WO2024043065A1 - プラズマ処理装置、rfシステム、およびrf制御方法 - Google Patents

プラズマ処理装置、rfシステム、およびrf制御方法 Download PDF

Info

Publication number
WO2024043065A1
WO2024043065A1 PCT/JP2023/028839 JP2023028839W WO2024043065A1 WO 2024043065 A1 WO2024043065 A1 WO 2024043065A1 JP 2023028839 W JP2023028839 W JP 2023028839W WO 2024043065 A1 WO2024043065 A1 WO 2024043065A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
control
parameters
plasma processing
coupled
Prior art date
Application number
PCT/JP2023/028839
Other languages
English (en)
French (fr)
Inventor
龍太 樋口
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2024043065A1 publication Critical patent/WO2024043065A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy

Definitions

  • Various aspects and embodiments of the present invention relate to plasma processing apparatuses, RF systems, and RF control methods.
  • Patent Document 1 describes a plasma processing apparatus that includes a chamber, a power supply section, a matching circuit, a first calculation section, and a control circuit.
  • the chamber has a space inside. , the object to be processed carried into the space is processed by the plasma generated in the space.
  • the power supply unit supplies high frequency power for generating plasma in the chamber.
  • the first calculation section calculates the impedance of the plasma in the chamber.
  • the control circuit matches the impedance between the plasma inside the chamber and the power supply section based on the impedance calculated by the first calculation section.
  • the frequency of the high-frequency power supplied to the high-frequency power, the magnitude of the high-frequency power, and the impedance of the matching circuit are controlled.Furthermore, the first calculation section and the control circuit are provided on one substrate. is disclosed.
  • the present disclosure provides a plasma processing apparatus, an RF system, and an RF control method that can maintain plasma more stably in processing using plasma.
  • One aspect of the present invention is a plasma processing apparatus, which includes a plasma processing chamber, a substrate support section, an antenna, a first RF generation section, a first matching box, and a plurality of first sensors. It includes a second RF generation section, a second matching box, a plurality of second sensors, and a control section.
  • the substrate support is disposed within the plasma processing chamber and includes an electrode.
  • An antenna is placed above the plasma processing chamber.
  • the first RF generator is configured to generate a first RF signal having a first frequency.
  • the first matching device includes a first variable element and has a first input terminal and a first output terminal. The first input end is coupled to the first RF generator and the first output end is coupled to the antenna.
  • the plurality of first sensors are configured to detect at least four first parameters at the first input and/or the first output. At least four first parameters are related to the first RF signal.
  • the second RF generator is configured to generate a second RF signal having a second frequency.
  • the second matching device includes a second variable element and has a second input terminal and a second output terminal. The second input end is coupled to the second RF generator and the second output end is coupled to the electrode.
  • the plurality of second sensors are configured to detect at least four second parameters at the second input and/or the second output. At least four second parameters are associated with the second RF signal.
  • the control unit includes (a1) repeatedly acquiring at least four first parameters simultaneously, (a2) repeatedly acquiring at least four second parameters simultaneously, and (b) controlling the first and second parameters.
  • the first control includes adjusting the power level of the first RF signal in the first RF generation section and controlling the power level of the first RF signal in the first RF generation section based on at least four first parameters obtained simultaneously in step (a1). Adjustment of the frequency of the first RF signal and adjustment of the first variable element in the first matching box are performed sequentially.
  • the second control includes adjusting the power level of the second RF signal in the second RF generation section and adjusting the power level of the second RF signal in the second RF generation section based on at least four second parameters obtained simultaneously in step (a2). Adjustment of the frequency of the second RF signal and adjustment of the second variable element in the second matching box are performed sequentially.
  • plasma can be maintained more stably in processing using plasma.
  • FIG. 1 is a diagram showing an example of the configuration of a plasma processing system.
  • FIG. 2 is a diagram showing an example of an inductively coupled plasma processing apparatus.
  • FIG. 3 is a diagram showing an example of a detailed configuration of the power supply.
  • FIG. 4 is a diagram illustrating an example of an RF generation section.
  • FIG. 5 is a timing chart showing an example of timing of detection and control.
  • FIG. 6 is a timing chart showing another example of detection and control timing.
  • FIG. 7 is a timing chart showing still another example of detection and control timing.
  • FIG. 8 is a flowchart showing an example of a plasma processing method.
  • FIG. 9A is a diagram showing another example of sensor arrangement.
  • FIG. 9B is a diagram showing another example of sensor arrangement.
  • FIG. 9A is a diagram showing another example of sensor arrangement.
  • FIG. 9C is a diagram showing another example of sensor arrangement.
  • FIG. 10 is a diagram showing another example of the plasma processing apparatus.
  • FIG. 11 is a top view showing an example of connections between a power source and a plurality of electromagnets.
  • FIG. 12 is a diagram showing another example of the detailed configuration of the power supply.
  • Coupled means being connected in a state where signal transmission is possible.
  • at least one of A, B, and C refers to (A), (B), (C), (A and B), (B and C), (C and A), or (A , B, and C).
  • RF signals of a plurality of different frequencies may be used.
  • the control timings may overlap. If the timings of the controls overlap, the timings of transient changes in the RF signals due to the controls overlap, and the plasma may become unstable due to disappearance of the plasma or excessive current flowing. If the plasma becomes unstable, the quality of the semiconductor substrate after plasma processing may not meet the desired quality.
  • the present disclosure provides a technique that can maintain plasma more stably in processing using plasma.
  • FIG. 1 is a diagram showing an example of the configuration of a plasma processing system.
  • a plasma processing system includes a plasma processing apparatus 1 and a controller 2.
  • the plasma processing system is an example of a substrate processing system
  • the plasma processing apparatus 1 is an example of a substrate processing apparatus.
  • the plasma processing apparatus 1 includes a plasma processing chamber 10, a substrate support section 11, and a plasma generation section 12.
  • the plasma processing chamber 10 has a plasma processing space.
  • the plasma processing chamber 10 also includes at least one gas supply port for supplying at least one processing gas to the plasma processing space, and at least one gas exhaust port for discharging gas from the plasma processing space.
  • the gas supply port is connected to a gas supply section 20, which will be described later, and the gas discharge port is connected to an exhaust system 40, which will be described later.
  • the substrate support section 11 is disposed within the plasma processing space and has a substrate support surface for supporting a substrate.
  • the plasma generation unit 12 is configured to generate plasma from at least one processing gas supplied into the plasma processing space.
  • the plasmas formed in the plasma processing space include capacitively coupled plasma (CCP), inductively coupled plasma (ICP), ECR plasma (electron-cyclotron-resonance plasma), and helicon wave excited plasma (HWP). Helicon Wave Plasma), surface wave plasma (SWP), or the like may be used.
  • various types of plasma generation units may be used, including an AC (Alternating Current) plasma generation unit and a DC (Direct Current) plasma generation unit.
  • the AC signal (AC power) used in the AC plasma generator has a frequency within the range of 100 kHz to 10 GHz. Therefore, the AC signal includes an RF (Radio Frequency) signal and a microwave signal.
  • the RF signal has a frequency within the range of 100kHz to 150MHz.
  • the control unit 2 processes computer-executable instructions that cause the plasma processing apparatus 1 to perform various steps described in this disclosure.
  • the control unit 2 may be configured to control each element of the plasma processing apparatus 1 to perform the various steps described herein. In one embodiment, part or all of the control unit 2 may be included in the plasma processing apparatus 1.
  • the control unit 2 may include a processing unit 2a1, a storage unit 2a2, and a communication interface 2a3.
  • the control unit 2 is realized by, for example, a computer 2a.
  • the processing unit two a1 may be configured to read a program from the storage unit two a2 and perform various control operations by executing the read program. This program may be stored in the storage unit 2a2 in advance, or may be acquired via a medium when necessary.
  • the acquired program is stored in the storage unit 2a2, and is read out from the storage unit 2a2 and executed by the processing unit 2a1.
  • the medium may be various storage media readable by the computer 2a, or may be a communication line connected to the communication interface 2a3.
  • the processing unit 2a1 may be a CPU (Central Processing Unit).
  • the storage unit 2a2 may include a RAM (Random Access Memory), a ROM (Read Only Memory), an HDD (Hard Disk Drive), an SSD (Solid State Drive), or a combination thereof.
  • the communication interface 2a3 may communicate with the plasma processing apparatus 1 via a communication line such as a LAN (Local Area Network).
  • FIG. 2 is a diagram showing an example of an inductively coupled plasma processing apparatus 1. As shown in FIG.
  • the inductively coupled plasma processing apparatus 1 includes a plasma processing chamber 10, a gas supply section 20, a power supply 30, and an exhaust system 40.
  • Plasma processing chamber 10 includes a dielectric window 101 .
  • the plasma processing apparatus 1 includes a substrate support section 11, a gas introduction section, and an antenna 14.
  • Substrate support 11 is arranged within plasma processing chamber 10 .
  • Antenna 14 is disposed on or above plasma processing chamber 10 (ie, on or above dielectric window 101).
  • the plasma processing chamber 10 has a plasma processing space 10s defined by a dielectric window 101, a side wall 102 of the plasma processing chamber 10, and a substrate support 11. Plasma processing chamber 10 is grounded.
  • the substrate support section 11 includes a main body section 111 and a ring assembly 112.
  • the main body portion 111 has a central region 111a for supporting the substrate W and an annular region 111b for supporting the ring assembly 112.
  • a wafer is an example of a substrate W.
  • the annular region 111b of the main body 111 surrounds the central region 111a of the main body 111 in plan view.
  • the substrate W is placed on the central region 111a of the main body 111, and the ring assembly 112 is placed on the annular region 111b of the main body 111 so as to surround the substrate W on the central region 111a of the main body 111. Therefore, the central region 111a is also called a substrate support surface for supporting the substrate W, and the annular region 111b is also called a ring support surface for supporting the ring assembly 112.
  • the main body 111 includes a base 1110 and an electrostatic chuck 1111.
  • Base 1110 includes a conductive member.
  • the conductive member of base 1110 can function as a bias electrode.
  • Electrostatic chuck 1111 is placed on base 1110.
  • Electrostatic chuck 1111 includes a ceramic member 1111a and an electrostatic electrode 1111b disposed within ceramic member 1111a.
  • Ceramic member 1111a has a central region 111a. In one embodiment, ceramic member 1111a also has an annular region 111b. Note that another member surrounding the electrostatic chuck 1111, such as an annular electrostatic chuck or an annular insulating member, may have the annular region 111b.
  • ring assembly 112 may be placed on the annular electrostatic chuck or the annular insulation member, or may be placed on both the electrostatic chuck 1111 and the annular insulation member.
  • at least one RF/DC electrode coupled to an RF generating section and/or a DC signal generating section, which will be described later, may be disposed within the ceramic member 1111a.
  • at least one RF/DC electrode functions as a bias electrode.
  • the conductive member of the base 1110 and at least one RF/DC electrode may function as a plurality of bias electrodes.
  • the electrostatic electrode 1111b may function as a bias electrode.
  • the substrate support 11 includes at least one bias electrode.
  • Ring assembly 112 includes one or more annular members.
  • the one or more annular members include one or more edge rings and at least one cover ring.
  • the edge ring is made of a conductive or insulating material
  • the cover ring is made of an insulating material.
  • the substrate support unit 11 may include a temperature control module configured to adjust at least one of the electrostatic chuck 1111, the ring assembly 112, and the substrate to a target temperature.
  • the temperature control module may include a heater, a heat transfer medium, a flow path 1110a, or a combination thereof.
  • a heat transfer fluid such as brine or gas flows through the flow path 1110a.
  • a channel 1110a is formed within the base 1110 and one or more heaters are disposed within the ceramic member 1111a of the electrostatic chuck 1111.
  • the substrate support section 11 may include a heat transfer gas supply section configured to supply heat transfer gas to the gap between the back surface of the substrate W and the central region 111a.
  • the gas introduction section is configured to introduce at least one processing gas from the gas supply section 20 into the plasma processing space 10s.
  • the gas introduction section includes a center gas injector (CGI) 13.
  • the central gas injection part 13 is arranged above the substrate support part 11 and attached to the central opening formed in the dielectric window 101.
  • the central gas injection part 13 has at least one gas supply port 13a, at least one gas flow path 13b, and at least one gas introduction port 13c.
  • the processing gas supplied to the gas supply port 13a passes through the gas flow path 13b and is introduced into the plasma processing space 10s from the gas introduction port 13c.
  • the gas introduction part includes one or more side gas injectors (SGI) attached to one or more openings formed in the side wall 102. May include.
  • the gas supply section 20 may include at least one gas source 21 and at least one flow rate controller 22.
  • the gas supply 20 is configured to supply at least one process gas from a respective gas source 21 via a respective flow controller 22 to the gas inlet.
  • Each flow controller 22 may include, for example, a mass flow controller or a pressure-controlled flow controller.
  • gas supply 20 may include at least one flow modulation device that modulates or pulses the flow rate of at least one process gas.
  • Power supply 30 includes an RF generator coupled to plasma processing chamber 10 via at least one impedance matching circuit.
  • the RF generator is configured to supply at least one RF signal (RF power) to at least one bias electrode and antenna 14 .
  • RF signal RF power
  • the RF generation section can function as at least a part of the plasma generation section 12. Further, by supplying a bias RF signal to at least one bias electrode, a bias potential is generated on the substrate W, and ions in the formed plasma can be drawn into the substrate W.
  • a detailed configuration example of the power supply 30 will be described later.
  • the antenna 14 includes one or more coils.
  • antenna 14 may include an outer coil and an inner coil that are coaxially arranged.
  • the RF generator may be connected to both the outer coil and the inner coil, or may be connected to either one of the outer coil and the inner coil.
  • the same RF generator may be connected to both the outer coil and the inner coil, or separate RF generators may be separately connected to the outer coil and the inner coil.
  • the exhaust system 40 may be connected to a gas exhaust port 10e provided at the bottom of the plasma processing chamber 10, for example.
  • the exhaust system 40 may include a pressure regulating valve and a vacuum pump. The pressure within the plasma processing space 10s is adjusted by the pressure regulating valve.
  • the vacuum pump may include a turbomolecular pump, a dry pump, or a combination thereof.
  • FIG. 3 is a diagram showing an example of a detailed configuration of the power supply 30.
  • the power supply 30 in this embodiment includes a first RF generating section 300-1, a second RF generating section 300-2, a combining section 301, an amplifier 302, a filter 303-1, a filter 303-2, and a directional coupler. 304-1, and a directional coupler 304-2.
  • the power supply 30 in this embodiment includes a VI sensor 305-1, a VI sensor 305-2, a matching box 306-1, a matching box 306-2, a DC signal generation section 310, an amplifier 312, a VI sensor 315, and a detection It has a container 320.
  • the filter 303-1 and the filter 303-2 will be distinguished.
  • the filter 303 is used.
  • the directional coupler 304-1 and the directional coupler 304-2 are collectively referred to without distinction, they will be referred to as a directional coupler 304.
  • VI sensor 305-1 and VI sensor 305-2 are collectively referred to without distinction, they are referred to as VI sensor 305, and matching device 306-1 and matching device 306-2 are collectively referred to without distinction. In this case, it is referred to as a matching device 306.
  • the control unit 2 and the power supply 30 are an example of an RF system.
  • the first RF generation section 300-1 generates a first RF signal including a signal of a first frequency.
  • the first RF generator 300-1 is configured to generate a first RF signal having a first frequency.
  • the first RF signal is an example of a source RF signal.
  • the first frequency is, for example, a frequency within a range of 10 MHz to 150 MHz.
  • the first RF generation section 300-1 generates a source RF signal including one or more signals of different frequencies including a signal of a first frequency, and the generated source RF signal is transmitted to the antenna 14.
  • the second RF generation section 300-2 generates a second RF signal including a signal at a second frequency.
  • the second RF generator 300-2 is configured to generate a second RF signal having a second frequency.
  • the second RF signal is an example of a bias RF signal (bias RF power).
  • the second frequency may be the same as or different from the first frequency. Further, the second frequency may be lower than the first frequency. In this embodiment, the second frequency is, for example, a frequency within the range of 100 kHz to 60 MHz. .
  • the second RF generation section 300-2 generates a bias RF signal including one or more signals of different frequencies including a signal of a second frequency, and the generated bias RF signal is It is supplied to the bias electrode of the pedestal 1110. Note that at least one of the source RF signal and the bias RF signal may be pulsed.
  • the first RF generating section 300-1 and the second RF generating section 300-2 are realized by, for example, an RF generating section 300 as shown in FIG. 4.
  • the RF generation unit 300 includes an NCO (Numerically Controlled Oscillator) 3000, a mixer 3001, and a DAC (Digital Analog Converter) 3002.
  • the NCO 3000 of the first RF generation unit 300-1 generates a first RF signal having signals of one or more frequencies including a signal of the first frequency.
  • the NCO 3000 of the second RF generation unit 300-2 generates a second RF signal having one or more frequency signals including a second frequency signal.
  • Mixer 3001 combines multiple RF signals generated by NCO 3000.
  • mixer 3001 passes the RF signal output from the NCO 3000 without combining it.
  • DAC 3002 converts the RF signal output from mixer 3001 from a digital signal to an analog signal.
  • the NCO 3000 generates an RF signal of one or more frequencies included in a frequency band of several hundred kHz to several MHz, including, for example, a signal of the first frequency or the second frequency.
  • a frequency band of several hundred kHz to several MHz including, for example, a signal of the first frequency or the second frequency.
  • the frequency of the RF signal supplied to the plasma processing space 10s when igniting the plasma, and the frequency of the RF signal supplied to the plasma processing space 10s to maintain the plasma stably after the plasma is ignited. may differ.
  • the NCO 3000 can achieve both reliable ignition and stable maintenance of plasma.
  • the synthesis section 301 is coupled to the output end of the first RF generation section 300-1 and the output end of the second RF generation section 300-2, and combines the first RF generation section 300-1 and the second RF generation section 300-2.
  • the RF signal and the second RF signal generated by the second RF generation section 300-2 are combined.
  • Combining section 301 is an example of an RF signal combining section.
  • Amplifier 302 is coupled to the output end of combining section 301 and amplifies the RF signal combined by combining section 301.
  • the amplifier 302 separates the frequency band of the first RF signal generated by the first RF generation section 300-1 and the frequency band of the second RF signal generated by the second RF generation section 300-2. This is a wideband amplifier that can amplify signals in a frequency band that includes
  • the filter 303-1 is coupled to the output end of the amplifier 302, and passes the frequency component included in the first RF signal from the signal amplified by the amplifier 302.
  • Filter 303-2 is coupled to the output terminal of amplifier 302, and passes the frequency component included in the second RF signal from the signal amplified by amplifier 302.
  • Filter 303-1 is an example of a first filter
  • filter 303-2 is an example of a second filter.
  • the directional coupler 304-1 and the VI sensor 305-1 are signal lines between the first RF generation section 300-1 and the matching device 306-1, and are signal lines through which the first RF signal propagates. detecting a plurality of first parameters associated with a first RF signal at the first RF signal;
  • Directional coupler 304-1 and VI sensor 305-1 are examples of first sensors.
  • the directional coupler 304-2 and the VI sensor 305-2 are signal lines between the second RF generation section 300-2 and the matching device 306-2, and are signal lines through which the second RF signal propagates. detecting a plurality of second parameter information related to the second RF signal at the second RF signal;
  • Directional coupler 304-2 and VI sensor 305-2 are examples of second sensors.
  • the plurality (at least two) of first sensors are configured to detect at least four first parameters at the first input and/or first output of matching device 306-1. configured. At least four first parameters are related to the first RF signal. In one embodiment, the plurality of first sensors are configured to detect at least four first parameters at a first input of matcher 306-1. At least four first parameters are related to the first RF signal. In one embodiment, each of the at least four first parameters consists of power, voltage and current for the traveling wave of the first RF signal and power, voltage and current for the reflected wave of the first RF signal. In one embodiment, the plurality (at least two) of second sensors are selected from the group of at least four second sensors at the second input and/or second output of matching device 306-2.
  • each of the at least four second parameters includes power, voltage, and current associated with the traveling wave of the second RF signal; selected from the group consisting of power, voltage, and current related to the reflected wave of the second RF signal.
  • the first parameter detected by the directional coupler 304-1 includes, for example, information on the peak value and phase of the power of each of the traveling wave and the reflected wave in the first RF signal.
  • the first parameter detected by the VI sensor 305-1 includes, for example, information on the magnitude and phase of the voltage and current of the first RF signal at the input end of the matching box 306-1.
  • the input end of matching device 306-1 is an example of a first input end
  • the output end of matching device 306-1 is an example of a first output end.
  • the second parameter detected by the directional coupler 304-2 includes, for example, information on the peak value and phase of the power of each of the traveling wave and the reflected wave in the second RF signal.
  • the second parameter detected by the VI sensor 305-2 includes, for example, information on the magnitude and phase of the voltage and current of the second RF signal at the input end of the matching box 306-2.
  • the input end of matching device 306-2 is an example of a second input end, and the output end of matching device 306-2 is an example of a second output end.
  • the matching box 306-1 is provided on a signal line through which the first RF signal generated by the first RF generating section 300-1 and supplied to the antenna 14 propagates.
  • the matching box 306-2 is provided on a signal line through which a second RF signal generated by the second RF generating section 300-2 and supplied to the bias electrode of the base 1110 propagates.
  • Matching box 306-1 and matching box 306-2 include reactance elements whose reactance values are controlled by actuators. The actuator is controlled by a control section 2. Therefore, the reactance elements of matching box 306-1 and matching box 306-2 are controlled by control section 2.
  • Matching box 306-1 is an example of a first matching box
  • matching box 306-2 is an example of a second matching box.
  • matching box 306-1 is an example of a first variable element
  • the reactance element included in matching box 306-2 is an example of a second variable element.
  • matching box 306-1 includes a first variable element and has a first input terminal and a first output terminal. The first input end is coupled to the first RF generation section 300-1, and the first output end is coupled to the antenna 14.
  • the variable element is a variable capacitor or variable inductor.
  • matching device 306-2 includes a second variable element and has a second input and a second output. The second input end is coupled to the second RF generator 300-2, and the second output end is coupled to a bias electrode within the substrate support 11.
  • the output impedance of the power source 30 with respect to the antenna 14 is controlled, and the matching state between the output impedance of the power source 30 and the input impedance of the antenna 14 changes.
  • the first RF power supplied to the plasma from the power source 30 via the antenna 14 changes, and the state of the plasma in the plasma processing chamber 10 changes.
  • the reactance element of the matching box 306-2 the output impedance of the power source 30 with respect to the bias electrode of the base 1110 is controlled, and the output impedance of the power source 30 and the input impedance of the bias electrode of the base 1110 are The consistency state of changes.
  • the second RF power supplied from the power supply 30 to the plasma via the bias electrode of the base 1110 changes, and the state of the plasma in the plasma processing chamber 10 changes.
  • the DC signal generation section 310 generates a DC signal with a frequency lower than the frequencies of the first RF signal and the second RF signal.
  • the DC signal generated by the DC signal generator 310 is applied to the sidewall 102 of the plasma processing chamber 10 .
  • the DC signal applied to sidewall 102 changes the state of the plasma within plasma processing chamber 10 .
  • the DC signal generated by the DC signal generation unit 310 may be applied to other members in the plasma processing chamber 10, such as the bias electrode of the base 1110 and a Faraday shield (not shown).
  • the DC signal generation section 310 is an example of a voltage pulse generation section, and the output terminal of the DC signal generation section 310 is an example of a third output terminal.
  • the DC signal generated by the DC signal generation section 310 is a pulse signal with a period of several hundred kHz, for example.
  • the voltage pulse may have a pulse waveform that is rectangular, trapezoidal, triangular, or a combination thereof.
  • a waveform generator for generating a sequence of voltage pulses from a DC signal is connected between the DC signal generator 310 and the at least one bias electrode. Therefore, the DC signal generation section 310 and the waveform generation section constitute a voltage pulse generation section.
  • the voltage pulse may have positive polarity or negative polarity.
  • the sequence of voltage pulses may include one or more positive voltage pulses and one or more negative voltage pulses within one period.
  • the amplifier 312 is coupled to the output terminal of the DC signal generation section 310 and amplifies the DC signal generated by the DC signal generation section 310.
  • the VI sensor 315 is a signal line between the DC signal generation unit 310 and a member in the plasma processing chamber 10 (in this embodiment, the side wall 102), and is a signal line in which the DC signal propagates. Detect the third parameter of .
  • the third parameter detected by the VI sensor 315 includes, for example, information on the magnitude and phase of the voltage and current of the DC signal.
  • VI sensor 315 is an example of a third sensor.
  • the detector 320 detects the first parameter detected by the directional coupler 304-1 and the VI sensor 305-1, the second parameter detected by the directional coupler 304-2 and the VI sensor 305-2, and the VI and the third parameter detected by the sensor 315. The detector 320 then outputs the acquired first parameter, second parameter, and third parameter to the control unit 2.
  • the control unit 2 controls the magnitude and frequency of the power in the first RF signal and controls the reactance element in the matching box 306-1 based on the first parameter output from the detector 320. . Further, the control unit 2 controls the magnitude and frequency of the power in the second RF signal and the reactance element in the matching box 306-2 based on the second parameter output from the detector 320. I do. Further, the control unit 2 controls the state of the DC signal including the voltage magnitude of the DC signal based on the third parameter output from the detector 320.
  • control unit 2 further uses at least one of the detected second parameter and third parameter to control the magnitude and frequency of the power in the first RF signal, and the control unit 2 in the matching box 306-1. Control of the reactance element may also be performed. Further, the control unit 2 further uses at least one of the detected first parameter and third parameter to control the magnitude and frequency of the power in the second RF signal, and the control unit 2 in the matching box 306-2. Control of the reactance element may also be performed. Further, the control unit 2 may further use at least one of the detected first parameter and second parameter to control the state of the DC signal.
  • FIG. 5 is a timing chart showing an example of timing of detection and control.
  • unhatched squares indicate timings at which detection values obtained by the detector 320 are detected
  • hatched squares indicate timings at which control is performed.
  • the detector 320 acquires the detected values of the traveling wave and reflected wave of the first RF signal detected by the directional coupler 304-1 at timing t1. Further, the detector 320 acquires the detected values of the voltage and current of the first RF signal detected by the VI sensor 305-1 at timing t2. Further, the detector 320 acquires the detected values of the traveling wave and reflected wave of the second RF signal detected by the directional coupler 304-2 at timing t3. Further, the detector 320 acquires the detected values of the voltage and current of the second RF signal detected by the VI sensor 305-2 at timing t4. Further, the detector 320 acquires the detected values of the voltage and current of the DC signal detected by the VI sensor 315 at timing t5.
  • the control unit 2 controls the power magnitude and frequency of the first RF signal at timing t6 based on the first parameters detected at timings t1 and t2. , and control of the reactance element in the matching box 306-1. Further, the control unit 2 controls the magnitude and frequency of the power of the second RF signal and the reactance in the matching box 306-2 at the timing t7 based on the second parameters detected at the timings t3 and t4. and control of the elements. Furthermore, the control unit 2 controls the state of the DC signal at timing t8 based on the third parameter detected at timing t5.
  • the control unit 2 detects each signal during period T1, and controls the state of each signal during period T2. Periods T1 and T2 are alternately repeated.
  • the timing at which one RF signal is controlled and the timing at which the other RF signal is The timing at which the signal state is detected may overlap. If the timing at which one RF signal is controlled overlaps with the timing at which the state of the other RF signal is detected, the state of the plasma that has changed transiently due to the control of one RF signal will be A signal condition may be detected. In such a case, a transient state of the other RF signal may be detected, and desired control may not be performed on the other RF signal. This may cause the plasma to become unstable due to disappearance of the plasma, excessive current flowing, etc. If the plasma becomes unstable, the quality of the substrate after plasma processing may not meet the desired quality.
  • the period T1 during which each signal is detected is different from the period T2 during which the state of each signal is controlled. This makes it possible to avoid overlapping the timing at which one RF signal is controlled and the timing at which the state of the other RF signal is detected, thereby stably maintaining plasma.
  • the timing at which one RF signal is controlled overlaps with the timing at which the other RF signal is controlled, the transient changes in the plasma due to the control of the two RF signals overlap, causing excessive plasma generation. Subject to change. If the plasma changes excessively, the plasma may become unstable.
  • each signal is controlled at different timings t6 to t8. This makes it possible to avoid excessive changes in the plasma due to control of the two RF signals, and to stably maintain the plasma.
  • each signal may be performed at the same timing t1', as shown in FIG. 6, for example.
  • the period T1 during which each signal is detected can be shortened, and more detection and control of each signal can be performed in a shorter time.
  • each signal can be controlled at higher speed, and plasma can be maintained more stably.
  • a period of ⁇ t be provided between timings t6 to t8 when the state of each signal is controlled.
  • the period of ⁇ t is, for example, the time required for a transient change in plasma caused by a signal to stabilize after control is performed.
  • the same period ⁇ t is provided between timings t6 to t8 when the state of each signal is controlled, but the length of each period ⁇ t may be different. Further, the length of each period ⁇ t may be changed depending on the change in plasma state or the degree of progress of substrate processing.
  • FIG. 8 is a flowchart showing an example of a plasma processing method.
  • the processing illustrated in FIG. 8 is realized by the control section 2 controlling each section of the plasma processing apparatus 1. Furthermore, in the plasma processing method illustrated in FIG. 8, each signal is detected and controlled at the timing illustrated in FIG. Note that the plasma processing method illustrated in FIG. 8 is an example of an RF control method.
  • control unit 2 controls the first RF generation unit 300-1, the second RF generation unit 300-2, and the DC signal so as to output a first RF signal, a second RF signal, and a DC signal.
  • the signal generation unit 310 is controlled (S100).
  • Step S101 is an example of steps (a1), (a2), and step (c).
  • control unit 2 calculates a control amount for controlling the state of each signal based on the detection value of each signal obtained from the detector 320 (S102).
  • the control amount for controlling the state of each signal includes the control amount of the power, voltage, frequency, reactance element, etc. of each signal.
  • Step S103 is an example of the first control and step (d).
  • the control performed in step S103 includes control of the power magnitude and frequency of the first RF signal, and control of the reactance element included in matching box 306-1.
  • Step S104 corresponds to the period ⁇ t between timing t6 and timing t7 in FIG.
  • Step S105 is an example of the second control and step (e).
  • the control performed in step S105 includes control of the power magnitude and frequency of the second RF signal, and control of the reactance element included in matching box 306-2.
  • Step S106 corresponds to the period ⁇ t between timing t7 and timing t8 in FIG.
  • Step S107 is an example of fourth control.
  • the control performed in step S107 includes control of the state of the DC signal, such as the magnitude of the voltage in the DC signal.
  • Step S108 corresponds to the period ⁇ t between timing t8 and the next timing t1' in FIG.
  • control unit 2 determines whether or not to end the plasma treatment (S109). If the plasma processing is not finished (S109: No), the control unit 2 executes the process shown in step S101 again. On the other hand, when ending the plasma processing (S109: Yes), the control unit 2 controls the first RF generation unit 300- 1, the second RF generating section 300-2, and the DC signal generating section 310 are controlled. The control unit 2 then ends the plasma processing method shown in this flowchart.
  • the plasma processing apparatus 1 in this embodiment includes the plasma processing chamber 10, the substrate support section 11, the antenna 14, the first RF generation section 300-1, the matching box 306-1, and the plurality of components. , a second RF generating section 300-2, a matching box 306-2, a plurality of second sensors, and a control section 2.
  • Substrate support 11 is disposed within plasma processing chamber 10 and includes a bias electrode.
  • Antenna 14 is located above plasma processing chamber 10 .
  • the first RF generating section 300-1 generates a first RF signal including a signal of a first frequency.
  • Matching box 306-1 includes a first variable element, and is provided on a signal line through which the first RF signal generated by first RF generating section 300-1 and supplied to antenna 14 propagates.
  • the plurality of first sensors are connected to a first RF signal in a signal line between the first RF generation section 300-1 and the matching box 306-1, through which the first RF signal propagates. At least four related first parameters are detected.
  • the second RF generation section 300-2 generates a second RF signal including a signal of a second frequency different from the first frequency.
  • the matching box 306-2 includes a second variable element, and is connected to a signal line through which a second RF signal generated by the second RF generation section 300-2 and supplied to the bias electrode of the substrate support section 11 propagates. provided.
  • the plurality of second sensors are connected to a second RF signal on a signal line between the second RF generation section 300-2 and the matching box 306-2, and on which the second RF signal propagates. At least four associated second parameters are detected.
  • the control unit 2 executes step (c), step (d), and step (e).
  • step (c) the first parameter and the second parameter detected by the first sensor and the second sensor are obtained.
  • step (d) the power magnitude and the first frequency of the first RF signal are controlled, and the first variable element is controlled based on the first parameter obtained in the step (c). It will be done.
  • the step (e) the magnitude of the power and the second frequency in the second RF signal are controlled, and the second variable element is controlled based on the second parameter obtained in the step (c). It will be done.
  • the detection of the first parameter and the second parameter in step (c) and the steps (d) and (e) are performed at different timings. Thereby, plasma can be maintained more stably.
  • control unit 2 acquires the first parameter and the second parameter detected at the same timing in step (c).
  • time for detecting each signal can be shortened, and more detection and control of each signal can be performed in a shorter time.
  • each signal can be controlled at higher speed, and plasma can be maintained more stably.
  • control unit 2 executes the step (d) and the step (e) at different timings. This makes it possible to avoid excessive changes in the plasma due to control of the two RF signals, and to stably maintain the plasma.
  • the plasma processing apparatus 1 in the embodiment described above further includes a DC signal generation section 310 and a VI sensor 315.
  • the DC signal generator 310 is coupled to a bias electrode in the substrate support 11 or a member in the plasma processing chamber 10 and generates a signal at a frequency lower than the first frequency and the second frequency.
  • VI sensor 315 detects a third parameter associated with a signal provided from DC signal generator 310 to a bias electrode or component within plasma processing chamber 10 .
  • the control unit 2 acquires the third parameter detected by the third sensor.
  • the control unit 2 also controls a signal that is supplied from the DC signal generation unit 310 to the bias electrode in the substrate support unit 11 or to members in the plasma processing chamber 10 based on the third parameter acquired in step (c).
  • step (f) of controlling the state of the signal, including the magnitude of the voltage in the signal. Moreover, step (f) is performed at a different timing from the detection of the first parameter, second parameter, and third parameter in step (c). Thereby, plasma can be maintained more stably.
  • control unit 2 acquires the first parameter, the second parameter, and the third parameter detected at the same timing in step (c).
  • the time for detecting each signal can be shortened, and more detection and control of each signal can be performed in a shorter time.
  • each signal can be controlled at higher speed, and plasma can be maintained more stably.
  • control unit 2 executes step (d), step (e), and step (f) at different timings. This makes it possible to avoid excessive changes in plasma due to control of a plurality of signals, and to stably maintain plasma.
  • the plasma processing apparatus 1 in the embodiment described above further includes a combining section 301, an amplifier 302, a filter 303-1, and a filter 303-2.
  • the synthesis section 301 is coupled to the output end of the first RF generation section 300-1 and the output end of the second RF generation section 300-2, and is connected to the output end of the first RF generation section 300-1 and the first RF generation section 300-1.
  • the RF signal and the second RF signal output from the second RF generation section 300-2 are combined.
  • Amplifier 302 is coupled to the output end of combining section 301 and amplifies the signal combined by combining section 301.
  • Filter 303-1 is coupled to the output terminal of amplifier 302, and passes the frequency component included in the first RF signal from the signal amplified by amplifier 302 to matching device 306-1.
  • Filter 303-2 is connected to the output terminal of amplifier 302, and passes the frequency component included in the second RF signal from the signal amplified by amplifier 302 to matching device 306-2. Thereby, the number of amplifiers 302 can be reduced, and the power supply 30 can be made smaller.
  • the first parameter includes information regarding the traveling wave and reflected wave in the first RF signal, and information regarding the voltage and current at the input terminal of the matching box 306-1.
  • the second parameter includes information regarding the traveling wave and reflected wave in the second RF signal, and information regarding the voltage and current at the input terminal of matching box 306-2.
  • the above-described RF system is an RF system coupled to the plasma processing apparatus 1, and includes a first RF generation section 300-1, a matching box 306-1, a first sensor, and a second RF It includes a generation section 300-2, a matching box 306-2, a second sensor, and a control section 2.
  • the first RF generating section 300-1 generates a first RF signal including a signal of a first frequency.
  • the matching box 306-1 includes a first variable element, and is connected to a signal line through which a first RF signal generated by the first RF generation section 300-1 and supplied to a member of the plasma processing apparatus 1 propagates. provided.
  • the first sensor is a signal line between the first RF generation section 300-1 and the matching box 306-1, and is related to the first RF signal in the signal line through which the first RF signal propagates. Detecting a plurality of first parameters.
  • the second RF generation section 300-2 generates a second RF signal including a signal of a second frequency different from the first frequency.
  • the matching box 306-2 includes a second variable element, and is connected to a signal line through which a second RF signal generated by the second RF generation section 300-2 and supplied to members of the plasma processing apparatus 1 propagates.
  • the second sensor is a signal line between the second RF generation section 300-2 and the matching box 306-2, and is related to the second RF signal in the signal line through which the second RF signal propagates.
  • step (c) Detecting a plurality of second parameters.
  • the control unit 2 executes step (c), step (d), and step (e).
  • step (c) the first parameter and the second parameter detected by the first sensor and the second sensor are obtained.
  • step (d) the power magnitude and the first frequency of the first RF signal are controlled, and the first variable element is controlled based on the first parameter obtained in the step (c). It will be done.
  • step (e) the magnitude of the power and the second frequency in the second RF signal are controlled, and the second variable element is controlled based on the second parameter obtained in the step (c). It will be done.
  • the detection of the first parameter and the second parameter in step (c) and the steps (d) and (e) are performed at different timings. Thereby, plasma can be maintained more stably.
  • control unit 2 acquires the first parameter and the second parameter detected at the same timing in step (c).
  • time for detecting each signal can be shortened, and more detection and control of each signal can be performed in a shorter time.
  • each signal can be controlled at higher speed, and plasma can be maintained more stably.
  • control unit 2 executes the step (d) and the step (e) at different timings. This makes it possible to avoid excessive changes in the plasma due to control of the two RF signals, and to stably maintain the plasma.
  • the plasma processing apparatus 1 in the embodiment described above further includes a DC signal generation section 310 and a VI sensor 315.
  • the DC signal generation section 310 is coupled to a member included in the plasma processing chamber 10 and generates a signal having a frequency lower than the first frequency and the second frequency.
  • VI sensor 315 detects a third parameter related to a signal provided to a member of plasma processing chamber 10 .
  • the control unit 2 acquires the third parameter detected by the third sensor.
  • the control unit 2 determines the magnitude of the voltage in the signal supplied from the DC signal generation unit 310 to the member included in the plasma processing chamber 10 based on the third parameter acquired in step (c). performing a step (f) of controlling the state of the signal; Moreover, step (f) is performed at a different timing from the detection of the first parameter, second parameter, and third parameter in step (c). Thereby, plasma can be maintained more stably.
  • control unit 2 acquires the first parameter, the second parameter, and the third parameter detected at the same timing in step (c).
  • the time for detecting each signal can be shortened, and more detection and control of each signal can be performed in a shorter time.
  • each signal can be controlled at higher speed, and plasma can be maintained more stably.
  • control unit 2 executes step (d), step (e), and step (f) at different timings. This makes it possible to avoid excessive changes in plasma due to control of a plurality of signals, and to stably maintain plasma.
  • the plasma processing apparatus 1 in the embodiment described above further includes a combining section 301, an amplifier 302, a filter 303-1, and a filter 303-2.
  • the synthesis section 301 is coupled to the output end of the first RF generation section 300-1 and the output end of the second RF generation section 300-2, and is connected to the output end of the first RF generation section 300-1 and the first RF generation section 300-1.
  • the RF signal and the second RF signal output from the second RF generation section 300-2 are combined.
  • Amplifier 302 is coupled to the output end of combining section 301 and amplifies the signal combined by combining section 301.
  • Filter 303-1 is coupled to the output terminal of amplifier 302, and passes the frequency component included in the first RF signal from the signal amplified by amplifier 302 to matching device 306-1.
  • Filter 303-2 is connected to the output terminal of amplifier 302, and passes the frequency component included in the second RF signal from the signal amplified by amplifier 302 to matching device 306-2. Thereby, the number of amplifiers 302 can be reduced, and the power supply 30 can be made smaller.
  • the first parameter includes information regarding the traveling wave and reflected wave in the first RF signal, and information regarding the voltage and current at the input terminal of the matching box 306-1.
  • the second parameter includes information regarding the traveling wave and reflected wave in the second RF signal, and information regarding the voltage and current at the input terminal of matching box 306-2.
  • the above-described RF control method includes the first RF generation section 300-1, the matching box 306-1, the first sensor, the second RF generation section 300-2, and the matching box 306-2. , is executed by the plasma processing apparatus 1 including the second sensor and the control section 2.
  • the first RF generating section 300-1 generates a first RF signal including a signal of a first frequency.
  • the matching box 306-1 includes a first variable element, and is connected to a signal line through which a first RF signal generated by the first RF generation section 300-1 and supplied to a member of the plasma processing apparatus 1 propagates. provided.
  • the first sensor is a signal line between the first RF generation section 300-1 and the matching box 306-1, and is related to the first RF signal in the signal line through which the first RF signal propagates. Detecting a plurality of first parameters.
  • the second RF generation section 300-2 generates a second RF signal including a signal of a second frequency different from the first frequency.
  • the matching box 306-2 includes a second variable element, and is connected to a signal line through which a second RF signal generated by the second RF generation section 300-2 and supplied to members of the plasma processing apparatus 1 propagates.
  • the second sensor is a signal line between the second RF generation section 300-2 and the matching box 306-2, and is related to the second RF signal in the signal line through which the second RF signal propagates.
  • the RF control method includes step (c), step (d), and step (e).
  • step (c) the first parameter and the second parameter detected by the first sensor and the second sensor are obtained.
  • step (d) the power magnitude and the first frequency of the first RF signal are controlled, and the first variable element is controlled based on the first parameter obtained in the step (c). It will be done.
  • step (e) the magnitude of the power and the second frequency in the second RF signal are controlled, and the second variable element is controlled based on the second parameter obtained in the step (c). It will be done.
  • the detection of the first parameter and the second parameter in step (c) and the steps (d) and (e) are performed at different timings. Thereby, plasma can be maintained more stably.
  • control unit 2 performs the step (a1) of simultaneously and repeatedly acquiring at least four first parameters at the first input terminal and/or first output terminal of the first matching device 306-1. configured to do so. Further, the control unit 2 performs a step (a2) of simultaneously and repeatedly acquiring at least four second parameters at the second input terminal and/or second output terminal of the second matching box 306-2. configured. The control unit 2 is configured to perform the step (b) of sequentially repeating the first control and the second control.
  • the first control includes adjusting the power level of the first RF signal in the first RF generation section 300-1 and adjusting the power level of the first RF signal based on the at least four first parameters acquired simultaneously in step (a1).
  • Adjustment of the frequency of the first RF signal in RF generation section 300-1 and adjustment of the first variable element in first matching box 306-1 are performed sequentially.
  • the second control includes adjusting the power level of the second RF signal in the second RF generating section 300-2 and Adjustment of the frequency of the second RF signal in RF generation section 300-2 and adjustment of the second variable element in second matching box 306-2 are performed sequentially.
  • the plasma processing apparatus 1 further includes a voltage pulse generator 310 and a third sensor 315.
  • the voltage pulse generator 310 has a third output and is configured to generate a sequence of voltage pulses.
  • the third output end is coupled to a bias electrode within substrate support 11 or to a member within plasma processing chamber 10 .
  • the members within plasma processing chamber 10 are electrically conductive members, such as sidewalls of plasma processing chamber 10, a Faraday shield, and the like.
  • the sequence of voltage pulses has a first voltage level during a first state of the repetition period and a second voltage level during a second state of the repetition period. voltage level.
  • the absolute value of the first voltage level is greater than the absolute value of the second voltage level.
  • the first voltage level has negative polarity.
  • the second voltage level has a zero voltage level.
  • the third sensor 315 is configured to detect at least one third parameter at the third output of the voltage pulse generator 310. At least one third parameter relates to the sequence of voltage pulses.
  • the control unit 2 is configured to perform a step (a3) of repeatedly acquiring at least one third parameter.
  • the control unit 2 is configured to sequentially and repeatedly perform the first control, the second control, and the third control in step (b).
  • the third control adjusts the sequence of a plurality of voltage pulses in the voltage pulse generator 310 based on at least one third parameter acquired in step (a3). Adjusting the sequence of voltage pulses includes adjusting the voltage level.
  • the plasma processing apparatus 1 further includes a power supply 30, a current control section, an electromagnet unit, and at least one third sensor.
  • the current control is coupled to power supply 30 .
  • the electromagnet unit includes at least one electromagnet 50 coupled to a current control and arranged surrounding the plasma processing chamber 10 .
  • the at least one third sensor is configured to detect at least one third parameter between the current control and the electromagnet unit and/or between the electromagnet unit and the plasma processing chamber 10.
  • the control unit 2 is configured to perform a step (a3) of repeatedly acquiring at least one third parameter.
  • the control unit 2 is configured to sequentially and repeatedly perform the first control, the second control, and the third control in step (b).
  • the third control adjusts the current supplied to at least one electromagnet 50 included in the electromagnet unit, based on at least one third parameter obtained in step (a3).
  • the plasma processing apparatus 1 further includes a third RF generation section 300-3, a third matching box 306-3, and a plurality (at least two) of third sensors.
  • the third RF generating section 300-3 is configured to generate a third RF signal having a third frequency.
  • the third frequency is lower than the first frequency and the second frequency.
  • the third frequency is within the range of 300kHz to 600kHz.
  • the third matching device 306-3 includes a third variable element and has a third input terminal and a third output terminal. The third input end is coupled to the third RF generating section 300-3, and the third output end is coupled to the bias electrode within the substrate support section 11.
  • the plurality of third sensors are configured to detect at least four third parameters at the third input end and/or the third output end of the third matching device 306-3. At least four third parameters are associated with the third RF signal.
  • the control unit 2 is configured to perform a step (a3) of repeatedly acquiring at least four third parameters simultaneously.
  • the control unit 2 is configured to sequentially and repeatedly perform the first control, the second control, and the third control in step (b).
  • the third control includes adjusting the power level of the third RF signal in the third RF generating section 300-3 based on at least four third parameters acquired simultaneously in step (a3), Adjustment of the frequency of the third RF signal in RF generation section 300-3 and adjustment of the third variable element in third matching box 306-3 are performed sequentially.
  • the plasma processing apparatus 1 further includes a combining section 301, an amplifier 302, a first filter 303-1, a second filter 303-2, and a third filter 303-3.
  • the combining section 301 is coupled to a first RF generating section 300-1, a second RF generating section 300-2, and a third RF generating section 300-3. Further, the combining section 301 is configured to generate a combined RF signal including the first RF signal, the second RF signal, and the third RF signal.
  • Amplifier 302 is configured to amplify the composite RF signal.
  • the first filter 303-1 is coupled to the first input terminal of the first matching box 306-1, and is configured to pass a first frequency component included in the composite RF signal amplified by the amplifier 302. configured.
  • the second filter 303-2 is coupled to the second input terminal of the second matching box 306-2, and is configured to pass a second frequency component included in the composite RF signal amplified by the amplifier 302. configured.
  • the third filter is coupled to the third input terminal of the third matching device 306-3 and is configured to pass a third frequency component included in the composite RF signal amplified by the amplifier 302. .
  • the plasma processing apparatus 1 further includes a fourth RF generation section 300-4, a fourth matching box 306-4, and a plurality (at least two) of fourth sensors.
  • the fourth RF generating section 300-4 is configured to generate a fourth RF signal having a fourth frequency.
  • the fourth frequency is different from the first frequency, the second frequency and the third frequency.
  • the fourth matching device 306-4 includes a fourth variable element and has a fourth input terminal and a fourth output terminal. The fourth input end is coupled to the fourth RF generating section 300-4, and the fourth output end is coupled to the antenna 14.
  • the plurality of fourth sensors are configured to detect at least four fourth parameters at the fourth input and/or fourth output of the fourth matching device 306-4. At least four fourth parameters are associated with the fourth RF signal.
  • control unit 2 is configured to perform a step (a4) of repeatedly acquiring at least four fourth parameters simultaneously.
  • the control unit 2 is configured to sequentially and repeatedly perform the first control, second control, third control, and fourth control in step (b).
  • the fourth control includes adjusting the power level of the fourth RF signal in the fourth RF generating section 300-4 and controlling the fourth RF signal based on the at least four fourth parameters acquired simultaneously in step (a4). Adjustment of the frequency of the fourth RF signal in RF generation section 300-4 and adjustment of the fourth variable element in fourth matching box 306-4 are performed sequentially.
  • the RF system coupled to the plasma processing apparatus 1 includes a first RF generating section 300-1, a first matching box 306-1, at least one first sensor, and a second RF generating section. 300-2, a second matching device 306-2, at least one second sensor, a third RF generation section 300-3, a third matching device 306-3, and at least one third sensor. .
  • the first RF generating section 300-1 is configured to generate a first RF signal having a first frequency.
  • the first matching device 306-1 includes a first variable element and has a first input terminal and a first output terminal.
  • a first input end of the first matching box 306-1 is coupled to the first RF generation section 300-1, and a first output end of the first matching box 306-1 is coupled to the plasma processing chamber 10. be combined.
  • the at least one first sensor is configured to detect at least two first parameters at a first input and/or a first output of the first matcher 306-1. At least two first parameters are related to the first RF signal. In one embodiment, each of the at least two first parameters consists of a power, voltage and current for a traveling wave of the first RF signal and a power, voltage and current for a reflected wave of the first RF signal. selected from the group.
  • the second RF generation section 300-2 is configured to generate a second RF signal having a second frequency.
  • the second matching device 306-2 includes a second variable element and has a second input terminal and a second output terminal. A second input end of the second matching box 306-2 is coupled to the second RF generation section 300-2, and a second output end of the second matching box 306-2 is coupled to the plasma processing chamber 10. be combined.
  • the at least one second sensor is configured to detect at least two second parameters at a second input and/or a second output of the second matcher 306-2. At least two second parameters are related to the second RF signal. In one embodiment, each of the at least two second parameters consists of power, voltage and current for the traveling wave of the second RF signal and power, voltage and current for the reflected wave of the second RF signal.
  • the third RF generating section 300-3 selected from the group is configured to generate a third RF signal having a third frequency.
  • the third matching device 306-3 includes a third variable element and has a third input terminal and a third output terminal. A third input end of the third matching box 306-3 is coupled to the third RF generation section 300-3, and a third output end of the third matching box 306-3 is coupled to the plasma processing chamber 10. be combined.
  • the at least one third sensor is configured to detect at least two third parameters at the third input and/or third output of the third matcher 306-3. At least two third parameters are related to the third RF signal.
  • each of the at least two third parameters consists of power, voltage and current for the traveling wave of the third RF signal and power, voltage and current for the reflected wave of the third RF signal. selected from the group.
  • the control unit 2 performs the step (a1) of simultaneously and repeatedly acquiring at least two first parameters at the first input terminal and/or first output terminal of the first matching device 306-1. configured to do so.
  • the control unit 2 is configured to perform a step (a2) of simultaneously and repeatedly acquiring at least two second parameters at the second input terminal and/or second output terminal of the second matching device 306-2. Ru.
  • the control unit 2 is configured to perform a step (a3) of simultaneously and repeatedly acquiring at least two third parameters at the third input terminal and/or third output terminal of the third matching device 306-3. Ru.
  • the control unit 2 is configured to perform the step (b) of sequentially repeating the first control, the second control, and the third control.
  • the first control includes adjusting the power level of the first RF signal in the first RF generation section 300-1 and Adjustment of the frequency of the first RF signal in RF generation section 300-1 and adjustment of the first variable element in first matching box 306-1 are performed sequentially.
  • the second control includes adjusting the power level of the second RF signal in the second RF generating section 300-2 and adjusting the second Adjustment of the frequency of the second RF signal in RF generation section 300-2 and adjustment of the second variable element in second matching box 306-2 are performed sequentially.
  • the third control includes adjusting the power level of the third RF signal in the third RF generation section 300-3 and adjusting the power level of the third RF signal based on at least two third parameters acquired simultaneously in step (a3). Adjustment of the frequency of the third RF signal in RF generation section 300-3 and adjustment of the third variable element in third matching box 306-3 are performed sequentially.
  • the directional coupler 304 is provided on the filter 303 side and the VI sensor 305 is provided on the matching box 306 side in each RF signal signal line, but the disclosed technology is limited to this. I can't do it.
  • the VI sensor 305 may be provided on the filter 303 side and the directional coupler 304 may be provided on the matching box 306 side in each RF signal signal line.
  • the directional coupler 304 and the VI sensor 305 are provided between the filter 303 and the matching box 306 in each RF signal signal line, but the disclosed technology is not limited to this.
  • a sensor 330 including a directional coupler 304 or a VI sensor 305 may be provided between the filter 303 and the matching device 306, for example as shown in FIG. 9A. Thereby, the number of parts can be reduced.
  • a directional coupler 304b and a VI sensor are provided between the matching box 306 and the members of the plasma processing apparatus 1.
  • 305b may be provided.
  • a sensor 330a is provided between the filter 303 and the matching box 306, and the matching box 306 and the members of the plasma processing apparatus 1 (such as the antenna 14 and the base 1110) ) may be provided with a sensor 330b. This makes it possible to both reduce the number of parts and monitor the plasma state with higher accuracy.
  • the DC signal generator 310 applies the signal to the side wall 102 of the plasma processing chamber 10, but the disclosed technology is not limited to this.
  • a DC signal generation section 310 supplies a DC signal to each electromagnet 50.
  • the state of the current may be changed individually.
  • six electromagnets 50 are provided in the plasma processing apparatus 1, but the number of electromagnets 50 provided in the plasma processing apparatus 1 may be greater than six, or may be less than six. It's okay.
  • FIG. 12 is a diagram showing another example of the detailed configuration of the power supply 30. Note that, except for the points described below, the processes in FIG. 12 denoted by the same reference numerals as those in FIG. 3 are the same as the processes explained in FIG. 3, and therefore the description thereof will be omitted.
  • the DC signal generation unit 310 illustrated in FIG. 12 generates a DC signal to be supplied to each of the plurality of electromagnets 50.
  • the plurality of electromagnets 50 are an example of an electromagnet unit.
  • the DC signal generation section 310 in the example of FIG. 12 is an example of a current control section.
  • the amplifier 312a is a voltage-current conversion amplifier provided for each DC signal. In the example of FIG. 12, six amplifiers 312a are provided. Each amplifier 312a outputs a current according to the voltage of the DC signal.
  • a current sensor 316 is provided for each DC signal and detects the state of the current supplied to each electromagnet 50. Note that the current sensor 316 may be provided between each electromagnet 50 and the plasma processing chamber 10. Even in the plasma processing apparatus 1 having such a configuration, plasma can be maintained more stably by applying the disclosed technology.
  • two RF signals are supplied to the members included in the plasma processing apparatus 1, but the disclosed technology is not limited to this.
  • the number of RF signals supplied to the members included in the plasma processing apparatus 1 may be one, or three or more.
  • the plasma processing apparatus 1 that processes the substrate W using inductively coupled plasma (ICP) has been described as an example of a plasma source, but this is the plasma source used for processing the substrate W.
  • plasma sources other than inductively coupled plasma include capacitively coupled plasma (CCP), microwave excited surface wave plasma (SWP), electron cycloton resonance plasma (ECP), and helicon wave excited plasma (HWP).
  • CCP capacitively coupled plasma
  • SWP microwave excited surface wave plasma
  • ECP electron cycloton resonance plasma
  • HWP helicon wave excited plasma
  • a capacitively coupled plasma (CCP) device includes an upper electrode and a lower electrode. The bottom electrode is disposed within the substrate support and the top electrode is disposed above the substrate support.
  • the first matching device 306-1 to the fourth matching device 306-4 are coupled to the upper electrode or the lower electrode.
  • the first matcher 306-1 is coupled to the top electrode or the bottom electrode, and the second matcher 306-2 is coupled to the bottom electrode. In one embodiment, first matcher 306-1 is coupled to the top electrode, and second matcher 306-2 and third matcher 306-3 are coupled to the bottom electrode. In one embodiment, the first matching device 306-1 to the third matching device 3063 are coupled to the lower electrode. In one embodiment, the first matching device 306-1 and the fourth matching device 306-4 are coupled to the top electrode, and the second matching device 306-2 and the third matching device 306-3 are coupled to the bottom electrode. coupled to an electrode.
  • the first matching box 306-1 to the fourth matching box 306-4 are an antenna of an inductively coupled plasma device, an upper electrode of a capacitively coupled plasma device, or a lower electrode (bias electrode) in the substrate support. is combined with That is, the first matching box 306-1 to the fourth matching box 306-4 are coupled to the plasma processing chamber 10.
  • a plasma processing chamber comprising: a substrate support disposed within the plasma processing chamber and including an electrode; an antenna disposed above the plasma processing chamber; a first RF generator configured to generate a first RF signal having a first frequency; a first matching device including a first variable element and having a first input terminal and a first output terminal, the first input terminal being coupled to the first RF generation section; a first matching box, an output end of which is coupled to the antenna; a plurality of first sensors configured to detect at least four first parameters at the first input end and/or the first output end, wherein the at least four first parameters are a plurality of first sensors associated with the first RF signal; a second RF generator configured to generate a second RF signal having a second frequency; a second matching device including a second variable element and having a second input terminal and a second output terminal, the second input terminal being coupled to the second RF generation section; a second matching device, the output end of which is coupled to the electrode; a plurality of second sensors configured to detect at
  • the second control includes adjusting the power level of the second RF signal in the second RF generation section based on at least four second parameters acquired simultaneously in the step (a2), and adjusting the power level of the second RF signal in the second RF generation section.
  • a plasma processing apparatus that sequentially adjusts the frequency of the second RF signal in the second RF generating section and adjusts the second variable element in the second matching box.
  • a voltage pulse generator configured to generate a sequence of a plurality of voltage pulses, the third output end being coupled to the electrode or a member within the plasma processing chamber; a voltage pulse generator, a third sensor configured to detect at least one third parameter at the third output, the at least one third parameter related to the sequence of the plurality of voltage pulses; a third sensor; Furthermore,
  • the control unit includes: (a3) configured to repeatedly acquire the at least one third parameter; The step (b) sequentially repeats the first control, the second control, and the third control, Supplementary note 1, wherein the third control adjusts the sequence of the plurality of voltage pulses in the voltage pulse generation unit based on the at least one third parameter acquired in the step (a3).
  • Plasma processing equipment configured to generate a sequence of a plurality of voltage pulses, the third output end being coupled to the electrode or a member within the plasma processing chamber; a voltage pulse generator, a third sensor configured to detect at least one third parameter at the third output, the at least one third parameter related to the sequence of the plurality of
  • the control unit includes: (a3) configured to repeatedly acquire the at least one third parameter;
  • the step (b) sequentially repeats the first control, the second control, and the third control,
  • the plasma processing apparatus according to supplementary note 1, wherein the third control adjusts the current supplied to the electromagnet unit based on the at least one third parameter acquired in the step (a3).
  • the control unit includes: (a3) configured to perform a step of repeatedly acquiring the at least four third parameters simultaneously; The step (b) sequentially repeats the first control, the second control, and the third control, The third control includes adjusting the power level of the third RF signal in the third RF generation section based on at least four third parameters acquired simultaneously in the step (a3), and adjusting the power level of the third RF signal in the third RF generation section.
  • the adjustment of the frequency of the third RF signal in the RF generation unit of No. 3 and the adjustment of the third variable element in the third matching box are performed sequentially.
  • plasma processing equipment (Appendix 5) a fourth RF generator configured to generate a fourth RF signal having a fourth frequency; a fourth matching device including a fourth variable element and having a fourth input terminal and a fourth output terminal, the fourth input terminal being coupled to the fourth RF generation section; a fourth matching box, the output end of which is coupled to the antenna; a plurality of fourth sensors configured to detect at least four fourth parameters at the fourth input end and/or the fourth output end; a plurality of fourth sensors associated with a fourth RF signal; Furthermore,
  • the control unit includes: (a4) configured to perform a step of repeatedly acquiring the at least four fourth parameters simultaneously; The step (b) sequentially repeats the first control, the second control, the third control, and the fourth control, The fourth control includes adjusting the power level of the fourth RF signal in the fourth
  • the plasma processing apparatus wherein the adjustment of the frequency of the fourth RF signal in the RF generation section of No. 4 and the adjustment of the fourth variable element in the fourth matching box are performed sequentially.
  • the plurality of first sensors are configured to detect the at least four first parameters at the first input end; Each of the at least four first parameters is from the group consisting of power, voltage, and current related to a traveling wave of the first RF signal, and power, voltage, and current related to a reflected wave of the first RF signal.
  • the plasma processing apparatus according to any one of Supplementary Notes 1 to 5, which is selected.
  • the plurality of second sensors are configured to detect the at least four second parameters at the second input end;
  • Each of the at least four second parameters is from the group consisting of power, voltage, and current related to the traveling wave of the second RF signal, and power, voltage, and current related to the reflected wave of the second RF signal.
  • Each of the at least four second parameters is from the group consisting of power, voltage, and current related to the traveling wave of the second RF signal, and power, voltage, and current related to the reflected wave of the second RF signal.
  • the plasma processing apparatus according to any one of Supplementary Notes 1 to 8, which is selected.
  • An RF system coupled to a plasma processing apparatus comprising: a first RF generator configured to generate a first RF signal having a first frequency; a first matching device including a first variable element and having a first input terminal and a first output terminal, the first input terminal being coupled to the first RF generation section; a first matching box, an output end of which is coupled to the plasma processing chamber; a first sensor configured to detect at least four first parameters at the first input end and/or the first output end; a plurality of first sensors associated with the RF signal; a second RF generator configured to generate a second RF signal having a second frequency; a second matching device including a second variable element and having a second input terminal and a second output terminal, the second input terminal being coupled to the second RF generation section; a second matching box, the output end of which is coupled to the plasma processing chamber; a second sensor configured to detect at least four second parameters at the second input end and/or second output end; a plurality of second sensors associated with
  • the second control includes adjusting the power level of the second RF signal in the second RF generation section based on at least four second parameters acquired simultaneously in the step (a2), and adjusting the power level of the second RF signal in the second RF generation section.
  • An RF system that sequentially adjusts the frequency of the second RF signal in the second RF generating section and adjusts the second variable element in the second matching box.
  • the control unit includes: (a3) configured to perform a step of repeatedly acquiring the at least four third parameters simultaneously; The step (b) sequentially repeats the first control, the second control, and the third control, The third control includes adjusting the power level of the third RF signal in the third RF generation section based on at least four third parameters acquired simultaneously in the step (a3), and adjusting the power level of the third RF signal in the third RF generation section.
  • Appendix 12 a combination coupled to the first RF generation unit, the second RF generation unit, and the third RF generation unit, and including the first RF signal, the second RF signal, and the third RF signal; an RF signal synthesizer configured to generate an RF signal; an amplifier configured to amplify the composite RF signal; a first filter coupled to the first input terminal of the first matching box and configured to pass the first frequency component included in the composite RF signal amplified by the amplifier; a second filter connected to the second input terminal of the second matching box and configured to pass the second frequency component included in the composite RF signal amplified by the amplifier; a third filter coupled to the third input terminal of the third matching box and configured to pass the third frequency component included in the composite RF signal amplified by the amplifier;
  • Each of the at least four second parameters is from the group consisting of power, voltage, and current related to the traveling wave of the second RF signal, and power, voltage, and current related to the reflected wave of the second RF signal.
  • the RF system according to any one of appendices 10 to 12, which is selected.
  • An RF system coupled to a plasma processing apparatus comprising: a first RF generator configured to generate a first RF signal having a first frequency; a first matching device including a first variable element and having a first input terminal and a first output terminal, the first input terminal being coupled to the first RF generation section; a first matching box, an output end of which is coupled to the plasma processing chamber; at least one first sensor configured to detect at least two first parameters at the first input end and/or the first output end, the at least two first parameters comprising: at least one first sensor associated with the first RF signal; a second RF generator configured to generate a second RF signal having a second frequency; a second matching device including a second variable element and having a second input terminal and a second output terminal, the second input terminal being coupled to the second RF generation section; a second matching box, the output end of which is coupled to the plasma processing chamber; at least one second sensor configured to detect at least two second parameters at the second input end and/or the second output
  • a third RF generator configured to generate a third RF signal having a third frequency
  • a third matching device including a third variable element and having a third input terminal and a third output terminal, the third input terminal being coupled to the third RF generation section
  • a third matching box the output end of which is coupled to the plasma processing chamber
  • at least one third sensor configured to detect at least two third parameters at the third input end and/or the third output end, the at least two third parameters comprising: at least one third sensor associated with the third RF signal
  • the control unit includes: (a3) configured to perform a step of repeatedly acquiring the at least two third parameters simultaneously; The step (b) sequentially repeats the first control, the second control, and the third control,
  • the third control includes adjusting the power level of the third RF signal in the third RF generation section based on at least two third parameters acquired simultaneously in the
  • Appendix 16 a combination coupled to the first RF generation unit, the second RF generation unit, and the third RF generation unit, and including the first RF signal, the second RF signal, and the third RF signal; an RF signal synthesizer configured to generate an RF signal; an amplifier configured to amplify the composite RF signal; a first filter coupled to the first input terminal of the first matching box and configured to pass the first frequency component included in the composite RF signal amplified by the amplifier; a second filter coupled to the second input terminal of the second matching box and configured to pass the second frequency component included in the composite RF signal amplified by the amplifier; a third filter coupled to the third input terminal of the third matching box and configured to pass the third frequency component included in the composite RF signal amplified by the amplifier;
  • Each of the at least two second parameters is from the group consisting of power, voltage, and current related to the traveling wave of the second RF signal, and power, voltage, and current related to the reflected wave of the second RF signal.
  • the RF system according to any one of appendices 14 to 16, which is selected.
  • a first RF generation unit configured to generate a first RF signal including a signal at a first frequency
  • a first matching box including a first variable element, provided on a signal line through which the first RF signal generated by the first RF generation unit and supplied to a member included in the plasma processing apparatus propagates; , A plurality of first RF signals related to the first RF signal in a signal line between the first RF generation section and the first matching device, through which the first RF signal propagates.
  • a first sensor configured to detect a parameter
  • a second RF generation unit configured to generate a second RF signal including a signal of a second frequency different from the first frequency
  • a second matching box including a second variable element and provided in a signal line through which the second RF signal generated by the second RF generation unit and supplied to a member included in the plasma processing apparatus propagates; and, A plurality of second RF signals related to the second RF signal in the signal line between the second RF generation section and the second matching box, through which the second RF signal propagates.
  • An RF control method executed by a plasma processing apparatus comprising a control section, a) obtaining the first parameter and the second parameter detected by the first sensor and the second sensor; b) controlling the power magnitude and the first frequency in the first RF signal and controlling the first variable element based on the first parameter obtained in step a); The process to be carried out and c) controlling the magnitude of the power and the second frequency in the second RF signal and controlling the second variable element based on the second parameter obtained in step a); The process of performing An RF control method in which the detection of the first parameter and the second parameter in the step a) and the step b) and the step c) are performed at different timings.
  • Plasma processing apparatus 10
  • Plasma processing chamber 10s Plasma processing space 10e Gas exhaust port 101 Dielectric window 102
  • Side wall 11
  • Substrate support section 111
  • Main body section 111a Central region 111b Annular region 1110 Base 1110a Channel 1111
  • Electrostatic chuck 1111a Ceramic member 1111b
  • Electrostatic electrode 112 Ring assembly 12
  • Plasma generation section 13 Central gas injection section 13a Gas supply port 13b Gas flow path 13c Gas introduction port 14
  • Antenna 20
  • Gas source 22
  • Flow rate controller 30
  • Power supply 300
  • RF generation section 300-1 First RF generation unit 300-2
  • Second RF generation unit 3000 NCO 3001
  • Mixer 3002
  • DAC 301
  • Combining section 302
  • Amplifier 303
  • Filter 304
  • Directional coupler 305
  • VI sensor 306
  • Matching box 310
  • DC signal generation section 312
  • Amplifier 315
  • VI sensor 316 Current sensor 320 Detector 330 Sensor

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma Technology (AREA)

Abstract

プラズマ処理装置の制御部は、(a1)第1の整合器の入力端及び/又は出力端における第1のパラメータを取得する工程と、(a2)第2の整合器の入力端及び/又は出力端における第2のパラメータを取得する工程と、(b)第1の制御及び第2の制御をシーケンシャルに繰り返し行う工程と、を行うように構成される。第1の制御は、工程(a1)で取得した第1のパラメータに基づき、第1のRF生成部における第1のRF信号の電力レベルの調整と、第1のRF信号の周波数の調整と、第1の整合器における第1の可変素子の調整とをシーケンシャルに行う。第2の制御は、工程(a2)で取得した第2のパラメータに基づいて、第2のRF生成部における第2のRF信号の電力レベルの調整と、第2のRF信号の周波数の調整と、第2の整合器における第2の可変素子の調整とをシーケンシャルに行う。

Description

プラズマ処理装置、RFシステム、およびRF制御方法
 本発明の種々の側面および実施形態は、プラズマ処理装置、RFシステム、およびRF制御方法に関する。
 下記の特許文献1には、「プラズマ処理装置であって、チャンバと、電力供給部と、整合回路と、第1の算出部と、制御回路とを備える。チャンバは、内部に空間を有し、空間内に生成されたプラズマにより空間内に搬入された被処理体を処理する。電力供給部は、チャンバ内にプラズマを生成するための高周波電力を供給する。整合回路は、チャンバ内のプラズマと電力供給部との間のインピーダンスを整合させる。第1の算出部は、チャンバ内のプラズマのインピーダンスを算出する。制御回路は、第1の算出部によって算出されたインピーダンスに基づいて、チャンバ内に供給される高周波電力の周波数、高周波電力の大きさ、および、整合回路のインピーダンスを制御する。また、第1の算出部と制御回路とは、1つの基板上に設けられている。」ことが開示されている。
特開2019-71270号公報
 本開示は、プラズマを用いた処理において、プラズマをより安定的に維持することができるプラズマ処理装置、RFシステム、およびRF制御方法を提供する。
 本発明の一側面は、プラズマ処理装置であって、プラズマ処理チャンバと、基板支持部と、アンテナと、第1のRF生成部と、第1の整合器と、複数の第1のセンサと、第2のRF生成部と、第2の整合器と、複数の第2のセンサと、制御部とを備える。基板支持部は、プラズマ処理チャンバ内に配置され、電極を含む。アンテナは、プラズマ処理チャンバの上方に配置される。第1のRF生成部は、第1の周波数を有する第1のRF信号を生成するように構成される。第1の整合器は、第1の可変素子を含み、第1の入力端及び第1の出力端を有する。第1の入力端は、第1のRF生成部に結合され、第1の出力端は、アンテナに結合される。複数の第1のセンサは、第1の入力端及び/又は第1の出力端における少なくとも4つの第1のパラメータを検出するように構成される。少なくとも4つの第1のパラメータは、第1のRF信号に関連する。第2のRF生成部は、第2の周波数を有する第2のRF信号を生成するように構成される。第2の整合器は、第2の可変素子を含み、第2の入力端及び第2の出力端を有する。第2の入力端は、第2のRF生成部に結合され、第2の出力端は、電極に結合される。複数の第2のセンサは、第2の入力端及び/又は第2の出力端における少なくとも4つの第2のパラメータを検出するように構成される。少なくとも4つの第2のパラメータは、第2のRF信号に関連する。制御部は、(a1)少なくとも4つの第1のパラメータを同時に繰り返し取得する工程と、(a2)少なくとも4つの第2のパラメータを同時に繰り返し取得する工程と、(b)第1の制御及び第2の制御をシーケンシャルに繰り返し行う工程と、を行うように構成される。第1の制御は、工程(a1)で同時に取得した少なくとも4つの第1のパラメータに基づいて、第1のRF生成部における第1のRF信号の電力レベルの調整と、第1のRF生成部における第1のRF信号の周波数の調整と、第1の整合器における第1の可変素子の調整とをシーケンシャルに行う。第2の制御は、工程(a2)で同時に取得した少なくとも4つの第2のパラメータに基づいて、第2のRF生成部における第2のRF信号の電力レベルの調整と、第2のRF生成部における第2のRF信号の周波数の調整と、第2の整合器における第2の可変素子の調整とをシーケンシャルに行う。
 本開示の種々の側面および実施形態によれば、プラズマを用いた処理において、プラズマをより安定的に維持することができる。
図1は、プラズマ処理システムの構成の一例を示す図である。 図2は、誘導結合型のプラズマ処理装置の一例を示す図である。 図3は、電源の詳細な構成の一例を示す図である。 図4は、RF生成部の一例を示す図である。 図5は、検出および制御のタイミングの一例を示すタイミングチャートである。 図6は、検出および制御のタイミングの他の例を示すタイミングチャートである。 図7は、検出および制御のタイミングのさらなる他の例を示すタイミングチャートである。 図8は、プラズマ処理方法の一例を示すフローチャートである。 図9Aは、センサの配置の他の例を示す図である。 図9Bは、センサの配置の他の例を示す図である。 図9Cは、センサの配置の他の例を示す図である。 図10は、プラズマ処理装置の他の例を示す図である。 図11は、電源と複数の電磁石との接続の一例を示す上面図である。 図12は、電源の詳細な構成の他の例を示す図である。
 以下に、開示されるプラズマ処理システムおよびプラズマ処理方法の実施形態について、図面に基づいて詳細に説明する。なお、以下の実施形態により、開示されるプラズマ処理装置、RFシステム、およびRF制御方法が限定されるものではない。
 なお、以下に例示される各実施形態において、「結合」とは、信号の伝達が可能な状態で接続されることを意味する。また、「A、B、およびCの少なくともいずれか」とは、(A)、(B)、(C)、(AおよびB)、(BおよびC)、(CおよびA)、または(A、B、およびC)のいずれか1つを意味する。
 ところで、プラズマを用いたエッチング等の処理では、複数の異なる周波数のRF信号が用いられる場合がある。その場合、複数の信号発生器を用いて複数のRF信号を生成することが考えられる。しかし、それぞれの信号発生器が、互いに独立してRF信号の電力や周波数を制御すると、制御のタイミングが重なる場合がある。制御のタイミングが重なると、制御によるRF信号の過渡的な変化のタイミングが重なり、プラズマが消えたり、過度な電流が流れる等により、プラズマが不安定になる場合がある。プラズマが不安定になると、プラズマ処理が施された後の半導体基板の品質が所望の品質に満たない場合がある。
 そこで、本開示は、プラズマを用いた処理において、プラズマをより安定的に維持することができる技術を提供する。
[プラズマ処理システムの構成例]
 図1は、プラズマ処理システムの構成の一例を示す図である。一実施形態において、プラズマ処理システムは、プラズマ処理装置1及び制御部2を含む。プラズマ処理システムは、基板処理システムの一例であり、プラズマ処理装置1は、基板処理装置の一例である。プラズマ処理装置1は、プラズマ処理チャンバ10、基板支持部11及びプラズマ生成部12を含む。プラズマ処理チャンバ10は、プラズマ処理空間を有する。また、プラズマ処理チャンバ10は、少なくとも1つの処理ガスをプラズマ処理空間に供給するための少なくとも1つのガス供給口と、プラズマ処理空間からガスを排出するための少なくとも1つのガス排出口とを有する。ガス供給口は、後述するガス供給部20に接続され、ガス排出口は、後述する排気システム40に接続される。基板支持部11は、プラズマ処理空間内に配置され、基板を支持するための基板支持面を有する。
 プラズマ生成部12は、プラズマ処理空間内に供給された少なくとも1つの処理ガスからプラズマを生成するように構成される。プラズマ処理空間において形成されるプラズマは、容量結合プラズマ(CCP;Capacitively Coupled Plasma)、誘導結合プラズマ(ICP;Inductively Coupled Plasma)、ECRプラズマ(Electron-Cyclotron-resonance plasma)、ヘリコン波励起プラズマ(HWP:Helicon Wave Plasma)、又は、表面波プラズマ(SWP:Surface Wave Plasma)等であってもよい。また、AC(Alternating Current)プラズマ生成部及びDC(Direct Current)プラズマ生成部を含む、種々のタイプのプラズマ生成部が用いられてもよい。一実施形態において、ACプラズマ生成部で用いられるAC信号(AC電力)は、100kHz~10GHzの範囲内の周波数の信号を有する。従って、AC信号は、RF(Radio Frequency)信号及びマイクロ波信号を含む。一実施形態において、RF信号は、100kHz~150MHzの範囲内の周波数を有する。
 制御部2は、本開示において述べられる種々の工程をプラズマ処理装置1に実行させるコンピュータ実行可能な命令を処理する。制御部2は、ここで述べられる種々の工程を実行するようにプラズマ処理装置1の各要素を制御するように構成され得る。一実施形態において、制御部2の一部又は全てがプラズマ処理装置1に含まれてもよい。制御部2は、処理部2a1、記憶部2a2及び通信インターフェース2a3を含んでもよい。制御部2は、例えばコンピュータ2aにより実現される。処理部2a1は、記憶部2a2からプログラムを読み出し、読み出されたプログラムを実行することにより種々の制御動作を行うように構成され得る。このプログラムは、予め記憶部2a2に格納されていてもよく、必要なときに、媒体を介して取得されてもよい。取得されたプログラムは、記憶部2a2に格納され、処理部2a1によって記憶部2a2から読み出されて実行される。媒体は、コンピュータ2aに読み取り可能な種々の記憶媒体であってもよく、通信インターフェース2a3に接続されている通信回線であってもよい。処理部2a1は、CPU(Central Processing Unit)であってもよい。記憶部2a2は、RAM(Random Access Memory)、ROM(Read Only Memory)、HDD(Hard Disk Drive)、SSD(Solid State Drive)、又はこれらの組み合わせを含んでもよい。通信インターフェース2a3は、LAN(Local Area Network)等の通信回線を介してプラズマ処理装置1との間で通信してもよい。
[プラズマ処理装置1の構成例]
 以下に、プラズマ処理装置1の一例としての誘導結合型のプラズマ処理装置の構成例について説明する。図2は、誘導結合型のプラズマ処理装置1の一例を示す図である。
 誘導結合型のプラズマ処理装置1は、プラズマ処理チャンバ10、ガス供給部20、電源30及び排気システム40を含む。プラズマ処理チャンバ10は、誘電体窓101を含む。また、プラズマ処理装置1は、基板支持部11、ガス導入部及びアンテナ14を含む。基板支持部11は、プラズマ処理チャンバ10内に配置される。アンテナ14は、プラズマ処理チャンバ10上又はその上方(すなわち誘電体窓101上又はその上方)に配置される。プラズマ処理チャンバ10は、誘電体窓101、プラズマ処理チャンバ10の側壁102及び基板支持部11により規定されたプラズマ処理空間10sを有する。プラズマ処理チャンバ10は接地される。
 基板支持部11は、本体部111及びリングアセンブリ112を含む。本体部111は、基板Wを支持するための中央領域111aと、リングアセンブリ112を支持するための環状領域111bとを有する。ウェハは基板Wの一例である。本体部111の環状領域111bは、平面視で本体部111の中央領域111aを囲んでいる。基板Wは、本体部111の中央領域111a上に配置され、リングアセンブリ112は、本体部111の中央領域111a上の基板Wを囲むように本体部111の環状領域111b上に配置される。従って、中央領域111aは、基板Wを支持するための基板支持面とも呼ばれ、環状領域111bは、リングアセンブリ112を支持するためのリング支持面とも呼ばれる。
 一実施形態において、本体部111は、基台1110及び静電チャック1111を含む。基台1110は、導電性部材を含む。基台1110の導電性部材はバイアス電極として機能し得る。静電チャック1111は、基台1110の上に配置される。静電チャック1111は、セラミック部材1111aとセラミック部材1111a内に配置される静電電極1111bとを含む。セラミック部材1111aは、中央領域111aを有する。一実施形態において、セラミック部材1111aは、環状領域111bも有する。なお、環状静電チャックや環状絶縁部材のような、静電チャック1111を囲む他の部材が環状領域111bを有してもよい。この場合、リングアセンブリ112は、環状静電チャック又は環状絶縁部材の上に配置されてもよく、静電チャック1111と環状絶縁部材の両方の上に配置されてもよい。また、後述するRF生成部及び/又はDC信号生成部に結合される少なくとも1つのRF/DC電極がセラミック部材1111a内に配置されてもよい。この場合、少なくとも1つのRF/DC電極がバイアス電極として機能する。なお、基台1110の導電性部材と少なくとも1つのRF/DC電極とが複数のバイアス電極として機能してもよい。また、静電電極1111bがバイアス電極として機能してもよい。従って、基板支持部11は、少なくとも1つのバイアス電極を含む。
 リングアセンブリ112は、1又は複数の環状部材を含む。一実施形態において、1又は複数の環状部材は、1又は複数のエッジリングと少なくとも1つのカバーリングとを含む。エッジリングは、導電性材料又は絶縁材料で形成され、カバーリングは、絶縁材料で形成される。
 また、基板支持部11は、静電チャック1111、リングアセンブリ112及び基板のうち少なくとも1つをターゲット温度に調節するように構成される温調モジュールを含んでもよい。温調モジュールは、ヒータ、伝熱媒体、流路1110a、又はこれらの組み合わせを含んでもよい。流路1110aには、ブラインやガスのような伝熱流体が流れる。一実施形態において、流路1110aが基台1110内に形成され、1又は複数のヒータが静電チャック1111のセラミック部材1111a内に配置される。また、基板支持部11は、基板Wの裏面と中央領域111aとの間の間隙に伝熱ガスを供給するように構成された伝熱ガス供給部を含んでもよい。
 ガス導入部は、ガス供給部20からの少なくとも1つの処理ガスをプラズマ処理空間10s内に導入するように構成される。一実施形態において、ガス導入部は、中央ガス注入部(CGI:Center Gas Injector)13を含む。中央ガス注入部13は、基板支持部11の上方に配置され、誘電体窓101に形成された中央開口部に取り付けられる。中央ガス注入部13は、少なくとも1つのガス供給口13a、少なくとも1つのガス流路13b、及び少なくとも1つのガス導入口13cを有する。ガス供給口13aに供給された処理ガスは、ガス流路13bを通過してガス導入口13cからプラズマ処理空間10s内に導入される。なお、ガス導入部は、中央ガス注入部13に加えて又はその代わりに、側壁102に形成された1又は複数の開口部に取り付けられる1又は複数のサイドガス注入部(SGI:Side Gas Injector)を含んでもよい。
 ガス供給部20は、少なくとも1つのガスソース21及び少なくとも1つの流量制御器22を含んでもよい。一実施形態において、ガス供給部20は、少なくとも1つの処理ガスを、それぞれに対応のガスソース21からそれぞれに対応の流量制御器22を介してガス導入部に供給するように構成される。各流量制御器22は、例えばマスフローコントローラ又は圧力制御式の流量制御器を含んでもよい。さらに、ガス供給部20は、少なくとも1つの処理ガスの流量を変調又はパルス化する少なくとも1つの流量変調デバイスを含んでもよい。
 電源30は、少なくとも1つのインピーダンス整合回路を介してプラズマ処理チャンバ10に結合されるRF生成部を含む。RF生成部は、少なくとも1つのRF信号(RF電力)を少なくとも1つのバイアス電極及びアンテナ14に供給するように構成される。これにより、プラズマ処理空間10sに供給された少なくとも1つの処理ガスからプラズマが形成される。従って、RF生成部は、プラズマ生成部12の少なくとも一部として機能し得る。また、バイアスRF信号を少なくとも1つのバイアス電極に供給することにより、基板Wにバイアス電位が発生し、形成されたプラズマ中のイオンを基板Wに引き込むことができる。電源30の詳細な構成例については後述する。
 アンテナ14は、1又は複数のコイルを含む。一実施形態において、アンテナ14は、同軸上に配置された外側コイル及び内側コイルを含んでもよい。この場合、RF生成部は、外側コイル及び内側コイルの双方に接続されてもよく、外側コイル及び内側コイルのうちいずれか一方に接続されてもよい。前者の場合、同一のRF生成部が外側コイル及び内側コイルの双方に接続されてもよく、別個のRF生成部が外側コイル及び内側コイルに別々に接続されてもよい。
 排気システム40は、例えばプラズマ処理チャンバ10の底部に設けられたガス排出口10eに接続され得る。排気システム40は、圧力調整弁及び真空ポンプを含んでもよい。圧力調整弁によって、プラズマ処理空間10s内の圧力が調整される。真空ポンプは、ターボ分子ポンプ、ドライポンプ又はこれらの組み合わせを含んでもよい。
[電源30の詳細な構成例]
 図3は、電源30の詳細な構成の一例を示す図である。本実施形態にける電源30は、第1のRF生成部300-1、第2のRF生成部300-2、合成部301、増幅器302、フィルタ303-1、フィルタ303-2、方向性結合器304-1、および方向性結合器304-2を有する。また、本実施形態にける電源30は、VIセンサ305-1、VIセンサ305-2、整合器306-1、整合器306-2、DC信号生成部310、増幅器312、VIセンサ315、および検出器320を有する。以下では、第1のRF生成部300-1および第2のRF生成部300-2を区別することなく総称する場合にRF生成部300と記載し、フィルタ303-1およびフィルタ303-2を区別することなく総称する場合にフィルタ303と記載する。また、以下では、方向性結合器304-1および方向性結合器304-2を区別することなく総称する場合に方向性結合器304と記載する。また、以下では、VIセンサ305-1およびVIセンサ305-2を区別することなく総称する場合にVIセンサ305と記載し、整合器306-1および整合器306-2を区別することなく総称する場合に整合器306と記載する。制御部2および電源30は、RFシステムの一例である。
 第1のRF生成部300-1は、第1の周波数の信号を含む第1のRF信号を生成する。一実施形態において、第1のRF生成部300-1は、第1の周波数を有する第1のRF信号を生成するように構成される。第1のRF信号は、ソースRF信号の一例である。本実施形態において、第1の周波数は、例えば10MHz~150MHzの範囲内の周波数である。本実施形態において、第1のRF生成部300-1は、第1の周波数の信号を含む1または複数の異なる周波数の信号を含むソースRF信号を生成し、生成されたソースRF信号は、アンテナ14に供給される。
 第2のRF生成部300-2は、第2の周波数の信号を含む第2のRF信号を生成する。一実施形態において、第2のRF生成部300-2は、第2の周波数を有する第2のRF信号を生成するように構成される。第2のRF信号は、バイアスRF信号(バイアスRF電力)の一例である。第2の周波数は、第1の周波数と同じであっても異なっていてもよい。また、第2の周波数は、第1の周波数より低くてもよい。本実施形態において、第2の周波数は、例えば100kHz~60MHzの範囲内の周波数である。。本実施形態において、第2のRF生成部300-2は、第2の周波数の信号を含む1または複数の異なる周波数の信号を含むバイアスRF信号を生成し、生成されたバイアスRF信号は、基台1110のバイアス電極に供給される。なお、ソースRF信号及びバイアスRF信号のうち少なくとも1つはパルス化されてもよい。
 第1のRF生成部300-1および第2のRF生成部300-2は、例えば図4に示されるようなRF生成部300によって実現される。RF生成部300は、NCO(Numerically controlled oscillator)3000、ミキサ3001、およびDAC(Digital Analog Converter)3002を有する。第1のRF生成部300-1のNCO3000は、第1の周波数の信号を含む1又は複数の周波数の信号を有する第1のRF信号を生成する。第2のRF生成部300-2のNCO3000は、第2の周波数の信号を含む1又は複数の周波数の信号を有する第2のRF信号を生成する。ミキサ3001は、NCO3000によって生成された複数のRF信号を合成する。なお、NCO3000から単一の周波数のRF信号が出力された場合、ミキサ3001は、NCO3000から出力されたRF信号を合成することなく通過させる。DAC3002は、ミキサ3001から出力されたRF信号をディジタル信号からアナログ信号に変換する。
 NCO3000は、例えば第1の周波数または第2の周波数の信号を含む数百kHz~数MHzの周波数帯域に含まれる1又は複数の周波数のRF信号を生成する。例えば、プラズマを着火させる際にプラズマ処理空間10s内に供給されるRF信号の周波数と、プラズマが着火した後にプラズマを安定的に維持するためにプラズマ処理空間10sに供給されるRF信号の周波数とは異なる場合がある。NCO3000は、これらの周波数の信号を含む複数のRF信号を生成することにより、プラズマの確実な着火と安定的な維持とを両立するさせることができる。
 図3に戻って説明を続ける。合成部301は、第1のRF生成部300-1の出力端および第2のRF生成部300-2の出力端に結合し、第1のRF生成部300-1によって生成された第1のRF信号と、第2のRF生成部300-2によって生成された第2のRF信号とを合成する。合成部301は、RF信号合成部の一例である。増幅器302は、合成部301の出力端に結合し、合成部301によって合成されたRF信号を増幅する。増幅器302は、第1のRF生成部300-1によって生成される第1のRF信号の周波数帯域と、第2のRF生成部300-2によって生成される第2のRF信号の周波数帯域とを含む周波数帯域の信号を増幅することが可能な広帯域増幅器である。
 フィルタ303-1は、増幅器302の出力端に結合され、増幅器302によって増幅された信号から、第1のRF信号に含まれる周波数成分を通過させる。フィルタ303-2は、増幅器302の出力端に結合され、増幅器302によって増幅された信号から、第2のRF信号に含まれる周波数成分を通過させる。フィルタ303-1は第1のフィルタの一例であり、フィルタ303-2は第2のフィルタの一例である。
 方向性結合器304-1およびVIセンサ305-1は、第1のRF生成部300-1と整合器306-1との間の信号ラインであって、第1のRF信号が伝搬する信号ラインにおける第1のRF信号に関連する複数の第1のパラメータを検出する。方向性結合器304-1およびVIセンサ305-1は、第1のセンサの一例である。方向性結合器304-2およびVIセンサ305-2は、第2のRF生成部300-2と整合器306-2との間の信号ラインであって、第2のRF信号が伝搬する信号ラインにおける第2のRF信号に関連する複数の第2のパラメータ情報を検出する。方向性結合器304-2およびVIセンサ305-2は、第2のセンサの一例である。一実施形態において、複数(少なくとも2つ)の第1のセンサは、整合器306-1の第1の入力端及び/又は第1の出力端における少なくとも4つの第1のパラメータを検出するように構成される。少なくとも4つの第1のパラメータは、第1のRF信号に関連する。一実施形態において、複数の第1のセンサは、整合器306-1の第1の入力端において少なくとも4つの第1のパラメータを検出するように構成される。少なくとも4つの第1のパラメータは、第1のRF信号に関連する。一実施形態において、少なくとも4つの第1のパラメータの各々は、第1のRF信号の進行波に関する電力、電圧及び電流と、第1のRF信号の反射波に関する電力、電圧及び電流と、からなるグループから選択される、一実施形態において、複数(少なくとも2つ)の第2のセンサは、整合器306-2の第2の入力端及び/又は第2の出力端における少なくとも4つの第2のパラメータを検出するように構成される。一実施形態において、複数の第2のセンサは、整合器306-2の第2の入力端において少なくとも4つの第2のパラメータを検出するように構成される。少なくとも4つの第2のパラメータは、第2のRF信号に関連する、一実施形態において、少なくとも4つの第2のパラメータの各々は、第2のRF信号の進行波に関する電力、電圧及び電流と、第2のRF信号の反射波に関する電力、電圧及び電流と、からなるグループから選択される。
 方向性結合器304-1によって検出される第1のパラメータには、例えば第1のRF信号における進行波および反射波のそれぞれの電力の波高値および位相の情報が含まれる。VIセンサ305-1によって検出される第1のパラメータには、例えば整合器306-1の入力端における第1のRF信号の電圧および電流の大きさおよび位相の情報が含まれる。整合器306-1の入力端は第1の入力端の一例であり、整合器306-1の出力端は第1の出力端の一例である。
 方向性結合器304-2によって検出される第2のパラメータには、例えば第2のRF信号における進行波および反射波のそれぞれの電力の波高値および位相の情報が含まれる。VIセンサ305-2によって検出される第2のパラメータには、例えば整合器306-2の入力端における第2のRF信号の電圧および電流の大きさおよび位相の情報が含まれる。整合器306-2の入力端は第2の入力端の一例であり、整合器306-2の出力端は第2の出力端の一例である。
 整合器306-1は、第1のRF生成部300-1によって生成され、アンテナ14に供給される第1のRF信号が伝搬する信号ラインに設けられている。整合器306-2は、第2のRF生成部300-2によって生成され、基台1110のバイアス電極に供給される第2のRF信号が伝搬する信号ラインに設けられている。整合器306-1および整合器306-2は、アクチュエータによってリアクタンス値が制御されるリアクタンス素子を含む。アクチュエータは、制御部2によって制御される。従って、整合器306-1および整合器306-2のリアクタンス素子は、制御部2によって制御される。整合器306-1は第1の整合器の一例であり、整合器306-2は第2の整合器の一例である。整合器306-1が有するリアクタンス素子は第1の可変素子の一例であり、整合器306-2が有するリアクタンス素子は第2の可変素子の一例である。一実施形態において、整合器306-1は、第1の可変素子を含み、第1の入力端及び第1の出力端を有する。第1の入力端は、第1のRF生成部300-1に結合され、第1の出力端は、アンテナ14に結合される。一実施形態において、可変素子は、可変コンデンサ又は可変インダクタである。一実施形態において、整合器306-2は、第2の可変素子を含み、第2の入力端及び第2の出力端を有する。第2の入力端は、第2のRF生成部300-2に結合され、第2の出力端は、基板支持部11内のバイアス電極に結合される。
 整合器306-1のリアクタンス素子が制御されることにより、アンテナ14に対する電源30の出力インピーダンスが制御され、電源30の出力インピーダンスとアンテナ14の入力インピーダンスとの整合状態が変化する。これにより、電源30からアンテナ14を介してプラズマに供給される第1のRF電力が変化し、プラズマ処理チャンバ10内のプラズマの状態が変化する。同様に、整合器306-2のリアクタンス素子が制御されることにより、基台1110のバイアス電極に対する電源30の出力インピーダンスが制御され、電源30の出力インピーダンスと基台1110のバイアス電極の入力インピーダンスとの整合状態が変化する。これにより、電源30から基台1110のバイアス電極を介してプラズマに供給される第2のRF電力が変化し、プラズマ処理チャンバ10内のプラズマの状態が変化する。
 DC信号生成部310は、第1のRF信号および第2のRF信号の周波数よりも低い周波数のDC信号を生成する。本実施形態において、DC信号生成部310によって生成されたDC信号は、プラズマ処理チャンバ10の側壁102に印加される。側壁102に印加されるDC信号により、プラズマ処理チャンバ10内のプラズマの状態が変化する。なお、DC信号生成部310によって生成されたDC信号は、基台1110のバイアス電極や図示しないファラデーシールド等、プラズマ処理チャンバ10内の他の部材に印加されてもよい。本実施形態において、DC信号生成部310は電圧パルス生成部の一例であり、DC信号生成部310の出力端は第3の出力端の一例である。
 また、本実施形態において、DC信号生成部310によって生成されるDC信号は、例えば数百kHzの周期のパルス信号である。電圧パルスは、矩形、台形、三角形又はこれらの組み合わせのパルス波形を有してもよい。一実施形態において、DC信号から電圧パルスのシーケンスを生成するための波形生成部がDC信号生成部310と少なくとも1つのバイアス電極との間に接続される。従って、DC信号生成部310及び波形生成部は、電圧パルス生成部を構成する。電圧パルスは、正の極性を有してもよく、負の極性を有してもよい。また、電圧パルスのシーケンスは、1周期内に1又は複数の正極性電圧パルスと1又は複数の負極性電圧パルスとを含んでもよい。
 増幅器312は、DC信号生成部310の出力端に結合し、DC信号生成部310によって生成されたDC信号を増幅する。VIセンサ315は、DC信号生成部310とプラズマ処理チャンバ10内の部材(本実施形態では側壁102)との間の信号ラインであって、DC信号が伝搬する信号ラインにおけるDC信号に関連する複数の第3のパラメータを検出する。VIセンサ315によって検出される第3のパラメータには、例えばDC信号の電圧および電流の大きさおよび位相の情報が含まれる。VIセンサ315は、第3のセンサの一例である。
 検出器320は、方向性結合器304-1およびVIセンサ305-1が検出した第1のパラメータと、方向性結合器304-2およびVIセンサ305-2が検出した第2のパラメータと、VIセンサ315が検出した第3のパラメータとを取得する。そして、検出器320は、取得された第1のパラメータ、第2のパラメータ、および第3のパラメータを制御部2へ出力する。
 制御部2は、検出器320から出力された第1のパラメータに基づいて、第1のRF信号における電力の大きさおよび周波数の制御と、整合器306-1内のリアクタンス素子の制御とを行う。また、制御部2は、検出器320から出力された第2のパラメータに基づいて、第2のRF信号における電力の大きさおよび周波数の制御と、整合器306-2内のリアクタンス素子の制御とを行う。また、制御部2は、検出器320から出力された第3のパラメータに基づいて、DC信号における電圧の大きさを含むDC信号の状態を制御する。
 なお、制御部2は、検出された第2のパラメータおよび第3のパラメータの少なくともいずれかをさらに用いて第1のRF信号における電力の大きさおよび周波数の制御と、整合器306-1内のリアクタンス素子の制御とを行ってもよい。また、制御部2は、検出された第1のパラメータおよび第3のパラメータの少なくともいずれかをさらに用いて第2のRF信号における電力の大きさおよび周波数の制御と、整合器306-2内のリアクタンス素子の制御とを行ってもよい。また、制御部2は、検出された第1のパラメータおよび第2のパラメータの少なくともいずれかをさらに用いてDC信号の状態を制御してもよい。
[検出と制御のタイミング]
 図5は、検出および制御のタイミングの一例を示すタイミングチャートである。図5において、ハッチングが施されていない四角は、検出器320によって取得される検出値が検出されるタイミングを示し、ハッチングが施された四角は、制御が行われるタイミングを示している。
 例えば図5に示されるように、検出器320は、方向性結合器304-1がタイミングt1で検出した第1のRF信号の進行波および反射波の検出値を取得する。また、検出器320は、VIセンサ305-1がタイミングt2で検出した第1のRF信号の電圧および電流の検出値を取得する。また、検出器320は、方向性結合器304-2がタイミングt3で検出した第2のRF信号の進行波および反射波の検出値を取得する。また、検出器320は、VIセンサ305-2がタイミングt4で検出した第2のRF信号の電圧および電流の検出値を取得する。また、検出器320は、VIセンサ315がタイミングt5で検出したDC信号の電圧および電流の検出値を取得する。
 また、例えば図5に示されるように、制御部2は、タイミングt1およびt2で検出された第1のパラメータに基づき、タイミングt6において、第1のRF信号の電力の大きさおよび周波数の制御と、整合器306-1内のリアクタンス素子の制御とを行う。また、制御部2は、タイミングt3およびt4で検出された第2のパラメータに基づき、タイミングt7において、第2のRF信号の電力の大きさおよび周波数の制御と、整合器306-2内のリアクタンス素子の制御とを行う。また、制御部2は、タイミングt5で検出された第3のパラメータに基づき、タイミングt8においてDC信号の状態を制御する。
 制御部2は、期間T1において各信号の検出を行い、期間T2において各信号の状態の制御を行う。期間T1と期間T2とは交互に繰り返される。
 ここで、第1のRF信号の検出および制御と、第2のRF信号の検出および制御とが、それぞれ独立して実行されると、一方のRF信号の制御が行われるタイミングと、他方のRF信号の状態が検出されるタイミングとが重なる場合がある。一方のRF信号の制御が行われるタイミングと、他方のRF信号の状態が検出されるタイミングとが重なると、一方のRF信号の制御により過渡的に変化したプラズマの状態に対して、他方のRF信号の状態が検出される場合がある。そのような場合、他方のRF信号の過渡的な状態が検出されてしまい、他方のRF信号に対して所望の制御行われない場合がある。これにより、プラズマが消えたり、過度な電流が流れる等により、プラズマが不安定になる場合がある。プラズマが不安定になると、プラズマ処理が施された後の基板の品質が所望の品質に満たない場合がある。
 これに対し、本実施形態では、例えば図5に示されるように、各信号の検出が行われる期間T1と、各信号の状態が制御される期間T2とは異なっている。これにより、一方のRF信号の制御が行われるタイミングと、他方のRF信号の状態が検出されるタイミングとの重なりを回避することができ、安定的にプラズマを維持することができる。
 また、一方のRF信号の制御が行われるタイミングと、他方のRF信号の制御が行われるタイミングとが重なると、2つのRF信号の制御に伴うプラズマの過渡的な変化が重なり、プラズマが過剰に変化する場合がある。プラズマが過剰に変化すると、プラズマが不安定になる場合がある。
 これに対し、本実施形態では、例えば図5に示されるように、各信号の制御はそれぞれ異なるタイミングt6~t8で行われる。これにより、2つのRF信号の制御に伴うプラズマの過剰な変化を回避することができ、安定的にプラズマを維持することができる。
 なお、各信号の状態の検出は、例えば図6に示されるように、同じタイミングt1’で行われてもよい。これにより、各信号の検出が行われる期間T1を短くすることができ、より短い時間で各信号の検出と制御とを多く実行することができる。これにより、各信号をより高速に制御することができ、より安定的にプラズマを維持することができる。
 また、例えば図7に示されるように、各信号の状態が制御されるタイミングt6~t8の間には、Δtの期間が設けられることが好ましい。Δtの期間は、例えば制御が行われた後の信号によるプラズマの過渡的な変化が安定するのに要する時間である。図7の例では、各信号の状態が制御されるタイミングt6~t8の間には同一の期間Δtが設けられるが、それぞれの期間Δtの長さは異なっていてもよい。また、それぞれの期間Δtの長さは、プラズマの状態の変化や基板の処理の進行の度合いに応じて変更してもよい。
[プラズマ処理方法]
 図8は、プラズマ処理方法の一例を示すフローチャートである。図8に例示される処理は、制御部2がプラズマ処理装置1の各部を制御することにより実現される。また、図8に例示されるプラズマ処理方法では、図7に例示されたタイミングで各信号の検出および制御が行われる。なお、図8に例示されるプラズマ処理方法は、RF制御方法の一例である。
 まず、制御部2は、第1のRF信号、第2のRF信号、およびDC信号を出力するように、第1のRF生成部300-1、第2のRF生成部300-2、およびDC信号生成部310を制御する(S100)。
 次に、制御部2は、検出器320を制御し、同じタイミングで検出された各信号の検出値(第1のパラメータ、第2のパラメータ、および第3のパラメータ)を検出器320から取得する(S101)。ステップS101は、工程(a1)、(a2)、および工程(c)の一例である。
 次に、制御部2は、検出器320から取得された各信号の検出値に基づいて、各信号の状態を制御するための制御量を算出する(S102)。各信号の状態を制御するための制御量には、各信号の電力、電圧、周波数、およびリアクタンス素子等の制御量が含まれる。
 次に、制御部2は、ステップS102で算出された制御量に基づいて第1のRF信号を制御する(S103)。ステップS103は、第1の制御および工程(d)の一例である。ステップS103で行われる制御には、第1のRF信号における電力の大きさおよび周波数の制御と、整合器306-1が有するリアクタンス素子の制御とが含まれる。
 次に、制御部2は、プラズマの状態が安定するまで待機する(S104)。ステップS104は、図7におけるタイミングt6とタイミングt7の間の期間Δtに相当する。
 次に、制御部2は、ステップS102で算出された制御量に基づいて第2のRF信号を制御する(S105)。ステップS105は、第2の制御および工程(e)の一例である。ステップS105で行われる制御には、第2のRF信号における電力の大きさおよび周波数の制御と、整合器306-2が有するリアクタンス素子の制御とが含まれる。
 次に、制御部2は、プラズマの状態が安定するまで待機する(S106)。ステップS106は、図7におけるタイミングt7とタイミングt8の間の期間Δtに相当する。
 次に、制御部2は、ステップS102で算出された制御量に基づいてDC信号を制御する(S107)。ステップS107は、第4の制御の一例である。ステップS107で行われる制御には、DC信号における電圧の大きさ等のDC信号の状態の制御が含まれる。
 次に、制御部2は、プラズマの状態が安定するまで待機する(S108)。ステップS108は、図7におけるタイミングt8とその次のタイミングt1’の間の期間Δtに相当する。
 次に、制御部2は、プラズマ処理を終了するか否かを判定する(S109)。プラズマ処理を終了しない場合(S109:No)、制御部2は、再びステップS101に示された処理を実行する。一方、プラズマ処理を終了する場合(S109:Yes)、制御部2は、第1のRF信号、第2のRF信号、およびDC信号の出力を停止するように、第1のRF生成部300-1、第2のRF生成部300-2、およびDC信号生成部310を制御する。そして、制御部2は、本フローチャートに示されたプラズマ処理方法を終了する。
 以上、一実施形態について説明した。上記したように、本実施形態におけるプラズマ処理装置1は、プラズマ処理チャンバ10と、基板支持部11と、アンテナ14と、第1のRF生成部300-1と、整合器306-1と、複数の第1のセンサと、第2のRF生成部300-2と、整合器306-2と、複数の第2のセンサと、制御部2とを備える。基板支持部11は、プラズマ処理チャンバ10内に配置され、バイアス電極を含む。アンテナ14は、プラズマ処理チャンバ10の上方に配置される。第1のRF生成部300-1は、第1の周波数の信号を含む第1のRF信号を生成する。整合器306-1は、第1の可変素子を含み、第1のRF生成部300-1によって生成され、アンテナ14に供給される第1のRF信号が伝搬する信号ラインに設けられる。複数の第1のセンサは、第1のRF生成部300-1と整合器306-1との間の信号ラインであって、第1のRF信号が伝搬する信号ラインにおける第1のRF信号に関連する少なくとも4つの第1のパラメータを検出する。第2のRF生成部300-2は、第1の周波数とは異なる第2の周波数の信号を含む第2のRF信号を生成する。整合器306-2は、第2の可変素子を含み、第2のRF生成部300-2によって生成され、基板支持部11のバイアス電極に供給される第2のRF信号が伝搬する信号ラインに設けられる。複数の第2のセンサは、第2のRF生成部300-2と整合器306-2との間の信号ラインであって、第2のRF信号が伝搬する信号ラインにおける第2のRF信号に関連する少なくとも4つの第2のパラメータを検出する。制御部2は、工程(c)、工程(d)、および工程(e)を実行する。工程(c)では、第1のセンサおよび第2のセンサによって検出された第1のパラメータおよび第2のパラメータが取得される。工程(d)では、工程(c)によって取得された第1のパラメータに基づいて、第1のRF信号における電力の大きさおよび第1の周波数の制御と、第1の可変素子の制御とが行われる。工程(e)では、工程(c)によって取得された第2のパラメータに基づいて、第2のRF信号における電力の大きさおよび第2の周波数の制御と、第2の可変素子の制御とが行われる。また、工程(c)における第1のパラメータおよび第2のパラメータの検出と、工程(d)および工程(e)とは異なるタイミングで実行される。これにより、プラズマをより安定的に維持することができる。
 また、上記した実施形態では、制御部2は、工程(c)において、同一のタイミングで検出された第1のパラメータおよび第2のパラメータを取得する。これにより、各信号の検出が行われる時間を短くすることができ、より短い時間で各信号の検出と制御とを多く実行することができる。これにより、各信号をより高速に制御することができ、より安定的にプラズマを維持することができる。
 また、上記した実施形態において、制御部2は、工程(d)と工程(e)とを異なるタイミングで実行する。これにより、2つのRF信号の制御に伴うプラズマの過剰な変化を回避することができ、安定的にプラズマを維持することができる。
 また、上記した実施形態におけるプラズマ処理装置1は、DC信号生成部310およびVIセンサ315をさらに備える。DC信号生成部310は、基板支持部11内のバイアス電極またはプラズマ処理チャンバ10内の部材に結合され、第1の周波数および第2の周波数よりも低い周波数の信号を生成する。VIセンサ315は、DC信号生成部310からバイアス電極またはプラズマ処理チャンバ10内の部材に供給される信号に関連する第3のパラメータを検出する。制御部2は、工程(c)において、第3のセンサによって検出された第3のパラメータを取得する。また、制御部2は、工程(c)によって取得された第3のパラメータに基づいて、DC信号生成部310から基板支持部11内のバイアス電極またはプラズマ処理チャンバ10内の部材に供給される信号において、当該信号における電圧の大きさを含む当該信号の状態を制御する工程(f)を実行する。また、工程(f)は、工程(c)における第1のパラメータ、第2のパラメータ、および第3のパラメータの検出とは異なるタイミングで実行される。これにより、プラズマをより安定的に維持することができる。
 また、上記した実施形態では、制御部2は、工程(c)において、同一のタイミングで検出された第1のパラメータ、第2のパラメータ、および第3のパラメータを取得する。これにより、各信号の検出が行われる時間を短くすることができ、より短い時間で各信号の検出と制御とを多く実行することができる。これにより、各信号をより高速に制御することができ、より安定的にプラズマを維持することができる。
 また、上記した実施形態において、制御部2は、工程(d)と工程(e)と工程(f)とを異なるタイミングで実行する。これにより、複数の信号の制御に伴うプラズマの過剰な変化を回避することができ、安定的にプラズマを維持することができる。
 また、上記した実施形態におけるプラズマ処理装置1は、合成部301と、増幅器302と、フィルタ303-1と、フィルタ303-2とをさらに備える。合成部301は、第1のRF生成部300-1の出力端および第2のRF生成部300-2の出力端に結合し、第1のRF生成部300-1から出力される第1のRF信号と第2のRF生成部300-2から出力される第2のRF信号を合成する。増幅器302は、合成部301の出力端に結合し、合成部301によって合成される信号を増幅する。フィルタ303-1は、増幅器302の出力端に結合され、増幅器302によって増幅された信号から第1のRF信号に含まれる周波数成分を整合器306-1へ通過させる。フィルタ303-2は、増幅器302の出力端に接続され、増幅器302によって増幅された信号から第2のRF信号に含まれる周波数成分を整合器306-2へ通過させる。これにより、増幅器302の数を少なくすることができ、電源30を小型化することができる。
 また、上記した実施形態において、第1のパラメータは、第1のRF信号における進行波および反射波に関する情報と、整合器306-1の入力端における電圧および電流に関する情報とを含む。また、第2のパラメータは、第2のRF信号における進行波および反射波に関する情報と、整合器306-2の入力端における電圧および電流に関する情報とを含む。これにより、第1のRF信号および第2のRF信号の状態を通じて、プラズマ処理空間10s内に生成されるプラズマの状態を精度よくモニタすることができる。
 また、上記したRFシステムは、プラズマ処理装置1に結合されるRFシステムであって、第1のRF生成部300-1と、整合器306-1と、第1のセンサと、第2のRF生成部300-2と、整合器306-2と、第2のセンサと、制御部2とを備える。第1のRF生成部300-1は、第1の周波数の信号を含む第1のRF信号を生成する。整合器306-1は、第1の可変素子を含み、第1のRF生成部300-1によって生成され、プラズマ処理装置1が有する部材に供給される第1のRF信号が伝搬する信号ラインに設けられる。第1のセンサは、第1のRF生成部300-1と整合器306-1との間の信号ラインであって、第1のRF信号が伝搬する信号ラインにおける第1のRF信号に関連する複数の第1のパラメータを検出する。第2のRF生成部300-2は、第1の周波数とは異なる第2の周波数の信号を含む第2のRF信号を生成する。整合器306-2は、第2の可変素子を含み、第2のRF生成部300-2によって生成され、プラズマ処理装置1が有する部材に供給される第2のRF信号が伝搬する信号ラインに設けられる。第2のセンサは、第2のRF生成部300-2と整合器306-2との間の信号ラインであって、第2のRF信号が伝搬する信号ラインにおける第2のRF信号に関連する複数の第2のパラメータを検出する。制御部2は、工程(c)、工程(d)、および工程(e)を実行する。工程(c)では、第1のセンサおよび第2のセンサによって検出された第1のパラメータおよび第2のパラメータが取得される。工程(d)では、工程(c)によって取得された第1のパラメータに基づいて、第1のRF信号における電力の大きさおよび第1の周波数の制御と、第1の可変素子の制御とが行われる。工程(e)では、工程(c)によって取得された第2のパラメータに基づいて、第2のRF信号における電力の大きさおよび第2の周波数の制御と、第2の可変素子の制御とが行われる。また、工程(c)における第1のパラメータおよび第2のパラメータの検出と、工程(d)および工程(e)とは異なるタイミングで実行される。これにより、プラズマをより安定的に維持することができる。
 また、上記した実施形態では、制御部2は、工程(c)において、同一のタイミングで検出された第1のパラメータおよび第2のパラメータを取得する。これにより、各信号の検出が行われる時間を短くすることができ、より短い時間で各信号の検出と制御とを多く実行することができる。これにより、各信号をより高速に制御することができ、より安定的にプラズマを維持することができる。
 また、上記した実施形態において、制御部2は、工程(d)と工程(e)とを異なるタイミングで実行する。これにより、2つのRF信号の制御に伴うプラズマの過剰な変化を回避することができ、安定的にプラズマを維持することができる。
 また、上記した実施形態におけるプラズマ処理装置1は、DC信号生成部310およびVIセンサ315をさらに備える。DC信号生成部310は、プラズマ処理チャンバ10が有する部材に結合され、第1の周波数および第2の周波数よりも低い周波数の信号を生成する。VIセンサ315は、プラズマ処理チャンバ10が有する部材に供給される信号に関連する第3のパラメータを検出する。制御部2は、工程(c)において、第3のセンサによって検出された第3のパラメータを取得する。また、制御部2は、工程(c)によって取得された第3のパラメータに基づいて、DC信号生成部310からプラズマ処理チャンバ10が有する部材に供給される信号において、当該信号における電圧の大きさを含む当該信号の状態を制御する工程(f)を実行する。また、工程(f)は、工程(c)における第1のパラメータ、第2のパラメータ、および第3のパラメータの検出とは異なるタイミングで実行される。これにより、プラズマをより安定的に維持することができる。
 また、上記した実施形態では、制御部2は、工程(c)において、同一のタイミングで検出された第1のパラメータ、第2のパラメータ、および第3のパラメータを取得する。これにより、各信号の検出が行われる時間を短くすることができ、より短い時間で各信号の検出と制御とを多く実行することができる。これにより、各信号をより高速に制御することができ、より安定的にプラズマを維持することができる。
 また、上記した実施形態において、制御部2は、工程(d)と工程(e)と工程(f)とを異なるタイミングで実行する。これにより、複数の信号の制御に伴うプラズマの過剰な変化を回避することができ、安定的にプラズマを維持することができる。
 また、上記した実施形態におけるプラズマ処理装置1は、合成部301と、増幅器302と、フィルタ303-1と、フィルタ303-2とをさらに備える。合成部301は、第1のRF生成部300-1の出力端および第2のRF生成部300-2の出力端に結合し、第1のRF生成部300-1から出力される第1のRF信号と第2のRF生成部300-2から出力される第2のRF信号を合成する。増幅器302は、合成部301の出力端に結合し、合成部301によって合成される信号を増幅する。フィルタ303-1は、増幅器302の出力端に結合され、増幅器302によって増幅された信号から第1のRF信号に含まれる周波数成分を整合器306-1へ通過させる。フィルタ303-2は、増幅器302の出力端に接続され、増幅器302によって増幅された信号から第2のRF信号に含まれる周波数成分を整合器306-2へ通過させる。これにより、増幅器302の数を少なくすることができ、電源30を小型化することができる。
 また、上記した実施形態において、第1のパラメータは、第1のRF信号における進行波および反射波に関する情報と、整合器306-1の入力端における電圧および電流に関する情報とを含む。また、第2のパラメータは、第2のRF信号における進行波および反射波に関する情報と、整合器306-2の入力端における電圧および電流に関する情報とを含む。これにより、第1のRF信号および第2のRF信号の状態を通じて、プラズマ処理空間10s内に生成されるプラズマの状態を精度よくモニタすることができる。
 また、上記したRF制御方法は、第1のRF生成部300-1と、整合器306-1と、第1のセンサと、第2のRF生成部300-2と、整合器306-2と、第2のセンサと、制御部2とを備えるプラズマ処理装置1によって実行される。第1のRF生成部300-1は、第1の周波数の信号を含む第1のRF信号を生成する。整合器306-1は、第1の可変素子を含み、第1のRF生成部300-1によって生成され、プラズマ処理装置1が有する部材に供給される第1のRF信号が伝搬する信号ラインに設けられる。第1のセンサは、第1のRF生成部300-1と整合器306-1との間の信号ラインであって、第1のRF信号が伝搬する信号ラインにおける第1のRF信号に関連する複数の第1のパラメータを検出する。第2のRF生成部300-2は、第1の周波数とは異なる第2の周波数の信号を含む第2のRF信号を生成する。整合器306-2は、第2の可変素子を含み、第2のRF生成部300-2によって生成され、プラズマ処理装置1が有する部材に供給される第2のRF信号が伝搬する信号ラインに設けられる。第2のセンサは、第2のRF生成部300-2と整合器306-2との間の信号ラインであって、第2のRF信号が伝搬する信号ラインにおける第2のRF信号に関連する複数の第2のパラメータを検出する。RF制御方法は、工程(c)、工程(d)、および工程(e)を含む。工程(c)では、第1のセンサおよび第2のセンサによって検出された第1のパラメータおよび第2のパラメータが取得される。工程(d)では、工程(c)によって取得された第1のパラメータに基づいて、第1のRF信号における電力の大きさおよび第1の周波数の制御と、第1の可変素子の制御とが行われる。工程(e)では、工程(c)によって取得された第2のパラメータに基づいて、第2のRF信号における電力の大きさおよび第2の周波数の制御と、第2の可変素子の制御とが行われる。また、工程(c)における第1のパラメータおよび第2のパラメータの検出と、工程(d)および工程(e)とは異なるタイミングで実行される。これにより、プラズマをより安定的に維持することができる。
 一実施形態において、制御部2は、第1の整合器306-1の第1の入力端及び/又は第1の出力端における少なくとも4つの第1のパラメータを同時に繰り返し取得する工程(a1)を行うように構成される。また、制御部2は、第2の整合器306-2の第2の入力端及び/又は第2の出力端における少なくとも4つの第2のパラメータを同時に繰り返し取得する工程(a2)を行うように構成される。そして、制御部2は、第1の制御及び第2の制御をシーケンシャルに繰り返し行う工程(b)を行うように構成される。第1の制御は、工程(a1)で同時に取得した少なくとも4つの第1のパラメータに基づいて、第1のRF生成部300-1における第1のRF信号の電力レベルの調整と、第1のRF生成部300-1における第1のRF信号の周波数の調整と、第1の整合器306-1における第1の可変素子の調整とをシーケンシャルに行う。第2の制御は、工程(a2)で同時に取得した少なくとも4つの第2のパラメータに基づいて、第2のRF生成部300-2における第2のRF信号の電力レベルの調整と、第2のRF生成部300-2における第2のRF信号の周波数の調整と、第2の整合器306-2における第2の可変素子の調整とをシーケンシャルに行う。
 一実施形態において、プラズマ処理装置1は、電圧パルス生成部310および第3のセンサ315をさらに備える。電圧パルス生成部310は、第3の出力端を有し、複数の電圧パルスのシーケンスを生成するように構成される。第3の出力端は、基板支持部11内のバイアス電極またはプラズマ処理チャンバ10内の部材に結合される。一実施形態において、プラズマ処理チャンバ10内の部材は、プラズマ処理チャンバ10の側壁やファラデーシールド等のような導電性部材である。一実施形態において、複数の電圧パルスのシーケンスは、繰り返し期間の第1の状態の間に第1の電圧レベルを有する電圧パルスのシーケンスを有し、繰り返し期間の第2の状態の間に第2の電圧レベルを有する。一実施形態において、第1の電圧レベルの絶対値は、第2の電圧レベルの絶対値よりも大きい。一実施形態において、第1の電圧レベルは、負の極性を有する。一実施形態において、第2の電圧レベルは、ゼロ電圧レベルを有する。一実施形態において、第3のセンサ315は、電圧パルス生成部310の第3の出力端における少なくとも1つの第3のパラメータを検出するように構成される。少なくとも1つの第3のパラメータは、複数の電圧パルスのシーケンスに関連する。一実施形態において、制御部2は、少なくとも1つの第3のパラメータを繰り返し取得する工程(a3)を行うように構成される。そして、制御部2は、工程(b)において、第1の制御、第2の制御及び第3の制御をシーケンシャルに繰り返し行うように構成される。第3の制御は、工程(a3)で取得した少なくとも1つの第3のパラメータに基づいて、電圧パルス生成部310における複数の電圧パルスのシーケンスの調整を行う。複数の電圧パルスのシーケンスの調整は、電圧レベルの調整を含む。
 一実施形態において、プラズマ処理装置1は、電源30、電流制御部、電磁石ユニットおよび少なくとも1つの第3のセンサをさらに備える。電流制御部は、電源30に結合される。電磁石ユニットは、電流制御部に結合され、プラズマ処理チャンバ10を囲むように配置される少なくとも1つの電磁石50を含む。少なくとも1つの第3のセンサは、電流制御部と電磁石ユニットとの間、及び/又は、電磁石ユニットとプラズマ処理チャンバ10との間における少なくとも1つの第3のパラメータを検出するように構成される。一実施形態において、制御部2は、少なくとも1つの第3のパラメータを繰り返し取得する工程(a3)を行うように構成される。そして、制御部2は、工程(b)において、第1の制御、第2の制御及び第3の制御をシーケンシャルに繰り返し行うように構成される。第3の制御は、工程(a3)で取得した少なくとも1つの第3のパラメータに基づいて、電磁石ユニットに含まれる少なくとも1つの電磁石50に供給される電流の調整を行う。
 一実施形態において、プラズマ処理装置1は、第3のRF生成部300-3、第3の整合器306-3及び複数(少なくとも2つ)の第3のセンサをさらに備える。第3のRF生成部300-3は、第3の周波数を有する第3のRF信号を生成するように構成される。一実施形態において、第3の周波数は、第1の周波数及び第2の周波数よりも低い。一実施形態において、第3の周波数は、300kHz~600kHzの範囲内にある。第3の整合器306-3は、第3の可変素子を含み、第3の入力端及び第3の出力端を有する。第3の入力端は、第3のRF生成部300-3に結合され、第3の出力端は、基板支持部11内のバイアス電極に結合される。複数の第3のセンサは、第3の整合器306-3の第3の入力端及び/又は第3の出力端における少なくとも4つの第3のパラメータを検出するように構成される。少なくとも4つの第3のパラメータは、第3のRF信号に関連する。一実施形態において、制御部2は、少なくとも4つの第3のパラメータを同時に繰り返し取得する工程(a3)を行うように構成される。そして、制御部2は、工程(b)において、第1の制御、第2の制御及び第3の制御をシーケンシャルに繰り返し行うように構成される。第3の制御は、工程(a3)で同時に取得した少なくとも4つの第3のパラメータに基づいて、第3のRF生成部300-3における第3のRF信号の電力レベルの調整と、第3のRF生成部300-3における第3のRF信号の周波数の調整と、第3の整合器306-3における第3の可変素子の調整とをシーケンシャルに行う。
 一実施形態において、プラズマ処理装置1は、合成部301、増幅器302、第1のフィルタ303-1、第2のフィルタ303-2および第3のフィルタ303-3をさらに備える。合成部301は、第1のRF生成部300-1、第2のRF生成部300-2および第3のRF生成部300-3に結合される。また、合成部301は、第1のRF信号、第2のRF信号および第3のRF信号を含む合成RF信号を生成するように構成される。増幅器302は、合成RF信号を増幅するように構成される。第1のフィルタ303-1は、第1の整合器306-1の第1の入力端に結合され、増幅器302によって増幅された合成RF信号に含まれる第1の周波数の成分を通過させるように構成される。第2のフィルタ303-2は、第2の整合器306-2の第2の入力端に結合され、増幅器302によって増幅された合成RF信号に含まれる第2の周波数の成分を通過させるように構成される。第3のフィルタは、第3の整合器306-3の第3の入力端に結合され、増幅器302によって増幅された合成RF信号に含まれる第3の周波数の成分を通過させるように構成される。
 一実施形態において、プラズマ処理装置1は、第4のRF生成部300-4、第4の整合器306-4及び複数(少なくとも2つ)の第4のセンサをさらに備える。第4のRF生成部300-4は、第4の周波数を有する第4のRF信号を生成するように構成される。一実施形態において、第4の周波数は、第1の周波数、第2の周波数および第3の周波数とは異なる。第4の整合器306-4は、第4の可変素子を含み、第4の入力端及び第4の出力端を有する。第4の入力端は、第4のRF生成部300-4に結合され、第4の出力端は、アンテナ14に結合される。複数の第4のセンサは、第4の整合器306-4の第4の入力端及び/又は第4の出力端における少なくとも4つの第4のパラメータを検出するように構成される。少なくとも4つの第4のパラメータは、第4のRF信号に関連する。一実施形態において、制御部2は、少なくとも4つの第4のパラメータを同時に繰り返し取得する工程(a4)を行うように構成される。そして、制御部2は、工程(b)において、第1の制御、第2の制御、第3の制御及び第4の制御をシーケンシャルに繰り返し行うように構成される。第4の制御は、工程(a4)で同時に取得した少なくとも4つの第4のパラメータに基づいて、第4のRF生成部300-4における第4のRF信号の電力レベルの調整と、第4のRF生成部300-4における第4のRF信号の周波数の調整と、第4の整合器306-4における第4の可変素子の調整とをシーケンシャルに行う。
 一実施形態において、プラズマ処理装置1に結合されるRFシステムは、第1のRF生成部300-1、第1の整合器306-1、少なくとも1つの第1のセンサ、第2のRF生成部300-2、第2の整合器306-2、少なくとも1つの第2のセンサ、第3のRF生成部300-3、第3の整合器306-3、および少なくとも1つの第3のセンサを備える。第1のRF生成部300-1は、第1の周波数を有する第1のRF信号を生成するように構成される。第1の整合器306-1は、第1の可変素子を含み、第1の入力端及び第1の出力端を有する。第1の整合器306-1の第1の入力端は、第1のRF生成部300-1に結合され、第1の整合器306-1の第1の出力端は、プラズマ処理チャンバ10に結合される。少なくとも1つの第1のセンサは、第1の整合器306-1の第1の入力端及び/又は第1の出力端における少なくとも2つの第1のパラメータを検出するように構成される。少なくとも2つの第1のパラメータは、第1のRF信号に関連する。一実施形態において、少なくとも2つの第1のパラメータの各々は、第1のRF信号の進行波に関する電力、電圧及び電流と、第1のRF信号の反射波に関する電力、電圧及び電流と、からなるグループから選択される。第2のRF生成部300-2は、第2の周波数を有する第2のRF信号を生成するように構成される。第2の整合器306-2は、第2の可変素子を含み、第2の入力端及び第2の出力端を有する。第2の整合器306-2の第2の入力端は、第2のRF生成部300-2に結合され、第2の整合器306-2の第2の出力端は、プラズマ処理チャンバ10に結合される。少なくとも1つの第2のセンサは、第2の整合器306-2の第2の入力端及び/又は第2の出力端における少なくとも2つの第2のパラメータを検出するように構成される。少なくとも2つの第2のパラメータは、第2のRF信号に関連する。一実施形態において、少なくとも2つの第2のパラメータの各々は、第2のRF信号の進行波に関する電力、電圧及び電流と、第2のRF信号の反射波に関する電力、電圧及び電流と、からなるグループから選択される、第3のRF生成部300-3は、第3の周波数を有する第3のRF信号を生成するように構成される。第3の整合器306-3は、第3の可変素子を含み、第3の入力端及び第3の出力端を有する。第3の整合器306-3の第3の入力端は、第3のRF生成部300-3に結合され、第3の整合器306-3の第3の出力端は、プラズマ処理チャンバ10に結合される。少なくとも1つの第3のセンサは、第3の整合器306-3の第3の入力端及び/又は第3の出力端における少なくとも2つの第3のパラメータを検出するように構成される。少なくとも2つの第3のパラメータは、第3のRF信号に関連する。一実施形態において、少なくとも2つの第3のパラメータの各々は、第3のRF信号の進行波に関する電力、電圧及び電流と、第3のRF信号の反射波に関する電力、電圧及び電流と、からなるグループから選択される。一実施形態において、制御部2は、第1の整合器306-1の第1の入力端及び/又は第1の出力端における少なくとも2つの第1のパラメータを同時に繰り返し取得する工程(a1)を行うように構成される。制御部2は、第2の整合器306-2の第2の入力端及び/又は第2の出力端における少なくとも2つの第2のパラメータを同時に繰り返し取得する工程(a2)を行うように構成される。制御部2は、第3の整合器306-3の第3の入力端及び/又は第3の出力端における少なくとも2つの第3のパラメータを同時に繰り返し取得する工程(a3)を行うように構成される。そして、制御部2は、第1の制御、第2の制御および第3の制御をシーケンシャルに繰り返し行う工程(b)を行うように構成される。第1の制御は、工程(a1)で同時に取得した少なくとも2つの第1のパラメータに基づいて、第1のRF生成部300-1における第1のRF信号の電力レベルの調整と、第1のRF生成部300-1における第1のRF信号の周波数の調整と、第1の整合器306-1における第1の可変素子の調整とをシーケンシャルに行う。第2の制御は、工程(a2)で同時に取得した少なくとも2つの第2のパラメータに基づいて、第2のRF生成部300-2における第2のRF信号の電力レベルの調整と、第2のRF生成部300-2における第2のRF信号の周波数の調整と、第2の整合器306-2における第2の可変素子の調整とをシーケンシャルに行う。第3の制御は、工程(a3)で同時に取得した少なくとも2つの第3のパラメータに基づいて、第3のRF生成部300-3における第3のRF信号の電力レベルの調整と、第3のRF生成部300-3における第3のRF信号の周波数の調整と、第3の整合器306-3における第3の可変素子の調整とをシーケンシャルに行う。
[その他]
 なお、本発明は、上記した実施形態に限定されるものではなく、その要旨の範囲内で数々の変形が可能である。
 例えば、上記した実施形態では、それぞれのRF信号の信号ラインにおいて、フィルタ303側に方向性結合器304が設けられ、整合器306側にVIセンサ305が設けられるが、開示の技術はこれに限られない。他の形態では、それぞれのRF信号の信号ラインにおいて、フィルタ303側にVIセンサ305が設けられ、整合器306側に方向性結合器304が設けられてもよい。
 また、上記した実施形態では、それぞれのRF信号の信号ラインにおいて、フィルタ303と整合器306の間に方向性結合器304およびVIセンサ305が設けられるが、開示の技術はこれに限られない。他の形態として、例えば図9Aに示されるように、方向性結合器304またはVIセンサ305を含むセンサ330が、フィルタ303と整合器306の間に設けられてもよい。これにより、部品点数を削減することができる。
 あるいは、他の形態として、例えば図9Bに示されるように、方向性結合器304aおよびVIセンサ305aに加えて、整合器306とプラズマ処理装置1の部材の間に方向性結合器304bおよびVIセンサ305bが設けられてもよい。整合器306とプラズマ処理装置1の部材(例えばアンテナ14および基台1110)の間に方向性結合器304bおよびVIセンサ305bが設けられることにより、整合器306の影響を除いた検出値を取得することができる。これにより、プラズマの状態をより精度よくモニタすることができる。
 あるいは、さらなる他の形態として、例えば図9Cに示されるように、フィルタ303と整合器306の間にセンサ330aが設けられ、整合器306とプラズマ処理装置1の部材(例えばアンテナ14および基台1110)との間にセンサ330bが設けられてもよい。これにより、部品点数の削減と、より精度の高いプラズマの状態のモニタリングとを両立することができる。
 また、上記した実施形態において、DC信号生成部310は、プラズマ処理チャンバ10の側壁102に印加されるが、開示の技術はこれに限られない。例えば図10および図11に示されるように、プラズマ処理チャンバ10の周囲に複数の電磁石50が配置される構成のプラズマ処理装置1において、DC信号生成部310は、それぞれの電磁石50に供給される電流の状態を個別に変更してもよい。なお、図11の例において、プラズマ処理装置1には6個の電磁石50が設けられているが、プラズマ処理装置1に設けられる電磁石50の数は6個より多くてもよく、6個より少なくてもよい。
 図12は、電源30の詳細な構成の他の例を示す図である。なお、以下に説明する点を除き、図12において、図3と同じ符号を付した処理は、図3において説明された処理と同様であるため、説明を省略する。
 図12に例示されたDC信号生成部310は、複数の電磁石50の各々に供給されるDC信号を生成する。複数の電磁石50は、電磁石ユニットの一例である。また、図12の例におけるDC信号生成部310は、電流制御部の一例である。増幅器312aは、それぞれのDC信号毎に設けられた電圧電流変換増幅器である。図12の例では、6個の増幅器312aが設けられる。それぞれの増幅器312aは、DC信号の電圧に応じた電流を出力する。電流センサ316は、それぞれのDC信号毎に設けられ、それぞれの電磁石50に供給される電流の状態を検出する。なお、電流センサ316は、それぞれの電磁石50とプラズマ処理チャンバ10との間に設けられてもよい。このような構成のプラズマ処理装置1においても、開示の技術を適用することにより、プラズマをより安定的に維持することができる。
 また、上記した実施形態では、プラズマ処理装置1が有する部材に2つのRF信号が供給されるが、開示の技術はこれに限られない。他の形態として、プラズマ処理装置1が有する部材に供給されるRF信号の数は、1つであってもよく、3つ以上であってもよい。
 また、上記した実施形態では、プラズマ源の一例として、誘導結合型プラズマ(ICP)を用いて基板Wの処理を行うプラズマ処理装置1を説明したが、基板Wの処理に用いられるプラズマ源はこれに限られない。誘導結合型プラズマ以外のプラズマ源としては、例えば、容量結合型プラズマ(CCP)、マイクロ波励起表面波プラズマ(SWP)、電子サイクロトン共鳴プラズマ(ECP)、およびヘリコン波励起プラズマ(HWP)等が挙げられる。例えば、容量結合型プラズマ(CCP;Capacitively Coupled Plasma)装置は、上部電極及び下部電極を含む。下部電極は、基板支持部内に配置され、上部電極は、基板支持部の上方に配置される。そして、第1の整合器306-1~第4の整合器306-4は、上部電極又は下部電極に結合される。一実施形態において、第1の整合器306-1は、上部電極又は下部電極に結合され、第2の整合器306-2は、下部電極に結合される。一実施形態において、第1の整合器306-1は、上部電極に結合され、第2の整合器306-2および第3の整合器306-3は、下部電極に結合される。一実施形態において、第1の整合器306-1~第3の整合器3063は、下部電極に結合される。一実施形態において、第1の整合器306-1および第4の整合器306-4は、上部電極に結合され、第2の整合器306-2および第3の整合器306-3は、下部電極に結合される。従って、第1の整合器306-1~第4の整合器306-4は、誘導結合型プラズマ装置のアンテナ、容量結合型プラズマ装置の上部電極、又は、基板支持部内の下部電極(バイアス電極)に結合される。即ち、第1の整合器306-1~第4の整合器306-4は、プラズマ処理チャンバ10に結合される。
 なお、今回開示された実施形態は全ての点で例示であって制限的なものではないと考えられるべきである。実に、上記した実施形態は多様な形態で具現され得る。また、上記の実施形態は、添付の請求の範囲およびその趣旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。
 また、上記の実施形態に関し、さらに以下の付記を開示する。
(付記1)
 プラズマ処理チャンバと、
 前記プラズマ処理チャンバ内に配置され、電極を含む基板支持部と、
 前記プラズマ処理チャンバの上方に配置されるアンテナと、
 第1の周波数を有する第1のRF信号を生成するように構成される第1のRF生成部と、
 第1の可変素子を含み、第1の入力端及び第1の出力端を有する第1の整合器であり、前記第1の入力端は、前記第1のRF生成部に結合され、前記第1の出力端は、前記アンテナに結合される、第1の整合器と、
 前記第1の入力端及び/又は第1の出力端における少なくとも4つの第1のパラメータを検出するように構成される複数の第1のセンサであり、前記少なくとも4つの第1のパラメータは、前記第1のRF信号に関連する、複数の第1のセンサと、
 第2の周波数を有する第2のRF信号を生成するように構成される第2のRF生成部と、
 第2の可変素子を含み、第2の入力端及び第2の出力端を有する第2の整合器であり、前記第2の入力端は、前記第2のRF生成部に結合され、前記第2の出力端は、前記電極に結合される、第2の整合器と、
 前記第2の入力端及び/又は第2の出力端における少なくとも4つの第2のパラメータを検出するように構成される複数の第2のセンサであり、前記少なくとも4つの第2のパラメータは、前記第2のRF信号に関連する、複数の第2のセンサと、
 制御部と、
を備え、
 前記制御部は、
 (a1)前記少なくとも4つの第1のパラメータを同時に繰り返し取得する工程と、
 (a2)前記少なくとも4つの第2のパラメータを同時に繰り返し取得する工程と、
 (b)第1の制御及び第2の制御をシーケンシャルに繰り返し行う工程と、
を行うように構成され、
 前記第1の制御は、前記工程(a1)で同時に取得した少なくとも4つの第1のパラメータに基づいて、前記第1のRF生成部における前記第1のRF信号の電力レベルの調整と、前記第1のRF生成部における前記第1のRF信号の周波数の調整と、前記第1の整合器における前記第1の可変素子の調整とをシーケンシャルに行い、
 前記第2の制御は、前記工程(a2)で同時に取得した少なくとも4つの第2のパラメータに基づいて、前記第2のRF生成部における前記第2のRF信号の電力レベルの調整と、前記第2のRF生成部における前記第2のRF信号の周波数の調整と、前記第2の整合器における前記第2の可変素子の調整とをシーケンシャルに行う、プラズマ処理装置。
(付記2)
 第3の出力端を有し、複数の電圧パルスのシーケンスを生成するように構成される電圧パルス生成部であり、前記第3の出力端は、前記電極または前記プラズマ処理チャンバ内の部材に結合される、電圧パルス生成部と、
 前記第3の出力端における少なくとも1つの第3のパラメータを検出するように構成される第3のセンサであり、前記少なくとも1つの第3のパラメータは、前記複数の電圧パルスのシーケンスに関連する、第3のセンサと、
をさらに備え、
 前記制御部は、
 (a3)前記少なくとも1つの第3のパラメータを繰り返し取得する工程を行うように構成され、
 前記工程(b)は、前記第1の制御、前記第2の制御及び第3の制御をシーケンシャルに繰り返し行い、
 前記第3の制御は、前記工程(a3)で取得した前記少なくとも1つの第3のパラメータに基づいて、前記電圧パルス生成部における前記複数の電圧パルスのシーケンスの調整を行う、付記1に記載のプラズマ処理装置。
(付記3)
 電源と、
 前記電源に結合される電流制御部と、
 前記電流制御部に結合され、前記プラズマ処理チャンバを囲むように配置される少なくとも1つの電磁石を含む電磁石ユニットと、
 前記電流制御部と前記電磁石ユニットとの間、及び/又は、前記電磁石ユニットと前記プラズマ処理チャンバとの間における少なくとも1つの第3のパラメータを検出するように構成される少なくとも1つの第3のセンサと、
をさらに備え、
 前記制御部は、
 (a3)前記少なくとも1つの第3のパラメータを繰り返し取得する工程を行うように構成され、
 前記工程(b)は、前記第1の制御、前記第2の制御及び第3の制御をシーケンシャルに繰り返し行い、
 前記第3の制御は、前記工程(a3)で取得した前記少なくとも1つの第3のパラメータに基づいて、前記電磁石ユニットに供給される電流の調整を行う、付記1に記載のプラズマ処理装置。
(付記4)
 第3の周波数を有する第3のRF信号を生成するように構成される第3のRF生成部と、
 第3の可変素子を含み、第3の入力端及び第3の出力端を有する第3の整合器であり、前記第3の入力端は、前記第3のRF生成部に結合され、前記第3の出力端は、前記電極に結合される、第3の整合器と、
 前記第3の入力端及び/又は第3の出力端における少なくとも4つの第3のパラメータを検出するように構成される複数の第3のセンサであり、前記少なくとも4つの第3のパラメータは、前記第3のRF信号に関連する、複数の第3のセンサと、
をさらに備え、
 前記制御部は、
 (a3)前記少なくとも4つの第3のパラメータを同時に繰り返し取得する工程を行うように構成され、
 前記工程(b)は、前記第1の制御、前記第2の制御及び第3の制御をシーケンシャルに繰り返し行い、
 前記第3の制御は、前記工程(a3)で同時に取得した少なくとも4つの第3のパラメータに基づいて、前記第3のRF生成部における前記第3のRF信号の電力レベルの調整と、前記第3のRF生成部における前記第3のRF信号の周波数の調整と、前記第3の整合器における前記第3の可変素子の調整とをシーケンシャルに行う、付記1から3のいずれか一つに記載のプラズマ処理装置。
(付記5)
 第4の周波数を有する第4のRF信号を生成するように構成される第4のRF生成部と、
 第4の可変素子を含み、第4の入力端及び第4の出力端を有する第4の整合器であり、前記第4の入力端は、前記第4のRF生成部に結合され、前記第4の出力端は、前記アンテナに結合される、第4の整合器と、
 前記第4の入力端及び/又は第4の出力端における少なくとも4つの第4のパラメータを検出するように構成される複数の第4のセンサであり、前記少なくとも4つの第4のパラメータは、前記第4のRF信号に関連する、複数の第4のセンサと、
をさらに備え、
 前記制御部は、
 (a4)前記少なくとも4つの第4のパラメータを同時に繰り返し取得する工程を行うように構成され、
 前記工程(b)は、前記第1の制御、前記第2の制御、前記第3の制御及び第4の制御をシーケンシャルに繰り返し行い、
 前記第4の制御は、前記工程(a4)で同時に取得した少なくとも4つの第4のパラメータに基づいて、前記第4のRF生成部における前記第4のRF信号の電力レベルの調整と、前記第4のRF生成部における前記第4のRF信号の周波数の調整と、前記第4の整合器における前記第4の可変素子の調整とをシーケンシャルに行う、付記4に記載のプラズマ処理装置。
(付記6)
 前記複数の第1のセンサは、前記第1の入力端において前記少なくとも4つの第1のパラメータを検出するように構成され、
 前記少なくとも4つの第1のパラメータの各々は、前記第1のRF信号の進行波に関する電力、電圧及び電流と、前記第1のRF信号の反射波に関する電力、電圧及び電流と、からなるグループから選択される、付記1から5のいずれか一つに記載のプラズマ処理装置。
(付記7)
 前記複数の第2のセンサは、前記第2の入力端において前記少なくとも4つの第2のパラメータを検出するように構成され、
 前記少なくとも4つの第2のパラメータの各々は、前記第2のRF信号の進行波に関する電力、電圧及び電流と、前記第2のRF信号の反射波に関する電力、電圧及び電流と、からなるグループから選択される、付記1から6のいずれか一つに記載のプラズマ処理装置。
(付記8)
 前記第1のRF生成部、前記第2のRF生成部及び前記第3のRF生成部に結合され、前記第1のRF信号、前記第2のRF信号及び前記第3のRF信号を含む合成RF信号を生成するように構成されるRF信号合成部と、
 前記合成RF信号を増幅するように構成される増幅器と、
 前記第1の整合器の前記第1の入力端に結合され、前記増幅器によって増幅された合成RF信号に含まれる前記第1の周波数の成分を通過させるように構成される第1のフィルタと、
 前記第1の整合器の前記第2の入力端に結合され、前記増幅器によって増幅された合成RF信号に含まれる前記第2の周波数の成分を通過させるように構成される第2のフィルタと、
 前記第3の整合器の前記第3の入力端に結合され、前記増幅器によって増幅された合成RF信号に含まれる前記第3の周波数の成分を通過させるように構成される第3のフィルタと、
をさらに備える、付記4又は5に記載のプラズマ処理装置。
(付記9)
 前記少なくとも4つの第1のパラメータの各々は、前記第1のRF信号の進行波に関する電力、電圧及び電流と、前記第1のRF信号の反射波に関する電力、電圧及び電流と、からなるグループから選択され、
 前記少なくとも4つの第2のパラメータの各々は、前記第2のRF信号の進行波に関する電力、電圧及び電流と、前記第2のRF信号の反射波に関する電力、電圧及び電流と、からなるグループから選択される、付記1から8のいずれか一つに記載のプラズマ処理装置。
(付記10)
 プラズマ処理装置に結合されるRFシステムであって、
 第1の周波数を有する第1のRF信号を生成するように構成される第1のRF生成部と、
 第1の可変素子を含み、第1の入力端及び第1の出力端を有する第1の整合器であり、前記第1の入力端は、前記第1のRF生成部に結合され、前記第1の出力端は、前記プラズマ処理チャンバに結合される、第1の整合器と、
 前記第1の入力端及び/又は第1の出力端における少なくとも4つの第1のパラメータを検出するように構成される第1のセンサであり、前記少なくとも4つの第1のパラメータは、前記第1のRF信号に関連する、複数の第1のセンサと、
 第2の周波数を有する含む第2のRF信号を生成するように構成される第2のRF生成部と、
 第2の可変素子を含み、第2の入力端及び第2の出力端を有する第2の整合器であり、前記第2の入力端は、前記第2のRF生成部に結合され、前記第2の出力端は、前記プラズマ処理チャンバに結合される、第2の整合器と、
 前記第2の入力端及び/又は第2の出力端における少なくとも4つの第2のパラメータを検出するように構成される第2のセンサであり、前記少なくとも4つの第2のパラメータは、前記第2のRF信号に関連する、複数の第2のセンサと、
 制御部と、
を備え、
 前記制御部は、
 (a1)前記少なくとも4つの第1のパラメータを同時に繰り返し取得する工程と、
 (a2)前記少なくとも4つの第2のパラメータを同時に繰り返し取得する工程と、
 (b)第1の制御及び第2の制御をシーケンシャルに繰り返し行う工程と、を行うように構成され、
 前記第1の制御は、前記工程(a1)で同時に取得した少なくとも4つの第1のパラメータに基づいて、前記第1のRF生成部における前記第1のRF信号の電力レベルの調整と、前記第1のRF生成部における前記第1のRF信号の周波数の調整と、前記第1の整合器における前記第1の可変素子の調整とをシーケンシャルに行い、
 前記第2の制御は、前記工程(a2)で同時に取得した少なくとも4つの第2のパラメータに基づいて、前記第2のRF生成部における前記第2のRF信号の電力レベルの調整と、前記第2のRF生成部における前記第2のRF信号の周波数の調整と、前記第2の整合器における前記第2の可変素子の調整とをシーケンシャルに行う、RFシステム。
(付記11)
 第3の周波数を有する第3のRF信号を生成するように構成される第3のRF生成部と、
 第3の可変素子を含み、第3の入力端及び第3の出力端を有する第3の整合器であり、前記第3の入力端は、前記第3のRF生成部に結合され、前記第3の出力端は、前記プラズマ処理チャンバに結合される、第3の整合器と、
 前記第3の入力端及び/又は第3の出力端における少なくとも4つの第3のパラメータを検出するように構成される複数の第3のセンサであり、前記少なくとも4つの第3のパラメータは、前記第3のRF信号に関連する、複数の第3のセンサと、
をさらに備え、
 前記制御部は、
 (a3)前記少なくとも4つの第3のパラメータを同時に繰り返し取得する工程を行うように構成され、
 前記工程(b)は、前記第1の制御、前記第2の制御及び第3の制御をシーケンシャルに繰り返し行い、
 前記第3の制御は、前記工程(a3)で同時に取得した少なくとも4つの第3のパラメータに基づいて、前記第3のRF生成部における前記第3のRF信号の電力レベルの調整と、前記第3のRF生成部における前記第3のRF信号の周波数の調整と、前記第3の整合器における前記第3の可変素子の調整とをシーケンシャルに行う、付記10に記載のRFシステム。
(付記12)
 前記第1のRF生成部、前記第2のRF生成部及び前記第3のRF生成部に結合され、前記第1のRF信号、前記第2のRF信号及び前記第3のRF信号を含む合成RF信号を生成するように構成されるRF信号合成部と、
 前記合成RF信号を増幅するように構成される増幅器と、
 前記第1の整合器の前記第1の入力端に結合され、前記増幅器によって増幅された合成RF信号に含まれる前記第1の周波数の成分を通過させるように構成される第1のフィルタと、
 前記第2の整合器の前記第2の入力端に接続され、前記増幅器によって増幅された合成RF信号に含まれる前記第2の周波数の成分を通過させるように構成される第2のフィルタと、
 前記第3の整合器の前記第3の入力端に結合され、前記増幅器によって増幅された合成RF信号に含まれる前記第3の周波数の成分を通過させるように構成される第3のフィルタと、
をさらに備える、付記11に記載のRFシステム。
(付記13)
 前記少なくとも4つの第1のパラメータの各々は、前記第1のRF信号の進行波に関する電力、電圧及び電流と、前記第1のRF信号の反射波に関する電力、電圧及び電流と、からなるグループから選択され、
 前記少なくとも4つの第2のパラメータの各々は、前記第2のRF信号の進行波に関する電力、電圧及び電流と、前記第2のRF信号の反射波に関する電力、電圧及び電流と、からなるグループから選択される、付記10から12のいずれか一つに記載のRFシステム。
(付記14)
 プラズマ処理装置に結合されるRFシステムであって、
 第1の周波数を有する第1のRF信号を生成するように構成される第1のRF生成部と、
 第1の可変素子を含み、第1の入力端及び第1の出力端を有する第1の整合器であり、前記第1の入力端は、前記第1のRF生成部に結合され、前記第1の出力端は、前記プラズマ処理チャンバに結合される、第1の整合器と、
 前記第1の入力端及び/又は第1の出力端における少なくとも2つの第1のパラメータを検出するように構成される少なくとも1つの第1のセンサであり、前記少なくとも2つの第1のパラメータは、前記第1のRF信号に関連する、少なくとも1つの第1のセンサと、
 第2の周波数を有する第2のRF信号を生成するように構成される第2のRF生成部と、
 第2の可変素子を含み、第2の入力端及び第2の出力端を有する第2の整合器であり、前記第2の入力端は、前記第2のRF生成部に結合され、前記第2の出力端は、前記プラズマ処理チャンバに結合される、第2の整合器と、
 前記第2の入力端及び/又は第2の出力端における少なくとも2つの第2のパラメータを検出するように構成される少なくとも1つの第2のセンサであり、前記少なくとも2つの第2のパラメータは、前記第2のRF信号に関連する、少なくとも1つの第2のセンサと、
 制御部と、
を備え、
 前記制御部は、
 (a1)前記少なくとも2つの第1のパラメータを同時に繰り返し取得する工程と、
 (a2)前記少なくとも2つの第2のパラメータを同時に繰り返し取得する工程と、
 (b)第1の制御及び第2の制御をシーケンシャルに繰り返し行う工程と、を行うように構成され、
 前記第1の制御は、前記工程(a1)で同時に取得した少なくとも2つの第1のパラメータに基づいて、前記第1のRF生成部における前記第1のRF信号の電力レベルの調整と、前記第1のRF生成部における前記第1のRF信号の周波数の調整と、前記第1の整合器における前記第1の可変素子の調整とをシーケンシャルに行い、
 前記第2の制御は、前記工程(a2)で同時に取得した少なくとも2つの第2のパラメータに基づいて、前記第2のRF生成部における前記第2のRF信号の電力レベルの調整と、前記第2のRF生成部における前記第2のRF信号の周波数の調整と、前記第2の整合器における前記第2の可変素子の調整とをシーケンシャルに行う、
RFシステム。
(付記15)
 第3の周波数を有する第3のRF信号を生成するように構成される第3のRF生成部と、
 第3の可変素子を含み、第3の入力端及び第3の出力端を有する第3の整合器であり、前記第3の入力端は、前記第3のRF生成部に結合され、前記第3の出力端は、前記プラズマ処理チャンバに結合される、第3の整合器と、
 前記第3の入力端及び/又は第3の出力端における少なくとも2つの第3のパラメータを検出するように構成される少なくとも1つの第3のセンサであり、前記少なくとも2つの第3のパラメータは、前記第3のRF信号に関連する、少なくとも1つの第3のセンサと、
をさらに備え、
 前記制御部は、
 (a3)前記少なくとも2つの第3のパラメータを同時に繰り返し取得する工程を行うように構成され、
 前記工程(b)は、前記第1の制御、前記第2の制御及び第3の制御をシーケンシャルに繰り返し行い、
 前記第3の制御は、前記工程(a3)で同時に取得した少なくとも2つの第3のパラメータに基づいて、前記第3のRF生成部における前記第3のRF信号の電力レベルの調整と、前記第3のRF生成部における前記第3のRF信号の周波数の調整と、前記第3の整合器における前記第3の可変素子の調整とをシーケンシャルに行う、付記14に記載のRFシステム。
(付記16)
 前記第1のRF生成部、前記第2のRF生成部および前記第3のRF生成部に結合され、前記第1のRF信号、前記第2のRF信号および前記第3のRF信号を含む合成RF信号を生成するように構成されるRF信号合成部と、
 前記合成RF信号を増幅するように構成される増幅器と、
 前記第1の整合器の前記第1の入力端に結合され、前記増幅器によって増幅された合成RF信号に含まれる前記第1の周波数の成分を通過させるように構成される第1のフィルタと、
 前記第2の整合器の前記第2の入力端に結合され、前記増幅器によって増幅された合成RF信号に含まれる前記第2の周波数の成分を通過させるように構成される第2のフィルタと、
 前記第3の整合器の前記第3の入力端に結合され、前記増幅器によって増幅された合成RF信号に含まれる前記第3の周波数の成分を通過させるように構成される第3のフィルタと、
をさらに備える、付記15に記載のRFシステム。
(付記17)
 前記少なくとも2つの第1のパラメータの各々は、前記第1のRF信号の進行波に関する電力、電圧及び電流と、前記第1のRF信号の反射波に関する電力、電圧及び電流と、からなるグループから選択され、
 前記少なくとも2つの第2のパラメータの各々は、前記第2のRF信号の進行波に関する電力、電圧及び電流と、前記第2のRF信号の反射波に関する電力、電圧及び電流と、からなるグループから選択される、付記14から16のいずれか一つに記載のRFシステム。
(付記18)
 第1の周波数の信号を含む第1のRF信号を生成するように構成される第1のRF生成部と、
 第1の可変素子を含み、前記第1のRF生成部によって生成され、プラズマ処理装置が有する部材に供給される前記第1のRF信号が伝搬する信号ラインに設けられた第1の整合器と、
 前記第1のRF生成部と前記第1の整合器との間の信号ラインであって、前記第1のRF信号が伝搬する信号ラインにおける前記第1のRF信号に関連する複数の第1のパラメータを検出するように構成される第1のセンサと、
 前記第1の周波数とは異なる第2の周波数の信号を含む第2のRF信号を生成するように構成される第2のRF生成部と、
 第2の可変素子を含み、前記第2のRF生成部によって生成され、前記プラズマ処理装置が有する部材に供給される前記第2のRF信号が伝搬する信号ラインに設けられた第2の整合器と、
 前記第2のRF生成部と前記第2の整合器との間の信号ラインであって、前記第2のRF信号が伝搬する信号ラインにおける前記第2のRF信号に関連する複数の第2のパラメータを検出するように構成される第2のセンサと、
 制御部と
を備えるプラズマ処理装置によって実行されるRF制御方法であって、
a) 前記第1のセンサおよび前記第2のセンサによって検出された前記第1のパラメータおよび前記第2のパラメータを取得する工程と、
b) 前記工程a)において取得された前記第1のパラメータに基づいて、前記第1のRF信号における電力の大きさおよび前記第1の周波数の制御と、前記第1の可変素子の制御とを行う工程と、
c) 前記工程a)において取得された前記第2のパラメータに基づいて、前記第2のRF信号における電力の大きさおよび前記第2の周波数の制御と、前記第2の可変素子の制御とを行う工程とを含み、
 前記工程a)における前記第1のパラメータおよび前記第2のパラメータの検出と、前記工程b)および前記工程c)とは異なるタイミングで実行されるRF制御方法。
W 基板
1 プラズマ処理装置
10 プラズマ処理チャンバ
10s プラズマ処理空間
10e ガス排出口
101 誘電体窓
102 側壁
11 基板支持部
111 本体部
111a 中央領域
111b 環状領域
1110 基台
1110a 流路
1111 静電チャック
1111a セラミック部材
1111b 静電電極
112 リングアセンブリ
12 プラズマ生成部
13 中央ガス注入部
13a ガス供給口
13b ガス流路
13c ガス導入口
14 アンテナ
20 ガス供給部
21 ガスソース
22 流量制御器
30 電源
300 RF生成部
300-1 第1のRF生成部
300-2 第2のRF生成部
3000 NCO
3001 ミキサ
3002 DAC
301 合成部
302 増幅器
303 フィルタ
304 方向性結合器
305 VIセンサ
306 整合器
310 DC信号生成部
312 増幅器
315 VIセンサ
316 電流センサ
320 検出器
330 センサ
40 排気システム
50 電磁石
2 制御部
2a コンピュータ
2a1 処理部
2a2 記憶部
2a3 通信インターフェース

Claims (18)

  1.  プラズマ処理チャンバと、
     前記プラズマ処理チャンバ内に配置され、電極を含む基板支持部と、
     前記プラズマ処理チャンバの上方に配置されるアンテナと、
     第1の周波数を有する第1のRF信号を生成するように構成される第1のRF生成部と、
     第1の可変素子を含み、第1の入力端及び第1の出力端を有する第1の整合器であり、前記第1の入力端は、前記第1のRF生成部に結合され、前記第1の出力端は、前記アンテナに結合される、第1の整合器と、
     前記第1の入力端及び/又は第1の出力端における少なくとも4つの第1のパラメータを検出するように構成される複数の第1のセンサであり、前記少なくとも4つの第1のパラメータは、前記第1のRF信号に関連する、複数の第1のセンサと、
     第2の周波数を有する第2のRF信号を生成するように構成される第2のRF生成部と、
     第2の可変素子を含み、第2の入力端及び第2の出力端を有する第2の整合器であり、前記第2の入力端は、前記第2のRF生成部に結合され、前記第2の出力端は、前記電極に結合される、第2の整合器と、
     前記第2の入力端及び/又は第2の出力端における少なくとも4つの第2のパラメータを検出するように構成される複数の第2のセンサであり、前記少なくとも4つの第2のパラメータは、前記第2のRF信号に関連する、複数の第2のセンサと、
     制御部と、
    を備え、
     前記制御部は、
     (a1)前記少なくとも4つの第1のパラメータを同時に繰り返し取得する工程と、
     (a2)前記少なくとも4つの第2のパラメータを同時に繰り返し取得する工程と、
     (b)第1の制御及び第2の制御をシーケンシャルに繰り返し行う工程と、
    を行うように構成され、
     前記第1の制御は、前記工程(a1)で同時に取得した少なくとも4つの第1のパラメータに基づいて、前記第1のRF生成部における前記第1のRF信号の電力レベルの調整と、前記第1のRF生成部における前記第1のRF信号の周波数の調整と、前記第1の整合器における前記第1の可変素子の調整とをシーケンシャルに行い、
     前記第2の制御は、前記工程(a2)で同時に取得した少なくとも4つの第2のパラメータに基づいて、前記第2のRF生成部における前記第2のRF信号の電力レベルの調整と、前記第2のRF生成部における前記第2のRF信号の周波数の調整と、前記第2の整合器における前記第2の可変素子の調整とをシーケンシャルに行う、プラズマ処理装置。
  2.  第3の出力端を有し、複数の電圧パルスのシーケンスを生成するように構成される電圧パルス生成部であり、前記第3の出力端は、前記電極または前記プラズマ処理チャンバ内の部材に結合される、電圧パルス生成部と、
     前記第3の出力端における少なくとも1つの第3のパラメータを検出するように構成される第3のセンサであり、前記少なくとも1つの第3のパラメータは、前記複数の電圧パルスのシーケンスに関連する、第3のセンサと、
    をさらに備え、
     前記制御部は、
     (a3)前記少なくとも1つの第3のパラメータを繰り返し取得する工程を行うように構成され、
     前記工程(b)は、前記第1の制御、前記第2の制御及び第3の制御をシーケンシャルに繰り返し行い、
     前記第3の制御は、前記工程(a3)で取得した前記少なくとも1つの第3のパラメータに基づいて、前記電圧パルス生成部における前記複数の電圧パルスのシーケンスの調整を行う、請求項1に記載のプラズマ処理装置。
  3.  電源と、
     前記電源に結合される電流制御部と、
     前記電流制御部に結合され、前記プラズマ処理チャンバを囲むように配置される少なくとも1つの電磁石を含む電磁石ユニットと、
     前記電流制御部と前記電磁石ユニットとの間、及び/又は、rにおける少なくとも1つの第3のパラメータを検出するように構成される少なくとも1つの第3のセンサと、
    をさらに備え、
     前記制御部は、
     (a3)前記少なくとも1つの第3のパラメータを繰り返し取得する工程を行うように構成され、
     前記工程(b)は、前記第1の制御、前記第2の制御及び第3の制御をシーケンシャルに繰り返し行い、
     前記第3の制御は、前記工程(a3)で取得した前記少なくとも1つの第3のパラメータに基づいて、前記電磁石ユニットに供給される電流の調整を行う、請求項1に記載のプラズマ処理装置。
  4.  第3の周波数を有する第3のRF信号を生成するように構成される第3のRF生成部と、
     第3の可変素子を含み、第3の入力端及び第3の出力端を有する第3の整合器であり、前記第3の入力端は、前記第3のRF生成部に結合され、前記第3の出力端は、前記電極に結合される、第3の整合器と、
     前記第3の入力端及び/又は第3の出力端における少なくとも4つの第3のパラメータを検出するように構成される複数の第3のセンサであり、前記少なくとも4つの第3のパラメータは、前記第3のRF信号に関連する、複数の第3のセンサと、
    をさらに備え、
     前記制御部は、
     (a3)前記少なくとも4つの第3のパラメータを同時に繰り返し取得する工程を行うように構成され、
     前記工程(b)は、前記第1の制御、前記第2の制御及び第3の制御をシーケンシャルに繰り返し行い、
     前記第3の制御は、前記工程(a3)で同時に取得した少なくとも4つの第3のパラメータに基づいて、前記第3のRF生成部における前記第3のRF信号の電力レベルの調整と、前記第3のRF生成部における前記第3のRF信号の周波数の調整と、前記第3の整合器における前記第3の可変素子の調整とをシーケンシャルに行う、請求項1に記載のプラズマ処理装置。
  5.  第4の周波数を有する第4のRF信号を生成するように構成される第4のRF生成部と、
     第4の可変素子を含み、第4の入力端及び第4の出力端を有する第4の整合器であり、前記第4の入力端は、前記第4のRF生成部に結合され、前記第4の出力端は、前記アンテナに結合される、第4の整合器と、
     前記第4の入力端及び/又は第4の出力端における少なくとも4つの第4のパラメータを検出するように構成される複数の第4のセンサであり、前記少なくとも4つの第4のパラメータは、前記第4のRF信号に関連する、複数の第4のセンサと、
    をさらに備え、
     前記制御部は、
     (a4)前記少なくとも4つの第4のパラメータを同時に繰り返し取得する工程を行うように構成され、
     前記工程(b)は、前記第1の制御、前記第2の制御、前記第3の制御及び第4の制御をシーケンシャルに繰り返し行い、
     前記第4の制御は、前記工程(a4)で同時に取得した少なくとも4つの第4のパラメータに基づいて、前記第4のRF生成部における前記第4のRF信号の電力レベルの調整と、前記第4のRF生成部における前記第4のRF信号の周波数の調整と、前記第4の整合器における前記第4の可変素子の調整とをシーケンシャルに行う、請求項4に記載のプラズマ処理装置。
  6.  前記複数の第1のセンサは、前記第1の入力端において前記少なくとも4つの第1のパラメータを検出するように構成され、
     前記少なくとも4つの第1のパラメータの各々は、前記第1のRF信号の進行波に関する電力、電圧及び電流と、前記第1のRF信号の反射波に関する電力、電圧及び電流と、からなるグループから選択される、請求項1から5のいずれか一項に記載のプラズマ処理装置。
  7.  前記複数の第2のセンサは、前記第2の入力端において前記少なくとも4つの第2のパラメータを検出するように構成され、
     前記少なくとも4つの第2のパラメータの各々は、前記第2のRF信号の進行波に関する電力、電圧及び電流と、前記第2のRF信号の反射波に関する電力、電圧及び電流と、からなるグループから選択される、請求項6に記載のプラズマ処理装置。
  8.  前記第1のRF生成部、前記第2のRF生成部及び前記第3のRF生成部に結合され、前記第1のRF信号、前記第2のRF信号及び前記第3のRF信号を含む合成RF信号を生成するように構成されるRF信号合成部と、
     前記合成RF信号を増幅するように構成される増幅器と、
     前記第1の整合器の前記第1の入力端に結合され、前記増幅器によって増幅された合成RF信号に含まれる前記第1の周波数の成分を通過させるように構成される第1のフィルタと、
     前記第1の整合器の前記第2の入力端に結合され、前記増幅器によって増幅された合成RF信号に含まれる前記第2の周波数の成分を通過させるように構成される第2のフィルタと、
     前記第3の整合器の前記第3の入力端に結合され、前記増幅器によって増幅された合成RF信号に含まれる前記第3の周波数の成分を通過させるように構成される第3のフィルタと、
    をさらに備える、請求項4に記載のプラズマ処理装置。
  9.  前記少なくとも4つの第1のパラメータの各々は、前記第1のRF信号の進行波に関する電力、電圧及び電流と、前記第1のRF信号の反射波に関する電力、電圧及び電流と、からなるグループから選択され、
     前記少なくとも4つの第2のパラメータの各々は、前記第2のRF信号の進行波に関する電力、電圧及び電流と、前記第2のRF信号の反射波に関する電力、電圧及び電流と、からなるグループから選択される、請求項1に記載のプラズマ処理装置。
  10.  プラズマ処理装置に結合されるRFシステムであって、
     第1の周波数を有する第1のRF信号を生成するように構成される第1のRF生成部と、
     第1の可変素子を含み、第1の入力端及び第1の出力端を有する第1の整合器であり、前記第1の入力端は、前記第1のRF生成部に結合され、前記第1の出力端は、前記プラズマ処理装置が有するプラズマ処理チャンバに結合される、第1の整合器と、
     前記第1の入力端及び/又は第1の出力端における少なくとも4つの第1のパラメータを検出するように構成される第1のセンサであり、前記少なくとも4つの第1のパラメータは、前記第1のRF信号に関連する、複数の第1のセンサと、
     第2の周波数を有する含む第2のRF信号を生成するように構成される第2のRF生成部と、
     第2の可変素子を含み、第2の入力端及び第2の出力端を有する第2の整合器であり、前記第2の入力端は、前記第2のRF生成部に結合され、前記第2の出力端は、前記プラズマ処理チャンバに結合される、第2の整合器と、
     前記第2の入力端及び/又は第2の出力端における少なくとも4つの第2のパラメータを検出するように構成される第2のセンサであり、前記少なくとも4つの第2のパラメータは、前記第2のRF信号に関連する、複数の第2のセンサと、
     制御部と、
    を備え、
     前記制御部は、
     (a1)前記少なくとも4つの第1のパラメータを同時に繰り返し取得する工程と、
     (a2)前記少なくとも4つの第2のパラメータを同時に繰り返し取得する工程と、
     (b)第1の制御及び第2の制御をシーケンシャルに繰り返し行う工程と、を行うように構成され、
     前記第1の制御は、前記工程(a1)で同時に取得した少なくとも4つの第1のパラメータに基づいて、前記第1のRF生成部における前記第1のRF信号の電力レベルの調整と、前記第1のRF生成部における前記第1のRF信号の周波数の調整と、前記第1の整合器における前記第1の可変素子の調整とをシーケンシャルに行い、
     前記第2の制御は、前記工程(a2)で同時に取得した少なくとも4つの第2のパラメータに基づいて、前記第2のRF生成部における前記第2のRF信号の電力レベルの調整と、前記第2のRF生成部における前記第2のRF信号の周波数の調整と、前記第2の整合器における前記第2の可変素子の調整とをシーケンシャルに行う、RFシステム。
  11.  第3の周波数を有する第3のRF信号を生成するように構成される第3のRF生成部と、
     第3の可変素子を含み、第3の入力端及び第3の出力端を有する第3の整合器であり、前記第3の入力端は、前記第3のRF生成部に結合され、前記第3の出力端は、前記プラズマ処理チャンバに結合される、第3の整合器と、
     前記第3の入力端及び/又は第3の出力端における少なくとも4つの第3のパラメータを検出するように構成される複数の第3のセンサであり、前記少なくとも4つの第3のパラメータは、前記第3のRF信号に関連する、複数の第3のセンサと、
    をさらに備え、
     前記制御部は、
     (a3)前記少なくとも4つの第3のパラメータを同時に繰り返し取得する工程を行うように構成され、
     前記工程(b)は、前記第1の制御、前記第2の制御及び第3の制御をシーケンシャルに繰り返し行い、
     前記第3の制御は、前記工程(a3)で同時に取得した少なくとも4つの第3のパラメータに基づいて、前記第3のRF生成部における前記第3のRF信号の電力レベルの調整と、前記第3のRF生成部における前記第3のRF信号の周波数の調整と、前記第3の整合器における前記第3の可変素子の調整とをシーケンシャルに行う、請求項10に記載のRFシステム。
  12.  前記第1のRF生成部、前記第2のRF生成部及び前記第3のRF生成部に結合され、前記第1のRF信号、前記第2のRF信号及び前記第3のRF信号を含む合成RF信号を生成するように構成されるRF信号合成部と、
     前記合成RF信号を増幅するように構成される増幅器と、
     前記第1の整合器の前記第1の入力端に結合され、前記増幅器によって増幅された合成RF信号に含まれる前記第1の周波数の成分を通過させるように構成される第1のフィルタと、
     前記第2の整合器の前記第2の入力端に接続され、前記増幅器によって増幅された合成RF信号に含まれる前記第2の周波数の成分を通過させるように構成される第2のフィルタと、
     前記第3の整合器の前記第3の入力端に結合され、前記増幅器によって増幅された合成RF信号に含まれる前記第3の周波数の成分を通過させるように構成される第3のフィルタと、
    をさらに備える、請求項11に記載のRFシステム。
  13.  前記少なくとも4つの第1のパラメータの各々は、前記第1のRF信号の進行波に関する電力、電圧及び電流と、前記第1のRF信号の反射波に関する電力、電圧及び電流と、からなるグループから選択され、
     前記少なくとも4つの第2のパラメータの各々は、前記第2のRF信号の進行波に関する電力、電圧及び電流と、前記第2のRF信号の反射波に関する電力、電圧及び電流と、からなるグループから選択される、請求項10から12のいずれか一項に記載のRFシステム。
  14.  プラズマ処理装置に結合されるRFシステムであって、
     第1の周波数を有する第1のRF信号を生成するように構成される第1のRF生成部と、
     第1の可変素子を含み、第1の入力端及び第1の出力端を有する第1の整合器であり、前記第1の入力端は、前記第1のRF生成部に結合され、前記第1の出力端は、前記プラズマ処理装置が有するプラズマ処理チャンバに結合される、第1の整合器と、
     前記第1の入力端及び/又は第1の出力端における少なくとも2つの第1のパラメータを検出するように構成される少なくとも1つの第1のセンサであり、前記少なくとも2つの第1のパラメータは、前記第1のRF信号に関連する、少なくとも1つの第1のセンサと、
     第2の周波数を有する第2のRF信号を生成するように構成される第2のRF生成部と、
     第2の可変素子を含み、第2の入力端及び第2の出力端を有する第2の整合器であり、前記第2の入力端は、前記第2のRF生成部に結合され、前記第2の出力端は、前記プラズマ処理チャンバに結合される、第2の整合器と、
     前記第2の入力端及び/又は第2の出力端における少なくとも2つの第2のパラメータを検出するように構成される少なくとも1つの第2のセンサであり、前記少なくとも2つの第2のパラメータは、前記第2のRF信号に関連する、少なくとも1つの第2のセンサと、
     制御部と、
    を備え、
     前記制御部は、
     (a1)前記少なくとも2つの第1のパラメータを同時に繰り返し取得する工程と、
     (a2)前記少なくとも2つの第2のパラメータを同時に繰り返し取得する工程と、
     (b)第1の制御及び第2の制御をシーケンシャルに繰り返し行う工程と、を行うように構成され、
     前記第1の制御は、前記工程(a1)で同時に取得した少なくとも2つの第1のパラメータに基づいて、前記第1のRF生成部における前記第1のRF信号の電力レベルの調整と、前記第1のRF生成部における前記第1のRF信号の周波数の調整と、前記第1の整合器における前記第1の可変素子の調整とをシーケンシャルに行い、
     前記第2の制御は、前記工程(a2)で同時に取得した少なくとも2つの第2のパラメータに基づいて、前記第2のRF生成部における前記第2のRF信号の電力レベルの調整と、前記第2のRF生成部における前記第2のRF信号の周波数の調整と、前記第2の整合器における前記第2の可変素子の調整とをシーケンシャルに行う、
    RFシステム。
  15.  第3の周波数を有する第3のRF信号を生成するように構成される第3のRF生成部と、
     第3の可変素子を含み、第3の入力端及び第3の出力端を有する第3の整合器であり、前記第3の入力端は、前記第3のRF生成部に結合され、前記第3の出力端は、前記プラズマ処理チャンバに結合される、第3の整合器と、
     前記第3の入力端及び/又は第3の出力端における少なくとも2つの第3のパラメータを検出するように構成される少なくとも1つの第3のセンサであり、前記少なくとも2つの第3のパラメータは、前記第3のRF信号に関連する、少なくとも1つの第3のセンサと、
    をさらに備え、
     前記制御部は、
     (a3)前記少なくとも2つの第3のパラメータを同時に繰り返し取得する工程を行うように構成され、
     前記工程(b)は、前記第1の制御、前記第2の制御及び第3の制御をシーケンシャルに繰り返し行い、
     前記第3の制御は、前記工程(a3)で同時に取得した少なくとも2つの第3のパラメータに基づいて、前記第3のRF生成部における前記第3のRF信号の電力レベルの調整と、前記第3のRF生成部における前記第3のRF信号の周波数の調整と、前記第3の整合器における前記第3の可変素子の調整とをシーケンシャルに行う、請求項14に記載のRFシステム。
  16.  前記第1のRF生成部、前記第2のRF生成部および前記第3のRF生成部に結合され、前記第1のRF信号、前記第2のRF信号および前記第3のRF信号を含む合成RF信号を生成するように構成されるRF信号合成部と、
     前記合成RF信号を増幅するように構成される増幅器と、
     前記第1の整合器の前記第1の入力端に結合され、前記増幅器によって増幅された合成RF信号に含まれる前記第1の周波数の成分を通過させるように構成される第1のフィルタと、
     前記第2の整合器の前記第2の入力端に結合され、前記増幅器によって増幅された合成RF信号に含まれる前記第2の周波数の成分を通過させるように構成される第2のフィルタと、
     前記第3の整合器の前記第3の入力端に結合され、前記増幅器によって増幅された合成RF信号に含まれる前記第3の周波数の成分を通過させるように構成される第3のフィルタと、
    をさらに備える、請求項15に記載のRFシステム。
  17.  前記少なくとも2つの第1のパラメータの各々は、前記第1のRF信号の進行波に関する電力、電圧及び電流と、前記第1のRF信号の反射波に関する電力、電圧及び電流と、からなるグループから選択され、
     前記少なくとも2つの第2のパラメータの各々は、前記第2のRF信号の進行波に関する電力、電圧及び電流と、前記第2のRF信号の反射波に関する電力、電圧及び電流と、からなるグループから選択される、請求項14から16のいずれか一項に記載のRFシステム。
  18.  第1の周波数の信号を含む第1のRF信号を生成するように構成される第1のRF生成部と、
     第1の可変素子を含み、前記第1のRF生成部によって生成され、プラズマ処理装置が有する部材に供給される前記第1のRF信号が伝搬する信号ラインに設けられた第1の整合器と、
     前記第1のRF生成部と前記第1の整合器との間の信号ラインであって、前記第1のRF信号が伝搬する信号ラインにおける前記第1のRF信号に関連する複数の第1のパラメータを検出するように構成される第1のセンサと、
     前記第1の周波数とは異なる第2の周波数の信号を含む第2のRF信号を生成するように構成される第2のRF生成部と、
     第2の可変素子を含み、前記第2のRF生成部によって生成され、前記プラズマ処理装置が有する部材に供給される前記第2のRF信号が伝搬する信号ラインに設けられた第2の整合器と、
     前記第2のRF生成部と前記第2の整合器との間の信号ラインであって、前記第2のRF信号が伝搬する信号ラインにおける前記第2のRF信号に関連する複数の第2のパラメータを検出するように構成される第2のセンサと、
     制御部と
    を備えるプラズマ処理装置によって実行されるRF制御方法であって、
     (c)前記第1のセンサおよび前記第2のセンサによって検出された前記第1のパラメータおよび前記第2のパラメータを取得する工程と、
     (d)前記工程(c)において取得された前記第1のパラメータに基づいて、前記第1のRF信号における電力の大きさおよび前記第1の周波数の制御と、前記第1の可変素子の制御とを行う工程と、
     (e)前記工程(c)において取得された前記第2のパラメータに基づいて、前記第2のRF信号における電力の大きさおよび前記第2の周波数の制御と、前記第2の可変素子の制御とを行う工程とを含み、
     前記工程(c)における前記第1のパラメータおよび前記第2のパラメータの検出と、前記工程(d)および前記工程(e)とは異なるタイミングで実行されるRF制御方法。
PCT/JP2023/028839 2022-08-22 2023-08-08 プラズマ処理装置、rfシステム、およびrf制御方法 WO2024043065A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-131591 2022-08-22
JP2022131591 2022-08-22

Publications (1)

Publication Number Publication Date
WO2024043065A1 true WO2024043065A1 (ja) 2024-02-29

Family

ID=90013099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/028839 WO2024043065A1 (ja) 2022-08-22 2023-08-08 プラズマ処理装置、rfシステム、およびrf制御方法

Country Status (1)

Country Link
WO (1) WO2024043065A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06112166A (ja) * 1992-09-08 1994-04-22 Applied Materials Inc 電磁rf結合を用いたプラズマ反応装置及びその方法
JP2005503648A (ja) * 2001-09-14 2005-02-03 東京エレクトロン株式会社 プラズマリアクタ・コイルマグネット・システム
JP2020517154A (ja) * 2017-04-07 2020-06-11 ラム リサーチ コーポレーションLam Research Corporation 周波数調整を用いたデュアルレベルパルス化のためのrf整合回路網内の補助回路
JP2020522837A (ja) * 2017-05-10 2020-07-30 エムケーエス インストゥルメンツ,インコーポレイテッド パルス化された双方向無線周波数ソース/負荷

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06112166A (ja) * 1992-09-08 1994-04-22 Applied Materials Inc 電磁rf結合を用いたプラズマ反応装置及びその方法
JP2005503648A (ja) * 2001-09-14 2005-02-03 東京エレクトロン株式会社 プラズマリアクタ・コイルマグネット・システム
JP2020517154A (ja) * 2017-04-07 2020-06-11 ラム リサーチ コーポレーションLam Research Corporation 周波数調整を用いたデュアルレベルパルス化のためのrf整合回路網内の補助回路
JP2020522837A (ja) * 2017-05-10 2020-07-30 エムケーエス インストゥルメンツ,インコーポレイテッド パルス化された双方向無線周波数ソース/負荷

Similar Documents

Publication Publication Date Title
JP7455174B2 (ja) Rf発生器及び方法
KR20210032420A (ko) 플라즈마 공정을 위한 제어 시스템 및 방법
JP7479256B2 (ja) プラズマ処理装置
US20230369020A1 (en) Plasma processing apparatus and method for controlling source frequency of source radio-frequency power
WO2024043065A1 (ja) プラズマ処理装置、rfシステム、およびrf制御方法
WO2024085017A1 (ja) プラズマ処理装置及びプラズマ処理方法
WO2024024681A1 (ja) プラズマ処理装置及びソース高周波電力のソース周波数を制御する方法
WO2024062804A1 (ja) プラズマ処理装置及びプラズマ処理方法
WO2023176558A1 (ja) プラズマ処理方法及びプラズマ処理装置
WO2024106256A1 (ja) プラズマ処理装置及びプラズマ処理方法
US20240006153A1 (en) Plasma processing system and plasma processing method
WO2024014398A1 (ja) プラズマ処理装置及びプラズマ処理方法
WO2024106257A1 (ja) プラズマ処理装置及びプラズマ処理方法
WO2023074816A1 (ja) プラズマ処理装置、給電システム、制御方法、プログラム、及び記憶媒体
WO2023127655A1 (ja) プラズマ処理装置、電源システム、制御方法、プログラム、及び記憶媒体
WO2024005035A1 (ja) プラズマ処理方法及びプラズマ処理装置
WO2024070562A1 (ja) プラズマ処理装置
WO2023223866A1 (ja) プラズマ処理装置及びプラズマ処理方法
WO2023090256A1 (ja) プラズマ処理装置、電源システム、制御方法、プログラム、及び記憶媒体
WO2023008448A1 (ja) プラズマ処理システム及びプラズマ処理方法
WO2023132300A1 (ja) プラズマ処理装置、電源システム、制御方法、プログラム、及び記憶媒体
WO2023176555A1 (ja) プラズマ処理装置及びプラズマ処理方法
WO2024070843A1 (ja) 基板処理方法及び基板処理装置
WO2024004766A1 (ja) プラズマ処理装置及びプラズマ処理方法
WO2024005004A1 (ja) 調整方法及びプラズマ処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23857179

Country of ref document: EP

Kind code of ref document: A1