WO2024042737A1 - Liquefied carbon dioxide storage equipment and marine vessel - Google Patents

Liquefied carbon dioxide storage equipment and marine vessel Download PDF

Info

Publication number
WO2024042737A1
WO2024042737A1 PCT/JP2023/005532 JP2023005532W WO2024042737A1 WO 2024042737 A1 WO2024042737 A1 WO 2024042737A1 JP 2023005532 W JP2023005532 W JP 2023005532W WO 2024042737 A1 WO2024042737 A1 WO 2024042737A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
tank
pipe
dioxide gas
liquefied carbon
Prior art date
Application number
PCT/JP2023/005532
Other languages
French (fr)
Japanese (ja)
Inventor
和也 安部
俊夫 小形
晋介 森本
怜子 ▲高▼島
岳 佐々木
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2024042737A1 publication Critical patent/WO2024042737A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/04Arrangement or mounting of valves

Definitions

  • the present disclosure relates to liquefied carbon dioxide storage equipment and ships.
  • This application claims priority to Japanese Patent Application No. 2022-133303 filed in Japan on August 24, 2022, the contents of which are incorporated herein.
  • Patent Document 1 discloses a configuration in which such a tank is equipped with a safety valve so that the pressure inside the tank does not rise excessively. The safety valve releases the gas inside the tank to the outside when the pressure inside the tank reaches a predetermined operating pressure value.
  • the present disclosure has been made to solve the above problems, and is a liquefied carbon dioxide storage facility that can suppress a local increase in carbon dioxide concentration when discharging carbon dioxide gas from inside a tank. , and ships.
  • a liquefied carbon dioxide storage facility includes a tank, a pressure release device, and a discharge pipe.
  • the tank can store liquefied carbon dioxide.
  • the pressure relief device is provided on the tank.
  • the pressure release device is capable of releasing pressure within the tank.
  • the discharge pipe extends from the pressure relief device and discharges carbon dioxide gas from within the tank to the outside.
  • the discharge direction of the carbon dioxide gas in the discharge pipe is inclined upward with respect to the horizontal direction.
  • a ship according to the present disclosure includes a hull and a liquefied carbon dioxide storage facility as described above.
  • FIG. 1 is a plan view showing a schematic configuration of a ship according to an embodiment of the present disclosure.
  • 2 is a diagram showing a liquefied carbon dioxide storage facility installed in a ship according to an embodiment of the present disclosure, and is a sectional view taken along line II-II in FIG. 1.
  • FIG. 2 is a diagram showing a liquefied carbon dioxide storage facility installed in a ship according to an embodiment of the present disclosure, and is a sectional view taken along line III-III in FIG. 1.
  • FIG. FIG. 2 is a cross-sectional view showing a discharge tube according to an embodiment of the present disclosure.
  • FIG. 2 is a diagram schematically showing a movement trajectory of carbon dioxide gas when carbon dioxide gas is released from a discharge pipe of a ship according to an embodiment of the present disclosure.
  • the vessel 1 transports liquefied carbon dioxide.
  • this ship 1 includes at least a hull 2 and a liquefied carbon dioxide storage facility 10.
  • the hull 2 has a pair of sides 3A and 3B forming its outer shell, a bottom 4 (see FIG. 2), and an upper deck 5.
  • the sides 3A and 3B have a pair of side skins forming port and starboard sides, respectively.
  • the bottom 4 has a bottom shell plate that connects these sides 3A and 3B.
  • the pair of sides 3A, 3B and the bottom 4 make the outer shell of the hull 2 U-shaped in a cross section perpendicular to the bow and stern direction Da.
  • the upper deck 5 illustrated in this embodiment is a full deck exposed to the outside.
  • an upper structure 7 having a living area is formed in the hull 2, for example, on an upper deck 5 on the stern 2b side. Note that the position and size of the upper structure 7 can be changed as appropriate.
  • a cargo loading compartment (hold) 8 is formed in the hull 2 closer to the bow 2a than the superstructure 7.
  • the cargo loading compartment 8 is recessed from the upper deck 5 toward the bottom of the ship and opens upward.
  • FIG. 3 is a diagram showing a liquefied carbon dioxide storage facility installed in a ship according to an embodiment of the present disclosure, and is a sectional view taken along line III-III in FIG. 1.
  • the liquefied carbon dioxide storage facility 10 mainly includes a tank 11, a pressure release device 30, and a discharge pipe 40 (see FIG. 2).
  • the pressure release device 30 is simplified and shown as a square.
  • Tank configuration As shown in FIG. 1, a plurality of tanks 11 are arranged in the cargo loading compartment 8 in a line in the bow and aft direction Da. In the embodiment of the present disclosure, two tanks 11 are arranged at intervals in the bow-stern direction Da, for example. Each tank 11 can store liquefied carbon dioxide L.
  • the tank 11 has, for example, a cylindrical shape.
  • the tank 11 extends with the bow and aft direction Da as the longitudinal direction Dx.
  • the tank 11 includes a cylindrical portion 12 and an end plate portion 13.
  • the cylindrical portion 12 extends in the longitudinal direction Dx.
  • the cylindrical portion 12 is formed in a cylindrical shape, and its cross-sectional shape perpendicular to the longitudinal direction Dx is circular.
  • the mirror plate portions 13 are arranged at both ends of the cylindrical portion 12 in the longitudinal direction Dx.
  • Each mirror plate portion 13 has a hemispherical shape and closes the opening of the cylindrical portion 12 in the longitudinal direction Dx.
  • the tank 11 may be arranged so that its longitudinal direction Dx is along the vertical direction Dv. Further, the tank 11 is not limited to a cylindrical shape, and may have other shapes such as a spherical shape or a rectangular shape.
  • the tank 11 is provided with, for example, a loading pipe 15 and a discharging pipe 16.
  • the loading pipe 15 and the discharging pipe 16 are each connected to the tank 11. Liquefied carbon dioxide L can flow through the loading pipe 15 and the discharging pipe 16, respectively.
  • the loading pipe 15 loads liquefied carbon dioxide L supplied from the outside into the tank 11.
  • the loading pipe 15 penetrates the top of the tank 11 and extends inside and outside the tank 11 from above to below in the vertical direction Dv.
  • the tip of the loading pipe 15 (in other words, the lower end in the up-down direction Dv) is open at the lower part of the tank 11 facing downward.
  • the discharge pipe 16 communicates with the inside of the tank 11.
  • the discharge pipe 16 penetrates the top of the tank 11 from the outside of the tank 11 and extends into the inside of the tank 11 .
  • the distal end of the dispensing pipe 16 is arranged at the lower part of the tank 11 .
  • a pump 17 is provided at the tip of the delivery pipe 16. Pump 17 is arranged within tank 11 . The pump 17 sucks in liquefied carbon dioxide L from the tank 11 and sends it out of the tank 11 through the discharge pipe 16 .
  • the pressure release device 30 is provided in the tank 11.
  • the pressure relief device 30 is a so-called safety valve.
  • the pressure release device 30 releases the pressure inside the tank 11 to the outside when the pressure inside the tank 11 reaches a preset set pressure.
  • the pressure release device 30 can also be used for adjusting the pressure inside the tank 11 for a desired purpose.
  • the pressure release device 30 is connected to the tank 11 via piping 31. Piping 31 is connected to the top of tank 11, for example, and communicates with the gas phase within tank 11.
  • the gas phase in the tank 11 mainly contains carbon dioxide gas G generated by evaporating the liquefied carbon dioxide L.
  • a discharge pipe 40 (see FIG. 2) is connected to the pressure release device 30. The pressure release device 30 and the discharge pipe 40 are arranged above the upper deck 5, for example.
  • the pressure release device 30 is in a closed state when the pressure of the gas phase within the tank 11 is less than a preset pressure.
  • the pressure release device 30 becomes open when the pressure of the gas phase within the tank 11 reaches a preset pressure, and connects the pipe 31 and the discharge pipe 40 .
  • the gaseous carbon dioxide gas G in the tank 11 is released from the pipe 31, through the pressure release device 30, and through the release pipe 40 to the outside.
  • a discharge tube 40 extends from the pressure relief device 30.
  • the release pipe 40 releases carbon dioxide gas G from inside the tank 11 to the outside when the pressure release device 30 is in an open state.
  • the discharge tube 40 is cylindrical, and its cross-sectional shape intersecting the extending direction may be circular or polygonal.
  • the discharge tube 40 can be made of a metal material such as stainless steel alloy, for example.
  • FIG. 4 is a cross-sectional view of a discharge tube according to an embodiment of the present disclosure.
  • the discharge pipe 40 includes a connecting pipe section 41, an inclined pipe section 42, and a curved pipe section 43.
  • the curved pipe section 43 is arranged between the connecting pipe section 41 and the inclined pipe section 42 .
  • the connecting pipe section 41 is connected to the pressure release section 30r of the pressure release device 30.
  • the connecting pipe portion 41 extends from the pressure release portion 30r in a horizontal direction intersecting the vertical direction Dv, but the connecting pipe portion 41 does not extend directly upward from the pressure release portion 30r, for example. It's okay.
  • the curved pipe section 43 is provided between the connecting pipe section 41 and the inclined pipe section 42.
  • the curved pipe section 43 is formed between the connecting pipe section 41 and the inclined pipe section 42 .
  • the curved pipe portion 43 is curved with a curvature less than or equal to a predetermined value.
  • the discharge pipe 40 is not provided with the curved pipe part 43 and the connection part between the connecting pipe part 41 and the inclined pipe part 42 is bent without being curved, the pressure loss with respect to the flow of carbon dioxide gas G becomes larger. This may cause a local decrease in the pressure of carbon dioxide gas G, leading to the production of dry ice.
  • the curved pipe part 43 is provided between the connecting pipe part 41 and the inclined pipe part 42, and the curvature of the curved pipe part 43 is made as small as possible. Pressure loss against carbon gas G is suppressed, and dry ice generation is suppressed.
  • the inclined pipe part 42 is inclined with respect to both the vertical direction Dv and the horizontal direction Dh perpendicular to the vertical direction Dv, and extends obliquely upward from the connecting pipe part 41.
  • the vertical direction Dv refers to the vertical direction when the hull 2 is not shaking.
  • the horizontal direction Dh refers to the horizontal direction Dh in a state where the hull 2 is not shaking.
  • a tip opening 42h that opens obliquely upward is formed at the tip 42t of the inclined tube portion 42 of the discharge tube 40.
  • the release direction Ds of carbon dioxide gas G from the inclined tube section 42 through the tip opening 42h is the extending direction De of the inclined tube section 42. That is, the release direction Ds of the carbon dioxide gas G in the release pipe 40 is inclined upward with respect to the horizontal direction Dh.
  • the pressure release device 30 is in a closed state during normal times when the pressure of the gas phase in the tank 11 is less than a preset pressure. In this state, the pipe 31 and the discharge pipe 40 are cut off by the pressure release device 30. When the pressure of the gas phase within the tank 11 reaches a preset set pressure for some reason, the pressure release device 30 is brought into an open state, and the pipe 31 and the discharge pipe 40 are communicated with each other. As a result, the gaseous carbon dioxide gas G in the tank 11 is released from the pipe 31 to the release pipe 40 via the pressure release device 30. The carbon dioxide gas G released from the pressure release device 30 into the release pipe 40 passes through the connecting pipe part 41 and the curved pipe part 43, and is released into the outside atmosphere from the inclined pipe part 42.
  • FIG. 5 is a diagram schematically showing a movement trajectory of carbon dioxide gas when carbon dioxide gas is released from a discharge pipe of a ship according to an embodiment of the present disclosure.
  • the carbon dioxide gas G released from the release pipe 40 since the release direction Ds of the carbon dioxide gas G in the release pipe 40 is inclined upward with respect to the horizontal direction Dh, the carbon dioxide gas G released from the release pipe 40 has a parabolic shape. After rising diagonally upward through the atmosphere, it descends diagonally downward through the atmosphere. The carbon dioxide gas G released from the release pipe 40 descends diagonally downward, so that when viewed from the vertical direction Dv, the carbon dioxide gas G reaches the sea surface (or the land surface if released toward land). ), it diffuses more widely in the emission direction Ds.
  • the reach distance D is determined by the inclination angle ⁇ of the release direction Ds of the carbon dioxide gas G in the release pipe 40 with respect to the horizontal direction Dh, the set pressure when the pressure release device 30 switches from the closed state to the open state, and the set pressure of the release pipe 40. It varies depending on various conditions such as the opening diameter of the tip opening 42h, wind speed, navigation speed of the ship 1, temperature, and atmospheric pressure.
  • the maximum height H of the carbon dioxide gas G released from the release pipe 40 may be several hundred meters or more.
  • the inclination angle ⁇ of the release direction Ds of the carbon dioxide gas G with respect to the horizontal direction Dh can be, for example, 15° or more and 75° or less.
  • the inclination angle ⁇ of the discharge direction Ds with respect to the horizontal direction Dh may be, for example, 30° or more and 60° or less.
  • the ship 1 is equipped with the liquefied carbon dioxide storage facility 10.
  • the release direction Ds of the carbon dioxide gas G from the inclined pipe portion 42 of the release pipe 40 is in a direction intersecting the bow and stern direction Da (for example, in the transverse direction) when viewed from the vertical direction Dv. It is preferable to set For example, when the release direction Ds of the carbon dioxide gas G is directed toward the bow 2a side in the bow and stern direction Da, when the carbon dioxide gas G is released obliquely upward from the release pipe 40 of the vessel 1 during navigation, the released dioxide There is a possibility that the ship 1, which has continued to navigate after being released, may approach (enter) the carbon gas G that has descended through the atmosphere in a parabolic manner.
  • the release direction Ds of the carbon dioxide gas G when the release direction Ds of the carbon dioxide gas G is directed toward the bow 2a side in the bow-stern direction Da, the carbon dioxide gas G released from the release pipe 40 may collide with the upper structure 7. Therefore, as shown in FIG. 2, the release direction Ds of the carbon dioxide gas G from the inclined pipe portion 42 of the release pipe 40 is determined by, for example, the ship width connecting the gunwale side 3A and the gunwale side 3B when viewed from the vertical direction Dv. It may be set to face one side in the direction Dw.
  • the release direction Ds of carbon dioxide gas G from the inclined pipe portion 42 of the release pipe 40 is set to
  • the orientation of the inclined pipe portion 42 may be adjustable (changed) so that it faces toward the ocean in the width direction Dw.
  • the discharge direction Ds of the carbon dioxide gas G in the discharge pipe 40 is inclined upward with respect to the horizontal direction Dh.
  • the carbon dioxide gas G released from the pressure release device 30 can be prevented from falling down and can be diffused in a direction away from the pressure release device 30.
  • the carbon dioxide gas G released from the pressure release device 30 can be locally rained down. It is well diffused in the direction away from the pressure release device 30 while suppressing the pressure from coming down.
  • the carbon dioxide gas G released from the pressure release device 30 can be locally rained down. It is possible to better diffuse the air in the direction away from the pressure release device 30 while suppressing the air from coming down.
  • the discharge pipe 40 includes a connecting pipe section 41 and an inclined pipe section 42.
  • the carbon dioxide gas G is released from the pressure release device 30, through the connecting pipe part 41, and from the inclined pipe part 42 that extends upwardly with respect to the horizontal direction Dh.
  • the carbon dioxide gas G released from the pressure release device 30 can be diffused in the direction away from the pressure release device 30 while suppressing the carbon dioxide gas G from falling down like rain.
  • the curved pipe part 43 is provided between the connecting pipe part 41 and the inclined pipe part 42.
  • the carbon dioxide gas G can be released from the connecting pipe part 41 to the inclined pipe part 42 via the curved pipe part 43 while suppressing the pressure drop of the carbon dioxide gas G. Therefore, generation of dry ice within the discharge pipe 40 is suppressed.
  • the liquefied carbon dioxide storage facility 10 is provided in the ship 1, but the liquefied carbon dioxide storage facility 10 may be provided in the floating body of offshore floating equipment, a liquefied gas storage facility on land, etc. Good too.
  • the release direction Ds of the carbon dioxide gas G released from the release pipe 40 is directed toward the ocean side rather than toward the land side where other buildings, etc. are located. is preferable.
  • the liquefied carbon dioxide storage facility 10 includes a tank 11 capable of storing liquefied carbon dioxide L, and a pressure release device provided in the tank 11 and capable of releasing the pressure inside the tank 11. 30, and a discharge pipe 40 extending from the pressure release device 30 and discharging carbon dioxide gas G from inside the tank 11 to the outside, wherein the discharge direction Ds of the carbon dioxide gas G in the discharge pipe 40 is horizontal. It is inclined upward with respect to the direction Dh.
  • the liquefied carbon dioxide storage facility 10 according to the second aspect is the liquefied carbon dioxide storage facility 10 of (1), in which the inclination angle of the discharge direction Ds with respect to the horizontal direction Dh is 15° or more and 75° or less. It is.
  • the carbon dioxide gas G released from the pressure release device 30 can be locally rained down. It is well diffused in the direction away from the pressure release device 30 while suppressing the amount of water.
  • the liquefied carbon dioxide storage facility 10 according to the third aspect is the liquefied carbon dioxide storage facility 10 of (2), wherein the inclination angle of the discharge direction Ds with respect to the horizontal direction Dh is 30° or more and 60° or less. It is.
  • the carbon dioxide gas G released from the pressure release device 30 can be locally rained down. It is possible to better diffuse the air in the direction away from the pressure release device 30 while suppressing the air flow.
  • the liquefied carbon dioxide storage facility 10 according to the fourth aspect is the liquefied carbon dioxide storage facility 10 according to any one of (1) to (3), in which the discharge pipe 40 is connected to the pressure release device 30. It has a connecting pipe part 41 connected to and extending from the pressure release device 30, and an inclined pipe part 42 extending upwardly from the connecting pipe part 41 with respect to the horizontal direction Dh.
  • the carbon dioxide gas G is released from the pressure release device 30 through the connecting pipe part 41 and from the inclined pipe part 42 that extends upwardly with respect to the horizontal direction Dh.
  • the carbon dioxide gas G released from the pressure release device 30 can be diffused in the direction away from the pressure release device 30 while suppressing the carbon dioxide gas G from falling down like rain.
  • the liquefied carbon dioxide storage facility 10 is the liquefied carbon dioxide storage facility 10 of (4), in which the discharge pipe 40 is connected to the connecting pipe section 41 and the inclined pipe section 42. It further includes a curved pipe section 43 that is provided between the two and curved with a curvature equal to or less than a predetermined value.
  • the carbon dioxide gas G can be made to flow from the connecting pipe part 41 to the inclined pipe part 42 via the curved pipe part 43 while suppressing the pressure drop of the carbon dioxide gas G. Therefore, generation of dry ice within the discharge pipe 40 is suppressed.
  • the ship 1 according to the sixth aspect includes the ship body 2 and the liquefied carbon dioxide storage facility 10 according to any one of (1) to (5).
  • Curved tube section D...reaching distance Da...fore/stern direction De...stretching direction Dh...horizontal direction Ds...release direction Dv...vertical direction Dw...width direction Dx...longitudinal direction G...carbon dioxide gas L...liquefied carbon dioxide P1...maximum Arrived position P2...Position H...Height ⁇ ...Inclination angle

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

This liquefied carbon dioxide storage equipment comprises a tank that is capable of retaining liquefied carbon dioxide, a pressure release device that is provided to the tank and is capable of releasing the pressure in the tank, and a discharge tube that extends from the pressure release device and discharges carbon dioxide gas from inside the tank to the outside, wherein the discharge direction of the carbon dioxide gas from the discharge tube is inclined upward with respect to the horizontal direction.

Description

液化二酸化炭素格納設備、及び船舶Liquefied carbon dioxide storage equipment and ships
 本開示は、液化二酸化炭素格納設備、及び船舶に関する。
 本願は、2022年8月24日に日本に出願された特願2022-133303号について優先権を主張し、その内容をここに援用する。
The present disclosure relates to liquefied carbon dioxide storage equipment and ships.
This application claims priority to Japanese Patent Application No. 2022-133303 filed in Japan on August 24, 2022, the contents of which are incorporated herein.
 液化ガスを収容するタンクにおいては、タンク内の液化ガスの蒸発等により、タンク内の圧力が上昇することがある。例えば、特許文献1には、このようなタンクに、タンク内の圧力が過度に上昇しないよう、安全弁を備える構成が開示されている。安全弁は、タンク内の圧力が予め定めた作動圧力値に到達したときに、タンク内のガスを外部に放出する。 In a tank containing liquefied gas, the pressure inside the tank may increase due to evaporation of the liquefied gas within the tank. For example, Patent Document 1 discloses a configuration in which such a tank is equipped with a safety valve so that the pressure inside the tank does not rise excessively. The safety valve releases the gas inside the tank to the outside when the pressure inside the tank reaches a predetermined operating pressure value.
日本国特許第6582347号公報Japanese Patent No. 6582347
 ところで、安全弁からガスを放出する場合、上方に向かってガスを放出するのが一般的である。
 しかしながら、タンクに貯留する液化ガスが液化二酸化炭素である場合、二酸化炭素ガスの比重は大気よりも大きい。このため、安全弁から二酸化炭素ガスを上方に放出すると、放出された二酸化炭素ガスが、降り注ぐように下りてきて、とりわけ無風条件のときに拡散されず、大気中の二酸化炭素濃度が局所的に高くなってしまう可能性がある。
By the way, when gas is released from a safety valve, it is common to release the gas upward.
However, when the liquefied gas stored in the tank is liquefied carbon dioxide, the specific gravity of the carbon dioxide gas is greater than that of the atmosphere. For this reason, when carbon dioxide gas is released upward from the safety valve, the released carbon dioxide gas comes down like rain and is not dispersed, especially when there is no wind, causing a locally high concentration of carbon dioxide in the atmosphere. There is a possibility that it will become.
 本開示は、上記課題を解決するためになされたものであって、タンク内から二酸化炭素ガスを排出する場合に、二酸化炭素濃度が局所的に高くなることを抑えることができる液化二酸化炭素格納設備、及び船舶を提供することを目的とする。 The present disclosure has been made to solve the above problems, and is a liquefied carbon dioxide storage facility that can suppress a local increase in carbon dioxide concentration when discharging carbon dioxide gas from inside a tank. , and ships.
 上記課題を解決するために、本開示に係る液化二酸化炭素格納設備は、タンクと、圧力解放装置と、放出管と、を備える。前記タンクは、液化二酸化炭素を貯留可能である。前記圧力解放装置は、前記タンクに設けられている。前記圧力解放装置は、前記タンク内の圧力を解放可能である。前記放出管は、前記圧力解放装置から延びて前記タンク内から二酸化炭素ガスを外部に放出する。前記放出管における前記二酸化炭素ガスの放出方向が、水平方向に対して上方に傾斜している。 In order to solve the above problems, a liquefied carbon dioxide storage facility according to the present disclosure includes a tank, a pressure release device, and a discharge pipe. The tank can store liquefied carbon dioxide. The pressure relief device is provided on the tank. The pressure release device is capable of releasing pressure within the tank. The discharge pipe extends from the pressure relief device and discharges carbon dioxide gas from within the tank to the outside. The discharge direction of the carbon dioxide gas in the discharge pipe is inclined upward with respect to the horizontal direction.
 本開示に係る船舶は、船体と、上記したような液化二酸化炭素格納設備と、を備える。 A ship according to the present disclosure includes a hull and a liquefied carbon dioxide storage facility as described above.
 本開示の液化二酸化炭素格納設備、及び船舶によれば、タンク内から二酸化炭素ガスを排出する場合に、二酸化炭素濃度が局所的に高くなることを抑えることができる。 According to the liquefied carbon dioxide storage equipment and ship of the present disclosure, when carbon dioxide gas is discharged from inside the tank, it is possible to suppress the carbon dioxide concentration from becoming locally high.
本開示の実施形態に係る船舶の概略構成を示す平面図である。1 is a plan view showing a schematic configuration of a ship according to an embodiment of the present disclosure. 本開示の実施形態に係る船舶に設けられた液化二酸化炭素格納設備を示す図であり、図1のII-II断面図である。2 is a diagram showing a liquefied carbon dioxide storage facility installed in a ship according to an embodiment of the present disclosure, and is a sectional view taken along line II-II in FIG. 1. FIG. 本開示の実施形態に係る船舶に設けられた液化二酸化炭素格納設備を示す図であり、図1のIII-III断面図である。2 is a diagram showing a liquefied carbon dioxide storage facility installed in a ship according to an embodiment of the present disclosure, and is a sectional view taken along line III-III in FIG. 1. FIG. 本開示の実施形態に係る放出管を示す断面図である。FIG. 2 is a cross-sectional view showing a discharge tube according to an embodiment of the present disclosure. 本開示の実施形態に係る船舶の放出管から、二酸化炭素ガスを放出した際の、二酸化炭素ガスの移動軌跡を模式的に示す図である。FIG. 2 is a diagram schematically showing a movement trajectory of carbon dioxide gas when carbon dioxide gas is released from a discharge pipe of a ship according to an embodiment of the present disclosure.
 以下、本開示の実施形態に係る液化二酸化炭素格納設備、及び船舶について、図1~図5を参照して説明する。
(船舶の構成)
 本開示の実施形態において、船舶1は、液化二酸化炭素を運搬する。図1、図2に示すように、この船舶1は、船体2と、液化二酸化炭素格納設備10と、を少なくとも備えている。
Hereinafter, a liquefied carbon dioxide storage facility and a ship according to an embodiment of the present disclosure will be described with reference to FIGS. 1 to 5.
(Ship configuration)
In an embodiment of the present disclosure, the vessel 1 transports liquefied carbon dioxide. As shown in FIGS. 1 and 2, this ship 1 includes at least a hull 2 and a liquefied carbon dioxide storage facility 10.
(船体の構成)
 船体2は、その外殻をなす、一対の舷側3A,3Bと、船底4(図2参照)と、上甲板5と、を有している。舷側3A,3Bは、左右舷側をそれぞれ形成する一対の舷側外板を有する。図2にしめすように、船底4は、これら舷側3A,3Bを接続する船底外板を有する。これら一対の舷側3A,3B及び船底4により、船体2の外殻は、船首尾方向Daに垂直な断面において、U字状をなしている。この実施形態で例示する上甲板5は、外部に露出する全通甲板である。図1に示すように、船体2には、例えば船尾2b側の上甲板5上に、居住区を有する上部構造7が形成されている。なお、上部構造7の位置や大きさは、適宜変更可能である。
(hull configuration)
The hull 2 has a pair of sides 3A and 3B forming its outer shell, a bottom 4 (see FIG. 2), and an upper deck 5. The sides 3A and 3B have a pair of side skins forming port and starboard sides, respectively. As shown in FIG. 2, the bottom 4 has a bottom shell plate that connects these sides 3A and 3B. The pair of sides 3A, 3B and the bottom 4 make the outer shell of the hull 2 U-shaped in a cross section perpendicular to the bow and stern direction Da. The upper deck 5 illustrated in this embodiment is a full deck exposed to the outside. As shown in FIG. 1, an upper structure 7 having a living area is formed in the hull 2, for example, on an upper deck 5 on the stern 2b side. Note that the position and size of the upper structure 7 can be changed as appropriate.
 船体2内には、上部構造7よりも船首2a側に、貨物搭載区画(ホールド)8が形成されている。貨物搭載区画8は、上甲板5に対して下方の船底に向けて凹み、上方に開口している。 A cargo loading compartment (hold) 8 is formed in the hull 2 closer to the bow 2a than the superstructure 7. The cargo loading compartment 8 is recessed from the upper deck 5 toward the bottom of the ship and opens upward.
(液化二酸化炭素格納設備の全体構成)
 図3は、本開示の実施形態に係る船舶に設けられた液化二酸化炭素格納設備を示す図であり、図1のIII-III断面図である。
 図2、図3に示すように、液化二酸化炭素格納設備10は、タンク11と、圧力解放装置30と、放出管40(図2参照)と、を主に備えている。なお、図3では圧力解放装置30を簡略化して四角形で示している。
(Overall configuration of liquefied carbon dioxide storage facility)
FIG. 3 is a diagram showing a liquefied carbon dioxide storage facility installed in a ship according to an embodiment of the present disclosure, and is a sectional view taken along line III-III in FIG. 1.
As shown in FIGS. 2 and 3, the liquefied carbon dioxide storage facility 10 mainly includes a tank 11, a pressure release device 30, and a discharge pipe 40 (see FIG. 2). In addition, in FIG. 3, the pressure release device 30 is simplified and shown as a square.
(タンクの構成)
 図1に示すように、タンク11は、貨物搭載区画8内に、船首尾方向Daに並んで、複数が配置されている。本開示の実施形態において、タンク11は、例えば、船首尾方向Daに間隔を空けて二つ配置されている。各タンク11は、液化二酸化炭素Lを貯留可能である。
(Tank configuration)
As shown in FIG. 1, a plurality of tanks 11 are arranged in the cargo loading compartment 8 in a line in the bow and aft direction Da. In the embodiment of the present disclosure, two tanks 11 are arranged at intervals in the bow-stern direction Da, for example. Each tank 11 can store liquefied carbon dioxide L.
 図3に示すように、タンク11は、例えば、円筒状をなしている。タンク11は、船首尾方向Daを長手方向Dxとして延びている。タンク11は、筒状部12と、鏡板部13と、を備えている。筒状部12は、その長手方向Dxに延びている。図2に示すように、この実施形態において、筒状部12は、円筒状に形成され、その長手方向Dxに垂直な断面形状が円形をなしている。図3に示すように、鏡板部13は、筒状部12の長手方向Dxの両端部にそれぞれ配置されている。各鏡板部13は、半球状で、筒状部12の長手方向Dxの開口を閉塞している。
 なお、タンク11は、その長手方向Dxを上下方向Dvに沿わせるように配置してもよい。また、タンク11は、円筒状に限られるものではなく、球形、方形等、他の形状であってもよい。
As shown in FIG. 3, the tank 11 has, for example, a cylindrical shape. The tank 11 extends with the bow and aft direction Da as the longitudinal direction Dx. The tank 11 includes a cylindrical portion 12 and an end plate portion 13. The cylindrical portion 12 extends in the longitudinal direction Dx. As shown in FIG. 2, in this embodiment, the cylindrical portion 12 is formed in a cylindrical shape, and its cross-sectional shape perpendicular to the longitudinal direction Dx is circular. As shown in FIG. 3, the mirror plate portions 13 are arranged at both ends of the cylindrical portion 12 in the longitudinal direction Dx. Each mirror plate portion 13 has a hemispherical shape and closes the opening of the cylindrical portion 12 in the longitudinal direction Dx.
Note that the tank 11 may be arranged so that its longitudinal direction Dx is along the vertical direction Dv. Further, the tank 11 is not limited to a cylindrical shape, and may have other shapes such as a spherical shape or a rectangular shape.
 タンク11には、例えば、積込配管15と、払出配管16と、が設けられている。積込配管15、払出配管16は、それぞれタンク11に接続されている。積込配管15、払出配管16は、それぞれ液化二酸化炭素Lが流通可能である。 The tank 11 is provided with, for example, a loading pipe 15 and a discharging pipe 16. The loading pipe 15 and the discharging pipe 16 are each connected to the tank 11. Liquefied carbon dioxide L can flow through the loading pipe 15 and the discharging pipe 16, respectively.
 積込配管15は、外部から供給される液化二酸化炭素Lをタンク11内に積み込む。積込配管15は、例えば、タンク11の頂部を貫通し、タンク11の内外を上下方向Dvの上方から下方に向かって延びている。積込配管15の先端(言い換えれば、上下方向Dvにおける下端)は、タンク11内の下部で下方を向いて開口している。 The loading pipe 15 loads liquefied carbon dioxide L supplied from the outside into the tank 11. For example, the loading pipe 15 penetrates the top of the tank 11 and extends inside and outside the tank 11 from above to below in the vertical direction Dv. The tip of the loading pipe 15 (in other words, the lower end in the up-down direction Dv) is open at the lower part of the tank 11 facing downward.
 払出配管16は、タンク11内に連通している。払出配管16は、例えば、タンク11の外部からタンク11の頂部を貫通し、タンク11の内部に延びている。払出配管16の先端部は、タンク11内の下部に配置されている。払出配管16の先端部には、ポンプ17が設けられている。ポンプ17は、タンク11内に配置されている。ポンプ17は、タンク11内の液化二酸化炭素Lを吸い込み、払出配管16を通してタンク11の外部に送り出す。 The discharge pipe 16 communicates with the inside of the tank 11. For example, the discharge pipe 16 penetrates the top of the tank 11 from the outside of the tank 11 and extends into the inside of the tank 11 . The distal end of the dispensing pipe 16 is arranged at the lower part of the tank 11 . A pump 17 is provided at the tip of the delivery pipe 16. Pump 17 is arranged within tank 11 . The pump 17 sucks in liquefied carbon dioxide L from the tank 11 and sends it out of the tank 11 through the discharge pipe 16 .
(圧力解放装置、放出管の構成)
 図2、図3に示すように、圧力解放装置30は、タンク11に設けられている。圧力解放装置30は、いわゆる安全弁である。圧力解放装置30は、タンク11内の圧力が、予め設定された設定圧力に到達した場合に、タンク11内の圧力を外部に解放する。なお、圧力解放装置30は、安全弁以外に、タンク11内の圧力を所望の目的で調整する用途等にも適用可能である。
(Pressure release device, release pipe configuration)
As shown in FIGS. 2 and 3, the pressure release device 30 is provided in the tank 11. The pressure relief device 30 is a so-called safety valve. The pressure release device 30 releases the pressure inside the tank 11 to the outside when the pressure inside the tank 11 reaches a preset set pressure. In addition to the safety valve, the pressure release device 30 can also be used for adjusting the pressure inside the tank 11 for a desired purpose.
 圧力解放装置30は、タンク11に、配管31を介して接続されている。配管31は、例えば、タンク11の頂部に接続され、タンク11内の気相に連通している。タンク11内の気相には、液化二酸化炭素Lが蒸発することで生成された二酸化炭素ガスGが主に存在している。圧力解放装置30には、放出管40(図2参照)が接続されている。圧力解放装置30、及び放出管40は、例えば、上甲板5の上方に配置されている。 The pressure release device 30 is connected to the tank 11 via piping 31. Piping 31 is connected to the top of tank 11, for example, and communicates with the gas phase within tank 11. The gas phase in the tank 11 mainly contains carbon dioxide gas G generated by evaporating the liquefied carbon dioxide L. A discharge pipe 40 (see FIG. 2) is connected to the pressure release device 30. The pressure release device 30 and the discharge pipe 40 are arranged above the upper deck 5, for example.
 圧力解放装置30は、タンク11内の気相の圧力が、予め設定された設定圧力未満である場合には、閉状態とされている。圧力解放装置30は、タンク11内の気相の圧力が、予め設定された設定圧力に到達した場合に、開状態となり、配管31と放出管40とを連通させる。これにより、タンク11内の気相の二酸化炭素ガスGが、配管31から、圧力解放装置30を経て、放出管40を通して外部に放出される。 The pressure release device 30 is in a closed state when the pressure of the gas phase within the tank 11 is less than a preset pressure. The pressure release device 30 becomes open when the pressure of the gas phase within the tank 11 reaches a preset pressure, and connects the pipe 31 and the discharge pipe 40 . As a result, the gaseous carbon dioxide gas G in the tank 11 is released from the pipe 31, through the pressure release device 30, and through the release pipe 40 to the outside.
 放出管40は、圧力解放装置30から延びている。放出管40は、圧力解放装置30が開状態である場合に、タンク11内から二酸化炭素ガスGを外部に放出する。放出管40は、筒状で、その延伸方向に交差する断面形状は、円形であってもよいし、多角形状であってもよい。放出管40は、例えば、ステンレス合金等の金属材料によって形成することができる。 A discharge tube 40 extends from the pressure relief device 30. The release pipe 40 releases carbon dioxide gas G from inside the tank 11 to the outside when the pressure release device 30 is in an open state. The discharge tube 40 is cylindrical, and its cross-sectional shape intersecting the extending direction may be circular or polygonal. The discharge tube 40 can be made of a metal material such as stainless steel alloy, for example.
 図4は、本開示の実施形態に係る放出管を示す断面図である。
 図4に示すように、放出管40は、接続管部41と、傾斜管部42と、湾曲管部43と、を有している。湾曲管部43は、接続管部41と傾斜管部42との間に配置されている。これにより、圧力解放装置30が開状態とされ、二酸化炭素ガスGが圧力解放装置30から放出管40に放出される場合、二酸化炭素ガスGは、接続管部41、湾曲管部43を経て傾斜管部42から外部の大気中に放出される。
FIG. 4 is a cross-sectional view of a discharge tube according to an embodiment of the present disclosure.
As shown in FIG. 4, the discharge pipe 40 includes a connecting pipe section 41, an inclined pipe section 42, and a curved pipe section 43. The curved pipe section 43 is arranged between the connecting pipe section 41 and the inclined pipe section 42 . As a result, when the pressure release device 30 is opened and the carbon dioxide gas G is released from the pressure release device 30 to the release pipe 40, the carbon dioxide gas G passes through the connecting pipe section 41, the curved pipe section 43, and then tilts. It is discharged from the pipe section 42 into the outside atmosphere.
 図2に示すように、接続管部41は、圧力解放装置30の圧力開放部30rに接続されている。本実施形態において、接続管部41は、圧力開放部30rから上下方向Dvに交差する横方向に延びているが、接続管部41は、例えば、圧力開放部30rからそのまま上方に向かって延びていてもよい。 As shown in FIG. 2, the connecting pipe section 41 is connected to the pressure release section 30r of the pressure release device 30. In this embodiment, the connecting pipe portion 41 extends from the pressure release portion 30r in a horizontal direction intersecting the vertical direction Dv, but the connecting pipe portion 41 does not extend directly upward from the pressure release portion 30r, for example. It's okay.
 図4に示すように、湾曲管部43は、接続管部41と傾斜管部42との間に設けられている。湾曲管部43は、接続管部41と傾斜管部42との間に形成されている。湾曲管部43は、定められた値以下の曲率で湾曲している。圧力解放装置30から二酸化炭素ガスGが放出管40に放出された場合、二酸化炭素ガスGは、接続管部41から湾曲管部43を経て傾斜管部42へと至る。 As shown in FIG. 4, the curved pipe section 43 is provided between the connecting pipe section 41 and the inclined pipe section 42. The curved pipe section 43 is formed between the connecting pipe section 41 and the inclined pipe section 42 . The curved pipe portion 43 is curved with a curvature less than or equal to a predetermined value. When carbon dioxide gas G is released from the pressure release device 30 into the release pipe 40 , the carbon dioxide gas G flows from the connecting pipe section 41 to the curved pipe section 43 to the inclined pipe section 42 .
 例えば、放出管40に湾曲管部43が設けられておらず、接続管部41と傾斜管部42との接続部が湾曲せずに屈曲している場合、二酸化炭素ガスGの流れに対する圧力損失が大きくなる。すると、二酸化炭素ガスGの圧力の局所的な低下が生じ、ドライアイスの生成に繋がることがある。
 これに対し、本実施形態のように、接続管部41と傾斜管部42との間に湾曲管部43を設け、湾曲管部43の曲率をなるべく小さくすることで、湾曲管部43における二酸化炭素ガスGに対する圧力損失を抑え、ドライアイスの生成が抑えられる。
For example, if the discharge pipe 40 is not provided with the curved pipe part 43 and the connection part between the connecting pipe part 41 and the inclined pipe part 42 is bent without being curved, the pressure loss with respect to the flow of carbon dioxide gas G becomes larger. This may cause a local decrease in the pressure of carbon dioxide gas G, leading to the production of dry ice.
On the other hand, as in the present embodiment, the curved pipe part 43 is provided between the connecting pipe part 41 and the inclined pipe part 42, and the curvature of the curved pipe part 43 is made as small as possible. Pressure loss against carbon gas G is suppressed, and dry ice generation is suppressed.
 傾斜管部42は、上下方向Dv、及び上下方向Dvに垂直な水平方向Dhの双方に対して傾斜し、接続管部41から斜め上方に延びている。本実施形態において、上下方向Dvとは、船体2が揺れていない状態における鉛直方向を指す。また、本明細書において、水平方向Dhとは、船体2が揺れていない状態における水平方向Dhを指す。 The inclined pipe part 42 is inclined with respect to both the vertical direction Dv and the horizontal direction Dh perpendicular to the vertical direction Dv, and extends obliquely upward from the connecting pipe part 41. In this embodiment, the vertical direction Dv refers to the vertical direction when the hull 2 is not shaking. Further, in this specification, the horizontal direction Dh refers to the horizontal direction Dh in a state where the hull 2 is not shaking.
 放出管40の傾斜管部42の先端42tには、斜め上方に向かって開口する先端開口42hが形成されている。圧力解放装置30が開状態とされた場合、二酸化炭素ガスGは、先端開口42hから放出される。傾斜管部42から先端開口42hからの二酸化炭素ガスGの放出方向Dsは、傾斜管部42の延伸方向Deとなる。つまり、放出管40における二酸化炭素ガスGの放出方向Dsは、水平方向Dhに対して上方に傾斜している。 A tip opening 42h that opens obliquely upward is formed at the tip 42t of the inclined tube portion 42 of the discharge tube 40. When the pressure release device 30 is in the open state, carbon dioxide gas G is released from the tip opening 42h. The release direction Ds of carbon dioxide gas G from the inclined tube section 42 through the tip opening 42h is the extending direction De of the inclined tube section 42. That is, the release direction Ds of the carbon dioxide gas G in the release pipe 40 is inclined upward with respect to the horizontal direction Dh.
 このような液化二酸化炭素格納設備10において、圧力解放装置30は、タンク11内の気相の圧力が、予め設定された設定圧力未満である平常時においては、閉状態とされている。この状態で、配管31と放出管40とは、圧力解放装置30によって遮断されている。
 何らかの原因により、タンク11内の気相の圧力が、予め設定された設定圧力に到達すると、圧力解放装置30が開状態となり、配管31と放出管40とが連通される。これにより、タンク11内の気相の二酸化炭素ガスGが、配管31から、圧力解放装置30を経て、放出管40に放出される。圧力解放装置30から放出管40に放出された二酸化炭素ガスGは、接続管部41、湾曲管部43を経て傾斜管部42から外部の大気中に放出される。
In such a liquefied carbon dioxide storage facility 10, the pressure release device 30 is in a closed state during normal times when the pressure of the gas phase in the tank 11 is less than a preset pressure. In this state, the pipe 31 and the discharge pipe 40 are cut off by the pressure release device 30.
When the pressure of the gas phase within the tank 11 reaches a preset set pressure for some reason, the pressure release device 30 is brought into an open state, and the pipe 31 and the discharge pipe 40 are communicated with each other. As a result, the gaseous carbon dioxide gas G in the tank 11 is released from the pipe 31 to the release pipe 40 via the pressure release device 30. The carbon dioxide gas G released from the pressure release device 30 into the release pipe 40 passes through the connecting pipe part 41 and the curved pipe part 43, and is released into the outside atmosphere from the inclined pipe part 42.
 図5は、本開示の実施形態に係る船舶の放出管から、二酸化炭素ガスを放出した際の、二酸化炭素ガスの移動軌跡を模式的に示す図である。
 図5に示すように、放出管40における二酸化炭素ガスGの放出方向Dsが、水平方向Dhに対して上方に傾斜しているため、放出管40から放出された二酸化炭素ガスGは、放物線状に、大気中を斜め上方に上昇した後、大気中を斜め下方に下降する。放出管40から放出された二酸化炭素ガスGが、斜め下方に下降してくることで、上下方向Dvから見た際に、二酸化炭素ガスGは、海面(陸地に向けて放出した場合は陸面)付近で、放出方向Dsに、より広く拡散する。
FIG. 5 is a diagram schematically showing a movement trajectory of carbon dioxide gas when carbon dioxide gas is released from a discharge pipe of a ship according to an embodiment of the present disclosure.
As shown in FIG. 5, since the release direction Ds of the carbon dioxide gas G in the release pipe 40 is inclined upward with respect to the horizontal direction Dh, the carbon dioxide gas G released from the release pipe 40 has a parabolic shape. After rising diagonally upward through the atmosphere, it descends diagonally downward through the atmosphere. The carbon dioxide gas G released from the release pipe 40 descends diagonally downward, so that when viewed from the vertical direction Dv, the carbon dioxide gas G reaches the sea surface (or the land surface if released toward land). ), it diffuses more widely in the emission direction Ds.
 放出管40が斜め上方に放出される二酸化炭素ガスGの最高到達位置P1までの高さH、大気中を斜め下方に下降し、海面(陸面)に到達した位置P2までの放出管40からの到達距離Dは、例えば、放出管40における二酸化炭素ガスGの放出方向Dsの水平方向Dhに対する傾斜角度θ、圧力解放装置30が閉状態から開状態に切り替わる際の設定圧力、放出管40の先端開口42hの開口径、風速、船舶1の航行速度、気温、気圧等の様々な条件によって変動する。例えば、条件によっては、放出管40から放出される二酸化炭素ガスGの最高到達高さHは、数百m以上となることもあり得る。 The height H from the discharge pipe 40 to the highest reaching position P1 of the carbon dioxide gas G discharged diagonally upward, and the height H from the discharge pipe 40 to the position P2 where the carbon dioxide gas G descends diagonally downward in the atmosphere and reaches the sea surface (land surface). For example, the reach distance D is determined by the inclination angle θ of the release direction Ds of the carbon dioxide gas G in the release pipe 40 with respect to the horizontal direction Dh, the set pressure when the pressure release device 30 switches from the closed state to the open state, and the set pressure of the release pipe 40. It varies depending on various conditions such as the opening diameter of the tip opening 42h, wind speed, navigation speed of the ship 1, temperature, and atmospheric pressure. For example, depending on the conditions, the maximum height H of the carbon dioxide gas G released from the release pipe 40 may be several hundred meters or more.
 また、二酸化炭素ガスGを水平方向Dhに放出すると、圧力解放装置30の水平方向Dhの側方に、他の船舶、洋上浮体設備、陸上設備等があった場合、放出された二酸化炭素ガスGにより、大気中の二酸化炭素濃度が局所的に高くなってしまう可能性がある。 Furthermore, when carbon dioxide gas G is released in the horizontal direction Dh, if there is another ship, offshore floating equipment, land equipment, etc. on the side of the pressure release device 30 in the horizontal direction Dh, the released carbon dioxide gas G As a result, the concentration of carbon dioxide in the atmosphere may locally increase.
 このため、放出管40から斜め上方に放出された二酸化炭素ガスGが、斜め下方に下降してきた際に、他の船舶、洋上浮体設備、陸上の設備等に影響が及ばないように、放出管40における二酸化炭素ガスGの放出方向Dsの水平方向Dhに対する傾斜角度θを設定するのが好ましい。二酸化炭素ガスGの放出方向Dsの水平方向Dhに対する傾斜角度θは、例えば、15°以上75°以下とすることができる。放出方向Dsの水平方向Dhに対する傾斜角度θは、例えば、30°以上60°以下としてもよい。 Therefore, when the carbon dioxide gas G released diagonally upward from the discharge pipe 40 descends diagonally downward, the discharge pipe is It is preferable to set an inclination angle θ of the release direction Ds of the carbon dioxide gas G at 40 with respect to the horizontal direction Dh. The inclination angle θ of the release direction Ds of the carbon dioxide gas G with respect to the horizontal direction Dh can be, for example, 15° or more and 75° or less. The inclination angle θ of the discharge direction Ds with respect to the horizontal direction Dh may be, for example, 30° or more and 60° or less.
 また、本実施形態では、液化二酸化炭素格納設備10が船舶1に備えられている。この場合、放出管40の傾斜管部42からの二酸化炭素ガスGの放出方向Dsは、上下方向Dvから見た際に、船首尾方向Daに対して交差する方向(例えば、船幅方向)に設定するのが好ましい。
 例えば、二酸化炭素ガスGの放出方向Dsを、船首尾方向Daの船首2a側に向けた場合、航行中の船舶1の放出管40から二酸化炭素ガスGを斜め上方に放出すると、放出された二酸化炭素ガスGが放物線を描くようにして大気中を下りてきたところに、放出後に航行を続けていた当該船舶1が差し掛かってしまう(突入してしまう)可能性がある。
 また、二酸化炭素ガスGの放出方向Dsを、船首尾方向Daの船首2a側に向ける場合、放出管40から放出した二酸化炭素ガスGが、上部構造7に衝突してしまう可能性がある。
 したがって、図2に示すように、放出管40の傾斜管部42からの二酸化炭素ガスGの放出方向Dsは、上下方向Dvから見た際に、例えば、舷側3Aと舷側3Bとを結ぶ船幅方向Dwの一方側に向かうように設定してもよい。さらに、船舶1を港湾等に接岸させた場合に、陸側に二酸化炭素ガスGを放出するのを避けるため、放出管40の傾斜管部42からの二酸化炭素ガスGの放出方向Dsを、船幅方向Dwにおいて海洋側に向くよう、傾斜管部42の向きを調整(変更)できるようにしてもよい。
Further, in this embodiment, the ship 1 is equipped with the liquefied carbon dioxide storage facility 10. In this case, the release direction Ds of the carbon dioxide gas G from the inclined pipe portion 42 of the release pipe 40 is in a direction intersecting the bow and stern direction Da (for example, in the transverse direction) when viewed from the vertical direction Dv. It is preferable to set
For example, when the release direction Ds of the carbon dioxide gas G is directed toward the bow 2a side in the bow and stern direction Da, when the carbon dioxide gas G is released obliquely upward from the release pipe 40 of the vessel 1 during navigation, the released dioxide There is a possibility that the ship 1, which has continued to navigate after being released, may approach (enter) the carbon gas G that has descended through the atmosphere in a parabolic manner.
Furthermore, when the release direction Ds of the carbon dioxide gas G is directed toward the bow 2a side in the bow-stern direction Da, the carbon dioxide gas G released from the release pipe 40 may collide with the upper structure 7.
Therefore, as shown in FIG. 2, the release direction Ds of the carbon dioxide gas G from the inclined pipe portion 42 of the release pipe 40 is determined by, for example, the ship width connecting the gunwale side 3A and the gunwale side 3B when viewed from the vertical direction Dv. It may be set to face one side in the direction Dw. Furthermore, in order to avoid releasing carbon dioxide gas G to the land side when the ship 1 is docked at a port or the like, the release direction Ds of carbon dioxide gas G from the inclined pipe portion 42 of the release pipe 40 is set to The orientation of the inclined pipe portion 42 may be adjustable (changed) so that it faces toward the ocean in the width direction Dw.
(作用効果)
 上記実施形態の液化二酸化炭素格納設備10、船舶1では、放出管40における二酸化炭素ガスGの放出方向Dsが、水平方向Dhに対して上方に傾斜している。これにより、圧力解放装置30から放出された二酸化炭素ガスGが、降り注ぐように下りてくるのを抑え、圧力解放装置30から離れる方向に拡散させることができる。また、二酸化炭素ガスGを水平方向Dhに放出した場合のように、圧力解放装置30の側方の位置で、二酸化炭素濃度が局所的に高くなることも抑えられる。したがって、タンク11内から二酸化炭素ガスGを排出する場合に、二酸化炭素濃度が局所的に高くなることを抑えることができる。
(effect)
In the liquefied carbon dioxide storage facility 10 and the ship 1 of the embodiments described above, the discharge direction Ds of the carbon dioxide gas G in the discharge pipe 40 is inclined upward with respect to the horizontal direction Dh. Thereby, the carbon dioxide gas G released from the pressure release device 30 can be prevented from falling down and can be diffused in a direction away from the pressure release device 30. Furthermore, it is also possible to prevent the carbon dioxide concentration from becoming locally high at a position on the side of the pressure release device 30, as in the case where the carbon dioxide gas G is released in the horizontal direction Dh. Therefore, when the carbon dioxide gas G is discharged from the tank 11, it is possible to prevent the carbon dioxide concentration from becoming locally high.
 また、上記実施形態では、放出方向Dsの水平方向Dhに対する傾斜角度を、15°以上75°以下とすることで、圧力解放装置30から放出された二酸化炭素ガスGが、局所的に降り注ぐように下りてくるのを抑えつつ、圧力解放装置30から離れる方向に良好に拡散される。 Further, in the above embodiment, by setting the inclination angle of the release direction Ds with respect to the horizontal direction Dh to be 15° or more and 75° or less, the carbon dioxide gas G released from the pressure release device 30 can be locally rained down. It is well diffused in the direction away from the pressure release device 30 while suppressing the pressure from coming down.
 また、上記実施形態では、放出方向Dsの水平方向Dhに対する傾斜角度を、30°以上60°以下とすることで、圧力解放装置30から放出された二酸化炭素ガスGが、局所的に降り注ぐように下りてくるのを抑えつつ、圧力解放装置30から離れる方向に、より良好に拡散させることができる。 Further, in the above embodiment, by setting the inclination angle of the release direction Ds with respect to the horizontal direction Dh to be 30° or more and 60° or less, the carbon dioxide gas G released from the pressure release device 30 can be locally rained down. It is possible to better diffuse the air in the direction away from the pressure release device 30 while suppressing the air from coming down.
 また、上記実施形態では、放出管40は、接続管部41と、傾斜管部42と、を有している。これにより、二酸化炭素ガスGは、圧力解放装置30から、接続管部41を経て、水平方向Dhに対して上方に傾斜して延びる傾斜管部42から放出する。これにより、圧力解放装置30から放出された二酸化炭素ガスGが、降り注ぐように下りてくるのを抑えつつ、圧力解放装置30から離れる方向に拡散させることができる。 Furthermore, in the above embodiment, the discharge pipe 40 includes a connecting pipe section 41 and an inclined pipe section 42. Thereby, the carbon dioxide gas G is released from the pressure release device 30, through the connecting pipe part 41, and from the inclined pipe part 42 that extends upwardly with respect to the horizontal direction Dh. Thereby, the carbon dioxide gas G released from the pressure release device 30 can be diffused in the direction away from the pressure release device 30 while suppressing the carbon dioxide gas G from falling down like rain.
 また、上記実施形態では、接続管部41と傾斜管部42との間に湾曲管部43が設けられている。これにより、二酸化炭素ガスGの圧力低下を抑えつつ、接続管部41から湾曲管部43を経て傾斜管部42へと二酸化炭素ガスGを放出することができる。したがって、放出管40内でドライアイスが生成されることが抑えられる。 Furthermore, in the embodiment described above, the curved pipe part 43 is provided between the connecting pipe part 41 and the inclined pipe part 42. Thereby, the carbon dioxide gas G can be released from the connecting pipe part 41 to the inclined pipe part 42 via the curved pipe part 43 while suppressing the pressure drop of the carbon dioxide gas G. Therefore, generation of dry ice within the discharge pipe 40 is suppressed.
(その他の実施形態)
 以上、本開示の実施の形態について図面を参照して詳述したが、具体的な構成はこの実施の形態に限られるものではなく、本開示の要旨を逸脱しない範囲の設計変更等も含まれる。
 なお、上記実施形態では、液化二酸化炭素格納設備10の構成を示したが、各部の構成は適宜変更可能である。
 また、上記実施形態では、船舶1の船体2として上記構成を示したが、船舶1の船体2等の各部構成は適宜変更可能である。
(Other embodiments)
Although the embodiment of the present disclosure has been described above in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and includes design changes within the scope of the gist of the present disclosure. .
In addition, in the said embodiment, although the structure of the liquefied carbon dioxide storage facility 10 was shown, the structure of each part can be changed suitably.
Further, in the embodiment described above, the above configuration is shown as the hull 2 of the ship 1, but the configuration of each part of the hull 2 and the like of the ship 1 can be changed as appropriate.
 また、上記実施形態では、液化二酸化炭素格納設備10を船舶1に備える構成としたが、液化二酸化炭素格納設備10は、洋上浮体設備の浮体本体、陸上の液化ガス貯蔵施設等に備えるようにしてもよい。液化二酸化炭素格納設備10を、陸上の液化ガス貯蔵施設に備える場合、放出管40から放出される二酸化炭素ガスGの放出方向Dsは、他の建物等がある陸上側ではなく、海洋側に向けるのが好ましい。 Further, in the above embodiment, the liquefied carbon dioxide storage facility 10 is provided in the ship 1, but the liquefied carbon dioxide storage facility 10 may be provided in the floating body of offshore floating equipment, a liquefied gas storage facility on land, etc. Good too. When the liquefied carbon dioxide storage facility 10 is installed in a liquefied gas storage facility on land, the release direction Ds of the carbon dioxide gas G released from the release pipe 40 is directed toward the ocean side rather than toward the land side where other buildings, etc. are located. is preferable.
<付記>
 実施形態に記載の液化二酸化炭素格納設備10、及び船舶1は、例えば以下のように把握される。
<Additional notes>
The liquefied carbon dioxide storage facility 10 and the ship 1 described in the embodiment are understood as follows, for example.
(1)第1の態様に係る液化二酸化炭素格納設備10は、液化二酸化炭素Lを貯留可能なタンク11と、前記タンク11に設けられて、前記タンク11内の圧力を解放可能な圧力解放装置30と、前記圧力解放装置30から延びて前記タンク11内から二酸化炭素ガスGを外部に放出する放出管40と、を備え、前記放出管40における前記二酸化炭素ガスGの放出方向Dsが、水平方向Dhに対して上方に傾斜している。 (1) The liquefied carbon dioxide storage facility 10 according to the first aspect includes a tank 11 capable of storing liquefied carbon dioxide L, and a pressure release device provided in the tank 11 and capable of releasing the pressure inside the tank 11. 30, and a discharge pipe 40 extending from the pressure release device 30 and discharging carbon dioxide gas G from inside the tank 11 to the outside, wherein the discharge direction Ds of the carbon dioxide gas G in the discharge pipe 40 is horizontal. It is inclined upward with respect to the direction Dh.
 この液化二酸化炭素格納設備10では、液化二酸化炭素Lを貯留したタンク11内の圧力が上昇した場合、圧力解放装置30により、タンク11内の圧力が解放される。タンク11内の二酸化炭素ガスGは、圧力解放装置30から放出管40を通して外部に放出される。放出管40における二酸化炭素ガスGの放出方向Dsが、水平方向Dhに対して上方に傾斜しているので、圧力解放装置30から放出された二酸化炭素ガスGが、降り注ぐように下りてくるのを抑え、圧力解放装置30から離れる方向に拡散される。また、二酸化炭素ガスGを水平方向Dhに放出した場合のように、圧力解放装置30の側方の位置で、二酸化炭素濃度が局所的に高くなることも抑えられる。したがって、タンク11内から二酸化炭素ガスGを排出する場合に、二酸化炭素濃度が局所的に高くなることを抑えることができる。 In this liquefied carbon dioxide storage facility 10, when the pressure inside the tank 11 storing liquefied carbon dioxide L increases, the pressure inside the tank 11 is released by the pressure release device 30. Carbon dioxide gas G in the tank 11 is released from the pressure release device 30 to the outside through the release pipe 40. Since the release direction Ds of the carbon dioxide gas G in the release pipe 40 is inclined upward with respect to the horizontal direction Dh, the carbon dioxide gas G released from the pressure release device 30 can be seen falling down like rain. and diffused away from the pressure relief device 30. Furthermore, it is also possible to prevent the carbon dioxide concentration from becoming locally high at a position on the side of the pressure release device 30, as in the case where the carbon dioxide gas G is released in the horizontal direction Dh. Therefore, when the carbon dioxide gas G is discharged from the tank 11, it is possible to prevent the carbon dioxide concentration from becoming locally high.
(2)第2の態様に係る液化二酸化炭素格納設備10は、(1)の液化二酸化炭素格納設備10であって、前記放出方向Dsの水平方向Dhに対する傾斜角度が、15°以上75°以下である。 (2) The liquefied carbon dioxide storage facility 10 according to the second aspect is the liquefied carbon dioxide storage facility 10 of (1), in which the inclination angle of the discharge direction Ds with respect to the horizontal direction Dh is 15° or more and 75° or less. It is.
 これにより、放出方向Dsの水平方向Dhに対する傾斜角度を、15°以上75°以下とすることで、圧力解放装置30から放出された二酸化炭素ガスGが、局所的に降り注ぐように下りてくるのを抑えつつ、圧力解放装置30から離れる方向に良好に拡散される。 As a result, by setting the inclination angle of the release direction Ds with respect to the horizontal direction Dh to be 15° or more and 75° or less, the carbon dioxide gas G released from the pressure release device 30 can be locally rained down. It is well diffused in the direction away from the pressure release device 30 while suppressing the amount of water.
(3)第3の態様に係る液化二酸化炭素格納設備10は、(2)の液化二酸化炭素格納設備10であって、前記放出方向Dsの水平方向Dhに対する傾斜角度が、30°以上60°以下である。 (3) The liquefied carbon dioxide storage facility 10 according to the third aspect is the liquefied carbon dioxide storage facility 10 of (2), wherein the inclination angle of the discharge direction Ds with respect to the horizontal direction Dh is 30° or more and 60° or less. It is.
 これにより、放出方向Dsの水平方向Dhに対する傾斜角度を、30°以上60°以下とすることで、圧力解放装置30から放出された二酸化炭素ガスGが、局所的に降り注ぐように下りてくるのを抑えつつ、圧力解放装置30から離れる方向に、より良好に拡散させることができる。 As a result, by setting the inclination angle of the release direction Ds with respect to the horizontal direction Dh to be 30° or more and 60° or less, the carbon dioxide gas G released from the pressure release device 30 can be locally rained down. It is possible to better diffuse the air in the direction away from the pressure release device 30 while suppressing the air flow.
(4)第4の態様に係る液化二酸化炭素格納設備10は、(1)から(3)の何れか一つの液化二酸化炭素格納設備10であって、前記放出管40は、前記圧力解放装置30に接続されて前記圧力解放装置30から延びる接続管部41と、前記接続管部41から水平方向Dhに対して上方に傾斜して延びる傾斜管部42と、を有する。 (4) The liquefied carbon dioxide storage facility 10 according to the fourth aspect is the liquefied carbon dioxide storage facility 10 according to any one of (1) to (3), in which the discharge pipe 40 is connected to the pressure release device 30. It has a connecting pipe part 41 connected to and extending from the pressure release device 30, and an inclined pipe part 42 extending upwardly from the connecting pipe part 41 with respect to the horizontal direction Dh.
 これにより、二酸化炭素ガスGは、圧力解放装置30から接続管部41を経て、水平方向Dhに対して上方に傾斜して延びる傾斜管部42から放出される。これにより、圧力解放装置30から放出された二酸化炭素ガスGが、降り注ぐように下りてくるのを抑えつつ、圧力解放装置30から離れる方向に拡散させることができる。 Thereby, the carbon dioxide gas G is released from the pressure release device 30 through the connecting pipe part 41 and from the inclined pipe part 42 that extends upwardly with respect to the horizontal direction Dh. Thereby, the carbon dioxide gas G released from the pressure release device 30 can be diffused in the direction away from the pressure release device 30 while suppressing the carbon dioxide gas G from falling down like rain.
(5)第5の態様に係る液化二酸化炭素格納設備10は、(4)の液化二酸化炭素格納設備10であって、前記放出管40は、前記接続管部41と前記傾斜管部42との間に設けられ、定められた値以下の曲率で湾曲する湾曲管部43を更に備える。 (5) The liquefied carbon dioxide storage facility 10 according to the fifth aspect is the liquefied carbon dioxide storage facility 10 of (4), in which the discharge pipe 40 is connected to the connecting pipe section 41 and the inclined pipe section 42. It further includes a curved pipe section 43 that is provided between the two and curved with a curvature equal to or less than a predetermined value.
 これにより、二酸化炭素ガスGの圧力低下を抑えつつ、接続管部41から湾曲管部43を経て傾斜管部42へと二酸化炭素ガスGを流通させることができる。したがって、放出管40内でドライアイスが生成されることが抑えられる。 Thereby, the carbon dioxide gas G can be made to flow from the connecting pipe part 41 to the inclined pipe part 42 via the curved pipe part 43 while suppressing the pressure drop of the carbon dioxide gas G. Therefore, generation of dry ice within the discharge pipe 40 is suppressed.
(6)第6の態様に係る船舶1は、船体2と、(1)から(5)の何れか一つの液化二酸化炭素格納設備10と、を備える。 (6) The ship 1 according to the sixth aspect includes the ship body 2 and the liquefied carbon dioxide storage facility 10 according to any one of (1) to (5).
 これにより、タンク11内から二酸化炭素ガスGを排出する場合に、二酸化炭素濃度が局所的に高くなることを抑えることができる、液化二酸化炭素格納設備10を備えた船舶1を提供することができる。 Thereby, it is possible to provide a ship 1 equipped with a liquefied carbon dioxide storage facility 10 that can suppress a local increase in carbon dioxide concentration when discharging carbon dioxide gas G from inside the tank 11. .
 上記態様の液化二酸化炭素格納設備、及び船舶によれば、タンク内から二酸化炭素ガスを排出する場合に、二酸化炭素濃度が局所的に高くなることを抑えることができる。 According to the liquefied carbon dioxide storage equipment and ship of the above aspects, when carbon dioxide gas is discharged from the tank, it is possible to suppress the carbon dioxide concentration from increasing locally.
1…船舶 2…船体 2a…船首 2b…船尾 3A、3B…舷側 4…船底 5…上甲板 7…上部構造 8…貨物搭載区画 10…液化二酸化炭素格納設備 11…タンク 12…筒状部 13…鏡板部 15…積込配管 16…払出配管 17…ポンプ 30…圧力解放装置 30r…圧力開放部 31…配管 40…放出管 41…接続管部 42…傾斜管部 42h…先端開口 42t…先端 43…湾曲管部 D…到達距離 Da…船首尾方向 De…延伸方向 Dh…水平方向 Ds…放出方向 Dv…上下方向 Dw…船幅方向 Dx…長手方向 G…二酸化炭素ガス L…液化二酸化炭素 P1…最高到達位置 P2…位置 H…高さ θ…傾斜角度 1... Vessel 2... Hull 2a... Bow 2b... Stern 3A, 3B... Broadside 4... Bottom 5... Upper deck 7... Upper structure 8... Cargo loading compartment 10... Liquefied carbon dioxide storage facility 11... Tank 12... Cylindrical part 13... End plate part 15...Loading piping 16...Discharge piping 17...Pump 30...Pressure release device 30r...Pressure release part 31...Piping 40...Discharge pipe 41...Connecting pipe part 42...Slanted pipe part 42h...Tip opening 42t...Tip 43... Curved tube section D...reaching distance Da...fore/stern direction De...stretching direction Dh...horizontal direction Ds...release direction Dv...vertical direction Dw...width direction Dx...longitudinal direction G...carbon dioxide gas L...liquefied carbon dioxide P1...maximum Arrived position P2...Position H...Height θ...Inclination angle

Claims (6)

  1.  液化二酸化炭素を貯留可能なタンクと、
     前記タンクに設けられて、前記タンク内の圧力を解放可能な圧力解放装置と、
     前記圧力解放装置から延びて前記タンク内から二酸化炭素ガスを外部に放出する放出管と、を備え、
     前記放出管における前記二酸化炭素ガスの放出方向が、水平方向に対して上方に傾斜している
    液化二酸化炭素格納設備。
    A tank capable of storing liquefied carbon dioxide;
    a pressure release device provided in the tank and capable of releasing pressure within the tank;
    a discharge pipe extending from the pressure release device and discharging carbon dioxide gas from within the tank to the outside;
    The liquefied carbon dioxide storage facility, wherein the direction of release of the carbon dioxide gas in the release pipe is inclined upward with respect to the horizontal direction.
  2.  前記放出方向の水平方向に対する傾斜角度が、15°以上75°以下である
     請求項1に記載の液化二酸化炭素格納設備。
    The liquefied carbon dioxide storage facility according to claim 1, wherein the inclination angle of the discharge direction with respect to the horizontal direction is 15° or more and 75° or less.
  3.  前記放出方向の水平方向に対する傾斜角度が、30°以上60°以下である
     請求項2に記載の液化二酸化炭素格納設備。
    The liquefied carbon dioxide storage facility according to claim 2, wherein the inclination angle of the discharge direction with respect to the horizontal direction is 30° or more and 60° or less.
  4.  前記放出管は、
     前記圧力解放装置に接続されて前記圧力解放装置から延びる接続管部と、
     前記接続管部から水平方向に対して上方に傾斜して延びる傾斜管部と、を有する
     請求項1又は2に記載の液化二酸化炭素格納設備。
    The discharge tube is
    a connecting pipe portion connected to and extending from the pressure relief device;
    The liquefied carbon dioxide storage facility according to claim 1 or 2, further comprising: an inclined pipe section extending upwardly from the connecting pipe section with respect to the horizontal direction.
  5.  前記放出管は、前記接続管部と前記傾斜管部との間に設けられ、定められた値以下の曲率で湾曲する湾曲管部を更に備える
     請求項4に記載の液化二酸化炭素格納設備。
    The liquefied carbon dioxide storage facility according to claim 4, wherein the discharge pipe further includes a curved pipe section that is provided between the connecting pipe section and the inclined pipe section and is curved with a curvature equal to or less than a predetermined value.
  6.  船体と、
     請求項1又は2に記載の液化二酸化炭素格納設備と、を備える
    船舶。
    The hull and
    A ship comprising the liquefied carbon dioxide storage facility according to claim 1 or 2.
PCT/JP2023/005532 2022-08-24 2023-02-16 Liquefied carbon dioxide storage equipment and marine vessel WO2024042737A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-133303 2022-08-24
JP2022133303A JP2024030419A (en) 2022-08-24 2022-08-24 Liquefied carbon dioxide storage facility, and ship

Publications (1)

Publication Number Publication Date
WO2024042737A1 true WO2024042737A1 (en) 2024-02-29

Family

ID=90012908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/005532 WO2024042737A1 (en) 2022-08-24 2023-02-16 Liquefied carbon dioxide storage equipment and marine vessel

Country Status (2)

Country Link
JP (1) JP2024030419A (en)
WO (1) WO2024042737A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000061294A (en) * 1998-08-18 2000-02-29 Research Institute Of Innovative Technology For The Earth Device for discharging carbon dioxide into ocean
JP2007242615A (en) * 2006-03-03 2007-09-20 Samsung Sdi Co Ltd Fuel cell and its driving method
WO2022102517A1 (en) * 2020-11-12 2022-05-19 三菱造船株式会社 Floating body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000061294A (en) * 1998-08-18 2000-02-29 Research Institute Of Innovative Technology For The Earth Device for discharging carbon dioxide into ocean
JP2007242615A (en) * 2006-03-03 2007-09-20 Samsung Sdi Co Ltd Fuel cell and its driving method
WO2022102517A1 (en) * 2020-11-12 2022-05-19 三菱造船株式会社 Floating body

Also Published As

Publication number Publication date
JP2024030419A (en) 2024-03-07

Similar Documents

Publication Publication Date Title
US4864958A (en) Swap type floating platforms
JP6934555B1 (en) Ship
US8096252B2 (en) Ship hull structure and a method of operating the ship
NO140372B (en) VESSEL FOR TRANSPORT OF LOAD CARRIERS
US10131407B1 (en) Multihull multiplatform floating vessel
CN102145742A (en) Ship structure with azimuth propulsion device
US10710682B1 (en) Bunkering marine vessel
JP6737431B2 (en) Liquefied gas carrier
KR20030042415A (en) Bow form of ship
WO2024042737A1 (en) Liquefied carbon dioxide storage equipment and marine vessel
JP5021250B2 (en) Method for improving stability in case of hull damage and ship
US20190291830A1 (en) Pontoon boat wake surf system
JP7221856B2 (en) tank systems, ships
WO2018064870A1 (en) Anti-sinking vessel
KR101334325B1 (en) A ship with cargo tank
SE504386C2 (en) Bottom construction on a displacement hull
CN108177739A (en) The ship of adjustable hull draft amount
US4700650A (en) Boat with apparatus for returning to upright condition
KR102594823B1 (en) Barge having Anti-Rolling System
KR20220098233A (en) Ship
JP6423970B2 (en) Marine liquefied gas tank and liquefied gas carrier equipped with the same
WO2023219159A1 (en) Floating body and loading method of liquefied carbon dioxide
NO793572L (en) PARTLY UNDERGROUND KATAMARAN.
KR20140146253A (en) Hull fore end structure
CN107580579B (en) System for ship control

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856863

Country of ref document: EP

Kind code of ref document: A1