hydrophobic side compared to when the protein is hydrophilic.
  • the hydrophobicity to hydrophilicity of the entire conjugate can be controlled over a wider range.
  • the hydrophobicity of a protein can be estimated using the average hydropathy index (hereinafter also referred to as "HI") value as an index.
  • the value of the average hydropathic index of the hydrophobic protein may be greater than 0, for example, 0.00 or more, 0.10 or more, 0.20 or more, 0.22 or more, 0.25 or more. , 0.30 or more, 0.35 or more, 0.40 or more, 0.45 or more, 0.50 or more, 0.55 or more, 0.60 or more, 0.65 or more, or 0.70 or more.
  • the upper limit value is not particularly limited, but may be, for example, 1.00 or less, or 0.7 or less.
  • the average hydropathy index (HI) value of a hydrophobic protein and the hydrophobicity of the repeating sequence unit described below are determined using a known hydrophobicity index of amino acid residues () according to a known method. Desired. Known hydrophobicity indices for amino acid residues are shown in Table 1. For example, the degree of hydrophobicity is determined by Kyte J, Doolittle R (1982) “A simple method for displaying the hydropathic character of a protectant”. in”, J. Mol. Biol. , 157, pp. It may be calculated according to the method described in 105-132.
  • the hydrophobic protein preferably has low solubility in an aqueous lithium bromide solution (concentration: 9M) at 60°C. That is, as a hydrophobic protein, for example, the maximum concentration when dissolved in a lithium bromide aqueous solution (concentration: 9M) at 60 ° C. is, for example, less than 30% by mass, less than 25% by mass, less than 20% by mass, 15% by mass. It may be less than 1% by weight, less than 10% by weight, less than 5% by weight, or less than 1% by weight. Note that the hydrophobic protein may be one that does not dissolve at all in a lithium bromide aqueous solution (concentration: 9M) at 60°C. When the hydrophobic protein has low solubility in an aqueous lithium bromide solution at 60° C., the resulting modified protein tends to have good water resistance (particularly water resistance suitable for industrial use).
  • the hydrophobic protein preferably has a contact angle to water of 55° or more.
  • the contact angle of the hydrophobic protein to water is more preferably 60° or more, 65° or more, or 70° or more.
  • the contact angle to water can be evaluated by forming a film made of hydrophobic protein on a substrate, dropping water onto the film, and measuring the contact angle after 5 seconds have elapsed.
  • the contact angle of the hydrophobic protein to water is 55° or more, the resulting modified protein tends to have good water resistance (particularly water resistance suitable for industrial use).
  • the hydrophobic protein has excellent resistance to hot water.
  • hot water resistance for example, it is preferable that the protein does not decompose for at least 5 hours even if an aqueous dispersion of a 5 w/v % hydrophobic protein is prepared and the dispersion is heated to 100°C.
  • the resulting modified protein tends to have good water resistance (particularly water resistance suitable for industrial use) and hot water resistance.
  • the protein according to this embodiment may be, for example, a structural protein.
  • a structural protein is a type of protein that can be used for industrial purposes, and refers to a protein involved in the structure of a living body, a protein constituting a structure produced by a living body, or a protein derived therefrom.
  • structural proteins are proteins that are not directly involved in biochemical reactions, but make up nails, hair, skin, tendons, cartilage, and intracellular matrices, and the molecules themselves are fibrous and hydrophobic, such as collagen and keratin. It can be a protein without a core, or a protein polymer like actin, which is a monomeric globular protein, but has many polymerized fibers.
  • Structural proteins also refer to proteins that self-aggregate under certain conditions to form structures such as fibers, films, resins, gels, micelles, nanoparticles, etc. Furthermore, structural proteins have characteristic amino acid sequences or repeating motifs consisting of several amino acid residues, and can be said to be proteins that form the skeletons of living organisms and materials. Structural proteins in nature include, for example, fibroin, keratin, collagen, elastin, and resilin. Silk fibroin has a structure in which ⁇ -sheet polypeptide chains extend to form a fiber, and keratin has multiple ⁇ -helix polypeptide chains bundled into a rope shape.
  • Elastin is composed of relatively spherical polypeptide chains that are covalently crosslinked to form a rubber-like elastic network.
  • Collagen consists of long, thin, fibrous polypeptide chains that form a triple helical structure (also called “collagen fibrils"), and each polypeptide chain has glycine residues at every third residue and proline residues. Groups account for more than 20% of all amino acid residues, about half of which are hydroxyproline, which contributes to stabilizing the triple helical structure.
  • the structural protein may be an artificial structural protein.
  • artificial structural protein means a structural protein that is artificially produced.
  • the artificial structural protein may be a structural protein produced from microorganisms using genetic recombination technology, may have the same amino acid sequence as a natural structural protein, or may have an amino acid sequence improved from the viewpoint of productivity or moldability. It may have an array.
  • the side chains of alanine and glycine residues are nonpolar amino acids, they are arranged so as to face inward during the folding process during polypeptide production, and tend to form an ⁇ -helix structure or a ⁇ -sheet structure. Therefore, it is desirable that the proportion of amino acids such as glycine residues and alanine residues be high.
  • the alanine residue content may be, for example, 10 to 40%, 12 to 40%, 15 to 40%, 18 to 40%, 20 to 40%, or It may be between 22 and 40%.
  • the glycine residue content may be, for example, 10 to 55%, 11 to 55%, 13 to 55%, 15 to 55%, 18 to 55%, 20 to 55%. It may be 55%, 22-55%, or 25-55%.
  • alanine residue content refers to the number of alanine residues relative to the total number of amino acid residues constituting a protein, and is a value expressed by the following formula.
  • glycine residue content, serine residue content, threonine residue content, proline residue content, and tyrosine residue content are defined as glycine residue, serine residue, and alanine residue, respectively. It has the same meaning as a threonine residue, a proline residue, and a tyrosine residue.
  • the structural protein contains a certain degree of amino acids with relatively large side chains or amino acids with flexibility uniformly throughout the sequence.
  • the structural protein may contain periodic repeating motifs containing tyrosine residues, threonine residues, and proline residues.
  • Such a structural protein tends to inhibit the formation of strong intermolecular hydrogen bonds during the processing of the molded object, thereby facilitating improvement in processability.
  • the total content of proline residues, threonine residues, and tyrosine residues is 5% or more, more than 5.5%, 6.0% or more, or 6.5%.
  • the total content of proline residues, threonine residues, and tyrosine residues among any 20 consecutive amino acid residues is 50% or less, 40% or less, 30% or less, or 20% or less. It's good.
  • the artificial structural protein according to one embodiment is designed from the viewpoint of improving reactivity with an acylating agent and further improving productivity of a reaction-modified protein obtained by reaction with an acylating agent.
  • the total content of serine residues, threonine residues, and tyrosine residues is, for example, 4% or more, 4.5% or more, 5% or more, 5.5% or more, 6% or more, 6.5%. or more, or 7% or more.
  • the total content of serine residues, threonine residues, and tyrosine residues may be, for example, 35% or less, 33% or less, 30% or less, 25% or less, or 20% or less.
  • the artificial structural protein according to one embodiment may have a repetitive sequence. That is, the artificial structural protein according to the present embodiment may have a plurality of amino acid sequences (repetitive sequence units) with high sequence identity within the artificial structural protein.
  • the number of amino acid residues in a repeat sequence unit is preferably 6 to 200.
  • the sequence identity between repeat sequence units may be, for example, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, or 99% or more.
  • the hydrophobicity index (hydropathy index) of the repeat sequence unit is, for example, -0.80 or more, -0.70 or more, -0.60 or more, -0.50 or more, -0.40 or more, - 0.30 or more, -0.20 or more, -0.10 or more, 0.00 or more, 0.22 or more, 0.25 or more, 0.30 or more, 0.35 or more, 0.40 or more, 0.45 It may be 0.50 or more, 0.55 or more, 0.60 or more, 0.65 or more, or 0.70 or more.
  • the upper limit of the degree of hydrophobicity of the repeat sequence unit is not particularly limited, but may be, for example, 1.0 or less, or 0.7 or less.
  • the artificial structural protein may include an (A) n motif.
  • (A) n motif refers to an amino acid sequence containing mainly alanine residues.
  • the number of amino acid residues in the n motif may be from 2 to 27, and may be an integer from 2 to 20, 2 to 16, or 2 to 12.
  • the ratio of the number of alanine residues to the total number of amino acid residues in the n motif may be 40% or more, 50% or more, 60% or more, 70% or more, 80% or more, 83% or more, It may be 85% or more, 86% or more, 90% or more, 95% or more, or 100% (meaning that it is composed only of alanine residues).
  • the artificial structural protein may be artificial fibroin.
  • fibroin include naturally occurring fibroin.
  • Naturally derived fibroin includes, for example, fibroin produced by insects or arachnids.
  • Natural fibroin is a fibroin protein with a molecular weight of approximately 370,000, consisting of two subunits, and a high content of glycine, alanine, serine, and tyrosine residues. Amino acid residues account for nearly 90% of the total number of amino acid residues.
  • Natural fibroin has crystalline regions rich in amino acid residues with relatively small side chains such as glycine, alanine and serine, and amorphous regions with amino acid residues with relatively large side chains such as tyrosine.
  • fibroin whose sequence information is registered in NCBI GenBank.
  • sequence information registered in NCBI GenBank that includes INV as DIVISION, spidroin, ampullate, fibroin, "silk and polypeptide", or "silk and protein" are listed as keywords in DEFINITION. This can be confirmed by extracting the sequence, the character string of a specific product from the CDS, and the sequence in which a specific character string is written in TISSUE TYPE from the SOURCE.
  • artificial fibroin means artificially produced fibroin (artificial fibroin).
  • the artificial fibroin may be a fibroin that differs from the amino acid sequence of naturally-derived fibroin, or may be a fibroin that is the same as the amino acid sequence of naturally-derived fibroin.
  • Artificial fibroin can be manufactured by a known method, for example, by the method described in International Publication No. 2021/187502.
  • the artificial fibroin may be a fibrous protein having a structure similar to that of naturally occurring fibroin, or may be a fibroin having a repeating sequence similar to that of naturally occurring fibroin.
  • a "sequence similar to a repetitive sequence possessed by fibroin” may be a sequence actually possessed by naturally-derived fibroin, or may be a sequence similar thereto.
  • “Artificial fibroin” is one that is based on naturally-derived fibroin and has its amino acid sequence modified (for example, a cloned naturally-derived fibroin with a modified gene sequence), as long as it has the amino acid sequence specified in the present disclosure.
  • Fibroin may be one in which the amino acid sequence is modified by fibroin), or one in which the amino acid sequence is artificially designed without relying on naturally occurring fibroin (for example, by chemically synthesizing a nucleic acid encoding the designed amino acid sequence). may have a desired amino acid sequence). Note that artificial fibroin with a modified amino acid sequence is also included in artificial fibroin if the amino acid sequence is different from the amino acid sequence of naturally-derived fibroin.
  • artificial fibroin examples include artificial silk fibroin (the amino acid sequence of silk protein produced by silkworms has been modified), and artificial spider silk fibroin (the amino acid sequence of spider silk protein produced by spiders has been modified). ), etc. Since artificial fibroin is relatively easy to fibrillate and has a high fiber-forming ability, the molding material preferably includes artificial spider silk fibroin, and more preferably consists of artificial spider silk fibroin.
  • the artificial fibroin according to this embodiment has a domain sequence represented by Formula 1: [(A) n motif-REP] m or Formula 2: [(A) n motif-REP] m - (A) n motif. It may be a protein containing.
  • the artificial fibroin may further have an amino acid sequence (N-terminal sequence and C-terminal sequence) added to either or both of the N-terminal side and the C-terminal side of the domain sequence. Although the N-terminal sequence and the C-terminal sequence are not limited thereto, typically they are regions that do not have repeated amino acid motifs characteristic of fibroin, and consist of about 100 amino acid residues.
  • domain sequence refers to the crystalline region (typically, corresponding to the (A) n motif of the amino acid sequence) unique to fibroin and the amorphous region (typically, corresponding to the REP of the amino acid sequence). ), and is an amino acid sequence represented by formula 1: [(A) n motif-REP] m or formula 2: [(A) n motif-REP] m - (A) n motif. means an array.
  • the (A) n motif indicates an amino acid sequence consisting mainly of alanine residues, and the number of amino acid residues is 2 to 27.
  • the number of amino acid residues in the n motif may be an integer of 2 to 20, 4 to 27, 4 to 20, 8 to 20, 10 to 20, 4 to 16, 8 to 16, or 10 to 16. . Further, the ratio of the number of alanine residues to the total number of amino acid residues in the (A) n motif may be 40% or more, 50% or more, 60% or more, 70% or more, 80% or more, 83% or more, It may be 85% or more, 86% or more, 90% or more, 95% or more, or 100% (meaning that it is composed only of alanine residues). At least seven of the (A) n motifs present in a plurality in the domain sequence may be composed of only alanine residues.
  • REP indicates an amino acid sequence composed of 2 to 200 amino acid residues.
  • REP may be an amino acid sequence composed of 10-200 amino acid residues.
  • m represents an integer of 2 to 300, and may be an integer of 3 to 300, 4 to 300, 5 to 300, 6 to 300, or 10 to 300.
  • a plurality of (A) n motifs may have the same amino acid sequence or may have different amino acid sequences.
  • a plurality of REPs may have the same or different amino acid sequences.
  • artificial fibroin for example, artificial fibroin (first artificial (A) Artificial fibroin having a domain sequence with a reduced content of glycine residues (second artificial fibroin); (A) Artificial fibroin having a domain sequence with a reduced content of n motifs (third artificial fibroin); (4th artificial fibroin), artificial fibroin with a reduced content of glycine residues (fibroin), and (A) n motif content; artificial fibroin with a domain sequence including a region with a locally large hydrophobicity index; (fifth artificial fibroin), and artificial fibroin having a domain sequence with a reduced content of glutamine residues (sixth artificial fibroin).
  • first artificial fibroin Artificial fibroin having a domain sequence with a reduced content of glycine residues
  • second artificial fibroin Artificial fibroin having a domain sequence with a reduced content of n motifs
  • the artificial fibroin may contain a tag sequence at either or both of the N-terminus and C-terminus. This enables isolation, immobilization, detection, visualization, etc. of artificial fibroin.
  • PRT966 is the sixth artificial fibroin containing a tag sequence.
  • tag sequences include affinity tags that utilize specific affinity (binding properties, affinity) with other molecules.
  • affinity tag is a histidine tag (His tag).
  • His tag is a short peptide with about 4 to 10 histidine residues arranged in a row, and has the property of specifically binding to metal ions such as nickel, so it can be used to isolate artificial fibroin using chelating metal chromatography. It can be used for.
  • a specific example of the tag sequence is, for example, the amino acid sequence shown by SEQ ID NO: 12 (an amino acid sequence including a His tag sequence and a hinge sequence).
  • tag sequences such as glutathione-S-transferase (GST), which specifically binds to glutathione, and maltose binding protein (MBP), which specifically binds to maltose, can also be used.
  • GST glutathione-S-transferase
  • MBP maltose binding protein
  • epitope tags that utilize antigen-antibody reactions can also be used. By adding a peptide (epitope) exhibiting antigenicity as a tag sequence, an antibody against the epitope can be bound.
  • epitope tags include HA (peptide sequence of influenza virus hemagglutinin) tag, myc tag, FLAG tag, and the like. By using epitope tags, artificial fibroin can be easily purified with high specificity.
  • Tag sequence whose tag sequence can be cleaved with a specific protease.
  • Artificial fibroin from which the tag sequence has been separated can also be recovered by treating the protein adsorbed via the tag sequence with a protease.
  • artificial fibroin examples include the artificial fibroin shown in Table 2 below.
  • the artificial fibroin has at least two or more of the characteristics of the first artificial fibroin, the second artificial fibroin, the third artificial fibroin, the fourth artificial fibroin, the fifth artificial fibroin, and the sixth artificial fibroin. It may also be an artificial fibroin that has the following characteristics.
  • the molecular weight of the artificial fibroin according to this embodiment is not particularly limited, but may be, for example, 2 kDa or more and 700 kDa or less.
  • the molecular weight of the artificial fibroin according to the present embodiment is, for example, 2 kDa or more, 3 kDa or more, 4 kDa or more, 5 kDa or more, 6 kDa or more, 7 kDa or more, 8 kDa or more, 9 kDa or more, 10 kDa or more, 20 kDa or more, 30 kDa or more, 40 kDa or more, 50 kDa.
  • the above may be 60 kDa or more, 70 kDa or more, 80 kDa or more, 90 kDa or more, or 100 kDa or more, and may be 700 kDa or less, 600 kDa or less, 500 kDa or less, 400 kDa or less, less than 360 kDa, 300 kDa or less, or 200 kDa or less.
  • the above-mentioned protein is mixed with an acylating agent, and the resulting mixture is treated with a mechanochemical method to chemically modify the protein.
  • the acylating agent may be any reagent that can acylate a hydroxyl group, an amino group, or a sulfhydryl group, such as carboxylic acid halides (e.g., carboxylic acid chlorides, carboxylic acid bromides), carboxylic acid anhydrides (e.g., acid activated carboxylic acid derivatives such as sulfonic acid halides (e.g.
  • sulfonic acid chlorides sulfonic acid bromides
  • sulfonic acid anhydrides halogenated Examples
  • phosphoric acid derivatives such as phosphorus (eg, phosphorus trichloride, phosphorus oxychloride), phosphoric acid triester (eg, tris(bistrifluoroethyl) phosphate), and the like.
  • acylating agents introduce an acyl group corresponding to carboxylic acid, sulfonic acid or phosphoric acid.
  • Carboxylic acids include acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid (heptanoic acid), caprylic acid (octanoic acid), pelargonic acid (nonanoic acid), capric acid, lauric acid, myristic acid, palmitic acid. , margaric acid, stearic acid, isostearic acid; unsaturated monocarboxylic acids such as oleic acid, linoleic acid, linolenic acid, arachidonic acid, eicosapentaenoic acid, docosahexaenoic acid; dicarboxylic acids such as maleic acid. It will be done.
  • acid halides corresponding to these carboxylic acids include acetyl chloride, acetyl bromide, propionyl chloride, propionyl bromide, lauroyl chloride, myristoyl chloride, palmitoyl chloride, stearoyl chloride, and the like.
  • Acid anhydrides corresponding to these carboxylic acids include acetic anhydride, propionic anhydride, maleic anhydride, and the like.
  • Sulfonic acids include methanesulfonic acid, ethanesulfonic acid, propanesulfonic acid, trifluoromethanesulfonic acid, nonafluorobutanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, m-toluenesulfonic acid, o-toluenesulfonic acid, etc. can be mentioned.
  • Acid halides corresponding to these sulfonic acids include, for example, methanesulfonyl chloride, methanesulfonyl bromide, ethanesulfonyl chloride, ethanesulfonyl bromide, propanesulfonyl chloride, propanesulfonyl bromide, benzenesulfonyl chloride, p-toluenesulfonyl chloride. , m-toluenesulfonyl chloride, o-toluenesulfonyl chloride, and the like.
  • acid anhydrides corresponding to these carboxylic acids include methanesulfonic anhydride, ethanesulfonic anhydride, trifluoromethanesulfonic anhydride, nonafluorobutanesulfonic anhydride, and the like.
  • the resulting modified protein (maleic acid esterified protein) has a terminal carboxy group.
  • the maleate-esterified protein can be converted into a sulfosuccinylated protein by further reacting with sodium bisulfite using a mechanochemical method.
  • the maleic acid esterified protein can be converted into a (dialkoxyphosphoryl)succinylated protein by further reacting with a dialkyl phosphite using a mechanochemical method.
  • the amount of the acylating agent used can be 1.5 to 7 equivalents per nucleophilic functional group contained in the protein.
  • the amount of the acylating agent used is preferably 1.5 to 6.5 equivalents, 1.5 to 6 equivalents, 1.5 to 5.5 equivalents, 1.5 to 5 equivalents per nucleophilic functional group. , 1.5-4 equivalents, 2-7 equivalents, 2-6.5 equivalents, 2-6 equivalents, 2-5.5 equivalents, 2-5 equivalents, 2-4.5 equivalents, 2.5-7 equivalents , 2.5 to 6.5 equivalents, 2.5 to 6 equivalents, 2.5 to 5.5 equivalents, 2.5 to 5 equivalents, or 2.5 to 4.5 equivalents.
  • "Equivalent per nucleophilic functional group” means the molar equivalent of the acylating agent per number of nucleophilic functional groups contained in the protein.
  • Mechanochemical processing is a process in which a chemical reaction is caused by directly absorbing mechanical energy. Such mechanical energy may be exerted, for example, by impact force or shear force.
  • Such mechanochemical treatment is specifically performed using a rolling ball mill, a medium stirring mill, a planetary mill, a jet mill, a mixer mill, or an extruder (twin-screw extruder).
  • the protein and acylating agent are placed in a grinding jar, and a medium ball or the like is added depending on the type of mill used. Thereafter, the grinding jar is set in a mixer mill device and vibrated at a predetermined frequency and reaction time. At this time, a solvent, a base, a reaction accelerator, etc.
  • the protein and acylating agent are charged to a mixer mill and the milling procedure is started to continuously knead the reactants. At this time, a solvent, a base, a reaction accelerator, etc. may be further added to the mixer mill. Also, the protein and acylating agent are put into an extruder and kneaded. At this time, a solvent, a base, a reaction accelerator, etc. may be further added to the extruder. Note that if mechanochemical treatment is performed using an extruder, it becomes possible to continuously produce the desired esterified protein (modified protein).
  • the frequency can be adjusted appropriately by those skilled in the art depending on the reaction, for example, 10-50Hz, 10-45Hz, 10-40Hz, 10-35Hz, 15-50Hz, 15-45Hz, 15-40Hz, 15- It may be 35Hz, 20-50Hz, 20-45Hz, 20-40Hz, or 20-35Hz.
  • the reaction time is determined by infrared (IR) absorption spectroscopy, gel filtration chromatography (GPC), etc. until the raw protein disappears or the detection of acylated protein (modified protein) is observed above a certain level. can do.
  • the reaction time may be any time, for example, 30 to 150 minutes, 30 to 120 minutes, 30 to 110 minutes, 30 to 100 minutes, 30 to 95 minutes, 60 to 150 minutes, 60 to 120 minutes, 60-110 minutes, 60-100 minutes, 60-95 minutes, 70-150 minutes, 70-120 minutes, 70-110 minutes, 70-100 minutes, 70-95 minutes, 80-150 minutes, 80-120 minutes, It may be for 80-110 minutes, 80-100 minutes, or 80-95 minutes.
  • the solvent may be any solvent that can swell the protein or dissolve at least one of the protein and the acylating agent, but it must be a compound that is liquid at room temperature and pressure and does not chemically react with the protein. .
  • Such mechanochemical processing with added solvent is known as liquid assisted grinding (LAG), and is a method in which the desired reaction proceeds more efficiently by adding a small amount of solvent into the grinding jar. be.
  • solvents include dimethyl sulfoxide (DMSO), N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAc), N-methylpiperidone (NMP), dihydrolevoglucosenone, ionic liquids, and the like.
  • the amount of the solvent used may be, for example, 0.01 g to 1 g, preferably 0.01 g to 0.8 g, more preferably 0.01 g to 0.6 g, and 0.01 g to 1 g of protein mass. ⁇ 0.4g is more preferred, and 0.01g to 0.2g is most preferred.
  • the amount of solvent to be used may be, for example, 1 to 100% by weight, preferably 1 to 80% by weight, more preferably 1 to 60% by weight, and 1 to 40% by weight, based on the protein. More preferably, 1 to 20% by weight is most preferred. It is thought that a very small amount of solvent forms a microscopic reaction field by causing the protein to swell or become locally dissolved. Note that the addition of a solvent is not always necessary; for example, when the acylating agent is liquid at room temperature and normal pressure and has the above-mentioned function as a solvent, addition of a solvent may not be necessary.
  • the base may be any base that can assist in the acylation of the hydroxyl group of a serine residue, threonine residue, or tyrosine residue, the amino group of a lysine residue, or the sulfhydryl group of a cysteine residue in a protein.
  • Examples of the base include tertiary amines, nitrogen-containing aromatic compounds, and inorganic bases, more specifically triethylamine, DIPEA (N,N-diisopropylethylamine), DABCO (1,4-diazabicyclo[2.2.2 ] octane), quinuclidine, DBU (1,8-diazabicyclo[5.4.0]undec-7-ene), DBN (1,5-diazabicyclo[4.3.0]non-5-ene), pyridine, Examples include imidazole, sodium hydroxide, potassium hydroxide, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium carbonate, potassium carbonate, cesium carbonate, tripotassium phosphate, sodium acetate, potassium acetate, and the like.
  • DIPEA N,N-diisopropylethylamine
  • DABCO 1,4-diazabicyclo[2.2.2 ] octane
  • the amount of the base used may be, for example, 1 to 10, 1 to 8, 1 to 8, when the amount of the nucleophilic functional group contained in the protein is 1. It may be 7, 1 to 6, or 1 to 5.
  • the amount of the base has a preferable range depending on the type of base used. For example, when an inorganic base such as sodium hydroxide is used as the base, the amount of the base is preferably 1 to 1. 5, more preferably 1 to 2, and when a tertiary amine such as DIPEA is used as the base, the amount of the above substance is preferably 1 to 5, more preferably 3.5 to 5.
  • the reaction accelerator may be any one known to promote the acylation reaction in the field of organic chemistry, and includes, for example, 4-dimethylaminopyridine (DMAP). If the acylation is an acetylation, there is no need to use a reaction promoter.
  • DMAP 4-dimethylaminopyridine
  • the amount of the reaction accelerator to be used may be more than 0 equivalents and no more than 5 equivalents per amount of the nucleophilic functional group contained in the protein (one amino acid residue having a nucleophilic functional group). 3.5 to 5 equivalents is preferred. Further, the amount of the reaction accelerator to be used may be more than 0 mol and not more than 1 mol, and may be from 0.3 mol to 1 mol, with respect to 1 mol of the base used.
  • the rate of the acylation reaction can be improved by adding a reaction accelerator.
  • the amount of reaction accelerator to be used is 1 to 5 equivalents per 1 amount of the nucleophilic functional group contained in the protein (one amino acid residue having a nucleophilic functional group). Usually, 3.5 equivalents to 5 equivalents are preferred.
  • the amount of the reaction accelerator to be used may be 0.2 to 1 mol, and may be 0.7 to 1 mol, per 1 mol of the base.
  • the mixture may be taken out from the grinding jar and washed with a solvent.
  • a solvent By washing, unreacted acylating agent and acid generated by the reaction can be removed.
  • the solvent used for washing include water, acetonitrile, acetone, tetrahydrofuran, ethyl acetate, and hexane.
  • the solvent used for washing may be distilled off by drying the product. Drying may be performed under reduced pressure.
  • the contact angle becomes small.
  • the use of coatings containing such modified proteins provides greater wettability and hydrophilicity.
  • the modified protein has a hydrophobic group (eg, an alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, an aryl group) at its terminal, the contact angle becomes large.
  • the use of coatings containing such modified proteins provides greater water repellency and hydrophobicity.
  • the contact angle is between 90° and 150°, it is suitable for use for waterproofing and water repellent purposes, and when it is between 110° and 150°, the material has excellent water repellency, so water droplets are easily removed from surface stains. You can expect a self-cleaning effect that removes all the dirt.
  • a contact angle of 70 to 90° is suitable for use for moisturizing purposes, and a contact angle of 40 to 90° facilitates dyeing of materials by improving liquid penetration and dispersion effects. can be expected.
  • the modified protein contains a flame retardant element (for example, when it is a sulfonated or phosphorylated succinylated protein, a sulfonated protein, or a phosphorylated protein), a coating containing such a modified protein.
  • a flame retardant element for example, when it is a sulfonated or phosphorylated succinylated protein, a sulfonated protein, or a phosphorylated protein
  • a coating containing such a modified protein are suitable for use for the purpose of improving the safety and durability of related products. It has been known that flame retardancy can be imparted to proteins by adding polyphosphoric acid salts or polynucleotide salts to proteins.
  • flame retardants for example, those described in the Japan Rubber Association magazine “Review Special Feature: Organic Compounds Flame Retardants” (Nishizawa Hitoshi, 2006, pp.
  • Flame retardant elements are atoms that are often found in the structure of flame retardants (atoms that can impart flame retardancy), and examples of flame retardant elements include halogen atoms, phosphorus atoms, sulfur atoms, boron atoms, and silicon atoms. .
  • the limiting oxygen index (LOI) value of the modified protein may be 18 or more, 20 or more, 22 or more, 24 or more, 26 or more. , 27 or more, 28 or more, 29 or more, or 30 or more.
  • the LOI value is a value measured in accordance with the test method for synthetic resins in powder or granular form or with a low melting point published in Fire and Disaster Management Agency Hazardous Materials Regulation Division Director Fire Safety No. 50, May 31, 1995.
  • a modified protein When a modified protein has a hydrophilic group at its end (for example, when it is a succinylated protein or a maleic acid esterified protein), it can be converted into a long-chain alkyl group (an alkyl group having 4 or more carbon atoms) by incorporating water molecules. is preferable, an alkyl group having 6 or more carbon atoms is more preferable, and an alkyl group having 8 or more carbon atoms is even more preferable), it has the effect of promoting movement between polymers by reducing interaction between chains. This is expected to result in lower softening points and lower glass transition temperatures (Tg) compared to unmodified proteins.
  • Tg glass transition temperatures
  • the modified protein according to the present embodiment has a lower softening point and glass transition temperature, it can be softened at a temperature lower than 150° C. and is easy to process or mold. At lower temperatures, the effects of decomposition can be further suppressed, preventing deterioration of the material, significant changes in color, and loss of strength. From this point of view, it is desirable that the softening point be 130°C or lower, and more preferably 100°C or lower.
  • the above-mentioned modified protein is suitable for use in molding using an extruder or the like, and for improving material flexibility at temperatures below the softening point.
  • the softening point and glass transition temperature of the molded article are further lowered.
  • plasticizers ingredients known in the art can be used, including polyhydric alcohols such as ethylene glycol, propylene glycol, butylene glycol, and glycerol.
  • polyhydric alcohols such as ethylene glycol, propylene glycol, butylene glycol, and glycerol.
  • simply adding a plasticizer may cause the plasticizer to flow out during processing or due to changes over time, reducing the effectiveness.
  • the modified protein according to this embodiment has the effect that the effect of lowering the softening point and glass transition temperature of the molded product is unlikely to be weakened even when heated during processing or long-term storage is assumed.
  • the modified protein according to the present embodiment can be used, for example, alone, or as a composition in which other solid or liquid components are blended, added, or mixed. That is, the modified protein can be constituted as a modified protein composition containing it. Such a modified protein composition has a solid or liquid form depending on components other than the modified protein. Furthermore, the modified protein composition can be used as a molding material for molding fibers, films, gels, porous bodies, particles, resins, etc., for example. In other words, a modified protein composition molded article can be obtained by molding the modified protein composition using a predetermined method. Other components included in the solid or liquid modified protein composition include water, organic solvents, ionic liquids, supercritical liquids, and the like.
  • the modified protein composition may contain an adhesion improver or an adhesion improver, especially when used as an adhesive, a coating agent, or the like.
  • adhesion improver include rosin derivatives, and examples of the adhesion improver include saccharides such as starch and sucrose.
  • a molded article obtained by molding the modified protein composition can be produced by a known method depending on the type of molded article.
  • a known spinning method such as a wet spinning method, a wet-dry spinning method, or a dry spinning method using a dope solution containing fibers, a modified protein, and a solvent.
  • Films, gels, porous bodies, particles, resins, etc. are described in, for example, Japanese Patent No. 5678283, Japanese Patent No. 5782580, Japanese Patent No. 5796147, Japanese Patent No. 5823079, Japanese Patent No. 6830604, etc.
  • the resin can also be obtained, for example, by removing the solvent or dispersion medium from a modified protein composition (eg, gel-like) containing the modified protein and a predetermined solvent or dispersion medium, and solidifying the composition.
  • a modified protein composition eg, gel-like
  • the above-mentioned molded article can also be molded using only the modified protein as a material.
  • the modified protein can also be said to be a material for molding the molded object.
  • the modified protein according to this embodiment can be used as a main component in a solution state, aqueous dispersion state, film state, or powder state, and can be used as an adhesive for adhering an adherend or as a coating on a base material. It can be used as a coating agent for laminating layers.
  • solution adhesives, solution coating agents, water dispersible adhesives, water dispersible coating agents, film adhesives, film coating agents, powder adhesives, and powder coating agents can be manufactured using the following manufacturing methods, for example.
  • the term "laminate” refers to a state in which one or more films are placed on a base material and is crimped; Refers to the film itself, which has the property of being able to be used for a long time. Furthermore, in the description of the embodiments of the coating agent, a member that applies pressure to the coating agent layer so that the coating agent layer comes into close contact with the surface of the base material is referred to as a “pressing body” or a “pressing body.”
  • a solution adhesive or a solution coating agent containing a modified protein can be produced by a method including a step of dissolving the modified protein obtained by the method of this embodiment in a solvent. According to such a method, unlike conventional solution adhesives and solution coating agents that contain petroleum-derived components, biodegradable solution adhesives and solution coating agents can be easily obtained. becomes.
  • the solvent used in the production of solution adhesives and solution coating agents may be any liquid that can dissolve the modified protein, and may include water, aqueous media such as basic aqueous solutions, acidic aqueous solutions, and aqueous solutions containing inorganic salts, and organic solvents. , a mixed solvent thereof, and the like.
  • Organic solvents include formic acid, dimethyl sulfoxide (DMSO), hexafluoroisopropanol (HFIP), N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAc), N-methylpiperidone (NMP), dihydrolevogluco Senone etc. are exemplified.
  • the modified protein contained in the solution adhesive or solution coating agent is not particularly limited as long as it is obtained by the production method according to the present embodiment and can be dissolved in the above-mentioned solvent.
  • Adhesives and coating agents in which modified proteins are dissolved in an aqueous medium have advantages such as better handling properties than adhesives and coating agents in which modified proteins are dissolved in organic solvents.
  • Such aqueous adhesives and aqueous coating agents include, for example, modified proteins such as maleate-esterified proteins, succinate-esterified proteins, sulfonate-esterified proteins, and phosphoric-esterified proteins dissolved in a basic aqueous solution. The one that is used is preferably used. These modified proteins have high solubility in basic aqueous solutions.
  • an aqueous adhesive or aqueous coating agent in which the above-mentioned modified protein is dissolved in a basic aqueous solution a higher concentration of the adhesive or coating agent can be applied to the adherend surface or laminate surface, which will be described later. can be applied, and it is expected that the adhesive strength will be improved.
  • the molecules of the modified protein can be easily loosened and easily penetrate into minute dents existing on the surface of the adherend, thereby improving adhesive strength.
  • the concentration of the modified protein in the solution adhesive or solution coating agent is appropriately determined based on the solubility of the modified protein in the solvent. Such a concentration may be, for example, 5 to 40% by weight, 10 to 35% by weight, 15 to 20% by weight, or 20 to 25% by weight.
  • the solution adhesive and solution coating agent may contain components other than modified proteins, such as various additives contained in known solution adhesives and solution coating agents, as necessary. good.
  • a solution adhesive containing a modified protein is used to produce an adhesive body in which multiple adherends are adhered to each other. For example, by interposing a solution adhesive between multiple adherends to be bonded, and then removing the solvent in the solution adhesive and solidifying the modified protein, the adherends are bonded together. A bonded body can be obtained by doing this. According to such a method, since a bonded body can be obtained using a biodegradable adhesive, there is an advantage that a bonded body that can reduce the environmental load at the time of disposal can be easily manufactured.
  • the material of the adherend is not particularly limited as long as it can be adhered with a solution adhesive containing modified proteins, and may be made of organic materials (e.g., cellulose products such as paper, wood, or synthetic materials). It may be a resin, protein product) or an inorganic substance (non-metal such as metal or glass).
  • a liquid adhesive may be applied or dropped onto the surface of at least one of the adherends to be bonded together, or the liquid level of the liquid adhesive may be applied to the surface of the adherends.
  • the adherends After applying a solution adhesive to the adherend surfaces by contacting or dipping them in the adhesive, the adherends are stacked or butted against each other to form a bond between multiple adherends.
  • a solution adhesive may be used.
  • the overlapping or abutted adherend surfaces should be placed in close contact with each other. As shown in FIG. You may. Of course, if adhesion is possible without applying such pressure, there is no need to apply pressure.
  • a solution coating agent containing a modified protein is used to produce a laminate in which a coating layer is laminated on the entire or part of the surface of a base material. For example, after supplying a solution coating agent to at least a portion of the surface of a substrate on which a coating layer is to be laminated, and coating the surface portion of the substrate with the solution coating agent, the solvent in the solution adhesive is removed to solidify the modified protein. Thereby, a laminate can be obtained by forming a coating layer on at least a portion of the surface of the base material. Since a laminate can also be obtained using a biodegradable coating agent by such a method, there is an advantage that a laminate that can reduce the environmental burden at the time of disposal can be easily produced.
  • the material of the base material is not particularly limited as long as it can be bonded with a solution coating agent containing a modified protein. It can be anything.
  • the specific method for manufacturing the laminate using the solution coating agent is not limited in any way. For example, by applying or dropping a solution coating agent onto at least a portion of the surface of the substrate, or by bringing at least a portion of the substrate surface into contact with or immersing it in the liquid surface of the solution coating agent, At least a portion of the base material may be coated by supplying a solution coating agent to form a layer of a predetermined thickness.
  • the coating agent layer on the substrate surface may be heated, air-dried, or naturally dried.
  • the solvent in the coating agent layer may be removed by
  • a predetermined pressing body pressure body
  • the coating agent layer may be pressed (pressurized) onto the surface of the base material so as to adhere tightly. At this time, it is preferable to prevent the pressing body from adhering to the solution coating agent.
  • a release agent or pasting release paper on the contact surface of the pressing body with the coating agent layer, or applying a surface treatment to the contact surface to prevent the coating agent from adhering Alternatively, by using a material that does not adhere to the solution coating agent as the pressing body, adhesion of the solution coating agent to the pressing body can be prevented.
  • the pressing body include materials that exhibit mold releasability with respect to solution coating agents, such as PTFE (polytetrafluoroethylene), PP (polypropylene), PE (polyethylene), and silicone rubber.
  • the surface treatment of the pressing body include silicone oil coating treatment.
  • a water-dispersible adhesive or a water-dispersible coating agent containing a modified protein can be produced by a method that includes a step of dispersing the modified protein obtained by the method of this embodiment in an aqueous medium (aqueous liquid).
  • aqueous medium aqueous liquid
  • aqueous medium used in the production of water-dispersible adhesives and water-dispersible coatings examples include water in which modified proteins can be dispersed, basic aqueous solutions, acidic aqueous solutions, and aqueous solutions containing inorganic salts. If the solvent used dissolves the modified protein, it is suitable for preparing solution adhesives or coatings, and if the solvent used does not completely dissolve the modified protein, it is suitable for water. Suitable for preparing dispersible adhesives or coatings.
  • the modified protein contained in the water-dispersible adhesive or water-dispersible coating agent is not particularly limited as long as it is obtained by the production method according to the present embodiment and can be dispersed in the aqueous medium described above. do not have.
  • modified proteins include maleate-esterified proteins, succinate-esterified proteins, sulfonate-esterified proteins, phosphoric-esterified proteins, and the like. Since these modified proteins have relatively high water absorption, they can be dispersed in large amounts in aqueous media. Therefore, in water-dispersible coating agents containing these modified proteins, it is possible to advantageously increase the content of the modified proteins, and the content of the aqueous medium can be effectively reduced.
  • water-dispersible adhesives and water-dispersible coatings may contain components other than modified proteins, such as various additives contained in known water-dispersible adhesives and water-dispersible coatings, as necessary. It may be
  • a water-dispersible adhesive containing a modified protein is used to produce an adhesive body in which multiple adherends are adhered to each other. For example, after interposing a water-dispersible adhesive between a plurality of adherends to be bonded, the aqueous medium in the water-dispersible adhesive is removed to solidify the modified protein.
  • a bonded body can be obtained by bonding them together. According to such a method, since a bonded body can be obtained using a biodegradable adhesive, there is an advantage that a bonded body that can reduce the environmental load at the time of disposal can be easily manufactured.
  • the material of the adherend is not particularly limited as long as it can be adhered with a water-dispersible adhesive containing a modified protein; It may be the same as the adherend.
  • the specific method for producing an adhesive body using a water-dispersible adhesive is not limited in any way.
  • a water-dispersible adhesive between a plurality of adherends to be bonded when interposing a water-dispersible adhesive between a plurality of adherends, Similar methods can be adopted.
  • the solvent in the solution adhesive interposed between the adherends is removed. A method similar to that used for solidifying modified proteins can be employed.
  • a water-dispersible coating agent containing a modified protein is used to produce a laminate in which a coating layer is formed on the entire or part of the surface of a base material.
  • a water-dispersible coating agent is supplied to at least a portion of the surface of a substrate on which a coating layer is to be laminated, and after coating the surface portion of the substrate with the solution coating agent, The aqueous medium is removed to solidify the modified protein.
  • a laminate can be obtained by forming a coating layer on at least a portion of the surface of the base material. Since a laminate can also be obtained using a biodegradable coating agent by such a method, there is an advantage that a laminate that can reduce the environmental burden at the time of disposal can be easily manufactured.
  • the material of the base material is not particularly limited as long as it is capable of adhering to a water-dispersible coating agent containing a modified protein. It may be the same as the material.
  • the specific method for producing the laminate using the water-dispersible coating agent is not limited in any way.
  • a method similar to that used when supplying the solution coating agent described above to the surface of the substrate may be employed.
  • removing the aqueous medium in the water-dispersible coating agent supplied to the substrate surface to solidify the modified protein remove the solvent in the solution coating agent supplied to the substrate surface and modify the protein.
  • a method similar to that used for solidifying proteins can be employed.
  • a film-like adhesive or a film-like coating agent containing a modified protein can be produced by a method that includes a step of forming a film from a modified protein solution in which the modified protein obtained by the method of this embodiment is dissolved. According to this method, biodegradable film adhesives and film coatings can be easily obtained, unlike conventional film adhesives and film coatings that contain petroleum-derived components. becomes.
  • a modified protein solution used as a solution adhesive or a solution coating agent is preferably used as the solution used in the production of a film adhesive or a film coating agent.
  • modified proteins such as maleate-esterified proteins, succinate-esterified proteins, sulfonate-esterified proteins, and phosphate-esterified proteins dissolved in a basic aqueous solution are preferably used.
  • Film-like adhesives and film-like coatings formed by cast-molding such modified protein solutions have high affinity with water.
  • the film-like adhesive or film-like coating agent when obtaining an adhesive or a laminate as described later, when a film-like adhesive or film-like coating agent is present between the adherends or on the surface of the base material to swell, the film-like adhesive or film-like coating agent is The coating agent absorbs more water and becomes sufficiently softened. As a result, it may be desired to improve the adhesive strength of the film adhesive or film coating agent to the adherend or base material.
  • a method for forming a film from the modified protein solution for example, a method of casting a protein solution is adopted. General known procedures and known conditions may be employed to carry out this cast molding.
  • a film adhesive containing a modified protein is used to produce an adhesive body in which multiple adherends are adhered to each other.
  • the film adhesive is swollen or heated to soften it, and then the film adhesive is By curing the adhesive while being pressed against the adherends, the adherends can be adhered to each other to obtain a bonded body.
  • the film adhesive is swollen or heated in advance to soften it, then interposed between a plurality of adherends, and then cured while being pressed against the adherends. It's okay.
  • the adherend may be anything that can be bonded with a film-like adhesive containing a modified protein, and may be the same as the adherend that is bonded with a solution-based adhesive containing a modified protein. good.
  • a film adhesive softens when it absorbs moisture or is heated, and then hardens when it dries or cools.
  • the modified protein which may be a protein before acylation
  • the film adhesive has the property of shrinking upon contact with water or heating when the film is formed
  • Film adhesives also shrink when exposed to water or heated. For this reason, when a film-like adhesive containing modified proteins is swollen or heated between adherends, it softens and partially bites into the gaps existing on the adhering surfaces of the adherends. When it has the above-mentioned shrinkage characteristics, it shrinks while digging into the gap in the adherend surface.
  • the film adhesive when swelling and softening the film adhesive, it is preferable to use water that can be absorbed by the film adhesive and cause the film adhesive to shrink, or an aqueous liquid such as a water-containing solution or dispersion. used for. Then, for example, the film adhesive may be swollen and softened by dropping the above aqueous liquid or immersing it in the aqueous liquid so that the film adhesive absorbs water.
  • a method for example, heat drying, air drying, or natural drying with the film adhesive interposed between adherends is a method. may be adopted.
  • a film adhesive When softening a film adhesive by heating, it may be heated before the film adhesive is interposed between the adherends, or after the film adhesive is interposed between the adherends. The entire adherend and film adhesive may be heated.
  • the heating temperature is not particularly limited as long as it is a temperature that can soften the film adhesive and does not adversely affect (for example, do not decompose) the modified protein contained in the film adhesive.
  • a method of cooling it with a cooling device or leaving it to cool may be employed.
  • a film-like coating agent containing a modified protein is used to produce a laminate in which a coating layer is laminated on the entire or part of the surface of a base material.
  • the film-like coating agent is placed so as to cover at least a portion of the surface of the substrate, the film-like coating agent is softened by swelling or heating, and then the film-like coating agent is applied.
  • a laminate can be obtained by forming a coating layer on at least a portion of the surface of the base material.
  • the film-like coating agent is swollen or heated in advance to soften it, and then placed so as to cover at least a portion of the surface of the base material, and then the film-like coating agent is pressed against the adherend. It may also be hardened. According to these methods, since a laminate can be obtained using a biodegradable coating agent, there is an advantage that a laminate that can reduce the environmental burden upon disposal can be easily manufactured.
  • the base material may be any material to which a film-like coating agent containing a modified protein can be adhered, and may be the same as the adherend to be adhered with a film-like adhesive containing a modified protein.
  • the mechanism by which a film-like coating agent adheres to the surface of a substrate is thought to be similar to the mechanism by which a film-like adhesive adheres to the surface of an adherend. Therefore, the specific method for producing a laminate using a film-like coating agent may be the same as the method used for obtaining an adhesive using a film-like adhesive.
  • a pressing body used when pressing the solution-like coating agent coated on the base material to the side of the base material surface is used.
  • the film-like coating agent may be pressed onto the surface of the base material using a pressing body similar to the above.
  • a powder composition containing modified protein powder obtained by the method of this embodiment is used for the powder adhesive or powder coating agent containing the modified protein.
  • this powder composition contains the modified protein as a main component, it may also contain various subcomponents such as additive residues.
  • the modified protein contained in the powder adhesive or powder coating agent is not particularly limited as long as it can be obtained by the production method according to the present embodiment.
  • modified proteins include maleate-esterified proteins, succinate-esterified proteins, sulfonate-esterified proteins, phosphoric-esterified proteins, and the like.
  • these modified proteins have higher water absorption than other modified proteins. Therefore, powdered adhesives and powdered coatings containing such modified proteins have relatively high moisture contents. Therefore, the heating temperature and amount of pressure required for resinizing (solidifying) the resin while placed on the surface of the adherend or the surface of the base material can be made as low as possible.
  • powder adhesive or powder coating agent containing the above-mentioned modified protein is expected to have the advantage of advantageously simplifying the adhesion operation to an adherend or base material.
  • Powdered adhesives and powdered coatings may contain ingredients other than modified proteins, such as various additives contained in known powdered adhesives and powdered coatings, as necessary. Good too.
  • Powdered adhesives containing modified proteins are also used to produce adhesive bodies in which multiple adherends are adhered to each other. For example, by interposing the powder adhesive between a plurality of adherends to be bonded, the powder adhesive is heated and pressurized through the adherends to solidify the adhesive. A bonded body can be obtained by bonding the attached bodies together. According to such a method, since a bonded body can be obtained using a biodegradable adhesive, there is an advantage that a bonded body that can reduce the environmental load at the time of disposal can be easily produced.
  • the adherend may be anything that can be adhered with a powdered adhesive containing a modified protein; for example, it may be similar to an adherend that can be adhered with a solution-based adhesive containing a modified protein. It's okay.
  • the specific method for manufacturing the adhesive body using the powdered adhesive is not limited in any way.
  • the adherends are sandwiched between metal plates or the like from both sides opposite to the adherend side.
  • the powdered adhesive interposed between the adherends is heated together with the adherends.
  • the metal plate is pressed using a hand press or the like, and the powdered adhesive is pressed for a predetermined period of time through the adherend.
  • the powdered adhesive is turned into a resin, solidified, and adhered to the adherend.
  • the heating temperature, amount of pressure, and heating/pressing time when solidifying the powdered adhesive are within the range that can convert the modified protein into a resin, depending on the type of modified protein contained in the powdered adhesive. Appropriate selection is made from among them.
  • a powder coating agent containing a modified protein is also used to produce a laminate in which a coating layer is formed on the entire or part of the surface of a base material. For example, by heating the powder coating agent with the powder coating agent placed on at least a portion of the surface of the base material and applying pressure between the pressurizing body and the base material to solidify the powder coating agent, A coating layer is laminated on at least a portion of the surface of the base material.
  • the specific method for manufacturing the laminate using the powder coating agent is not limited in any way.
  • a metal plate or the like is placed to cover the entire powder adhesive placed on the surface of the base material, and the metal plate is heated to heat the powder adhesive.
  • the powdered adhesive is pressed between the metal plate and the base material using a hand press or the like for a predetermined period of time, thereby converting the powdered coating into a resin and solidifying it.
  • the heating temperature, amount of pressure, or heating/pressing time of the powder coating agent is the same as when obtaining a bonded body using the powder adhesive.
  • acylation of recombinant proteins was carried out by both mechanochemical and conventional solution methods, and the products were evaluated by various analytical techniques.
  • Acetylation by solution method (Comparative Example 1) Acetylation of 100 kDa recombinant protein (in the absence of base) Recombinant protein PRT966 (500 mg, 4.80 ⁇ mol) was suspended in DMSO (10 mL) while stirring using a magnetic stirrer hot plate, and then dissolved by continuous heating stirring of the mixture (80 ° C., 1 hour). , a clear brown solution was obtained. Ac 2 O (311 ⁇ L, 3.30 mmol, 3.5 equivalents per hydroxyl group) was then added to the reaction solution, which was then stirred (80° C., 6 hours).
  • reaction mixture was cooled to room temperature and gradually separated into ice-cold (0° C.) RO water (500 mL) with gentle stirring to precipitate the product (1 hour). Thereafter, it was filtered under reduced pressure and thoroughly washed with RO water and acetone. Thereafter, it was completely dried under reduced pressure in a vacuum oven (80° C., 1 hour) to obtain a sticky brown solid, which was used as is for analysis.
  • Recombinant protein PRT966 500 mg, 4.80 ⁇ mol was suspended in DMSO (10 mL) while stirring using a magnetic stirrer hot plate, and then dissolved by continuous heating and stirring of the mixture (80 ° C., 1 hour). , a clear brown solution was obtained. Next, Ac 2 O (311 ⁇ L, 3.30 mmol, 3.5 equivalents per hydroxyl group) and DIPEA (574 ⁇ L, 3.30 mmol, 3.5 equivalents per hydroxyl group) were added to the reaction solution and stirred (80° C., 6 hours).
  • reaction mixture was then cooled to room temperature and slowly added to ice-cold (0° C.) RO water (500 mL) with gentle stirring to precipitate the product (1 h). Thereafter, the product was filtered under reduced pressure and thoroughly washed with RO water and acetone. Thereafter, it was completely dried under reduced pressure in a vacuum oven (80° C., 1 hour) to obtain a light brown solid, which was used for analysis as it was.
  • reaction mixture was removed from the grinding jar and suspended in RO water (25 mL) with stirring (10 min). Thereafter, the product was filtered under reduced pressure and thoroughly washed with RO water and acetone. Thereafter, it was completely dried under reduced pressure in a vacuum oven (80° C., 1 hour) to obtain a white amorphous powder, which was used for analysis as it was.
  • Example 2 Acetylation of 100 kDa recombinant protein (in the presence of base) 100 kDa recombinant protein PRT966 (500 mg, 4.80 ⁇ mol), Ac 2 O (311 ⁇ L, 3.30 mmol, 3.5 equivalents per hydroxyl group), DIPEA (574 ⁇ L, 3.30 mmol, 3.5 equivalents per hydroxyl group). Place in a 10 mL stainless steel cup (manufactured by Recce), add 20 stainless steel balls (diameter 5 mm, manufactured by Recce), and mill using a mixer mill type ball mill (trade name: Mixer Mill MM400, manufactured by Recce) Vibration frequency: 30 Hz, 90 minutes) to obtain a waxy brown solid.
  • a mixer mill type ball mill trade name: Mixer Mill MM400, manufactured by Recce
  • reaction mixture was removed from the grinding jar and suspended in RO water (25 mL) with stirring (10 min). Thereafter, the product was filtered under reduced pressure and thoroughly washed with RO water and acetone. Thereafter, it was completely dried under reduced pressure in a vacuum oven (80° C., 1 hour) to obtain a slightly yellowish white amorphous powder, which was used as it was for analysis.
  • IR absorption spectrum analysis Fourier transform infrared absorption (FT-IR) spectrum was measured using Nicolet iS50 FT-IR spectrometer (trade name, manufactured by Thermo Fisher Scientific). It was carried out using Neat samples were analyzed using attenuated total reflection (ATR) of a diamond crystal, and absorption frequencies were recorded in wavenumbers (cm ⁇ 1 ) to the nearest 0.1 cm ⁇ 1 . Spectra were collected in the range 760-3800 cm ⁇ 1 with a resolution of 4 cm ⁇ 1 and the average value of 64 scans was calculated.
  • FT-IR Fourier transform infrared absorption
  • GPC analysis GPC uses a liquid chromatography system (product name: Agilent 1260 Infinity II, manufactured by Agilent Technologies Inc.) equipped with a refractive index (RI) detector and a 0.5 ⁇ m guard column filter (product name: Shodex). Analytes were separated using a styrene-divinylbenzene copolymer column (inner diameter 4.6 mm x 150 mm) stationary phase equipped with GPC HK-G (manufactured by Showa Denko K.K.) and HFIP (manufactured by Central Glass Co., Ltd.). went. The mobile phase was monitored at a flow rate of 0.15 mL/min at 40° C.
  • Figure 1(a) compares the appearances of Comparative Examples 1 and 2 and Examples 1 and 2, and Figure 1(b) shows Comparative Examples 1 and 2, Examples 1 and 2, and unmodified protein PRT966. This is a graph in which GPC chromatograms of .
  • the modified proteins of Comparative Examples 1 and 2 prepared by the solution method were in the form of brown lumps and had to be crushed in order to be used.
  • Examples 1 and 2 prepared by the mechanochemical method were obtained as white powders and had excellent handling properties.
  • FIGS. 2 to 5 The IR spectra and GPC analysis results of Comparative Examples 1 and 2 and Examples 1 and 2 are shown in FIGS. 2 to 5, respectively.
  • FIG. 2(a) shows the IR spectra of Comparative Example 1 and unmodified protein PRT966, and a peak appeared at 1740 cm ⁇ 1 , indicating that acetylation had progressed.
  • FIG. 2(b) is a GPC chromatogram of Comparative Example 1 and the unmodified protein PRT966, and the retention time was shorter than that of the unmodified protein.
  • FIG. 3(a) shows the IR spectra of Comparative Example 2 and the unmodified protein PRT966, and a peak appeared at 1730 cm ⁇ 1 , indicating that acetylation had progressed.
  • FIG. 2(a) shows the IR spectra of Comparative Example 1 and unmodified protein PRT966, and a peak appeared at 1730 cm ⁇ 1 , indicating that acetylation had progressed
  • FIG. 3(b) is a GPC chromatogram of Comparative Example 2 and the unmodified protein PRT966, and the retention time was slightly shorter than that of the unmodified protein.
  • FIG. 4(a) shows the IR spectra of Example 1 and the unmodified protein PRT966, and a peak appeared at 1740 cm ⁇ 1 , indicating that acetylation had progressed.
  • FIG. 4(b) is a GPC chromatogram of Example 1 and the unmodified protein PRT966, and the retention time was slightly shorter than that of the unmodified protein.
  • FIG. 5(a) shows the IR spectra of Example 2 and the unmodified protein PRT966, and a peak appeared at 1743 cm ⁇ 1 , indicating that acetylation had progressed.
  • FIG. 5(b) is a GPC chromatogram of Example 2 and the unmodified protein PRT966, and the retention time was slightly shorter than that of the unmodified protein.
  • SDS-PAGE analysis Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was performed using a precast separation gel (trade name: 4-20% Mini-PROTEAN TGX, manufactured by Bio-Rad Laboratories Inc.). I went. The gel was inserted into an electrode assembly (trade name: Mini-PROTEAN Tetra Electrode Assembly, manufactured by Bio-Rad Laboratories Inc.) and placed inside an electrophoresis tank together with an SDS running buffer (manufactured by Bio-Rad Laboratories Inc.).
  • the protein was dissolved in DMSO, and lithium chloride (final concentration 2M) was added to dissolve the protein at a final concentration of 1 wt% using a heated shaker (trade name: TMS-200 Turbo Thermoshaker Incubator, manufactured by HangzhouAllsheng Instruments Co. Ltd.). °C, 2000 rpm, 45 minutes) and diluted 50 times with a 10M urea aqueous solution. Thereafter, it was mixed with the same amount of sample buffer containing 3-mercapto-1,2-propanediol and heated to 95°C (5 minutes) (Product name: Genius Dry Bath Incubator MD-01N, manufactured by Major Science Co.
  • the mixture was milled (frequency: 30 Hz, 90 minutes) using a mixer mill type ball mill (trade name: Mixer Mill MM400, manufactured by Recce Co., Ltd.) to obtain a dark gray lumpy solid.
  • the reaction mixture was removed from the grinding jar and suspended in RO water (25 mL) with stirring (10 min). Thereafter, the product was filtered under reduced pressure and thoroughly washed with RO water and acetone. Thereafter, it was completely dried under reduced pressure in a vacuum oven (80° C., 1 hour) to obtain a dark gray amorphous powder, which was subjected to analysis without further treatment.
  • Example 4 Acetylation of 15 kDa recombinant protein Recombinant protein PRT2841 (SEQ ID NO: 9, 500 mg, 28.1 ⁇ mol), Ac 2 O (316 ⁇ L, 3.34 mmol, 3.5 equivalents per hydroxyl group), DIPEA (333 ⁇ L) , 1.91 mmol, 2 equivalents per hydroxyl group) were added to a 10 mL stainless steel cup (manufactured by Recce) with 20 stainless steel balls (diameter 5 mm, manufactured by Recce), and mixed with a mixer mill type ball mill (product name: Mixer Mill).
  • a mixer mill type ball mill product name: Mixer Mill
  • Milling was carried out (frequency: 30 Hz, 90 minutes) using MM400 (manufactured by Recce) to obtain a light gray lumpy solid.
  • the reaction mixture was removed from the grinding jar and suspended in RO water (25 mL) with stirring (10 min). Thereafter, the product was filtered under reduced pressure and thoroughly washed with RO water and acetone. It was then completely dried under reduced pressure in a vacuum oven (80° C., 1 hour) to obtain a light gray amorphous powder, which was subjected to analysis without further treatment.
  • a white amorphous solid was obtained by milling (vibration frequency: 30 Hz, 90 minutes) using a milling machine (manufactured by S.A., Inc.).
  • the reaction mixture was removed from the grinding jar and suspended in RO water (25 mL) with stirring (10 min). Thereafter, the product was filtered under reduced pressure and thoroughly washed with RO water and acetone. Thereafter, it was completely dried under reduced pressure in a vacuum oven (80° C., 1 hour) to obtain a white amorphous powder, which was used for analysis as it was.
  • Example 7 Acetylation of 50 kDa recombinant protein Recombinant protein PRT918 (500 mg, 9.48 ⁇ mol), Ac 2 O (314 ⁇ L, 3.32 mmol, 3.5 equivalents per hydroxyl group) and DIPEA (330 ⁇ L, 1.90 mmol) , 2 equivalents per 1 hydroxyl group) into a 10 mL stainless steel cup (manufactured by Recce), and 20 stainless steel balls (diameter 5 mm, manufactured by Recce) were placed in a mixer mill type ball mill (product name: Mixer Mill MM400, Milling was carried out (frequency: 30 Hz, 90 minutes) using a machine (manufactured by Recce) to obtain a white amorphous solid.
  • a mixer mill type ball mill product name: Mixer Mill MM400, Milling was carried out (frequency: 30 Hz, 90 minutes) using a machine (manufactured by Recce) to obtain a white amorphous solid.
  • reaction mixture was removed from the grinding jar and suspended in RO water (25 mL) with stirring (10 min). Thereafter, the product was filtered under reduced pressure and thoroughly washed with RO water and acetone. Thereafter, it was completely dried under reduced pressure in a vacuum oven (80° C., 1 hour) to obtain a white amorphous powder, which was used for analysis as it was.
  • Example 8 Acetylation of 100 kDa recombinant protein Recombinant protein PRT966 (500 mg, 4.80 ⁇ mol), Ac 2 O (311 ⁇ L, 3.30 mmol, 3.5 equivalents per hydroxyl group), and DIPEA (328 ⁇ L, 1. 88 mmol, 2 equivalents per hydroxyl group) was added to a 10 mL stainless steel cup (manufactured by Recce) with 20 stainless steel balls (diameter 5 mm, manufactured by Recce), and mixed with a mixer mill type ball mill (product name: Mixer Mill MM400, Recce).
  • a mixer mill type ball mill product name: Mixer Mill MM400, Recce
  • Milling was carried out (frequency: 30 Hz, 90 minutes) using a machine (manufactured by S.A., Inc.) to obtain a light brown paste.
  • the reaction mixture was removed from the grinding jar and suspended in RO water (25 mL) with stirring (10 min). Thereafter, the product was filtered under reduced pressure and thoroughly washed with RO water and acetone. Thereafter, it was completely dried under reduced pressure in a vacuum oven (80° C., 1 hour) to obtain a pale beige amorphous powder, which was used as it was for analysis.
  • Example 9 Acetylation of 200 kDa recombinant protein Recombinant protein PRT799 (500 mg, 2.37 ⁇ mol), Ac 2 O (305 ⁇ L, 3.23 mmol, 3.5 equivalents per hydroxyl group), and DIPEA (321 ⁇ L, 1. 84 mmol, 2 equivalents per hydroxyl group) was added to a 10 mL stainless steel cup (manufactured by Recce), 20 stainless steel balls (diameter 5 mm, manufactured by Recce) were added, and a mixer mill type ball mill (product name: Mixer Mill MM400, A light gray gummy solid was obtained by milling (frequency: 30 Hz, 90 minutes) using a machine (manufactured by Recce).
  • a mixer mill type ball mill product name: Mixer Mill MM400
  • reaction mixture was removed from the grinding jar and suspended in RO water (25 mL) with stirring (10 min). Thereafter, the product was filtered under reduced pressure and thoroughly washed with RO water and acetone. It was then completely dried under reduced pressure in a vacuum oven (80° C., 1 hour) to obtain a light gray amorphous powder, which was subjected to analysis without further treatment.
  • Example 10 Acetylation of 300 kDa recombinant protein Recombinant protein PRT1186 (SEQ ID NO: 11, 500 mg, 1.59 ⁇ mol), Ac 2 O (307 ⁇ L, 3.25 mmol, 3.5 equivalents per hydroxyl group), DIPEA (324 ⁇ L) , 1.86 mmol, 2 equivalents per hydroxyl group) into a 10 mL stainless steel cup (manufactured by Recce), 20 stainless steel balls (diameter 5 mm, manufactured by Recce), and a mixer mill type ball mill (product name: Mixer).
  • Milling was carried out using a mill MM400 (manufactured by Recce) (frequency: 30 Hz, 90 minutes) to obtain a light gray gummy solid.
  • the reaction mixture was removed from the grinding jar and suspended in RO water (25 mL) with stirring (10 min). Thereafter, the product was filtered under reduced pressure and thoroughly washed with RO water and acetone. Thereafter, it was completely dried under reduced pressure in a vacuum oven (80° C., 1 hour) to obtain a white amorphous solid, which was used for analysis as it was.
  • FIGS. 6 to 13 The results of IR spectra and GPC analysis of Examples 3 to 10 are shown in FIGS. 6 to 13, respectively.
  • FIG. 6(a) shows the IR spectra of Example 3 and the unmodified protein PRT2882, and a peak appeared at 1741 cm ⁇ 1 , indicating that acetylation had progressed.
  • FIG. 6(b) is a GPC chromatogram of Example 3 and the unmodified protein PRT2882, and the retention time was slightly shorter than that of the unmodified protein.
  • FIG. 7(a) shows the IR spectra of Example 4 and unmodified protein PRT2841, and a peak appeared at 1742 cm ⁇ 1 , indicating that acetylation had progressed.
  • FIG. 6(a) shows the IR spectra of Example 3 and the unmodified protein PRT2882, and a peak appeared at 1742 cm ⁇ 1 , indicating that acetylation had progressed.
  • FIG. 7(b) is a GPC chromatogram of Example 4 and the unmodified protein PRT2841, and the retention time was slightly shorter than that of the unmodified protein.
  • FIG. 8(a) shows the IR spectra of Example 5 and unmodified protein PRT2662, and a peak appeared at 1743 cm ⁇ 1 , indicating that acetylation had progressed.
  • FIG. 8(b) is a GPC chromatogram of Example 5 and the unmodified protein PRT2662, and the retention time was slightly shorter than that of the unmodified protein.
  • FIG. 9(a) shows the IR spectra of Example 6 and the unmodified protein PRT1000, and a peak appeared at 1744 cm ⁇ 1 , indicating that acetylation had progressed.
  • FIG. 9(b) is a GPC chromatogram of Example 6 and the unmodified protein PRT1000, and the retention time was slightly shorter than that of the unmodified protein.
  • FIG. 10(a) shows the IR spectra of Example 7 and unmodified protein PRT918, and a peak appeared at 1744 cm ⁇ 1 , indicating that acetylation had progressed.
  • FIG. 10(b) is a GPC chromatogram of Example 7 and the unmodified protein PRT918, and the retention time was slightly shorter than that of the unmodified protein.
  • FIG. 11(a) shows the IR spectra of Example 8 and the unmodified protein PRT966, and a peak appeared at 1744 cm ⁇ 1 , indicating that acetylation had progressed.
  • FIG. 11(b) is a GPC chromatogram of Example 8 and the unmodified protein PRT966, and the retention time was slightly shorter than that of the unmodified protein.
  • FIG. 12(a) shows the IR spectra of Example 9 and the unmodified protein PRT799, and a peak appeared at 1730 cm ⁇ 1 , indicating that acetylation had progressed.
  • FIG. 12(b) is a GPC chromatogram of Example 9 and the unmodified protein PRT799, and the retention time was slightly shorter than that of the unmodified protein.
  • FIG. 13(a) shows the IR spectra of Example 10 and the unmodified protein PRT1186, and a peak appeared at 1731 cm ⁇ 1 , indicating that acetylation had progressed.
  • FIG. 13(b) is a GPC chromatogram of Example 10 and the unmodified protein PRT1186, and the retention time was slightly shorter than that of the unmodified protein.
  • Milling was carried out (frequency: 30 Hz, 90 minutes) using a ball mill (trade name: Mixer Mill MM400, manufactured by Recce) to obtain a white amorphous solid.
  • the reaction mixture was removed from the grinding jar and suspended in RO water (25 mL) with stirring (10 min). Thereafter, the product was filtered under reduced pressure and thoroughly washed with RO water and acetone. Thereafter, it was completely dried under reduced pressure in a vacuum oven (80° C., 1 hour) to obtain a white amorphous fine powder, which was used for analysis as it was.
  • Example 12 Acetylation of 100 kDa recombinant protein Recombinant protein PRT966 (500 mg, 4.80 ⁇ mol), Ac 2 O (311 ⁇ L, 3.30 mmol, 3.5 equivalents per hydroxyl group), and sodium carbonate (110 mg, 1 Add 0.04 mmol, 1.1 equivalent per hydroxyl group) to a 10 mL stainless steel cup (manufactured by Recce), add 20 stainless steel balls (diameter 5 mm, manufactured by Recce), and mixer mill type ball mill (product name: Mixer). Milling was carried out (frequency: 30 Hz, 90 minutes) using a mill MM400 (manufactured by Recce) to obtain a white amorphous solid.
  • reaction mixture was removed from the grinding jar and suspended in RO water (25 mL) with stirring (10 min). Thereafter, the product was filtered under reduced pressure and thoroughly washed with RO water and acetone. Thereafter, it was completely dried under reduced pressure in a vacuum oven (80° C., 1 hour) to obtain a white amorphous fine powder, which was used for analysis as it was.
  • FIGS. 14 to 16 The results of IR spectra and GPC analysis of Examples 11 to 13 are shown in FIGS. 14 to 16, respectively.
  • FIG. 14(a) shows the IR spectra of Example 11 and unmodified protein PRT966, and a peak appeared at 1743 cm ⁇ 1 , indicating that acetylation had progressed.
  • FIG. 14(b) is a GPC chromatogram of Example 11 and the unmodified protein PRT966, and the retention time was slightly shorter than that of the unmodified protein.
  • FIG. 15(a) shows the IR spectra of Example 12 and the unmodified protein PRT966, and a peak appeared at 1745 cm ⁇ 1 , indicating that acetylation had progressed.
  • FIG. 14(a) shows the IR spectra of Example 11 and unmodified protein PRT966, and a peak appeared at 1745 cm ⁇ 1 , indicating that acetylation had progressed.
  • FIG. 14(a) shows the IR
  • FIG. 15(b) is a GPC chromatogram of Example 12 and the unmodified protein PRT966, and the retention time was slightly shorter than that of the unmodified protein.
  • FIG. 16(a) shows the IR spectra of Example 13 and unmodified protein PRT966, and a peak appeared at 1737 cm ⁇ 1 , indicating that acetylation had progressed.
  • FIG. 16(b) is a GPC chromatogram of Example 13 and the unmodified protein PRT966, and the retention time was slightly shorter than that of the unmodified protein.
  • a stainless steel ball (diameter 5 mm, manufactured by Recce) was placed in the mixer mill type ball mill (product name: Mixer Mill MM400, manufactured by Recce) and milled (frequency: 30 Hz, 90 minutes) to produce a slightly yellowish white amorphous material. A solid was obtained.
  • the reaction mixture was removed from the grinding jar and suspended in RO water (25 mL) with stirring (10 min). Thereafter, the product was filtered under reduced pressure and thoroughly washed with RO water and acetone. Thereafter, it was completely dried under reduced pressure in a vacuum oven (80° C., 1 hour) to obtain a white amorphous solid, which was used for analysis as it was.
  • reaction mixture was removed from the grinding jar and suspended in RO water (25 mL) with stirring (10 min). Thereafter, the product was filtered under reduced pressure and thoroughly washed with RO water and acetone. Thereafter, it was completely dried under reduced pressure in a vacuum oven (80° C., 1 hour) to obtain a grayish brown amorphous solid, which was used as it was for analysis.
  • Example 16 Succinylation of 100 kDa recombinant protein Recombinant protein PRT966 (500 mg, 4.80 ⁇ mol), succinic anhydride (330 mg, 3.30 mmol, 3.5 equivalents per hydroxyl group), and potassium carbonate (455 mg, 3 .30 mmol, 3.5 equivalents per hydroxyl group) into a 10 mL stainless steel cup (manufactured by Recce), add 20 stainless steel balls (diameter 5 mm, manufactured by Recce), and mixer mill type ball mill (product name: Mixer). Milling was performed using a mill MM400 (manufactured by Recce) (frequency: 30 Hz, 90 minutes) to obtain a waxy, slightly yellowish white solid.
  • a mill MM400 manufactured by Recce
  • reaction mixture was removed from the grinding jar and suspended in RO water (25 mL) with stirring (10 min). Thereafter, the product was filtered under reduced pressure and thoroughly washed with RO water and acetone. Thereafter, it was completely dried under reduced pressure in a vacuum oven (80° C., 1 hour) to obtain a slightly yellowish white amorphous powder, which was used as it was for analysis.
  • a chalky amorphous solid was obtained by milling (frequency: 30 Hz, 8.6 hours).
  • the reaction mixture was removed from the grinding jar and suspended in RO water (25 mL) with stirring (10 min). Thereafter, the product was filtered under reduced pressure and thoroughly washed with RO water and acetone. Thereafter, it was completely dried under reduced pressure in a vacuum oven (80° C., 1 hour) to obtain a white amorphous powder, which was used for analysis as it was.
  • Milling was performed (frequency: 20 Hz, 2 hours) using a mixer mill type ball mill (trade name: Mixer Mill MM400, manufactured by Recce) to obtain a slightly yellowish white paste.
  • the reaction mixture was removed from the grinding jar and suspended in RO water (25 mL) with stirring (10 min). Thereafter, the product was filtered under reduced pressure and thoroughly washed with RO water and acetone. Thereafter, it was completely dried under reduced pressure in a vacuum oven (80° C., 1 hour) to obtain a white amorphous powder, which was used for analysis as it was.
  • FIGS. 17 to 21 The results of IR spectra and GPC analysis of Examples 14 to 18 are shown in FIGS. 17 to 21, respectively.
  • FIG. 17(a) shows the IR spectra of Example 14 and unmodified protein PRT966, and a peak appeared at 1713 cm ⁇ 1 , indicating that succinylation had progressed.
  • FIG. 17(b) is a GPC chromatogram of Example 14 and the unmodified protein PRT966, and the retention time was almost the same as that of the unmodified protein.
  • FIG. 18(a) shows the IR spectra of Example 15 and the unmodified protein PRT966, and a peak appeared at 1740 cm ⁇ 1 , indicating that succinylation had progressed.
  • FIG. 17(a) shows the IR spectra of Example 14 and unmodified protein PRT966, and a peak appeared at 1740 cm ⁇ 1 , indicating that succinylation had progressed.
  • FIG. 17(a) shows the IR spec
  • FIG. 18(b) is a GPC chromatogram of Example 15 and the unmodified protein PRT966, and the retention time was almost the same as that of the unmodified protein.
  • FIG. 19(a) shows the IR spectra of Example 16 and the unmodified protein PRT966, and a peak appeared at 1740 cm ⁇ 1 , indicating that succinylation had progressed.
  • FIG. 19(b) is a GPC chromatogram of Example 16 and the unmodified protein PRT966, and the retention time was almost the same as that of the unmodified protein.
  • FIG. 20(a) shows the IR spectra of Example 17 and the unmodified protein PRT966, and a peak appeared at 1721 cm ⁇ 1 , indicating that succinylation had progressed.
  • FIG. 19(a) shows the IR spectra of Example 17 and the unmodified protein PRT966, and a peak appeared at 1721 cm ⁇ 1 , indicating that succinylation had progressed.
  • FIG. 20(b) is a GPC chromatogram of Example 17 and the unmodified protein PRT966, and the retention time was almost the same as that of the unmodified protein.
  • FIG. 21(a) shows the IR spectra of Example 18 and unmodified protein PRT966, and a peak appeared at 1737 cm ⁇ 1 , indicating that succinylation had progressed.
  • FIG. 21(b) is a GPC chromatogram of Example 18 and the unmodified protein PRT966, and the retention time was slightly shorter than that of the unmodified protein.
  • Example 20 Stearylation of 100 kDa recombinant protein Recombinant protein PRT966 (500 mg, 4.80 ⁇ mol), stearoyl chloride (998 mg, 3.30 mmol, 3.5 equivalents per hydroxyl group) and DIPEA (574 ⁇ L, 3.30 mmol, 3.5 equivalents per hydroxyl group) was placed in a 10 mL stainless steel cup (manufactured by Recce), 20 stainless steel balls (diameter 5 mm, manufactured by Recce) were added, and a mixer mill type ball mill (product name: Mixer Mill MM400, A waxy yellow paste was obtained by milling (frequency: 30 Hz, 90 minutes) using a machine (manufactured by Recce).
  • a mixer mill type ball mill product name: Mixer Mill MM400
  • the reaction mixture was removed from the grinding jar and suspended in RO water (25 mL) with stirring (10 min).
  • the crude product was then filtered under reduced pressure and thoroughly washed with RO water and acetone.
  • the product was then partially dried on filter paper, suspended in ethyl acetate (25 mL) and stirred using a magnetic stirrer (10 minutes). Thereafter, the product was collected by vacuum filtration, thoroughly washed with ethyl acetate, and then dried in a vacuum oven (80°C, 1 hour) to obtain a slightly yellowish white amorphous powder, which was directly used for analysis. did.
  • Example 21 Stearylation of 100 kDa recombinant protein Recombinant protein PRT966 (500 mg, 4.80 ⁇ mol), stearic anhydride (1.82 g, 3.30 mmol, 3.5 equivalents per hydroxyl group), DIPEA (574 ⁇ L, 3 .30 mmol, 3.5 equivalents per hydroxyl group) and DMAP (403 mg, 3.30 mmol, 3.5 equivalents per hydroxyl group) were added to a 10 mL stainless steel cup (manufactured by Lecce), and 20 stainless steel balls (diameter A wax-like amorphous solid was obtained by milling (frequency: 30 Hz, 90 minutes) using a mixer mill type ball mill (trade name: Mixer Mill MM400, manufactured by Retsch).
  • the reaction mixture was removed from the grinding jar and suspended in RO water (25 mL) with stirring (10 min).
  • the crude product was then filtered under reduced pressure and thoroughly washed with RO water and acetone.
  • the product was then partially dried on filter paper, suspended in ethyl acetate (25 mL) and stirred using a magnetic stirrer (10 minutes). Thereafter, the product was collected by filtration under reduced pressure, thoroughly washed with ethyl acetate, and dried in a vacuum oven (80°C, 1 hour) to obtain a white amorphous powder, which was directly used for analysis. provided.
  • Example 22 Stearylation of 100 kDa recombinant protein Recombinant protein PRT966 (500 mg, 4.80 ⁇ mol), stearoyl chloride (998 mg, 3.30 mmol, 3.5 equivalents per hydroxyl group), DIPEA (574 ⁇ L, 3.30 mmol, 3.5 equivalents per 1 hydroxyl group) and DMAP (403 mg, 3.30 mmol, 3.5 equivalents per 1 hydroxyl group) were added to a 10 mL stainless steel cup (manufactured by Retsch), and 20 stainless steel balls (diameter 5 mm, Retsche A waxy yellow paste was obtained by milling (frequency: 30 Hz, 90 minutes) using a mixer mill type ball mill (trade name: Mixer Mill MM400, manufactured by Recce).
  • the reaction mixture was removed from the grinding jar and suspended in RO water (25 mL) with stirring (10 min).
  • the crude product was then filtered under reduced pressure and thoroughly washed with RO water and acetone.
  • the product was then partially dried on filter paper, suspended in ethyl acetate (25 mL) and stirred using a magnetic stirrer (10 minutes). Thereafter, the product was collected by filtration under reduced pressure, thoroughly washed with ethyl acetate, and dried in a vacuum oven (80°C, 1 hour) to obtain a beige amorphous powder, which was directly used for analysis. provided.
  • FIGS. 22 to 25 The results of the IR spectra and GPC analysis of Examples 19 to 22 are shown in FIGS. 22 to 25, respectively.
  • FIG. 22(a) shows the IR spectra of Example 19 and the unmodified protein PRT966, and the appearance of a peak at 1733 cm ⁇ 1 indicated that stearylation had progressed.
  • FIG. 22(b) is a GPC chromatogram of Example 19 and the unmodified protein PRT966, and the retention time was slightly shorter than that of the unmodified protein.
  • FIG. 23(a) shows the IR spectra of Example 20 and the unmodified protein PRT966, and the appearance of a peak at 1740 cm ⁇ 1 indicated that stearylation had progressed.
  • FIG. 22(a) shows the IR spectra of Example 19 and the unmodified protein PRT966, and the appearance of a peak at 1740 cm ⁇ 1 indicated that stearylation had progressed.
  • FIG. 23(b) is a GPC chromatogram of Example 20 and the unmodified protein PRT966, and the retention time was almost the same as that of the unmodified protein.
  • FIG. 24(a) shows the IR spectra of Example 21 and the unmodified protein PRT966, and a peak appeared at 1736 cm ⁇ 1 , indicating that stearylation had progressed.
  • FIG. 24(b) is a GPC chromatogram of Example 21 and the unmodified protein PRT966, and the retention time was slightly shorter than that of the unmodified protein.
  • FIG. 25(a) shows the IR spectra of Example 22 and the unmodified protein PRT966, and the appearance of a peak at 1742 cm ⁇ 1 indicated that stearylation had progressed.
  • FIG. 25(b) is a GPC chromatogram of Example 22 and the unmodified protein PRT966, and the retention time was slightly shorter than that of the unmodified protein.
  • Estimated number of esterified residues ester/amide ratio x total number of amino acid residues in protein
  • Degree of esterification (%) (estimated number of esterified residues/total number of hydroxyl groups) x 100
  • Table 3 shows the degree of esterification of each modified protein.
  • the degree of esterification is an index that indicates the degree to which the hydroxyl groups of amino acid residues constituting a protein have been esterified.
  • FIG. 26 is a photograph showing recombinant protein PRT966, acetylated protein PRT966, and succinylated protein PRT966 to which a solvent was added.
  • the solvents used in FIGS. 26(a), (b), and (c) were water, acetone, and 0.5 w/v % sodium hydroxide aqueous solution, respectively.
  • the protein did not disperse well in either solvent, but the acetylated protein dispersed evenly in acetone. Additionally, succinylated proteins were uniformly dispersed in water and dissolved in alkaline solutions.
  • FIG. 27 shows the state of the solution after heating and shaking.
  • FIG. 27(a) is a photograph showing the state of the protein immediately after adding DMSO
  • FIG. 27(b) is a photograph showing the state dissolved in DMSO
  • FIG. 27(c) is a photograph showing the state of each protein dissolved in DMSO.
  • This is a photograph comparing the gelation state. In both cases, a transparent viscous solution (gel-like) was formed, and no precipitate was observed.
  • the degree of gelation, in descending order was Example 11 (acetylated protein), Example 12 (acetylated protein), unmodified protein PRT966, Comparative Example 2 (acetylated protein), and Example 14 (succinylated protein). there were.
  • Modified protein-containing adhesive ⁇ Production of solution adhesive> A 100 kDa recombinant protein PRT966 (7.5 g, 72.1 ⁇ mol) and sodium hydroxide (621 mg, 15.5 mmol, 1.1 equivalent per hydroxyl group) were added to a 50 mL stainless steel cup (manufactured by Lecce). After introducing one stainless steel ball (diameter 25 mm, manufactured by Retsch), it was milled (frequency: 30 Hz, 30 minutes) using a mixer mill type ball mill (Mixer Mill MM400, manufactured by Retsche) to obtain a homogeneous powder. A white amorphous powder was obtained.
  • maleic anhydride (4.85 g, 49.4 mmol, 3.5 equivalents per hydroxyl group) was put into a stainless steel cup, and then milled ( Vibration frequency: 30 Hz, 60 minutes) to obtain a homogeneous off-white amorphous powder.
  • the reaction mixture was removed from the stainless steel cup and suspended in RO water (200 mL) with stirring (5 minutes).
  • 1M aqueous HCl 50 mL was added to the resulting suspension to acidify the suspension and continued stirring (5 minutes).
  • acetonitrile 100 mL was added to the suspension, and the product was recovered by vacuum filtration (Kiriyama No.
  • Example 23 a solution adhesive in which maleated protein was dissolved in a basic aqueous solution at a concentration of 20 wt% was obtained. This was designated as Example 23.
  • Example 26 Succinylation of PRT966 Before carrying out the reaction, the temperature of the extruder barrel was adjusted to 160°C. The screw rotation speed (100 rpm) was maintained throughout the reaction. Succinic anhydride (5.0 g, 50.0 mmol) was slowly added to the extruder to lubricate the screw.
  • Acetonitrile 400 mL was added to the suspension and stirred for an additional 10 minutes.
  • the product was collected by vacuum filtration, thoroughly washed with RO water and acetone, and then completely dried under reduced pressure in a vacuum oven (1 hour, 80 °C) to obtain a fine off-white amorphous powder. .
  • the obtained powder was subjected to FT-IR and GPC analysis without further processing.
  • Example 28 Sulfonation of 100 kDa recombinant protein Recombinant protein PRT966 (7.5 g, 72.1 ⁇ mol), sulfur trioxide pyridine complex (7.87 g, 49.4 mmol, 3.5 equivalents per nucleophilic residue) was placed in a 125 mL hardened steel grinding jar (manufactured by Recce) together with stainless steel grinding media (8 x ⁇ 20 mm, manufactured by Recce), and using a mixer mill type ball mill (product name: Mixer Mill MM500 Control, manufactured by Recce).
  • the reaction mixture was removed from the jar, and the crude product was suspended in Clinsolve® P-7 (manufactured by Nippon Alcohol Sales Co., Ltd., 2 x 100 mL), RO water (2 x 100 mL), and acetone (2 x 100 mL) in sequence. and separated and washed.
  • the crude product was acidified by suspending it in 0.1M hydrochloric acid (100 mL) and stirring was continued for 5 minutes. Thereafter, the product was collected by vacuum filtration (Kiriyama No. 5A, ⁇ 95 mm filter paper, Kiriyama Seisakusho; PG201 diaphragm vacuum pump, Yamato Scientific Co., Ltd.) and thoroughly washed with acetone. After drying the product under reduced pressure using a vacuum oven at 80° C. for 1 hour, an off-white fine amorphous powder (HSO 3 -PRT) was obtained and was directly subjected to analysis.
  • Clinsolve® P-7 manufactured by Nippon Alcohol Sales Co., Ltd
  • Example 29 Stearylation of 100 kDa recombinant protein Stearic acid (7.50 g, 26.4 mmol, 3.5 equivalents per nucleophilic residue) and 1,1-carbonyldiimidazole (4.27 g, 26.4 mmol, 3.5 equivalents per nucleophilic residue) was added to a 50 mL stainless steel grinding jar (Retsche) with stainless steel grinding media (1 x 25 mm balls, Retsche), and mixed with a mixer mill type ball mill (product name: Mixer Mill MM400, Retsche). A colorless amorphous powder was obtained by pulverization (frequency: 30 Hz, 30 minutes).
  • Example 30 Oleination of 100 kDa recombinant protein Under an inert nitrogen atmosphere, oleic acid (8.32 mL, 26.4 mmol, 3.5 equivalents per nucleophilic residue) and 1,1-carbonyldiimidazole (4. 27 g, 26.4 mmol, 3.5 eq. The mixture was heated and stirred at °C. The reaction mixture was mixed with recombinant protein PRT966 (4.0 g, 38.4 ⁇ mol) in a 50 mL stainless steel milling cup (Recce), stainless steel milling media (1 x ⁇ 25 mm ball, Recce) was added, and a mixer mill type was added.
  • recombinant protein PRT966 4.0 g, 38.4 ⁇ mol
  • the mixture was ground using a ball mill (trade name: Mixer Mill MM 400, manufactured by Recce) (frequency: 30 Hz, 90 minutes) to obtain granular brown powder.
  • the reaction mixture was removed from the grinding jar and suspended in tetrahydrofuran (200 mL) with stirring for 10 minutes. Thereafter, the product was collected by vacuum filtration (Kiriyama No. 5A, ⁇ 95 mm filter paper, Kiriyama Seisakusho; PG201 diaphragm vacuum pump, Yamato Scientific Co., Ltd.) and thoroughly washed with acetone. After drying the product under reduced pressure in a vacuum oven at 80° C. for 1 hour, an off-white fine amorphous powder (Ol-PRT) was obtained and was directly subjected to analysis.
  • a ball mill trade name: Mixer Mill MM 400, manufactured by Recce
  • Example 31 Sulfosuccinylation of 100 kDa recombinant protein 100 kDa maleate-esterified recombinant protein (5.0 g, 40.5 ⁇ mol) and sodium bisulfite (4.13 g, 39.7 mmol, 5 per nucleophilic residue) .0 equivalent) was added to a 50 mL stainless steel grinding jar (Recce) with stainless steel grinding media (1 x ⁇ 25 mm ball, Recce) using a mixer mill type ball mill (product name: Mixer Mill MM400, Recce). Liquid-assisted milling (frequency: 30 Hz, 10 minutes) was performed with RO water (1.0 mL) to obtain a light beige amorphous powder.
  • the reaction mixture was removed from the grinding jar and suspended in RO water (200 mL) with stirring for 10 minutes.
  • Acetonitrile (100 mL) was added to the suspension, and the product was collected by vacuum filtration (Kiriyama No. 5A, ⁇ 95 mm filter paper, Kiriyama Seisakusho; PG201 diaphragm vacuum pump, Yamato Scientific Co., Ltd.) and thoroughly washed with acetone. After drying the product under reduced pressure in a vacuum oven at 80° C. for 1 hour, an off-white fine amorphous powder (SulfoSucc-PRT) was obtained and was used directly for analysis.
  • Example 32 Diethoxyphosphoryl)succinylation of 100 kDa recombinant protein 100 kDa maleic acid esterified PRT966 (5.0 g, 40.5 ⁇ mol), diethyl phosphite (3.59 mL, 27.9 mmol, nucleophilic residues) 3.5 equivalents per nucleophilic residue) and sodium ethoxide (570 mg, 8.76 mmol, 1.1 equivalents per nucleophilic residue) were placed in a 50 mL stainless steel grinding jar (Recce) with stainless steel grinding media (1 x ⁇ 25 mm balls).
  • liquid-assisted pulverization (frequency: 30 Hz, 10 minutes) was performed with RO water (1.0 mL) using a mixer mill type ball mill (trade name: Mixer Mill MM400, manufactured by Recce) to obtain a light beige amorphous powder.
  • Ta The reaction mixture was removed from the grinding jar and suspended in RO water (200 mL) with stirring for 10 minutes.
  • Acetonitrile (100 mL) was added to the suspension, and the product was collected by vacuum filtration (Kiriyama No. 5A, ⁇ 95 mm filter paper, Kiriyama Seisakusho; PG201 diaphragm vacuum pump, Yamato Scientific Co., Ltd.) and thoroughly washed with acetone.
  • DEPS-PRT off-white fine amorphous powder
  • FIGS. 38a to 38d are photographs showing cast films of PRT966, Ac-PRT, Succ-PRT, and St-PRT, respectively.
  • the obtained homogeneous protein powder (1.2 g) was added to a stainless steel mold (Global Machine Co., Ltd.), and the pressure was increased to 50 MPa using a tabletop Newton press (product name: NT-100H, Sansho Industry Co., Ltd.). Pressure was applied for 1 minute.
  • the mold used was cylindrical and had a dumbbell-shaped through hole with a cross section of 45 mm x 15 mm. Thereafter, the pressure was released and the sample was taken out from the mold to obtain a dumbbell-shaped compressed sample measuring 45 mm x 15 mm x 2 mm.
  • FIG. 39(a) is a graph showing the combustion time of each sample
  • FIG. 39(b) is a graph showing the mass loss of each sample. Errors represent standard errors. From the measured burn time and mass loss, all protein derivative samples showed improved fire resistance over PRT966, with Example 31 showing the best fire resistance. The order of fire resistance was Example 31 > Example 28 > Example 27 > PRT966.
  • Second flame retardancy test In the second flame retardancy test, the fire resistance of unmodified PRT966, SulfoSucc-PRT (Example 31), and DEPS-PRT (Example 32) was evaluated. The ambient environmental conditions during the experiment were 20-25°C and 70-75% RH.
  • Thermoplasticity test (1) Production of resin sample for analysis The recombinant protein derivative to be analyzed (neat or containing 20 wt% glycerol as a plasticizer) was placed in a 50 mL stainless steel milling jar (manufactured by Retsch) with stainless steel milling media. (1 x ⁇ 25 mm ball) and pulverized (frequency: 30 Hz, 5 minutes) using a mixer mill type ball mill (trade name: Mixer Mill MM400, manufactured by Recce) to obtain a homogeneous mixture.
  • a mixer mill type ball mill trade name: Mixer Mill MM400, manufactured by Recce
  • the resulting homogeneous mixture (3.0 g) was added to a stainless steel mold (Global Machine Co., Ltd.) lightly coated with a fluorine-based mold release agent (product name: Daifree MS-600, Daikin Industries, Ltd.), and placed on a tabletop. Pressure was applied to 30 MPa using a model Newton press (product name: NT-100H, Sansho Industry Co., Ltd.). The mold used was cylindrical and had a rectangular through hole with a cross section of 35 mm x 15 mm. The compressed sample was heated to 170° C. using a temperature controller (trade name: MTCD 15-EN, manufactured by Misumi Group Inc.) and held at that temperature for 5 minutes. The sample was cooled to 60° C.
  • the molded resin tablet was cut using a tabletop circular saw (product name: K-210, Hozan Co., Ltd.) equipped with a diamond disc cutter (particle size: #150, product name: K-210-3, Hozan Co., Ltd.). , cut into analytical samples of 5 mm x 5 mm x 4.5 mm.
  • Tg glass transition temperature
  • softening point of each recombinant protein resin sample were measured using a quartz compressive load probe with a flat tip ( ⁇ 8 mm compressive detection) pressed against the sample with a load of 4.9 N. It was determined using a thermomechanical analyzer (trade name: TMA4000, manufactured by NETZSCHjapan Co., Ltd.) equipped with a rod P/N T1442-04; a compression support tube P/N T1442-03, manufactured by NETZSCHjapan Co., Ltd.). Thereafter, the sample was heated to 220° C. at a constant speed (10 K ⁇ min ⁇ 1 ), and the deformation of the sample was recorded.
  • FIG. 40 is a graph showing the softening point, Tg onset, and melting temperature Tm of unmodified PRT966 and each modified protein. Thermomechanical analysis shows that for both unmodified and plasticized recombinant protein resin samples, all modified derivatives have lower glass transition temperatures (Tg) and softening points than unmodified PRT966, with Example 30 having the lowest It was found to have a low Tg onset and softening point.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Zoology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Toxicology (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本発明は、タンパク質とアシル化剤を含む混合物をメカノケミカル法で処理して、修飾タンパク質を得る工程を含む、修飾タンパク質の製造方法を提供する。

Description

エステル化タンパク質及びその製造方法
 本発明は、エステル化タンパク質及びその製造方法に関する。
 近年、環境汚染への関心の高まりに伴って、石油由来素材の代替素材として、生分解性を有するタンパク質素材が注目されている。タンパク質素材は、そのタンパク質の種類に応じた物性を発揮するため、その用途に応じて必要とされる物性を備えたタンパク質を準備する必要がある。
 例えば、特許文献1には、医薬又は化粧料に用いるタンパク質として、所望のアミノ酸配列を発現するように修飾核酸を調製し、修飾スパイダーシルクタンパク質を得ることが開示されており、その修飾スパイダーシルクタンパク質にポリペプチド、多糖類、マーカー分子、量子ドット、金属、核酸、脂質、低分子薬物等の物質を更に結合させることが開示されている。このように、リジン、セリン及び/又はシステインを利用して他の物質を結合させることにより、タンパク質固有の特性とは別の特性を付与できる。
国際公開第2007/025719号 国際公開第2021/187502号 特許第5678283号公報 特許第5782580号公報 特許第5796147号公報 特許第5823079号公報 特許第6830604号公報
Ochiai B. et al. ACSOmega4,2019,17542-17546. Weissbach U. et al.BeilsteinJ.Org. Chem. 2017, 13, 1788-1795.
 通常、タンパク質を修飾する場合、タンパク質を溶解可能な溶媒中で結合させる物質と反応させる。しかし、タンパク質を溶解可能な溶媒は限定的であるため、修飾方法の自由度が小さく、結果として製造可能な修飾タンパク質も制限されるという問題がある。加えて、溶媒中の反応では、使用される溶媒の種類によってはタンパク質が溶媒と反応してしまい、不必要な副生物が生じる場合もある。具体的には、タンパク質を溶解できる溶媒の種類として、ジメチルスルホキシド(DMSO)、ヘキサフルオロイソプロパノール(HFIP)等がよく知られているが、これら溶媒にタンパク質を溶解させてアシル化剤を加えると、Swern酸化型の酸化反応やアルコール系溶媒のアシル化が進行することがある。そこで、本発明は、修飾タンパク質の新たな製造方法を提供することを目的とする。
 本発明者は、メカノケミカル条件でタンパク質をアシル化することによって、所望の修飾タンパク質を得ることができることを見出した。すなわち、本発明は、以下の(1)~(66)を提供する。
(1) タンパク質とアシル化剤を含む混合物をメカノケミカル法で処理して、修飾タンパク質を得る工程を含む、修飾タンパク質の製造方法。
(2) 混合物が塩基及び/又は反応促進剤を更に含む、(1)に記載の方法。
(3) 混合物が溶媒を更に含む、(1)又は(2)に記載の方法。
(4) 溶媒の量がタンパク質の量に対して1~100重量%である、(3)に記載の方法。
(5) メカノケミカル法で処理された生成物を洗浄する工程を更に含む、(1)~(4)のいずれかに記載の方法。
(6) 洗浄する工程の後、洗浄された生成物を乾燥する工程を更に含む、(5)に記載の方法。
(7) タンパク質が疎水性タンパク質を含む、(1)~(6)のいずれかに記載の方法。
(8) 疎水性タンパクのハイドロパシー・インデックスが0超である、(7)に記載の方法。
(9) タンパク質が人工タンパク質を含む、(1)~(8)のいずれかに記載の方法。
(10) 人工タンパク質が人工構造タンパク質を含む、(9)に記載の方法。
(11) 微生物学的手法により前記タンパク質を得る工程を更に含む、(1)~(10)のいずれかに記載の方法。
(12) 前記アシル化剤が親水性基を含む、(1)に記載の修飾タンパク質の製造方法。
(13) 前記アシル化剤がヒドロキシ基、カルボキシ基、アミノ基、スルホ基、ホスフェート基からなる群から選択される少なくとも1種を含む、(1)に記載の修飾タンパク質の製造方法。
(14) 前記アシル化剤が疎水性基を含む、(1)に記載の修飾タンパク質の製造方法。
(15) 前記アシル化剤がアルキル基、アルケニル基、アルキニル基、シクロアルキル基、アリール基からなる群から選択される少なくとも1種を含む、(1)に記載の修飾タンパク質の製造方法。
(16) 前記アシル化剤が難燃性元素(難燃性を付与できる原子)を含む、(1)に記載の修飾タンパク質の製造方法。
(17) 前記アシル化剤が硫黄原子またはリン原子を含む、(1)に記載の修飾タンパク質の製造方法。
(18) 前記修飾タンパク質が、難燃性元素(難燃性を付与できる原子)を含む、(1)に記載の修飾タンパク質の製造方法。
(19) 前記修飾タンパク質が、硫黄原子またはリン原子を含む、(1)に記載の修飾タンパク質の製造方法。
(20) 前記アシル化剤が、無水コハク酸または無水マレイン酸である、(1)に記載の修飾タンパク質の製造方法。
(21) 前記アシル化剤が、スクシニル基およびマレイル基からなる群から選択される少なくとも1種の構造を含む、(1)に記載の修飾タンパク質の製造方法。
(22) 前記アシル化剤が炭素数6以上のアルキル基を含む、(1)に記載の修飾タンパク質の製造方法。
(23) 前記アシル化剤が、脂肪酸および不飽和脂肪酸からなる群から選択される少なくとも1種の構造を含む、(1)に記載の修飾タンパク質の製造方法。
(24) メカノケミカル法での処理が、前記混合物に対してせん断力を加えることによって実現される、(1)に記載の方法。
(25) せん断力が、ミキサーミル又はエクストルーダーを用いて前記混合物に加えられる、(24)に記載の方法。
(26) (1)~(25)のいずれかに記載の方法によって得られる修飾タンパク質。
(27) (26)に記載の修飾タンパク質を含む修飾タンパク質組成物。
(28) (27)に記載の修飾タンパク質組成物を成形してなる修飾タンパク質成形体。
(29) (26)に記載の修飾タンパク質を含む成形用材料。
(30) (29)に記載の成形用材料を成形してなる修飾タンパク質成形体。(31) 修飾タンパク質成形体が、繊維、フィルム、ゲル、多孔質体、パーティクル、及び樹脂からなる群のうちのいずれかである、(28)に記載の修飾タンパク質成形体。
(32) (1)~(25)のいずれかに記載の方法によって得られた修飾タンパク質を含む繊維。
(33) (1)~(25)のいずれかに記載の方法によって得られた修飾タンパク質を含むフィルム。
(34) (1)~(25)のいずれかに記載の方法によって得られた修飾タンパク質を含むヒドロゲル。
(35) (1)~(25)のいずれかに記載の方法によって得られた修飾タンパク質を含む多孔質体。
(36) (1)~(25)のいずれかに記載の方法によって得られた修飾タンパク質を含むパーティクル。
(37) (1)~(25)のいずれかに記載の方法によって得られた修飾タンパク質を含む樹脂。
(38) タンパク質とアシル化剤を含む混合物をメカノケミカル法で処理して、修飾タンパク質を得る工程と、得られた修飾タンパク質を紡糸する工程と、を含む、タンパク質繊維の製造方法。
(39) (1)に記載の方法によって得られた修飾タンパク質を溶媒に溶解させる工程を含む、溶液状接着剤の製造方法。
(40) (1)に記載の方法によって得られた修飾タンパク質を水性媒体に分散させる工程を含む、水分散性接着剤の製造方法。
(41) (1)に記載の方法によって得られた修飾タンパク質が溶解した溶液からフィルムを成形する工程を含む、フィルム状接着剤の製造方法。
(41-1) (1)に記載の方法によって修飾タンパク質を得る工程と、得られた修飾タンパク質を溶媒に溶解させて、フィルムを成形する工程と、を含む、フィルム状接着剤の製造方法。
(42) (1)に記載の方法によって得られた修飾タンパク質を含む粉末を得る工程を含む、粉末状接着剤の製造方法。
(42-1) (1)に記載の方法によって得られた修飾タンパク質を粉末化する工程を含む、粉末状接着剤の製造方法。
(42-2) (1)に記載の方法によって修飾タンパク質を得る工程と、得られた修飾タンパク質を粉末化する工程と、を含む、粉末状接着剤の製造方法。
(42-3) (1)に記載の方法によって得られた修飾タンパク質と、粘着向上剤又は接着向上剤とを含む粉末組成物を得る工程を含む、粉末状接着剤の製造方法。
(42-4) (1)に記載の方法によって得られた修飾タンパク質に粘着向上剤又は接着向上剤を加えて組成物を得る工程と、得られた組成物を粉末化する工程とを含む、粉末状接着剤の製造方法。
(42-5) (1)に記載の方法によって修飾タンパク質を得る工程と、得られた修飾タンパク質と粘着向上剤又は接着向上剤とを含む粉末組成物を得る工程を含む、粉末状接着剤の製造方法。
(42-6) (1)に記載の方法によって修飾タンパク質を得る工程と、得られた修飾タンパク質に粘着向上剤又は接着向上剤を加えて組成物を得る工程と、得られた組成物を粉末化する工程と、を含む、粉末状接着剤の製造方法。
(43) 修飾タンパク質が、マレイン酸エステル化タンパク質、コハク酸エステル化タンパク質、スルホン酸エステル化タンパク質、及びリン酸エステル化タンパク質からなる群から選択される少なくとも1種である、(39)~(42)のいずれかに記載の接着剤の製造方法。
(44) 修飾タンパク質が、マレイン酸エステル化タンパク質、コハク酸エステル化タンパク質、スルホン酸エステル化タンパク質、及びリン酸エステル化タンパク質からなる群から選択される少なくとも1種であり、溶媒が塩基性水溶液である、(39)に記載の溶液状接着剤の製造方法。
(45) 修飾タンパク質が、マレイン酸エステル化タンパク質、コハク酸エステル化タンパク質、スルホン酸エステル化タンパク質、及びリン酸エステル化タンパク質からなる群から選択される少なくとも1種であり、フィルムを成形する工程が、修飾タンパク質を塩基性水溶液に溶解することを含む、(41)又は(41-1)に記載のフィルム状接着剤の製造方法。
(46) (1)に記載の方法によって得られた修飾タンパク質を溶媒に溶解してなる溶液を複数の被着体の間に介在させた後、前記溶液から前記溶媒を除去して、前記修飾タンパク質を固化させることにより、被着体同士を接着することを含む、接着体の製造方法。
(46-1) (1)に記載の方法によって修飾タンパク質を得る工程と、得られた修飾タンパク質に溶媒に溶解させて溶液を得る工程と、得られた溶液を複数の被着体の間に介在させた後、前記溶液から前記溶媒を除去して、前記修飾タンパク質を固化させることにより、被着体同士を接着する工程を含む、接着体の製造方法。
(47) (1)に記載の方法によって得られた修飾タンパク質を水性媒体に分散してなる水分散液を、複数の被着体の間に介在させた後、前記水分散液から前記水性媒体を除去して、前記修飾タンパク質を固化させることにより、被着体同士を接着することを含む、接着体の製造方法。
(47-1) (1)に記載の方法によって修飾タンパク質を得る工程と、得られた修飾タンパク質に水性媒体に分散させて水分散液を得る工程と、得られた水分散液を複数の被着体の間に介在させた後、前記水分散液から前記水性媒体を除去して、前記修飾タンパク質を固化させることにより、被着体同士を接着する工程を含む、接着体の製造方法。
(48) (1)に記載の方法によって得られた修飾タンパク質を含むフィルムを膨潤又は加熱により軟化させると共に、複数の被着体の間に介在させた後、前記フィルムを前記被着体に圧接させた状態で硬化させることにより、前記被着体同士を接着することを含む、接着体の製造方法。
(48-1) (1)に記載の方法によって修飾タンパク質を得る工程と、得られた修飾タンパク質に溶媒に溶解させて、フィルムを成形する工程と、得られたフィルムを膨潤又は加熱により軟化させると共に、複数の被着体の間に介在させた後、前記フィルムを前記被着体に圧接させた状態で硬化させることにより、前記被着体同士を接着する工程を含む、接着体の製造方法。
(49) (1)に記載の方法によって得られた修飾タンパク質を含む粉末を複数の被着体の間に介在させた状態で、前記粉末を加熱すると共に、前記被着体を介して前記粉末を加圧して、固化させることにより、前記被着体同士を接着することを特徴とする接着体の製造方法。
(49-1) (1)に記載の方法によって得られた修飾タンパク質を粉末化する工程と、得られた粉末を複数の被着体の間に介在させた状態で、前記粉末を加熱すると共に、前記被着体を介して前記粉末を加圧して、固化させることにより、前記被着体同士を接着する工程を含む、接着体の製造方法。
(49-2) (1)に記載の方法によって修飾タンパク質を得る工程と、得られた修飾タンパク質を粉末化する工程と、得られた粉末を複数の被着体の間に介在させた状態で、前記粉末を加熱すると共に、前記被着体を介して前記粉末を加圧して、固化させることにより、前記被着体同士を接着する工程を含む、接着体の製造方法。
(49-3) (1)に記載の方法によって得られた修飾タンパク質と、粘着向上剤又は接着向上剤とを含む粉末組成物を得る工程と、得られた粉末組成物を複数の被着体の間に介在させた状態で、前記粉末組成物を加熱すると共に、前記被着体を介して前記粉末組成物を加圧して、固化させることにより、前記被着体同士を接着する工程を含む、接着体の製造方法。
(49-4) (1)に記載の方法によって得られた修飾タンパク質に粘着向上剤又は接着向上剤を加えて組成物を得る工程と、得られた組成物を粉末化する工程と、得られた粉末組成物を複数の被着体の間に介在させた状態で、前記粉末組成物を加熱すると共に、前記被着体を介して前記粉末組成物を加圧して、固化させることにより、前記被着体同士を接着する工程を含む、接着体の製造方法。
(49-5) (1)に記載の方法によって修飾タンパク質を得る工程と、得られた修飾タンパク質と粘着向上剤又は接着向上剤とを含む粉末組成物を得る工程と、得られた粉末組成物を複数の被着体の間に介在させた状態で、前記粉末組成物を加熱すると共に、前記被着体を介して前記粉末組成物を加圧して、固化させることにより、前記被着体同士を接着する工程を含む、接着体の製造方法。
(49-6) (1)に記載の方法によって修飾タンパク質を得る工程と、得られた修飾タンパク質に粘着向上剤又は接着向上剤を加えて組成物を得る工程と、得られた組成物を粉末化する工程と、得られた粉末組成物を複数の被着体の間に介在させた状態で、前記粉末組成物を加熱すると共に、前記被着体を介して前記粉末組成物を加圧して、固化させることにより、前記被着体同士を接着する工程を含む、接着体の製造方法。
(50) 修飾タンパク質が、マレイン酸エステル化タンパク質、コハク酸エステル化タンパク質、スルホン酸エステル化タンパク質、及びリン酸エステル化タンパク質からなる群から選択される少なくとも1種である、(46)~(49)に記載の接着体の製造方法。
(51) 修飾タンパク質が、マレイン酸エステル化タンパク質、コハク酸エステル化タンパク質、スルホン酸エステル化タンパク質、及びリン酸エステル化タンパク質からなる群から選択される少なくとも1種であり、溶媒が塩基性水溶液である、(46)に記載の接着体の製造方法。
(52) フィルムが、マレイン酸エステル化タンパク質、コハクエステル化タンパク質、スルホン酸エステル化タンパク質、及びリン酸エステル化タンパク質からなる群から選択される少なくとも1種の前記修飾タンパク質が塩基性水溶液に溶解した溶液をキャスト成形して得られるものである、(48)に記載の接着体の製造方法。
(52-1) 修飾タンパク質が、マレイン酸エステル化タンパク質、コハクエステル化タンパク質、スルホン酸エステル化タンパク質、及びリン酸エステル化タンパク質からなる群から選択される少なくとも1種であり、フィルムを成形する工程が修飾タンパク質を塩基性水溶液に溶解した後、キャスト成形する工程である、(48-1)に記載の接着体の製造方法。
(53) (1)に記載の方法によって得られた修飾タンパク質を溶媒に溶解させる工程を含む、溶液状コーティング剤の製造方法。
(53-1) (1)に記載の方法によって修飾タンパク質を得る工程と、得られた修飾タンパク質を溶媒に溶解させる工程と、を含む、溶液状コーティング剤の製造方法。
(54) (1)に記載の方法によって得られた修飾タンパク質を水性媒体に分散させる工程を含む、水分散性コーティング剤の製造方法。
(54-1) (1)に記載の方法によって修飾タンパク質を得る工程と、得られた修飾タンパク質を水性媒体に分散させる工程と、を含む、水分散性コーティング剤の製造方法。
(55) (1)に記載の方法によって得られた修飾タンパク質が溶解した溶液からフィルムを成形する工程を含む、フィルム状コーティング剤の製造方法。
(55-1) (1)に記載の方法によって修飾タンパク質を得る工程と、得られた修飾タンパク質を溶媒に溶解させて、フィルムを成形する工程と、を含む、フィルム状コーティング剤の製造方法。
(56) (1)に記載の方法によって得られた修飾タンパク質を含む粉末を得る工程を含む、粉末状コーティング剤の製造方法。
(56-1) (1)に記載の方法によって得られた修飾タンパク質を粉末化する工程を含む、粉末状コーティング剤の製造方法。
(56-2) (1)に記載の方法によって修飾タンパク質を得る工程と、得られた修飾タンパク質を粉末化する工程と、を含む、粉末状コーティング剤の製造方法。
(56-3) (1)に記載の方法によって得られた修飾タンパク質と、粘着向上剤又は接着向上剤とを含む粉末組成物を得る工程を含む、粉末状コーティング剤の製造方法。
(56-4) (1)に記載の方法によって得られた修飾タンパク質に粘着向上剤又は接着向上剤を加えて組成物を得る工程と、得られた組成物を粉末化する工程とを含む、粉末状コーティング剤の製造方法。
(56-5) (1)に記載の方法によって修飾タンパク質を得る工程と、得られた修飾タンパク質と粘着向上剤又は接着向上剤とを含む粉末組成物を得る工程を含む、粉末状コーティング剤の製造方法。
(56-6) (1)に記載の方法によって修飾タンパク質を得る工程と、得られた修飾タンパク質に粘着向上剤又は接着向上剤を加えて組成物を得る工程と、得られた組成物を粉末化する工程と、を含む、粉末状コーティング剤の製造方法。
(57) 修飾タンパク質が、マレイン酸エステル化タンパク質、コハク酸エステル化タンパク質、スルホン酸エステル化タンパク質、及びリン酸エステル化タンパク質からなる群から選択される少なくとも1種である、(41)~(44)に記載のコーティング剤の製造方法。
(58) 修飾タンパク質が、マレイン酸エステル化タンパク質、コハク酸エステル化タンパク質、スルホン酸エステル化タンパク質、及びリン酸エステル化タンパク質からなる群から選択される少なくとも1種であり、溶媒が塩基性水溶液である、(51)に記載の溶液状コーティング剤の製造方法。
(59) 修飾タンパク質が、マレイン酸エステル化タンパク質、コハク酸エステル化タンパク質、スルホン酸エステル化タンパク質、及びリン酸エステル化タンパク質からなる群から選択される少なくとも1種であり、前記修飾タンパク質を塩基性水溶液に溶解する工程を含む、(55)に記載のフィルム状コーティング剤の製造方法。
(60) 基材と、前記基材の表面の少なくとも一部に積層形成されたコーティング層とを有する積層体の製造方法であって、(1)に記載の方法によって得られた修飾タンパク質が溶媒に溶解してなる溶液を前記基材の表面の少なくとも一部に供給して、前記基材の表面の少なくとも一部を前記溶液でコーティングした後、前記溶液から前記溶媒を除去して、前記修飾タンパク質を固化させることにより、前記基材の表面の少なくとも一部に前記コーティング層を積層形成することを特徴とする積層体の製造方法。
(60-1) 基材と、前記基材の表面の少なくとも一部に形成されたコーティング層とを有する積層体の製造方法であって、(1)に記載の方法によって修飾タンパク質を得る工程と、得られた修飾タンパク質を溶媒に溶解して溶液を得る工程と、前記基材の表面の少なくとも一部に前記溶液を供給して、前記基材の表面の少なくとも一部を前記溶液でコーティングする工程と、前記コーティングから前記溶媒を除去して、前記コーティング層を形成する工程と、を含む、積層体の製造方法。
(61) 基材と、前記基材の表面の少なくとも一部に積層形成されたコーティング層とを有する積層体の製造方法であって、(1)に記載の方法によって得られた修飾タンパク質が水性媒体に分散してなる水分散液を前記基材の表面の少なくとも一部に供給して、前記基材の表面の少なくとも一部を前記水分散液でコーティングした後、前記水分散液から前記水性媒体を除去して、前記修飾タンパク質を固化させることにより、前記基材の表面の少なくとも一部にコーティング層を積層形成することを特徴とする積層体の製造方法。
(61-1) 基材と、前記基材の表面の少なくとも一部に形成されたコーティング層とを有する積層体の製造方法であって、(1)に記載の方法によって修飾タンパク質を得る工程と、得られた修飾タンパク質を水性媒体に分散させて水分散液を得る工程と、前記基材の表面の少なくとも一部に前記水分散液を供給して、前記基材の表面の少なくとも一部を前記水分散液でコーティングする工程と、前記コーティングから前記水性媒体を除去して、前記コーティング層を形成する工程と、を含む、積層体の製造方法。
(62) 基材と、前記基材の表面の少なくとも一部に積層形成されたコーティング層とを有する積層体の製造方法であって、(1)に記載の方法によって得られた修飾タンパク質を含むフィルムを、膨潤又は加熱により軟化させると共に、前記基材の表面の少なくとも一部に載置した後、前記フィルムを前記基材に圧接させた状態で硬化させることにより、前記基材の表面の少なくとも一部にコーティング層を積層形成することを特徴とする積層体の製造方法。
(62-1) 基材と、前記基材の表面の少なくとも一部に形成されたコーティング層とを有する積層体の製造方法であって、(1)に記載の方法によって修飾タンパク質を得る工程と、得られた修飾タンパク質を溶媒に溶解してフィルムを成形する工程と、前記フィルムを膨潤又は加熱により軟化させると共に、前記基材の表面の少なくとも一部に載置する工程と、前記フィルムを前記基材に圧接させた状態で硬化させて、前記コーティング層を形成する工程と、を含む、積層体の製造方法。
(63) 基材と、前記基材の表面の少なくとも一部に積層形成されたコーティング層とを有する積層体の製造方法であって、(1)に記載の方法によって得られた修飾タンパク質を含む粉末を前記基材の表面の少なくとも一部に載置した状態で、前記粉末を加熱すると共に、加圧体と前記基材との間で前記粉末を加圧して、固化させることにより、前記基材の表面の少なくとも一部にコーティング層を積層形成することを特徴とする積層体の製造方法。
(63-1) 基材と、前記基材の表面の少なくとも一部に形成されたコーティング層とを有する積層体の製造方法であって、(1)に記載の方法によって得られた修飾タンパク質を粉末化する工程と、得られた粉末を前記基材の表面の少なくとも一部に載置した状態で、前記粉末を加熱すると共に、加圧体と前記基材との間で前記粉末を加圧して、固化させることにより、前記基材の表面の少なくとも一部にコーティング層を積層形成することを特徴とする積層体の製造方法。
(63-2) 基材と、前記基材の表面の少なくとも一部に形成されたコーティング層とを有する積層体の製造方法であって、(1)に記載の方法によって修飾タンパク質を得る工程と、得られた修飾タンパク質を粉末化する工程と、得られた粉末を前記基材の表面の少なくとも一部に載置した状態で、前記粉末を加熱すると共に、加圧体と前記基材との間で前記粉末を加圧して、固化させることにより、前記基材の表面の少なくとも一部にコーティング層を積層形成することを特徴とする積層体の製造方法。
(63-3) 基材と、前記基材の表面の少なくとも一部に形成されたコーティング層とを有する積層体の製造方法であって、(1)に記載の方法によって得られた修飾タンパク質と、粘着向上剤又は接着向上剤とを含む粉末組成物を得る工程と、得られた粉末組成物を前記基材の表面の少なくとも一部に載置した状態で、前記粉末組成物を加熱すると共に、加圧体と前記基材との間で前記粉末組成物を加圧して、固化させることにより、前記基材の表面の少なくとも一部にコーティング層を積層形成することを特徴とする積層体の製造方法。
(63-4) 基材と、前記基材の表面の少なくとも一部に形成されたコーティング層とを有する積層体の製造方法であって、(1)に記載の方法によって得られた修飾タンパク質に粘着向上剤又は接着向上剤を加えて組成物を得る工程と、得られた組成物を粉末化する工程と、得られた粉末組成物を前記基材の表面の少なくとも一部に載置した状態で、前記粉末組成物を加熱すると共に、加圧体と前記基材との間で前記粉末組成物を加圧して、固化させることにより、前記基材の表面の少なくとも一部にコーティング層を積層形成することを特徴とする積層体の製造方法。
(63-5) 基材と、前記基材の表面の少なくとも一部に形成されたコーティング層とを有する積層体の製造方法であって、(1)に記載の方法によって修飾タンパク質を得る工程と、得られた修飾タンパク質と粘着向上剤又は接着向上剤とを含む粉末組成物を得る工程と、得られた粉末組成物を前記基材の表面の少なくとも一部に載置した状態で、前記粉末組成物を加熱すると共に、加圧体と前記基材との間で前記粉末組成物を加圧して、固化させることにより、前記基材の表面の少なくとも一部にコーティング層を積層形成することを特徴とする積層体の製造方法。
(63-6) 基材と、前記基材の表面の少なくとも一部に形成されたコーティング層とを有する積層体の製造方法であって、(1)に記載の方法によって修飾タンパク質を得る工程と、得られた修飾タンパク質に粘着向上剤又は接着向上剤を加えて組成物を得る工程と、得られた組成物を粉末化する工程と、得られた粉末組成物を前記基材の表面の少なくとも一部に載置した状態で、前記粉末組成物を加熱すると共に、加圧体と前記基材との間で前記粉末組成物を加圧して、固化させることにより、前記基材の表面の少なくとも一部にコーティング層を積層形成することを特徴とする積層体の製造方法。
(63-7) 基材と、前記基材の表面の少なくとも一部に形成されたコーティング層とを有する積層体の製造方法であって、(1)に記載の方法によって得られた修飾タンパク質を粉末化する工程と、得られた修飾タンパク質に粘着向上剤又は接着向上剤を加えて粉末組成物を得る工程と、前記粉末組成物を加熱すると共に、前記基材の表面の少なくとも一部に載置する工程と、加圧体と前記基材との間で前記粉末組成物を加圧して、前記コーティング層を形成する工程と、を含む、積層体の製造方法。
(64) 修飾タンパク質が、マレイン酸エステル化タンパク質、コハク酸エステル化タンパク質、スルホン酸エステル化タンパク質、及びリン酸エステル化タンパク質からなる群から選択される少なくとも1種である、(60)~(63)に記載の積層体の製造方法。
(65) 修飾タンパク質が、マレイン酸エステル化タンパク質、コハク酸エステル化タンパク質、スルホン酸エステル化タンパク質、及びリン酸エステル化タンパク質からなる群から選択される少なくとも1種であり、溶媒が塩基性水溶液である、(60)に記載の積層体の製造方法。
(66) フィルムが、マレイン酸エステル化タンパク質、コハク酸エステル化タンパク質、スルホン酸エステル化タンパク質、及びリン酸エステル化タンパク質からなる群から選択される少なくとも1種の修飾タンパク質が塩基性水溶液に溶解した溶液から成形して得られるものである、(62)に記載の積層体の製造方法。
(66-1) 修飾タンパク質が、マレイン酸エステル化タンパク質、コハク酸エステル化タンパク質、スルホン酸エステル化タンパク質、及びリン酸エステル化タンパク質からなる群から選択される少なくとも1種であり、フィルムを成形する工程が、修飾タンパク質を塩基性水溶液に溶解して成形することである、(62)に記載の積層体の製造方法。
 本発明によれば、修飾タンパク質の新たな製造方法を提供することができ、従来の溶媒中で行うタンパク質の修飾と比べて、反応条件の自由度が高く、より広汎な修飾タンパク質を得ることができる。また、本発明によれば、所望の用途に応じた適切な物性を有する修飾タンパク質を製造することができる。
 メカノケミカル法でのエステル化は、セルロースのアセチル化(非特許文献1参照)、酵素を用いたリグニンモデル化合物の選択的エステル化(非特許文献2参照)が知られているが、タンパク質のエステル化に適用した事例は知られていない。
(a)は、比較例1及び2、実施例1及び2の修飾タンパク質の外観を示す写真である、(b)は、未修飾タンパク質PRT966と修飾タンパク質のGPCにおける保持時間を比較したグラフである。 (a)は、比較例1及び未修飾タンパク質PRT966のIRスペクトルであり、(b)は、比較例1及び未修飾タンパク質PRT966のGPCクロマトグラムである。 (a)は、比較例2及び未修飾タンパク質PRT966のIRスペクトルであり、(b)は、比較例2及び未修飾タンパク質PRT966のGPCクロマトグラムである。 (a)は、実施例1及び未修飾タンパク質PRT966のIRスペクトルであり、(b)は、実施例1及び未修飾タンパク質PRT966のGPCクロマトグラムである。 (a)は、実施例2及び未修飾タンパク質PRT966のIRスペクトルであり、(b)は、実施例2及び未修飾タンパク質PRT966のGPCクロマトグラムである。 (a)は、実施例3及び未修飾タンパク質PRT2882のIRスペクトルであり、(b)は、実施例3及び未修飾タンパク質PRT2882のGPCクロマトグラムである。 (a)は、実施例4及び未修飾タンパク質PRT2841のIRスペクトルであり、(b)は、実施例4及び未修飾タンパク質PRT2841のGPCクロマトグラムである。 (a)は、実施例5及び未修飾タンパク質PRT2662のIRスペクトルであり、(b)は、実施例5及び未修飾タンパク質PRT2662のGPCクロマトグラムである。 (a)は、実施例6及び未修飾タンパク質PRT1000のIRスペクトルであり、(b)は、実施例6及び未修飾タンパク質PRT1000のGPCクロマトグラムである。 (a)は、実施例7及び未修飾タンパク質PRT918のIRスペクトルであり、(b)は、実施例7及び未修飾タンパク質PRT918のGPCクロマトグラムである。 (a)は、実施例8及び未修飾タンパク質PRT966のIRスペクトルであり、(b)は、実施例8及び未修飾タンパク質PRT966のGPCクロマトグラムである。 (a)は、実施例9及び未修飾タンパク質PRT966のIRスペクトルであり、(b)は、実施例9及び未修飾タンパク質PRT966のGPCクロマトグラムである。 (a)は、実施例10及び未修飾タンパク質PRT966のIRスペクトルであり、(b)は、実施例10及び未修飾タンパク質PRT966のGPCクロマトグラムである。 (a)は、実施例11及び未修飾タンパク質PRT966のIRスペクトルであり、(b)は、実施例11及び未修飾タンパク質PRT966のGPCクロマトグラムである。 (a)は、実施例12及び未修飾タンパク質PRT966のIRスペクトルであり、(b)は、実施例12及び未修飾タンパク質PRT966のGPCクロマトグラムである。 (a)は、実施例13及び未修飾タンパク質PRT966のIRスペクトルであり、(b)は、実施例13及び未修飾タンパク質PRT966のGPCクロマトグラムである。 (a)は、実施例14及び未修飾タンパク質PRT966のIRスペクトルであり、(b)は、実施例14及び未修飾タンパク質PRT966のGPCクロマトグラムである。 (a)は、実施例15及び未修飾タンパク質PRT966のIRスペクトルであり、(b)は、実施例15及び未修飾タンパク質PRT966のGPCクロマトグラムである。 (a)は、実施例16及び未修飾タンパク質PRT966のIRスペクトルであり、(b)は、実施例16及び未修飾タンパク質PRT966のGPCクロマトグラムである。 (a)は、実施例17及び未修飾タンパク質PRT966のIRスペクトルであり、(b)は、実施例17及び未修飾タンパク質PRT966のGPCクロマトグラムである。 (a)は、実施例18及び未修飾タンパク質PRT966のIRスペクトルであり、(b)は、実施例18及び未修飾タンパク質PRT966のGPCクロマトグラムである。 (a)は、実施例19及び未修飾タンパク質PRT966のIRスペクトルであり、(b)は、実施例19及び未修飾タンパク質PRT966のGPCクロマトグラムである。 (a)は、実施例20及び未修飾タンパク質PRT966のIRスペクトルであり、(b)は、実施例20及び未修飾タンパク質PRT966のGPCクロマトグラムである。 (a)は、実施例21及び未修飾タンパク質PRT966のIRスペクトルであり、(b)は、実施例21及び未修飾タンパク質PRT966のGPCクロマトグラムである。 (a)は、実施例22及び未修飾タンパク質PRT966のIRスペクトルであり、(b)は、実施例22及び未修飾タンパク質PRT966のGPCクロマトグラムである。 (a)は、タンパク質又は修飾タンパク質に水を加えた状態を示す写真であり、(b)は、タンパク質又は修飾タンパク質にアセトンを加えた状態を示す写真であり、(c)は、タンパク質又は修飾タンパク質に0.5w/v%水酸化ナトリウム水溶液を加えた状態を示す写真である。 (a)は、DMSOを加えた直後のタンパク質の状態を示す写真であり、(b)は、DMSOに溶解した状態を示す写真であり、(c)は、各タンパク質のゲル化状態を比較した写真である。 (a)は、実施例24及び未修飾タンパク質PRT966のIRスペクトルであり、(b)は、実施例24及び未修飾タンパク質PRT966のGPCクロマトグラムである。 (a)は、実施例25及び未修飾タンパク質PRT966のIRスペクトルであり、(b)は、実施例25及び未修飾タンパク質PRT966のGPCクロマトグラムである。 押出機のスクリューセグメントを示す写真である。図30において、FCは前進搬送要素を示し、Rは逆転要素を示し、Kは混練要素を示し、Cは圧縮要素を示す。 (a)は、実施例26及び未修飾タンパク質PRT966のIRスペクトルであり、(b)は、実施例26及び未修飾タンパク質PRT966のGPCクロマトグラムである。 (a)は、実施例27及び未修飾タンパク質PRT966のIRスペクトルであり、(b)は、実施例27及び未修飾タンパク質PRT966のGPCクロマトグラムである。 (a)は、実施例28及び未修飾タンパク質PRT966のIRスペクトルであり、(b)は、実施例28及び未修飾タンパク質PRT966のGPCクロマトグラムである。 (a)は、実施例29及び未修飾タンパク質PRT966のIRスペクトルであり、(b)は、実施例29及び未修飾タンパク質PRT966のGPCクロマトグラムである。 (a)は、実施例30及び未修飾タンパク質PRT966のIRスペクトルであり、(b)は、実施例30及び未修飾タンパク質PRT966のGPCクロマトグラムである。 (a)は、実施例31及び未修飾タンパク質PRT966のIRスペクトルであり、(b)は、実施例31及び未修飾タンパク質PRT966のGPCクロマトグラムである。 (a)は、実施例32及び未修飾タンパク質PRT966のIRスペクトルであり、(b)は、実施例32及び未修飾タンパク質PRT966のGPCクロマトグラムである。 a~dは、それぞれPRT966、Ac-PRT、Succ-PRT、およびSt-PRTのキャストフィルムを示す写真である。 (a)は各サンプルの燃焼時間を示すグラフであり、(b)は各サンプルの質量損失を示すグラフである。 未修飾PRT966及び各修飾タンパク質の軟化点、Tgオンセット、融解温度Tmを示すグラフである。
 以下、本開示を実施するための形態について、場合によって図面を参照し、詳細に説明する。ただし、以下の実施形態は本開示を説明するための例示であり、本開示を以下の内容に限定する趣旨ではない。
 本明細書において例示する材料は特に断らない限り、1種を単独で又は2種以上を組み合わせて用いることができる。組成物中の各成分の含有量は、組成物中の各成分に該当する物質が複数存在する場合には、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
 本発明の第一実施形態は、タンパク質とアシル化剤を含む混合物をメカノケミカル法で処理して、修飾タンパク質を得る工程を含む、修飾タンパク質の製造方法である。
 本明細書において、「修飾タンパク質」とは、原料となるタンパク質中のリジン残基、セリン残基、スレオニン残基、チロシン残基又はシステイン残基の少なくとも一部又は全部がアシル化されたタンパク質である。すなわち、原料となるタンパク質は、そのアミノ酸配列中に少なくとも1つのリジン残基、セリン残基、スレオニン残基、チロシン残基又はシステイン残基を有する。
<タンパク質>
 タンパク質は、天然のタンパク質であっても、人工タンパク質であってもよい。例えば、所望の用途に求められる物性に近い物性を有するタンパク質を採用することができる。また、タンパク質としては、工業用に利用できるタンパク質、医療用に利用できるタンパク質等を挙げることができる。工業用に利用可能とは、例えば、屋内や屋外で使用される様々な汎用材料等に利用し得ることをいう。工業用に利用できるタンパク質の具体例としては、構造タンパク質を挙げることができる。また、構造タンパク質の具体例としては、スパイダーシルク(クモ糸)、カイコシルク、ケラチン、コラーゲン、エラスチン及びレシリン、並びにこれら由来のタンパク質等を挙げることができる。使用するタンパク質としては、人工フィブロイン、或いは人工クモ糸フィブロイン(人工改変クモ糸フィブロイン)であってもよい。医療用に利用できるタンパク質の具体例としては、酵素、制御タンパク質、受容体、ペプチドホルモン、サイトカイン、膜又は輸送タンパク質、予防接種に利用する抗原、ワクチン、抗原結合タンパク質、免疫刺激タンパク質、アレルゲン、完全長抗体又は抗体フラグメント若しくは誘導体を挙げることができる。
 人工タンパク質は、組換え(リコンビナント)タンパク質と合成タンパク質とを含む。つまり、本明細書において「人工タンパク質」とは、人為的に製造されたタンパク質を意味する。人工タンパク質は、そのドメイン配列が、天然由来のタンパク質のアミノ酸配列とは異なるタンパク質であってもよく、天然由来のタンパク質のアミノ酸配列と同一であるタンパク質であってもよい。また、「人工タンパク質」は、天然由来のタンパク質のアミノ酸配列をそのまま利用したものであってもよく、天然由来のタンパク質のアミノ酸配列に依拠してそのアミノ酸配列を改変したもの(例えば、クローニングした天然由来のタンパク質の遺伝子配列を改変することによりアミノ酸配列を改変したもの)であってもよく、また天然由来のタンパク質に依らず人工的に設計及び合成したもの(例えば、設計したアミノ酸配列をコードする核酸を化学合成することにより所望のアミノ酸配列を有するもの)であってもよい。なお、人工タンパク質は、天然タンパク質とは異なり、アミノ酸配列を自由に設計し得るものであることから、かかる人工タンパク質が、後述する本実施形態の成形材料や成形体に含有される場合には、人工タンパク質のアミノ酸配列を適宜にデザインすることによって成形材料や成形体の機能や特性、物性等を任意にコントロールすることができる。また、常に均一な分子デザインが可能であるため、目的タンパク質との相同性の高い、目的に応じたタンパク質を安定的に得ることができる。以て、人工タンパク質を用いて得られる成形材料や成形体の品質の安定化が有利に図られる。その点からして、人工タンパク質としては、人工構造タンパク質が有利に用いられる。
 本実施形態に係るタンパク質及び修飾タンパク質のアミノ酸残基数が、特に限定されないが、例えば、50以上であってよい。また、当該アミノ酸残基数は、例えば、100以上、150以上、200以上、250以上、300以上、350以上、400以上、450以上又は500以上である。当該アミノ酸残基数は、例えば、5000以下、4500以下、4000以下、3500以下、3000以下、2500以下、2000以下、1500以下、1000以下であってもよい。アミノ酸残基数が少ない程、溶媒への溶解度が高まる傾向にある。
 本実施形態に係るタンパク質の分子量は、特に限定されないが、例えば、2kDa以上500kDa以下であってよい。また、本実施形態に係るタンパク質の分子量は、例えば、2kDa以上、3kDa以上、4kDa以上、5kDa以上、6kDa以上、7kDa以上、8kDa以上、9kDa以上、10kDa以上、20kDa以上、30kDa以上、40kDa以上、50kDa以上、60kDa以上、70kDa以上、80kDa以上、90kDa以上、又は100kDa以上であってよく、500kDa以下、400kDa以下、360kDa未満、300kDa以下、又は200kDa以下であってよい。
 本実施形態に係るタンパク質は、セリン残基、スレオニン残基、チロシン残基、リジン残基、システイン残基等の求核性官能基を少なくとも1つ含む。修飾タンパク質は、タンパク質中のセリン残基、スレオニン残基、又はチロシン残基が有する水酸基、リジン残基等が有するアミノ基、又はシステイン残基が有するスルフヒドリル基がアシル化されている。タンパク質がセリン残基、スレオニン残基、又はチロシン残基を有すると、アシル化剤によって、より効率的にアシル化され得る。タンパク質とアシル化剤との反応性の向上、修飾タンパク質の生産性の向上等を考慮した場合、タンパク質は、セリン残基、スレオニン残基及びチロシン残基の各含有率の合計(全アミノ酸残基数に対するセリン残基、スレオニン残基、チロシン残基の合計残基数の割合)が、例えば、4%以上であってよく、4.5%以上であってよく、5%以上であってよく、5.5%以上であってよく、6%以上であってよく、6.5%以上であってよく、7%以上であってよい。なお、セリン残基、スレオニン残基及びチロシン残基の各含有率の合計の上限値は特に限定されるものでないが、本実施形態に係るタンパク質及び修飾タンパク質として好適に使用可能な種々のタンパク質のアミノ酸組成を考慮すると、例えば、35%以下であってよく、33%以下であってよく、30%以下であってよく、25%以下であってよく、20%以下であってよい。
(疎水性タンパク質)
 タンパク質は、例えば、疎水性タンパク質であってよい。タンパク質が疎水性タンパク質である場合には、修飾タンパク質を原料の少なくとも一部として成形体を製造した際に、かかる成形体の耐水性が向上し、例えば、成形体が工業用の汎用材料として使用される場合に、使用寿命の延命化が有利に図られ得る。加えて、修飾タンパク質は、例えば、機能性物質が結合された際に、機能性物質の疎水性乃至親水性をコントロールすることで、機能性物質と修飾タンパク質の結合体全体の疎水性乃至親水性を任意に調整可能となり得る。タンパク質が疎水性を有する場合(すなわち、タンパク質が疎水性タンパク質である場合)には、タンパク質が親水性を有する場合に比して、結合体全体を疎水性側にシフトすることができ、以て結合体全体の疎水性乃至親水性をより幅広い範囲にわたってコントロール可能となり得る。
 タンパク質における疎水性は、平均ハイドロパシー・インデックス(以下「HI」とも記す。)の値を指標として推定することができる。本明細書において、疎水性タンパク質の平均ハイドロパシー・インデックスの値は0超であればよく、例えば、0.00以上、0.10以上、0.20以上、0.22以上、0.25以上、0.30以上、0.35以上、0.40以上、0.45以上、0.50以上、0.55以上、0.60以上、0.65以上、又は0.70以上であってよい。また、その上限値は特に制限されるものではないものの、例えば、1.00以下であってもよく、0.7以下であってもよい。
 なお、疎水性タンパク質の平均ハイドロパシー・インデックス(HI:Hydropathy index)の値、及び後述する反復配列単位の疎水性度は、アミノ酸残基の公知の疎水性指標を用いて()公知の方法に従って求められる。アミノ酸残基の公知の疎水性指標を表1に示す。例えば、疎水性度は、Kyte J、Doolittle R(1982)“A simple method for displaying the hydropathic character of a protein”、J.Mol.Biol.、157、pp.105-132に記載の方法にしたがって算出してもよい。
 疎水性タンパク質は、60℃における臭化リチウム水溶液(濃度:9M)に対する溶解性の低いものが好ましい。すなわち、疎水性タンパク質としては、例えば、60℃における臭化リチウム水溶液(濃度:9M)に溶解させた場合の最大濃度が、例えば、30質量%未満、25質量%未満、20質量%未満、15質量%未満、10質量%未満、5質量%未満、又は1質量%未満のものであってよい。なお、疎水性タンパク質としては、60℃における臭化リチウム水溶液(濃度:9M)に対して全く溶解しないものであってもよい。疎水性タンパク質が60℃における臭化リチウム水溶液に対する溶解性が低いと、得られる修飾タンパク質が良好な耐水性(特に工業用途に適した耐水性)を得やすい。
 疎水性タンパク質は、水への接触角が55°以上であるものであることが好ましい。疎水性タンパク質の水への接触角は、60°以上、65°以上、又は70°以上であるとより好ましい。水への接触角は、基材上に疎水性タンパク質からなる膜を形成し、膜上に水を滴下して、5秒間経過後の接触角を測定することで評価できる。疎水性タンパク質の水への接触角が55°以上であると、得られる修飾タンパク質が良好な耐水性(特に工業用途に適した耐水性)を得やすい。
 疎水性タンパク質は、耐熱水性に優れたものであることが好ましい。耐熱水性は、例えば、5w/v%の疎水性タンパク質の水分散液を調製し、当該分散液を100℃に加熱してもタンパク質が少なくとも5時間分解しないものが好ましい。疎水性タンパク質が耐熱水性に優れるものであると、得られる修飾タンパク質は良好な耐水性(特に工業用途に適した耐水性)および耐熱水性を得やすい。
<構造タンパク質>
 本実施形態に係るタンパク質は、例えば、構造タンパク質であってよい。構造タンパク質とは、工業用に利用できるタンパク質の一種であり、生体の構造に関わるタンパク質、若しくは生体が作り出す構造体を構成するタンパク質、又はそれらに由来するタンパク質を意味する。例えば、構造タンパク質は、生化学反応には直接かかわらないが、爪、毛髪、皮膚、腱、軟骨、細胞内外マトリクスを構成するタンパク質であり、コラーゲンやケラチンのように分子自体が繊維状で疎水性のコアがないタンパク質と、アクチンのように単量体では球状タンパク質であるが、繊維状に多数重合しているタンパク質重合体であり得る。構造タンパク質は、また、一定の条件下において自己凝集し、繊維、フィルム、樹脂、ゲル、ミセル、ナノパーティクル等の構造体を形成するタンパク質のことをいう。さらに、構造タンパク質は、特徴的なアミノ酸配列もしくはアミノ酸数残基からなるモチーフが繰り返し存在し、生物や材料の骨格を形成するタンパク質とも言える。構造タンパク質は、天然においては、例えば、フィブロイン、ケラチン、コラ-ゲン、エラスチン及びレシリンが挙げられる。絹のフィブロインは、βシートのポリペプチド鎖が伸びた構造で繊維を形成しており、ケラチンは、αヘリックスの複数のポリペプチド鎖がロープ状に束になっている。エラスチンは、比較的球状に近いポリペプチド鎖が共有結合によって架橋を作り、ゴムのような弾力性のある網目を形成している。コラーゲンは、細長い繊維状のポリペプチド鎖が三重らせん構造を形成しており(「コラーゲン原繊維」とも呼ばれる。)、各ポリペプチド鎖は、グリシン残基が3残基目ごとにあり、プロリン残基が全アミノ酸残基の20%以上あり、その約半分がヒドロキシプロリンであり、三重らせん構造の安定化に寄与している。
 構造タンパク質は、人工構造タンパク質であってもよい。本明細書において「人工構造タンパク質」とは、人為的に製造された構造タンパク質を意味する。人工構造タンパク質は、遺伝子組換え技術により微生物から生産した構造タンパク質であってよく、天然の構造タンパク質と同じアミノ酸配列を有するものであってもよく、生産性又は成形性等の観点から改良したアミノ酸配列を有するものであってもよい。
 構造タンパク質を成形する際、比較的小さな側鎖を有するアミノ酸ほど水素結合を形成しやすく、強度のより高い成形体を得やすい。また、アラニン残基及びグリシン残基は、側鎖が非極性アミノ酸であるため、ポリペプチド生成における折りたたみの過程で内側に向くように配置され、αヘリックス構造又はβシート構造を取りやすい。よって、グリシン残基、アラニン残基等のアミノ酸の割合が高いことが望ましい。強度により優れる成形体を得る観点から、アラニン残基含有率は、例えば、10~40%であればよく、12~40%、15~40%、18~40%、20~40%、又は、22~40%であってよい。強度により優れる成形体を得る観点から、グリシン残基含有率は、例えば、10~55%であればよく、11~55%、13~55%、15~55%、18~55%、20~55%、22~55%、又は25~55%であってよい。
 本明細書において、「アラニン残基の含有率」とは、タンパク質を構成する全アミノ酸残基数に対するアラニン残基の数を意味し、下記式で表される値である。
 アラニン残基の含有率=(タンパク質に含まれるアラニン残基の数/タンパク質の全アミノ酸残基の数)×100(%)
 また、グリシン残基含有率、セリン残基含有率、スレオニン残基含有率、プロリン残基含有率及びチロシン残基含有率は、上記式において、アラニン残基をそれぞれグリシン残基、セリン残基、スレオニン残基、プロリン残基及びチロシン残基と読み替えたものと同義である。
 構造タンパク質は、比較的大きな側鎖を有するアミノ酸又は屈曲性を有するアミノ酸が一定程度、配列全体に均質に含まれていることが好ましい。具体的には、構造タンパク質は、チロシン残基、スレオニン残基、プロリン残基が含まれるモチーフを繰り返して周期で入っていてもよい。このような構造タンパク質であると、成形して得た成形体の加工時に、強固な分子間水素結合の形成を阻害しやすく、加工性が向上しやすくなる。例えば、任意の連続した20アミノ酸残基の中、プロリン残基、スレオニン残基及びチロシン残基の含有率の合計が、5%以上、5.5%超、6.0%以上、6.5%超、7.0%以上、7.5%超、8.0%以上、8.5%超、9.0%以上、10.0%以上、又は15.0%以上であってよい。また例えば、任意の連続した20アミノ酸残基の中、プロリン残基、スレオニン残基及びチロシン残基の各含有率の合計が、50%以下、40%以下、30%以下、又は20%以下であってよい。
 一実施形態に係る人工構造タンパク質は、上述したタンパク質と同様に、アシル化剤との反応性の向上、更にはアシル化剤との反応によって得られる反応修飾タンパク質の生産性の向上等の観点から、セリン残基、スレオニン残基及びチロシン残基の各含有率の合計が、例えば、4%以上、4.5%以上、5%以上、5.5%以上、6%以上、6.5%以上、又は7%以上であってよい。セリン残基、スレオニン残基及びチロシン残基の各含有率の合計は、例えば、35%以下、33%以下、30%以下、25%以下、又は20%以下であってよい。
 一実施形態に係る人工構造タンパク質は、反復配列を有するものであってよい。すなわち、本実施形態に係る人工構造タンパク質は、人工構造タンパク質内に配列同一性が高いアミノ酸配列(反復配列単位)が複数存在するものであってよい。反復配列単位のアミノ酸残基数は6~200であることが好ましい。また、反復配列単位間の配列同一性は、例えば、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、又は99%以上であってよい。また、反復配列単位の疎水性度(ハイドロパシー・インデックス)は、例えば、-0.80以上、-0.70以上、-0.60以上、-0.50以上、-0.40以上、-0.30以上、-0.20以上、-0.10以上、0.00以上、0.22以上、0.25以上、0.30以上、0.35以上、0.40以上、0.45以上、0.50以上、0.55以上、0.60以上、0.65以上、又は0.70以上であってよい。なお、反復配列単位の疎水性度の上限値は特に制限されるものではないものの、例えば、1.0以下であってもよく、0.7以下であってもよい。
 一実施形態に係る人工構造タンパク質は、(A)モチーフを含むものであってよい。本明細書において、(A)モチーフとは、アラニン残基を主とするアミノ酸配列を意味する。(A)モチーフのアミノ酸残基数は2~27であってよく、2~20、2~16、又は2~12の整数であってよい。また、(A)モチーフ中の全アミノ酸残基数に対するアラニン残基数の割合は40%以上であってよく、50%以上、60%以上、70%以上、80%以上、83%以上、85%以上、86%以上、90%以上、95%以上、又は100%(アラニン残基のみで構成されることを意味する。)であってもよい。
 人工構造タンパク質は、人工フィブロインであってもよい。フィブロインとしては、例えば、天然由来のフィブロインが挙げられる。天然由来のフィブロインとしては、例えば、昆虫又はクモ類が産生するフィブロインが挙げられる。天然のフィブロインは繊維状のタンパク質であり、分子量が約37万であり、2つのサブユニットで構成され、グリシン残基、アラニン残基、セリン残基及びチロシン残基の含有率が高く、これらのアミノ酸残基が全アミノ酸残基数の90%近くを占める。天然のフィブロインは、グリシン、アラニン及びセリン等の比較的小さな側鎖を有するアミノ酸残基が豊富な結晶領域と、チロシン等の比較的大きな側鎖を有するアミノ酸残基を有する非晶領域を有する。
 天然由来のフィブロインのより具体的な例としては、NCBI GenBankに配列情報が登録されているフィブロインを挙げることができる。例えば、NCBI GenBankに登録されている配列情報のうちDIVISIONとしてINVを含む配列の中から、DEFINITIONにspidroin、ampullate、fibroin、「silk及びpolypeptide」、又は「silk及びprotein」がキーワードとして記載されている配列、CDSから特定のproductの文字列、SOURCEからTISSUE TYPEに特定の文字列の記載された配列を抽出することにより確認することができる。
 本明細書において「人工フィブロイン」とは、人為的に製造されたフィブロイン(人造フィブロイン)を意味する。人工フィブロインは、天然由来のフィブロインのアミノ酸配列とは異なるフィブロインであってもよく、天然由来のフィブロインのアミノ酸配列と同一であるフィブロインであってもよい。人工フィブロインは、公知の方法によって製造でき、例えば、国際公開第2021/187502号に記載の方法で製造できる。
 人工フィブロインは、天然由来フィブロインに準ずる構造を有する繊維状タンパク質であってよく、天然由来フィブロインが有する反復配列と同様の配列を有するフィブロインであってもよい。「フィブロインが有する反復配列と同様の配列」とは、実際に天然由来フィブロインが有する配列であってもよく、それと類似する配列であってもよい。
 「人工フィブロイン」は、本開示で特定されるアミノ酸配列を有するものであれば、天然由来のフィブロインに依拠してそのアミノ酸配列を改変したもの(例えば、クローニングした天然由来のフィブロインの遺伝子配列を改変することによりアミノ酸配列を改変したもの)であってもよく、また天然由来のフィブロインに依らず人工的にアミノ酸配列を設計したもの(例えば、設計したアミノ酸配列をコードする核酸を化学合成することにより所望のアミノ酸配列を有するもの)であってもよい。なお、人工フィブロインのアミノ酸配列を改変したものも、そのアミノ酸配列が天然由来のフィブロインのアミノ酸配列とは異なるものであれば、人工フィブロインに含まれる。人工フィブロインとしては、例えば、人工絹(シルク)フィブロイン(カイコが産生する絹タンパク質のアミノ酸配列を改変したもの)、及び人工クモ糸フィブロイン(クモ類が産生するスパイダーシルクタンパク質のアミノ酸配列を改変したもの)などが挙げられる。人工フィブロインは、比較的にフィブリル化が容易で繊維形成能が高いことから、成形材料として好ましくは人工クモ糸フィブロインを含み、より好ましくは人工クモ糸フィブロインからなる。
 本実施形態に係る人工フィブロインは、式1:[(A)モチーフ-REP]、又は式2:[(A)モチーフ-REP]-(A)モチーフで表されるドメイン配列を含むタンパク質であってよい。人工フィブロインは、ドメイン配列のN末端側及びC末端側のいずれか一方又は両方に更にアミノ酸配列(N末端配列及びC末端配列)が付加されていてもよい。N末端配列及びC末端配列は、これに限定されるものではないが、典型的には、フィブロインに特徴的なアミノ酸モチーフの反復を有さない領域であり、100残基程度のアミノ酸からなる。
 本明細書において「ドメイン配列」とは、フィブロイン特有の結晶領域(典型的には、アミノ酸配列の(A)モチーフに相当する。)と非晶領域(典型的には、アミノ酸配列のREPに相当する。)を生じるアミノ酸配列であり、式1:[(A)モチーフ-REP]、又は式2:[(A)モチーフ-REP]-(A)モチーフで表されるアミノ酸配列を意味する。ここで、(A)モチーフは、アラニン残基を主とするアミノ酸配列を示し、アミノ酸残基数は2~27である。(A)モチーフのアミノ酸残基数は、2~20、4~27、4~20、8~20、10~20、4~16、8~16、又は10~16の整数であってよい。また、(A)モチーフ中の全アミノ酸残基数に対するアラニン残基数の割合は40%以上であればよく、50%以上、60%以上、70%以上、80%以上、83%以上、85%以上、86%以上、90%以上、95%以上、又は100%(アラニン残基のみで構成されることを意味する。)であってもよい。ドメイン配列中に複数存在する(A)モチーフは、少なくとも7つがアラニン残基のみで構成されてもよい。REPは2~200アミノ酸残基から構成されるアミノ酸配列を示す。REPは、10~200アミノ酸残基から構成されるアミノ酸配列であってもよい。mは2~300の整数を示し、3~300、4~300、5~300、6~300、10~300の整数であってもよい。複数存在する(A)モチーフは、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。複数存在するREPは、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。
 人工フィブロインの具体的な例として、例えば、国際公開第2021/187502号に記載されるようなクモの大瓶状腺で産生される大吐糸管しおり糸タンパク質に由来する人工フィブロイン(第1の人工フィブロイン)、グリシン残基の含有量が低減されたドメイン配列を有する人工フィブロイン(第2の人工フィブロイン)、(A)モチーフの含有量が低減されたドメイン配列を有する人工フィブロイン(第3の人工フィブロイン)、グリシン残基の含有量、及び(A)モチーフの含有量が低減された人工フィブロイン(第4の人工フィブロイン)、局所的に疎水性指標の大きい領域を含むドメイン配列を有する人工フィブロイン(第5の人工フィブロイン)、並びにグルタミン残基の含有量が低減されたドメイン配列を有する人工フィブロイン(第6の人工フィブロイン)が挙げられる。第1~第6の各人工フィブロインの定義は、国際公開第2021/187502号に記載の内容を参照により本明細書に取り込まれる。
 人工フィブロインは、N末端及びC末端のいずれか一方又は両方にタグ配列を含んでいてもよい。これにより、人工フィブロインの単離、固定化、検出及び可視化等が可能となる。PRT966は、タグ配列を含む第6の人工フィブロインである。
 タグ配列として、例えば、他の分子との特異的親和性(結合性、アフィニティ)を利用したアフィニティタグを挙げることができる。アフィニティタグの具体例として、ヒスチジンタグ(Hisタグ)を挙げることができる。Hisタグは、ヒスチジン残基が4から10個程度並んだ短いペプチドで、ニッケル等の金属イオンと特異的に結合する性質があるため、金属キレートクロマトグラフィー(chelating metal chromatography)による人工フィブロインの単離に利用することができる。タグ配列の具体例として、例えば、配列番号12で示されるアミノ酸配列(Hisタグ配列及びヒンジ配列を含むアミノ酸配列)が挙げられる。
 また、グルタチオンに特異的に結合するグルタチオン-S-トランスフェラーゼ(GST)、マルトースに特異的に結合するマルトース結合タンパク質(MBP)等のタグ配列を利用することもできる。
 さらに、抗原抗体反応を利用した「エピトープタグ」を利用することもできる。抗原性を示すペプチド(エピトープ)をタグ配列として付加することにより、当該エピトープに対する抗体を結合させることができる。エピトープタグとして、HA(インフルエンザウイルスのヘマグルチニンのペプチド配列)タグ、mycタグ、FLAGタグ等を挙げることができる。エピトープタグを利用することにより、高い特異性で容易に人工フィブロインを精製することができる。
 さらにタグ配列を特定のプロテアーゼで切り離せるようにしたものも使用することができる。当該タグ配列を介して吸着したタンパク質をプロテアーゼ処理することにより、タグ配列を切り離した人工フィブロインを回収することもできる。
 人工フィブロインの具体例としては、例えば、下記表2に示す人工フィブロインが挙げられる。
 人工フィブロインは、第1の人工フィブロイン、第2の人工フィブロイン、第3の人工フィブロイン、第4の人工フィブロイン、第5の人工フィブロイン、及び第6の人工フィブロインが有する特徴のうち、少なくとも2つ以上の特徴を併せ持つ人工フィブロインであってもよい。
 本実施形態に係る人工フィブロインの分子量は、特に限定されないが、例えば、2kDa以上700kDa以下であってよい。本実施形態に係る人工フィブロインの分子量は、例えば、2kDa以上、3kDa以上、4kDa以上、5kDa以上、6kDa以上、7kDa以上、8kDa以上、9kDa以上、10kDa以上、20kDa以上、30kDa以上、40kDa以上、50kDa以上、60kDa以上、70kDa以上、80kDa以上、90kDa以上、又は100kDa以上であってよく、700kDa以下、600kDa以下、500kDa以下、400kDa以下、360kDa未満、300kDa以下、又は200kDa以下であってよい。
 本実施形態では、上述のタンパク質をアシル化剤と混合して、得られた混合物をメカノケミカル法で処理して、タンパク質を化学的に修飾する。
 アシル化剤としては、水酸基、アミノ基、又はスルフヒドリル基をアシル化できる試薬であればよく、例えば、カルボン酸ハライド(例えば、カルボン酸塩化物、カルボン酸臭化物)、カルボン酸無水物(例えば、酸無水物、環状酸無水物)等の活性化されたカルボン酸誘導体、スルホン酸ハライド(例えば、スルホン酸塩化物、スルホン酸臭化物)、スルホン酸無水物等の活性化されたスルホン酸誘導体、ハロゲン化リン(例えば、三塩化リン、オキシ塩化リン)、リン酸トリエステル(例えば、トリス(ビストリフルオロエチル)ホスフェート)等のリン酸誘導体が挙げられる。これらアシル化剤により、カルボン酸、スルホン酸又はリン酸に対応するアシル基が導入される。カルボン酸としては、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸(ヘプタン酸)、カプリル酸(オクタン酸)、ペラルゴン酸(ノナン酸)、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、マルガリン酸、ステアリン酸、イソステアリン酸等の飽和モノカルボン酸;オレイン酸、リノール酸、リノレン酸、アラキドン酸、エイコサペンタエン酸、ドコサヘキサエン酸等の不飽和モノカルボン酸;マレイン酸等のジカルボン酸が挙げられる。これらのカルボン酸に対応する酸ハライドとしては、例えば、塩化アセチル、臭化アセチル、塩化プロピオニル、臭化プロピオニル、塩化ラウロイル、塩化ミリストイル、塩化パルミトイル、塩化ステアロイル等が挙げられる。これらのカルボン酸に対応する酸無水物としては、無水酢酸、無水プロピオン酸、無水マレイン酸等が挙げられる。スルホン酸としては、メタンスルホン酸、エタンスルホン酸、プロパンスルホン酸、トリフルオロメタンスルホン酸、ノナフルオロブタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、m-トルエンスルホン酸、o-トルエンスルホン酸等が挙げられる。これらのスルホン酸に対応する酸ハライドとしては、例えば、塩化メタンスルホニル、臭化メタンスルホニル、塩化エタンスルホニル、臭化エタンスルホニル、塩化プロパンスルホニル、臭化プロパンスルホニル、塩化ベンゼンスルホニル、塩化p-トルエンスルホニル、塩化m-トルエンスルホニル、塩化o-トルエンスルホニル等が挙げられる。これらのカルボン酸に対応する酸無水物としては、メタンスルホン酸無水物、エタンスルホン酸無水物、トリフルオロメタンスルホン酸無水物、ノナフルオロブタンスルホン酸無水物等が挙げられる。
 アシル化剤が無水マレイン酸である場合、得られる修飾タンパク質(マレイン酸エステル化タンパク質)は末端カルボキシ基を有する。マレイン酸エステル化タンパク質は、さらに亜硫酸水素ナトリウムとメカノケミカル法で反応させることにより、スルホスクシニル化タンパク質へ変換できる。マレイン酸エステル化タンパク質は、さらにジアルキルホスファイトとメカノケミカル法で反応させることにより、(ジアルコキシホスホリル)スクシニル化タンパク質へ変換できる。
 アシル化剤の使用量は、タンパク質中に含まれる求核性官能基1つあたり、1.5~7当量を使用することができる。アシル化剤の使用量は、好ましくは、1求核性官能基あたり、1.5~6.5当量、1.5~6当量、1.5~5.5当量、1.5~5当量、1.5~4当量、2~7当量、2~6.5当量、2~6当量、2~5.5当量、2~5当量、2~4.5当量、2.5~7当量、2.5~6.5当量、2.5~6当量、2.5~5.5当量、2.5~5当量、又は2.5~4.5当量であってもよい。「求核性官能基1つあたりの当量」とは、タンパク質に含まれる求核性官能基の数1個に対するアシル化剤のモル当量のことを意味する。アシル化剤の使用量を上記のような範囲内の値とすることで、メカノケミカル処理でのタンパク質とアシル化剤との反応性乃至は反応効率が高められて、目的とする修飾タンパク質が、より効率的に得られる。
 メカノケミカル法による処理は、機械的エネルギーを直接吸収することによって引き起こされる化学反応を行う処理である。かかる機械的エネルギーは、例えば、衝撃力やせん断力によって発揮されるものであってよい。このようなメカノケミカル処理は、具体的には転動ボールミル、媒体撹拌ミル、遊星ミル、ジェットミル、、ミキサーミル、エクストルーダー(二軸押出機)を用いて行われる。具体的には、タンパク質とアシル化剤を粉砕ジャーに入れ、使用するミルの種類に応じて媒体ボール等を投入する。その後、粉砕ジャーをミキサーミル装置にセットし、所定の周波数及び反応時間で振動させる。このとき、粉砕ジャーには、溶媒、塩基、反応促進剤等をさらに加えてもよい。或いは、タンパク質とアシル化剤をミキサーミルに投入し、ミリング手順を開始して、反応物を連続的にニーディングする。このとき、ミキサーミルには、溶媒、塩基、反応促進剤等をさらに加えてもよい。また、タンパク質とアシル化剤をエクストルーダーに投入して、それらを混錬する。このとき、エクストルーダーには、溶媒、塩基、反応促進剤等をさらに加えてもよい。なお、エクストルーダーを用いてメカノケミカル処理を行えば、目的とするエステル化タンパク質(修飾タンパク質)を連続的生産することが可能となる。
 周波数は、反応に応じて、当業者が適宜調整することができ、例えば、10~50Hz、10~45Hz、10~40Hz、10~35Hz、15~50Hz、15~45Hz、15~40Hz、15~35Hz、20~50Hz、20~45Hz、20~40Hz、又は20~35Hzであってもよい。
 反応時間は、赤外(IR)吸収スペクトル、ゲルろ過クロマトグラフィー(GPC)等において、原料となるタンパク質が消失するか、アシル化タンパク質(修飾タンパク質)の検出が一定以上に観察される時点までとすることができる。反応時間としては、任意の時間であってよく、例えば、30~150分間、30~120分間、30~110分間、30~100分間、30~95分間、60~150分間、60~120分間、60~110分間、60~100分間、60~95分間、70~150分間、70~120分間、70~110分間、70~100分間、70~95分間、80~150分間、80~120分間、80~110分間、80~100分間、又は80~95分間であってよい。
 溶媒は、タンパク質を膨潤できる溶媒であるか、タンパク質及びアシル化剤の少なくとも一方を溶解できる溶媒であればよいが、常温常圧で液体であって、且つタンパク質と化学反応しない化合物でなければならない。このような溶媒を添加したメカノケミカル処理は、リキッドアシステッドグラインディング(LAG)として知られ、粉砕ジャーの中に少量の溶媒を添加することにより、所望の反応をより効率的に進行させる方法である。かかる溶媒としては、ジメチルスルホキシド(DMSO)、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)、N-メチルピペリドン(NMP)、ジヒドロレボグルコセノン、イオン液体等が挙げられる。溶媒の使用量は、タンパク質の質量1gに対して、例えば、0.01g~1gであればよく、0.01g~0.8gが好ましく、0.01g~0.6gがより好ましく、0.01g~0.4gがより好ましく、0.01g~0.2gが最も好ましい。換言すれば、溶媒の使用量は、タンパク質に対して、例えば、1~100重量%であればよく、1~80重量%が好ましく、1~60重量%がより好ましく、1~40重量%が更に好ましく、1~20重量%が最も好ましい。極微量の溶媒は、タンパク質を膨潤させたり、局所的に溶解状態にする等により、ミクロな反応場を形成すると考えられる。なお、溶媒の添加は必ずしも必要ではなく、例えば、アシル化剤が常温常圧で液体であって、上記の溶媒としての機能を有するときには、溶媒の添加が不要となる場合もある。
 塩基は、タンパク質中のセリン残基、スレオニン残基、又はチロシン残基の水酸基、リジン残基のアミノ基、システイン残基のスルフヒドリル基がアシル化するのを補助できる塩基であればよい。塩基としては、3級アミン、含窒素芳香族化合物、無機塩基が挙げられ、より具体的にはトリエチルアミン、DIPEA(N,N-ジイソプロピルエチルアミン)、DABCO(1,4-ジアザビシクロ[2.2.2]オクタン)、キヌクリジン、DBU(1,8-ジアザビシクロ[5.4.0]ウンデク-7-エン)、DBN(1,5-ジアザビシクロ[4.3.0]ノン-5-エン)、ピリジン、イミダゾール、水酸化ナトリウム、水酸化カリウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、リン酸三カリウム、酢酸ナトリウム、酢酸カリウム等が挙げられる。使用される塩基の物質量は、タンパク質に含まれる求核性官能基の物質量を1とした時、例えば、1~10がであってもよく、1~8であってもよく、1~7であってもよく、1~6であってもよく、1~5であってもよい。なお、かかる塩基の物質量は、使用される塩基の種類等によって好ましい範囲が存在し、例えば、塩基として水酸化ナトリウム等の無機塩基を使用する場合には、上記物質量が、好ましくは1~5、より好ましくは1~2であり、塩基としてDIPEA等の3級アミンを用いる場合には、上記物質量が、好ましくは1~5、より好ましくは3.5~5である。
 反応促進剤は、有機化学分野でアシル化反応を促進させることが知られているものであればよく、例えば、4-ジメチルアミノピリジン(DMAP)が挙げられる。アシル化がアセチル化である場合、反応促進剤を使用する必要はない。
 アシル化がサクシニル化である場合、反応促進剤を加えるとアシル化反応の速度が向上し得る。この場合、反応促進剤の使用量は、タンパク質に含まれる求核性官能基の物質量1(求核性官能基を有するアミノ酸残基1つ)に対して、0当量超5当量以下であればよく、3.5当量~5当量が好ましい。また、反応促進剤の使用量は、塩基の使用量1モルに対して、0モル超1モル以下の量であればよく、0.3モル~1モルであってもよい。
 アシル化がステアリル化である場合、反応促進剤を加えるとアシル化反応の速度が向上し得る。この場合、反応促進剤の使用量は、タンパク質に含まれる求核性官能基の物質量1(求核性官能基を有するアミノ酸残基1つ)に対して、1当量~5当量であればよく、3.5当量~5当量が好ましい。反応促進剤の使用量は、塩基の使用量1モルに対して、0.2~1モルの量であればよく、0.7~1モルであってもよい。
 反応終了後、粉砕ジャーから混合物を取り出し、溶媒で洗浄してもよい。洗浄により、未反応のアシル化剤及び反応により生じた酸を除去することができる。洗浄に使用する溶媒としては、水、アセトニトリル、アセトン、テトラヒドロフラン、酢酸エチル、ヘキサンなどが挙げられる。洗浄した後、生成物を乾燥することにより洗浄に用いた溶媒を留去してもよい。乾燥は、減圧下行ってもよい。
 修飾タンパク質が、その末端に親水性基(例えば、ヒドロキシ基、カルボキシ基、アミノ基、スルホ基、ホスフェート基)を有する場合、接触角が小さくなる。このような修飾タンパク質を含有するコーティングを使用すると、濡れ性及び親水性がより高まる。修飾タンパク質が、その末端に疎水性基(例えば、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、アリール基)を有する場合、接触角が大きくなる。このような修飾タンパク質を含有するコーティングを使用すると、撥水性及び疎水性がより高まる。接触角が90°~150°であると、防水・撥水の目的で使用するのに適しており、110°~150°であると、その素材の優れた撥水性のため、水滴を表面汚れごと落とす自己洗浄効果が期待できる。接触角が70~90°であると、保湿の目的で使用するのに適しており、40~90°であると、液体の浸透効果、分散効果の向上により、素材の染色が容易とする効果が期待できる。
 修飾タンパク質が、難燃性元素を含む場合(例えば、スルホン化若しくはリン酸化されたスクシニル化タンパク質、スルホン酸エステル化タンパク質又はリン酸エステル化タンパク質である場合)、このような修飾タンパク質を含有するコーティングを使用すると、難燃性がより高まる。このような修飾タンパク質を含有するコーティングは、関連する製品の安全性及び耐久性向上の目的で使用するのに適している。従来、タンパク質にポリリン酸の塩又はポリヌクレオチドの塩を配合すると、難燃性を付与できることが知られている。難燃剤としては、例えば、日本ゴム協会誌「総説特集 有機系配合剤 難燃剤」(西沢仁、2006年、316~322頁)に記載のものが知られている。しかし、単に配合するだけでは、水に浸すとポリリン酸の塩及びポリヌクレオチドの塩が流出してしまい、効果が減弱することがある。本実施形態に係る修飾タンパク質であれば、水に浸しても付与された難燃性が減弱されにくいという効果を奏する。難燃性元素は、難燃剤の構造によく見られる原子(難燃性を付与できる原子)であり、難燃性元素としてはハロゲン原子、リン原子、硫黄原子、ホウ素原子、ケイ素原子が挙げられる。
 修飾タンパク質の限界酸素指数(LOI)値は、18以上であってよく、20以上であってもよく、22以上であってもよく、24以上であってもよく、26以上であってもよく、27以上であってもよく、28以上であってもよく、29以上であってもよく、30以上であってもよい。本明細書において、LOI値は、消防庁危険物規制課長消防危50号平成7年5月31日の粉粒状又は融点の低い合成樹脂の試験方法に準拠して測定される値である。
 修飾タンパク質が、その末端に親水性基を有する場合、(例えば、スクシニル化タンパク質又はマレイン酸エステル化タンパク質である場合)は水分子を取り込むことで長鎖のアルキル基(炭素数4以上のアルキル基が好ましく、炭素数6以上のアルキル基がより好ましく、炭素数8以上のアルキル基がさらに好ましい)を有する場合は、鎖間の相互作用を減少させることで、ポリマー間の動きを促進する効果が期待できるため、未修飾タンパク質と比べて軟化点がより低く、ガラス転移温度(Tg)もより低くなる。未修飾タンパク質は、150℃付近に加熱すると、分解挙動が顕著になるため、150℃以上に加熱して軟化させることは困難であった。しかし、本実施形態に係る修飾タンパク質であれば、軟化点及びガラス転移温度が低下しているため、150℃より低い温度で軟化させることができ、加工又は成形しやすい。より低い温度ではより分解による影響を抑えることができ素材の変質、色の大幅な変化、強度の低下を防ぐことができる。この観点では、軟化点を130℃以下にすることが望ましく、100℃以下にすることがさらに望ましい。上記修飾タンパク質は、エクストルーダー等を用いた成形加工、軟化点以下の温度での素材柔軟性の向上の目的で使用するのに適している。
 また、修飾タンパク質を含有する成形体がさらに可塑剤を含有する場合、その成形体は軟化点及びガラス転移温度がさらに低くなる。可塑剤としては、当業界で知られた成分を使用することができ、例えば、エチレングリコール、プロピレングリコール、ブチレングリコール、グリセロールのような多価アルコールが挙げられる。しかし、単に可塑剤を配合するだけでは、加工の際あるいは経時的な変化により可塑剤が流出してしまい、効果が減弱することがある。本実施形態に係る修飾タンパク質であれば、加工時の加熱や長期間の保存を想定した場合においても成形体は軟化点及びガラス転移温度を低下させる効果が減弱されにくいという効果を奏する。
 本実施形態に係る修飾タンパク質は、例えば、単独で、或いは固体状乃至は液体状の他の成分が配合されたり、添加されたり、混合されたりして構成された組成物として用いられ得る。すなわち、修飾タンパク質は、それを含む修飾タンパク質組成物として構成され得る。このような修飾タンパク質組成物は、修飾タンパク質以外の成分によって、固体状や液体状の形態を有する。また、修飾タンパク質組成物は、例えば、繊維、フィルム、ゲル、多孔質体、パーティクル、樹脂等を成形する成形材料として用いられ得る。換言すれば、修飾タンパク質組成物を所定の方法で成形することで、修飾タンパク質組成物成形体が得られる。固体状乃至は液体状の修飾タンパク質組成物に含まれる他の成分としては、水や、有機溶媒、イオン性液体、超臨界液体等が採用可能である。なお、修飾タンパク質組成物は、特に接着剤やコーティング剤等として用いられる場合、粘着向上剤や接着向上剤を含んでいてもよい。この粘着向上剤としては、例えば、ロジン誘導体が挙げられ、また、接着向上剤としては、例えば、デンプンやスクロース等の糖類が例示され得る。
 なお、修飾タンパク質組成物を成形してなる成形体は、成形体の種類等に応じた公知の方法で製造が可能である。例えば、繊維、修飾タンパク質と溶媒とを含むドープ液を用いた、湿式紡糸法や乾湿式紡糸法、乾式紡糸法等の公知の紡糸方法によって得られる。また、フィルム、ゲル、多孔質体、パーティクル、樹脂等は、例えば、特許第5678283号公報、特許第5782580号公報、特許第5796147号公報、特許第5823079号公報、特許第6830604号公報等に記載の方法に準じて製造することができる。さらに、樹脂は、例えば、修飾タンパク質と所定の溶媒乃至分散媒体等を含む修飾タンパク質組成物(例えばゲル状)から溶媒や分散媒体を離脱させて固化させる等して得ることもできる。
上述の成形体は、修飾タンパク質のみを材料として用いて成形することもできる。この場合、修飾タンパク質は、成形体の成形用材料とも言える。
 本実施形態に係る修飾タンパク質は、それを主成分とする、溶液の状態、水分散液の状態、フィルムの状態、又は粉末の状態で、被着体を接着する接着剤、或いは基材にコーティング層を積層形成するコーティング剤として使用できる。それら溶液状接着剤や溶液状コーティング剤、水分散性接着剤や水分散性コーティング剤、フィルム状接着剤やフィルム状コーティング剤、粉末状接着剤や粉末状コーティング剤は、例えば、以下の製造方法によって得ることができる。以下に示す接着剤の実施形態の説明において、「積層体」とは、基材上に1枚以上のフィルムを載せて圧着加工した状態を指し、「接着体」とは、圧着加工により基材に瀬着できる性質を有するフィルム自体を指します。また、コーティング剤の実施形態の説明において、コーティング剤層が基材表面に密着するようにコーティング剤層に圧力を架ける部材のことを「押圧体」又は「加圧体」という。
 修飾タンパク質を含む溶液状接着剤や溶液状コーティング剤は、本実施形態手法によって得られる修飾タンパク質を溶媒に溶解させる工程を含んだ方法によって製造できる。このような方法によれば、従来の石油由来の成分を含む溶液状接着剤や溶液状コーティング剤とは異なって、生分解性を有する溶液状接着剤や溶液状コーティング剤が容易に得られることとなる。
 溶液状接着剤や溶液状コーティング剤の製造に用いられる溶媒は、修飾タンパク質を溶解可能な液体であればよく、水、塩基性水溶液、酸性水溶液、無機塩を含む水溶液等の水性媒体、有機溶媒、これらの混合溶媒等が挙げられる。有機溶媒としては、ギ酸、ジメチルスルホキシド(DMSO)、ヘキサフルオロイソプロパノール(HFIP)、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)、N-メチルピペリドン(NMP)、ジヒドロレボグルコセノン等が例示される。
 溶液状接着剤や溶液状コーティング剤に含まれる修飾タンパク質は、本実施形態に係る製法によって得られるものであって、前記した溶媒に溶解可能なものであれば特に限定されるものではない。修飾タンパク質が水性媒体に溶解した接着剤やコーティング剤は、修飾タンパク質が有機溶媒に溶解した接着剤やコーティング剤よりも取扱い性等が優れるといった利点がある。このような水溶液状接着剤や水溶液状コーティング剤としては、例えば、マレイン酸エステル化タンパク質、コハク酸エステル化タンパク質、スルホン酸エステル化タンパク質、リン酸エステル化タンパク質等の修飾タンパク質を塩基性水溶液に溶解したものが好適に用いられる。それらの修飾タンパク質は、塩基性水溶液に対する溶解度が高い。このため、上記の修飾タンパク質が塩基性水溶液に溶解した水溶液状接着剤や水溶液状コーティング剤を用いれば、後述する被着体の被着面や積層体表面により高濃度の接着剤又はコーティング剤を塗布することができ、その接着強度の向上が期待できる。特に水溶液状接着剤又はコーティング剤であれば、修飾タンパク質の分子がほぐれやすくなり、被着体の表面上に存在する微細な凹みに入り込みやすくなり、接着力が向上し得る。
 溶液状接着剤や溶液状コーティング剤中の修飾タンパク質の濃度は、修飾タンパク質の溶媒に対する溶解度等に基づいて適宜に決定される。かかる濃度は、例えば、5~40質量%であってもよく、10~35質量%であってもよく、15~20質量%であってもよく、20~25質量%であってもよい。また、溶液状接着剤や溶液状コーティング剤には、必要に応じて、公知の溶液状接着剤や溶液状コーティング剤に含まれる各種の添加剤等の修飾タンパク質以外の成分が含まれていてもよい。
 修飾タンパク質を含む溶液状接着剤は、複数の被着体が互いに接着された接着体を製造するのに用いられる。例えば、接着されるべき複数の被着体の間に溶液状接着剤を介在させた後、溶液状接着剤中の溶媒を除去して、修飾タンパク質を固化させることにより、被着体同士を接着して接着体を得ることができる。このような方法によれば、生分解性を有する接着剤を用いて接着体が得られるため、廃棄時の環境負荷を低減可能な接着体が容易に製造できるといったメリットがある。なお、被着体は、修飾タンパク質を含む溶液状接着剤にて接着可能なものであれば、その材質は特に限定されるものではなく、有機物質(例えば、紙、木材等のセルロース製品や合成樹脂、タンパク質製品)であっても、無機物質(金属やガラス等の非金属)であってもよい。
 溶液状接着剤を用いて接着体を製造する際の具体的な方法も何等限定されるものではない。例えば、互いに接着される被着体のうちの少なくとも何れか一方の被着面に溶液状接着剤を塗布したり、滴下したり、或いは被着体の被着面を溶液状接着剤の液面に接触させたり、浸漬したりして、被着面に溶液状接着剤を存在させた後、被着体を被着面同士において重ね合わせ乃至は突き合わせることで、複数の被着体の間に溶液状接着剤を介在させるようにしてもよい。また、複数の被着体の間に介在する溶液状接着剤中の溶媒を除去して、修飾タンパク質を固化させる際には、例えば、重ね合わされた、又は突き合わされた被着面同士が互い密接されるように、複数の被着体に対して、被着面の重合せ方向乃至突合せ方向の少なくとも何れか一方側から圧力を加えた状態で、加熱したり、風乾したり、自然乾燥させたりしてもよい。勿論、そのような圧力を加えなくとも接着が可能な場合は、圧力を加える必要がない。
 修飾タンパク質を含む溶液状コーティング剤は、基材の表面の全体又は一部にコーティング層が積層形成された積層体を製造するのに用いられる。例えば、コーティング層が積層されるべき基材の表面の少なくとも一部に溶液状コーティング剤を供給して、かかる基材の表面部分を溶液状コーティング剤でコーティングした後、溶液状接着剤中の溶媒を除去して、修飾タンパク質を固化させる。これにより、基材の表面の少なくとも一部にコーティング層を積層形成して積層体を得ることができる。このような方法によっても、生分解性を有するコーティング剤を用いて積層体が得られるため、廃棄時の環境負荷を低減可能な積層体が容易に製造できるといったメリットがある。なお、基材は、修飾タンパク質を含む溶液状コーティング剤が接着可能なものであれば、その材質は特に限定されるものではなく、前記した溶液状接着剤にて接着される被着体と同様なものであってよい。
 溶液状コーティング剤を用いて積層体を製造する際の具体的な方法も何等限定されるものではない。例えば、基材表面の少なくとも一部に溶液状コーティング剤を塗布したり、滴下したり、或いは基材表面の少なくとも一部を溶液状コーティング剤の液面に接触させたり、浸漬したりして、基材の少なくとも一部に溶液状コーティング剤を所定厚さの層となるように供給してコーティングしてもよい。また、基材表面に積層されたコーティング剤層(溶液状コーティング剤)中の修飾タンパク質を固化させる際には、例えば、基材表面上のコーティング剤層を加熱したり、風乾したり、自然乾燥させたりして、コーティング剤層中の溶媒を除去するようにしてもよい。なお、その際には、必要に応じて、コーティング剤層上に、所定の押圧体(加圧体)を、コーティング剤層の全面を覆うように載置し、コーティング剤層が基材表面に密着するようにコーティング剤層を基材表面側に押圧(加圧)してもよい。このとき、押圧体が溶液状コーティング剤に接着しないようにするのが好ましい。例えば、押圧体のコーティング剤層との接触面に、離型剤を塗布したり、離型紙を貼り付けておいたり、或いは接触面に対して、コーティング剤が接着しないような表面処理したり、若しくは押圧体として、溶液状コーティング剤に接着しない材質のものを用いたりすることで、押圧体に対する溶液状コーティング剤の接着が防止できる。なお、押圧体としては、例えば、PTFE(ポリテトラフルオロエチレン)、PP(ポリプロピレン)、PE(ポリエチレン)、シリコンゴム等、溶液状コーティング剤に対して離型性を示す材料が挙げられ、また、押圧体の表面処理としては、例えば、シリコーンオイルのコーティング処理等が例示され得る。
 修飾タンパク質を含む水分散性接着剤や水分散性コーティング剤は、本実施形態手法によって得られる修飾タンパク質を水性媒体(水性液体)に分散させる工程を含んだ方法によって製造できる。このような方法によれば、従来の石油由来の成分を含む水分散性接着剤や水分散性コーティング剤とは異なって、生分解性を有する水分散性接着剤や水分散性コーティング剤が容易に得られることとなる。
 水分散性接着剤や水分散性コーティング剤の製造に用いられる水性媒体は、修飾タンパク質が分散可能な水や、塩基性水溶液、酸性水溶液、無機塩を含む水溶液等が例示され得る。使用する溶媒が修飾タンパク質を溶解する場合、当該溶媒は、溶液状接着剤又はコーティング剤を調製するのに適しており、使用する溶媒が修飾タンパク質を完全に溶解しない場合は、当該溶媒は、水分散性接着剤又はコーティング剤を調製するのに適している。
 水分散性接着剤や水分散性コーティング剤に含まれる修飾タンパク質は、本実施形態に係る製法によって得られるものであって、前記した水性媒体に分散可能なものであれば特に限定されるものではない。かかる修飾タンパク質としては、例えば、マレイン酸エステル化タンパク質や、コハク酸エステル化タンパク質、スルホン酸エステル化タンパク質、リン酸エステル化タンパク質等が挙げられる。これらの修飾タンパク質は、比較的に高い吸水性を有するため、水性媒体により多くの量が分散され得る。このため、それらの修飾タンパク質を含む水分散性コーティング剤においては、修飾タンパク質の含有割合を有利に高めることが可能となって、水性媒体の含有割合を効果的に低減できる。そして、それによって、水性媒体の除去による修飾タンパク質の固化速度の向上が期待でき、以て、被着体に対する接着速度を高め得るといった利点が得られる。なお、水分散性接着剤や水分散性コーティング剤には、必要に応じて、公知の水分散性接着剤や水分散性コーティング剤に含まれる各種の添加剤等の修飾タンパク質以外の成分が含まれていてもよい。
 修飾タンパク質を含む水分散性接着剤は、複数の被着体が互いに接着された接着体を製造するのに用いられる。例えば、接着されるべき複数の被着体の間に水分散性接着剤を介在させた後、水分散性接着剤中の水性媒体を除去して、修飾タンパク質を固化させることにより、被着体同士を接着して接着体を得ることができる。このような方法によれば、生分解性を有する接着剤を用いて接着体が得られるため、廃棄時の環境負荷を低減可能な接着体が容易に製造できるといったメリットがある。なお、被着体は、修飾タンパク質を含む水分散性接着剤にて接着可能なものであれば、その材質は特に限定されるものではなく、修飾タンパク質を含む溶液性接着剤にて接着される被着体と同様なものであってもよい。
 水分散性接着剤を用いて接着体を製造する際の具体的な方法も何等限定されるものではない。例えば、接着されるべき複数の被着体の間に水分散性接着剤を介在させる際は、前記した溶液状接着剤を複数の被着体の間に水分散性接着剤を介在させる際と同様な方法が採用され得る。また、被着体間に介在する水分散性接着剤中の水性媒体を除去して、修飾タンパク質を固化させる際も、被着体間に介在する溶液状接着剤中の溶媒を除去して、修飾タンパク質を固化させる際と同様な方法が採用され得る。
 修飾タンパク質を含む水分散性コーティング剤は、基材の表面の全体又は一部にコーティング層が積層形成された積層体を製造するのに用いられる。例えば、コーティング層が積層されるべき基材の表面の少なくとも一部に水分散性コーティング剤を供給して、かかる基材の表面部分を溶液状コーティング剤でコーティングした後、水分散性接着剤中の水性媒体を除去して、修飾タンパク質を固化させる。これにより、基材の表面の少なくとも一部にコーティング層を積層形成して積層体を得ることができる。このような方法によっても、生分解性を有するコーティング剤を用いて積層体が得られるため、廃棄時の環境負荷を低減可能な積層体が容易に製造できるといったメリットがある。なお、基材は、修飾タンパク質を含む水分散性コーティング剤が接着可能なものであれば、その材質は特に限定されるものではなく、前記した溶液状コーティング剤にてコーティング層が形成される基材と同様なものであってもよい。
 水分散性コーティング剤を用いて積層体を製造する際の具体的な方法も何等限定されるものではない。例えば、基材表面の少なくとも一部に水分散性コーティング剤を供給する際には、前記した溶液状コーティング剤を基材表面に供給する際と同様な方法が採用され得る。また、基材表面に供給された水分散性コーティング剤中の水性媒体を除去して修飾タンパク質を固化させる際には、基材表面に供給された溶液状コーティング剤中の溶媒を除去して修飾タンパク質を固化させる際と同様な方法が採用され得る。
 修飾タンパク質を含むフィルム状接着剤やフィルム状コーティング剤は、本実施形態手法によって得られる修飾タンパク質が溶解した修飾タンパク質溶液からフィルムを成形する工程を含んだ方法によって製造できる。このような方法によれば、従来の石油由来の成分を含むフィルム状接着剤やフィルム状コーティング剤とは異なって、生分解性を有するフィルム状接着剤やフィルム状コーティング剤が容易に得られることとなる。
 フィルム状接着剤やフィルム状コーティング剤の製造に用いられる溶液としては、例えば、溶液状接着剤や溶液状コーティング剤として使用される修飾タンパク質溶液が好適に使用される。その中でも、マレイン酸エステル化タンパク質や、コハク酸エステル化タンパク質、スルホン酸エステル化タンパク質、リン酸エステル化タンパク質等の修飾タンパク質が塩基性水溶液に溶解したものが好適に用いられる。そのような修飾タンパク質溶液をキャスト成形してなるフィルム状接着剤やフィルム状コーティング剤は、水との親和性が高い。そのため、後述するように接着体や積層体を得るに際して、フィルム状接着剤やフィルム状コーティング剤を被着体の間や基材表面上に存在させて膨潤させるときに、フィルム状接着剤やフィルム状コーティング剤がより多くの水分を吸収して、十分に軟化する。これによって、フィルム状接着剤やフィルムコーティング剤の被着体や基材に対する接着強度の向上が望まれ得る。なお、修飾タンパク質溶液からフィルムを成形する方法としては、例えば、タンパク質溶液をキャスト成形する方法が採用される。このキャスト成形の実施には、一般的な公知の手順や公知の条件が採用され得る。
 修飾タンパク質を含むフィルム状接着剤は、複数の被着体が互いに接着された接着体を製造するのに用いられる。例えば、接着されるべき複数の被着体の間にフィルム状接着剤を介在させた状態で、フィルム状接着剤を膨潤させたり、加熱したりして、軟化させ、その後、フィルム状接着剤を被着体に圧接させた状態で硬化させることにより、被着体同士を接着して接着体を得ることができる。また、フィルム状接着剤を、予め膨潤乃至加熱して軟化させてから、複数の被着体の間に介在させ、その後、フィルム状接着剤を被着体に圧接させた状態で硬化させるようにしてもよい。これらの方法によれば、生分解性を有する接着剤を用いて接着体が得られるため、廃棄時の環境負荷を低減可能な接着体が容易に製造できるといったメリットがある。なお、被着体は、修飾タンパク質を含むフィルム状接着剤にて接着可能なものであればよく、修飾タンパク質を含む溶液性接着剤にて接着される被着体と同様なものであってもよい。
 フィルム状接着剤は、水分を吸収したり、加熱されたりすると軟化し、その後の乾燥や冷却によって硬化する。また、フィルム状接着剤に含まれる修飾タンパク質(アシル化前のタンパク質であってもよい)が、フィルムを成形したときに水との接触や加熱によって収縮挙動を示す特性を有するものである場合には、フィルム状接着剤も水との接触や加熱によって収縮する。このため、修飾タンパク質を含むフィルム状接着剤は、被着体間で膨潤乃至加熱されると、軟化して被着体の被着面に存在する隙間に部分的に食い込み、特に、修飾タンパク質が上記の収縮特性を有する場合には、被着面の隙間に食い込んだ状態で収縮する。そして、その状態でフィルム状接着剤が硬化すると、アンカー効果により、フィルム状接着剤と被着体とが接着して、被着体同士が接着されると考えられる。また、フィルム状接着剤に含まれる修飾タンパク質と被着体との間で水素結合が生じることにより、フィルム状接着剤と被着体とが接着されることも考えられる。
 従って、フィルム状接着剤を膨潤させて軟化させる際には、フィルム状接着剤に吸収され、また、フィルム状接着剤を収縮させ得る水や、水を含む溶液や分散液等の水性液体が好適に用いられる。そして、例えば、上記の水性液体を滴下したり、水性液体中に浸漬したりして、フィルム状接着剤に水を吸収させることで、フィルム状接着剤を膨潤、軟化させるようにしてもよい。また、膨潤により軟化したフィルム状接着剤を硬化させる際には、例えば、フィルム状接着剤を被着体間に介在させた状態で、加熱乾燥したり、風乾したり、自然乾燥させたりする方法が採用され得る。
 フィルム状接着剤を加熱して軟化させる際には、フィルム状接着剤を被着体間に介在させる前に、加熱してもよいし、フィルム状接着剤を被着体間に介在させた後に被着体とフィルム状接着剤の全体を加熱するようにしてもよい。加熱温度は、フィルム状接着剤を軟化させ得る温度で、且つフィルム状接着剤に含まれる修飾タンパク質に悪影響を与えない(例えば分解させない)温度であれば特に限定されない。加熱により軟化したフィルム状接着剤を硬化する際には、冷却装置で冷却したり、放冷したりする方法が採用され得る。
 膨潤乃至加熱により軟化したフィルム状接着剤を被着体の被着面の隙間に十分に食い込ませるには、軟化したフィルム状接着剤と被着体との界面を密接させることが望ましい。そこで、例えば、複数の被着体に対して、被着面の重合せ方向乃至突合せ方向の少なくとも何れか一方側から圧力を加えて、軟化したフィルム状接着剤を被着体に圧接しつつ、硬化させることが好ましい。ここでの被着体に対する加圧方法は、一般的な方法が何れも採用可能である。
 修飾タンパク質を含むフィルム状コーティング剤は、基材の表面の全体又は一部にコーティング層が積層形成された積層体を製造するのに用いられる。例えば、フィルム状コーティング剤を基材の表面の少なくとも一部を覆うように載置した状態で、フィルム状コーティング剤を膨潤させたり、加熱したりして、軟化させ、その後、フィルム状コーティング剤を基材表面に圧接させた状態で硬化させることにより、基材表面の少なくとも一部にコーティング層を積層形成して積層体を得ることができる。また、フィルム状コーティング剤を、予め膨潤乃至加熱して軟化させてから、基材の表面の少なくとも一部を覆うように載置し、その後、フィルム状コーティング剤を被着体に圧接させた状態で硬化させるようにしてもよい。これらの方法によれば、生分解性を有するコーティング剤を用いて積層が得られるため、廃棄時の環境負荷を低減可能な積層体が容易に製造できるといったメリットがある。なお、基材は、修飾タンパク質を含むフィルム状コーティング剤が接着可能なものであればよく、修飾タンパク質を含むフィルム状接着剤にて接着される被着体と同様なものであってもよい。
 フィルム状コーティング剤が基材表面に接着するメカニズムは、フィルム状接着剤が被着体の被着面に接着するメカニズムと同様と考えられる。従って、フィルム状コーティング剤を用いて積層体を製造する際の具体的な方法も、フィルム状接着剤を用いて接着体を得る際と同様な方法が採用され得る。なお、軟化したフィルム状コーティング剤を基材表面に圧接して硬化させる際には、例えば、基材上にコーティングされた溶液状コーティング剤を基材表面の側に押圧する際に用いられる押圧体と同様な押圧体を用いて、フィルム状コーティング剤を基材表面側に押圧してもよい。
 修飾タンパク質を含む粉末状接着剤や粉末状コーティング剤には、本実施形態手法によって得られる修飾タンパク質の粉末を含む粉末組成物が用いられる。この粉末組成物は、修飾タンパク質が主成分として含まれておれば、各種の添加残等の副成分が含まれていてもよい。
 粉末状接着剤や粉末状コーティング剤に含まれる修飾タンパク質は、本実施形態に係る製法によって得られるものであれば特に限定されるものではない。かかる修飾タンパク質としては、例えば、マレイン酸エステル化タンパク質や、コハク酸エステル化タンパク質、スルホン酸エステル化タンパク質、リン酸エステル化タンパク質等が挙げられる。前述のように、これらの修飾タンパク質は、他の修飾タンパク質に比して吸水性が高い。それ故、そのような修飾タンパク質を含む粉末状接着剤や粉末状コーティング剤は比較的に高い含水率を有する。そのため、被着体の被着面や基材表面に載置された状態で樹脂化(固化)させるのに必要な加熱温度や加圧量を可及的に低くすることができる。その結果、上記の修飾タンパク質を含む粉末状接着剤や粉末コーティング剤を用いれば、被着体や基材に対する接着操作が有利に簡便化され得るといったメリットが期待される。なお、粉末状性接着剤や粉末状コーティング剤には、必要に応じて、公知の粉末状接着剤や粉末状コーティング剤に含まれる各種の添加剤等の修飾タンパク質以外の成分が含まれていてもよい。
 修飾タンパク質を含む粉末状接着剤も、複数の被着体が互いに接着された接着体を製造するのに用いられる。例えば、接着されるべき複数の被着体の間に粉末状接着剤を介在させた状態で、粉末状接着剤を加熱すると共に、被着体を介して加圧して、固化させることにより、被着体同士を接着して接着体を得ることができる。このような方法によれば、生分解性を有する接着剤を用いて接着体が得られるため、廃棄時の環境負荷を低減可能な接着体が容易に製造できるといったメリットがある。なお、被着体は、修飾タンパク質を含む粉末状接着剤にて接着可能なものであればよく、例えば、修飾タンパク質を含む溶液性接着剤にて接着される被着体と同様なものであってもよい。
 粉末状接着剤を用いて接着体を製造する際の具体的な方法も何等限定されるものではない。例えば、接着されるべき複数の被着体の間に介在した粉末状接着剤を加熱・加圧する際には、被着体を金属板等にて被着面側とは反対の両側から挟み、金属板を加熱することで、被着体間に介在した粉末状接着剤を被着体と共に加熱する。それと同時に、ハンドプレス機等で金属板を加圧し、被着体を介して、粉末状接着剤を所定時間加圧する。これにより、粉末状接着剤を樹脂化させ固化して被着体を接着する。なお、粉末状接着剤を固化させる際の加熱温度や加圧量、加熱・加圧時間は、粉末状接着剤中に含まれる修飾タンパク質の種類に応じて、修飾タンパク質を樹脂化させ得る範囲の中から適宜に選択される。
 修飾タンパク質を含む粉末状コーティング剤も、基材の表面の全体又は一部にコーティング層が積層形成された積層体を製造するのに用いられる。例えば、粉末状コーティング剤を基材の表面の少なくとも一部に載置した状態で、粉末状コーティング剤を加熱すると共に、加圧体と基材との間で加圧して、固化させることにより、前記基材の表面の少なくとも一部にコーティング層を積層形成する。
 粉末状コーティング剤を用いて積層体を製造する際の具体的な方法も何等限定されるものではない。例えば、基材表面に載置した粉末状接着剤の全体を覆うように金属板等を配置し、金属板を加熱することで、粉末状接着剤を加熱する。それと同時に、ハンドプレス機等で金属板と基材との間で粉末状接着剤を所定時間加圧することで、粉末状コーティング剤を樹脂化させて固化させる。なお、粉末状コーティング剤の加熱温度や加圧量、或いは加熱・加圧時間は、粉末状接着剤を用いて接着体を得る際と同様とされる。
 本発明について、以下により詳細に説明する。
 実施例において使用する略語は、特記しない限り、有機化学又は遺伝子工学の分野で一般的に使用される意味で使用される。以下にいくつかの例を示す。
AcO:無水酢酸
DBU:1,8-ジアザビシクロ[5.4.0]ウンデク-7-エン
DIPEA:N,N-ジイソプロピルエチルアミン
DMAP:4-ジメチルアミノピリジン
DMSO:ジメチルスルホキシド
FT-IRスペクトル:フーリエ変換赤外分光分析スペクトル
GPC:ゲルろ過クロマトグラフィー
HFIP:ヘキサフルオロイソプロパノール
RO水:逆浸透膜(RO膜)を用いて処理した水
TCEP:トリス(2-カルボキシエチル)ホスフィン
 組換えタンパク質の化学修飾におけるボールミルの可能性を評価するために、組換えタンパク質のアシル化をメカノケミカル法と従来の溶液法の両方で実施し、生成物を様々な分析手法で評価した。
1.溶液法によるアセチル化
(比較例1)100kDa組換えタンパク質のアセチル化(塩基非存在下)
 組換えタンパク質PRT966(500mg、4.80μmol)をマグネチックスターラー・ホットプレートを用いて撹拌しながらDMSO(10mL)に懸濁させた後、混合物の連続加熱撹拌(80℃、1時間)により溶解し、透明な茶色溶液を得た。次いで、AcO(311μL、3.30mmol、1水酸基あたり3.5当量)を反応溶液に添加し、その後撹拌させた(80℃、6時間)。その後、反応混合物を室温まで冷却し、氷冷(0℃)したRO水(500mL)に穏やかに攪拌しながら徐々に分液して生成物を沈殿させた(1時間)。その後、減圧下濾過し、RO水、アセトンで十分に洗浄した。その後、真空オーブンで減圧下に完全に乾燥させて(80℃、1時間)、粘着性のある茶色固体を得、そのまま分析に供した。
(比較例2)100kDa組換えタンパク質のアセチル化(塩基存在下)
 組換えタンパク質PRT966(500mg、4.80μmol)をマグネチックスターラー・ホットプレートを用いて撹拌しながらDMSO(10mL)に懸濁させた後、混合物の連続加熱撹拌(80℃、1時間)により溶解し、透明な茶色溶液を得た。次に、AcO(311μL、3.30mmol、1水酸基あたり3.5当量)及びDIPEA(574μL、3.30mmol、1水酸基あたり3.5当量)を反応溶液に加え、撹拌した(80℃、6時間)。その後、反応混合物を室温まで冷却し、氷冷(0℃)したRO水(500mL)に穏やかに攪拌しながら徐々に添加して生成物を沈殿させた(1時間)。その後、生成物を減圧下濾過し、RO水、アセトンで十分に洗浄した。その後、真空オーブンで減圧下に完全に乾燥させて(80℃、1時間)、薄茶色固体を得、そのまま分析に供した。
2.メカノケミカル法によるアセチル化
(実施例1)100kDa組換えタンパク質のアセチル化(塩基非存在下)
 組換えタンパク質PRT966(500mg、4.80μmol)、AcO(311μL、3.30mmol、1水酸基あたり3.5当量)を10mLのステンレス製カップ(レッチェ社製)に加え、20個のステンレス製ボール(直径5mm、レッチェ社製)を入れ、ミキサーミル型ボールミル(ミキサーミルMM400、レッチェ社製)でミリング(振動数:30Hz、90分間)して弱黄白色非晶質固形分を得た。この反応混合物を粉砕ジャーから取り出し、攪拌しながらRO水(25mL)に懸濁した(10分)。その後、生成物を減圧下濾過し、RO水、アセトンで十分に洗浄した。その後、真空オーブンで減圧下に完全に乾燥させて(80℃、1時間)、白色非晶質粉末を得、これをそのまま分析に供した。
(実施例2)100kDa組換えタンパク質のアセチル化(塩基存在下)
 100kDaの組換えタンパク質PRT966(500mg、4.80μmol)、AcO(311μL、3.30mmol、1水酸基あたり3.5当量)、DIPEA(574μL、3.30mmol、1水酸基あたり3.5当量)を10mLステンレス製カップ(レッチェ社製)に入れ、20個のステンレス製ボール(直径5mm、レッチェ社製)を加え、ミキサーミル型ボールミル(商品名:ミキサーミルMM400、レッチェ社製)を用いてミリング(振動数:30Hz、90分間)してワックス状の茶色固体を得た。この反応混合物を粉砕ジャーから取り出し、攪拌しながらRO水(25mL)に懸濁した(10分間)。その後、生成物を減圧下濾過し、RO水、アセトンで十分に洗浄した。その後、真空オーブンで減圧下、完全に乾燥させて(80℃、1時間)、弱黄白色アモルファス粉末を得、これをそのまま分析に供した。
3.液相法とメカノケミカル法のアセチル化生成物の比較
(1)IR吸収スペクトル分析
 フーリエ変換赤外吸収(FT-IR)スペクトルは、Nicolet iS50 FT-IR spectrometer(商品名、Thermo Fisher Scientific社製)を用いて実施した。ニート状態の試料を、ダイヤモンド結晶の減衰全反射(ATR)を用いて分析し、吸収周波数は波数(cm-1)で0.1cm-1単位まで記録した。スペクトルは、760-3800cm-1の範囲で4cm-1の分解能で収集され、64回スキャンした値の平均値を算出した。
(2)GPC分析
 GPCは、屈折率(RI)検出器を備えた液体クロマトグラフィーシステム(商品名:Agilent 1260 Infinity II、Agilent Technologies Inc.社製)及び0.5μmガードカラムフィルター(商品名:Shodex GPC HK-G、昭和電工(株)製)を装着したスチレン-ジビニルベンゼン共重合体カラム(内径4.6mm×150mm)固定相とHFIP(セントラル硝子株式会社製)を用いて分析物の分離を行った。移動相を流速0.15mL/minで、40℃でAgilent 1260 Infinity II refractive index detector(RID)(Agilent Technologies Inc.社製)を用いてモニターした。タンパク質は、HFIPにトリフルオロ酢酸ナトリウムを加えた0.1wt%溶液(最終濃度1mM)として分析した。システイン残基を有するタンパク質には、ジスルフィド結合の生成を防ぐために、TCEP(最終濃度10mM)を添加した。試料を加熱加振器(商品名:Front Lab MyBL-100S、AS ONE(株)製)を用いて溶解し(45℃、1500rpm、1時間)、0.45μmの親水性PTFEメンブランフィルター(商品名:Dismic 25HP、Advan Tech社製)を通過させて残った不溶物を除去した。
 図1(a)は、比較例1及び2、実施例1及び2の外観を比較したものであり、図1(b)は、比較例1及び2、実施例1及び2、未修飾タンパク質PRT966の各GPCクロマトグラムを重ね合わせたグラフである。溶液法で調製した比較例1及び2の修飾タンパク質は茶色塊状であり、使用するためには粉砕する必要があった。一方、メカノケミカル法で調製した実施例1及び2は白色粉末として得られ、取り扱い性にも優れていた。
 比較例1及び2、実施例1及び2のIRスペクトル及びGPC分析の結果を、それぞれ図2~5に示す。図2(a)は、比較例1及び未修飾タンパク質PRT966のIRスペクトルであり、1740cm-1にピークが現れたことから、アセチル化が進行したことがわかった。図2(b)は、比較例1及び未修飾タンパク質PRT966のGPCクロマトグラムであり、保持時間が未修飾タンパク質のものより短くなった。図3(a)は、比較例2及び未修飾タンパク質PRT966のIRスペクトルであり、1730cm-1にピークが現れたことから、アセチル化が進行したことがわかった。図3(b)は、比較例2及び未修飾タンパク質PRT966のGPCクロマトグラムであり、保持時間が未修飾タンパク質のものよりわずかに短くなった。図4(a)は、実施例1及び未修飾タンパク質PRT966のIRスペクトルであり、1740cm-1にピークが現れたことから、アセチル化が進行したことがわかった。図4(b)は、実施例1及び未修飾タンパク質PRT966のGPCクロマトグラムであり、保持時間が未修飾タンパク質のものよりわずかに短くなった。図5(a)は、実施例2及び未修飾タンパク質PRT966のIRスペクトルであり、1743cm-1にピークが現れたことから、アセチル化が進行したことがわかった。図5(b)は、実施例2及び未修飾タンパク質PRT966のGPCクロマトグラムであり、保持時間が未修飾タンパク質のものよりわずかに短くなった。
(3)SDS-PAGE解析
 ドデシル硫酸ナトリウム-ポリアクリルアミドゲル電気泳動(SDS-PAGE)は、プレキャスト分離ゲル(商品名:4-20% Mini-PROTEAN TGX、Bio-Rad Laboratories Inc.社製)を用いて行った。ゲルを電極アセンブリ(商品名:Mini-PROTEAN Tetra Electrode Assembly、Bio-RadLaboratoriesInc.社製)に挿入し、SDSランニングバッファ(Bio-RadLaboratories Inc.社製)とともに電気泳動タンクの内側に設置した。タンパク質をDMSOに溶解し、塩化リチウム(最終濃度2M)を加えて加熱シェーカー(商品名:TMS-200 Turbo Thermoshaker Incubator、HangzhouAllshengInstrumentsCo. Ltd.製)を使用して最終濃度1wt%で溶解した後(80℃、2000rpm、45分間)、10M尿素水溶液で50倍に希釈した。その後、3-メルカプト-1、2-プロパンジオールを含む同量のサンプルバッファと混合し、95℃に加熱(5分間)した(商品名:Genius Dry Bath Incubator MD-01N、MajorScienceCo.Ltd社製)後、ゲル(10μL)上に供し、参考用に分子量ラダー(商品名:XL-Ladder Brood、ApproscienceCo.社製)を加えた。電気泳動は、定電圧(200V、30分)で行った(商品名:PowerPacUniversal Power Supply、Bio-RadLaboratoriesInc.社製)。タンパク質は、Oriole Fluorescent GelStain(Bio-RadLaboratories Inc.社製)を用いてゲル(商品名:Duomax 1030、HeidolphInstruments社製)を穏やかに撹拌(30rpm、1時間)して染色し、イメージングソフトウェア(GelDoc EZ gel imaging system及びImageLabsoftware(Bio-Rad Laboratories Inc.社製))で視覚化した。
 SDS-PAGEの結果によれば、溶液としてDMSOを用いた溶液法では、系中の酸化ストレスによりタンパク質主鎖が分解して生じる低分子量タンパク質のバンドが見られたが、メカノケミカル法では、そのようなバンドは見られなかった。
4.分子量の違い(7.5kDaから300kDaまで)による影響
(実施例3)7.5kDa組換えタンパク質のアセチル化
 組換えタンパク質PRT2882(配列番号8、500mg、50.5μmol)、AcO(301μL、3.18mmol、1水酸基あたり3.5当量)、及びDIPEA(317μL、1.82mmol、1水酸基あたり2当量)を、10mLステンレス製カップ(レッチェ社製)に20個のステンレス製ボール(直径5mm、レッチェ社製)を加え、ミキサーミル型ボールミル(商品名:ミキサーミルMM400、レッチェ社製)を用いてミリング(振動数:30Hz、90分間)して濃灰色の塊状の固形分を得た。この反応混合物を粉砕ジャーから取り出し、攪拌しながらRO水(25mL)中に懸濁した(10分間)。その後、生成物を減圧下濾過し、RO水、アセトンで十分に洗浄した。その後、真空オーブンで減圧下、完全に乾燥させて(80℃、1時間)て濃灰色非晶質粉末を得、これをさらに処理することなく分析に供した。
(実施例4)15kDa組換えタンパク質のアセチル化
 組換えタンパク質PRT2841(配列番号9、500mg、28.1μmol)、AcO(316μL、3.34mmol、1水酸基あたり3.5当量)、DIPEA(333μL、1.91mmol、1水酸基あたり2当量)を、10mLステンレス製カップ(レッチェ社製)に20個のステンレス製ボール(直径5mm、レッチェ社製)を加え、ミキサーミル型ボールミル(商品名:ミキサーミルMM400、レッチェ社製)を用いてミリング(振動数:30Hz、90分間)して薄灰色塊状固体を得た。この反応混合物を粉砕ジャーから取り出し、攪拌しながらRO水(25mL)に懸濁した(10分)。その後、生成物を減圧下濾過し、RO水、アセトンで十分に洗浄した。その後、真空オーブンで減圧下、完全に乾燥させて(80℃、1時間)、淡灰色非晶質粉末を得、これをさらに処理することなく分析に供した。
(実施例5)25kDa組換えタンパク質のアセチル化
 組換えタンパク質PRT2662(配列番号10、500mg、18.2μmol)、AcO(331μL、3.50mmol、1水酸基あたり3.5当量)およびDIPEA(349μL、2.00mmol、1水酸基あたり2当量)を、10mLステンレス製カップ(レッチェ社製)に20個のステンレス製ボール(直径5mm、レッチェ社製)を加え、ミキサーミル型ボールミル(商品名:ミキサーミルMM400、レッチェ社製)を用いてミリング(振動数:30Hz、90分間)して淡灰色ワックス状の固体を得た。この反応混合物を粉砕ジャーから取り出し、攪拌しながらRO水(25mL)中に懸濁した(10分間)。その後、生成物を減圧下濾過し、RO水、アセトンで十分に洗浄した。その後、真空オーブンで減圧下、完全に乾燥させて(80℃、1時間)、淡灰色非晶質粉末を得、これをさらに処理することなく分析に供した。
(実施例6)50kDa組換えタンパク質のアセチル化
 組換えタンパク質PRT1000(500mg、9.44μmol)、AcO(319μL、3.37mmol、1水酸基あたり3.5eq.)及びDIPEA(336μL、1.93mmol、1水酸基あたり2eq)を、10mLステンレス製カップ(レッチェ社製)に加え、20個のステンレス製ボール(直径5mm、レッチェ社製)を用いてミキサーミル型ボールミル(商品名:ミキサーミルMM400、レッチェ社製)でミリング(振動数:30Hz、90分間)して白色非晶質固形物を得た。この反応混合物を粉砕ジャーから取り出し、攪拌しながらRO水(25mL)に懸濁した(10分)。その後、生成物を減圧下濾過し、RO水、アセトンで十分に洗浄した。その後、真空オーブンで減圧下、完全に乾燥させて(80℃、1時間)、白色非晶質粉末を得、これをそのまま分析に供した。
(実施例7)50kDa組換えタンパク質のアセチル化
 組換えタンパク質PRT918(500mg、9.48μmol)、AcO(314μL、3.32mmol、1水酸基あたり3.5当量)及びDIPEA(330μL、1.90mmol、1水酸基あたり2当量)を10mLステンレス製カップ(レッチェ社製)に加え、20個のステンレス製ボール(直径5mm、レッチェ社製)を入れて、ミキサーミル型ボールミル(商品名:ミキサーミルMM400、レッチェ社製)でミリング(振動数:30Hz、90分間)し、白色非晶質固形分を得た。この反応混合物を粉砕ジャーから取り出し、攪拌しながらRO水(25mL)に懸濁した(10分)。その後、生成物を減圧下濾過し、RO水、アセトンで十分に洗浄した。その後、真空オーブンで減圧下、完全に乾燥させて(80℃、1時間)て白色非晶質粉末を得、これをそのまま分析に供した。
(実施例8)100kDa組換えタンパク質のアセチル化
 組換えタンパク質PRT966(500mg、4.80μmol)、AcO(311μL、3.30mmol、1水酸基あたり3.5当量)、及びDIPEA(328μL、1.88mmol、1水酸基あたり2当量)を、10mLステンレス製カップ(レッチェ社製)に20個のステンレス製ボール(直径5mm、レッチェ社製)を加え、ミキサーミル型ボールミル(商品名:ミキサーミルMM400、レッチェ社製)を用いてミリング(振動数:30Hz、90分間)し、薄茶色ペーストを得た。この反応混合物を粉砕ジャーから取り出し、RO水(25mL)に撹拌しながら懸濁した(10分間)。その後、生成物を減圧下濾過し、RO水、アセトンで十分に洗浄した。その後、真空オーブンで減圧下、完全に乾燥させて(80℃、1時間)、淡いベージュ色非晶質粉末を得、これをそのまま分析に供した。
(実施例9)200kDa組換えタンパク質のアセチル化
 組換えタンパク質PRT799(500mg、2.37μmol)、AcO(305μL、3.23mmol、1水酸基あたり3.5当量)、及びDIPEA(321μL、1.84mmol、1水酸基あたり2当量)を10mLステンレス製カップ(レッチェ社製)に加え、20個のステンレス製ボール(直径5mm、レッチェ社製)を入れ、ミキサーミル型ボールミル(商品名:ミキサーミルMM400、レッチェ社製)でミリング(振動数:30Hz、90分間)して淡灰色グミ状の固形物を得た。この反応混合物を粉砕ジャーから取り出し、攪拌しながらRO水(25mL)に懸濁した(10分)。その後、生成物を減圧下濾過し、RO水、アセトンで十分に洗浄した。その後、真空オーブンで減圧下、完全に乾燥させて(80℃、1時間)、淡灰色非晶質粉末を得、これをさらに処理することなく分析に供した。
(実施例10)300kDa組換えタンパク質のアセチル化
 組換えタンパク質PRT1186(配列番号11、500mg、1.59μmol)、AcO(307μL、3.25mmol、1水酸基あたり3.5当量)、DIPEA(324μL、1.86mmol、1水酸基あたり2当量)を10mLステンレス製カップ(レッチェ社製)に加え、20個のステンレス製ボール(直径5mm、レッチェ社製)を入れ、ミキサーミル型ボールミル(商品名:ミキサーミルMM400、レッチェ社製)でミリング(振動数:30Hz、90分間)して薄灰色グミ状の固形物を得た。この反応混合物を粉砕ジャーから取り出し、攪拌しながらRO水(25mL)に懸濁した(10分)。その後、生成物を減圧下濾過し、RO水、アセトンで十分に洗浄した。その後、真空オーブンで減圧下、完全に乾燥させて(80℃、1時間)、白色非晶質固体を得、そのまま分析に供した。
 実施例3~10のIRスペクトル及びGPC分析の結果を、それぞれ図6~13に示す。図6(a)は、実施例3及び未修飾タンパク質PRT2882のIRスペクトルであり、1741cm-1にピークが現れたことから、アセチル化が進行したことがわかった。図6(b)は、実施例3及び未修飾タンパク質PRT2882のGPCクロマトグラムであり、保持時間が未修飾タンパク質のものよりわずかに短くなった。図7(a)は、実施例4及び未修飾タンパク質PRT2841のIRスペクトルであり、1742cm-1にピークが現れたことから、アセチル化が進行したことがわかった。図7(b)は、実施例4及び未修飾タンパク質PRT2841のGPCクロマトグラムであり、保持時間が未修飾タンパク質のものよりわずかに短くなった。図8(a)は、実施例5及び未修飾タンパク質PRT2662のIRスペクトルであり、1743cm-1にピークが現れたことから、アセチル化が進行したことがわかった。図8(b)は、実施例5及び未修飾タンパク質PRT2662のGPCクロマトグラムであり、保持時間が未修飾タンパク質のものよりわずかに短くなった。図9(a)は、実施例6及び未修飾タンパク質PRT1000のIRスペクトルであり、1744cm-1にピークが現れたことから、アセチル化が進行したことがわかった。図9(b)は、実施例6及び未修飾タンパク質PRT1000のGPCクロマトグラムであり、保持時間が未修飾タンパク質のものよりわずかに短くなった。
 図10(a)は、実施例7及び未修飾タンパク質PRT918のIRスペクトルであり、1744cm-1にピークが現れたことから、アセチル化が進行したことがわかった。図10(b)は、実施例7及び未修飾タンパク質PRT918のGPCクロマトグラムであり、保持時間が未修飾タンパク質のものよりわずかに短くなった。図11(a)は、実施例8及び未修飾タンパク質PRT966のIRスペクトルであり、1744cm-1にピークが現れたことから、アセチル化が進行したことがわかった。図11(b)は、実施例8及び未修飾タンパク質PRT966のGPCクロマトグラムであり、保持時間が未修飾タンパク質のものよりわずかに短くなった。図12(a)は、実施例9及び未修飾タンパク質PRT799のIRスペクトルであり、1730cm-1にピークが現れたことから、アセチル化が進行したことがわかった。図12(b)は、実施例9及び未修飾タンパク質PRT799のGPCクロマトグラムであり、保持時間が未修飾タンパク質のものよりわずかに短くなった。図13(a)は、実施例10及び未修飾タンパク質PRT1186のIRスペクトルであり、1731cm-1にピークが現れたことから、アセチル化が進行したことがわかった。図13(b)は、実施例10及び未修飾タンパク質PRT1186のGPCクロマトグラムであり、保持時間が未修飾タンパク質のものよりわずかに短くなった。
5.塩基の種類による影響
(実施例11)100kDa組換えタンパク質のアセチル化
 組換えタンパク質PRT966(500mg、4.80μmol)、AcO(311μL、3.30mmol、1水酸基あたり3.5当量)、水酸化ナトリウム(41.5mg、1.04mmol、1水酸基あたり1.1当量)を10mLステンレス製カップ(レッチェ社製)に加え、20個のステンレス製ボール(直径5mm、レッチェ社製)を入れ、ミキサーミル型ボールミル(商品名:ミキサーミルMM400、レッチェ社製)を用いてミリング(振動数:30Hz、90分間)し、白色非晶質固形分を得た。この反応混合物を粉砕ジャーから取り出し、攪拌しながらRO水(25mL)に懸濁した(10分)。その後、生成物を減圧下濾過し、RO水、アセトンで十分に洗浄した。その後、真空オーブンで減圧下、完全に乾燥させて(80℃、1時間)、白色非晶質の微粉末を得、これをそのまま分析に供した。
(実施例12)100kDa組換えタンパク質のアセチル化
 組換えタンパク質PRT966(500mg、4.80μmol)、AcO(311μL、3.30mmol、1水酸基あたり3.5当量)、及び炭酸ナトリウム(110mg、1.04mmol、1水酸基あたり1.1当量)を10mLステンレス製カップ(レッチェ社製)に加え、20個のステンレス製ボール(直径5mm、レッチェ社製)を入れ、ミキサーミル型ボールミル(商品名:ミキサーミルMM400、レッチェ社製)を用いてミリング(振動数:30Hz、90分間)し、白色非晶質固体を得た。この反応混合物を粉砕ジャーから取り出し、攪拌しながらRO水(25mL)に懸濁した(10分)。その後、生成物を減圧下濾過し、RO水、アセトンで十分に洗浄した。その後、真空オーブンで減圧下、完全に乾燥させて(80℃、1時間)、白色非晶質の微粉末を得、これをそのまま分析に供した。
(実施例13)100kDa組換えタンパク質のアセチル化
 組換えタンパク質PRT966(500mg、4.80μmol)、AcO(445μL、4.71mmol、1水酸基あたり5当量)、DIPEA(820μL、4.71mmol、1水酸基あたり5当量)、及びDMAP(575mg、4.71mmol、水酸基残基当たり5当量)を、10mLのステンレス製カップ(レッチェ社製)に加え、20個のステンレス製ボール(直径5mm、レッチェ社製)を入れ、ミキサーミル型ボールミル(商品名:ミキサーミルMM400、レッチェ社製)でミリング(振動数:30Hz、8.6時間)して黒褐色ワックス状の固体を得た。この反応混合物を粉砕ジャーから取り出し、攪拌しながらRO水に懸濁した(10分間)。その後、生成物を減圧下濾過し、RO水、アセトンで十分に洗浄した。その後、真空オーブンで減圧下、完全に乾燥させて(80℃、1時間)、褐色非晶質粉末を得、これをそのまま分析に供した。
 実施例11~13のIRスペクトル及びGPC分析の結果を、それぞれ図14~16に示す。図14(a)は、実施例11及び未修飾タンパク質PRT966のIRスペクトルであり、1743cm-1にピークが現れたことから、アセチル化が進行したことがわかった。図14(b)は、実施例11及び未修飾タンパク質PRT966のGPCクロマトグラムであり、保持時間が未修飾タンパク質のものよりわずかに短くなった。図15(a)は、実施例12及び未修飾タンパク質PRT966のIRスペクトルであり、1745cm-1にピークが現れたことから、アセチル化が進行したことがわかった。図15(b)は、実施例12及び未修飾タンパク質PRT966のGPCクロマトグラムであり、保持時間が未修飾タンパク質のものよりわずかに短くなった。図16(a)は、実施例13及び未修飾タンパク質PRT966のIRスペクトルであり、1737cm-1にピークが現れたことから、アセチル化が進行したことがわかった。図16(b)は、実施例13及び未修飾タンパク質PRT966のGPCクロマトグラムであり、保持時間が未修飾タンパク質のものよりわずかに短くなった。
6.メカノケミカル法でのサクシニル化
(実施例14)100kDa組換えタンパク質のサクシニル化
 組換えタンパク質PRT966(500mg、4.80μmol)、無水コハク酸(330mg、3.30mmol、1水酸基あたり3.5当量)、DIPEA(181μL、1.04mmol、1水酸基あたり1.1当量)、及びDMAP(127mg、1.04mmol、1水酸基あたり1.1当量)を10mLのステンレス製カップ(レッチェ社製)に加え、20個のステンレス製ボール(直径5mm、レッチェ社製)を入れ、ミキサーミル型ボールミル(商品名:ミキサーミルMM400、レッチェ社製)でミリング(振動数:30Hz、90分間)して弱黄白色非晶質固形物を得た。この反応混合物を粉砕ジャーから取り出し、攪拌しながらRO水(25mL)に懸濁した(10分)。その後、生成物を減圧下濾過し、RO水、アセトンで十分に洗浄した。その後、真空オーブンで減圧下、完全に乾燥させて(80℃、1時間)、白色非晶質固体を得、そのまま分析に供した。
(実施例15)100kDa組換えタンパク質のサクシニル化
 組換えタンパク質PRT966(500mg、4.80μmol)、無水コハク酸(330mg、3.30mmol、1水酸基あたり3.5当量)、DIPEA(181μL、1.04mmol、1水酸基あたり1.1当量)、及びDBU(155μL、1.04mmol、1水酸基あたり1.1当量)を10mLステンレス製カップ(レッチェ社製)に加え、20個のステンレス製ボール(直径5mm、レッチェ社製)を入れ、ミキサーミル型ボールミル(商品名:ミキサーミルMM400、レッチェ社製)でミリング(振動数:30Hz、90分間)して粘着性のある黒褐色のペーストを得た。この反応混合物を粉砕ジャーから取り出し、攪拌しながらRO水(25mL)に懸濁した(10分間)。その後、生成物を減圧下濾過し、RO水、アセトンで十分に洗浄した。その後、真空オーブンで減圧下、完全に乾燥させて(80℃、1時間)、灰褐色非晶質固体を得、そのまま分析に供した。
(実施例16)100kDa組換えタンパク質のサクシニル化
 組換えタンパク質PRT966(500mg、4.80μmol)、無水コハク酸(330mg、3.30mmol、1水酸基あたり3.5当量)、及び炭酸カリウム(455mg、3.30mmol、1水酸基あたり3.5当量)を10mLステンレス製カップ(レッチェ社製)に入れ、20個のステンレス製ボール(直径5mm、レッチェ社製)を加え、ミキサーミル型ボールミル(商品名:ミキサーミルMM400、レッチェ社製)を用いてミリング(振動数30Hz、90分間)してワックス状の弱黄白色固形物を得た。この反応混合物を粉砕ジャーから取り出し、攪拌しながらRO水(25mL)に懸濁した(10分)。その後、生成物を減圧下濾過し、RO水、アセトンで十分に洗浄した。その後、真空オーブンで減圧下、完全に乾燥させて(80℃、1時間)、弱黄白色非晶質粉末を得、これをそのまま分析に供した。
(実施例17)100kDa組換えタンパク質のサクシニル化
 組換えタンパク質PRT966(500mg、4.80μmol)、無水コハク酸(471mg、4.71mmol、1水酸基あたり5当量)、DIPEA(820μL、4.71mmol、1水酸基あたり5当量)、DMAP(575mg、4.71mmol、1水酸基あたり5当量)を加えた。水酸基残基あたり)を10mLのステンレス製カップ(レッチェ社製)に加え、20個のステンレス製ボール(直径5mm、レッチェ社製)を入れ、ミキサーミル型ボールミル(商品名:ミキサーミルMM400、レッチェ社製)でミリング(振動数:30Hz、8.6時間)して、白亜の非晶質固形物を得た。この反応混合物を粉砕ジャーから取り出し、攪拌しながらRO水(25mL)に懸濁した(10分間)。その後、生成物を減圧下濾過し、RO水、アセトンで十分に洗浄した。その後、真空オーブンで減圧下、完全に乾燥させて(80℃、1時間)、白色非晶質粉末を得、これをそのまま分析に供した。
(実施例18)100kDa組換えタンパク質のサクシニル化
 組換えタンパク質PRT966(500mg、4.80μmol)、無水コハク酸(471mg、4.71mmol、1水酸基あたり5当量)、DIPEA(820μL、4.71mmol、1水酸基あたり5当量)、DMAP(575mg、4.71mmol、1水酸基あたり5当量)を10mLステンレス製カップ(レッチェ社製)に加え、20個のステンレス製ボール(直径5mm、レッチェ社製)を入れ、ミキサーミル型ボールミル(商品名:ミキサーミルMM400、レッチェ社製)でミリング(振動数:20Hz、2時間)して弱黄白色のペーストを得た。この反応混合物を粉砕ジャーから取り出し、攪拌しながらRO水(25mL)に懸濁した(10分間)。その後、生成物を減圧下濾過し、RO水、アセトンで十分に洗浄した。その後、真空オーブンで減圧下、完全に乾燥させて(80℃、1時間)、白色非晶質粉末を得、これをそのまま分析に供した。
 実施例14~18のIRスペクトル及びGPC分析の結果を、それぞれ図17~21に示す。図17(a)は、実施例14及び未修飾タンパク質PRT966のIRスペクトルであり、1713cm-1にピークが現れたことから、サクシニル化が進行したことがわかった。図17(b)は、実施例14及び未修飾タンパク質PRT966のGPCクロマトグラムであり、保持時間が未修飾タンパク質のものとほぼ同じだった。図18(a)は、実施例15及び未修飾タンパク質PRT966のIRスペクトルであり、1740cm-1にピークが現れたことから、サクシニル化が進行したことがわかった。図18(b)は、実施例15及び未修飾タンパク質PRT966のGPCクロマトグラムであり、保持時間が未修飾タンパク質のものとほぼ同じだった。図19(a)は、実施例16及び未修飾タンパク質PRT966のIRスペクトルであり、1740cm-1にピークが現れたことから、サクシニル化が進行したことがわかった。図19(b)は、実施例16及び未修飾タンパク質PRT966のGPCクロマトグラムであり、保持時間が未修飾タンパク質のものとほぼ同じだった。図20(a)は、実施例17及び未修飾タンパク質PRT966のIRスペクトルであり、1721cm-1にピークが現れたことから、サクシニル化が進行したことがわかった。図20(b)は、実施例17及び未修飾タンパク質PRT966のGPCクロマトグラムであり、保持時間が未修飾タンパク質のものとほぼ同じだった。図21(a)は、実施例18及び未修飾タンパク質PRT966のIRスペクトルであり、1737cm-1にピークが現れたことから、サクシニル化が進行したことがわかった。図21(b)は、実施例18及び未修飾タンパク質PRT966のGPCクロマトグラムであり、保持時間が未修飾タンパク質のものよりわずかに短くなった。
7.メカノケミカル法でのステアリル化
(実施例19)100kDa組換えタンパク質のステアリル化
 組換えタンパク質PRT966(500mg、4.80μmol)、無水ステアリン酸(1.82g、3.30mmol、1水酸基あたり3.5当量)とDIPEA(574μL、3.30mmol、1水酸基あたり3.5当量)を10mLステンレス製カップ(レッチェ社製)に加え、20個のステンレス製ボール(直径5mm、レッチェ社製)を入れ、ミキサーミル型ボールミル(商品名:ミキサーミルMM400、レッチェ社製)を用いてミリング(振動数:30Hz、90分間)してワックス状の非晶質固体を得た。この反応混合物を粉砕ジャーから取り出し、攪拌しながらRO水(25mL)に懸濁した(10分間)。次に、粗生成物を減圧下濾過し、RO水、アセトンで十分に洗浄した。その後、生成物をろ紙上で部分的に乾燥させ、酢酸エチル(25mL)に懸濁し、マグネティックスターラーを使用して撹拌した(10分間)。その後、真空濾過により生成物を回収し、酢酸エチルで十分に洗浄した後、真空オーブン(80℃、1時間)で白色アモルファス粉末を得、これをそのまま分析に供した。
(実施例20)100kDa組換えタンパク質のステアリル化
 組換えタンパク質PRT966(500mg、4.80μmol)、塩化ステアロイル(998mg、3.30mmol、1水酸基あたり3.5当量)及びDIPEA(574μL、3.30mmol、1水酸基あたり3.5当量)を10mLステンレス製カップ(レッチェ社製)に入れ、20個のステンレス製ボール(直径5mm、レッチェ社製)を加え、ミキサーミル型ボールミル(商品名:ミキサーミルMM400、レッチェ社製)を用いてミリング(振動数:30Hz、90分間)してワックス状の黄色ペーストを得た。この反応混合物を粉砕ジャーから取り出し、攪拌しながらRO水(25mL)に懸濁した(10分間)。次に、粗生成物を減圧下濾過し、RO水、アセトンで十分に洗浄した。その後、生成物をろ紙上で部分的に乾燥させ、酢酸エチル(25mL)に懸濁し、マグネティックスターラーを使用して撹拌した(10分間)。その後、真空濾過により生成物を回収し、酢酸エチルで十分に洗浄した後、真空オーブンで乾燥させて(80℃、1時間)、弱黄白色非晶質粉末を得、これをそのまま分析に供した。
(実施例21)100kDa組換えタンパク質のステアリル化
 組換えタンパク質PRT966(500mg、4.80μmol)、無水ステアリン酸(1.82g、3.30mmol、1水酸基あたり3.5当量)、DIPEA(574μL、3.30mmol、1水酸基あたり3.5当量)、及びDMAP(403mg、3.30mmol、1水酸基あたり3.5当量)を10mLステンレス製カップ(レッチェ社製)に加え、20個のステンレス製ボール(直径5mm、レッチェ社製)を入れ、ミキサーミル型ボールミル(商品名:ミキサーミルMM400、レッチェ社製)でミリング(振動数:30Hz、90分間)してワックス状の非晶質固形物を得た。この反応混合物を粉砕ジャーから取り出し、攪拌しながらRO水(25mL)に懸濁した(10分間)。次に、粗生成物を減圧下濾過し、RO水、アセトンで十分に洗浄した。その後、生成物をろ紙上で部分的に乾燥させ、酢酸エチル(25mL)に懸濁し、マグネティックスターラーを使用して撹拌した(10分間)。その後、減圧下濾過することにより生成物を回収し、酢酸エチルで十分に洗浄した後、真空オーブンで乾燥させて(80℃、1時間)、白色非晶質粉末を得、これをそのまま分析に供した。
(実施例22)100kDa組換えタンパク質のステアリル化
 組換えタンパク質PRT966(500mg、4.80μmol)、塩化ステアロイル(998mg、3.30mmol、1水酸基あたり3.5当量)、DIPEA(574μL、3.30mmol、1水酸基あたり3.5当量)、及びDMAP(403mg、3.30mmol、1水酸基あたり3.5当量)を10mLステンレス製カップ(レッチェ社製)に加え、20個のステンレス製ボール(直径5mm、レッチェ社製)を入れ、ミキサーミル型ボールミル(商品名:ミキサーミルMM400、レッチェ社製)でミリング(振動数:30Hz、90分間)してワックス状の黄色ペーストを得た。この反応混合物を粉砕ジャーから取り出し、攪拌しながらRO水(25mL)に懸濁した(10分間)。次に、粗生成物を減圧下濾過し、RO水、アセトンで十分に洗浄した。その後、生成物をろ紙上で部分的に乾燥させ、酢酸エチル(25mL)に懸濁し、マグネティックスターラーを使用して撹拌した(10分間)。その後、減圧下濾過することにより生成物を回収し、酢酸エチルで十分に洗浄した後、真空オーブンで乾燥させて(80℃、1時間)、ベージュ色の非晶質粉末を得、そのまま分析に供した。
 実施例19~22のIRスペクトル及びGPC分析の結果を、それぞれ図22~25に示す。図22(a)は、実施例19及び未修飾タンパク質PRT966のIRスペクトルであり、1733cm-1にピークが現れたことから、ステアリル化が進行したことがわかった。図22(b)は、実施例19及び未修飾タンパク質PRT966のGPCクロマトグラムであり、保持時間が未修飾タンパク質のものよりわずかに短くなった。図23(a)は、実施例20及び未修飾タンパク質PRT966のIRスペクトルであり、1740cm-1にピークが現れたことから、ステアリル化が進行したことがわかった。図23(b)は、実施例20及び未修飾タンパク質PRT966のGPCクロマトグラムであり、保持時間が未修飾タンパク質のものとほぼ同じだった。図24(a)は、実施例21及び未修飾タンパク質PRT966のIRスペクトルであり、1736cm-1にピークが現れたことから、ステアリル化が進行したことがわかった。図24(b)は、実施例21及び未修飾タンパク質PRT966のGPCクロマトグラムであり、保持時間が未修飾タンパク質のものよりわずかに短くなった。図25(a)は、実施例22及び未修飾タンパク質PRT966のIRスペクトルであり、1742cm-1にピークが現れたことから、ステアリル化が進行したことがわかった。図25(b)は、実施例22及び未修飾タンパク質PRT966のGPCクロマトグラムであり、保持時間が未修飾タンパク質のものよりわずかに短くなった。
8.エステル化度
 以下の手順で、得られた修飾タンパク質のエステル化度を算出した。まず、修飾タンパク質と未修飾タンパク質をそれぞれFT-IRスペクトル分析を行った。得られた各スペクトルから、形成されたエステル及びタンパク質のアミド結合に対応するC=O伸縮振動ピークのピーク面積を算出した。修飾タンパク質中のアミド結合のC=O伸縮振動ピークのピーク面積に対する、エステル結合のC=O伸縮振動ピークのピーク面積を算出した。各計算式を以下に示す。
 エステル/アミド比率=[(修飾タンパク質のエステルC=O伸縮振動ピークのピーク面積)-(未修飾タンパク質のエステルC=O伸縮振動ピークのピーク面積)]/(修飾タンパク質のアミドC=O伸縮振動ピークのピーク面積)
 エステル化残基推定数=エステル/アミド比×タンパク質中の全アミノ酸残基数
 エステル化度(%)=(推定エステル化残基数/水酸基の総数)×100
 各修飾タンパク質のエステル化度を表3に示す。
 エステル化度は、タンパク質を構成するアミノ酸残基の水酸基がどの程度エステル化されたかを示す指標である。タンパク質中の水酸基以外の求核性官能基(アミノ基、スルフヒドリル基)のアセチル化は、アミド結合またはチオエステル結合を形成し、エステルのC=O伸縮振動ピークに影響しない。
(4)修飾タンパク質の分散性
 100kDa組換えタンパク質PRT966、実施例11で得られたアセチル化タンパク質、実施例14で得られたサクシニル化タンパク質を、水、アセトン、0.5w/v%水酸化ナトリウム水溶液のいずれかに懸濁させ(最終濃度1wt%)、室温でボルテックスミキサー(フロントラボFLX-S50、AS ONE Corporation社製)で混合した(2500rpm、30秒)。
 結果を図26及び表4に示す。図26は、組換えタンパク質PRT966、アセチル化タンパク質PRT966、サクシニル化タンパク質PRT966に、それぞれ溶媒を加えたものを写す写真である。図26(a)、(b)、(c)で使用した溶媒は、それぞれ水、アセトン、0.5w/v%水酸化ナトリウム水溶液である。タンパク質は、いずれの溶媒にもあまり分散しなかったが、アセチル化タンパク質はアセトンに対して均一に分散した。また、サクシニル化タンパク質は、水中で均一に分散し、アルカリ性溶液に溶解した。
(5)修飾タンパク質の分散性
 100kDa組換えタンパク質PRT966、アセチル化タンパク質、サクシニル化タンパク質を、DMSOに懸濁させ(最終濃度5wt%)、加熱加振器で加熱した(90℃、1500rpm、1時間)。
 加熱振盪後の溶液の状態を図27に示す。図27(a)は、DMSOを加えた直後のタンパク質の状態を示す写真であり、図27(b)は、DMSOに溶解した状態を示す写真であり、図27(c)は、各タンパク質のゲル化状態を比較した写真である。いずれも透明な粘性溶液(ゲル状)となり、沈殿は見られなかった。ゲル化の程度は、大きい順に、実施例11(アセチル化タンパク質)、実施例12(アセチル化タンパク質)、未修飾タンパク質PRT966、比較例2(アセチル化タンパク質)、実施例14(サクシニル化タンパク質)であった。
9.紡糸
 組換えタンパク質PRT966及び実施例8(アセチル化PRT966)を所定の割合(重量)で混合した。得られた混合物にDMSO(最終濃度:20wt%)及び塩化リチウム(最終濃度:4wt%)を加え、マグネティックスターラー・ホットプレートで加熱撹拌(100℃、30分)して、タンパク質を完全に溶解させてドープ液を得た(最終濃度:20wt%)。得られたドープ液を、使い捨て22Gルアーロック針(商品名:Neolus NN-2225R、テルモ(株)製、内径0.413mm)を装着したプラスチック製注射器(商品名:ss-05Lz、テルモ(株)製)に装填した。そして、針の先端を凝固浴(75℃のRO水)中に浸し、針を常に凝固浴の周辺でゆっくり移動させながら、ドープ液をゆっくりと一定に凝固浴中に注入した。
 結果を表5に示す。アセチル化タンパク質の割合が大きいほど、紡糸した後の癒着が抑制された。また、未修飾タンパク質は、凝固浴中で平べったい形状をしていたが、アセチル化タンパク質を含むドープ液を使用すると、断面形状がより円形に近い状態で凝固することがわかった。
10.修飾タンパク質含有接着剤
<溶液状接着剤の製造>
 50mLのステンレス製カップ(レッチェ社製)に、100kDaの組換えタンパク質PRT966(7.5g、72.1μmol)と水酸化ナトリウム(621mg、15.5mmol、1水酸基あたり1.1当量)とを加えると共に、1個のステンレス製ボール(直径25mm、レッチェ社製)を投入した後、ミキサーミル型ボールミル(ミキサーミルMM400、レッチェ社製)でミリング(振動数:30Hz、30分間)して、均質なオフホワイトの非晶質粉体を得た。次に、無水マレイン酸(4.85g、49.4mmol、1水酸基あたり3.5当量)をステンレス製カップ内に投入した後、ミキサーミル型ボールミル(ミキサーミルMM400、レッチェ社製)で更にミリング(振動数:30Hz、60分間)して、均質なオフホワイトの非晶質粉末を得た。この反応混合物をステンレス製カップから取り出して、RO水(200mL)中に投入し、撹拌しながら懸濁した(5分間)。次に、得られた懸濁液中に1MのHCl水溶液(50mL)を添加して、懸濁液を酸性化し、更に継続して撹拌した(5分間)。引き続き、懸濁液にアセトニトリル(100mL)を加えた後、生成物を真空濾過(キリヤマ5A号、φ60mmろ紙、桐山製作所:PG201ダイヤフラム真空ポンプ、大和科学株式会社)により回収した。その後、回収物をRO水及びアセトンで十分に洗浄した後、真空オーブン(VOS-310C真空オーブン、EYELA東京理化器械株式会社:GCD-051X 油回転真空ポンプ、アルバック株式会社)で減圧下に完全乾燥して(80℃、1時間)、薄黄色のアモルファス固体からなるマレイン化(マレイン酸エステル化)タンパク質の粉末を得た。次に、かくして得られたマレイン化タンパク質の粉末の1gを、80℃に加熱した1Mの水酸化ナトリウム水溶液(5mL)に投入して、1時間急速撹拌し、溶解させた。これにより、マレイン化タンパク質が塩基性水溶液に20wt%の濃度で溶解した溶液状接着剤を得た。これを実施例23とした。
<接着体の製造>
 2枚の長手矩形の段ボール片(20.4cm×5.9cm×0.3cm)と、2枚の長手矩形のガラス片(7.6cm×2.6cm×0.1cm)とを、それぞれ被着体として準備した。その後、1枚の段ボール片の片面の一部に実施例23の溶液状接着剤を塗布した後、3分間放置した。次いで、1枚の段ボール片の接着剤を塗布した面に、別の段ボール片を重ね合わせた後、2枚の段ボール片の重ね合わされた部分の全体が互いに押圧されるように、2枚の段ボール片をクリップで挟んで一晩放置した。そうして、溶液状接着剤を乾燥させることにより、溶液状接着剤中の溶媒を除去し、溶液状接着剤を固化させて、2枚の段ボール片を接着した、これにより、2枚の段ボール片が接着した接着体Aを得た。また、2枚の段ボール片に代えて2枚のガラス片を用いる以外、接着体Aを得る際と同様な操作を行って、2枚のガラス片が接着された接着体Bを得た。
<接着体Aの強度>
 次に、接着体Aにおける1枚の段ボール片の上端部を固定して中空に吊るす一方、別の1枚の段ボール片の下端部に770gの錘をつけて、上下方向中間部に位置する接着部分で剥離が生ずるか否かを観察した。その結果、接着部分で剥離が生ずることがなく、十分な接着強度を有していることが判明した。
<接着体Bの強度>
 次に、接着体Bを水平方向に延びるように配置した状態で、下側に位置する1枚の段ボール片の接着側とは反対側の部分を固定する一方、上側に位置する別の1枚の段ボール片の接着側とは反対側の端部190gの錘を載置して、接着部分での剥がれの発生の有無を観察した。その結果、接着部分で剥離が生ずることがなく、十分な接着強度を有していることが判明した。
11.ローラー型ミキサーミルを用いたメカノケミカルエステル化
 反応には、異方向回転ローラー形ミキサーとして、ローラーミキサー型式R60(東洋精機製作所製、ブレード形状:ローラー形)を備えた試験用混錬機(ラボプラストミル3S150、東洋精機製作所製)を使用した。
(実施例24)PRT966のアセチル化
 反応を行う前に、ミキサーミルのフィードチャンバー(60mL)内の温度を65℃に調整した。ミキサーミルのブレードをインチング(10rpm)させながら、フィードチャンバー内に、100kDaの組換えタンパク質PRT966(20.0g、0.192mmol)と水酸化ナトリウム(1.66g、41.4mmol、1求核残基あたり1.1当量)の粉砕済み混合物を投入した。続いて、無水酢酸(17.8mL,188mmol、1求核残基あたり5当量)を慎重に分割投入した。反応物が均質化するまでインチング(10rpm)を行い、ミキサーのブレードが自由に回転し、トルクおよび温度の両方が安定していることを確認した後、ミリング手順を開始させ、反応物を連続的にニーディング(50rpm、65℃、1.5時間)して、ベージュ色の非晶質粉末を得た。反応混合物をフィードチャンバーから取り出し、10分間攪拌しながらRO水(200mL)中に懸濁した。真空濾過により生成物を回収した後、RO水およびアセトンで十分に洗浄した後、真空オーブンで減圧下に完全乾燥して(1時間、80℃)、微細なオフホワイトの非晶質粉末を得た。得られた粉末をさらに処理することなく、FT-IRおよびGPC分析に供した。
 得られた非晶質粉末のFT-IR分析およびGPC分析の結果を、原料である組換えタンパク質PRT966の結果とともに、それぞれ図28(a)および(b)に示す。実施例24のIRスペクトルでは、1750cm-1付近に新たなピークが観察され、アセチル化が進行したと考えられる。
(実施例25)PRT966のサクシニル化
 反応を行う前に、ミキサーミルのフィードチャンバー(60mL)内の温度を65℃に調整した。ミキサーミルのブレードをインチング(10rpm)させながら、フィードチャンバー内に、100kDaの組換えタンパク質PRT966(20.0g、0.192mmol)と水酸化ナトリウム(1.66g、41.4mmol、1求核残基あたり1.1当量)の粉砕済み混合物を投入した。続いて、無水コハク酸(18.8g、188mmol、1求核残基あたり5当量)を慎重に分割投入した。反応物が均質化するまでインチング(10rpm)を行い、ミキサーのブレードが自由に回転し、トルクおよび温度の両方が安定していることを確認した後、ミリング手順を開始させ、反応物を連続的にニーディング(50rpm、65℃、1.5時間)して、ベージュ色の非晶質粉末を得た。反応混合物をフィードチャンバーから取り出し、5分間攪拌しながらRO水(200mL)中に懸濁した。その後、1M塩酸(50mL)の添加により懸濁液を酸性化し、さらに5分間撹拌した。アセトニトリル(200mL)を懸濁液に添加し、さらに5分間撹拌した。真空濾過により生成物を回収した後、RO水およびアセトンで十分に洗浄した後、真空オーブンで減圧下に完全乾燥して(1時間、80℃)、微細なオフホワイトの非晶質粉末を得た。得られた粉末をさらに処理することなく、FT-IRおよびGPC分析に供した。
 得られた非晶質粉末のFT-IR分析およびGPC分析の結果を、原料である組換えタンパク質PRT966の結果とともに、それぞれ図29(a)および(b)に示す。実施例25のIRスペクトルでは、1750cm-1付近に新たなピークが観察され、サクシニル化が進行したと考えられる。
12.二軸押出機を用いたメカノケミカルエステル化
 反応には、ダイヘッドを取り外した同方向回転二軸押出機(2D15W型、東洋精機製作所製)を備えた試験用混錬機(ラボプラストミル3S150型、東洋精機製作所製)を使用した。押出機のスクリューセグメントは、図30に示すように構成し、混練部の隣接するディスク間のスタッガー角度は45°となるように調整した。図30において、FCは前進搬送要素を示し、Rは逆転要素を示し、Kは混練要素を示し、Cは圧縮要素を示す。
(実施例26)PRT966のサクシニル化
 反応を行う前に、押出機バレルの温度は160℃に調整した。反応の間中、スクリューの回転速度(100rpm)は維持された。スクリューを潤滑にするために、押出機に無水コハク酸(5.0g、50.0mmol)を徐々に添加した。溶融無水コハク酸の押し出しが確認された後、トルクが40N・mを超えないようにしながら、100kDa組換えタンパク質PRT966(50.0g、0.480mmol)、水酸化ナトリウム(4.14g、103mmol、1求核残基あたり1.1当量)、無水コハク酸(33.0g、330mmol、1求核残基あたり3.5当量)の混合物を15分かけて押出機に徐々に添加した。反応混合物を薄茶色の非晶質粉末として押し出し、回収し、10分間撹拌しながらRO水(400mL)に懸濁した。その後、1M塩酸(100mL)の添加により懸濁液を酸性化し、さらに5分間撹拌した。アセトニトリル(400mL)を懸濁液に添加し、さらに10分間撹拌した。真空濾過により生成物を回収し、RO水およびアセトンにより十分に洗浄した後、真空オーブンで減圧下に完全乾燥(1時間、80℃)して、微細なオフホワイトの非晶質粉末を得た。得られた粉末をさらに処理することなく、FT-IRおよびGPC分析に供した。
 得られた非晶質粉末のFT-IR分析およびGPC分析の結果を、原料である組換えタンパク質PRT966の結果とともに、それぞれ図31(a)および(b)に示す。実施例26のIRスペクトルでは、1750cm-1付近に新たなピークが観察され、サクシニル化が進行したと考えられる。
13.メカノケミカル法によるアシル化
(実施例27)100kDa組換えタンパク質のスルホン化
 組換えタンパク質PRT966(7.5g、72.1μmol)、三酸化硫黄ピリジン錯体(7.87g、49.4mmol、求核残基あたり3.5当量)を125mLの硬化スチール製粉砕ジャー(レッチェ社製)にステンレス製粉砕メディア(8×φ20mm、レッチェ製)と一緒に入れ、ミキサーミル型ボールミル(商品名:ミキサーミルMM500 コントロール、レッチェ社製)を用いて粉砕(振動数:30Hz、90分)した後、30分間静置し、再度粉砕(振動数:30Hz、90分)して、オフホワイトのアモルファス粉末を得た。次に、2-エチルヘキサン酸ナトリウム(8.2g、49.4mmol、求核残基あたり3.5当量)を粉砕ジャーに加え、反応物を粉砕(振動数:30Hz、10分)し、オフホワイトの柔らかいペーストを得た。反応混合物をジャーから取り出し、粗生成物をクリンソルブ(登録商標) P-7(日本アルコール販売株式会社製、2×100mL)、RO水(2×100mL)およびアセトン(2×100mL)で順次懸濁および分離して洗浄した。その後、生成物を真空ろ過(キリヤマ5A号、φ95mmろ紙、桐山製作所;PG201ダイヤフラム真空ポンプ、ヤマト科学株式会社)で回収し、アセトンで十分に洗浄した。真空オーブンを用いて生成物を減圧下、80℃で1時間乾燥させた後、オフホワイトの微細な非晶質粉末(NaSO-PRT)が得られ、そのまま分析に供した。
 得られた非晶質粉末のFT-IR分析およびGPC分析の結果を、原料である組換えタンパク質PRT966の結果とともに、それぞれ図32(a)および(b)に示す。
(実施例28)100kDa組換えタンパク質のスルホン化
 組換えタンパク質PRT966(7.5g、72.1μmol)、三酸化硫黄ピリジン錯体(7.87g、49.4mmol、求核残基あたり3.5当量)を125mLの硬化スチール製粉砕ジャー(レッチェ社製)にステンレス製粉砕メディア(8×φ20mm、レッチェ製)と一緒に入れ、ミキサーミル型ボールミル(商品名:ミキサーミルMM500 コントロール、レッチェ社製)を用いて粉砕(振動数:30Hz、90分)した後、30分間静置し、再度粉砕(振動数:30Hz、90分)してオフホワイトのアモルファス粉末を得た。次に、2-エチルヘキサン酸ナトリウム(8.2g、49.4mmol、求核残基あたり3.5当量)を粉砕ジャーに加え、反応物を粉砕(振動数:30Hz、10分)し、オフホワイトの柔らかいペーストを得た。反応混合物をジャーから取り出し、粗生成物をクリンソルブ(登録商標) P-7(日本アルコール販売株式会社製、2×100mL)、RO水(2×100mL)およびアセトン(2×100mL)で順次懸濁および分離して洗浄した。粗生成物を0.1M塩酸(100mL)に懸濁して酸性化し、撹拌を5分間続けた。その後、生成物を真空ろ過(キリヤマ5A号、φ95mmろ紙、桐山製作所;PG201ダイヤフラム真空ポンプ、ヤマト科学株式会社)で回収し、アセトンで十分に洗浄。真空オーブンを用いて生成物を減圧下、80℃で1時間乾燥させた後、オフホワイトの微細な非晶質粉末(HSO-PRT)が得られ、そのまま分析に供した。
 得られた非晶質粉末のFT-IR分析およびGPC分析の結果を、原料である組換えタンパク質PRT966の結果とともに、それぞれ図33(a)および(b)に示す。
(実施例29)100kDa組換えタンパク質のステアリル化
 ステアリン酸(7.50g、26.4mmol、求核残基あたり3.5当量)と1、1-カルボニルジイミダゾール(4.27g、26.4mmol、求核残基あたり3.5当量)を50mLステンレス製粉砕ジャー(レッチェ製)にステンレス製粉砕媒体(1×φ25mmボール、レッチェ製)を加え、ミキサーミル型ボールミル(商品名:ミキサーミルMM400、レッチェ社製)を用いて粉砕(振動数:30Hz、30分)し、無色アモルファス粉末を得た。次に、100kDaの組換えタンパク質PRT966(4.0g、38.4μmol)を粉砕ジャーに加え、粉砕(振動数:30Hz、90分)して無色のアモルファス粉末を得た。反応混合物を粉砕ジャーから取り出し、撹拌しながらテトラヒドロフラン(200mL)に10分間かけて懸濁した。その後、生成物を真空ろ過(キリヤマ5A号、φ95mmろ紙、桐山製作所;PG201ダイヤフラム真空ポンプ、ヤマト科学株式会社)で回収し、アセトンで十分に洗浄。真空オーブンを用いて生成物を減圧下、80℃で1時間乾燥させた後、オフホワイトの微細な非晶質粉末(St-PRT)が得られ、そのまま分析に供した。
 得られた非晶質粉末のFT-IR分析およびGPC分析の結果を、原料である組換えタンパク質PRT966の結果とともに、それぞれ図34(a)および(b)に示す。
(実施例30)100kDa組換えタンパク質のオレイン化
 不活性窒素雰囲気下、オレイン酸(8.32mL、26.4mmol、求核残基あたり3.5当量)と1、1-カルボニルジイミダゾール(4.27g、26.4mmol、求核残基あたり3.5当量)を密閉フラスコ中でマグネチックスターラー、ホットプレートを用いて攪拌しながら、反応混合物からの二酸化炭素の発生が停止するまで、混合物を60℃で加熱攪拌し続けた。反応混合物を、組換えタンパク質PRT966(4.0g、38.4μmol)を50mLのステンレス製ミリングカップ(レッチェ製)に入れ、ステンレス製ミリングメディア(1×φ25mmボール、レッチェ製)を入れ、ミキサーミル型ボールミル(商品名:ミキサーミルMM 400、レッチェ製)を用いて粉砕(振動数:30Hz、90分)し、粒状の褐色粉末を得た。反応混合物を粉砕ジャーから取り出し、撹拌しながらテトラヒドロフラン(200mL)に10分間かけて懸濁した。その後、生成物を真空ろ過(キリヤマ5A号、φ95mmろ紙、桐山製作所;PG201ダイヤフラム真空ポンプ、ヤマト科学株式会社)で回収し、アセトンで十分に洗浄した。真空オーブンを用いて生成物を減圧下、80℃で1時間乾燥させた後、オフホワイトの微細な非晶質粉末(Ol-PRT)が得られ、そのまま分析に供した。
 得られた非晶質粉末のFT-IR分析およびGPC分析の結果を、原料である組換えタンパク質PRT966の結果とともに、それぞれ図35(a)および(b)に示す。
(実施例31)100kDa組換えタンパク質のスルホスクシニル化
 100kDaのマレイン酸エステル化組換えタンパク質(5.0g、40.5μmol)と亜硫酸水素ナトリウム(4.13g、39.7mmol、求核残基あたり5.0当量)を50mLのステンレス製粉砕ジャー(レッチェ製)にステンレス製粉砕媒体(1×φ25mmボール、レッチェ製)を加え、ミキサーミル型ボールミル(商品名:ミキサーミルMM400、レッチェ製)を用いてRO水(1.0mL)で液体アシスト粉砕(振動数:30Hz、10分)し、薄いベージュ色のアモルファス粉末を得た。反応混合物を粉砕ジャーから取り出し、撹拌しながらRO水(200mL)に10分間かけて懸濁した。アセトニトリル(100mL)を懸濁液に加え、生成物を真空ろ過(キリヤマ5A号、φ95mmろ紙、桐山製作所;PG201ダイヤフラム真空ポンプ、ヤマト科学株式会社)で回収し、アセトンで十分に洗浄した。真空オーブンを用いて生成物を減圧下、80℃で1時間乾燥させた後、オフホワイトの微細な非晶質粉末(SulfoSucc-PRT)が得られ、そのまま分析に供した。
 得られた非晶質粉末のFT-IR分析およびGPC分析の結果を、原料である組換えタンパク質PRT966の結果とともに、それぞれ図36(a)および(b)に示す。
(実施例32)100kDa組換えタンパク質の(ジエトキシホスホリル)スクシニル化
 100kDaのマレイン酸エステル化PRT966(5.0g、40.5μmol)、ジエチルホスファイト(3.59mL、27.9mmol、求核残基あたり3.5当量)、ナトリウムエトキシド(570mg、8.76mmol、求核残基あたり1.1当量)を50mLのステンレス製粉砕ジャー(レッチェ製)にステンレス製粉砕媒体(1×φ25mmボール)を加え、ミキサーミル型ボールミル(商品名:ミキサーミルMM400、レッチェ製)を用いてRO水(1.0mL)で液体アシスト粉砕(振動数:30Hz、10分)し、薄いベージュ色のアモルファス粉末を得た。反応混合物を粉砕ジャーから取り出し、撹拌しながらRO水(200mL)に10分間かけて懸濁した。アセトニトリル(100mL)を懸濁液に加え、生成物を真空ろ過(キリヤマ5A号、φ95mmろ紙、桐山製作所;PG201ダイヤフラム真空ポンプ、ヤマト科学株式会社)で回収し、アセトンで十分に洗浄した。真空オーブンを用いて、生成物を減圧下、80℃で1時間乾燥させた後、オフホワイトの微細なアモルファス粉末(DEPS-PRT)を得た。得られた非晶質粉末は、そのまま分析に供した。
 得られた非晶質粉末のFT-IR分析およびGPC分析の結果を、原料である組換えタンパク質PRT966の結果とともに、それぞれ図37(a)および(b)に示す。
14.表面濡れ性試験
(1)分析用サンプルの製造
 50mLのステンレス製ミリングジャー(レッチェ製)に、分析対象となる組換えタンパク質誘導体をステンレス製ミリングメディア(1×φ25mmボール、レッチェ製)とともに加え、ミキサーミル型ボールミル(商品名:ミキサーミルMM400、レッチェ製)を用いて粉砕(振動数:30Hz、5分間)し、均一な粉末にした。粉砕した試料は、恒湿恒温槽(温度範囲:20~25℃±3℃、湿度範囲:50~65%±5%RH)中に保管し、1時間かけて大気と平衡化させた。
(2)キャストフィルム
 得られた均一な組換えタンパク質粉末を80℃で攪拌しながらDMSOに1時間かけて溶解し、15wt%のドープ溶液を得た。このドープ溶液を、ポリエチレンテレフタレート製のバッキングシート(商品名:サンデーPET PG1、透明色、厚さ0.5mm、アクリサンデー株式会社)にキャストした。フィルムの厚さは、ドクターブレード式コーティングアプリケーター(80mm×400μm、株式会社井元製作所)を用いてコントロールし、400μmの均一な膜厚のフィルムを形成した。得られたフィルムを、恒温強制対流式オーブン(DN411H、ヤマト科学株式会社)を用いて、60℃で4時間乾燥させ、次に真空オーブンを用いて減圧下、80℃で8時間乾燥させた。得られたフィルムを35mm×15mmの大きさに切断し、接触角分析時に平坦に保つため、粘着テープでスライドガラスに固定した。図38のa~dは、それぞれPRT966、Ac-PRT、Succ-PRT、およびSt-PRTのキャストフィルムを示す写真である。
(3)圧縮粉末
 得られた均一な組換えタンパク質粉末(1.2g)をステンレス製金型(株式会社グローバルマシーン)に加え、卓上型ニュートンプレス(商品名:NT-100H、三庄インダストリー株式会社)を用いて50MPaで圧縮し、加圧下で1分間保持した。使用した金型は、円柱形状であり、断面が35mm×15mmの長方形状の貫通孔を有している。その後、圧力を解放し、金型からサンプルを取り出して、35mm×15mm×2mmの直方体形状の圧縮サンプルを得た。
(4)接触角測定実験
 分析に先立ち、分析試料を恒湿恒温槽(温度範囲:20~25℃±3℃、湿度範囲:50~65%±5%RH)に保管し、1時間かけて大気と平衡化させた。表面の濡れ性は、RO水の1液滴(約2μL)と試料表面の静的接触角を測定することで評価した。接触角測定は、市販の接触角計(商品名:DMs-601、協和界面科学株式会社)と画像キャプチャおよびデータフィッティングソフトウェア(FAMAS、協和界面科学株式会社)を用いて、静滴法により行った。各組換えタンパク質誘導体について合計6回の測定を行い、接触角の平均値を算出した。実験結果は平均値±標準偏差で表し、接触角<90°の場合を「親水性」と評価し、接触角≧90°の場合を「疎水性」と評価した。
(5)結果
 組換えタンパク質PRT966、Ac-PRT(実施例8)、Succ-PRT(実施例14)、およびSt-PRT(実施例29)のそれぞれから調製した圧縮粉末サンプル及びキャストフィルムの両方について、水接触角を測定した。図38のa~dは、それぞれPRT966、Ac-PRT、Succ-PRT、およびSt-PRTのキャストフィルムを示す写真である。
 各組換えタンパク質誘導体(n=6)について、測定した水の接触角を表6にまとめた。誤差は標準偏差を表す。表6中の「エリプス」とは、左右の接触角の平均値である。測定された水の接触角の急峻度から、圧縮粉末サンプルを用いた接触角分析の結果、最も疎水性の高いものから最も親水性の高いものへと、Ac-PRT>St-PRT>PRT966>Succ-PRTの順であることが示された。いずれの実験でも、Ac-PRTとSt-PRTはPRT966よりも疎水性が高く、Succ-PRTは親水性が高いことが観察された。
15.難燃性試験
(1)分析用サンプルの製造方法
 50mLのステンレス製ミリングジャー(レッチェ製)に、分析対象となる組換えタンパク質誘導体をステンレス製ミリングメディア(1×φ25mmボール)とともに加え、ミキサーミル型ボールミル(商品名:ミキサーミルMM400、レッチェ製)を用いて粉砕(振動数:30Hz、5分間)し、均一な粉末にした。粉砕した試料は、恒湿恒温槽(温度範囲:20~25℃±3℃、湿度範囲:50~65%±5%RH)中に保管し、1時間かけて大気と平衡化させた。得られた均一なタンパク質粉末(1.2g)をステンレス製金型(株式会社グローバルマシーン)に加え、卓上型ニュートンプレス(商品名:NT-100H、三庄インダストリー株式会社)を用いて50MPaの圧力で1分間、加圧した。使用した金型は、円柱形状であり、断面が45mm×15mmのダンベル形状の貫通孔を有している。その後、圧力を解放し、金型からサンプルを取り出して、45mm×15mm×2mmのダンベル形状の圧縮サンプルを得た。
(2)難燃性分析
 分析に先立ち、分析試料を恒湿恒温槽(20~25℃±3℃、50~65%±5%RH)で、1時間かけて大気と平衡化させた。各試料は、試料の長さが水平になるように支持具に入れ、ストリップの少なくとも40mmを支持具から伸ばした。25mmのオレンジ色の炎がついた実験室用バーナーで、サンプルの延長端に点火した。炎を30秒間試料に当て、その後炎を取り除き、炎が消えるまでの時間と試料質量の変化を記録した。各組換えタンパク質誘導体について測定を行い(n=6)、燃焼時間と質量損失の平均値を算出した。実験結果は平均値±標準誤差で表した。
(3)第一難燃性試験
 第一難燃性試験では、未修飾PRT966、NaSO-PRT(実施例27)、HSO-PRT(実施例28)、及びSulfoSucc-PRT(実施例31)の難燃性を評価した。試験時の環境は、5~10℃、30~35%RHであった。
 各組換えタンパク質(n=6)の含水率、燃焼時間、質量損失を表7にまとめた。図39(a)は各サンプルの燃焼時間を示すグラフであり、図39(b)は各サンプルの質量損失を示すグラフである。誤差は標準誤差を表す。測定された燃焼時間と質量損失から、すべてのタンパク質誘導体サンプルはPRT966よりも改善された耐火性を示し、実施例31が最も優れた耐火性を示した。耐火性の順序は、実施例31>実施例28>実施例27>PRT966であった。
(4)第二難燃性試験
 第二難燃性試験では、未修飾PRT966、SulfoSucc-PRT(実施例31)、及びDEPS-PRT(実施例32)の耐火性を評価した。実験時の周囲環境条件は、20~25℃、70~75%RHであった。
 各組換えタンパク質誘導体(n=6)について、含水率、燃焼時間、質量損失を表8にまとめた。誤差は標準誤差を表す。測定された燃焼時間と質量損失から、修飾タンパク質誘導体は未修飾PRT966よりも改善された耐火性を示し、実施例32が最も優れた耐火性を示した。耐火性の順序は、実施例32>実施例31>PRT966であった。
15.熱可塑性試験
(1)分析用樹脂サンプルの製造
 分析対象となる組換えタンパク質誘導体(ニート、または可塑剤として20wt%のグリセロールを含む)を50mLのステンレス製ミリングジャー(レッチェ製)にステンレス製ミリングメディア(1×φ25mmボール)とともに加え、ミキサーミル型ボールミル(商品名:ミキサーミルMM400、レッチェ製)を用いて粉砕(振動数:30Hz、5分間)し、均一な混合物を得た。得られた均一な混合物(3.0g)をフッ素系離型剤(商品名:ダイフリーMS-600、ダイキン工業株式会社)を薄く塗布したステンレス製金型(株式会社グローバルマシーン)に加え、卓上型ニュートンプレス(商品名:NT-100H、三庄インダストリー株式会社)で30MPaに加圧した。使用した金型は、円柱形状であり、断面が35mm×15mmの長方形状の貫通孔を有している。圧縮された試料は、温度調節コントローラー(商品名:MTCD 15-EN、株式会社ミスミグループ本社)を使って170℃に加熱され、その温度で5分間保持された。30MPaに加圧したまま、試料を60℃まで冷却した。その後、圧力を解放し、サンプルを金型から取り出し、寸法35mm×15mm×4.5mmの樹脂タブレットを得た。成形した樹脂タブレットを、ダイヤモンドディスクカッター(粒度:#150、商品名:K-210-3、ホーザン株式会社)を装備した卓上丸鋸盤(商品名:K-210、ホーザン株式会社)を用いて、5mm×5mm×4.5mmの分析試料に切断した。
(2)熱機械分析
 各組換えタンパク質樹脂サンプルのガラス転移点(Tg)の開始温度と軟化点は、4.9Nの荷重でサンプルに押し付けられた先端が平らな石英圧縮荷重プローブ(φ8mm圧縮検出棒 P/N T1442-04;圧縮支持管 P/N T1442-03、NETZSCHjapan株式会社製)を備えた熱機械分析装置(商品名:TMA4000、NETZSCHjapan株式会社製)を使用して決定された。その後、試料を一定速度(10K・min-1)で220℃まで加熱し、試料の変形を記録した。分析した各組換えタンパク質誘導体について合計6回の測定を行い、Tgの開始温度と軟化点の平均値を算出した。実験結果は平均値±標準偏差で表した。未修飾PRT966、Ac-PRT(実施例8)、Succ-PRT(実施例14)、Mal-PRT(実施例23)、St-PRT(実施例29)、およびOl-PRT(実施例30)を用いて作製した各樹脂サンプルの熱機械分析を行った。分析は、ニートのタンパク質樹脂サンプルと、20wt%のグリセロールで可塑化した樹脂サンプルの両方で行った。
(3)結果
 各組換えタンパク質樹脂サンプル(n=6)のTgの開始温度と軟化点を表9にまとめた。誤差は標準偏差を表す。図40は、未修飾PRT966及び各修飾タンパク質の軟化点、Tgオンセット、融解温度Tmを示すグラフである。熱機械分析によると、未修飾および可塑化組換えタンパク質樹脂サンプルの両方について、すべての修飾誘導体は、未修飾PRT966よりも低いガラス転移点(Tg)と軟化点を有し、実施例30が最も低いTgオンセットと軟化点を有することが判明した。さらに、可塑剤として20wt%のグリセロールを添加することで、組換えタンパク質樹脂の熱加工性を改善できることが分析から示され、すべての可塑化サンプルで軟化点が最高温度(220℃)以下であることが確認された。

Claims (35)

  1.  タンパク質とアシル化剤を含む混合物をメカノケミカル法で処理して、修飾タンパク質を得ることを含む、修飾タンパク質の製造方法。
  2.  前記混合物が、塩基及び/又は反応促進剤を更に含む、請求項1に記載の方法。
  3.  前記タンパク質が疎水性タンパク質を含む、請求項1に記載の方法。
  4.  前記疎水性タンパクのハイドロパシー・インデックスが0超である、請求項3に記載の方法。
  5.  前記タンパク質が人工タンパク質を含む、請求項1に記載の方法。
  6.  前記人工タンパク質が人工構造タンパク質を含む、請求項5に記載の方法。
  7.  微生物学的手法により前記タンパク質を得る工程を更に含む、請求項1~6のいずれか一項に記載の方法。
  8.  前記メカノケミカル法での処理が、前記混合物に対してせん断力を加えることによって実現される、請求項1に記載の方法。
  9.  前記せん断力が、ミキサーミル又はエクストルーダーを用いて前記混合物に加えられる、請求項8に記載の方法。
  10.  請求項1~6のいずれか一項に記載の方法によって得られる修飾タンパク質。
  11.  請求項7に記載の方法によって得られる修飾タンパク質。
  12.  請求項10に記載の修飾タンパク質を含む修飾タンパク質組成物。
  13.  請求項11に記載の修飾タンパク質を含む修飾タンパク質組成物。
  14.  請求項12に記載の修飾タンパク質組成物を成形してなる修飾タンパク質成形体。
  15.  請求項13に記載の修飾タンパク質組成物を成形してなる修飾タンパク質成形体。
  16.  請求項10に記載の修飾タンパク質を含む成形用材料。
  17.  請求項11に記載の修飾タンパク質を含む成形用材料。
  18.  請求項16に記載の成形用材料を成形してなる修飾タンパク質成形体。
  19.  請求項17に記載の成形用材料を成形してなる修飾タンパク質成形体。
  20.  請求項1に記載の方法によって得られた修飾タンパク質を溶媒に溶解させる工程を含む、溶液状接着剤の製造方法。
  21.  請求項1に記載の方法によって得られた修飾タンパク質を水性媒体に分散させる工程を含む、水分散性接着剤の製造方法。
  22.  請求項1に記載の方法によって得られた修飾タンパク質が溶解した溶液からフィルムを成形する工程を含む、フィルム状接着剤の製造方法。
  23.  請求項1に記載の方法によって得られた修飾タンパク質を含む粉末を得る工程を含む、粉末状接着剤の製造方法。
  24.  請求項1に記載の方法によって得られた修飾タンパク質が溶媒に溶解してなる溶液を、複数の被着体の間に介在させた後、前記溶液から前記溶媒を除去して、前記修飾タンパク質を固化させることにより、前記被着体同士を接着することを特徴とする接着体の製造方法。
  25.  請求項1に記載の方法によって得られた修飾タンパク質が水性媒体に分散してなる水分散液を、複数の被着体の間に介在させた後、前記水分散液から前記水性媒体を除去して、前記修飾タンパク質を固化させることにより、前記被着体同士を接着することを特徴とする接着体の製造方法。
  26.  請求項1に記載の方法によって得られた修飾タンパク質を含むフィルムを、膨潤又は加熱により軟化させると共に、複数の被着体の間に介在させた後、前記フィルムを前記被着体に圧接させた状態で硬化させることにより、前記被着体同士を接着することを特徴とする接着体の製造方法。
  27.  請求項1に記載の方法によって得られた修飾タンパク質を含む粉末を複数の被着体の間に介在させた状態で、前記粉末組成物を加熱すると共に、前記被着体を介して前記粉末を加圧して、固化させることにより、前記被着体同士を接着することを特徴とする接着体の製造方法。
  28.  請求項1に記載の方法によって得られた修飾タンパク質を溶媒に溶解させる工程を含む、溶液状コーティング剤の製造方法。
  29.  請求項1に記載の方法によって得られた修飾タンパク質を水性媒体に分散させる工程を含む、水分散性コーティング剤の製造方法。
  30.  請求項1に記載の方法によって得られた修飾タンパク質が溶解した溶液からフィルムを成形する工程を含む、フィルム状コーティング剤の製造方法。
  31.  請求項1に記載の方法によって得られた修飾タンパク質を含む粉末を得る工程を含む、粉末状コーティング剤の製造方法。
  32.  基材と、前記基材の表面の少なくとも一部に積層形成されたコーティング層とを有する積層体の製造方法であって、
     請求項1に記載の方法によって得られた修飾タンパク質が溶媒に溶解してなる溶液を前記基材の表面の少なくとも一部に供給して、前記基材の表面の少なくとも一部を前記溶液でコーティングした後、前記溶液から前記溶媒を除去して、前記修飾タンパク質を固化させることにより、前記基材の表面の少なくとも一部にコーティング層を積層形成することを特徴とする積層体の製造方法。
  33.  基材と、前記基材の表面の少なくとも一部に積層形成されたコーティング層とを有する積層体の製造方法であって、
    請求項1に記載の方法によって得られた修飾タンパク質が水性媒体に分散してなる水分散液を前記基材の表面の少なくとも一部に供給して、前記基材の表面の少なくとも一部を前記水分散液でコーティングした後、前記水分散液から前記水性媒体を除去して、前記修飾タンパク質を固化させることにより、前記基材の表面の少なくとも一部にコーティング層を積層形成することを特徴とする積層体の製造方法。
  34.  基材と、前記基材の表面の少なくとも一部に積層形成されたコーティング層とを有する積層体の製造方法であって、
     請求項1に記載の方法によって得られた修飾タンパク質を含むフィルムを膨潤又は加熱により軟化させると共に、前記基材の表面の少なくとも一部に載置した後、前記フィルムを前記基材に圧接させた状態で硬化させることにより、前記基材の表面の少なくとも一部に前記コーティング層を積層形成することを特徴とする積層体の製造方法。
  35.  基材と、前記基材の表面の少なくとも一部に積層形成されたコーティング層とを有する積層体の製造方法であって、
     請求項1に記載の方法によって得られた修飾タンパク質を含む粉末を前記基材の表面の少なくとも一部に載置した状態で、前記粉末を加熱すると共に、加圧体と前記基材との間で前記粉末を加圧して、固化させることにより、前記基材の表面の少なくとも一部に前記コーティング層を積層形成することを特徴とする積層体の製造方法。
PCT/JP2023/030366 2022-08-23 2023-08-23 エステル化タンパク質及びその製造方法 WO2024043282A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2022-132682 2022-08-23
JP2022132682 2022-08-23
JP2023059940 2023-04-03
JP2023-059940 2023-04-03
JP2023117429 2023-07-19
JP2023-117429 2023-07-19

Publications (1)

Publication Number Publication Date
WO2024043282A1 true WO2024043282A1 (ja) 2024-02-29

Family

ID=90013442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/030366 WO2024043282A1 (ja) 2022-08-23 2023-08-23 エステル化タンパク質及びその製造方法

Country Status (1)

Country Link
WO (1) WO2024043282A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55139427A (en) * 1979-04-17 1980-10-31 Kanebo Ltd Production of finely powdered silk fibroin
JPH04193812A (ja) * 1990-07-18 1992-07-13 Kanebo Ltd 油性体吸蔵再生蛋白質微粉末及びその製造方法
JPH06116119A (ja) * 1992-10-08 1994-04-26 Nippon Sheet Glass Co Ltd 紫外線吸収効果の高い化粧料
WO2018092685A1 (ja) * 2016-11-18 2018-05-24 日本水産株式会社 畜肉様食感を有するタンパク質素材及びその製造方法
WO2021065854A1 (ja) * 2019-09-30 2021-04-08 Spiber株式会社 接着剤
WO2021201103A1 (ja) * 2020-04-01 2021-10-07 Spiber株式会社 難燃性材料及びその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55139427A (en) * 1979-04-17 1980-10-31 Kanebo Ltd Production of finely powdered silk fibroin
JPH04193812A (ja) * 1990-07-18 1992-07-13 Kanebo Ltd 油性体吸蔵再生蛋白質微粉末及びその製造方法
JPH06116119A (ja) * 1992-10-08 1994-04-26 Nippon Sheet Glass Co Ltd 紫外線吸収効果の高い化粧料
WO2018092685A1 (ja) * 2016-11-18 2018-05-24 日本水産株式会社 畜肉様食感を有するタンパク質素材及びその製造方法
WO2021065854A1 (ja) * 2019-09-30 2021-04-08 Spiber株式会社 接着剤
WO2021201103A1 (ja) * 2020-04-01 2021-10-07 Spiber株式会社 難燃性材料及びその製造方法

Similar Documents

Publication Publication Date Title
Tretinnikov et al. Influence of casting temperature on the near-surface structure and wettability of cast silk fibroin films
Wei et al. Facile preparation of lignin-based underwater adhesives with improved performances
JP7003914B2 (ja) ポリイミド樹脂、ポリイミド樹脂組成物、及びポリイミドフィルム
Matsumoto et al. Mechanisms of silk fibroin sol− gel transitions
Aluigi et al. Keratins extracted from Merino wool and Brown Alpaca fibres as potential fillers for PLLA-based biocomposites
Yang et al. Synthesis of multifunctional polymers through the Ugi reaction for protein conjugation
Stachel et al. Cross-linking of type I collagen with microbial transglutaminase: identification of cross-linking sites
Liang et al. Self-assembled nanofibers for strong underwater adhesion: the trick of barnacles
Wang et al. Dopamine-modified alginate beads reinforced by cross-linking via titanium coordination or self-polymerization and its application in enzyme immobilization
US20150047532A1 (en) Synthetic spider silk protein compositions and methods
CN1173927A (zh) 液晶取向处理剂
Huang et al. Characterization of nano-clay reinforced phytagel-modified soy protein concentrate resin
Hardy et al. Glycopolymer functionalization of engineered spider silk protein‐based materials for improved cell adhesion
Samyn et al. Polymerizable biomimetic vesicles with controlled local presentation of adhesive functional DOPA groups
Rao et al. Amyloid fibrils as functionalizable components of nanocomposite materials
WO2024043282A1 (ja) エステル化タンパク質及びその製造方法
Federico et al. Supramolecular hydrogel networks formed by molecular recognition of collagen and a peptide grafted to hyaluronic acid
Sahoo et al. Sugar functionalization of silks with pathway‐controlled substitution and properties
JP2021155491A (ja) 微細セルロース繊維を含む複合粒子、及び複合粒子を含む樹脂組成物
Chen et al. Study on keratin/PEGDA composite hydrogel with the addition of varied hair protein fractions
Demina et al. The study of the interaction between chitosan and 2, 2-bis (hydroxymethyl) propionic acid during solid-phase synthesis
Wang et al. Thermoresponsive hydrogels from BSA esterified with low molecular weight PEG
JP6490897B2 (ja) 自己組織化ペプチドゲル
Diao et al. Wheat gluten blends with a macromolecular cross-linker for improved mechanical properties and reduced water absorption
Jabeen et al. Crosslinking of alginic acid/chitosan matrices using bis phenol-F-diglycidyl ether: mechanical, thermal and water absorption investigation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23857390

Country of ref document: EP

Kind code of ref document: A1