WO2024042758A1 - Battery management device and battery management method - Google Patents

Battery management device and battery management method Download PDF

Info

Publication number
WO2024042758A1
WO2024042758A1 PCT/JP2023/011628 JP2023011628W WO2024042758A1 WO 2024042758 A1 WO2024042758 A1 WO 2024042758A1 JP 2023011628 W JP2023011628 W JP 2023011628W WO 2024042758 A1 WO2024042758 A1 WO 2024042758A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
deterioration
period
calculation unit
state
Prior art date
Application number
PCT/JP2023/011628
Other languages
French (fr)
Japanese (ja)
Inventor
亨 河野
隼 角田
穣 植田
アキラ 藤本
博也 藤本
絵里 磯崎
慧土 秋月
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Publication of WO2024042758A1 publication Critical patent/WO2024042758A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a technology for managing the state of a battery.
  • SOH State of Health
  • internal resistance As a technique for diagnosing battery deterioration, for example, a technique for estimating SOH (State of Health) and internal resistance has been developed. Furthermore, techniques have been developed to shorten the time required for diagnosis. For example, there is a method of estimating the state of deterioration using the change in battery voltage over time when the battery is in a resting state.
  • Patent Document 1 describes ⁇ Easier determination of deterioration of zinc batteries.
  • '' ⁇ A method for determining deterioration of a zinc battery includes an acquisition step of acquiring a voltage transition of a fully charged zinc battery in a resting state, and a step of acquiring a voltage transition of a fully charged zinc battery in a resting state, and determining the degree of voltage drop of the zinc battery based on the voltage transition.
  • '' and a determination step of determining deterioration of the zinc battery based on the degree of voltage drop. (see summary).
  • the remaining life of a battery is one of the important diagnostic items.
  • One example of a method for diagnosing the remaining life is to estimate the rate at which the battery has deteriorated (deterioration mode) from the start of operation to the present time, and further estimate the remaining life based on the estimated deterioration rate. It would also be desirable if the time required to diagnose the remaining lifespan could be shortened as much as possible.
  • Patent Document 1 although a technique for diagnosing a deterioration state in a short period of time has been studied, a technique for diagnosing the remaining life in a short period of time has not been studied. Furthermore, in order to diagnose the remaining life, it is necessary to estimate the deterioration rate, for example, but a technique for estimating this in a short time has not been studied.
  • the present invention has been made in view of the above-mentioned problems, and aims to provide a technique that can diagnose the deterioration rate of a battery in a short time.
  • the battery management device specifies a first period in a rest period and a second period thereafter, and a first change in voltage in the first period and a second change in voltage in the second period. Estimate the rate of battery deterioration depending on the battery temperature based on the ratio between minutes.
  • the deterioration rate of a battery can be diagnosed in a short time.
  • Other problems, configurations, effects, etc. of the present invention will become clear from the description of the embodiments below.
  • FIG. 1 is a schematic diagram showing a configuration example of a storage battery system. It is an equivalent circuit diagram of a storage battery. It is a graph showing an example of a change in voltage output by a battery over time during a rest period.
  • FIG. 3 is a diagram showing storage deterioration of a battery.
  • FIG. 3 is a diagram illustrating the relationship between battery temperature and deterioration rate.
  • FIG. 4 is a diagram showing the relationship between each value explained in FIG. 3 and SOH.
  • 2 is a flowchart illustrating a procedure in which the battery management device estimates a battery deterioration mode.
  • FIG. 3 is a diagram showing cycle deterioration of a battery.
  • FIG. 3 is a diagram illustrating the relationship between battery temperature and deterioration rate.
  • FIG. 1 is a schematic diagram showing a configuration example of a storage battery system. It is an equivalent circuit diagram of a storage battery. It is a graph showing an example of a change in voltage output by a battery over time
  • FIG. 4 is a diagram showing the relationship between each value explained in FIG. 3 and SOH. 2 is a flowchart illustrating a procedure in which the battery management device estimates a battery deterioration mode.
  • FIG. 3 is a configuration diagram of a battery system 1 according to a third embodiment. 3 is a diagram showing an example of operation of the battery management device 13.
  • FIG. 7 is a diagram illustrating another operational example of the battery management device 13. FIG. This is an example of the results of a trial calculation of the economic value of batteries.
  • FIG. 1 is a schematic diagram showing a configuration example of a storage battery system.
  • a storage battery system includes a battery system including one or more storage batteries, and a battery management device that manages the battery system.
  • the battery is a storage battery.
  • the battery system includes a battery module.
  • a battery module is made up of one or more submodules.
  • the submodule includes a battery cell and a sensor group.
  • the sensor group includes, for example, a voltage sensor that measures the output voltage of the battery cell, a temperature sensor that measures the temperature of the battery cell, and a current sensor that measures the output current of the battery cell.
  • the temperature sensor can be constituted by a thermocouple, for example.
  • the detection unit acquires measurement results from the sensor and transmits them to the battery management module (BMU).
  • the BMU outputs measurement data describing the measurement results to the battery management device.
  • the battery management device includes a detection unit that acquires measurement data, a calculation unit that manages the state of the battery, a storage unit that stores data, and the like.
  • the calculation unit estimates the state of the battery using the measurement data acquired from the BMU. For example, as explained below, the remaining life of the battery (or the rate of deterioration used to estimate the remaining life) can be estimated.
  • FIG. 2 is an equivalent circuit diagram of the storage battery.
  • the equivalent circuit of a storage battery can be described using internal resistance, negative equivalent circuit, positive equivalent circuit, diffused resistance, and the like.
  • the negative equivalent circuit and the positive equivalent circuit can be described as RC equivalent circuits having time constants.
  • the time constant of the negative electrode is smaller than that of the positive electrode. In other words, the negative electrode responds faster.
  • the diffused resistance component occurs at a later time than the positive electrode.
  • FIG. 3 is a graph showing an example of a change over time in the voltage output by the battery during the rest period.
  • the upper part of FIG. 3 shows the change in battery voltage over time during the rest period after the discharging operation.
  • the lower part of FIG. 3 shows the change in battery voltage over time during the rest period after the charging operation.
  • ⁇ Va is a change over time mainly caused by the internal resistance and the response of the negative electrode, which responds relatively quickly.
  • ⁇ Vb is a change over time mainly caused by the response of the positive electrode and the diffused resistance, which respond relatively slowly.
  • a period in which ⁇ Va occurs is defined as a first period (time length is ⁇ t1), and a period in which ⁇ Vb occurs is defined as a second period (time length is ⁇ t2).
  • the deterioration mode (deterioration speed) of the battery may affect the response speed of the battery components.
  • ⁇ Va/ ⁇ t1, ⁇ Vb/ ⁇ t2, the ratio between ⁇ Va and ⁇ Vb, etc. in FIG. 3 change. That is, since the battery deterioration mode and these values have a correlation, it is considered that the battery deterioration mode can be estimated based on these values.
  • the battery management device according to the present invention utilizes this fact to estimate the battery deterioration mode. The specific method will be explained below.
  • FIG. 4 is a diagram showing storage deterioration of a battery. Deterioration continues even when batteries are stored without being used. As a result of verification in the present invention, it was found that when a battery is stored at a certain SOC (State of Charge) and a certain temperature, the battery deteriorates depending on the SOC and temperature.
  • SOC State of Charge
  • the left side of FIG. 4 shows the progress of deterioration when a battery with an SOC of C1% (for example, less than 80%) is stored at battery temperatures T1, T2, and T3.
  • deterioration progresses as the number of days of storage increases, and the higher the temperature, the faster the deterioration rate.
  • the right side of FIG. 4 shows the progress of deterioration when a battery with an SOC of C2% (for example, 80% or higher) is stored at battery temperatures T1, T2, and T3.
  • a battery with an SOC of C2% for example, 80% or higher
  • the deterioration rate is particularly fast at temperature T3. That is, it is thought that the deterioration rate (deterioration mode) is correlated with the battery temperature and also with the SOC.
  • FIG. 5 is a diagram illustrating the relationship between battery temperature and deterioration rate.
  • the deterioration rate the downward slope to the right in FIG. 4, that is, the rate of decrease in SOH with respect to the number of days elapsed
  • This slope is relatively small (slope A) when stored with a small SOC, but relatively large (slope B) when stored with a large SOC. This can also be seen from the large slope of the temperature T3 on the right side of FIG.
  • the deterioration rate is slope A or slope B, with a certain temperature as the boundary. Further, the deterioration rate differs depending on whether the SOC is relatively small (eg, C1%) or relatively large (eg, C2%). In other words, it can be seen that it is possible to estimate at which deterioration rate the deterioration occurred based on a certain temperature threshold value and SOC threshold value.
  • FIG. 6 is a diagram showing the relationship between each value explained in FIG. 3 and SOH.
  • slope B in FIG. 5 which corresponds to the case where the SOC is high and the battery temperature is also high
  • the SOH decreases more greatly even at the same time change rate. That is, it is considered that the graph passes through the area surrounded by the dotted line in the middle part of FIG.
  • the ratio of dVdt1 to dVdt2 is plotted as shown in the lower part of FIG. 6, if it is above the upper limit threshold of the graph, it can be estimated that the deterioration has progressed in a mode where the deterioration rate is fast. On the other hand, if the plot is below the upper threshold, it can be estimated that the deterioration has progressed in a mode where the deterioration rate is slow. In this embodiment, the battery deterioration mode is estimated based on this principle. If it is below the lower limit threshold, it may be estimated that the deterioration rate is even slower.
  • FIG. 7 is a flowchart illustrating the procedure by which the battery management device estimates the battery deterioration mode. This flowchart can be executed by a calculation unit included in the battery management device. This flowchart is for estimating in what kind of deterioration mode a battery in a stored state has deteriorated, based on the principle explained above. Each step in FIG. 7 will be explained below.
  • the calculation unit obtains ⁇ Va, ⁇ t1, ⁇ Vb, and ⁇ t2 described in FIG. 3 from, for example, the BMU.
  • the calculation unit calculates the ratio Ratio of dVdt1 to dVdt2. If Ratio exceeds the threshold value, the battery deterioration rate slope is estimated to be B (a deterioration mode in which the deterioration rate is relatively fast). If Ratio is less than or equal to the threshold value, the battery deterioration rate slope is estimated to be A (a deterioration mode in which the deterioration rate is relatively slow).
  • the calculation unit estimates the temperature and SOC at which the battery was stored. First, based on the estimated deterioration mode, it is possible to estimate whether the slope of the deterioration rate with respect to temperature change is, for example, slope A or slope B in FIG. 5 (in other words, whether the SOC is C1 or C2). This corresponds to identifying whether the battery has deteriorated in the left or right deterioration mode shown in FIG.
  • the calculation unit estimates the activation energy Ea of the battery.
  • Ea the activation energy
  • the calculation unit estimates the activation energy Ea of the battery.
  • the relationship between SOH/number of elapsed days (or number of cycles)/temperature as shown in FIG. 4 can be estimated.
  • the activation energy can be calculated.
  • Activation energy and deterioration mode generally have a 1:1 correspondence, so the relationship between a deterioration mode and the activation energy for that deterioration mode is described in advance in a data table, etc., and it is possible to correspond to the estimated deterioration mode.
  • the activation energy for the target may be obtained from the data table.
  • the calculation unit acquires the number of times the battery has been charged or discharged from the BMU.
  • the number of times of charging and discharging is estimated by obtaining the amount of decrease in full charge capacity due to one charge or discharge from the BMU and comparing this with the current full charge capacity (i.e., current SOH).
  • the calculation unit further estimates the SOH using any known method.
  • the SOH can be estimated by referring to data describing any one of the correspondence between dVdt1 and SOH, the correspondence between dVdt2 and SOH, a combination thereof, and the like.
  • the calculation unit uses the estimated SOH and the number of times of charging and discharging to estimate the temperature T1 at which the battery has been kept in the storage state. For example, by applying the current SOH and the number of charge/discharge cycles (or converted to the number of elapsed days) to the relationship shown in FIG. 4, it is possible to estimate the temperature at which the battery has been placed. If there is no location where the data points in FIG. 4 match the acquired SOH/days, the data points in FIG. 4 may be supplemented.
  • the calculation unit calculates the deterioration acceleration of the battery by applying the estimated temperature T1 and activation energy to the Arrhenius equation.
  • the reference temperature T2 is, for example, 298K.
  • the battery management device estimates the deterioration rate depending on the battery temperature based on the first change and the second change in the battery voltage during the rest period. Since the first change amount and the second change amount appear in a relatively short time after the charging/discharging operation ends, the deterioration rate can be estimated within a short time.
  • FIG. 8 is a diagram showing cycle deterioration of a battery.
  • T1 to T3 are the same as in FIG.
  • storage deterioration of the battery has been described, but the battery also deteriorates with each charge/discharge cycle.
  • the higher the temperature the faster the rate of deterioration (the amount of decrease in SOH per charge/discharge cycle).
  • the graph of temperature T1 in FIG. 8 represents this.
  • Embodiment 2 of the present invention a method for estimating the deterioration rate in such a case will be described.
  • the configurations of the battery system and battery management device are the same as in the first embodiment.
  • FIG. 9 is a diagram illustrating the relationship between battery temperature and deterioration rate.
  • the upper part of FIG. 9 shows the upper limit of the C rate that the battery should comply with.
  • an upper limit C rate that must be observed during charging and discharging operations of the battery is defined for each battery temperature.
  • the lower part of FIG. 9 shows the relationship between battery temperature and deterioration rate.
  • the deterioration rate is the rate of decrease in SOH with respect to the increase in the number of cycles.
  • the slope of the deterioration rate with respect to temperature change is C. If the battery temperature is below 25° C., the slope increases to D2 if the C rate upper limit is not observed. If the deviation from the C rate upper limit becomes even greater, the slope increases to D1.
  • FIG. 10 is a diagram showing the relationship between each value explained in FIG. 3 and SOH. Similar to FIG. 6, regions where the slope of the deterioration rate is large are indicated by dotted lines. For example, as explained in FIG. 9, when the battery is operated in a low temperature environment of 25° C. or lower, the deterioration rate increases if the C rate upper limit is not observed. This is shown by the dotted line area in FIG. In the lower part of FIG. 10, the region where dVdt2/dVdt1 is larger than the threshold value includes regions corresponding to each of the two deterioration modes (inclinations D1 and D2) explained in FIG.
  • the same upper limit threshold (and lower limit threshold, if necessary) as in the lower part of FIG. 6 was set in a coordinate space in which the vertical axis is dVdt2/dVdt1 and the horizontal axis is dVdt2.
  • the vertical axis may be set to dVdt1 as in the lower part of FIG.
  • the vertical axis may be in any format. It's just a difference.
  • FIG. 11 is a flowchart illustrating the procedure by which the battery management device estimates the battery deterioration mode.
  • a step is added to select whether the slope of the deterioration rate when Ratio exceeds the threshold is D1 or D2 (the slope of the deterioration rate explained in FIG. 9).
  • the calculation unit determines whether the deterioration rate is D1 or D2 according to the distance between Ratio and the threshold. For example, if the distance is relatively large, it is set as D1, and if it is relatively small, it is set as D2. The rest is the same as in the first embodiment.
  • the battery management device estimates a deterioration mode based on the degree of deviation between dVdt2/dVdt1 and a threshold value for a battery whose deterioration rate increases if the C rate upper limit is not observed in a low-temperature environment.
  • the deterioration rate of a battery having such deterioration characteristics in a low-temperature environment can be estimated within a short time as in the first embodiment.
  • FIG. 12 is a configuration diagram of a battery system 1 according to Embodiment 3 of the present invention.
  • the battery system 1, battery controller (BMU) 12, and battery management device 13 are those illustrated in FIG.
  • the battery system 1 includes a host controller 11, a battery controller (BMU) 12, and a battery management device 13.
  • the host controller 11 outputs operation instructions for the battery via the battery controller 12.
  • the battery controller 12 controls the battery modules according to the instructions.
  • the battery management device 13 includes a detection unit 131 that acquires measurement data from the battery controller 12, a calculation unit 132 that diagnoses the battery using the methods described in the first and second embodiments, a storage unit 133 that stores data used by the calculation unit 132, Equipped with
  • FIG. 13 is a diagram showing an example of operation of the battery management device 13.
  • the detection unit 131 acquires measured values such as battery voltage, battery temperature, battery current, C rate, and SOC of each battery module (or battery cell) or their history from the BMU, and records them in the storage unit 133.
  • the calculation unit 132 estimates the deterioration mode and deterioration acceleration of the battery using the methods described in the first and second embodiments. Thereby, it is possible to monitor whether the deterioration mode of each battery can be maintained appropriately.
  • a power transmission plan is created in advance and sent to the power company the day before the power transmission, and immediately before power transmission starts on the day the power transmission is carried out. It is conceivable to diagnose battery capacity within a short period of time. In such a case, the diagnostic method according to the present invention is useful in that the diagnosis can be completed in a short time. Furthermore, by accumulating the battery temperature history in the storage unit 133, there is no need to estimate the experienced temperature T1 in FIG. 7 or FIG. 11 (it is sufficient to use the average value of the temperature history as T1). Useful.
  • FIG. 14 is a diagram showing another example of operation of the battery management device 13.
  • the battery management device 13 is connected to the charger via a cloud system or the like.
  • a charger is a device that charges a battery mounted on a vehicle.
  • the detection unit 131 acquires measurement data such as battery voltage and battery temperature of a battery mounted on the vehicle via a charger (or via a measuring device connected to the vehicle).
  • the calculation unit 132 diagnoses the battery's deterioration mode, deterioration acceleration, remaining life, etc. using the measured data. This makes it possible to estimate the economic value of the vehicle or the battery installed in the vehicle.
  • FIG. 15 is an example of the results of a trial calculation of the economic value of a battery.
  • the calculation unit 132 calculates the SOH/deterioration acceleration/economic value ranking based on these for each battery according to the procedure described in the above embodiments, and outputs the results.
  • the rank is, for example, a comprehensive evaluation based on a combination of SOH and deterioration acceleration.
  • the output format may be data that describes these, or may be output via an output medium such as a display.
  • the calculation unit 132 For batteries with a low evaluation (or with a high rate of deterioration), the calculation unit 132 imposes restrictions on the charging current and the state of charge after the charging operation, so as not to accelerate the deterioration even if charging is performed. good. It is desirable to diagnose the deterioration rate and the like during a period when no charging/discharging operation is performed. The same applies to any of FIGS. 13 to 14.
  • the present invention is not limited to the embodiments described above, and includes various modifications.
  • the above-described embodiments have been described in detail to explain the present invention in an easy-to-understand manner, and the present invention is not necessarily limited to having all the configurations described.
  • the deterioration rate of the battery is estimated using the ratio between dVdt1 ( ⁇ Va) and dVdt2 ( ⁇ Vb).
  • a similar rate of change over time after ⁇ Vb may be further used to perform a more detailed diagnosis.
  • the start time of ⁇ Vb is after the start time of ⁇ Va
  • the end time of ⁇ Vb is after the end time of ⁇ Va.
  • ⁇ t1 (first period) and ⁇ t2 (second period) may partially overlap.
  • the detection unit 131 and the calculation unit 132 can be configured by hardware such as a circuit device implementing the function, or software implementing the function can be configured by a calculation unit such as a CPU (Central Processing Unit). It can also be configured by the device executing it.
  • hardware such as a circuit device implementing the function
  • software implementing the function can be configured by a calculation unit such as a CPU (Central Processing Unit). It can also be configured by the device executing it.
  • CPU Central Processing Unit

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

The purpose of the present invention is to provide a technology capable of diagnosing the deterioration speed of a battery in a short time. A battery management device according to the present invention specifies a first period during an idle period and a second period after the first period, and estimates the deterioration speed of a battery dependent on the battery temperature, on the basis of a ratio between a first change portion of a voltage during the first period and a second change portion of the voltage during the second period (see fig. 5).

Description

電池管理装置、電池管理方法Battery management device, battery management method
 本発明は、電池の状態を管理する技術に関する。 The present invention relates to a technology for managing the state of a battery.
 電池の劣化を診断する技術として、例えばSOH(State Of Health:劣化状態)や内部抵抗を推定する技術が開発されている。さらには、診断のために要する時間を短縮する技術も開発されている。例えば電池の休止状態における電池電圧の経時変化を用いて、劣化状態を推定する手法などがある。 As a technique for diagnosing battery deterioration, for example, a technique for estimating SOH (State of Health) and internal resistance has been developed. Furthermore, techniques have been developed to shorten the time required for diagnosis. For example, there is a method of estimating the state of deterioration using the change in battery voltage over time when the battery is in a resting state.
 下記特許文献1は、『より簡単に亜鉛電池の劣化を判定すること。』を課題として、『一実施形態に係る亜鉛電池の劣化の判定方法は、満充電された亜鉛電池の休止状態における電圧推移を取得する取得ステップと、電圧推移に基づいて亜鉛電池の電圧低下度を算出する算出ステップと、電圧低下度に基づいて亜鉛電池の劣化を判定する判定ステップとを含む。』という技術を記載している(要約参照)。 Patent Document 1 below describes ``Easier determination of deterioration of zinc batteries.'' ``A method for determining deterioration of a zinc battery according to an embodiment includes an acquisition step of acquiring a voltage transition of a fully charged zinc battery in a resting state, and a step of acquiring a voltage transition of a fully charged zinc battery in a resting state, and determining the degree of voltage drop of the zinc battery based on the voltage transition.'' and a determination step of determining deterioration of the zinc battery based on the degree of voltage drop. ” (see summary).
特開2020-003218号公報JP2020-003218A
 電池の余寿命は、重要な診断項目の1つである。余寿命を診断する手法の1例として、電池が運用開始から現時点までにおいて劣化した速度(劣化モード)を推定し、その推定した劣化速度に基づき、さらに余寿命を推定することが考えられる。余寿命を診断するために要する時間も、できる限り短縮することができれば望ましい。しかし特許文献1などの従来技術においては、劣化状態などを短時間で診断する技術については検討されているが、余寿命を短時間で診断する技術については検討されていない。また、余寿命を診断するためには例えば劣化速度を推定する必要があるが、これを短時間で推定する技術についても検討されていない。 The remaining life of a battery is one of the important diagnostic items. One example of a method for diagnosing the remaining life is to estimate the rate at which the battery has deteriorated (deterioration mode) from the start of operation to the present time, and further estimate the remaining life based on the estimated deterioration rate. It would also be desirable if the time required to diagnose the remaining lifespan could be shortened as much as possible. However, in the prior art such as Patent Document 1, although a technique for diagnosing a deterioration state in a short period of time has been studied, a technique for diagnosing the remaining life in a short period of time has not been studied. Furthermore, in order to diagnose the remaining life, it is necessary to estimate the deterioration rate, for example, but a technique for estimating this in a short time has not been studied.
 本発明は、上記のような課題に鑑みてなされたものであり、電池の劣化速度を短時間で診断することができる技術を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems, and aims to provide a technique that can diagnose the deterioration rate of a battery in a short time.
 本発明に係る電池管理装置は、休止期間における第1期間とその後の第2期間とを特定し、前記第1期間における電圧の第1変化分と、前記第2期間における前記電圧の第2変化分との間の比率に基づいて、電池温度に依拠した電池の劣化速度を推定する。 The battery management device according to the present invention specifies a first period in a rest period and a second period thereafter, and a first change in voltage in the first period and a second change in voltage in the second period. Estimate the rate of battery deterioration depending on the battery temperature based on the ratio between minutes.
 本発明に係る電池管理装置によれば、電池の劣化速度を短時間で診断することができる。本発明のその他の課題、構成、効果などについては、以下の実施形態の説明により明らかとなる。 According to the battery management device according to the present invention, the deterioration rate of a battery can be diagnosed in a short time. Other problems, configurations, effects, etc. of the present invention will become clear from the description of the embodiments below.
蓄電池システムの構成例を示す模式図である。FIG. 1 is a schematic diagram showing a configuration example of a storage battery system. 蓄電池の等価回路図である。It is an equivalent circuit diagram of a storage battery. 休止期間において電池が出力する電圧の経時変化例を示すグラフである。It is a graph showing an example of a change in voltage output by a battery over time during a rest period. 電池の保存劣化を示す図である。FIG. 3 is a diagram showing storage deterioration of a battery. 電池温度と劣化率との間の関係を例示する図である。FIG. 3 is a diagram illustrating the relationship between battery temperature and deterioration rate. 図3で説明した各値とSOHとの間の関係を示す図である。FIG. 4 is a diagram showing the relationship between each value explained in FIG. 3 and SOH. 電池管理装置が電池の劣化モードを推定する手順を説明するフローチャートである。2 is a flowchart illustrating a procedure in which the battery management device estimates a battery deterioration mode. 電池のサイクル劣化を示す図である。FIG. 3 is a diagram showing cycle deterioration of a battery. 電池温度と劣化率との間の関係を例示する図である。FIG. 3 is a diagram illustrating the relationship between battery temperature and deterioration rate. 図3で説明した各値とSOHとの間の関係を示す図である。FIG. 4 is a diagram showing the relationship between each value explained in FIG. 3 and SOH. 電池管理装置が電池の劣化モードを推定する手順を説明するフローチャートである。2 is a flowchart illustrating a procedure in which the battery management device estimates a battery deterioration mode. 実施形態3に係る電池システム1の構成図である。FIG. 3 is a configuration diagram of a battery system 1 according to a third embodiment. 電池管理装置13の運用例を示す図である。3 is a diagram showing an example of operation of the battery management device 13. FIG. 電池管理装置13の別運用例を示す図である。7 is a diagram illustrating another operational example of the battery management device 13. FIG. 電池の経済価値を試算した結果の例である。This is an example of the results of a trial calculation of the economic value of batteries.
<実施の形態1>
 図1は、蓄電池システムの構成例を示す模式図である。蓄電池システムは、1つ以上の蓄電池によって構成された電池システムと、電池システムを管理する電池管理装置とによって構成されている。以下では電池として蓄電池を想定する。
<Embodiment 1>
FIG. 1 is a schematic diagram showing a configuration example of a storage battery system. A storage battery system includes a battery system including one or more storage batteries, and a battery management device that manages the battery system. In the following, we assume that the battery is a storage battery.
 電池システムは、電池モジュールを備える。電池モジュールは、1つ以上のサブモジュールによって構成されている。サブモジュールは、電池セルとセンサ群を有する。センサ群は、例えば電池セルの出力電圧を測定する電圧センサ、電池セルの温度を測定する温度センサ、電池セルの出力電流を測定する電流センサ、などである。温度センサは例えば熱電対によって構成することができる。検知部はセンサから測定結果を取得してバッテリ管理モジュール(BMU)に対して送信する。BMUはその測定結果を記述した測定データを電池管理装置に対して出力する。 The battery system includes a battery module. A battery module is made up of one or more submodules. The submodule includes a battery cell and a sensor group. The sensor group includes, for example, a voltage sensor that measures the output voltage of the battery cell, a temperature sensor that measures the temperature of the battery cell, and a current sensor that measures the output current of the battery cell. The temperature sensor can be constituted by a thermocouple, for example. The detection unit acquires measurement results from the sensor and transmits them to the battery management module (BMU). The BMU outputs measurement data describing the measurement results to the battery management device.
 電池管理装置は、測定データを取得する検知部、電池の状態を管理する演算部、データを格納する記憶部、などを備える。演算部は、BMUから取得した測定データを用いて、電池の状態を推定する。例えば以下に説明するように、電池の余寿命(または余寿命を推定するために用いる劣化速度)を推定することができる。 The battery management device includes a detection unit that acquires measurement data, a calculation unit that manages the state of the battery, a storage unit that stores data, and the like. The calculation unit estimates the state of the battery using the measurement data acquired from the BMU. For example, as explained below, the remaining life of the battery (or the rate of deterioration used to estimate the remaining life) can be estimated.
 図2は、蓄電池の等価回路図である。蓄電池の等価回路は、内部抵抗、負極等価回路、正極等価回路、拡散抵抗、などによって記述することができる。負極等価回路と正極等価回路は、時定数を有するRC等価回路として記述することができる。一般に負極の時定数のほうが、正極の時定数よりも小さい。すなわち負極のほうが高速に応答する。拡散抵抗成分は、正極よりも遅い時間に発生する。 FIG. 2 is an equivalent circuit diagram of the storage battery. The equivalent circuit of a storage battery can be described using internal resistance, negative equivalent circuit, positive equivalent circuit, diffused resistance, and the like. The negative equivalent circuit and the positive equivalent circuit can be described as RC equivalent circuits having time constants. Generally, the time constant of the negative electrode is smaller than that of the positive electrode. In other words, the negative electrode responds faster. The diffused resistance component occurs at a later time than the positive electrode.
 図3は、休止期間において電池が出力する電圧の経時変化例を示すグラフである。図3上段は、放電動作後の休止期間における電池電圧の経時変化を示す。図3下段は、充電動作後の休止期間における電池電圧の経時変化を示す。ΔVaは、比較的高速に応答する、内部抵抗と負極の応答によって主に生じた経時変化である。ΔVbは、比較的低速に応答する、正極と拡散抵抗の応答によって主に生じた経時変化である。ΔVaが生じる期間を第1期間(時間長はΔt1)とし、ΔVbが生じる期間を第2期間(時間長はΔt2)とする。 FIG. 3 is a graph showing an example of a change over time in the voltage output by the battery during the rest period. The upper part of FIG. 3 shows the change in battery voltage over time during the rest period after the discharging operation. The lower part of FIG. 3 shows the change in battery voltage over time during the rest period after the charging operation. ΔVa is a change over time mainly caused by the internal resistance and the response of the negative electrode, which responds relatively quickly. ΔVb is a change over time mainly caused by the response of the positive electrode and the diffused resistance, which respond relatively slowly. A period in which ΔVa occurs is defined as a first period (time length is Δt1), and a period in which ΔVb occurs is defined as a second period (time length is Δt2).
 電池の劣化モード(劣化速度)は、電池の構成要素の応答速度に対して影響を与える場合がある。これにより、図3におけるΔVa/Δt1、ΔVb/Δt2、ΔVaとΔVbとの間の比率、などが変化する。すなわち、電池の劣化モードとこれらの値は相関を有するので、これらの値に基づき電池の劣化モードを推定することができると考えられる。本発明に係る電池管理装置は、このことを利用して、電池の劣化モードを推定する。具体的手法については以下説明する。 The deterioration mode (deterioration speed) of the battery may affect the response speed of the battery components. As a result, ΔVa/Δt1, ΔVb/Δt2, the ratio between ΔVa and ΔVb, etc. in FIG. 3 change. That is, since the battery deterioration mode and these values have a correlation, it is considered that the battery deterioration mode can be estimated based on these values. The battery management device according to the present invention utilizes this fact to estimate the battery deterioration mode. The specific method will be explained below.
 図4は、電池の保存劣化を示す図である。電池を使用せず保存している場合であっても劣化は進行する。本発明における検証の結果、電池をあるSOC(State Of Charge:充電状態)とある温度の下で電池を保存したとき、電池がそのSOCと温度に依拠して劣化することが分かった。 FIG. 4 is a diagram showing storage deterioration of a battery. Deterioration continues even when batteries are stored without being used. As a result of verification in the present invention, it was found that when a battery is stored at a certain SOC (State of Charge) and a certain temperature, the battery deteriorates depending on the SOC and temperature.
 図4左は、SOCがC1%(例えば80%未満)の電池を、電池温度T1、T2、T3それぞれの下で保存したときの劣化状態の進行を示す。電池温度は例えば、T1=5℃、T2=25℃、T3=45℃である。いずれの温度においても保存日数が増えるほど劣化が進行し、温度が高いほど劣化速度が速い。 The left side of FIG. 4 shows the progress of deterioration when a battery with an SOC of C1% (for example, less than 80%) is stored at battery temperatures T1, T2, and T3. The battery temperatures are, for example, T1=5°C, T2=25°C, and T3=45°C. At any temperature, deterioration progresses as the number of days of storage increases, and the higher the temperature, the faster the deterioration rate.
 図4右は、SOCがC2%(例えば80%以上)の電池を、電池温度T1、T2、T3それぞれの下で保存したときの劣化状態の進行を示す。図4左と比較して、特に温度T3における劣化速度が速いことが分かる。すなわち劣化速度(劣化モード)は、電池温度と相関しているとともに、SOCとも相関していると考えられる。 The right side of FIG. 4 shows the progress of deterioration when a battery with an SOC of C2% (for example, 80% or higher) is stored at battery temperatures T1, T2, and T3. Compared to the left side of FIG. 4, it can be seen that the deterioration rate is particularly fast at temperature T3. That is, it is thought that the deterioration rate (deterioration mode) is correlated with the battery temperature and also with the SOC.
 図5は、電池温度と劣化率との間の関係を例示する図である。図4が示すように、電池温度が上がると劣化率(図4における右下がりの傾き、すなわち経過日数に対するSOHの減少速度)が大きくなる傾向がある。この傾きは、SOCが小さい状態で保存した場合は比較的小さい(傾きA)が、SOCが大きい状態で保存した場合は比較的大きい(傾きB)。このことは、図4右において温度T3の傾きが大きいことからも分かる。 FIG. 5 is a diagram illustrating the relationship between battery temperature and deterioration rate. As shown in FIG. 4, as the battery temperature increases, the deterioration rate (the downward slope to the right in FIG. 4, that is, the rate of decrease in SOH with respect to the number of days elapsed) tends to increase. This slope is relatively small (slope A) when stored with a small SOC, but relatively large (slope B) when stored with a large SOC. This can also be seen from the large slope of the temperature T3 on the right side of FIG.
 図5によれば、ある温度を境界として、傾きAと傾きBいずれの劣化率となるのかが分かれている。さらに、SOCが比較的小さい(例:C1%)かあるいは比較的大きい(例:C2%)かによって、劣化率が異なる。すなわち、ある温度閾値とSOC閾値を基準として、いずれの劣化率で劣化したのかを推定できることが分かる。 According to FIG. 5, it is determined whether the deterioration rate is slope A or slope B, with a certain temperature as the boundary. Further, the deterioration rate differs depending on whether the SOC is relatively small (eg, C1%) or relatively large (eg, C2%). In other words, it can be seen that it is possible to estimate at which deterioration rate the deterioration occurred based on a certain temperature threshold value and SOC threshold value.
 図6は、図3で説明した各値とSOHとの間の関係を示す図である。ΔVaとΔVbいずれも、SOHが低下すると時間変化率(dVdt1=ΔVa/Δt1、dVdt2=ΔVb/Δt2)が小さくなる。劣化速度が大きい劣化モード(例えば図5における傾きB、SOCが高く電池温度も高い場合に相当)においては、同じ時間変化率であっても、SOHがより大きく低下していると考えられる。すなわち図6中段の点線で囲む領域内をグラフが通過すると考えられる。 FIG. 6 is a diagram showing the relationship between each value explained in FIG. 3 and SOH. For both ΔVa and ΔVb, the time change rate (dVdt1=ΔVa/Δt1, dVdt2=ΔVb/Δt2) decreases as the SOH decreases. In a deterioration mode in which the deterioration rate is high (for example, slope B in FIG. 5, which corresponds to the case where the SOC is high and the battery temperature is also high), it is considered that the SOH decreases more greatly even at the same time change rate. That is, it is considered that the graph passes through the area surrounded by the dotted line in the middle part of FIG.
 dVdt1とdVdt2との間の比率について検討する。劣化速度が比較的遅い場合において、dVdt1とdVdt2はそれぞれ図6実線のようになっているものとする。劣化速度がこれよりも速い場合、dVdt2のグラフは図6中段の点線領域内を通過すると考えられる。このとき、同じSOH値に対応するdVdt1とdVdt2をそれぞれ取得すると、dVdt2は図6実線よりも小さい値となる。換言すると、劣化速度が速い場合と遅い場合を比較したとき、同じdVdt1の値に対応するdVdt2の値は、劣化速度が速いほうがより小さいことになる。これは、図6下段において、グラフが左へ向かってシフトすることに相当する。 Consider the ratio between dVdt1 and dVdt2. When the deterioration rate is relatively slow, it is assumed that dVdt1 and dVdt2 are as shown by the solid lines in FIG. 6, respectively. If the deterioration rate is faster than this, the graph of dVdt2 is considered to pass within the dotted line region in the middle of FIG. At this time, when dVdt1 and dVdt2 corresponding to the same SOH value are obtained, dVdt2 becomes a value smaller than the solid line in FIG. 6. In other words, when comparing cases where the deterioration rate is fast and slow, the value of dVdt2 corresponding to the same value of dVdt1 is smaller when the deterioration rate is faster. This corresponds to the graph shifting toward the left in the lower part of FIG.
 そうすると、図6下段のようにdVdt2に対するdVdt1の比率をプロットしたとき、同グラフの上限閾値よりも上方となった場合は、劣化速度が速いモードで劣化が進行したと推定することができる。反対にプロットが上限閾値よりも下方となった場合は、劣化速度が遅いモードで劣化が進行したと推定することができる。本実施形態においては、この原理にしたがって、電池の劣化モードを推定することとした。下限閾値よりも下方となった場合は劣化速度がさらに遅いと推定してもよい。 Then, when the ratio of dVdt1 to dVdt2 is plotted as shown in the lower part of FIG. 6, if it is above the upper limit threshold of the graph, it can be estimated that the deterioration has progressed in a mode where the deterioration rate is fast. On the other hand, if the plot is below the upper threshold, it can be estimated that the deterioration has progressed in a mode where the deterioration rate is slow. In this embodiment, the battery deterioration mode is estimated based on this principle. If it is below the lower limit threshold, it may be estimated that the deterioration rate is even slower.
 図7は、電池管理装置が電池の劣化モードを推定する手順を説明するフローチャートである。本フローチャートは、電池管理装置が備える演算部が実施することができる。本フローチャートは、以上説明した原理により、保存状態の電池がどのような劣化モードで劣化したのかを推定するものである。以下図7の各ステップについて説明する。 FIG. 7 is a flowchart illustrating the procedure by which the battery management device estimates the battery deterioration mode. This flowchart can be executed by a calculation unit included in the battery management device. This flowchart is for estimating in what kind of deterioration mode a battery in a stored state has deteriorated, based on the principle explained above. Each step in FIG. 7 will be explained below.
 演算部は、例えばBMUから、図3で説明したΔVa、Δt1、ΔVb、Δt2を取得する。演算部は、電池電圧の時間変化率(dVdt1=ΔVa/Δt1、dVdt2=ΔVb/Δt2)を計算する。演算部は、dVdt2に対するdVdt1の比率Ratioを計算する。Ratioが閾値超であれば、電池の劣化率傾きはB(劣化速度が比較的速い劣化モード)であると推定する。Ratioが閾値以下であれば、電池の劣化率傾きはA(劣化速度が比較的遅い劣化モード)であると推定する。 The calculation unit obtains ΔVa, Δt1, ΔVb, and Δt2 described in FIG. 3 from, for example, the BMU. The calculation unit calculates the rate of change in battery voltage over time (dVdt1=ΔVa/Δt1, dVdt2=ΔVb/Δt2). The calculation unit calculates the ratio Ratio of dVdt1 to dVdt2. If Ratio exceeds the threshold value, the battery deterioration rate slope is estimated to be B (a deterioration mode in which the deterioration rate is relatively fast). If Ratio is less than or equal to the threshold value, the battery deterioration rate slope is estimated to be A (a deterioration mode in which the deterioration rate is relatively slow).
 演算部は、推定した劣化モードに基づいて、電池が保存状態において置かれていた温度とSOCを推定する。まず推定した劣化モードに基づいて、温度変化に対する劣化率の傾きが例えば図5における傾きAとBいずれであるのか(換言すると、SOCがC1とC2いずれであるのか)を推定することができる。これは電池が図4の左右いずれの劣化モードで劣化したのかを特定することに相当する。 Based on the estimated deterioration mode, the calculation unit estimates the temperature and SOC at which the battery was stored. First, based on the estimated deterioration mode, it is possible to estimate whether the slope of the deterioration rate with respect to temperature change is, for example, slope A or slope B in FIG. 5 (in other words, whether the SOC is C1 or C2). This corresponds to identifying whether the battery has deteriorated in the left or right deterioration mode shown in FIG.
 演算部は、電池の活性化エネルギーEaを推定する。劣化モードを上記手順によって推定することにより、電池が図4左右いずれの劣化モードで劣化したのかを推定できる。これにより、図4のようなSOH/経過日数(またはサイクル数)/温度の関係を推定することができる。この温度を例えばアレニウスの式へ代入することにより、活性化エネルギーを計算することができる。活性化エネルギーと劣化モードは概ね1:1に対応しているので、劣化モードとその劣化モードにおける活性化エネルギーとの間の関係をあらかじめデータテーブルなどに記述しておき、推定した劣化モードに対応する活性化エネルギーをそのデータテーブルから取得してもよい。 The calculation unit estimates the activation energy Ea of the battery. By estimating the deterioration mode using the above procedure, it is possible to estimate whether the battery has deteriorated in the left or right deterioration mode in FIG. Thereby, the relationship between SOH/number of elapsed days (or number of cycles)/temperature as shown in FIG. 4 can be estimated. By substituting this temperature into the Arrhenius equation, for example, the activation energy can be calculated. Activation energy and deterioration mode generally have a 1:1 correspondence, so the relationship between a deterioration mode and the activation energy for that deterioration mode is described in advance in a data table, etc., and it is possible to correspond to the estimated deterioration mode. The activation energy for the target may be obtained from the data table.
 演算部は、電池の充電回数または放電回数をBMUから取得する。あるいはこれに代えて、1回の充電または放電による満充電容量の低下量をBMUから取得し、これを現在の満充電容量(すなわち現在のSOH)と比較することにより、充放電回数を推定する。演算部はさらに、任意の公知手法によってSOHを推定する。例えばdVdt1とSOHとの間の対応関係、dVdt2とSOHとの間の対応関係、これらの組み合わせ、などのうちいずれかを記述したデータを参照することにより、SOHを推定することができる。 The calculation unit acquires the number of times the battery has been charged or discharged from the BMU. Alternatively, the number of times of charging and discharging is estimated by obtaining the amount of decrease in full charge capacity due to one charge or discharge from the BMU and comparing this with the current full charge capacity (i.e., current SOH). . The calculation unit further estimates the SOH using any known method. For example, the SOH can be estimated by referring to data describing any one of the correspondence between dVdt1 and SOH, the correspondence between dVdt2 and SOH, a combination thereof, and the like.
 演算部は、推定したSOHと充放電回数を用いて、電池が保存状態において置かれてきた温度T1を推定する。例えば、現在のSOHと充放電サイクル数(またはこれを経過日数へ換算したもの)を、図4の関係に対して当てはめることにより、電池が置かれてきた温度を推定することができる。図4のデータ点と、取得したSOH/日数とが合致する箇所が存在しない場合は、図4のデータ点を補完してもよい。 The calculation unit uses the estimated SOH and the number of times of charging and discharging to estimate the temperature T1 at which the battery has been kept in the storage state. For example, by applying the current SOH and the number of charge/discharge cycles (or converted to the number of elapsed days) to the relationship shown in FIG. 4, it is possible to estimate the temperature at which the battery has been placed. If there is no location where the data points in FIG. 4 match the acquired SOH/days, the data points in FIG. 4 may be supplemented.
 演算部は、推定した温度T1と活性化エネルギーをアレニウスの式に対して当てはめることにより、電池の劣化加速度を計算する。基準温度T2は例えば298Kとする。以上の手順により、電池管理装置は、電池の劣化モードおよび劣化加速度を推定することができる。演算部は、推定結果を適当な形式によって出力する。 The calculation unit calculates the deterioration acceleration of the battery by applying the estimated temperature T1 and activation energy to the Arrhenius equation. The reference temperature T2 is, for example, 298K. Through the above procedure, the battery management device can estimate the deterioration mode and deterioration acceleration of the battery. The calculation unit outputs the estimation result in an appropriate format.
<実施の形態1:まとめ>
 本実施形態に係る電池管理装置は、休止期間における電池電圧の第1変化分と第2変化分に基づき、電池温度に依拠した劣化速度を推定する。第1変化分と第2変化分は、充放電動作を終了した後の比較的短時間において現れるので、劣化速度を短時間内に推定することができる。
<Embodiment 1: Summary>
The battery management device according to the present embodiment estimates the deterioration rate depending on the battery temperature based on the first change and the second change in the battery voltage during the rest period. Since the first change amount and the second change amount appear in a relatively short time after the charging/discharging operation ends, the deterioration rate can be estimated within a short time.
<実施の形態2>
 図8は、電池のサイクル劣化を示す図である。T1~T3は図4と同じである。実施形態1においては電池の保存劣化について説明したが、電池はこれとは別に充放電サイクルごとに劣化する。原則としては、温度が上がるほど劣化速度(1回の充放電サイクルによるSOHの低下量)が速くなる。ただし電池の特性によっては、低温度においてCレート上限以下で電池を動作させないと、劣化速度が通常よりも速くなる場合がある。図8の温度T1のグラフはこれを表している。本発明の実施形態2においては、このような場合における劣化速度を推定する手法を説明する。電池システムおよび電池管理装置の構成は実施形態1と同様である。
<Embodiment 2>
FIG. 8 is a diagram showing cycle deterioration of a battery. T1 to T3 are the same as in FIG. In the first embodiment, storage deterioration of the battery has been described, but the battery also deteriorates with each charge/discharge cycle. As a general rule, the higher the temperature, the faster the rate of deterioration (the amount of decrease in SOH per charge/discharge cycle). However, depending on the characteristics of the battery, if the battery is not operated at a C rate below the upper limit at low temperatures, the rate of deterioration may be faster than normal. The graph of temperature T1 in FIG. 8 represents this. In Embodiment 2 of the present invention, a method for estimating the deterioration rate in such a case will be described. The configurations of the battery system and battery management device are the same as in the first embodiment.
 図9は、電池温度と劣化率との間の関係を例示する図である。図9上段は、電池が遵守すべきCレート上限を示す。この電池の例においては、電池温度ごとに、電池の充放電動作時において遵守すべき上限Cレートが規定されている。図9下段は図5と同様に電池温度と劣化率との間の関係を示す。ただし図4~図5とは異なり、劣化率は、サイクル数の増加に対するSOHの減少速度である。 FIG. 9 is a diagram illustrating the relationship between battery temperature and deterioration rate. The upper part of FIG. 9 shows the upper limit of the C rate that the battery should comply with. In this battery example, an upper limit C rate that must be observed during charging and discharging operations of the battery is defined for each battery temperature. Similarly to FIG. 5, the lower part of FIG. 9 shows the relationship between battery temperature and deterioration rate. However, unlike FIGS. 4-5, the deterioration rate is the rate of decrease in SOH with respect to the increase in the number of cycles.
 図5と同様に、SOCが比較的小さい(例:C1%)ときは、温度変化に対する劣化率の傾きはCである。電池温度が25℃以下である場合は、Cレート上限を遵守しないと、傾きがD2に増加する。Cレート上限からの逸脱がさらに大きくなると、傾きがD1に増加する。 Similarly to FIG. 5, when the SOC is relatively small (eg, C1%), the slope of the deterioration rate with respect to temperature change is C. If the battery temperature is below 25° C., the slope increases to D2 if the C rate upper limit is not observed. If the deviation from the C rate upper limit becomes even greater, the slope increases to D1.
 図10は、図3で説明した各値とSOHとの間の関係を示す図である。図6と同様に、劣化率の傾きが大きい領域を点線で示した。例えば図9で説明したように、25℃以下の低温環境下で電池を運用した場合において、Cレート上限を遵守しない場合は、劣化率が大きくなる。これを図10内の点線領域によって示した。図10下段においてdVdt2/dVdt1が閾値よりも大きい領域は、図9で説明した2つの劣化モード(傾きD1とD2)それぞれに対応する領域を含んでいる。 FIG. 10 is a diagram showing the relationship between each value explained in FIG. 3 and SOH. Similar to FIG. 6, regions where the slope of the deterioration rate is large are indicated by dotted lines. For example, as explained in FIG. 9, when the battery is operated in a low temperature environment of 25° C. or lower, the deterioration rate increases if the C rate upper limit is not observed. This is shown by the dotted line area in FIG. In the lower part of FIG. 10, the region where dVdt2/dVdt1 is larger than the threshold value includes regions corresponding to each of the two deterioration modes (inclinations D1 and D2) explained in FIG.
 図10下段は、縦軸をdVdt2/dVdt1、横軸をdVdt2とする座標空間において、図6下段と同様の上限閾値(および必要に応じて下限閾値)を設定した。これに代えて図6下段と同様に、縦軸をdVdt1としてもよい。すなわち、dVdt2/dVdt1が上限閾値を超えた場合において、いずれの劣化モード(D1またはD2)に該当するのかを明確に区別できるのであれば、縦軸はいずれであってもよく、これらは表現形式の違いに過ぎない。 In the lower part of FIG. 10, the same upper limit threshold (and lower limit threshold, if necessary) as in the lower part of FIG. 6 was set in a coordinate space in which the vertical axis is dVdt2/dVdt1 and the horizontal axis is dVdt2. Alternatively, the vertical axis may be set to dVdt1 as in the lower part of FIG. In other words, when dVdt2/dVdt1 exceeds the upper limit threshold, as long as it is possible to clearly distinguish which deterioration mode (D1 or D2) the vertical axis corresponds to, the vertical axis may be in any format. It's just a difference.
 図11は、電池管理装置が電池の劣化モードを推定する手順を説明するフローチャートである。実施形態1で説明したフローチャートに加えて、Ratioが閾値超であるときの劣化率の傾きがD1とD2(図9において説明した劣化率の傾き)いずれであるかを選択するステップが追加されている。演算部は、Ratioが閾値超である場合、Ratioと閾値との間の距離にしたがって、劣化率がD1とD2いずれであるかを判定する。例えば距離が相対的に大きければD1、小さければD2とする。その他は実施形態1と同様である。 FIG. 11 is a flowchart illustrating the procedure by which the battery management device estimates the battery deterioration mode. In addition to the flowchart described in Embodiment 1, a step is added to select whether the slope of the deterioration rate when Ratio exceeds the threshold is D1 or D2 (the slope of the deterioration rate explained in FIG. 9). There is. When Ratio exceeds the threshold, the calculation unit determines whether the deterioration rate is D1 or D2 according to the distance between Ratio and the threshold. For example, if the distance is relatively large, it is set as D1, and if it is relatively small, it is set as D2. The rest is the same as in the first embodiment.
<実施の形態2:まとめ>
 本実施形態に係る電池管理装置は、低温環境下においてCレート上限を遵守しないと劣化速度が増加する電池について、dVdt2/dVdt1と閾値との間の乖離度に基づき劣化モードを推定する。これにより、低温環境下においてそのような劣化特性を有する電池についても、実施形態1と同様に劣化速度を短時間内で推定することができる。
<Embodiment 2: Summary>
The battery management device according to the present embodiment estimates a deterioration mode based on the degree of deviation between dVdt2/dVdt1 and a threshold value for a battery whose deterioration rate increases if the C rate upper limit is not observed in a low-temperature environment. As a result, the deterioration rate of a battery having such deterioration characteristics in a low-temperature environment can be estimated within a short time as in the first embodiment.
<実施の形態3>
 図12は、本発明の実施形態3に係る電池システム1の構成図である。電池システム1、電池コントローラ(BMU)12、電池管理装置13は、図1において例示したものである。電池システム1は、上位コントローラ11、電池コントローラ(BMU)12、電池管理装置13を有する。上位コントローラ11は、電池コントローラ12を介して、電池に対する動作指示を出力する。電池コントローラ12はその指示にしたがって電池モジュールを制御する。電池管理装置13は、電池コントローラ12から測定データを取得する検知部131、実施形態1~2で説明した手法によって電池を診断する演算部132、演算部132が用いるデータを格納する記憶部133、を備える。
<Embodiment 3>
FIG. 12 is a configuration diagram of a battery system 1 according to Embodiment 3 of the present invention. The battery system 1, battery controller (BMU) 12, and battery management device 13 are those illustrated in FIG. The battery system 1 includes a host controller 11, a battery controller (BMU) 12, and a battery management device 13. The host controller 11 outputs operation instructions for the battery via the battery controller 12. The battery controller 12 controls the battery modules according to the instructions. The battery management device 13 includes a detection unit 131 that acquires measurement data from the battery controller 12, a calculation unit 132 that diagnoses the battery using the methods described in the first and second embodiments, a storage unit 133 that stores data used by the calculation unit 132, Equipped with
 図13は、電池管理装置13の運用例を示す図である。検知部131は、BMUから各電池モジュール(または電池セル)の電池電圧、電池温度、電池電流、Cレート、SOCなどの測定値またはその履歴を取得し、これを記憶部133内に記録する。演算部132は、そのデータを用いて、実施形態1~2で説明した手法により、電池の劣化モードや劣化加速度を推定する。これにより、各電池の劣化モードを適正に維持できているか否かを監視することができる。 FIG. 13 is a diagram showing an example of operation of the battery management device 13. The detection unit 131 acquires measured values such as battery voltage, battery temperature, battery current, C rate, and SOC of each battery module (or battery cell) or their history from the BMU, and records them in the storage unit 133. Using the data, the calculation unit 132 estimates the deterioration mode and deterioration acceleration of the battery using the methods described in the first and second embodiments. Thereby, it is possible to monitor whether the deterioration mode of each battery can be maintained appropriately.
 例えば電池システムを含む発電システムが発電した電力を電力会社の送電ネットワークに乗せて送電するとき、送電前日においてあらかじめ送電計画を作成して電力会社へ送付しておき、送電実施日において送電開始する直前の短い時間内で、電池能力を診断することが考えられる。このような場合において、本発明に係る診断手法は、短時間で診断を終えることができる点が有用である。さらに、電池温度の履歴を記憶部133内に蓄積しておくことにより、図7または図11における経験温度T1を推定する必要がない(温度履歴の平均値などをT1として用いれば足りる)点も有用である。 For example, when transmitting the power generated by a power generation system including a battery system over a power company's power transmission network, a power transmission plan is created in advance and sent to the power company the day before the power transmission, and immediately before power transmission starts on the day the power transmission is carried out. It is conceivable to diagnose battery capacity within a short period of time. In such a case, the diagnostic method according to the present invention is useful in that the diagnosis can be completed in a short time. Furthermore, by accumulating the battery temperature history in the storage unit 133, there is no need to estimate the experienced temperature T1 in FIG. 7 or FIG. 11 (it is sufficient to use the average value of the temperature history as T1). Useful.
 図14は、電池管理装置13の別運用例を示す図である。電池管理装置13は、クラウドシステムなどを介して、充電器と接続されている。充電器は、車両が搭載しているバッテリを充電する装置である。検知部131は、充電器を介して(または車両に対して接続される計測器を介して)、車両が搭載している電池の電池電圧や電池温度などの測定データを取得する。演算部132は、その測定データを用いて、電池の劣化モード、劣化加速度、余寿命などを診断する。これにより、車両または車両が搭載している電池の経済価値を試算するなどが可能である。 FIG. 14 is a diagram showing another example of operation of the battery management device 13. The battery management device 13 is connected to the charger via a cloud system or the like. A charger is a device that charges a battery mounted on a vehicle. The detection unit 131 acquires measurement data such as battery voltage and battery temperature of a battery mounted on the vehicle via a charger (or via a measuring device connected to the vehicle). The calculation unit 132 diagnoses the battery's deterioration mode, deterioration acceleration, remaining life, etc. using the measured data. This makes it possible to estimate the economic value of the vehicle or the battery installed in the vehicle.
 図15は、電池の経済価値を試算した結果の例である。演算部132は、以上の実施形態で説明した手順により、電池ごとにSOH/劣化加速度/これらに基づく経済価値のランク付けなどを計算し、その結果を出力する。ランクは、例えばSOHと劣化加速度の組み合わせによる総合評価である。出力形式は、これらを記述したデータでもよいし、ディスプレイなどの出力媒体を介して出力してもよい。 FIG. 15 is an example of the results of a trial calculation of the economic value of a battery. The calculation unit 132 calculates the SOH/deterioration acceleration/economic value ranking based on these for each battery according to the procedure described in the above embodiments, and outputs the results. The rank is, for example, a comprehensive evaluation based on a combination of SOH and deterioration acceleration. The output format may be data that describes these, or may be output via an output medium such as a display.
 演算部132は、評価が低い(あるいは劣化加速度が大きい)電池については、劣化を促進しないように、充電電流や充電動作後の充電状態について、制約を付した上で、充電を実施してもよい。劣化速度などの診断は、充放電動作を実施しない期間において実施することが望ましい。図13~図14いずれにおいても同様である。 For batteries with a low evaluation (or with a high rate of deterioration), the calculation unit 132 imposes restrictions on the charging current and the state of charge after the charging operation, so as not to accelerate the deterioration even if charging is performed. good. It is desirable to diagnose the deterioration rate and the like during a period when no charging/discharging operation is performed. The same applies to any of FIGS. 13 to 14.
<本発明の変形例について>
 本発明は、前述した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
<About modifications of the present invention>
The present invention is not limited to the embodiments described above, and includes various modifications. For example, the above-described embodiments have been described in detail to explain the present invention in an easy-to-understand manner, and the present invention is not necessarily limited to having all the configurations described. Furthermore, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Furthermore, it is possible to add, delete, or replace some of the configurations of each embodiment with other configurations.
 以上の実施形態において、dVdt1(ΔVa)とdVdt2(ΔVb)との間の比率を用いて、電池の劣化速度を推定することを説明した。これに加えて、ΔVb以降の同様の時間変化率をさらに用いて、より詳細な診断を実施してもよい。 In the above embodiments, it has been explained that the deterioration rate of the battery is estimated using the ratio between dVdt1 (ΔVa) and dVdt2 (ΔVb). In addition to this, a similar rate of change over time after ΔVb may be further used to perform a more detailed diagnosis.
 以上の実施形態において、ΔVbの開始時点はΔVaの開始時点よりも後であり、ΔVbの終了時点はΔVaの終了時点よりも後である。この関係を維持する限りにおいて、例えばΔt1(第1期間)とΔt2(第2期間)が一部重なり合ってもよい。 In the above embodiments, the start time of ΔVb is after the start time of ΔVa, and the end time of ΔVb is after the end time of ΔVa. As long as this relationship is maintained, for example, Δt1 (first period) and Δt2 (second period) may partially overlap.
 以上の実施形態において、検知部131と演算部132は、その機能を実装した回路デバイスなどのハードウェアによって構成することもできるし、その機能を実装したソフトウェアをCPU(Central Processing Unit)などの演算装置が実行することによって構成することもできる。 In the embodiments described above, the detection unit 131 and the calculation unit 132 can be configured by hardware such as a circuit device implementing the function, or software implementing the function can be configured by a calculation unit such as a CPU (Central Processing Unit). It can also be configured by the device executing it.
13:電池管理装置
131:検知部
132:演算部
133:記憶部
13: Battery management device 131: Detection section 132: Arithmetic section 133: Storage section

Claims (15)

  1.  電池の状態を管理する電池管理装置であって、
     前記電池が出力する電圧の検出値を取得する検知部、
     前記電池の状態を推定する演算部、
     を備え、
     前記演算部は、前記電池が充電動作または放電動作を終了した後の休止期間における第1期間と、前記休止期間において前記第1期間の開始時刻よりも後に開始し前記第1期間の終了時刻よりも後に終了する第2期間とを特定し、
     前記演算部は、前記第1期間における前記電圧の第1変化分と、前記第2期間における前記電圧の第2変化分とを特定し、
     前記演算部は、前記第1変化分と前記第2変化分との間の比率に基づいて、前記電池の温度に依拠する、前記電池の劣化速度を推定する
     ことを特徴とする電池管理装置。
    A battery management device that manages battery status,
    a detection unit that obtains a detected value of the voltage output by the battery;
    a calculation unit that estimates the state of the battery;
    Equipped with
    The calculation unit includes a first period in a rest period after the battery finishes a charging operation or a discharging operation, and a first period in the rest period that starts after the start time of the first period and from the end time of the first period. and a second period that ends after
    The calculation unit specifies a first change in the voltage in the first period and a second change in the voltage in the second period,
    The battery management device is characterized in that the calculation unit estimates a deterioration rate of the battery, which is dependent on the temperature of the battery, based on a ratio between the first variation and the second variation.
  2.  前記電池は、
      第1時定数にしたがって前記電圧の変化を生じさせる第1構成要素、
      前記第1時定数よりも大きい第2時定数にしたがって前記電圧の変化を生じさせる第2構成要素、
     を備え、
     前記演算部は、前記第1時定数にしたがって前記電圧の変化が生じる期間を、前記第1期間として用い、
     前記演算部は、前記第2時定数にしたがって前記電圧の変化が生じる期間を、前記第2期間として用いる
     ことを特徴とする請求項1記載の電池管理装置。
    The battery is
    a first component that causes a change in the voltage according to a first time constant;
    a second component that causes a change in the voltage according to a second time constant that is greater than the first time constant;
    Equipped with
    The calculation unit uses, as the first period, a period in which the voltage changes according to the first time constant,
    The battery management device according to claim 1, wherein the arithmetic unit uses a period in which the voltage changes according to the second time constant as the second period.
  3.  前記電池は、前記電池の温度が温度閾値未満であるかまたは前記電池の充電状態が充電状態閾値未満である場合は、第1劣化速度で劣化する第1劣化モードを有し、
     前記電池は、前記電池の温度が前記温度閾値以上かつ前記電池の充電状態が前記充電状態閾値以上である場合は、前記第1劣化速度よりも大きい劣化速度で劣化する劣化モードを有し、
     前記演算部は、前記比率に基づいて、前記電池が前記第1劣化モードで劣化したのかそれとも前記第1劣化モードよりも劣化速度が大きい劣化モードで劣化したのかを推定する ことを特徴とする請求項1記載の電池管理装置。
    The battery has a first degradation mode in which the battery degrades at a first degradation rate when the temperature of the battery is below a temperature threshold or the state of charge of the battery is below a state of charge threshold;
    The battery has a deterioration mode in which the battery deteriorates at a deterioration rate greater than the first deterioration rate when the temperature of the battery is equal to or higher than the temperature threshold and the state of charge of the battery is equal to or higher than the state of charge threshold;
    The calculation unit estimates, based on the ratio, whether the battery has deteriorated in the first deterioration mode or in a deterioration mode with a higher deterioration rate than the first deterioration mode. Item 1. The battery management device according to item 1.
  4.  前記電池は、保存状態における前記電池の温度と、保存状態における前記電池の充電状態とに依拠して、保存状態において前記第1劣化速度または前記第1劣化速度よりも大きい劣化速度で劣化する特性を有し、
     前記電池は、前記比率に基づいて、前記電池が過去の保存状態において、前記第1劣化モードで劣化したのかそれとも前記第1劣化モードよりも劣化速度が大きい劣化モードで劣化したのかを推定する
     ことを特徴とする請求項3記載の電池管理装置。
    The battery has a characteristic of deteriorating at the first deterioration rate or a deterioration rate greater than the first deterioration rate in the storage state, depending on the temperature of the battery in the storage state and the state of charge of the battery in the storage state. has
    The battery estimates, based on the ratio, whether the battery deteriorated in the first deterioration mode or in a deterioration mode with a faster deterioration rate than the first deterioration mode in a past storage state. The battery management device according to claim 3, characterized in that:
  5.  前記演算部は、前記比率に基づいて、過去の保存状態における前記電池の活性化エネルギーを推定し、
     前記演算部は、前記電池の劣化状態に基づいて、前記電池の温度を推定し、
     前記演算部は、前記推定した活性化エネルギーと前記推定した温度を用いて、前記電池の劣化加速度を推定する
     ことを特徴とする請求項4記載の電池管理装置。
    The calculation unit estimates the activation energy of the battery in a past storage state based on the ratio,
    The calculation unit estimates a temperature of the battery based on a state of deterioration of the battery,
    The battery management device according to claim 4, wherein the calculation unit estimates the deterioration acceleration of the battery using the estimated activation energy and the estimated temperature.
  6.  前記演算部は、前記電池の劣化状態を推定し、
     前記演算部は、前記電池が充電動作または放電動作を実施した回数を取得するか、または、前記推定した劣化状態と1回の充電動作または1回の放電動作による前記電池の容量低下量とを用いて前記回数を推定し、
     前記演算部は、前記回数と前記推定した劣化状態を用いて、前記電池の温度を推定する ことを特徴とする請求項5記載の電池管理装置。
    The calculation unit estimates a state of deterioration of the battery,
    The calculation unit acquires the number of times the battery has performed a charging operation or a discharging operation, or calculates the estimated state of deterioration and the amount of capacity reduction of the battery due to one charging operation or one discharging operation. estimate the number of times using
    The battery management device according to claim 5, wherein the calculation unit estimates the temperature of the battery using the number of times and the estimated state of deterioration.
  7.  前記演算部は、前記劣化状態、前記回数または前記電池の運用開始からの経過時間、前記電池の温度、の間の関係を取得し、
     前記演算部は、前記推定した劣化状態と前記回数または前記経過時間を、前記関係に対して当てはめることにより、前記電池の温度を推定する
     ことを特徴とする請求項6記載の電池管理装置。
    The calculation unit obtains a relationship among the deterioration state, the number of times or elapsed time from the start of operation of the battery, and the temperature of the battery,
    The battery management device according to claim 6, wherein the calculation unit estimates the temperature of the battery by applying the estimated deterioration state and the number of times or the elapsed time to the relationship.
  8.  前記演算部は、前記第1変化分と前記劣化状態との間の対応関係、または、前記第2変化分と前記劣化状態との間の対応関係を用いて、前記劣化状態を推定する
     ことを特徴とする請求項6記載の電池管理装置。
    The calculation unit estimates the deterioration state using a correspondence relationship between the first change amount and the deterioration state, or a correspondence relationship between the second change amount and the deterioration state. The battery management device according to claim 6.
  9.  前記電池は、基準温度以上においては、第3劣化速度で劣化する第3劣化モードを有し、
     前記電池は、前記基準温度未満においては、Cレート閾値以上のCレートで充電動作または放電動作を実施すると、前記第3劣化速度よりも大きい第4劣化速度で劣化する第4劣化モードを有し、
     前記演算部は、前記比率に基づいて、前記電池が前記第3劣化モードと前記第4劣化モードのうちいずれにしたがって劣化したかを推定する
     ことを特徴とする請求項1記載の電池管理装置。
    The battery has a third deterioration mode in which it deteriorates at a third deterioration rate above a reference temperature,
    The battery has a fourth deterioration mode in which the battery deteriorates at a fourth deterioration rate higher than the third deterioration rate when a charging operation or a discharging operation is performed at a C rate equal to or higher than the C rate threshold below the reference temperature. ,
    The battery management device according to claim 1, wherein the calculation unit estimates which of the third deterioration mode and the fourth deterioration mode the battery has deteriorated in based on the ratio.
  10.  前記演算部は、前記比率と前記第2変化分の2次元座標区間上における、前記比率と閾値との間の距離を算出し、
     前記演算部は、前記距離の大きさにしたがって、前記第4劣化モードにおける劣化速度の大きさを推定する
     ことを特徴とする請求項9記載の電池管理装置。
    The calculation unit calculates a distance between the ratio and a threshold value on a two-dimensional coordinate interval of the ratio and the second change,
    The battery management device according to claim 9, wherein the calculation unit estimates the magnitude of the deterioration rate in the fourth deterioration mode according to the magnitude of the distance.
  11.  請求項1記載の電池管理装置、
     前記電池の温度の履歴と前記電池の充電状態の履歴を記述したデータを格納する記憶部、
     を備え、
     前記演算部は、前記データが記述している前記温度の履歴を用いて、前記電池の劣化加速度を推定する
     ことを特徴とする電池システム。
    The battery management device according to claim 1,
    a storage unit that stores data describing a history of the temperature of the battery and a history of the state of charge of the battery;
    Equipped with
    The battery system, wherein the calculation unit estimates the deterioration acceleration of the battery using the temperature history described by the data.
  12.  請求項1記載の電池管理装置、
     前記電池を充電する充電器、
     を備え、
     前記演算部は、前記推定した劣化速度にしたがって、前記充電器が充電する前記電池の劣化を抑制するように、前記充電器から前記電池に対する充電電流または前記充電器によって充電された後の前記電池の充電状態のうち少なくともいずれかを制御する
     ことを特徴とする電池システム。
    The battery management device according to claim 1,
    a charger for charging the battery;
    Equipped with
    The calculation unit controls the charging current from the charger to the battery or the battery after being charged by the charger so as to suppress deterioration of the battery charged by the charger according to the estimated deterioration rate. A battery system characterized by controlling at least one of the charging states of the battery.
  13.  前記演算部は、前記充電器が充電動作を実施しない期間において、前記電池の劣化速度を推定する
     ことを特徴とする請求項12記載の電池システム。
    The battery system according to claim 12, wherein the calculation unit estimates the deterioration rate of the battery during a period when the charger does not perform a charging operation.
  14.  請求項5記載の電池管理装置、
     前記電池の劣化状態と前記電池の劣化加速度を記述したデータを格納する記憶部、
     を備え、
     前記演算部は、前記推定した劣化状態と前記推定した劣化加速度にしたがって、前記電池の性能を分類し、その結果を前記データ内に記録する
     ことを特徴とする電池システム。
    The battery management device according to claim 5,
    a storage unit that stores data describing the deterioration state of the battery and the deterioration acceleration of the battery;
    Equipped with
    The battery system, wherein the calculation unit classifies the performance of the battery according to the estimated deterioration state and the estimated deterioration acceleration, and records the result in the data.
  15.  電池の状態を管理する電池管理方法であって、
     前記電池が出力する電圧の検出値を取得するステップ、
     前記電池の状態を推定するステップ、
     を有し、
     前記推定するステップにおいては、前記電池が充電動作または放電動作を終了したあとの休止期間における第1期間と、前記休止期間において前記第1期間の開始時刻よりも後に開始し前記第1期間の終了時刻よりも後に終了する第2期間とを特定し、
     前記推定するステップにおいては、前記第1期間における前記電圧の第1変化分と、前記第2期間における前記電圧の第2変化分とを特定し、
     前記推定するステップにおいては、前記第1変化分と前記第2変化分との間の比率に基づいて、前記電池の温度に依拠する、前記電池の劣化速度を推定する
     ことを特徴とする電池管理方法。
    A battery management method for managing battery status, the method comprising:
    obtaining a detected value of the voltage output by the battery;
    estimating the state of the battery;
    has
    In the step of estimating, a first period in a rest period after the battery finishes a charging operation or a discharging operation, and a first period in the rest period that starts after the start time of the first period and the end of the first period. a second period that ends after the time;
    In the estimating step, specifying a first change in the voltage in the first period and a second change in the voltage in the second period,
    Battery management characterized in that, in the estimating step, a deterioration rate of the battery that depends on the temperature of the battery is estimated based on a ratio between the first change amount and the second change amount. Method.
PCT/JP2023/011628 2022-08-22 2023-03-23 Battery management device and battery management method WO2024042758A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022131934A JP2024029593A (en) 2022-08-22 2022-08-22 Battery management device, battery management method
JP2022-131934 2022-08-22

Publications (1)

Publication Number Publication Date
WO2024042758A1 true WO2024042758A1 (en) 2024-02-29

Family

ID=90012955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/011628 WO2024042758A1 (en) 2022-08-22 2023-03-23 Battery management device and battery management method

Country Status (2)

Country Link
JP (1) JP2024029593A (en)
WO (1) WO2024042758A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006080032A (en) * 2004-09-13 2006-03-23 Ntt Power & Building Facilities Inc Storage battery monitoring device
JP2009080104A (en) * 2007-09-07 2009-04-16 Panasonic Corp Secondary-battery life estimation apparatus and method
US20150301121A1 (en) * 2014-04-21 2015-10-22 Samsung Electronics Co., Ltd. Method and apparatus for estimating battery life during driving of electrical vehicle (ev)
JP2016133513A (en) * 2015-01-22 2016-07-25 三星電子株式会社Samsung Electronics Co.,Ltd. Battery-state estimation method and battery-state estimation apparatus
CN109725266A (en) * 2018-12-29 2019-05-07 蜂巢能源科技有限公司 A kind of calculation method and device of cell health state SOH
JP2020054214A (en) * 2018-09-20 2020-04-02 積水化学工業株式会社 Storage battery management device and storage battery management method
JP2021060198A (en) * 2019-10-02 2021-04-15 株式会社日立製作所 Battery state estimation device
JP2021140991A (en) * 2020-03-06 2021-09-16 本田技研工業株式会社 Diagnostic device of secondary battery
WO2022024235A1 (en) * 2020-07-29 2022-02-03 株式会社日立ハイテク Battery management device, battery management method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006080032A (en) * 2004-09-13 2006-03-23 Ntt Power & Building Facilities Inc Storage battery monitoring device
JP2009080104A (en) * 2007-09-07 2009-04-16 Panasonic Corp Secondary-battery life estimation apparatus and method
US20150301121A1 (en) * 2014-04-21 2015-10-22 Samsung Electronics Co., Ltd. Method and apparatus for estimating battery life during driving of electrical vehicle (ev)
JP2016133513A (en) * 2015-01-22 2016-07-25 三星電子株式会社Samsung Electronics Co.,Ltd. Battery-state estimation method and battery-state estimation apparatus
JP2020054214A (en) * 2018-09-20 2020-04-02 積水化学工業株式会社 Storage battery management device and storage battery management method
CN109725266A (en) * 2018-12-29 2019-05-07 蜂巢能源科技有限公司 A kind of calculation method and device of cell health state SOH
JP2021060198A (en) * 2019-10-02 2021-04-15 株式会社日立製作所 Battery state estimation device
JP2021140991A (en) * 2020-03-06 2021-09-16 本田技研工業株式会社 Diagnostic device of secondary battery
WO2022024235A1 (en) * 2020-07-29 2022-02-03 株式会社日立ハイテク Battery management device, battery management method

Also Published As

Publication number Publication date
JP2024029593A (en) 2024-03-06

Similar Documents

Publication Publication Date Title
US9533597B2 (en) Parameter identification offloading using cloud computing resources
CN109616704B (en) Device for battery management and method for managing charging of a battery
JP6534746B2 (en) Battery control device and battery system
US20190123571A1 (en) Battery Controlling Device
WO2012169061A1 (en) Battery control device and battery system
JP7463008B2 (en) Battery cell diagnostic device and method
JP7280161B2 (en) Battery state estimation device
JP7067549B2 (en) Power storage element management device and power storage element management method
AU2021233833A1 (en) Real-time battery fault detection and state-of-health monitoring
JP2014077681A (en) Chargeable/dischargeable power estimation apparatus for power storage element, power storage apparatus, and chargeable/dischargeable power estimation method
CN110376536B (en) SOH detection method and device for battery system, computer equipment and storage medium
JP7016704B2 (en) Rechargeable battery system
TWI818777B (en) Battery management device, battery management method
JP6171128B2 (en) Battery control system, vehicle control system
JP2022044172A (en) Determination device, power storage system, determination method, and determination program for multiple batteries
JP5851514B2 (en) Battery control device, secondary battery system
JP7003751B2 (en) Battery diagnostic device and battery diagnostic method
US20240027540A1 (en) Battery Cell Diagnosing Apparatus and Method
WO2024042758A1 (en) Battery management device and battery management method
JP6135898B2 (en) Charge control device for power storage element, power storage device, and charge control method
KR20210141212A (en) Apparatus and method for diagnosing battery
JP7168336B2 (en) Secondary battery controller
KR20200091749A (en) Battery management appratus, battery management method and battery pack
JP2020057565A (en) Diagnosis method and diagnosis system for deteriorated condition of storage battery
JP7111642B2 (en) battery controller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856879

Country of ref document: EP

Kind code of ref document: A1