WO2024042710A1 - Aggregation device, communication system, communication method, and program - Google Patents

Aggregation device, communication system, communication method, and program Download PDF

Info

Publication number
WO2024042710A1
WO2024042710A1 PCT/JP2022/032232 JP2022032232W WO2024042710A1 WO 2024042710 A1 WO2024042710 A1 WO 2024042710A1 JP 2022032232 W JP2022032232 W JP 2022032232W WO 2024042710 A1 WO2024042710 A1 WO 2024042710A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
terminal
communication
control message
aggregation device
Prior art date
Application number
PCT/JP2022/032232
Other languages
French (fr)
Japanese (ja)
Inventor
優馬 佐藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/032232 priority Critical patent/WO2024042710A1/en
Publication of WO2024042710A1 publication Critical patent/WO2024042710A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom

Definitions

  • the present disclosure relates to an aggregation device, a communication system, a communication method, and a program that aggregate data acquired from terminals.
  • smart meters which enable visualization of power consumption through automatic meter reading and power supply and demand control, is being promoted.
  • smart meters will be installed in all households, and will be constructed and operated as a wide-area large-scale network within the jurisdiction of each power company.
  • a large number of smart meters constitute a multi-hop network, and each smart meter transmits metering data to a concentrator, which is the root of the multi-hop network.
  • a smart meter network which is a multi-hop network including many smart meters, is equipped with multiple aggregation devices, and the metering data aggregated by each aggregation device is sent to a higher-level server called a head end system (HES). collects.
  • HES head end system
  • Patent Document 1 discloses a technology in which an aggregation device aggregates measurement results received from measuring device terminals, which are smart meters, and transmits the results to a server, which is a host server.
  • the aggregation device aggregates and transmits the measurement results received from multiple measuring device terminals, so compared to the case where the server directly receives the measurement results from each measuring device terminal, the higher level Traffic between the server and the aggregation device can be reduced.
  • Patent Document 1 can reduce the traffic between the host server and the aggregation device regarding uplink communication from the smart meter to the host server.
  • Patent Document 1 does not disclose a method for reducing the traffic between the host server and the aggregation device regarding downlink communication from the host server to the smart meter.
  • the host server issues various instructions to the smart meter via the aggregation device, and communication is thereby performed between the host server and the aggregation device, but in order to avoid congestion due to future traffic increases, It is desired to reduce the communication traffic between the upper level server and the aggregation device.
  • the present disclosure has been made in view of the above, and aims to provide an aggregation device that can reduce communication traffic between an upper-level server and the aggregation device.
  • an aggregation device communicates with a plurality of terminals, each of which has a measuring section and a communication section, and aggregates data transmitted from the plurality of terminals.
  • an aggregation device that sends data to an upper-level server using a storage unit that stores correspondence information indicating a correspondence between identification information of a measurement unit and identification information of a communication unit of a terminal equipped with the measurement unit;
  • the measuring device includes a message generating section that generates a control message for controlling the measuring section, and a transmitting/receiving section that transmits the control message to a terminal corresponding to the measuring section.
  • the aggregation device has the effect of being able to reduce communication traffic between the upper level server and the aggregation device.
  • Diagram showing a configuration example of a higher-level server according to an embodiment A diagram showing a configuration example of an aggregation device according to an embodiment
  • Diagram showing an example of the configuration of a terminal according to an embodiment Diagram showing an example of an instrument control message sent by the aggregation device
  • Sequence diagram showing an example of processing related to instrument control messages in the communication system of the embodiment
  • Flowchart illustrating an example of a processing procedure for generating an instrument control message in the aggregation device according to the embodiment
  • FIG. 1 is a diagram showing a configuration example of a communication system according to an embodiment.
  • the communication system of this embodiment is used, for example, for automatic meter reading of electric energy, but may be used for other purposes as well as automatic meter reading of electric energy. Further, the communication system of the embodiment may be used for automatic meter reading other than electric power, such as automatic gas meter reading.
  • the communication system of this embodiment includes an upper level server 1 that is a communication management device, aggregation devices 2-1 and 2-2, and terminals 3-1 to 3-12. Specifically, the communication system of this embodiment includes aggregating devices 2-1, 2-2 and terminals 3-1 to 3-12 that transmit data to any one of the aggregating devices 2-1, 2-2.
  • the host server 1 includes a wireless multi-hop network consisting of a wireless multi-hop network, and an upper server 1 that collects upstream data from the aggregation devices 2-1 and 2-2.
  • FIG. 1 shows two aggregating devices and 12 terminals, the numbers of aggregating devices and terminals are not limited to the example shown in FIG. 1.
  • the upper level server 1 and the aggregation devices 2-1 and 2-2 are connected via a communication network 4 such as a WAN (Wide Area Network).
  • a communication network 4 such as a WAN (Wide Area Network).
  • the terminals 3-1 to 3-12 are examples of a plurality of terminals each including a measuring section and a communication section, which will be described later.
  • the terminals 3-1 to 3-12 are devices used for automatic meter reading, for example, and are devices called smart meters. As will be described later, the terminals 3-1 to 3-12 are equipped with meters and transmit meter data, which is measurement data of electric energy, to the corresponding aggregation devices 2-1 and 2-2.
  • the terminals 3-1 to 3-12 are installed at electric power consumers, for example. Furthermore, if the communication system of this embodiment is used for purposes other than automatic power meter reading, the terminals 3-1 to 3-12 may communicate with other devices (not shown) depending on the purpose.
  • the terminals 3-1 to 3-12 periodically transmit meter data.
  • the regular transmission cycle of meter data is hereinafter referred to as a regular transmission cycle.
  • the regular transmission cycle is, for example, one of 30 minutes, 15 minutes, and 5 minutes, but the regular transmission cycle is not limited to these.
  • periodic collection of meter data will also be referred to as regular collection.
  • the aggregation devices 2-1, 2-2 and the terminals 3-1 to 3-12 constitute a wireless multi-hop network with the aggregation devices 2-1, 2-2 as the roots.
  • the aggregation devices 2-1, 2-2 and terminals 3-1 to 3-12 that constitute the wireless multi-hop network are also referred to as nodes hereinafter.
  • the lines connecting the aggregation devices 2-1, 2-2 and the terminals 3-1 to 3-12 indicate wireless links.
  • the communication system of this embodiment is a wireless multi-hop network will be described below, it may be a multi-hop network using power line communication or the like.
  • the communication between the aggregation devices 2-1, 2-2 and the terminal 3 is not limited to communication using a multi-hop network, but may also be performed using other methods such as communication using a mobile phone network. It may also be a combination of communication using a multi-hop network and other communication methods.
  • the aggregation devices 2-1 and 2-2 aggregate data sent from multiple terminals 3 and send it to the higher-level server 1.
  • the aggregation devices 2-1 and 2-2 collect meter data from the terminals 3-1 to 3-12, aggregate the collected meter data, and transmit the collected meter data to the host server 1 via the communication network 4.
  • the host server 1 can periodically collect meter data, which is the result of measuring electric energy, as upstream data from the terminals 3-1 to 3-12.
  • the communication network 4 between the aggregation devices 2-1, 2-2 and the host server 1 is an IP (Internet Protocol) network, such as an optical line network or a mobile phone network, but is not limited to these.
  • IP Internet Protocol
  • route control is performed based on a predetermined route control protocol.
  • RPL IPv6 Routing Protocol for Low-Power and Lossy Networks
  • the route control protocol is not limited to this, in the present embodiment, an example in which RPL is used as the route control protocol will be described below.
  • RPL regarding the uplink route which is the communication route from each terminal 3 to the aggregation device 2, each terminal 3 manages the next terminal 3 on the route toward the aggregation device 2 as the uplink route.
  • RPL regarding the uplink route which is the communication route from each terminal 3 to the aggregation device 2, each terminal 3 manages the next terminal 3 on the route toward the aggregation device 2 as the uplink route.
  • each terminal 3 may be able to perform wireless communication with a plurality of terminals 3.
  • each terminal 3 receives information from among the communicable terminals 3, or from among the communicable terminals 3 and the aggregation device 2.
  • Select the up route For example, each terminal 3 selects an uplink route depending on, for example, the number of hops to the aggregation device 2, communication quality, and the like.
  • each terminal 3 sequentially adds its own identification information to the uplink control message.
  • the aggregation device 2 can grasp the terminals 3 that have passed through as the uplink route corresponding to each terminal 3.
  • the aggregation device 2 determines the reverse route of the uplink route as the downlink route.
  • the communication network 4 may be any type of network, for example an IP network.
  • the upper server 1 collects meter data from the aggregation devices 2-1 and 2-2, and sends the collected meter data to a meter data management system (MDMS), not shown.
  • MDMS is a device that manages meter data.
  • the host server 1 can collect data from the terminals 3-1 to 3-12 for other purposes. Send the data to a management device for other purposes.
  • the upper level server 1 transmits control information for controlling the terminals 3-1 to 3-12 to the terminals 3-1 to 3-12 via the aggregation devices 2-1 and 2-2.
  • the host server 1 In order to control the instruments at the terminals 3-1 to 3-12, the host server 1 generates an instrument control message in a predetermined format indicating the control content for each terminal 3, and The control message is transmitted to the destination terminal 3 via the aggregation device 2.
  • the meter control message is a control message for controlling the metering section of the terminal 3.
  • an instrument control message for example, a message (hereinafter referred to as COSEM message) that complies with DLMS (Device Language Message Specification)/COSEM (COmpanion Specification for Energy Metering), which is an international standard of IEC (International Electrotechnical Commission), is used. ) can be used, but is not limited to this.
  • the aggregation device 2 generates at least some of the instrument control messages and transmits them to the terminal 3, thereby reducing congestion in the communication network 4 and reducing the load on the host server 1. Details of the generation of the instrument control message in the aggregation device 2 will be described later.
  • FIG. 2 is a diagram showing an example of the configuration of the host server 1 according to the present embodiment.
  • the upper level server 1 includes a transmitting/receiving section 11, a control processing section 12, and a storage section 13.
  • the transmitting/receiving unit 11 communicates with the aggregation device 2.
  • the transmitter/receiver 11 passes the data received from the aggregation device 2 to the control processor 12 . Further, the transmitter/receiver 11 transmits the control information generated by the control processor 12 to the corresponding aggregation device 2 via the transmitter/receiver 11 .
  • the control information is information including instructions for controlling the terminal 3 or the aggregation device 2.
  • the aggregation device 2 generates an instrument control message addressed to the terminal 3, so in this case, the control processing unit 12 An instruction for transmitting an instrument control message to address No. 3 is generated as control information.
  • control information includes the destination terminal 3 and information indicating the content of control.
  • the host server 1 may transmit control information addressed to the terminal 3 as an instrument control message, and in this case, the instrument control message is transmitted to the terminal 3 via the aggregation device 2.
  • the control processing unit 12 encrypts the instrument control message using a predetermined common key used with the terminal 3 and transmits the encrypted message.
  • the common key with each terminal 3 is stored in the storage unit 13 as key information.
  • the common key may be generated by a key server (not shown) or by the upper level server 1.
  • Each terminal 3 holds a common key. Note that there are no particular restrictions on the method of exchanging the common key, and any method may be used.
  • the host server 1 stores the correspondence between the meter ID and identification information as a communication device in the storage unit 13 as meter ID correspondence information.
  • the control processing unit 12 refers to the instrument ID correspondence information stored in the storage unit 13 and generates an instrument control message.
  • the control processing unit 12 stores the received meter data in the storage unit 13. Further, when the data received from the aggregation device 2 via the transmitting/receiving unit 11 is an entry list, the control processing unit 12 stores the entry list in the storage unit 13 .
  • the entry list is information indicating the terminals 3 under each aggregation device 2. Further, the control processing unit 12 generates control information indicating instructions for controlling the aggregation device 2 or the terminal 3, and transmits the generated control information to the destination via the transmitting/receiving unit 11.
  • the control processor 12 performs processing based on the response data.
  • the control processing unit 12 transmits the meter data stored in the storage unit 13 to the MDMS (not shown) via the transmitting/receiving unit 11 at a predetermined timing or at a timing specified by the MDMS (not shown).
  • the storage unit 13 stores meter data, entry list, meter ID correspondence information, and key information. Furthermore, when the host server 1 collects information other than meter data from the terminal 3, the storage unit 13 may also store the information.
  • FIG. 3 is a diagram showing a configuration example of the aggregation device 2 of this embodiment.
  • the aggregation device 2 includes a first transmission/reception section 21 , a communication control section 22 , a control processing section 23 , a second transmission/reception section 24 , a message generation section 25 , a result aggregation section 26 , and a storage section 27 .
  • the first transmitter/receiver 21 is a transmitter/receiver that performs wireless communication with the terminal 3.
  • the first transmitting/receiving unit 21 receives data from the terminal 3, it outputs the data to the communication control unit 22.
  • the first transmitting/receiving section 21 transmits to the terminal 3 the data addressed to the terminal 3 received from the communication control section 22 .
  • the first transmitting/receiving section 21 transmits the meter control message to the terminal 3 corresponding to the measuring section controlled by the meter control message.
  • the second transmitting/receiving unit 24 communicates with the upper level server 1.
  • the second transmitting/receiving unit 24 receives data such as control information and instrument control messages addressed to the terminal 3 from the host server 1 , it outputs the data to the control processing unit 23 . Further, the second transmitting/receiving unit 24 transmits data addressed to the upper level server 1 that is input from the control processing unit 23 to the upper level server 1 .
  • the communication control unit 22 performs communication control according to a route control protocol in a wireless multi-hop network.
  • the route control protocol is assumed to be RPL here.
  • the communication control unit 22 receives data transmitted from the terminal 3 from the first transmitting/receiving unit 21, if the data is an uplink control message used for route construction, the communication control unit 22 receives the data stored in the data.
  • a down route is determined using the up route, and the determined down route is stored in the storage unit 27 as route information.
  • the communication control unit 22 upon receiving the data transmitted from the terminal 3, causes the transmission source terminal 3 to participate if the data transmission source terminal 3 is not included in the entry list of the storage unit 27. Add to list.
  • the entry list held by the aggregation device 2 is a list indicating, for each aggregation device 2, the terminals 3 under the aggregation device 2, that is, the terminals 3 that transmit meter data to the upper server 1 via the aggregation device 2.
  • the communication control unit 22 stores the meter data in the storage unit 27. Further, upon receiving the instrument control message addressed to the terminal 3 from the control processing section 23, the communication control section 22 transmits the instrument control message to the terminal 3 using the route information stored in the storage section 27. Specifically, the communication control unit 22 refers to the route information and adds information indicating the terminals 3 to be passed through on the downstream route to the destination terminal 3, that is, the communication route to the destination terminal 3, into the instrument control message. The meter control message to which the downlink route has been added is transmitted to the destination terminal 3 via the first transmitter/receiver 21 .
  • the control processing unit 23 performs processing according to the control information. Furthermore, when encryption is performed with the higher-level server 1, the control processing unit 23 also performs encryption and decryption using a common key between the higher-level server 1 and the aggregation device 2. This common key is stored in the storage unit 27 as key information.
  • the control processing section 23 stores the control information in the storage section 27 and processes the instrument control message based on the control information. The generation is instructed to the message generation unit 25.
  • the message generation unit 25 For example, if the control information is an instruction to collect voltage from a specific terminal 3 at regular intervals, the message generation unit 25 generates an instrument control message for collecting voltage from the terminal 3 at regular intervals. instruct. Upon receiving the instrument control message generated from the message generation section 25 , the control processing section 23 outputs the received instrument control message to the communication control section 22 . Further, when the data received from the second transmitting/receiving section 24 is an instrument control message addressed to the terminal 3, the control processing section 23 passes the instrument control message to the communication control section 22 without decoding it.
  • control processing unit 23 When the control processing unit 23 receives the result (response data) to the instrument control message transmitted from the terminal 3 from the communication control unit 22, the control processing unit 23 stores the result in the storage unit 27 as a control result. Further, upon receiving the aggregated results from the result aggregating unit 26, the control processing unit 23 outputs the aggregated results to the second transmitting/receiving unit 24. Note that the aggregated results may be output from the result aggregation unit 26 to the second transmitting/receiving unit 24 without going through the control processing unit 23.
  • the control processing unit 23 aggregates the meter data received from each subordinate terminal 3 stored in the storage unit 27 and transmits the aggregated meter data to the upper server 1 via the second transmitting/receiving unit 24. Further, the control processing unit 23 transmits the entry list to the higher-level server 1 at regular intervals, such as once a day, or when instructed by the higher-level server 1, for example.
  • the upper level server 1 stores this entry list in the storage unit 13 as the entry list of each aggregation device 2.
  • the message generation unit 25 generates an instrument control message using the instrument ID correspondence information. Specifically, upon receiving the control information from the control processing unit 23, the message generation unit 25 generates an instrument control message based on the control information, and stores the generated instrument control message in the storage unit 27 as key information.
  • the encrypted instrument control message is encrypted using a common key between the terminal 3 and the aggregation device 2 , and the encrypted instrument control message is output to the control processing section 23 . Therefore, in this embodiment, the common key used between the terminal 3 and the aggregation device 2 may be different from or the same as the common key used between the terminal 3 and the upper server 1. There may be.
  • the common key used between the terminal 3 and the aggregation device 2 may be generated by the above-mentioned key server (not shown), or may be generated by the upper level server 1, for example. If the common key used between the terminal 3 and the aggregation device 2 is different from the common key used between the terminal 3 and the upper server 1, even if one of the common keys is specified, the other's Since the common key remains hidden, security can be strengthened.
  • the identification information of the communication unit of the terminal 3 is used to specify the terminal 3 from the host server 1, but the instrument ID is stored in the instrument control message as described later.
  • the aggregation device 2 manages the identification information of the communication section of the terminal 3 under its control, but does not manage the instrument ID. For this reason, conventionally, it has been difficult for the aggregation device 2 to generate an instrument control message.
  • the aggregation device 2 holds instrument ID correspondence information indicating the correspondence between the instrument ID of the terminal 3 under its control and the identification information of the communication section of the terminal 3. This allows the aggregation device 2 to generate an instrument control message addressed to the terminal 3.
  • the meter ID correspondence information is transmitted from the upper level server 1 to the aggregation device 2, for example.
  • the aggregation device 2 transmits the entry list to the higher-level server 1
  • the upper-level server 1 retrieves information corresponding to the terminal 3 included in the entry list from the instrument ID correspondence information in the storage unit 13 according to the received entry list. and transmits the extracted information to the aggregation device 2.
  • the aggregation device 2 stores this information in the storage unit 27 as instrument ID correspondence information.
  • the result aggregation unit 26 decrypts the control results received within a certain period every certain period using a common key with the terminal 3 stored as key information in the storage unit 27, and decrypts the control results.
  • the results are aggregated and the aggregated results are output to the control processing section 23.
  • the timing at which the result aggregation unit 26 aggregates the results is not limited to every fixed period, and may be, for example, when there is a request from the higher-level server 1.
  • the storage unit 27 stores meter data, route information, entry list, meter ID correspondence information, key information, control information, and control results. Further, when the host server 1 collects information other than meter data from the terminal 3, the storage unit 27 may also store the information.
  • FIG. 4 is a diagram showing an example of the configuration of the terminal 3 according to the present embodiment.
  • the terminal 3 includes a communication section 5 and a measuring section 6.
  • the communication section 5 includes a first transceiver section 51, a communication control section 52, a control processing section 53, a storage section 54, and a second transceiver section 55.
  • the first transmitting/receiving unit 51 performs wireless communication with the aggregation device 2 or the terminal 3, which is another node in the wireless multi-hop network.
  • the first transmitter/receiver 51 receives data from another node, it outputs the data to the communication controller 52 . Further, the first transmitting/receiving unit 51 transmits data received from the communication control unit 52 to other nodes based on instructions from the communication control unit 52.
  • the communication control unit 52 performs communication control according to a route control protocol in a wireless multi-hop network. For example, when the terminal 3 newly enters the wireless multi-hop network, the communication control unit 52 maintains the route information of the upstream route to the aggregation device 2 by exchanging control messages via the first transmitting/receiving unit 51. The number of hops from the node in question to the aggregation device 2 and the identification information of the aggregation device 2 are acquired, and based on the acquired number of hops, the strength of the signal received from the node, etc. Determine the node.
  • the communication control unit 52 stores the identification information of the aggregation device 2, the identification information of the determined next node, and the number of hops obtained by adding 1 to the number of hops obtained from the node in the storage unit 54 as route information. Further, when the communication control unit 52 receives a message requesting acquisition of route information from another node via the first transceiver unit 51, the communication control unit 52 transmits the message to the storage unit via the first transceiver unit 51 to the node that is the source of the message. A message containing the number of hops stored as route information is sent to 54.
  • the communication control unit 52 monitors the communication status of the next node stored in the route information, and if communication with the next node fails, the communication control unit 52 monitors the communication status of the next node stored in the route information. Then, by exchanging control messages, it selects another node and updates the route information with the selected node's identification information and hop count.
  • the communication control unit 52 outputs the received data to the control processing unit 53. If the data received from the first transmitter/receiver 51 is addressed to another node, the communication controller 52 transmits the data to the first transmitter/receiver 51 to the next node in the downstream direction based on the downlink route stored in the data. By causing the data to be transmitted, the data is transferred toward the destination node. Further, when the communication control unit 52 receives data such as meter data to be transmitted to the aggregation device 2 from the control processing unit 53, the communication control unit 52 uses the route information stored in the storage unit 54 to transmit the data to the aggregation device 2. 1 transmitter/receiver 51 to the next node in the upstream direction. Upstream data arrives at the destination aggregation device 2 as each node sequentially transfers the data using route information.
  • the second transmitting/receiving unit 55 receives meter data from the measuring unit 6 and stores the received meter data in the storage unit 54. Further, the second transmitting/receiving section 55 transmits the meter control message received from the control processing section 53 to the measuring section 6.
  • the control processing unit 53 When the control processing unit 53 receives data from the communication control unit 52, it performs a predetermined process based on the received data. For example, upon receiving the instrument control message from the communication control section 52, the control processing section 53 decrypts the instrument control message using the common key in the key information stored in the storage section 54, and transfers the decrypted instrument control message to the second instrument control message. It is output to the transmitting/receiving section 55.
  • the key information in the storage unit 54 includes a common key between the terminal 3 and the higher-level server 1 and a common key between the aggregation device 2 and the higher-level server 1.
  • the control processing unit 53 uses different common keys depending on whether the source device is the host server 1 or the aggregation device 2. Furthermore, the control processing unit 53 reads meter data stored in the storage unit 54 at every regular transmission cycle, and outputs the read meter data to the communication control unit 52. Note that the meter data may also be encrypted and transmitted.
  • the storage unit 54 stores meter data, route information, and key information.
  • the measuring section 6 includes a meter 61, a control processing section 62, a transmitting/receiving section 63, and a storage section 64.
  • the meter 61 is a meter that can measure electric energy, voltage, and the like.
  • the meter 61 outputs the measurement result to the control processing section 62 as meter data.
  • the control processing unit 62 outputs the meter data received from the meter 61 to the transmitting/receiving unit 63. Further, the control processing section 62 performs processing according to the instrument control message received from the transmitting/receiving section 63. For example, if the meter control message is an instruction requesting voltage transmission, the control processing section 62 outputs the voltage measured by the meter 61 to the transmitting/receiving section 63 as a result (response data).
  • the control processing unit 62 may store the meter data received from the meter 61 in the storage unit 64, read it from the storage unit 64 at a timing specified by the meter control message, and output it to the transmission/reception unit 63.
  • the storage unit 64 also stores programs such as firmware for controlling the operation of the measuring unit 6. For example, when the regular collection cycle is changed or the type of measurement data sent by the metering section 6 is added, the metering section 6 receives the updated firmware as an instrument control message. The firmware in the storage unit 64 is updated.
  • the transmitting/receiving unit 63 transmits the meter data, results (response data), etc. received from the control processing unit 62 to the communication unit 5.
  • FIG. 5 is a diagram showing an example of an instrument control message transmitted by the aggregation device 2.
  • FIG. 5 shows an example in which a COSEM message is used as the instrument control message.
  • the part shown as data in FIG. 5 corresponds to the instrument control message, and the instrument control message includes the instrument ID, the number of COSEM messages, the length of the COSEM message, and COSEM messages #1, . . . indicating the contents of the instruction.
  • COSEM telegram #1 indicates the first COSEM telegram, and the number of COSEM telegrams is specified by the number of COSEM telegrams.
  • COSEM telegram #1 is followed by COSEM telegram #1. 2, followed by individual COSEM telegrams in the same way.
  • the length of each COSEM message is variable, and the length of each COSEM message is specified by the COSEM message length.
  • the length of the COSEM message #1 varies depending on the contents of the instruction, and the contents of the instruction can specify only an operation such as voltage collection, or can specify an operation by specifying a period or cycle.
  • the aggregation device 2 adds an application header and a communication header to the meter control message and transmits it to the terminal 3.
  • the communication header includes identification information of the communication unit 5 of the destination terminal 3, and when the communication control unit 52 of each terminal 3 receives an instrument control message from the aggregation device 2 or another terminal 3, it refers to the communication header. It is determined whether the message is addressed to the device itself, and if it is not addressed to the device itself, the instrument control message is transferred according to the route information.
  • the instrument control message includes the instrument ID
  • the aggregation device 2 communicates with the terminal 3 using the identification information of the communication unit 5 of the terminal 3, and the instrument ID is Not managed.
  • the aggregation device 2 can generate a meter control message addressed to the terminal 3 by holding the meter ID correspondence information. This reduces congestion in the communication network 4 and reduces the load on the host server 1. In particular, when transmitting instrument control messages to many terminals 3 all at once, or when transmitting instrument control messages with the same contents to a specific terminal 3 at high frequency and regular intervals, congestion in the communication network 4 can be reduced. becomes more effective.
  • the firmware of the measuring unit 6 is sent to a large number of terminals 3 all at once in order to change the regular collection cycle or add voltage collection.
  • the simultaneous transmission is not limited to the case in which the signals are transmitted at exactly the same timing, and the actual transmission timings may differ to some extent as long as the signals are transmitted within a predetermined time, for example.
  • the host server 1 transmits the instrument control message
  • firmware will be transmitted to each terminal 3 via the communication network 4.
  • the aggregation device 2 only needs to receive the firmware once from the host server 1 and transmit the firmware to the terminal 3, so the firmware is transmitted via the communication network 4. The number of times is significantly reduced.
  • the instrument control message will be sent to the terminal 3 via the communication network 4 every two minutes.
  • the aggregation device 2 receives an instruction from the host server 1 to collect voltage at a 2-minute cycle
  • the instrument control message generated by the aggregation device 2 is sent to the terminal 3 every 2 minutes. Therefore, the number of times instrument control messages are transmitted via the communication network 4 is significantly reduced.
  • the instrument control message transmitted at high frequency or at regular intervals is not limited to voltage measurement instructions, and may be instructions for disconnection detection, event collection, etc., or may be instructions other than these. That is, the instrument control message may be sent to the terminal 3 at regular intervals, or the instrument control message with the same control content may be sent to two or more terminals 3 at once.
  • the meter control message may include firmware for the metering section 6.
  • the aggregation device 2 may determine the timing (upper level) for transmitting the instrument control message to the terminal 3. If the communication condition with the terminal 3 is poor at the timing determined based on instructions from the server 1, the instrument control message may be transmitted after waiting until the communication condition is restored. Thereby, it is possible to suppress non-delivery of instrument control messages and an increase in traffic and processing load between the aggregation device 2 and the terminal 3 due to retransmission processing.
  • the upper level server 1 When the upper level server 1 generates an instrument control message and sends it to the terminals 3, the number of terminals 3 managed by the upper level server 1 becomes large, but the aggregation device 2 only has to manage the terminals 3 under its control. Therefore, adjustment of transmission timing based on the communication state can be more easily realized than in the host server 1.
  • FIG. 6 is a sequence diagram illustrating an example of processing related to instrument control messages in the communication system of this embodiment.
  • the upper level server 1 transmits control information indicating control details to be instructed to the terminal 3 to the aggregation device 2 (step S1).
  • the example shown in FIG. 6 shows an example in which the host server 1 instructs the aggregation device 2 to perform the same control content to a plurality of terminals 3, and the control information includes, for example, the control content, that is, the aggregation device 2
  • the content of the instrument control message generated by the message and information indicating the destination terminal 3 are included.
  • the information indicating the destination terminal 3 may be a meter ID corresponding to the terminal 3 or may be identification information of the communication unit 5 of the terminal 3.
  • the control information indicates that the message is to be transmitted to all terminals 3 instead of the information indicated individually by the destination terminal 3. May contain information.
  • the upper server 1 may generate control information that describes the control contents for each terminal 3 and transmit it to the aggregation device 2 at once.
  • the aggregation device 2 generates an instrument control message based on the control information (step S2). Specifically, upon receiving the control information from the second transmitting/receiving section 24, the control processing section 23 of the aggregation device 2 outputs the control information to the message generation section 25, and the message generation section 25 controls the instrument based on the control information. Generate a message. Note that when the information indicating the terminal 3 in the control information is the identification information of the communication section 5, the control processing section 23 uses the control information and the instrument ID correspondence information stored in the storage section 27 to identify the instrument. Generate a control message.
  • the meter ID correspondence information is correspondence information indicating the correspondence between the meter ID, which is the identification information of the measuring section 6, and the identification information of the communication section 5 of the terminal 3 including the measuring section 6.
  • the control information may be encrypted using a common key between the upper level server 1 and the aggregation device 2. In this case, the control processing unit 23 performs step S2 after decrypting using the common key between the host server 1 and the aggregation
  • the aggregation device 2 performs encryption using the common key with the terminal 3 (step S3). Specifically, the message generation unit 25 extracts a corresponding common key from the key information stored in the storage unit 27 for each destination terminal 3, encrypts the instrument control message using the extracted common key, The encrypted instrument control message is output to the control processing unit 23 together with the identification information of the corresponding terminal 3 (identification information indicated by the control information).
  • the aggregation device 2 transmits an instrument control message for each destination terminal 3 (steps S4, S10).
  • the control processing unit 23 instructs the communication control unit 22 to transmit the instrument control message (encrypted instrument control message) to the destination terminal 3, and the communication control unit 22 uses the route information to send the instrument control message (encrypted instrument control message) to the destination terminal 3.
  • a communication header and the like are added to the instrument control message, and the instrument control message with the communication header added is transmitted to the destination terminal 3 via the first transmitter/receiver 21 .
  • the control processing unit 23 uses the instrument ID correspondence information stored in the storage unit 27 to The identification information of the communication section 5 of the terminal 3 corresponding to the meter ID is obtained, and the obtained identification information is notified to the communication control section 22 along with the instrument control message.
  • the communication unit 5 of the terminal 3 that received the instrument control message decodes the instrument control message (steps S5, S11). Specifically, the communication unit 5 of the terminal 3 decrypts the instrument control message using the common key with the aggregation device 2.
  • the terminals 3-1 and 3-2 are illustrated as the terminals 3 in FIG. 6, the destination of the instrument control message is not limited to this, and may be all the terminals 3 under the aggregation device 2. However, the terminal 3 may be other than the terminals 3-1 and 3-2.
  • instrument control messages sent from the aggregation device 2 to terminals 3 other than the next hop terminal 3 are sent to the destination via the other terminals 3. arrives at terminal 3.
  • the communication unit 5 of the terminal 3 that received the instrument control message transmits the decoded instrument control message to the measuring unit 6 (steps S6, S12).
  • the measuring unit 6 of the terminal 3 performs processing according to the instrument control message, and transmits the result (response data) to the communication unit 5 (steps S7, S13).
  • the result indicates that the firmware in the measuring unit 6 is normal. Contains information indicating whether or not it has been updated.
  • the communication unit 5 of the terminal 3 encrypts the result (steps S8, S14). Specifically, the communication unit 5 of the terminal 3 encrypts the result received from the measurement unit 6 using the common key with the aggregation device 2 .
  • the communication unit 5 of the terminal 3 transmits the results to the aggregation device 2 (steps S9, S15).
  • the aggregation device 2 aggregates the results received within a certain period of time (step S16).
  • the aggregation device 2 decodes each of the aggregation results (step S17). Specifically, the result aggregation unit 26 performs decryption using a common key with the terminal 3. Note that the order of step S16 and step S17 may be reversed.
  • the aggregation device 2 encrypts the aggregated results using a common key with the higher-level server 1 (step S18), and transmits the encrypted aggregated results to the higher-level server 1 (step S19).
  • the upper level server 1 can obtain the result transmitted from the terminal 3 by decrypting the aggregated result using the common key with the aggregation device 2. For example, if the control information indicates that instrument control messages are to be transmitted at regular intervals, once the aggregation device 2 receives the control information from the host server 1, it will thereafter generate instrument control messages at regular intervals. The traffic on the communication network 4 between the host server 1 and the aggregation device 2 can be reduced.
  • the host server 1 can collectively instruct the aggregation device 2 to generate not only the instrument control telegrams sent at regular intervals, but also the instrument control telegrams that the host server 1 has sent to each terminal 3. As a result, traffic on the communication network 4 can be reduced.
  • FIG. 7 is a flowchart illustrating an example of a processing procedure regarding generation of an instrument control message in the aggregation device 2 of this embodiment.
  • the aggregation device 2 transmits the instrument control message at regular intervals, but the transmission timing can be similarly adjusted even when the instrument control message is not transmitted at regular intervals.
  • the aggregation device 2 performs the process shown in FIG. 7 for each terminal 3.
  • the aggregation device 2 determines whether a certain period of time has passed (step S21). Specifically, the control processing unit 23 determines whether a certain period of time has passed since the last transmission of the instrument control message.
  • the fixed time is a time corresponding to one period of the fixed period. If the certain period of time has not elapsed (step S21: No), step S21 is repeated.
  • Step S21 If a certain period of time has elapsed (Step S21: Yes), the aggregation device 2 generates an instrument control message (Step S22). Specifically, the control processing section 23 instructs the message generation section 25 to generate the instrument control message, and the message generation section 25 generates the instrument control message.
  • the aggregation device 2 performs encryption using the common key with the terminal 3 (step S23). Specifically, the message generation unit 25 encrypts the instrument control message using the common key with the terminal 3, and temporarily stores the encrypted instrument control message in the storage unit 27.
  • step S24 the control processing unit 23 determines whether the communication state is good based on the reception status of other data of the terminal 3 to which the instrument control message is addressed. For example, if the data to be received from the terminal 3 has not been received for a certain period of time, the control processing unit 23 determines that the communication state is not good, and the data to be received from the terminal 3 cannot be received normally. If so, it is determined that the communication status is good. Further, if information regarding communication quality such as reception strength and packet error rate can be obtained from the terminal 3, the control processing unit 23 uses the information regarding the communication quality to determine whether or not the communication state is good. It's okay.
  • step S24 If the communication state is good (step S24: Yes), the aggregation device 2 transmits the instrument control message (step S25), and repeats the processing from step S21.
  • step S25 in detail, the control processing unit 23 reads out the encrypted instrument control message temporarily stored in the storage unit 27, outputs it to the communication control unit 22, and the communication control unit 22 The first transmitter/receiver 21 is caused to transmit the instrument control message.
  • the control processing unit 23 determines whether the communication state with the terminal 3 to which the instrument control message is sent is good before transmitting the instrument control message, and if the communication condition is poor, , it may wait for the transmission of the instrument control message, and when the communication state with the terminal 3 becomes good, the first transmitting/receiving section 21, which is a transmitting/receiving section, may transmit the instrument control message to the terminal 3.
  • the aggregation device 2 can transmit the instrument control message to the terminal 3 when the communication condition is good.
  • the transmitting/receiving section 11 of the host server 1 of this embodiment is realized by a transmitter and a receiver, and the control processing section 12 is realized by a control circuit.
  • the storage unit 13 is realized by a memory.
  • FIG. 8 is a diagram showing an example of the control circuit of this embodiment.
  • the control circuit 100 shown in FIG. 8 includes a processor 101 such as a CPU (Central Processing Unit) or an MPU (Micro Processor Unit), and a memory 102.
  • the memory 102 includes semiconductor memories such as RAM (Random Access Memory) and ROM (Read Only Memory), magnetic disks, and the like.
  • the control processing unit 12 of the upper level server 1 is realized by the processor 101 executing a program stored in the memory 102 for realizing the operation of the upper level server 1.
  • the program may be provided by a recording medium or a communication medium.
  • the memory that implements the storage section 13 may be a part of the memory 102 or may be a memory separate from the control circuit.
  • the host server 1 is generally realized by a computer system, and may include, in addition to the control circuit 100, a display unit such as a monitor and a display, and an input unit such as a keyboard and a mouse, although not shown. .
  • the first transmitter/receiver 21 and the second transmitter/receiver 24 of the aggregation device 2 of this embodiment are realized by a transmitter and a receiver.
  • the communication control section 22, control processing section 23, message generation section 25, and result aggregation section 26 are realized by a processing circuit, and the storage section 27 is realized by a memory.
  • the processing circuit may be the control circuit 100 shown in FIG. 8, or may be a dedicated circuit such as an FPGA (Field-Programmable Gate Array) or an ASIC (Application-Specific Integrated Circuit).
  • FPGA Field-Programmable Gate Array
  • ASIC Application-Specific Integrated Circuit
  • the communication control section 22 and the control processing section 23 are realized.
  • the program may be provided by a recording medium or a communication medium.
  • the memory that implements the storage section 27 may be a part of the memory 102 or may be a memory separate from the control circuit 100.
  • the first transmitting/receiving section 51, the second transmitting/receiving section 55, and the transmitting/receiving section 63 of the terminal 3 of this embodiment are realized by a transmitter and a receiver.
  • the communication control section 52, the control processing section 53, and the control processing section 62 are realized by a processing circuit, and the storage section 54 and the storage section 64 are realized by a memory.
  • the processing circuit may be the control circuit 100 shown in FIG. 8, or may be a dedicated circuit such as FPGA or ASIC.
  • the program may be provided by a recording medium or a communication medium.
  • the memory that implements the storage section 54 and the storage section 64 may be part of the memory 102 or may be a memory separate from the control circuit 100.
  • the program of the present embodiment includes, for example, a step of generating, in the aggregation device 2, an instrument control message for controlling the measuring section 6 using the instrument ID correspondence information, and a step of generating the instrument control message corresponding to the measuring section 6.
  • the steps of transmitting to the terminal 3 are executed.
  • the aggregation device 2 holds instrument ID correspondence information, generates an instrument control message for controlling the measuring section 6 of the terminal 3, and transmits it to the terminal 3. . Therefore, communication traffic between the host server 1 and the aggregation device 2 can be reduced.

Abstract

An aggregation device (2) according to the present disclosure communicates with a plurality of terminals (3) each comprising a measuring unit (6) and a communication unit (5), aggregates data transmitted from the plurality of terminals (3), and transmits the data to an upper-level server (1), said aggregation device comprising: a storage unit (27) which stores instrument ID correspondence information that indicates the correspondence between the identification information about the measuring unit (6) and the identification information about the communication unit (5) of a terminal (3) comprising the measuring unit (6); a message generation unit (25) which uses the instrument ID correspondence information to generate an instrument control message for controlling the measuring unit (6); and a first transceiving unit (21) which transmits the instrument control message to the terminal (3).

Description

集約装置、通信システム、通信方法およびプログラムAggregation device, communication system, communication method and program
 本開示は、端末から取得したデータを集約する集約装置、通信システム、通信方法およびプログラムに関する。 The present disclosure relates to an aggregation device, a communication system, a communication method, and a program that aggregate data acquired from terminals.
 近年、省エネルギー型社会への関心が高まり、電力量の自動検針による消費電力の可視化、および電力の需給制御などを可能とするスマートメーターと呼ばれる自動検針装置の導入が推進されている。今後、スマートメーターは全世帯に設置され、各電力会社管内の広域な大規模ネットワークとして構築されて運用される。 In recent years, interest in an energy-saving society has increased, and the introduction of automatic meter reading devices called smart meters, which enable visualization of power consumption through automatic meter reading and power supply and demand control, is being promoted. In the future, smart meters will be installed in all households, and will be constructed and operated as a wide-area large-scale network within the jurisdiction of each power company.
 多数のスマートメーターは、マルチホップネットワークを構成し、各スマートメーターは、マルチホップネットワークにおける根となる集約装置(コンセントレーター)へ向けて計量データを送信する。一般に、多数のスマートメーターを含むマルチホップネットワークであるスマートメータネットワークは、集約装置を複数備え、各集約装置が集約した計量データを、ヘッドエンドシステム(HES(Head End System))などと呼ばれる上位サーバが収集する。 A large number of smart meters constitute a multi-hop network, and each smart meter transmits metering data to a concentrator, which is the root of the multi-hop network. In general, a smart meter network, which is a multi-hop network including many smart meters, is equipped with multiple aggregation devices, and the metering data aggregated by each aggregation device is sent to a higher-level server called a head end system (HES). collects.
 特許文献1には、集約装置が、スマートメーターである計量器端末から受信した計量結果を集約して、上位サーバであるサーバへ送信する技術が開示されている。特許文献1に記載の技術では、集約装置が、複数の計量器端末から受信した計量結果を集約して送信するため、サーバが直接各計量器端末から計量結果を受信する場合に比べて、上位サーバと集約装置との間のトラヒックを軽減することができる。 Patent Document 1 discloses a technology in which an aggregation device aggregates measurement results received from measuring device terminals, which are smart meters, and transmits the results to a server, which is a host server. In the technology described in Patent Document 1, the aggregation device aggregates and transmits the measurement results received from multiple measuring device terminals, so compared to the case where the server directly receives the measurement results from each measuring device terminal, the higher level Traffic between the server and the aggregation device can be reduced.
特開2011-34388号公報Japanese Patent Application Publication No. 2011-34388
 上記特許文献1に記載の技術では、スマートメーターから上位サーバへ向かう上り通信に関して上位サーバと集約装置との間のトラヒックを軽減することができる。しかしながら、特許文献1には、上位サーバからスマートメーターへ向かう下り通信に関して上位サーバと集約装置との間のトラヒックを軽減する方法は開示されていない。 The technology described in Patent Document 1 can reduce the traffic between the host server and the aggregation device regarding uplink communication from the smart meter to the host server. However, Patent Document 1 does not disclose a method for reducing the traffic between the host server and the aggregation device regarding downlink communication from the host server to the smart meter.
 一方、スマートメーターからデータを収集する周期の短周期化などが検討されており、今後、上位サーバと集約装置との間のトラヒックが増加すると予想される。また、近年、電力量の自動検針のために構築されたスマートメータネットワークを、インフラストラクチャとして活用することが検討されている。例えば、配電系統の開閉器の制御、監視のためのセンサ情報の収集などのために使用されることが望まれている。また、スマートメーターから収集されるデータとして、無効電力、電圧などが追加されることが計画されている。これにより、上位サーバと集約装置との間のトラヒック、特に上りトラヒックの増加が予想される。現状では、上位サーバが、集約装置を介してスマートメーターへ各種の指示を行っており、これにより上位サーバと集約装置との間で通信が行われるが、今後のトラヒック増加による輻輳を避けるため、上位サーバと集約装置との間の通信のトラヒックを軽減することが望まれる。 On the other hand, shortening the cycle for collecting data from smart meters is being considered, and traffic between host servers and aggregation devices is expected to increase in the future. Furthermore, in recent years, consideration has been given to utilizing smart meter networks built for automatic meter reading of electric power as infrastructure. For example, it is desired to be used for controlling switches in power distribution systems, collecting sensor information for monitoring, and the like. Additionally, it is planned that reactive power, voltage, etc. will be added to the data collected from smart meters. As a result, it is expected that the traffic between the host server and the aggregation device, especially the upstream traffic, will increase. Currently, the host server issues various instructions to the smart meter via the aggregation device, and communication is thereby performed between the host server and the aggregation device, but in order to avoid congestion due to future traffic increases, It is desired to reduce the communication traffic between the upper level server and the aggregation device.
 本開示は、上記に鑑みてなされたものであって、上位サーバと集約装置との間の通信のトラヒックを軽減することができる集約装置を得ることを目的とする。 The present disclosure has been made in view of the above, and aims to provide an aggregation device that can reduce communication traffic between an upper-level server and the aggregation device.
 上述した課題を解決し、目的を達成するために、本開示にかかる集約装置は、それぞれが計量部および通信部を備える複数の端末と通信を行い、複数の端末から送信されるデータを集約して上位サーバへ送信する集約装置であって、計量部の識別情報と計量部を備える端末の通信部の識別情報との対応を示す対応情報を記憶する記憶部と、対応情報を用いて、計量部を制御するための制御電文を生成する電文生成部と、制御電文を計量部に対応する端末へ送信する送受信部と、を備える。 In order to solve the above-mentioned problems and achieve the purpose, an aggregation device according to the present disclosure communicates with a plurality of terminals, each of which has a measuring section and a communication section, and aggregates data transmitted from the plurality of terminals. an aggregation device that sends data to an upper-level server using a storage unit that stores correspondence information indicating a correspondence between identification information of a measurement unit and identification information of a communication unit of a terminal equipped with the measurement unit; The measuring device includes a message generating section that generates a control message for controlling the measuring section, and a transmitting/receiving section that transmits the control message to a terminal corresponding to the measuring section.
 本開示にかかる集約装置は、上位サーバと集約装置との間の通信のトラヒックを軽減することができるという効果を奏する。 The aggregation device according to the present disclosure has the effect of being able to reduce communication traffic between the upper level server and the aggregation device.
実施の形態にかかる通信システムの構成例を示す図A diagram illustrating a configuration example of a communication system according to an embodiment. 実施の形態の上位サーバの構成例を示す図Diagram showing a configuration example of a higher-level server according to an embodiment 実施の形態の集約装置の構成例を示す図A diagram showing a configuration example of an aggregation device according to an embodiment 実施の形態の端末の構成例を示す図Diagram showing an example of the configuration of a terminal according to an embodiment 集約装置が送信する計器制御電文の一例を示す図Diagram showing an example of an instrument control message sent by the aggregation device 実施の形態の通信システムにおける計器制御電文に関する処理の一例を示すシーケンス図Sequence diagram showing an example of processing related to instrument control messages in the communication system of the embodiment 実施の形態の集約装置における計器制御電文の生成に関する処理手順の一例を示すフローチャートFlowchart illustrating an example of a processing procedure for generating an instrument control message in the aggregation device according to the embodiment 実施の形態の制御回路の一例を示す図A diagram showing an example of a control circuit according to an embodiment
 以下に、実施の形態にかかる集約装置、通信システム、通信方法およびプログラムを図面に基づいて詳細に説明する。 Below, an aggregation device, a communication system, a communication method, and a program according to an embodiment will be described in detail based on the drawings.
実施の形態.
 図1は、実施の形態にかかる通信システムの構成例を示す図である。本実施の形態の通信システムは、例えば、電力量の自動検針に用いられるが、電力量の自動検針とともに他の用途に用いられてもよい。また、実施の形態の通信システムは、ガスの自動検針など電力量以外の自動検針に用いられてもよい。
Embodiment.
FIG. 1 is a diagram showing a configuration example of a communication system according to an embodiment. The communication system of this embodiment is used, for example, for automatic meter reading of electric energy, but may be used for other purposes as well as automatic meter reading of electric energy. Further, the communication system of the embodiment may be used for automatic meter reading other than electric power, such as automatic gas meter reading.
 本実施の形態の通信システムは、図1に示すように、通信管理装置である上位サーバ1と、集約装置2-1,2-2と、端末3-1~3-12とを備える。詳細には、本実施の形態の通信システムは、集約装置2-1,2-2と集約装置2-1,2-2のいずれか1つへデータを送信する端末3-1~3-12とで構成される無線マルチホップネットワークと、集約装置2-1,2-2から上りデータを収集する上位サーバ1とを備える。なお、図1では、集約装置を2台、端末を12台図示しているが、集約装置および端末の数は、図1に示した例に限定されない。上位サーバ1と集約装置2-1,2-2とは、WAN(Wide Area Network)などの通信ネットワーク4を介して接続される。 As shown in FIG. 1, the communication system of this embodiment includes an upper level server 1 that is a communication management device, aggregation devices 2-1 and 2-2, and terminals 3-1 to 3-12. Specifically, the communication system of this embodiment includes aggregating devices 2-1, 2-2 and terminals 3-1 to 3-12 that transmit data to any one of the aggregating devices 2-1, 2-2. The host server 1 includes a wireless multi-hop network consisting of a wireless multi-hop network, and an upper server 1 that collects upstream data from the aggregation devices 2-1 and 2-2. Although FIG. 1 shows two aggregating devices and 12 terminals, the numbers of aggregating devices and terminals are not limited to the example shown in FIG. 1. The upper level server 1 and the aggregation devices 2-1 and 2-2 are connected via a communication network 4 such as a WAN (Wide Area Network).
 端末3-1~3-12は、それぞれが後述する計量部および通信部を備える複数の端末の一例である。端末3-1~3-12は、例えば、自動検針に用いられる装置であり、スマートメーターと呼ばれる装置である。後述するように、端末3-1~3-12は、計器を備え、電力量の計量データであるメーターデータを、対応する集約装置2-1,2-2へ向けて送信する。端末3-1~3-12は、例えば、電力の需要家に設置される。また、本実施の形態の通信システムが電力量の自動検針以外の他の用途に用いられる場合には、端末3-1~3-12は、用途に応じて、図示しない他の装置と通信を行い、他の装置から取得したデータを対応する集約装置2-1,2-2へ向けて送信する。以下、端末3-1~3-12を個別に区別せずに示すときには、端末3と記載する。端末3-1~3-12は、定期的にメーターデータを送信する。定期的なメーターデータの送信周期を以下、定期送信周期と呼ぶ。定期送信周期は、例えば、30分、15分および5分のうちのいずれかであるが、定期送信周期はこれらに限定されない。以下、定期的なメーターデータの収集を定期収集とも呼ぶ。 The terminals 3-1 to 3-12 are examples of a plurality of terminals each including a measuring section and a communication section, which will be described later. The terminals 3-1 to 3-12 are devices used for automatic meter reading, for example, and are devices called smart meters. As will be described later, the terminals 3-1 to 3-12 are equipped with meters and transmit meter data, which is measurement data of electric energy, to the corresponding aggregation devices 2-1 and 2-2. The terminals 3-1 to 3-12 are installed at electric power consumers, for example. Furthermore, if the communication system of this embodiment is used for purposes other than automatic power meter reading, the terminals 3-1 to 3-12 may communicate with other devices (not shown) depending on the purpose. and transmits the data acquired from other devices to the corresponding aggregation devices 2-1 and 2-2. Hereinafter, when the terminals 3-1 to 3-12 are shown without being distinguished individually, they will be referred to as terminal 3. The terminals 3-1 to 3-12 periodically transmit meter data. The regular transmission cycle of meter data is hereinafter referred to as a regular transmission cycle. The regular transmission cycle is, for example, one of 30 minutes, 15 minutes, and 5 minutes, but the regular transmission cycle is not limited to these. Hereinafter, periodic collection of meter data will also be referred to as regular collection.
 集約装置2-1,2-2および端末3-1~3-12は、集約装置2-1,2-2を根とする無線マルチホップネットワークを構成する。無線マルチホップネットワークを構成する集約装置2-1,2-2および端末3-1~3-12を以下ノードとも呼ぶ。なお、図1において集約装置2-1,2-2および端末3-1~3-12を接続する線は、無線リンクを示している。なお、以下では、本実施の形態の通信システムが無線マルチホップネットワークである例を説明するが、電力線通信などを用いたマルチホップネットワークであってもよい。また、集約装置2-1,2-2と端末3との間の通信は、マルチホップネットワークによる通信に限定されず、例えば携帯電話ネットワークを用いた通信などのように、他の方式の通信であってもよく、マルチホップネットワークによる通信と他の通信方式との組み合わせであってもよい。 The aggregation devices 2-1, 2-2 and the terminals 3-1 to 3-12 constitute a wireless multi-hop network with the aggregation devices 2-1, 2-2 as the roots. The aggregation devices 2-1, 2-2 and terminals 3-1 to 3-12 that constitute the wireless multi-hop network are also referred to as nodes hereinafter. Note that in FIG. 1, the lines connecting the aggregation devices 2-1, 2-2 and the terminals 3-1 to 3-12 indicate wireless links. Note that although an example in which the communication system of this embodiment is a wireless multi-hop network will be described below, it may be a multi-hop network using power line communication or the like. Furthermore, the communication between the aggregation devices 2-1, 2-2 and the terminal 3 is not limited to communication using a multi-hop network, but may also be performed using other methods such as communication using a mobile phone network. It may also be a combination of communication using a multi-hop network and other communication methods.
 集約装置2-1,2-2は、複数の端末3から送信されるデータを集約して上位サーバ1へ送信する。例えば、集約装置2-1,2-2は、端末3-1~3-12からメーターデータを収集し、収集したメーターデータを集約して、通信ネットワーク4を介して上位サーバ1へ送信する。これにより、上位サーバ1は、端末3-1~3-12から上りデータとして電力量の計量結果であるメーターデータを定期的に収集することができる。集約装置2-1,2-2と上位サーバ1との間の通信ネットワーク4は、IP(Internet Protocol)ネットワークであり、例えば、光回線ネットワーク、携帯電話ネットワークであるが、これらに限定されない。以下、集約装置2-1,2-2を個別に区別せずに示すときには、集約装置2と記載する。 The aggregation devices 2-1 and 2-2 aggregate data sent from multiple terminals 3 and send it to the higher-level server 1. For example, the aggregation devices 2-1 and 2-2 collect meter data from the terminals 3-1 to 3-12, aggregate the collected meter data, and transmit the collected meter data to the host server 1 via the communication network 4. Thereby, the host server 1 can periodically collect meter data, which is the result of measuring electric energy, as upstream data from the terminals 3-1 to 3-12. The communication network 4 between the aggregation devices 2-1, 2-2 and the host server 1 is an IP (Internet Protocol) network, such as an optical line network or a mobile phone network, but is not limited to these. Hereinafter, when the aggregating devices 2-1 and 2-2 are shown without being distinguished individually, they will be referred to as aggregating device 2.
 また、集約装置2-1,2-2および端末3-1~3-12を含む無線マルチホップネットワークでは、定められた経路制御プロトコルに基づいて経路制御が行われる。経路制御プロトコルとしては、RPL(IPv6 Routing Protocol for Low-Power and Lossy Networks)を用いることができる。経路制御プロトコルは、これに限定されないが、以下、本実施の形態では、経路制御プロトコルとしてRPLが用いられる例を説明する。RPLでは、各端末3から集約装置2へ向かう通信経路である上り経路に関しては、各端末3が集約装置2へ向かう経路における次の端末3を上り経路として管理する。図1において、端末3間および集約装置2と端末3との間を接続する線は、互いに無線通信を行うことが可能であることを示している。図1に示すように、各端末3は、複数の端末3と無線通信を行うことが可能な場合がある。各端末3は、経路構築のための制御メッセージを他の端末3または集約装置2とやりとりすることで、通信可能な端末3のなかから、または通信可能な端末3および集約装置2のなかから、上り経路を選択する。例えば、各端末3は、例えば、集約装置2までのホップ数、通信品質などに応じて上り経路を選択する。また、各端末3は、上り制御メッセージに自身の識別情報を順次付加する。これにより、集約装置2は、各端末3に対応する上り経路として経由した端末3を把握することができる。RPLでは、集約装置2から各端末3へ向かう下り経路に関しては、集約装置2が上り経路の逆の経路を下り経路として決定する。 Furthermore, in the wireless multi-hop network including the aggregation devices 2-1, 2-2 and the terminals 3-1 to 3-12, route control is performed based on a predetermined route control protocol. As the route control protocol, RPL (IPv6 Routing Protocol for Low-Power and Lossy Networks) can be used. Although the route control protocol is not limited to this, in the present embodiment, an example in which RPL is used as the route control protocol will be described below. In RPL, regarding the uplink route which is the communication route from each terminal 3 to the aggregation device 2, each terminal 3 manages the next terminal 3 on the route toward the aggregation device 2 as the uplink route. In FIG. 1, lines connecting the terminals 3 and between the aggregation device 2 and the terminal 3 indicate that they can communicate wirelessly with each other. As shown in FIG. 1, each terminal 3 may be able to perform wireless communication with a plurality of terminals 3. By exchanging control messages for route construction with other terminals 3 or the aggregation device 2, each terminal 3 receives information from among the communicable terminals 3, or from among the communicable terminals 3 and the aggregation device 2. Select the up route. For example, each terminal 3 selects an uplink route depending on, for example, the number of hops to the aggregation device 2, communication quality, and the like. Furthermore, each terminal 3 sequentially adds its own identification information to the uplink control message. Thereby, the aggregation device 2 can grasp the terminals 3 that have passed through as the uplink route corresponding to each terminal 3. In RPL, regarding the downlink route from the aggregation device 2 to each terminal 3, the aggregation device 2 determines the reverse route of the uplink route as the downlink route.
 上位サーバ1と集約装置2-1,2-2とは、通信ネットワーク4を介して通信を行う。通信ネットワーク4はどのようなネットワークでもよいが例えばIPネットワークである。上位サーバ1は、集約装置2-1,2-2からメーターデータを収集し、収集したメーターデータを図示しないメーターデータ管理システム(MDMS(Meter Data Management System))へ送信する。MDMSは、メーターデータを管理する装置である。また、本実施の形態の通信システムが電力量の自動検針以外の他の用途に用いられる場合には、上位サーバ1は、他の用途のために端末3-1~3-12から収集されたデータを、他の用途のための管理装置などへ送信する。また、上位サーバ1は、端末3-1~3-12を制御するための制御情報を、集約装置2-1,2-2を介して端末3-1~3-12へ送信する。 The host server 1 and the aggregation devices 2-1 and 2-2 communicate via the communication network 4. The communication network 4 may be any type of network, for example an IP network. The upper server 1 collects meter data from the aggregation devices 2-1 and 2-2, and sends the collected meter data to a meter data management system (MDMS), not shown. MDMS is a device that manages meter data. In addition, when the communication system of this embodiment is used for purposes other than automatic meter reading of electric energy, the host server 1 can collect data from the terminals 3-1 to 3-12 for other purposes. Send the data to a management device for other purposes. Further, the upper level server 1 transmits control information for controlling the terminals 3-1 to 3-12 to the terminals 3-1 to 3-12 via the aggregation devices 2-1 and 2-2.
 一般に、端末3-1~3-12における計器を制御するためには、上位サーバ1が、端末3ごとに、制御の内容を示す定められた形式の計器制御電文を生成し、生成した各計器制御電文を、集約装置2を介して宛先の端末3へ送信する。計器制御電文は、端末3の計量部を制御するための制御電文である。計器制御電文としては、例えば、IEC(International Electrotechnical Commission:国際電気標準会議)の国際標準規格であるDLMS(Device Language Message Specification)/COSEM(COmpanion Specification for Energy Metering)に従った電文(以下、COSEM電文と呼ぶ)を用いることができるが、これに限定されない。このため、端末3ごとの計器制御電文が全て、上位サーバ1から集約装置2へ送信されることになり通信ネットワーク4の通信リソースを圧迫する。特に、今後、様々な用途でスマートメータネットワークが利用されると、上位サーバ1と端末3との間の通信のトラヒックが増加することが予想され、特に上り通信のトラヒックが増加すると予想される。また、端末3が計測するデータが増加したり、定期送信周期を変更したりといった場合には、端末3の計器に対応するファームウェアのアップデートが必要となることがあり、このような場合には、上位サーバ1は端末3ごとにファームウェアを送信することになり、上位サーバ1と集約装置2との間のトラヒックが増加する。このため、本実施の形態では、少なくとも一部の計器制御電文を集約装置2が生成して端末3へ送信することで、通信ネットワーク4の輻輳を軽減するとともに上位サーバ1の負荷を軽減する。集約装置2における計器制御電文の生成の詳細については後述する。 Generally, in order to control the instruments at the terminals 3-1 to 3-12, the host server 1 generates an instrument control message in a predetermined format indicating the control content for each terminal 3, and The control message is transmitted to the destination terminal 3 via the aggregation device 2. The meter control message is a control message for controlling the metering section of the terminal 3. As an instrument control message, for example, a message (hereinafter referred to as COSEM message) that complies with DLMS (Device Language Message Specification)/COSEM (COmpanion Specification for Energy Metering), which is an international standard of IEC (International Electrotechnical Commission), is used. ) can be used, but is not limited to this. Therefore, all instrument control messages for each terminal 3 are transmitted from the host server 1 to the aggregation device 2, which puts pressure on the communication resources of the communication network 4. In particular, when smart meter networks are used for various purposes in the future, it is expected that communication traffic between host server 1 and terminal 3 will increase, and in particular, upstream communication traffic is expected to increase. In addition, if the amount of data measured by the terminal 3 increases or the periodic transmission cycle is changed, it may be necessary to update the firmware corresponding to the instrument of the terminal 3. The upper level server 1 will send firmware to each terminal 3, and the traffic between the upper level server 1 and the aggregation device 2 will increase. Therefore, in the present embodiment, the aggregation device 2 generates at least some of the instrument control messages and transmits them to the terminal 3, thereby reducing congestion in the communication network 4 and reducing the load on the host server 1. Details of the generation of the instrument control message in the aggregation device 2 will be described later.
 次に、本実施の形態の通信システムを構成する各装置の構成例について説明する。図2は、本実施の形態の上位サーバ1の構成例を示す図である。上位サーバ1は、送受信部11、制御処理部12および記憶部13を備える。 Next, a configuration example of each device configuring the communication system of this embodiment will be described. FIG. 2 is a diagram showing an example of the configuration of the host server 1 according to the present embodiment. The upper level server 1 includes a transmitting/receiving section 11, a control processing section 12, and a storage section 13.
 送受信部11は、集約装置2との間で通信を行う。送受信部11は、集約装置2から受信したデータを、制御処理部12へ渡す。また、送受信部11は、制御処理部12によって生成された制御情報を、送受信部11を介して対応する集約装置2へ送信する。制御情報は、端末3または集約装置2を制御するための指示を含む情報である。なお、上述したように、本実施の形態では、少なくとも一部の制御において、集約装置2が端末3宛ての計器制御電文を生成するため、この場合、制御処理部12は、集約装置2が端末3宛てに計器制御電文を送信させるための指示を制御情報として生成する。例えば、制御情報は宛先の端末3と制御の内容を示す情報とを含む。また、上述したように、上位サーバ1は端末3宛ての制御情報を計器制御電文として送信してもよく、この場合には、計器制御電文が集約装置2を介して端末3へ送信される。なお、制御処理部12は、計器制御電文を、端末3との間で用いるあらかじめ定められた共通鍵を用いて暗号化して送信する。各端末3との間の共通鍵は、鍵情報として記憶部13に格納されている。共通鍵は、図示しない鍵サーバによって生成されてもよいし、上位サーバ1によって生成されてもよい。各端末3は、共通鍵を保持する。なお、共通鍵のやりとりの方法は特に制約はなく、どのような方法であってもよい。 The transmitting/receiving unit 11 communicates with the aggregation device 2. The transmitter/receiver 11 passes the data received from the aggregation device 2 to the control processor 12 . Further, the transmitter/receiver 11 transmits the control information generated by the control processor 12 to the corresponding aggregation device 2 via the transmitter/receiver 11 . The control information is information including instructions for controlling the terminal 3 or the aggregation device 2. As described above, in this embodiment, in at least some of the controls, the aggregation device 2 generates an instrument control message addressed to the terminal 3, so in this case, the control processing unit 12 An instruction for transmitting an instrument control message to address No. 3 is generated as control information. For example, the control information includes the destination terminal 3 and information indicating the content of control. Further, as described above, the host server 1 may transmit control information addressed to the terminal 3 as an instrument control message, and in this case, the instrument control message is transmitted to the terminal 3 via the aggregation device 2. Note that the control processing unit 12 encrypts the instrument control message using a predetermined common key used with the terminal 3 and transmits the encrypted message. The common key with each terminal 3 is stored in the storage unit 13 as key information. The common key may be generated by a key server (not shown) or by the upper level server 1. Each terminal 3 holds a common key. Note that there are no particular restrictions on the method of exchanging the common key, and any method may be used.
 集約装置2による計器制御電文の生成と、上位サーバ1による計器制御電文の両方が行われる場合、どちらが計器制御電文を生成するかは制御の内容に応じてあらかじめ定められてもよいし、上位サーバ1の制御処理部12が決定してもよい。例えば、多くの端末3に同じ計器制御電文を送信する場合や短い周期で周期的に計器制御電文を送信する場合に、集約装置2が計器制御電文を生成するようにすると、通信ネットワーク4の輻輳の軽減の効果を高めることができる。なお、計器制御電文の生成には、後述するように、端末3の通信部としての識別情報ではなく、端末3における計量部の識別情報である計器ID(IDentifier)が用いられる。上位サーバ1は、計器IDと通信装置としての識別情報との対応を計器ID対応情報として記憶部13に保持している。制御処理部12は、記憶部13に格納されている計器ID対応情報を参照して、計器制御電文を生成する。 When both the instrument control message is generated by the aggregation device 2 and the instrument control message is generated by the host server 1, which one generates the instrument control message may be determined in advance depending on the content of control, or the host server The determination may be made by the control processing unit 12 of 1. For example, when the same instrument control message is transmitted to many terminals 3 or when the instrument control message is periodically transmitted at short intervals, if the aggregation device 2 generates the instrument control message, the congestion of the communication network 4 It is possible to enhance the effect of reducing Note that, as described later, the instrument ID (IDentifier), which is the identification information of the measuring section in the terminal 3, is used to generate the instrument control message, instead of the identification information of the communication section of the terminal 3. The host server 1 stores the correspondence between the meter ID and identification information as a communication device in the storage unit 13 as meter ID correspondence information. The control processing unit 12 refers to the instrument ID correspondence information stored in the storage unit 13 and generates an instrument control message.
 制御処理部12は、送受信部11を介して集約装置2から受信したデータが、メーターデータである場合には、受信したメーターデータを記憶部13に格納する。また、制御処理部12は、送受信部11を介して集約装置2から受信したデータが参入リストである場合には、当該参入リストを記憶部13に格納する。参入リストは、各集約装置2の配下の端末3を示す情報である。また、制御処理部12は、集約装置2または端末3を制御するための指示を示す制御情報を生成し、生成した制御情報を、送受信部11を介して宛先へ向けて送信する。また、制御処理部12は、送受信部11を介して集約装置2から受信したデータが、上位サーバ1から送信した指示に対応する結果(応答データ)である場合には当該応答データに基づいた処理を実施する。また、制御処理部12は、定められたタイミングまたは図示しないMDMSから指定されたタイミングで、記憶部13に格納されたメーターデータを、送受信部11を介して図示しないMDMSへ送信する。 If the data received from the aggregation device 2 via the transmission/reception unit 11 is meter data, the control processing unit 12 stores the received meter data in the storage unit 13. Further, when the data received from the aggregation device 2 via the transmitting/receiving unit 11 is an entry list, the control processing unit 12 stores the entry list in the storage unit 13 . The entry list is information indicating the terminals 3 under each aggregation device 2. Further, the control processing unit 12 generates control information indicating instructions for controlling the aggregation device 2 or the terminal 3, and transmits the generated control information to the destination via the transmitting/receiving unit 11. Furthermore, if the data received from the aggregation device 2 via the transmitter/receiver 11 is a result (response data) corresponding to an instruction transmitted from the host server 1, the control processor 12 performs processing based on the response data. Implement. Further, the control processing unit 12 transmits the meter data stored in the storage unit 13 to the MDMS (not shown) via the transmitting/receiving unit 11 at a predetermined timing or at a timing specified by the MDMS (not shown).
 記憶部13は、メーターデータ、参入リスト、計器ID対応情報および鍵情報を記憶する。また、記憶部13は、上位サーバ1が、端末3からメーターデータ以外の他の情報を収集する場合には、当該情報も記憶してもよい。 The storage unit 13 stores meter data, entry list, meter ID correspondence information, and key information. Furthermore, when the host server 1 collects information other than meter data from the terminal 3, the storage unit 13 may also store the information.
 図3は、本実施の形態の集約装置2の構成例を示す図である。集約装置2は、第1送受信部21、通信制御部22、制御処理部23、第2送受信部24、電文生成部25、結果集約部26および記憶部27を備える。 FIG. 3 is a diagram showing a configuration example of the aggregation device 2 of this embodiment. The aggregation device 2 includes a first transmission/reception section 21 , a communication control section 22 , a control processing section 23 , a second transmission/reception section 24 , a message generation section 25 , a result aggregation section 26 , and a storage section 27 .
 第1送受信部21は、端末3との間で無線通信を行う送受信部である。第1送受信部21は、端末3からデータを受信すると、当該データを通信制御部22へ出力する。また、第1送受信部21は、通信制御部22から受け取った端末3宛てのデータを、端末3へ送信する。例えば、第1送受信部21は、計器制御電文を、計器制御電文によって制御される計量部に対応する端末3へ送信する。 The first transmitter/receiver 21 is a transmitter/receiver that performs wireless communication with the terminal 3. When the first transmitting/receiving unit 21 receives data from the terminal 3, it outputs the data to the communication control unit 22. Further, the first transmitting/receiving section 21 transmits to the terminal 3 the data addressed to the terminal 3 received from the communication control section 22 . For example, the first transmitting/receiving section 21 transmits the meter control message to the terminal 3 corresponding to the measuring section controlled by the meter control message.
 第2送受信部24は、上位サーバ1との間で通信を行う。第2送受信部24は、上位サーバ1から制御情報、端末3宛ての計器制御電文などのデータを受信すると、当該データを制御処理部23へ出力する。また、第2送受信部24は、制御処理部23から入力される上位サーバ1宛てのデータを、上位サーバ1へ送信する。 The second transmitting/receiving unit 24 communicates with the upper level server 1. When the second transmitting/receiving unit 24 receives data such as control information and instrument control messages addressed to the terminal 3 from the host server 1 , it outputs the data to the control processing unit 23 . Further, the second transmitting/receiving unit 24 transmits data addressed to the upper level server 1 that is input from the control processing unit 23 to the upper level server 1 .
 通信制御部22は、無線マルチホップネットワークにおける経路制御プロトコルにしたがった通信制御を行う。上述したように、経路制御プロトコルは、ここではRPLであるとする。例えば、通信制御部22は、端末3から送信されたデータを第1送受信部21から受け取ると、当該データが経路構築のために用いられる上りの制御メッセージである場合、当該データに格納されている上り経路を用いて下り経路を求め、求めた下り経路を経路情報として記憶部27へ格納する。また、通信制御部22は、端末3から送信されたデータを受け取ると、当該データの送信元の端末3が記憶部27の参入リストに含まれていない場合には、送信元の端末3を参入リストに追加する。集約装置2が保持する参入リストは、集約装置2ごとの、集約装置2の配下の端末3、すなわち集約装置2を経由して上位サーバ1へメーターデータを送信する端末3を示すリストである。 The communication control unit 22 performs communication control according to a route control protocol in a wireless multi-hop network. As mentioned above, the route control protocol is assumed to be RPL here. For example, when the communication control unit 22 receives data transmitted from the terminal 3 from the first transmitting/receiving unit 21, if the data is an uplink control message used for route construction, the communication control unit 22 receives the data stored in the data. A down route is determined using the up route, and the determined down route is stored in the storage unit 27 as route information. Furthermore, upon receiving the data transmitted from the terminal 3, the communication control unit 22 causes the transmission source terminal 3 to participate if the data transmission source terminal 3 is not included in the entry list of the storage unit 27. Add to list. The entry list held by the aggregation device 2 is a list indicating, for each aggregation device 2, the terminals 3 under the aggregation device 2, that is, the terminals 3 that transmit meter data to the upper server 1 via the aggregation device 2.
 通信制御部22は、第1送受信部21から受け取ったデータが、メーターデータである場合、当該メーターデータを記憶部27へ格納する。また、通信制御部22は、制御処理部23から端末3宛ての計器制御電文を受け取ると記憶部27に格納されている経路情報を用いて計器制御電文を端末3へ送信する。詳細には、通信制御部22は、経路情報を参照して、宛先の端末3までの下り経路、すなわち宛先の端末3までの通信経路において経由される端末3を示す情報を、計器制御電文に付加し、下り経路を付加した計器制御電文を、第1送受信部21を介して宛先の端末3へ向けて送信する。 If the data received from the first transmitting/receiving unit 21 is meter data, the communication control unit 22 stores the meter data in the storage unit 27. Further, upon receiving the instrument control message addressed to the terminal 3 from the control processing section 23, the communication control section 22 transmits the instrument control message to the terminal 3 using the route information stored in the storage section 27. Specifically, the communication control unit 22 refers to the route information and adds information indicating the terminals 3 to be passed through on the downstream route to the destination terminal 3, that is, the communication route to the destination terminal 3, into the instrument control message. The meter control message to which the downlink route has been added is transmitted to the destination terminal 3 via the first transmitter/receiver 21 .
 制御処理部23は、第2送受信部24から受け取ったデータが制御情報である場合には当該制御情報に従った処理を実施する。また、制御処理部23は、上位サーバ1との間で暗号化が行われる場合には、上位サーバ1と集約装置2との間の共通鍵を用いた暗号化および復号も行う。この共通鍵は、記憶部27に鍵情報として格納されている。制御処理部23は、受け取った制御情報が、端末3宛ての指示を計器制御電文として送信する指示である場合、当該制御情報を記憶部27に格納し、当該制御情報に基づいて計器制御電文の生成を電文生成部25へ指示する。例えば、制御情報が特定の端末3から電圧を一定周期で収集する指示である場合、一定周期ごとに、電文生成部25へ、端末3から電圧を一定周期で収集するための計器制御電文の生成を指示する。制御処理部23は、電文生成部25から生成された計器制御電文を受け取ると、受け取った計器制御電文を通信制御部22へ出力する。また、制御処理部23は、第2送受信部24から受け取ったデータが端末3宛ての計器制御電文である場合には、当該計器制御電文を復号せずに通信制御部22へ渡す。 If the data received from the second transmitting/receiving unit 24 is control information, the control processing unit 23 performs processing according to the control information. Furthermore, when encryption is performed with the higher-level server 1, the control processing unit 23 also performs encryption and decryption using a common key between the higher-level server 1 and the aggregation device 2. This common key is stored in the storage unit 27 as key information. When the received control information is an instruction to transmit an instruction addressed to the terminal 3 as an instrument control message, the control processing section 23 stores the control information in the storage section 27 and processes the instrument control message based on the control information. The generation is instructed to the message generation unit 25. For example, if the control information is an instruction to collect voltage from a specific terminal 3 at regular intervals, the message generation unit 25 generates an instrument control message for collecting voltage from the terminal 3 at regular intervals. instruct. Upon receiving the instrument control message generated from the message generation section 25 , the control processing section 23 outputs the received instrument control message to the communication control section 22 . Further, when the data received from the second transmitting/receiving section 24 is an instrument control message addressed to the terminal 3, the control processing section 23 passes the instrument control message to the communication control section 22 without decoding it.
 制御処理部23は、通信制御部22から、端末3から送信された、計器制御電文に対する結果(応答データ)を受け取ると、当該結果を制御結果として記憶部27に格納する。また、制御処理部23は、結果集約部26から、集約した結果を受け取ると、集約した結果を第2送受信部24へ出力する。なお、集約した結果は、制御処理部23を介さずに、結果集約部26から第2送受信部24へ出力されてもよい。 When the control processing unit 23 receives the result (response data) to the instrument control message transmitted from the terminal 3 from the communication control unit 22, the control processing unit 23 stores the result in the storage unit 27 as a control result. Further, upon receiving the aggregated results from the result aggregating unit 26, the control processing unit 23 outputs the aggregated results to the second transmitting/receiving unit 24. Note that the aggregated results may be output from the result aggregation unit 26 to the second transmitting/receiving unit 24 without going through the control processing unit 23.
 制御処理部23は、記憶部27に格納されている配下の各端末3から受信したメーターデータを集約し、集約したメーターデータを、第2送受信部24を介して上位サーバ1へ送信する。また、制御処理部23は、例えば、1日に一度などのように一定周期で、または上位サーバ1から指示のあったときに、参入リストを上位サーバ1へ送信する。上位サーバ1では、この参入リストを各集約装置2の参入リストとして記憶部13に格納する。 The control processing unit 23 aggregates the meter data received from each subordinate terminal 3 stored in the storage unit 27 and transmits the aggregated meter data to the upper server 1 via the second transmitting/receiving unit 24. Further, the control processing unit 23 transmits the entry list to the higher-level server 1 at regular intervals, such as once a day, or when instructed by the higher-level server 1, for example. The upper level server 1 stores this entry list in the storage unit 13 as the entry list of each aggregation device 2.
 電文生成部25は、計器ID対応情報を用いて、計器制御電文を生成する。詳細には、電文生成部25は、制御処理部23から制御情報を受け取ると、制御情報に基づいて計器制御電文を生成し、生成した計器制御電文を、記憶部27に鍵情報として格納されている端末3と集約装置2との間の共通鍵を用いて暗号化し、暗号化した計器制御電文を制御処理部23へ出力する。このため、本実施の形態では、端末3と集約装置2との間で用いられる共通鍵は、当該端末3と上位サーバ1との間で用いられる共通鍵と、異なっていてもよいし同じであってもよい。端末3と集約装置2との間で用いられる共通鍵は、例えば、図示しない上述した鍵サーバによって生成されてもよいし、上位サーバ1によって生成されてもよい。端末3と集約装置2との間で用いられる共通鍵と、当該端末3と上位サーバ1との間で用いられる共通鍵とを異ならせると、いずれかの共通鍵が特定されたとしても他方の共通鍵は秘匿化されたままとなるため、セキュリティを強化することができる。 The message generation unit 25 generates an instrument control message using the instrument ID correspondence information. Specifically, upon receiving the control information from the control processing unit 23, the message generation unit 25 generates an instrument control message based on the control information, and stores the generated instrument control message in the storage unit 27 as key information. The encrypted instrument control message is encrypted using a common key between the terminal 3 and the aggregation device 2 , and the encrypted instrument control message is output to the control processing section 23 . Therefore, in this embodiment, the common key used between the terminal 3 and the aggregation device 2 may be different from or the same as the common key used between the terminal 3 and the upper server 1. There may be. The common key used between the terminal 3 and the aggregation device 2 may be generated by the above-mentioned key server (not shown), or may be generated by the upper level server 1, for example. If the common key used between the terminal 3 and the aggregation device 2 is different from the common key used between the terminal 3 and the upper server 1, even if one of the common keys is specified, the other's Since the common key remains hidden, security can be strengthened.
 なお、一般に、上位サーバ1からの端末3の指定は、端末3の通信部の識別情報が用いられるが、計器制御電文には後述するように計器IDを格納することになる。従来は、集約装置2は、配下の端末3の通信部の識別情報を管理しているが、計器IDについては管理していない。このため、従来は、集約装置2が計器制御電文を生成することは困難であった。本実施の形態では、集約装置2が自身の配下の端末3の計器IDと端末3の通信部の識別情報との対応を示す計器ID対応情報を保持する。これにより、集約装置2が端末3宛ての計器制御電文を生成することができる。計器ID対応情報は、例えば、上位サーバ1から、集約装置2へ送信される。例えば、集約装置2が参入リストを上位サーバ1へ送信すると、上位サーバ1は、受信した参入リストにしたがって、記憶部13の計器ID対応情報から、当該参入リストに含まれる端末3に対応する情報を抽出し、抽出した情報を集約装置2へ送信する。集約装置2は、この情報を計器ID対応情報として記憶部27に格納する。 In general, the identification information of the communication unit of the terminal 3 is used to specify the terminal 3 from the host server 1, but the instrument ID is stored in the instrument control message as described later. Conventionally, the aggregation device 2 manages the identification information of the communication section of the terminal 3 under its control, but does not manage the instrument ID. For this reason, conventionally, it has been difficult for the aggregation device 2 to generate an instrument control message. In this embodiment, the aggregation device 2 holds instrument ID correspondence information indicating the correspondence between the instrument ID of the terminal 3 under its control and the identification information of the communication section of the terminal 3. This allows the aggregation device 2 to generate an instrument control message addressed to the terminal 3. The meter ID correspondence information is transmitted from the upper level server 1 to the aggregation device 2, for example. For example, when the aggregation device 2 transmits the entry list to the higher-level server 1, the upper-level server 1 retrieves information corresponding to the terminal 3 included in the entry list from the instrument ID correspondence information in the storage unit 13 according to the received entry list. and transmits the extracted information to the aggregation device 2. The aggregation device 2 stores this information in the storage unit 27 as instrument ID correspondence information.
 結果集約部26は、例えば、一定期間ごとに一定期間内に受け取った制御結果を、それぞれ記憶部27に鍵情報として格納されている端末3との間の共通鍵を用いて復号し、復号した結果を集約し、集約した結果を制御処理部23へ出力する。なお、結果集約部26が結果を集約するタイミングは、一定期間ごとに限定されず、例えば、上位サーバ1から要求のあったときなどであってもよい。 For example, the result aggregation unit 26 decrypts the control results received within a certain period every certain period using a common key with the terminal 3 stored as key information in the storage unit 27, and decrypts the control results. The results are aggregated and the aggregated results are output to the control processing section 23. Note that the timing at which the result aggregation unit 26 aggregates the results is not limited to every fixed period, and may be, for example, when there is a request from the higher-level server 1.
 記憶部27は、メーターデータ、経路情報、参入リスト、計器ID対応情報、鍵情報、制御情報および制御結果を記憶する。また、記憶部27は、上位サーバ1が、端末3からメーターデータ以外の他の情報を収集する場合には、当該情報も記憶してもよい。 The storage unit 27 stores meter data, route information, entry list, meter ID correspondence information, key information, control information, and control results. Further, when the host server 1 collects information other than meter data from the terminal 3, the storage unit 27 may also store the information.
 図4は、本実施の形態の端末3の構成例を示す図である。端末3は、通信部5と、計量部6とを備える。通信部5は、第1送受信部51、通信制御部52、制御処理部53、記憶部54および第2送受信部55を備える。 FIG. 4 is a diagram showing an example of the configuration of the terminal 3 according to the present embodiment. The terminal 3 includes a communication section 5 and a measuring section 6. The communication section 5 includes a first transceiver section 51, a communication control section 52, a control processing section 53, a storage section 54, and a second transceiver section 55.
 第1送受信部51は、無線マルチホップネットワークにおける他のノードである集約装置2または端末3と無線通信を行う。第1送受信部51は、他のノードからデータを受信すると、当該データを通信制御部52へ出力する。また、第1送受信部51は、通信制御部52の指示に基づいて、通信制御部52から受け取ったデータを他のノードへ送信する。 The first transmitting/receiving unit 51 performs wireless communication with the aggregation device 2 or the terminal 3, which is another node in the wireless multi-hop network. When the first transmitter/receiver 51 receives data from another node, it outputs the data to the communication controller 52 . Further, the first transmitting/receiving unit 51 transmits data received from the communication control unit 52 to other nodes based on instructions from the communication control unit 52.
 通信制御部52は、無線マルチホップネットワークにおける経路制御プロトコルにしたがった通信制御を行う。例えば、端末3が新たに無線マルチホップネットワーク参入する場合、通信制御部52は、第1送受信部51を介して制御メッセージをやりとりすることで、集約装置2宛ての上り経路の経路情報を保持しているノードから集約装置2までのホップ数と集約装置2の識別情報とを取得し、取得したホップ数、当該ノードから受信した信号の強度などに基づいて、上りのデータの転送に用いる次のノードを決定する。通信制御部52は、集約装置2の識別情報と、決定した次のノードの識別情報と、当該ノードから取得したホップ数に1加算したホップ数とを経路情報として記憶部54に格納する。また、通信制御部52は、第1送受信部51を介して他のノードから経路情報の取得を要求するメッセージを受信すると、メッセージの送信元のノードへ第1送受信部51を介して、記憶部54に経路情報として格納されているホップ数を含むメッセージを送信する。また、通信制御部52は、経路情報に格納された次のノードの通信状態を監視しており、次のノードとの通信に失敗した場合には、新たに無線マルチホップネットワーク参入する場合と同様に、制御メッセージをやり取りすることで、別のノードを選択し、選択したノードの識別情報およびホップ数で経路情報を更新する。 The communication control unit 52 performs communication control according to a route control protocol in a wireless multi-hop network. For example, when the terminal 3 newly enters the wireless multi-hop network, the communication control unit 52 maintains the route information of the upstream route to the aggregation device 2 by exchanging control messages via the first transmitting/receiving unit 51. The number of hops from the node in question to the aggregation device 2 and the identification information of the aggregation device 2 are acquired, and based on the acquired number of hops, the strength of the signal received from the node, etc. Determine the node. The communication control unit 52 stores the identification information of the aggregation device 2, the identification information of the determined next node, and the number of hops obtained by adding 1 to the number of hops obtained from the node in the storage unit 54 as route information. Further, when the communication control unit 52 receives a message requesting acquisition of route information from another node via the first transceiver unit 51, the communication control unit 52 transmits the message to the storage unit via the first transceiver unit 51 to the node that is the source of the message. A message containing the number of hops stored as route information is sent to 54. Furthermore, the communication control unit 52 monitors the communication status of the next node stored in the route information, and if communication with the next node fails, the communication control unit 52 monitors the communication status of the next node stored in the route information. Then, by exchanging control messages, it selects another node and updates the route information with the selected node's identification information and hop count.
 また、通信制御部52は、第1送受信部51から受け取ったデータが自端末宛てである場合、受け取ったデータを制御処理部53へ出力する。通信制御部52は、第1送受信部51から受け取ったデータが他のノード宛てである場合には、データに格納されている下り経路に基づいて下り方向の次のノードへ第1送受信部51に当該データを送信させることで、データを宛先のノードに向けて転送する。また、通信制御部52は、制御処理部53からメーターデータなどのように集約装置2へ向けて送信するデータを受け取ると、当該データを記憶部54に格納されている経路情報を用いて、第1送受信部51を介して上り方向の次のノードへ送信する。上りデータは、各ノードが経路情報を用いて順次転送を行うことで宛先の集約装置2へ到着する。 Further, if the data received from the first transmitting/receiving unit 51 is addressed to the own terminal, the communication control unit 52 outputs the received data to the control processing unit 53. If the data received from the first transmitter/receiver 51 is addressed to another node, the communication controller 52 transmits the data to the first transmitter/receiver 51 to the next node in the downstream direction based on the downlink route stored in the data. By causing the data to be transmitted, the data is transferred toward the destination node. Further, when the communication control unit 52 receives data such as meter data to be transmitted to the aggregation device 2 from the control processing unit 53, the communication control unit 52 uses the route information stored in the storage unit 54 to transmit the data to the aggregation device 2. 1 transmitter/receiver 51 to the next node in the upstream direction. Upstream data arrives at the destination aggregation device 2 as each node sequentially transfers the data using route information.
 第2送受信部55は、計量部6からメーターデータを受信し、受信したメーターデータを記憶部54へ格納する。また、第2送受信部55は、制御処理部53から受け取った計器制御電文を計量部6へ送信する。 The second transmitting/receiving unit 55 receives meter data from the measuring unit 6 and stores the received meter data in the storage unit 54. Further, the second transmitting/receiving section 55 transmits the meter control message received from the control processing section 53 to the measuring section 6.
 制御処理部53は、通信制御部52からデータを受け取ると受け取ったデータに基づいて定められた処理を実施する。例えば、制御処理部53は、通信制御部52から計器制御電文を受け取ると、計器制御電文を記憶部54に格納された鍵情報における共通鍵を用いて復号し、復号した計器制御電文を第2送受信部55へ出力する。なお、記憶部54の鍵情報は、端末3と上位サーバ1との間の共通鍵と、集約装置2と上位サーバ1との間の共通鍵とを含む。計器制御電文には、送信元の装置を示す情報が付加されており、制御処理部53は、送信元の装置が上位サーバ1であるか集約装置2であるかによって共通鍵を使い分ける。また、制御処理部53は、定期送信周期ごとに、記憶部54に格納されているメーターデータを読み出し、読み出したメーターデータを通信制御部52へ出力する。なお、メーターデータも暗号化されて送信されてもよい。記憶部54は、メーターデータ、経路情報および鍵情報を記憶する。 When the control processing unit 53 receives data from the communication control unit 52, it performs a predetermined process based on the received data. For example, upon receiving the instrument control message from the communication control section 52, the control processing section 53 decrypts the instrument control message using the common key in the key information stored in the storage section 54, and transfers the decrypted instrument control message to the second instrument control message. It is output to the transmitting/receiving section 55. Note that the key information in the storage unit 54 includes a common key between the terminal 3 and the higher-level server 1 and a common key between the aggregation device 2 and the higher-level server 1. Information indicating the source device is added to the instrument control message, and the control processing unit 53 uses different common keys depending on whether the source device is the host server 1 or the aggregation device 2. Furthermore, the control processing unit 53 reads meter data stored in the storage unit 54 at every regular transmission cycle, and outputs the read meter data to the communication control unit 52. Note that the meter data may also be encrypted and transmitted. The storage unit 54 stores meter data, route information, and key information.
 計量部6は、計器61、制御処理部62、送受信部63および記憶部64を備える。計器61は、電力量、電圧などを計測可能なメーターである。計器61は、計測結果をメーターデータとして制御処理部62へ出力する。 The measuring section 6 includes a meter 61, a control processing section 62, a transmitting/receiving section 63, and a storage section 64. The meter 61 is a meter that can measure electric energy, voltage, and the like. The meter 61 outputs the measurement result to the control processing section 62 as meter data.
 制御処理部62は、計器61から受け取ったメーターデータを送受信部63へ出力する。また、制御処理部62は、送受信部63から受け取った計器制御電文にしたがった処理を行う。例えば、計器制御電文が電圧の送信を要求する指示であった場合、制御処理部62は、計器61が計測した電圧を結果(応答データ)として送受信部63へ出力する。制御処理部62は、計器61から受け取ったメーターデータを記憶部64に格納し、計器制御電文で指定されたタイミングで記憶部64から読み出して送受信部63へ出力してもよい。また、記憶部64には、計量部6の動作を制御するためのファームウェアなどのプログラムが格納される。例えば、定期収集の周期が変更されたり、計量部6が送信する計測データの種類が追加になったりといった場合には、計量部6は、計器制御電文として更新されたファームウェアを受信することで、記憶部64のファームウェアを更新する。 The control processing unit 62 outputs the meter data received from the meter 61 to the transmitting/receiving unit 63. Further, the control processing section 62 performs processing according to the instrument control message received from the transmitting/receiving section 63. For example, if the meter control message is an instruction requesting voltage transmission, the control processing section 62 outputs the voltage measured by the meter 61 to the transmitting/receiving section 63 as a result (response data). The control processing unit 62 may store the meter data received from the meter 61 in the storage unit 64, read it from the storage unit 64 at a timing specified by the meter control message, and output it to the transmission/reception unit 63. The storage unit 64 also stores programs such as firmware for controlling the operation of the measuring unit 6. For example, when the regular collection cycle is changed or the type of measurement data sent by the metering section 6 is added, the metering section 6 receives the updated firmware as an instrument control message. The firmware in the storage unit 64 is updated.
 送受信部63は、制御処理部62から受け取ったメーターデータ、結果(応答データ)などを通信部5へ送信する。 The transmitting/receiving unit 63 transmits the meter data, results (response data), etc. received from the control processing unit 62 to the communication unit 5.
 次に、本実施の形態の計器制御電文の一例について説明する。図5は、集約装置2が送信する計器制御電文の一例を示す図である。図5では、計器制御電文としてCOSEM電文が用いられる例を示している。図5にデータとして示した部分が計器制御電文に相当し、計器制御電文は、計器ID、COSEM電文数およびCOSEM電文長と、指示の内容を示すCOSEM電文#1、・・・とを含む。COSEM電文#1は、1番目のCOSEM電文を示し、COSEM電文の数は、COSEM電文数により指定され、2つ以上のCOSEM電文が含まれる場合には、COSEM電文#1の後に、COSEM電文#2が続き、以降同様に個別のCOSEM電文が続く。また、各COSEM電文の長さは可変であり、各COSEM電文の長さはCOSEM電文長によって指定される。COSEM電文#1は、指示の内容によって長さが異なり、指示の内容としては、電圧の収集といった動作だけを指定することもでき、期間や周期を指定して動作を指定することもできる。集約装置2は、計器制御電文に、アプリケーションヘッダと通信ヘッダとを付加して、端末3へ送信する。通信ヘッダには、宛先の端末3の通信部5の識別情報が含まれ、各端末3の通信制御部52は、集約装置2や他の端末3から計器制御電文を受信すると、通信ヘッダを参照して自装置宛てであるかを判断し、自装置宛てでない場合には経路情報に従って計器制御電文を転送する。 Next, an example of the instrument control message of this embodiment will be described. FIG. 5 is a diagram showing an example of an instrument control message transmitted by the aggregation device 2. FIG. 5 shows an example in which a COSEM message is used as the instrument control message. The part shown as data in FIG. 5 corresponds to the instrument control message, and the instrument control message includes the instrument ID, the number of COSEM messages, the length of the COSEM message, and COSEM messages #1, . . . indicating the contents of the instruction. COSEM telegram #1 indicates the first COSEM telegram, and the number of COSEM telegrams is specified by the number of COSEM telegrams. If two or more COSEM telegrams are included, COSEM telegram #1 is followed by COSEM telegram #1. 2, followed by individual COSEM telegrams in the same way. Further, the length of each COSEM message is variable, and the length of each COSEM message is specified by the COSEM message length. The length of the COSEM message #1 varies depending on the contents of the instruction, and the contents of the instruction can specify only an operation such as voltage collection, or can specify an operation by specifying a period or cycle. The aggregation device 2 adds an application header and a communication header to the meter control message and transmits it to the terminal 3. The communication header includes identification information of the communication unit 5 of the destination terminal 3, and when the communication control unit 52 of each terminal 3 receives an instrument control message from the aggregation device 2 or another terminal 3, it refers to the communication header. It is determined whether the message is addressed to the device itself, and if it is not addressed to the device itself, the instrument control message is transferred according to the route information.
 上述したように、計器制御電文には計器IDが含まれるが、従来は、集約装置2は、端末3の通信部5の識別情報を用いて端末3と通信を行っており、計器IDについては管理していない。本実施の形態では、集約装置2が、計器ID対応情報を保持することで、端末3宛ての計器制御電文を生成することが可能となる。これにより、通信ネットワーク4の輻輳を軽減するとともに上位サーバ1の負荷を軽減する。特に、多くの端末3に計器制御電文を一斉に送信したり、高頻度で定期的に同じ内容の計器制御電文を特定の端末3に送信したりする場合には、通信ネットワーク4の輻輳の軽減の効果が高くなる。例えば、定期収集の周期を変更したり、電圧の収集を追加したりといった変更のために計量部6のファームウェアを多数の端末3に一斉送信する。なお、一斉送信は、完全に同一タイミングに送信されるケースに限定されず、例えば定められた時間内などに送信されればよく実際に送信される送信タイミングはある程度異なっていてもよい。このような場合に、上位サーバ1が計器制御電文を送信すると、端末3ごとにファームウェアが通信ネットワーク4を介して送信されることになる。これに対して、本実施の形態では、集約装置2が、ファームウェアを上位サーバ1から1回受信し、当該ファームウェアを端末3へ送信すればよいため、通信ネットワーク4を介してファームウェアが送信される回数が大幅に低減される。 As described above, the instrument control message includes the instrument ID, but conventionally, the aggregation device 2 communicates with the terminal 3 using the identification information of the communication unit 5 of the terminal 3, and the instrument ID is Not managed. In this embodiment, the aggregation device 2 can generate a meter control message addressed to the terminal 3 by holding the meter ID correspondence information. This reduces congestion in the communication network 4 and reduces the load on the host server 1. In particular, when transmitting instrument control messages to many terminals 3 all at once, or when transmitting instrument control messages with the same contents to a specific terminal 3 at high frequency and regular intervals, congestion in the communication network 4 can be reduced. becomes more effective. For example, the firmware of the measuring unit 6 is sent to a large number of terminals 3 all at once in order to change the regular collection cycle or add voltage collection. Note that the simultaneous transmission is not limited to the case in which the signals are transmitted at exactly the same timing, and the actual transmission timings may differ to some extent as long as the signals are transmitted within a predetermined time, for example. In such a case, when the host server 1 transmits the instrument control message, firmware will be transmitted to each terminal 3 via the communication network 4. In contrast, in the present embodiment, the aggregation device 2 only needs to receive the firmware once from the host server 1 and transmit the firmware to the terminal 3, so the firmware is transmitted via the communication network 4. The number of times is significantly reduced.
 また、例えば、2分周期で電圧を収集するといった場合に、上位サーバ1が計器制御電文を送信すると、2分ごとに通信ネットワーク4を介して端末3に計器制御電文が送信されることになるが、本実施の形態では、集約装置2が、上位サーバ1から2分周期で電圧を収集する指示を受けると、2分ごとに集約装置2によって生成された計器制御電文が端末3へ送信されるため、通信ネットワーク4を介して計器制御電文が送信される回数が大幅に低減される。高頻度、または定周期で送信される計器制御電文は、電圧の計測指示に限定されず、断線検出、イベント収集などのための指示であってもよいし、これら以外であってもよい。すなわち、計器制御電文は、定周期で端末3に送信されてもよいし、2つ以上の端末3に同一の制御内容の計器制御電文が一斉送信されてもよい。また、計器制御電文は計量部6のファームウェアを含んでいてもよい。 Further, for example, in the case where voltage is collected every two minutes, if the host server 1 sends an instrument control message, the instrument control message will be sent to the terminal 3 via the communication network 4 every two minutes. However, in this embodiment, when the aggregation device 2 receives an instruction from the host server 1 to collect voltage at a 2-minute cycle, the instrument control message generated by the aggregation device 2 is sent to the terminal 3 every 2 minutes. Therefore, the number of times instrument control messages are transmitted via the communication network 4 is significantly reduced. The instrument control message transmitted at high frequency or at regular intervals is not limited to voltage measurement instructions, and may be instructions for disconnection detection, event collection, etc., or may be instructions other than these. That is, the instrument control message may be sent to the terminal 3 at regular intervals, or the instrument control message with the same control content may be sent to two or more terminals 3 at once. Further, the meter control message may include firmware for the metering section 6.
 また、例えば、集約装置2は、端末3との間の他の情報の送受信の状況によって通信状態が悪い端末3を把握できる場合には、当該端末3への計器制御電文を送信するタイミング(上位サーバ1からの指示に基づいて決定されるタイミング)において、当該端末3との間の通信状態が悪い場合には、通信状態が回復するまで待った後に、計器制御電文を送信してもよい。これにより、計器制御電文が不達となることや再送処理による集約装置2と端末3との間のトラヒックおよび処理負荷の増加を抑制することができる。上位サーバ1が、計器制御電文を生成して端末3に送信する場合には、上位サーバ1が管理する端末3の数が大量となるが、集約装置2は配下の端末3を管理すればよいため、通信状態に基づく送信タイミングの調整を上位サーバ1に比べて容易に実現することができる。 For example, if the aggregation device 2 can identify a terminal 3 with poor communication status depending on the status of transmission and reception of other information with the terminal 3, the aggregation device 2 may determine the timing (upper level) for transmitting the instrument control message to the terminal 3. If the communication condition with the terminal 3 is poor at the timing determined based on instructions from the server 1, the instrument control message may be transmitted after waiting until the communication condition is restored. Thereby, it is possible to suppress non-delivery of instrument control messages and an increase in traffic and processing load between the aggregation device 2 and the terminal 3 due to retransmission processing. When the upper level server 1 generates an instrument control message and sends it to the terminals 3, the number of terminals 3 managed by the upper level server 1 becomes large, but the aggregation device 2 only has to manage the terminals 3 under its control. Therefore, adjustment of transmission timing based on the communication state can be more easily realized than in the host server 1.
 次に、本実施の形態の計器制御電文の生成に関する動作について説明する。図6は、本実施の形態の通信システムにおける計器制御電文に関する処理の一例を示すシーケンス図である。 Next, the operation related to the generation of the instrument control message according to the present embodiment will be explained. FIG. 6 is a sequence diagram illustrating an example of processing related to instrument control messages in the communication system of this embodiment.
 図6に示すように、上位サーバ1は、集約装置2に、端末3へ指示する制御内容を示す制御情報を送信する(ステップS1)。図6に示した例では、上位サーバ1が、集約装置2に、同一の制御内容を複数の端末3に指示する例を示しており、制御情報には、例えば、制御内容、すなわち集約装置2が生成する計器制御電文の内容と、宛先の端末3を示す情報とが含まれる。なお、宛先の端末3を示す情報は、端末3に対応する計器IDであってもよいし、端末3の通信部5の識別情報であってもよい。なお、集約装置2の配下の全ての端末3に計器制御電文を送信させる場合には、制御情報には、宛先の端末3が個別に示す情報の代わりに、全端末3に送信することを示す情報が含まれていてもよい。また、上位サーバ1は、端末3に関する制御内容が異なる場合にも、端末3ごとの制御内容を記載した制御情報を生成して、一度に集約装置2へ送信してもよい。 As shown in FIG. 6, the upper level server 1 transmits control information indicating control details to be instructed to the terminal 3 to the aggregation device 2 (step S1). The example shown in FIG. 6 shows an example in which the host server 1 instructs the aggregation device 2 to perform the same control content to a plurality of terminals 3, and the control information includes, for example, the control content, that is, the aggregation device 2 The content of the instrument control message generated by the message and information indicating the destination terminal 3 are included. Note that the information indicating the destination terminal 3 may be a meter ID corresponding to the terminal 3 or may be identification information of the communication unit 5 of the terminal 3. In addition, when transmitting the instrument control message to all terminals 3 under the aggregation device 2, the control information indicates that the message is to be transmitted to all terminals 3 instead of the information indicated individually by the destination terminal 3. May contain information. Further, even when the control contents regarding the terminals 3 are different, the upper server 1 may generate control information that describes the control contents for each terminal 3 and transmit it to the aggregation device 2 at once.
 集約装置2は、制御情報に基づいて、計器制御電文を生成する(ステップS2)。詳細には、集約装置2の制御処理部23は、第2送受信部24から制御情報を受け取ると、当該制御情報を電文生成部25へ出力し、電文生成部25が制御情報に基づいて計器制御電文を生成する。なお、制御情報における、端末3を示す情報が通信部5の識別情報である場合には、制御処理部23は、制御情報と記憶部27に格納されている計器ID対応情報とを用いて計器制御電文を生成する。計器ID対応情報は、計量部6の識別情報である計器IDと当該計量部6を備える端末3の通信部5の識別情報との対応を示す対応情報である。なお、制御情報は、上位サーバ1と集約装置2との間の共通鍵を用いて暗号化されていてもよい。この場合、制御処理部23は、上位サーバ1と集約装置2との間の共通鍵を用いて復号した後に、ステップS2を実施する。 The aggregation device 2 generates an instrument control message based on the control information (step S2). Specifically, upon receiving the control information from the second transmitting/receiving section 24, the control processing section 23 of the aggregation device 2 outputs the control information to the message generation section 25, and the message generation section 25 controls the instrument based on the control information. Generate a message. Note that when the information indicating the terminal 3 in the control information is the identification information of the communication section 5, the control processing section 23 uses the control information and the instrument ID correspondence information stored in the storage section 27 to identify the instrument. Generate a control message. The meter ID correspondence information is correspondence information indicating the correspondence between the meter ID, which is the identification information of the measuring section 6, and the identification information of the communication section 5 of the terminal 3 including the measuring section 6. Note that the control information may be encrypted using a common key between the upper level server 1 and the aggregation device 2. In this case, the control processing unit 23 performs step S2 after decrypting using the common key between the host server 1 and the aggregation device 2.
 次に、集約装置2は、端末3との共通鍵を用いて暗号化を行う(ステップS3)。詳細には、電文生成部25は、宛先の端末3ごとに、記憶部27に格納されている鍵情報から対応する共通鍵を抽出し、抽出した共通鍵を用いて計器制御電文を暗号化し、暗号化した計器制御電文を、対応する端末3の識別情報(制御情報で示された識別情報)とともに、制御処理部23へ出力する。 Next, the aggregation device 2 performs encryption using the common key with the terminal 3 (step S3). Specifically, the message generation unit 25 extracts a corresponding common key from the key information stored in the storage unit 27 for each destination terminal 3, encrypts the instrument control message using the extracted common key, The encrypted instrument control message is output to the control processing unit 23 together with the identification information of the corresponding terminal 3 (identification information indicated by the control information).
 次に、集約装置2は、宛先の端末3ごとに、計器制御電文を送信する(ステップS4,S10)。詳細には、制御処理部23は、通信制御部22に、計器制御電文(暗号化された計器制御電文)を宛先の端末3に送信するよう指示し、通信制御部22が経路情報を用いて計器制御電文に通信ヘッダなどを付加して、通信ヘッダ付加後の計器制御電文を、第1送受信部21を介して宛先の端末3へ送信する。なお、上位サーバ1から、制御情報において、宛先の端末3を示す情報として計器IDが用いられる場合には、制御処理部23は、記憶部27に格納されている計器ID対応情報を用いて、計器IDに対応する端末3の通信部5の識別情報を求め、計器制御電文とともに、求めた識別情報を通信制御部22へ通知する。 Next, the aggregation device 2 transmits an instrument control message for each destination terminal 3 (steps S4, S10). Specifically, the control processing unit 23 instructs the communication control unit 22 to transmit the instrument control message (encrypted instrument control message) to the destination terminal 3, and the communication control unit 22 uses the route information to send the instrument control message (encrypted instrument control message) to the destination terminal 3. A communication header and the like are added to the instrument control message, and the instrument control message with the communication header added is transmitted to the destination terminal 3 via the first transmitter/receiver 21 . Note that when the upper server 1 uses the instrument ID as information indicating the destination terminal 3 in the control information, the control processing unit 23 uses the instrument ID correspondence information stored in the storage unit 27 to The identification information of the communication section 5 of the terminal 3 corresponding to the meter ID is obtained, and the obtained identification information is notified to the communication control section 22 along with the instrument control message.
 次に、計器制御電文を受信した端末3の通信部5は、計器制御電文を復号する(ステップS5,S11)。詳細には、端末3の通信部5が、計器制御電文を集約装置2との間の共通鍵を用いて復号する。なお、図6では、端末3として端末3-1,3-2を例示しているが、計器制御電文の宛先はこれに限定されず、集約装置2の配下の全端末3であってもよいし、端末3-1,3-2以外の端末3であってもよい。また、図6では、図示を省略しているが、マルチホップネットワーク内では、集約装置2から次ホップとなる端末3以外の端末3宛ての計器制御電文は、他の端末3を経由して宛先の端末3に到着する。 Next, the communication unit 5 of the terminal 3 that received the instrument control message decodes the instrument control message (steps S5, S11). Specifically, the communication unit 5 of the terminal 3 decrypts the instrument control message using the common key with the aggregation device 2. In addition, although the terminals 3-1 and 3-2 are illustrated as the terminals 3 in FIG. 6, the destination of the instrument control message is not limited to this, and may be all the terminals 3 under the aggregation device 2. However, the terminal 3 may be other than the terminals 3-1 and 3-2. Although not shown in FIG. 6, in a multi-hop network, instrument control messages sent from the aggregation device 2 to terminals 3 other than the next hop terminal 3 are sent to the destination via the other terminals 3. arrives at terminal 3.
 次に、計器制御電文を受信した端末3の通信部5は、復号した計器制御電文を計量部6へ送信する(ステップS6,S12)。端末3の計量部6は、計器制御電文に応じた処理を行い、結果(応答データ)を通信部5へ送信する(ステップS7,S13)。例えば、計器制御電文が電圧の計測の指示を示す場合には、結果は、電圧の計測結果を含み、計器制御電文が新たなファームウェアを含む場合には、結果は、計量部6においてファームウェアが正常に更新されたか否かを示す情報を含む。 Next, the communication unit 5 of the terminal 3 that received the instrument control message transmits the decoded instrument control message to the measuring unit 6 (steps S6, S12). The measuring unit 6 of the terminal 3 performs processing according to the instrument control message, and transmits the result (response data) to the communication unit 5 (steps S7, S13). For example, when the instrument control message indicates an instruction to measure voltage, the result includes the voltage measurement result, and when the instrument control message includes new firmware, the result indicates that the firmware in the measuring unit 6 is normal. Contains information indicating whether or not it has been updated.
 次に、端末3の通信部5が、結果を暗号化する(ステップS8,S14)。詳細には、端末3の通信部5が、集約装置2との間の共通鍵を用いて、計量部6から受信した結果を暗号化する。 Next, the communication unit 5 of the terminal 3 encrypts the result (steps S8, S14). Specifically, the communication unit 5 of the terminal 3 encrypts the result received from the measurement unit 6 using the common key with the aggregation device 2 .
 次に、端末3の通信部5は、結果を集約装置2へ送信する(ステップS9,S15)。集約装置2は、一定期間内に受信した結果を集約する(ステップS16)。次に、集約装置2は、集約した結果のそれぞれを復号し(ステップS17)。詳細には、結果集約部26が、端末3との間の共通鍵を用いて復号を行う。なお、ステップS16とステップS17の順序は逆であってもよい。 Next, the communication unit 5 of the terminal 3 transmits the results to the aggregation device 2 (steps S9, S15). The aggregation device 2 aggregates the results received within a certain period of time (step S16). Next, the aggregation device 2 decodes each of the aggregation results (step S17). Specifically, the result aggregation unit 26 performs decryption using a common key with the terminal 3. Note that the order of step S16 and step S17 may be reversed.
 次に、集約装置2は、集約した結果を、上位サーバ1との間の共通鍵で暗号化し(ステップS18)、暗号化した後の集約した結果を上位サーバ1へ送信する(ステップS19)。上位サーバ1は、集約した結果を、集約装置2との間の共通鍵を用いて復号することで、端末3から送信された結果を得ることができる。制御情報が、例えば、定周期で計器制御電文を送信することを示す場合、集約装置2は、上位サーバ1から一度制御情報を受信すれば、その後は、定周期で計器制御電文を生成して送信することができ、上位サーバ1と集約装置2との間の通信ネットワーク4のトラヒックを軽減することができる。定周期で送信する計器制御電文に限らず、上位サーバ1が端末3宛てにそれぞれ送信していた計器制御電文の生成を、上位サーバ1がまとめて集約装置2へ指示することができるため、これにより、通信ネットワーク4のトラヒックを軽減することができる。 Next, the aggregation device 2 encrypts the aggregated results using a common key with the higher-level server 1 (step S18), and transmits the encrypted aggregated results to the higher-level server 1 (step S19). The upper level server 1 can obtain the result transmitted from the terminal 3 by decrypting the aggregated result using the common key with the aggregation device 2. For example, if the control information indicates that instrument control messages are to be transmitted at regular intervals, once the aggregation device 2 receives the control information from the host server 1, it will thereafter generate instrument control messages at regular intervals. The traffic on the communication network 4 between the host server 1 and the aggregation device 2 can be reduced. This is possible because the host server 1 can collectively instruct the aggregation device 2 to generate not only the instrument control telegrams sent at regular intervals, but also the instrument control telegrams that the host server 1 has sent to each terminal 3. As a result, traffic on the communication network 4 can be reduced.
 次に、通信状態を考慮して送信タイミングを決定する場合の動作について説明する。図7は、本実施の形態の集約装置2における計器制御電文の生成に関する処理手順の一例を示すフローチャートである。図7では、例えば、集約装置2が、定周期で計器制御電文を送信する例を説明するが、定周期で送信する場合でない場合にも同様に送信タイミングを調整することができる。計器制御電文の宛先の端末3が複数ある場合には、集約装置2は、端末3ごとに図7に示した処理を実施する。 Next, the operation when determining the transmission timing in consideration of the communication state will be described. FIG. 7 is a flowchart illustrating an example of a processing procedure regarding generation of an instrument control message in the aggregation device 2 of this embodiment. In FIG. 7, for example, an example will be described in which the aggregation device 2 transmits the instrument control message at regular intervals, but the transmission timing can be similarly adjusted even when the instrument control message is not transmitted at regular intervals. When there are multiple terminals 3 to which the instrument control message is addressed, the aggregation device 2 performs the process shown in FIG. 7 for each terminal 3.
 図7に示すように、集約装置2は、一定時間が経過したか否かを判断する(ステップS21)。詳細には、制御処理部23が、前回の計器制御電文の送信から一定時間が経過したかを判断する。一定時間は、定周期の1周期に相当する時間である。一定時間が経過していない場合(ステップS21 No)、ステップS21を繰り返す。 As shown in FIG. 7, the aggregation device 2 determines whether a certain period of time has passed (step S21). Specifically, the control processing unit 23 determines whether a certain period of time has passed since the last transmission of the instrument control message. The fixed time is a time corresponding to one period of the fixed period. If the certain period of time has not elapsed (step S21: No), step S21 is repeated.
 一定時間が経過した場合(ステップS21 Yes)、集約装置2は、計器制御電文を生成する(ステップS22)。詳細には、制御処理部23が、計器制御電文の生成を電文生成部25に指示し、電文生成部25が計器制御電文を生成する。 If a certain period of time has elapsed (Step S21: Yes), the aggregation device 2 generates an instrument control message (Step S22). Specifically, the control processing section 23 instructs the message generation section 25 to generate the instrument control message, and the message generation section 25 generates the instrument control message.
 次に、集約装置2は、端末3との共通鍵で暗号化を行う(ステップS23)。詳細には、電文生成部25が、端末3との共通鍵を用いて計器制御電文を暗号化し、暗号化した計器制御電文を記憶部27に一時的に格納する。 Next, the aggregation device 2 performs encryption using the common key with the terminal 3 (step S23). Specifically, the message generation unit 25 encrypts the instrument control message using the common key with the terminal 3, and temporarily stores the encrypted instrument control message in the storage unit 27.
 次に、集約装置2は、通信状態が良好であるか否かを判断し(ステップS24)、通信状態が良好でない場合(ステップS24 No)、ステップS24を繰り返す。ステップS24では、詳細には、制御処理部23が、計器制御電文の宛先の端末3の他のデータの受信の状況に基づいて通信状態が良好であるか否かを判断する。例えば、制御処理部23は、当該端末3から受信すべきデータが一定時間以上受信できていない場合には、通信状態が良好でないと判断し、当該端末3から受信すべきデータが正常に受信できている場合には通信状態が良好であると判断する。また、制御処理部23は、端末3から、受信強度、パケットエラーレートなどの通信品質に関する情報を取得できる場合には、通信品質に関する情報を用いて通信状態が良好であるか否かを判断してもよい。 Next, the aggregation device 2 determines whether the communication state is good or not (step S24), and if the communication state is not good (step S24: No), repeats step S24. In step S24, in detail, the control processing unit 23 determines whether the communication state is good based on the reception status of other data of the terminal 3 to which the instrument control message is addressed. For example, if the data to be received from the terminal 3 has not been received for a certain period of time, the control processing unit 23 determines that the communication state is not good, and the data to be received from the terminal 3 cannot be received normally. If so, it is determined that the communication status is good. Further, if information regarding communication quality such as reception strength and packet error rate can be obtained from the terminal 3, the control processing unit 23 uses the information regarding the communication quality to determine whether or not the communication state is good. It's okay.
 通信状態が良好である場合(ステップS24 Yes)、集約装置2は、計器制御電文を送信し(ステップS25)、ステップS21からの処理を繰り返す。ステップS25では、詳細には、制御処理部23が、記憶部27に一時的に格納されている、暗号化された計器制御電文を読み出して、通信制御部22へ出力し、通信制御部22が第1送受信部21に計器制御電文を送信させる。このように、制御処理部23は、計器制御電文の送信前に、計器制御電文の宛先の端末3との通信状態が良好であるか否かを判定し、通信状態が不良である場合には、当該計器制御電文の送信を待機し、当該端末3との通信状態が良好になると、当該計器制御電文を送受信部である第1送受信部21に当該端末3へ送信させてもよい。以上の処理により、集約装置2は、通信状態のよいときに、端末3に計器制御電文を送信することができる。 If the communication state is good (step S24: Yes), the aggregation device 2 transmits the instrument control message (step S25), and repeats the processing from step S21. In step S25, in detail, the control processing unit 23 reads out the encrypted instrument control message temporarily stored in the storage unit 27, outputs it to the communication control unit 22, and the communication control unit 22 The first transmitter/receiver 21 is caused to transmit the instrument control message. In this way, the control processing unit 23 determines whether the communication state with the terminal 3 to which the instrument control message is sent is good before transmitting the instrument control message, and if the communication condition is poor, , it may wait for the transmission of the instrument control message, and when the communication state with the terminal 3 becomes good, the first transmitting/receiving section 21, which is a transmitting/receiving section, may transmit the instrument control message to the terminal 3. Through the above processing, the aggregation device 2 can transmit the instrument control message to the terminal 3 when the communication condition is good.
 次に、本実施の形態の各装置のハードウェア構成について説明する。本実施の形態の上位サーバ1の送受信部11は、送信機および受信機により実現され、制御処理部12は、制御回路により実現される。記憶部13はメモリにより実現される。 Next, the hardware configuration of each device in this embodiment will be explained. The transmitting/receiving section 11 of the host server 1 of this embodiment is realized by a transmitter and a receiver, and the control processing section 12 is realized by a control circuit. The storage unit 13 is realized by a memory.
 図8は、本実施の形態の制御回路の一例を示す図である。図8に示した制御回路100は、CPU(Central Processing Unit)、MPU(Micro Processor Unit)などのプロセッサ101と、メモリ102とを備える。メモリ102は、RAM(Random Access Memory)、ROM(Read Only Memory)などの半導体メモリ、磁気ディスクなどを含む。上位サーバ1の制御処理部12は、メモリ102に記憶された上位サーバ1の動作を実現するためのプログラムがプロセッサ101により実行されることにより実現される。プログラムは、記録媒体によって提供されてもよいし通信媒体により提供されてもよい。また、記憶部13を実現するメモリは、メモリ102の一部であってもよいし、制御回路とは別のメモリであってもよい。 FIG. 8 is a diagram showing an example of the control circuit of this embodiment. The control circuit 100 shown in FIG. 8 includes a processor 101 such as a CPU (Central Processing Unit) or an MPU (Micro Processor Unit), and a memory 102. The memory 102 includes semiconductor memories such as RAM (Random Access Memory) and ROM (Read Only Memory), magnetic disks, and the like. The control processing unit 12 of the upper level server 1 is realized by the processor 101 executing a program stored in the memory 102 for realizing the operation of the upper level server 1. The program may be provided by a recording medium or a communication medium. Furthermore, the memory that implements the storage section 13 may be a part of the memory 102 or may be a memory separate from the control circuit.
 また、上位サーバ1は、一般には、コンピュータシステムにより実現され、制御回路100に加えて、図示は省略するが、モニタ、ディスプレイなどの表示部、キーボード、マウスなどの入力部を備えていてもよい。 Further, the host server 1 is generally realized by a computer system, and may include, in addition to the control circuit 100, a display unit such as a monitor and a display, and an input unit such as a keyboard and a mouse, although not shown. .
 本実施の形態の集約装置2の第1送受信部21、第2送受信部24は、送信機および受信機により実現される。通信制御部22、制御処理部23、電文生成部25および結果集約部26は処理回路によって実現され、記憶部27はメモリにより実現される。処理回路は、図8に示したような制御回路100であってもよいし、FPGA(Field-Programmable Gate Array)、ASIC(Application Specific Integrated Circuit)などの専用回路であってもよい。通信制御部22、制御処理部23、電文生成部25および結果集約部26が、制御回路100により実現される場合、メモリ102に記憶された集約装置2の動作を実現するためのプログラムがプロセッサ101により実行されることにより、通信制御部22および制御処理部23が実現される。プログラムは、記録媒体によって提供されてもよいし通信媒体により提供されてもよい。また、記憶部27を実現するメモリは、メモリ102の一部であってもよいし、制御回路100とは別のメモリであってもよい。 The first transmitter/receiver 21 and the second transmitter/receiver 24 of the aggregation device 2 of this embodiment are realized by a transmitter and a receiver. The communication control section 22, control processing section 23, message generation section 25, and result aggregation section 26 are realized by a processing circuit, and the storage section 27 is realized by a memory. The processing circuit may be the control circuit 100 shown in FIG. 8, or may be a dedicated circuit such as an FPGA (Field-Programmable Gate Array) or an ASIC (Application-Specific Integrated Circuit). When the communication control unit 22, control processing unit 23, message generation unit 25, and result aggregation unit 26 are realized by the control circuit 100, the program for realizing the operation of the aggregation device 2 stored in the memory 102 is implemented by the processor 101. By executing this, the communication control section 22 and the control processing section 23 are realized. The program may be provided by a recording medium or a communication medium. Furthermore, the memory that implements the storage section 27 may be a part of the memory 102 or may be a memory separate from the control circuit 100.
 本実施の形態の端末3の第1送受信部51、第2送受信部55および送受信部63は、送信機および受信機により実現される。通信制御部52、制御処理部53および制御処理部62は、処理回路によって実現され、記憶部54および記憶部64はメモリにより実現される。処理回路は、図8に示したような制御回路100であってもよいし、FPGA、ASICなどの専用回路であってもよい。通信制御部52、制御処理部53および制御処理部62が、制御回路100により実現される場合、メモリ102に記憶された端末3の動作を実現するためのプログラムがプロセッサ101により実行されることにより、通信制御部52および制御処理部53が実現される。プログラムは、記録媒体によって提供されてもよいし通信媒体により提供されてもよい。また、記憶部54および記憶部64を実現するメモリは、メモリ102の一部であってもよいし、制御回路100とは別のメモリであってもよい。 The first transmitting/receiving section 51, the second transmitting/receiving section 55, and the transmitting/receiving section 63 of the terminal 3 of this embodiment are realized by a transmitter and a receiver. The communication control section 52, the control processing section 53, and the control processing section 62 are realized by a processing circuit, and the storage section 54 and the storage section 64 are realized by a memory. The processing circuit may be the control circuit 100 shown in FIG. 8, or may be a dedicated circuit such as FPGA or ASIC. When the communication control section 52, the control processing section 53, and the control processing section 62 are realized by the control circuit 100, a program for realizing the operation of the terminal 3 stored in the memory 102 is executed by the processor 101. , a communication control section 52, and a control processing section 53 are realized. The program may be provided by a recording medium or a communication medium. Furthermore, the memory that implements the storage section 54 and the storage section 64 may be part of the memory 102 or may be a memory separate from the control circuit 100.
 本実施の形態のプログラムは、例えば、集約装置2に、計器ID対応情報を用いて、計量部6を制御するための計器制御電文を生成するステップと、計器制御電文を計量部6に対応する端末3へ送信するステップと、を実行させる。 The program of the present embodiment includes, for example, a step of generating, in the aggregation device 2, an instrument control message for controlling the measuring section 6 using the instrument ID correspondence information, and a step of generating the instrument control message corresponding to the measuring section 6. The steps of transmitting to the terminal 3 are executed.
 以上のように、本実施の形態では、集約装置2が、計器ID対応情報を保持し、端末3の計量部6を制御するための計器制御電文を生成し、端末3へ送信するようにした。このため、上位サーバ1と集約装置2との間の通信のトラヒックを軽減することができる。 As described above, in this embodiment, the aggregation device 2 holds instrument ID correspondence information, generates an instrument control message for controlling the measuring section 6 of the terminal 3, and transmits it to the terminal 3. . Therefore, communication traffic between the host server 1 and the aggregation device 2 can be reduced.
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、実施の形態同士を組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configurations shown in the embodiments above are merely examples, and can be combined with other known techniques, or can be combined with other embodiments, within the scope of the gist. It is also possible to omit or change part of the configuration.
 1 上位サーバ、2,2-1,2-2 集約装置、3,3-1~3-12 端末、4 通信ネットワーク、5 通信部、6 計量部、11,63 送受信部、12,23,53,62 制御処理部、13,27,54,64 記憶部、21,51 第1送受信部、22,52 通信制御部、24,55 第2送受信部、25 電文生成部、26 結果集約部、61 計器。 1 Upper server, 2, 2-1, 2-2 Aggregation device, 3, 3-1 to 3-12 Terminal, 4 Communication network, 5 Communication section, 6 Measuring section, 11, 63 Transmission/reception section, 12, 23, 53 , 62 Control processing unit, 13, 27, 54, 64 Storage unit, 21, 51 First transmission/reception unit, 22, 52 Communication control unit, 24, 55 Second transmission/reception unit, 25 Message generation unit, 26 Result aggregation unit, 61 Instrument.

Claims (9)

  1.  それぞれが計量部および通信部を備える複数の端末と通信を行い、前記複数の端末から送信されるデータを集約して上位サーバへ送信する集約装置であって、
     前記計量部の識別情報と前記計量部を備える前記端末の前記通信部の識別情報との対応を示す対応情報を記憶する記憶部と、
     前記対応情報を用いて、前記計量部を制御するための制御電文を生成する電文生成部と、
     前記制御電文を前記計量部に対応する前記端末へ送信する送受信部と、
     を備えることを特徴とする集約装置。
    An aggregation device that communicates with a plurality of terminals, each of which has a measuring section and a communication section, aggregates data transmitted from the plurality of terminals, and transmits the data to an upper-level server,
    a storage unit that stores correspondence information indicating a correspondence between identification information of the measurement unit and identification information of the communication unit of the terminal including the measurement unit;
    a message generation unit that uses the correspondence information to generate a control message for controlling the measurement unit;
    a transmitting/receiving unit that transmits the control message to the terminal corresponding to the measuring unit;
    An aggregation device characterized by comprising:
  2.  前記制御電文は、定周期で前記端末に送信されることを特徴とする請求項1に記載の集約装置。 The aggregation device according to claim 1, wherein the control message is transmitted to the terminal at regular intervals.
  3.  2つ以上の前記端末に同一の制御内容の前記制御電文が一斉送信されることを特徴とする請求項1に記載の集約装置。 The aggregation device according to claim 1, wherein the control message with the same control content is simultaneously transmitted to two or more of the terminals.
  4.  前記制御電文は、前記計量部のファームウェアを含むことを特徴とする請求項1に記載の集約装置。 The aggregation device according to claim 1, wherein the control message includes firmware of the measurement unit.
  5.  前記制御電文の送信前に、前記制御電文の宛先の前記端末との通信状態が良好であるか否かを判定し、通信状態が不良である場合には、当該制御電文の送信を待機し、前記端末との通信状態が良好になると、当該制御電文を前記送受信部に前記端末へ送信させる制御処理部、
     を備えることを特徴とする請求項1に記載の集約装置。
    Before transmitting the control message, it is determined whether the communication state with the terminal to which the control message is addressed is good, and if the communication condition is poor, waiting for the transmission of the control message, a control processing unit that causes the transmitting/receiving unit to transmit the control message to the terminal when the communication state with the terminal becomes good;
    The aggregation device according to claim 1, further comprising:
  6.  前記電文生成部は、前記端末と前記集約装置との間の共通鍵を用いて前記制御電文を暗号化し、
     前記送受信部は、暗号化された前記制御電文を前記端末へ送信することを特徴とする請求項1から5のいずれか1つに記載の集約装置。
    The message generation unit encrypts the control message using a common key between the terminal and the aggregation device,
    The aggregation device according to any one of claims 1 to 5, wherein the transmitting/receiving unit transmits the encrypted control message to the terminal.
  7.  それぞれが計量部および通信部を備える複数の端末と、
     上位サーバと、
     前記複数の端末から送信されるデータを集約して前記上位サーバへ送信する集約装置と、
     を備え、
     前記集約装置は、
     前記計量部の識別情報と前記計量部を備える前記端末の前記通信部の識別情報との対応を示す対応情報を記憶する記憶部と、
     前記対応情報を用いて、前記計量部を制御するための制御電文を生成する電文生成部と、
     前記制御電文を前記計量部に対応する前記端末へ送信する送受信部と、
     を備えることを特徴とする通信システム。
    a plurality of terminals each having a measuring section and a communication section;
    upper server and
    an aggregation device that aggregates data transmitted from the plurality of terminals and transmits it to the upper server;
    Equipped with
    The aggregation device is
    a storage unit that stores correspondence information indicating a correspondence between identification information of the measurement unit and identification information of the communication unit of the terminal including the measurement unit;
    a message generation unit that uses the correspondence information to generate a control message for controlling the measurement unit;
    a transmitting/receiving unit that transmits the control message to the terminal corresponding to the measuring unit;
    A communication system comprising:
  8.  それぞれが計量部および通信部を備える複数の端末と通信を行い、前記複数の端末から送信されるデータを集約して上位サーバへ送信する集約装置における通信方法であって、
     前記計量部の識別情報と前記計量部を備える前記端末の前記通信部の識別情報との対応を示す対応情報を用いて、前記計量部を制御するための制御電文を生成するステップと、
     前記制御電文を前記計量部に対応する前記端末へ送信するステップと、
     を含むことを特徴とする通信方法。
    A communication method in an aggregation device that communicates with a plurality of terminals, each of which has a measuring unit and a communication unit, aggregates data transmitted from the plurality of terminals, and transmits the aggregated data to an upper-level server,
    generating a control message for controlling the measuring unit using correspondence information indicating a correspondence between identification information of the measuring unit and identification information of the communication unit of the terminal including the measuring unit;
    transmitting the control message to the terminal corresponding to the measuring unit;
    A communication method characterized by including.
  9.  それぞれが計量部および通信部を備える複数の端末と通信を行い、前記複数の端末から送信されるデータを集約して上位サーバへ送信する集約装置に、
     前記計量部の識別情報と前記計量部を備える前記端末の前記通信部の識別情報との対応を示す対応情報を用いて、前記計量部を制御するための制御電文を生成するステップと、
     前記制御電文を前記計量部に対応する前記端末へ送信するステップと、
     を実行させることを特徴とするプログラム。
    an aggregation device that communicates with a plurality of terminals, each of which has a measuring section and a communication section, aggregates data transmitted from the plurality of terminals, and transmits the data to an upper-level server;
    generating a control message for controlling the measuring unit using correspondence information indicating a correspondence between identification information of the measuring unit and identification information of the communication unit of the terminal including the measuring unit;
    transmitting the control message to the terminal corresponding to the measuring unit;
    A program characterized by executing.
PCT/JP2022/032232 2022-08-26 2022-08-26 Aggregation device, communication system, communication method, and program WO2024042710A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/032232 WO2024042710A1 (en) 2022-08-26 2022-08-26 Aggregation device, communication system, communication method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/032232 WO2024042710A1 (en) 2022-08-26 2022-08-26 Aggregation device, communication system, communication method, and program

Publications (1)

Publication Number Publication Date
WO2024042710A1 true WO2024042710A1 (en) 2024-02-29

Family

ID=90012879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032232 WO2024042710A1 (en) 2022-08-26 2022-08-26 Aggregation device, communication system, communication method, and program

Country Status (1)

Country Link
WO (1) WO2024042710A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013133213A1 (en) * 2012-03-09 2013-09-12 三菱電機株式会社 Communication apparatus and communication method
JP2016096431A (en) * 2014-11-13 2016-05-26 株式会社東芝 Communication device, communication method and program
JP2017022572A (en) * 2015-07-10 2017-01-26 パナソニックIpマネジメント株式会社 Multi-hop communication system, communication terminal, multi-hop communication method and program
JP2017041703A (en) * 2015-08-18 2017-02-23 憲一 栗元 Measurement system, measurement system construction method, program, and recording medium
JP2021136468A (en) * 2020-02-21 2021-09-13 三菱電機株式会社 Information collection system, information collection method, and information collection device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013133213A1 (en) * 2012-03-09 2013-09-12 三菱電機株式会社 Communication apparatus and communication method
JP2016096431A (en) * 2014-11-13 2016-05-26 株式会社東芝 Communication device, communication method and program
JP2017022572A (en) * 2015-07-10 2017-01-26 パナソニックIpマネジメント株式会社 Multi-hop communication system, communication terminal, multi-hop communication method and program
JP2017041703A (en) * 2015-08-18 2017-02-23 憲一 栗元 Measurement system, measurement system construction method, program, and recording medium
JP2021136468A (en) * 2020-02-21 2021-09-13 三菱電機株式会社 Information collection system, information collection method, and information collection device

Similar Documents

Publication Publication Date Title
EP2580899B1 (en) An energy efficient method for communication between a wireless sensor network and an industrial control system
AU2010298382B2 (en) Telemetry system
KR102201966B1 (en) Method, apparatus and computer program for transmitting and/or receiving signals across an electric power grid
EP2548392B1 (en) An energy efficient method for communication in a wireless sensor network of an industrial control system.
US20120250864A1 (en) Energy management apparatus and energy management system
TW200921053A (en) Electronic meter for networked meter reading
US8350718B2 (en) Secure collector diagnostic portal activation
CN111132094A (en) Communication network and communication method suitable for power transmission line sensing system
US20160070718A1 (en) Apparatus and system for data mirror device
WO2024042710A1 (en) Aggregation device, communication system, communication method, and program
JP5140044B2 (en) Meter reading data collection system
JP7072731B1 (en) Communication systems, aggregates, central devices, terminals, communication methods and programs
WO2014132446A1 (en) Radio terminal device, radio mesh network, and communication method
KR101697289B1 (en) System for integrating multi wireless networks based on software defined network and method therefor
CA3205828A1 (en) Monitoring secured network using network tap devices
Anani et al. Wireless Meter Bus: Secure Remote Metering within the IoT Smart Grid
JP6029064B2 (en) Communication system, base unit, server
JP7214049B1 (en) Communication system, aggregation device, relay device, communication method and communication program
WO2014156156A1 (en) Electric power meter, electric power meter system
US10863253B2 (en) Method for operating a mobile readout system and readout receiver
JP2017041769A (en) Radio repeater, processing device, radio communication system, and radio communication method
Nayaka et al. Cluster based data aggregation in wireless sensor based network for public utility control and management
CN112822253B (en) Power utilization data skip transmission method and device of power Internet of things
KR20140129942A (en) Method and system of network access using federated trust center in multiple home area network environment
JP2019176361A (en) Mesh network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956536

Country of ref document: EP

Kind code of ref document: A1