WO2024041381A1 - 无人机数据传输方法、系统、电子设备及存储介质 - Google Patents

无人机数据传输方法、系统、电子设备及存储介质 Download PDF

Info

Publication number
WO2024041381A1
WO2024041381A1 PCT/CN2023/111910 CN2023111910W WO2024041381A1 WO 2024041381 A1 WO2024041381 A1 WO 2024041381A1 CN 2023111910 W CN2023111910 W CN 2023111910W WO 2024041381 A1 WO2024041381 A1 WO 2024041381A1
Authority
WO
WIPO (PCT)
Prior art keywords
preset requirement
meets
data transmission
preset
data
Prior art date
Application number
PCT/CN2023/111910
Other languages
English (en)
French (fr)
Inventor
刘牧洲
魏进武
张成岩
周晶
Original Assignee
中国联合网络通信集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国联合网络通信集团有限公司 filed Critical 中国联合网络通信集团有限公司
Publication of WO2024041381A1 publication Critical patent/WO2024041381A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18502Airborne stations
    • H04B7/18506Communications with or from aircraft, i.e. aeronautical mobile service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of drone communication technology, and specifically relates to a drone data transmission method, a drone data transmission system, an electronic device and a computer-readable storage medium.
  • the two existing solutions cannot effectively guarantee the stable return of business data.
  • the fast movement speed, frequent site switching, and frequent changes in the air link of drone applications are not fully considered. and other characteristics, it is difficult to effectively coordinate the various business sub-modules within the UAV system to effectively ensure the business effects of UAV applications in low-altitude complex environments; in the second type of solution, only comparisons between different links are made to select which ones are available.
  • the access method does not make an in-depth judgment based on the quality of the selected link, making it difficult to effectively achieve the best data transmission effect.
  • the present disclosure provides a UAV data transmission method, UAV data transmission system, electronic equipment and computer-readable storage media, which can perform optimal configuration of application data and achieve Stable transmission of business data for UAV system applications.
  • the present disclosure provides a UAV data transmission method, the method includes:
  • the tcp Transmission Control Protocol
  • the tcp Transmission Control Protocol
  • RSRP Reference Signal Receiving Power
  • the transmission link is switched to the backup link and the return of service data is terminated. If the RSRP value meets the second preset requirement, the current link is further determined. Whether the SINR (Signal to Interference plus Noise Ratio, signal to interference plus noise ratio) value meets the third preset requirement;
  • the SINR value does not meet the third preset requirement, the quality of the service data to be transmitted is reduced for data transmission. If the SINR value meets the third preset requirement, the data return parameters are configured in a preset manner to perform the service. data transmission;
  • the horizontal straight-line distance between the UAV position and the access base station is re-judged.
  • the method also includes:
  • the packet loss rate meets the fourth preset requirement, then determine whether the uplink rate meets the edge rate requirement under the corresponding definition. If the uplink rate does not meet the requirements, increase the key frame interval and reduce the data size. If the uplink rate meets the requirements, , then configure the data return parameters according to the preset optimal method.
  • the method also includes:
  • the first preset requirement is that the distance is less than X kilometers; the second preset requirement is that the RSRP value is greater than YdBm; the third preset requirement is that the SINR value is greater than ZdB;
  • the method also includes:
  • the fourth preset requirement is that the packet loss rate is less than 1%.
  • reducing the quality of service data to be transmitted includes:
  • the preset period meets the following requirements:
  • the present disclosure provides a UAV data transmission system.
  • the UAV data transmission system includes a UAV, and the UAV includes:
  • An update module which is configured to obtain information about the location of the drone and the base station to which the drone is connected, and update it at a preset cycle;
  • a first judgment module configured to judge whether the horizontal straight-line distance between the drone's position and the access base station meets the first preset requirement
  • a first switching module configured to switch the TCP protocol to prioritize flight data transmission if the horizontal straight-line distance does not meet the first preset requirement
  • the second judgment module is configured to further judge whether the RSRP value of the current link meets the second preset requirement if the horizontal straight-line distance meets the first preset requirement;
  • a second switching module configured to switch the transmission link to the backup link and terminate the return of service data if the RSRP value does not meet the second preset requirement
  • a third judgment module configured to further judge whether the SINR value of the current link meets the third preset requirement if the RSRP value meets the second preset requirement;
  • a data processing module configured to reduce the quality of the service data to be transmitted for data transmission if the SINR value does not meet the third preset requirement
  • a transmission module configured to configure data return parameters in a preset manner for service data transmission if the SINR value meets the third preset requirement
  • the first judgment module is also configured to re-judge the horizontal straight-line distance between the UAV position and the access base station after the UAV position is updated.
  • the drone also includes a fourth judgment module and a fifth judgment module:
  • the fourth judgment module is configured to further judge whether the packet loss rate of the service data meets the fourth preset requirement after the third judgment module judges that the SINR value of the current link meets the third preset requirement;
  • the third judgment module is also configured to return to re-judge the SINR value if the packet loss rate does not meet the fourth preset requirement;
  • the fifth judgment module is configured to judge whether the uplink rate meets the edge rate requirement under the corresponding definition if the packet loss rate meets the fourth preset requirement;
  • the data processing module is also set to increase the key frame interval and reduce the data size if the uplink rate does not meet the requirements;
  • the transmission module is also configured to configure data return parameters in a preset optimal manner if the uplink rate meets the requirements.
  • the present disclosure provides an electronic device, including a memory and a processor.
  • a computer program is stored in the memory.
  • the processor runs the computer program stored in the memory, the processor executes the first step.
  • the present disclosure provides a computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the computer program is executed by a processor, the unmanned system described in any one of the above-mentioned first aspects is implemented. Machine data transmission method.
  • the UAV data transmission method, UAV data transmission system, electronic equipment and computer-readable storage medium combine UAV position information to determine UAV data transmission low-altitude network availability and quality, based on RSRP, SINR, etc.
  • Using data as a reference intelligently adjust the quality parameters of the most important video service data in UAV applications to achieve effective collaboration among flight control, payload and airborne terminal modules within the UAV system to ensure the stability and reliability of data in the application. return.
  • Figure 1 is a schematic flow chart of a UAV data transmission method provided by Embodiment 1 of the present disclosure
  • Figure 2 is a schematic flow chart of a UAV data transmission method provided in Embodiment 2 of the present disclosure
  • Figure 3 is an architectural diagram of a drone provided by Embodiment 3 of the present disclosure.
  • FIG. 4 is an architecture diagram of an electronic device provided by Embodiment 4 of the present disclosure.
  • 5G technology can naturally provide the four core capabilities required for drone applications: stable transmission, remote control, status monitoring and precise positioning.
  • high-reliability data transmission in low space has always been the most direct and fundamental requirement for applications in the drone industry. Therefore, how to achieve stable return transmission of business data during the application of drones has become an important issue that needs to be overcome in current development.
  • corresponding adjustment plans have been proposed around changes in network quality perceived by network terminal equipment mounted on drones.
  • the existing technology does not fully consider the characteristics of UAV applications such as fast movement speed, frequent site switching, and easy changes in air links; and when link switching of multi-link access, no in-depth analysis is carried out based on the selected link quality. It is judged that it is difficult to effectively achieve the best data transmission effect.
  • FIG 1 is a schematic diagram of a UAV data transmission method provided by Embodiment 1 of the present disclosure. As shown in Figure 1, the method includes:
  • Step S101 Obtain information about the location of the drone and the base station to which the drone is connected, and update it at a preset period;
  • Step S102 Determine whether the horizontal straight-line distance between the drone's position and the access base station meets the first preset requirement
  • Step S103 If the horizontal straight-line distance does not meet the first preset requirement, switch to the transmission control protocol tcp protocol to prioritize flight data transmission. If the horizontal straight-line distance meets the first preset requirement, then further determine the current link. Whether the reference signal received power RSRP value meets the second preset requirement;
  • Step S104 If the RSRP value does not meet the second preset requirement, switch the transmission link to the backup link and terminate the return of service data. If the RSRP value meets the second preset requirement, further determine Whether the signal to interference plus noise ratio SINR value of the current link meets the third preset requirement;
  • Step S105 If the SINR value does not meet the third preset requirement, the quality of the service data to be transmitted is reduced for data transmission. If the SINR value meets the third preset requirement, data return is configured in a preset manner. Parameters for business data transmission;
  • Step S106 After the UAV position is updated, re-judge the horizontal straight-line distance between the UAV position and the access base station.
  • a drone When a drone performs a task, it is usually required to shoot a video and send it back to the user or server. During the data return process, how to ensure the stability and reliability of the data in the application becomes a key issue.
  • the drone When the drone performs a task, Generally, long-distance flights are required. Therefore, the UAV will be connected to different base stations when flying, and the distance from the base station is constantly changing, making it difficult to ensure the stability of the transmission link. For this reason, in the embodiment of the present disclosure , by obtaining the information of the drone's location and the base station to which the drone is connected, and updating it at a preset cycle.
  • the drone's location information includes longitude and latitude, altitude, relative ground flight speed, etc., and then determines the drone's location and access. Whether the horizontal straight line distance of the base station meets the first preset requirement, the receiving base station is the base station to which the drone is connected; the first preset requirement can be that the drone is still within the coverage of the current service base station, or The location is relatively close to the base station (such as within 3/4 of the coverage area of the service base station). If not, in view of the link jitter problem that may exist when switching base stations, priority is given to ensuring the transmission of flight data by switching the TCP protocol to ensure Control the flight of the drone to ensure its safety, and make a judgment after the drone's position information is updated in the next cycle.
  • the RSRP value of the current link is further determined. Whether the second preset requirement is met; the second preset requirement can be set according to the actual situation. When the second preset requirement is met, it means that the current connection link is available. If the RSRP value does not meet the second preset requirement, it proves that the current connection link is available.
  • the airborne terminal switches to the backup link (such as point-to-point microwave) in a timely manner, and only transmits flight data and terminates the return of business data; if the RSRP value meets the second preset requirement, then determine whether the SINR value meets the second preset requirement.
  • the third preset requirement can be set according to the actual situation.
  • the third preset requirement can be expressed as the signal quality is relatively normal. If it is not met, it proves that the current link quality is poor. By reducing the service data to be transmitted, If the quality is met, it means that business data transmission can be carried out normally.
  • Data return parameters can be configured in a preset manner for business data transmission, such as data return at normal normal definition and coding rate. After the UAV position is updated, the above judgment is made again, and the horizontal straight-line distance between the UAV position and the access base station is determined again.
  • This disclosed embodiment combines the drone location information to determine the availability and quality of the low-altitude network for drone data transmission, and uses RSRP, SINR and other data as references to intelligently adjust the quality parameters of the most important video service data for drone applications. Realize effective collaboration among flight control, payload, and airborne terminal modules within the UAV system to ensure stable and reliable return of data in applications.
  • the method also includes:
  • the packet loss rate meets the fourth preset requirement, then determine whether the uplink rate meets the edge rate requirement under the corresponding definition. If the uplink rate does not meet the requirements, increase the key frame interval and reduce the data size. If the uplink rate meets the requirements, , then configure the data return parameters according to the preset optimal method.
  • the packet loss rate refers to the number of lost data packets in the test as a percentage of the sent data group. Ratio. Generally, the packet loss rate that meets the fourth preset requirement proves that the first two information (RSRP, SINR) are accurate. If the packet loss rate is greater than the preset value, that is, the packet loss rate does not meet the fourth preset requirement, it will return to make another judgment. SINR value; if the SINR value does not meet the requirements, the quality of the service data to be transmitted will be reduced.
  • the UAV terminal can be Check. If the packet loss rate of the business data meets the fourth preset requirement, the uplink rate will be judged according to the minimum rate requirements for edge transmission of the business data to be transmitted at the corresponding definition, such as 1080P, 4K and other definition videos. If the uplink rate If it is less than the corresponding edge rate requirement, increase the key frame interval of the transmitted video and reduce the data size; if the uplink rate meets the requirements, configure the data return parameters according to the preset optimal method, such as telemetry data transmission protocol, priority UDP, business data -Video, encoding method H.264, maximum code rate, reduced key frame interval, etc.
  • the preset optimal method such as telemetry data transmission protocol, priority UDP, business data -Video, encoding method H.264, maximum code rate, reduced key frame interval, etc.
  • data transmission can be considered in more detail by intelligently adjusting parameters such as bit rate, resolution, encoding standard and key frame interval of the most important video service data for drone applications.
  • the method also includes:
  • the first preset requirement is that the distance is less than X kilometers; the second preset requirement is that the RSRP value is greater than YdBm; the third preset requirement is that the SINR value is greater than ZdB;
  • the first preset requirement is set to the distance less than X kilometers, and the second preset requirement is set to the RSRP value greater than YdBm.
  • the third preset requirement is to set the SINR value to be greater than ZdB, and, 0km ⁇ X, Y and Z, in this disclosure, can be set to different ranges according to different transmission data.
  • the method also includes:
  • the fourth preset requirement is that the packet loss rate is less than 1%.
  • the fourth preset requirement to the packet loss rate of less than 1%. If the packet loss rate is greater than 1%, it means that the network is abnormal and the SINR judgment needs to be made again. If it is less than 1%, the uplink rate judgment is made again.
  • reducing the quality of service data to be transmitted includes:
  • high-quality video data can be transmitted back as much as possible while ensuring the stability of data transmission.
  • the preset period meets the following requirements:
  • the maximum moving speed of the drone is calculated based on the vacuum speed classification content in "GB T 35018-2018 Classification and Classification of Civilian Unmanned Aircraft Systems".
  • the preset cycle can be set independently within this range.
  • the update cycle can also be set according to the network
  • the quality is adjusted, and when the transmission link quality is poor, the cycle is shortened to better determine the transmission method and achieve the best data transmission effect.
  • This disclosed embodiment combines drone location information to determine low-altitude network availability and quality, using RSRP, SINR and other data as references to increase the confirmation of packet loss rate and real-time transmission rate, and by applying the most important video service data to the drone Intelligent adjustment of parameters such as bit rate, resolution, encoding standard and key frame interval enables effective collaboration of flight control, payload and airborne terminal modules within the UAV system, ensuring stable and reliable return of data in applications, and Achieve the best data transmission effect.
  • Embodiment 2 of the present disclosure provides a UAV data transmission method, as shown in Figure 2, the method includes;
  • Step 1 Determine the real-time position of the drone, including longitude and latitude, altitude, relative ground flight speed and 5G PCI information, updated every T seconds (1s ⁇ T ⁇ currently providing service base station coverage radius/maximum movement speed of the drone, unmanned
  • the maximum moving speed of the aircraft refers to the classification content based on vacuum speed in "GB T 35018-2018 Classification and Classification of Civilian Unmanned Aircraft Systems");
  • Step 2 Determine the current 5G communication link availability and quality, including whether the horizontal straight-line distance between the PCI base station and the drone is less than X kilometers, whether the RSRP value is greater than YdBm, whether the SINR value is greater than ZdB, and whether the video data packet loss rate is Less than 1%, whether the uplink rate meets the edge rate standard under corresponding definition, etc.; (0km ⁇ X ⁇ coverage radius of the current service base station; -115dBm ⁇ Y ⁇ -105dBm; 0dB ⁇ Z ⁇ 15dB;)
  • Step 2.1 Determine whether the horizontal straight-line distance between the PCI base station and the drone is less than X kilometers;
  • Step 2.1.1 If the distance is greater than
  • Step 2.2 If the distance is less than X kilometers, determine whether the RSRP value is greater than YdBm;
  • Step 2.2.1 If the RSRP value is less than YdBm, the airborne terminal switches to the backup link (such as point-to-point microwave) in a timely manner, and only transmits flight data, terminates the return of service video data, and repeats Step 1 after the location is updated;
  • the backup link such as point-to-point microwave
  • Step 2.3 If the RSRP value is greater than YdBm, determine whether the SINR value is greater than ZdB;
  • Step 2.3.1 If the SINR value is less than this value, it proves that the current 5G link quality is poor, then reduce the video bit rate, change the coding standard and reduce the definition to achieve continuous and stable return of data, and wait for the location to be updated again. Proceed to step 1;
  • Step 2.4 If the SINR value is greater than ZdB, determine whether the video data packet loss rate is less than 1%. If it is less, it proves that the first two information are accurate. If it is greater, it will return to determine the SINR value;
  • Step 2.5 If the video data packet loss rate is less than 1%, determine whether the uplink rate meets the requirements based on the minimum rate requirements for edge transmission of 1080P and 4K resolution videos;
  • Step 2.5.1 If the uplink rate is lower than the requirement, increase the key frame interval, reduce the data size, and repeat step 1 after the location is updated;
  • Step 3 Configure the data return parameters according to the optimal method (telemetry data transmission protocol: priority UDP, business data-video: encoding method H.264, maximum code rate, key frame interval reduction, etc.).
  • telemetry data transmission protocol priority UDP
  • business data-video encoding method H.264
  • maximum code rate maximum code rate
  • key frame interval reduction etc.
  • This disclosed embodiment determines the horizontal straight-line distance between the drone's position and the 5G access base station, self-adjusts the transmission protocol, prioritizes ensuring stable return of flight data, and then determines key parameters such as RSRP, SINR, packet loss rate, and uplink transmission rate one by one. , perform optimal configuration of application data and achieve stable transmission of business data for 5G UAV system applications.
  • Embodiment 3 of the present disclosure provides a UAV data transmission system.
  • the UAV data transmission system includes a UAV.
  • the UAV includes:
  • Update module 11 which is configured to obtain information about the location of the drone and the base station to which the drone is connected, and update it at a preset cycle;
  • the first judgment module 12 is configured to judge whether the horizontal straight-line distance between the drone's position and the access base station meets the first preset requirement
  • the first switching module 13 is configured to switch the TCP protocol to prioritize flight data transmission if the horizontal straight-line distance does not meet the first preset requirement;
  • the second judgment module 14 is configured to further judge whether the RSRP value of the current link meets the second preset requirement if the horizontal straight-line distance meets the first preset requirement;
  • the second switching module 15 is configured to switch the transmission link to the backup link and terminate the return of service data if the RSRP value does not meet the second preset requirement;
  • the third judgment module 16 is configured to further judge whether the SINR value of the current link meets the third preset requirement if the RSRP value meets the second preset requirement;
  • the data processing module 17 is configured to reduce the quality of the service data to be transmitted for data transmission if the SINR value does not meet the third preset requirement;
  • the transmission module 18 is configured to configure data return parameters in a preset manner for service data transmission if the SINR value meets the third preset requirement;
  • the first judgment module 12 is also configured to re-judge the horizontal straight-line distance between the UAV position and the access base station after the UAV position is updated.
  • the drone also includes a fourth judgment module 19 and a fifth judgment module 20:
  • the fourth judgment module 19 is configured to further judge whether the packet loss rate of the service data meets the fourth preset requirement after the third judgment module 16 judges that the SINR value of the current link meets the third preset requirement;
  • the third judgment module 16 is also configured to return to re-judge the SINR value if the packet loss rate does not meet the fourth preset requirement;
  • the fifth judgment module 20 is configured to judge whether the uplink rate meets the edge rate requirement under the corresponding definition if the packet loss rate meets the fourth preset requirement;
  • the data processing module 17 is also configured to increase the key frame interval and reduce the data size if the uplink rate does not meet the requirements;
  • the transmission module 18 is also configured to configure data return parameters in a preset optimal manner if the uplink rate meets the requirements.
  • the first preset requirement is that the distance is less than X kilometers; the second preset requirement is that the RSRP value is greater than YdBm; the third preset requirement is that the SINR value is greater than ZdB;
  • the fourth preset requirement is that the packet loss rate is less than 1%.
  • the data processing module 17 is specifically configured to reduce the video bit rate, change the encoding standard, and reduce the definition of the service data.
  • the preset period meets the following requirements:
  • the UAV data transmission system in the embodiment of the present disclosure is used to implement the UAV data transmission method in Method Embodiment 1 and Embodiment 2, so the description is relatively simple. For details, please refer to the previous Method Embodiment 1 and Embodiment 2. The relevant descriptions will not be repeated here.
  • Embodiment 4 of the present disclosure also provides an electronic device, including a memory 100 and a processor 200.
  • a computer program is stored in the memory 100.
  • the processor 200 runs, the memory 100 stores
  • the processor 200 executes various possible methods mentioned above.
  • the memory 100 is connected to the processor 200.
  • the memory 100 can be a flash memory, a read-only memory or other memory, and the processor 200 can be a central processing unit or a single chip microcomputer.
  • embodiments of the present disclosure also provide a computer-readable storage medium, the computer-readable storage medium stores a computer program, and the computer program is executed by a processor to perform the above various possible methods.
  • the computer-readable storage media includes volatile or nonvolatile, removable or Non-removable media.
  • Computer-readable storage media include but are not limited to RAM (Random Access Memory), ROM (Read-Only Memory), EEPROM (Electrically Erasable Programmable read only memory), electrically erasable programmable read-only memory ), flash memory or other memory technology, CD-ROM (Compact Disc Read-Only Memory, CD-ROM), digital versatile disk (DVD, Digital Video Disc) or other optical disk storage, magnetic cassette, tape, disk storage or other Magnetic storage device, or any other medium that can be used to store the desired information and can be accessed by a computer.

Abstract

本公开提供一种无人机数据传输方法、系统、电子设备及可读存储介质,以解决现有无人机传输难以实现最佳的数据传输效果的问题,所述方法包括:获取无人机位置以及连接的基站的信息,并以预设周期更新;判断无人机位置与基站的水平直线距离是否满足第一预设要求;若不满足,则切换tcp协议以优先确保飞行数据传输,若满足,则判断当前链路的RSRP数值是否满足第二预设要求;若不满足,则将链路切换至备用链路,若满足,则判断SINR数值是否满足第三预设要求;若不满足,则降低业务数据的质量,若满足,则按预设方式配置数据回传参数进行业务数据传输;在位置更新后,重新进行上述判断。保障数据的稳定回传,实现最佳的传输效果。

Description

无人机数据传输方法、系统、电子设备及存储介质
本发明要求申请日为2022年08月24日、申请号为CN202211018996.X、名称为“无人机数据传输方法、系统、电子设备及存储介质”的中国专利申请的优先权。
技术领域
本公开涉及无人机通信技术领域,具体涉及一种无人机数据传输方法,一种无人机数据传输系统,一种电子设备以及一种计算机可读存储介质。
背景技术
针对无人机系统在低空应用过程中如何实现业务数据高稳定传输的问题,现有技术方案提出了围绕无人机搭载网络终端设备感知网络质量变化的对应调整方案。其中,一种主要是通过判定即时数据链可用性,从而进行如降低业务数据质量等操作,实现其有效回传后端。另外一种方案则聚焦制定包括5G、卫星、点对点等多链路间的接入切换,通过自动切换不同接入,来实现无人机应用在复杂通信环境下的业务数据的连续可靠传输。
但现有的这两种方案,都难以有效保证业务数据的稳定回传,在第一类方案中,并未全面考虑无人机应用存在的移动速度快、切换站点频繁、空中链路易变化等特点,难以有效协同串联无人机系统内部各业务子模块,切实保障无人机应用在低空复杂环境的业务效果;而在第二类方案中,仅在不同链路间进行比较选择其中可用的接入方式,并未根据所选择的链路质量进行深入判断,难以有效实现最佳的数据传输效果。
发明内容
为了解决现有技术中存在的上述技术问题,本公开提供一种无人机数据传输方法、无人机数据传输系统、电子设备及计算机可读存储介质,可以进行应用数据的最优配置,实现无人机系统应用的业务数据稳定传输。
第一方面,本公开提供一种无人机数据传输方法,所述方法包括:
获取无人机位置以及无人机连接的基站的信息,并以预设周期进行更新;
判断无人机位置与接入基站的水平直线距离是否满足第一预设要求;
若水平直线距离不满足所述第一预设要求,则切换tcp(Transmission Control Protocol,传输控制协议)协议以优先确保飞行数据传输,若水平直线距离满足所述第一预设要求,则进一步判断当前链路的RSRP(Reference Signal Receiving Power,参考信号接收功率)数值是否满足第二预设要求;
若RSRP数值不满足所述第二预设要求,则将传输链路切换至备用链路,并终止业务数据的回传,若RSRP数值满足所述第二预设要求,则进一步判断当前链路的SINR(Signal to Interference plus Noise Ratio,信号与干扰加噪声比)数值是否满足第三预设要求;
若SINR数值不满足所述第三预设要求,则降低待传输的业务数据的质量进行数据传输,若SINR数值满足所述第三预设要求,则按预设方式配置数据回传参数进行业务数据传输;
在无人机位置更新后,重新进行无人机位置与接入基站的水平直线距离判断。
进一步的,所述方法还包括:
在判断当前链路的SINR数值满足所述第三预设要求后,进一步判断业务数据的丢包率是否满足第四预设要求;
若丢包率不满足所述第四预设要求,则返回重新判断SINR数值;
若丢包率满足所述第四预设要求,则判断上行速率是否满足对应清晰度下的边缘速率要求,若上行速率不满足要求,则增加关键帧间隔,减少数据大小,若上行速率满足要求,则按照预设的最优方式配置数据回传参数。
进一步的,所述方法还包括:
所述第一预设要求为距离小于X公里;所述第二预设要求为RSRP数值大于YdBm;所述第三预设要求为SINR数值大于ZdB;
其中,0km<X≤当前提供服务基站覆盖半径;-115dBm<Y≤-105dBm;0dB≤Z≤15dB。
进一步的,所述方法还包括:
所述第四预设要求为丢包率小于1%。
进一步的,所述降低待传输的业务数据的质量包括:
降低视频码率、变更编码标准和降低清晰度。
进一步的,所述预设周期满足以下要求:
1s≤预设周期≤当前提供服务基站覆盖半径/无人机最大移动速度。
第二方面,本公开提供一种无人机数据传输系统,无人机数据传输系统包括无人机,所述无人机包括:
更新模块,其设置为获取无人机位置以及无人机连接的基站的信息,并以预设周期进行更新;
第一判断模块,其设置为判断无人机位置与接入基站的水平直线距离是否满足第一预设要求;
第一切换模块,其设置为若水平直线距离不满足所述第一预设要求,则切换tcp协议以优先确保飞行数据传输;
第二判断模块,其设置为若水平直线距离满足所述第一预设要求,则进一步判断当前链路的RSRP数值是否满足第二预设要求;
第二切换模块,其设置为若RSRP数值不满足所述第二预设要求,则将传输链路切换至备用链路,并终止业务数据的回传;
第三判断模块,其设置为若RSRP数值满足所述第二预设要求,则进一步判断当前链路的SINR数值是否满足第三预设要求;
数据处理模块,其设置为若SINR数值不满足所述第三预设要求,则降低待传输的业务数据的质量进行数据传输;
传输模块,其设置为若SINR数值满足所述第三预设要求,则按预设方式配置数据回传参数进行业务数据传输;
所述第一判断模块还设置为在无人机位置更新后,重新进行无人机位置与接入基站的水平直线距离判断。
进一步的,所述无人机还包括第四判断模块、第五判断模块:
所述第四判断模块设置为在所述第三判断模块判断当前链路的SINR数值满足第三预设要求后,进一步判断业务数据的丢包率是否满足第四预设要求;
所述第三判断模块还设置为若丢包率不满足所述第四预设要求,则返回重新判断SINR数值;
所述第五判断模块设置为若丢包率满足所述第四预设要求,则判断上行速率是否满足对应清晰度下的边缘速率要求;
所述数据处理模块还设置为若上行速率不满足要求,则增加关键帧间隔,减少数据大小;
所述传模块还设置为若上行速率满足要求,则按照预设的最优方式配置数据回传参数。
第三方面,本公开提供一种电子设备,包括存储器和处理器,所述存储器中存储有计算机程序,当所述处理器运行所述存储器存储的计算机程序时,所述处理器执行如第一方面中任一所述的无人机数据传输方法。
第四方面,本公开提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现上述第一方面中任一所述的无人机数据传输方法。
有益效果:
本公开提供的无人机数据传输方法、无人机数据传输系统、电子设备以及计算机可读存储介质,结合无人机位置信息判断无人机数据传输低空网络可用性和质量,以RSRP、SINR等数据为参考,通过对无人机应用最主要的视频业务数据的质量参数进行智能调整,实现无人机系统内飞控、载荷和机载终端等模块的有效协同,保障应用中数据的稳定可靠回传。
附图说明
图1为本公开实施例一提供的一种无人机数据传输方法的流程示意图;
图2为本公开实施例二提供的一种无人机数据传输方法的流程示意图;
图3为本公开实施例三提供的一种无人机的架构图;
图4为本公开实施例四提供的一种电子设备的架构图。
具体实施方式
为使本领域技术人员更好地理解本公开的技术方案,下面结合附图和实施例对本公开作进一步详细描述。应当理解的是,此处描述的具体实施例和附图仅仅用于解释本发明,而非对本发明的限定。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序;并且,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互任意组合。
其中,在本公开实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
在后续的描述中,使用用于表示元件的诸如“模块”、“部件”或“单元”的后缀仅为了有利于本公开的说明,其本身没有特定的意义。因此,“模块”、“部件”或“单元”可以混合地使用。
现阶段,传统无人机应用主要面临测控飞行范围受限、高稳定数据传输困难、广监督全管理不足等核心痛点问题的制约,产业及关联领域发展始终难以匹配市场增速下的实际诉求。可以说,无人机应用的发展正迫切呼唤以技术革新固有顽疾的新局面。另一方面,在当前大力推进新基建的宏观背景下,5G技术从被宣布正式商用到面向多元垂直行业创新延伸的进程之快,超乎想象。5G技术以其具备的大带宽、低延时、广连接、抗干扰等突出优势,迅速征服了正着眼找寻创新转型有利抓手的众多行业,无人机行业应用就是其中之一。5G技术天然可赋予无人机应用所需的稳定传输、远程控制、状态监控和精准定位等四大核心能力。其中,低空间的数据高可靠传输一直以来都是无人机行业应用的最直接和最根本需求。因此,如何实现无人机应用过程中业务数据的稳定回传就成了当下发展亟需攻克的重要问题,虽然目前提出了围绕无人机搭载网络终端设备感知网络质量变化的对应调整方案,但现有技术未全面考虑无人机应用存在的移动速度快、切换站点频繁、空中链路易变化等特点;而在多链路接入的链路切换时未根据所选择的链路质量进行深入判断,难以有效实现最佳的数据传输效果。
下面以具体地实施例对本公开的技术方案以及本公开的技术方案如何解决现有技术中存在的上述技术问题进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。
图1为本公开实施例一提供的一种无人机数据传输方法的示意图,如图1所示,所述方法包括:
步骤S101:获取无人机位置以及无人机连接的基站的信息,并以预设周期进行更新;
步骤S102:判断无人机位置与接入基站的水平直线距离是否满足第一预设要求;
步骤S103:若水平直线距离不满足所述第一预设要求,则切换传输控制协议tcp协议以优先确保飞行数据传输,若水平直线距离满足所述第一预设要求,则进一步判断当前链路的参考信号接收功率RSRP数值是否满足第二预设要求;
步骤S104:若RSRP数值不满足所述第二预设要求,则将传输链路切换至备用链路,并终止业务数据的回传,若RSRP数值满足所述第二预设要求,则进一步判断当前链路的信号与干扰加噪声比SINR数值是否满足第三预设要求;
步骤S105:若SINR数值不满足所述第三预设要求,则降低待传输的业务数据的质量进行数据传输,若SINR数值满足所述第三预设要求,则按预设方式配置数据回传参数进行业务数据传输;
步骤S106:在无人机位置更新后,重新进行无人机位置与接入基站的水平直线距离判断。
无人机在执行任务时通常会要求拍摄视频并回传到用户端或服务端,在数据回传过程中,如何保证应用中数据的稳定可靠成为关键的问题,无人机在执行任务过程中一般需要进行长距离飞行,因此,无人机在飞行时会连接到不同的基站,并且离基站的距离是不断变化的,难以确保传输链路的稳定性,为此,在本公开实施例中,通过获取无人机位置以及无人机连接的基站的信息,并以预设周期进行更新,无人机位置信息包括经纬度、高度、相对地面飞行速度等,再判断无人机位置与接入基站的水平直线距离是否满足第一预设要求,所述接收基站即无人机连接的基站;所述第一预设要求可以为无人机还在当前提供服务基站的覆盖范围内,或者为离基站距离较近位置(如在提供服务基站的覆盖范围的3/4范围内),若不是,针对切换基站可能存在的链路抖动问题,则通过切换tcp协议优先确保传输飞行数据,以保证对无人机的飞行控制,确保无人机安全,待下一个周期无人机位置信息更新后,再做判别。若无人机位置与接入基站的水平直线距离满足第一预设要求,即无人机在当前基站的覆盖范围内,或者在离基站较近范围内,则进一步判断当前链路的RSRP数值是否满足第二预设要求;所述第二预设要求可以根据实际情况设置,在满足第二预设要求时表示当前连接链路可用,若RSRP数值不满足第二预设要求,则证明当前连接不可用,及时由机载终端切换备用链路(如点对点微波),并仅传输飞行数据,终止业务数据的回传;若RSRP数值满足第二预设要求,则再判断SINR数值是否满足第三预设要求,第三预设要求可根据实际情况设置,第三预设要求可以表示为信号质量较为正常,若不满足,证明当前链路质量较差,则通过降低待传输的业务数据的质量进行数据传输,若满足,则表示可以正常进行业务数据传输,可以按预设方式配置数据回传参数进行业务数据传输,如按一般的正常清晰度和编码率进行数据回传。在无人机位置更新后,重新开始进行上述判断,再次确定无人机位置与接入基站的水平直线距离。
本公开实施例结合无人机位置信息判断无人机数据传输低空网络可用性和质量,以RSRP、SINR等数据为参考,通过对无人机应用最主要的视频业务数据的质量参数进行智能调整,实现无人机系统内飞控、载荷和机载终端等模块的有效协同,保障应用中数据的稳定可靠回传。
进一步的,所述方法还包括:
在判断当前链路的SINR数值满足所述第三预设要求后,进一步判断业务数据的丢包率是否满足第四预设要求;
若丢包率不满足所述第四预设要求,则返回重新判断SINR数值;
若丢包率满足所述第四预设要求,则判断上行速率是否满足对应清晰度下的边缘速率要求,若上行速率不满足要求,则增加关键帧间隔,减少数据大小,若上行速率满足要求,则按照预设的最优方式配置数据回传参数。
在判断当前链路的SINR数值满足第三预设要求后,进一步判断业务数据的丢包率是否满足第四预设要求,丢包率是指测试中所丢失数据包数量占所发送数据组的比率,一般满足第四预设要求的丢包率则证明前两者信息(RSRP、SINR)准确,若丢包率大于预设值,即丢包率不满足第四预设要求则返回再次判断SINR数值;若SINR数值不满足要求,则按降低待传输的业务数据的质量进行处理,若再次判断SINR数值时满足要求,但丢包率多次测量不满足要求,则可以对无人机终端进行检查。若业务数据丢包率满足第四预设要求,则按照待传输的业务数据在对应清晰度下,如1080P、4K等清晰度视频在边缘传输的最低速率要求对上行速率进行判断,若上行速率小于对应的边缘速率要求则增加传输视频的关键帧间隔,减少数据大小;若上行速率满足要求,则按照预设的最优方式配置数据回传参数,如遥测数据传输协议,优先UDP,业务数据-视频,编码方式H.264,码率最大、关键帧间隔缩小等。
通过增加对丢包率和即时传输速率的确认,通过对无人机应用最主要的视频业务数据的码率、分辨率、编码标准和关键帧间隔等参数进行智能调整能够更细致的考虑数据传输的链路质量,并确定不同的业务质量传输方式,实现无人机系统内飞控、载荷和机载终端等模块的有效协同,保障应用中数据的稳定可靠回传,并实现最佳的数据传输效果。
进一步的,所述方法还包括:
所述第一预设要求为距离小于X公里;所述第二预设要求为RSRP数值大于YdBm;所述第三预设要求为SINR数值大于ZdB;
其中,0km<X≤当前提供服务基站覆盖半径;-115dBm<Y≤-105dBm;0dB≤Z≤15dB。
在无人机使用5G通信链路进行数据传输时,根据5G PCI信息及数据传输特点,将第一预设要求设定为距离小于X公里,第二预设要求设定为RSRP数值大于YdBm,第三预设要求设定为SINR数值大于ZdB,并且,0km<X≤当前提供服务基站覆盖半径;-115dBm<Y≤-105dBm;0dB≤Z≤15dB,可以取其中任意的值,当然,对于X、Y和Z,在本公开中,可以根据传输数据的不同设定不同的范围。
进一步的,所述方法还包括:
所述第四预设要求为丢包率小于1%。
将第四预设要求设定为丢包率小于1%,丢包率大于1%则表示网络不正常,需要再次进行SINR判断,若小于1%,则再进行上行速率判断。
进一步的,所述降低待传输的业务数据的质量包括:
降低视频码率、变更编码标准和降低清晰度。
通过对无人机应用最主要的视频业务数据的码率、分辨率、编码标准和清晰度进行调整,在保证数据传输稳定性的条件下尽可能的为回传出高质量的视频数据。
进一步的,所述预设周期满足以下要求:
1s≤预设周期≤当前提供服务基站覆盖半径/无人机最大移动速度。
无人机最大移速参照《GB T 35018-2018民用无人驾驶航空器系统分类及分级》中基于真空速度分类内容)计算,预设周期可以在此范围内自主设置,当然更新周期也可以根据网络质量进行调整,在传输链路质量较差时,将周期缩短,以更好的确定传输方式,实现最佳的数据传输效果。
本公开实施例结合无人机位置信息判断低空网络可用性和质量,以RSRP、SINR等数据为参考,增加对丢包率和即时传输速率的确认,通过对无人机应用最主要的视频业务数据的码率、分辨率、编码标准和关键帧间隔等参数进行智能调整,实现无人机系统内飞控、载荷和机载终端等模块的有效协同,保障应用中数据的稳定可靠回传,并实现最佳的数据传输效果。
为了更加清楚完整的描述本公开的技术方案,本公开实施例二提供一种无人机数据传输方法,如图2所示,所述方法包括;
步骤1:确定无人机实时位置,包括经纬度、高度、相对地面飞行速度以及5G PCI信息,每T秒更新一次(1s≤T≤当前提供服务基站覆盖半径/无人机最大移动速度,无人机最大移速参照《GB T 35018-2018民用无人驾驶航空器系统分类及分级》中基于真空速度分类内容);
步骤2:判断当前5G通信链路可用性和质量,具体包括接入PCI基站与无人机的水平直线距离是否小于X公里、RSRP数值是否大于YdBm、SINR数值是否大于ZdB、视频数据丢包率是否小于1%、上行速率是否满足相应清晰度下的边缘速率标准等;(0km<X≤当前提供服务基站覆盖半径;-115dBm<Y≤-105dBm;0dB≤Z≤15dB;)
步骤2.1:判断接入PCI基站与无人机的水平直线距离是否小于X公里;
步骤2.1.1:若距离大于X公里,针对切站可能存在的链路抖动问题,切换tcp协议优先确保传输飞行数据,待T秒无人机位置信息更新后,进行步骤1并再做判别;
步骤2.2:若距离小于X公里,则判断RSRP数值是否大于YdBm;
步骤2.2.1:若RSRP数值小于YdBm,则及时由机载终端切换备用链路(如点对点微波),并仅传输飞行数据,终止业务视频数据的回传,待位置更新后重新进行步骤1;
步骤2.3:若RSRP数值大于YdBm,则判断SINR数值是否大于ZdB;
步骤2.3.1:若SINR数值小于该值,证明当前5G链路质量较差,则通过降低视频码率、变更编码标准和降低清晰度的方式实现数据的连续稳定回传,待位置更新后重新进行步骤1;
步骤2.4:SINR数值大于ZdB,判断视频数据丢包率是否小于1%,若小于则证明前两者信息准确,若大于将返回判断SINR数值;
步骤2.5:视频数据丢包率小于1%,则按照1080P和4K等清晰度视频在边缘传输的最低速率要求进行判断上行速率是否满足要求;
步骤2.5.1:若上行速率小于要求则增加关键帧间隔,减少数据大小,待位置更新后重新进行步骤1;
步骤3:按照最优方式配置数据回传参数(遥测数据传输协议:优先UDP,业务数据-视频:编码方式H.264,码率最大、关键帧间隔缩小等)。
本公开实施例通过确定无人机位置与5G接入基站的水平直线距离,自调整传输协议,优先保障飞行数据稳定回传,后逐一判断RSRP、SINR、丢包率和上行传输速率等关键参数,进行应用数据的最优配置,实现5G无人机系统应用的业务数据稳定传输效果。
本公开实施例三提供一种无人机数据传输系统,所述无人机数据传输系统包括无人机,如图3所示,所述无人机包括:
更新模块11,其设置为获取无人机位置以及无人机连接的基站的信息,并以预设周期进行更新;
第一判断模块12,其设置为判断无人机位置与接入基站的水平直线距离是否满足第一预设要求;
第一切换模块13,其设置为若水平直线距离不满足所述第一预设要求,则切换tcp协议以优先确保飞行数据传输;
第二判断模块14,其设置为若水平直线距离满足所述第一预设要求,则进一步判断当前链路的RSRP数值是否满足第二预设要求;
第二切换模块15,其设置为若RSRP数值不满足所述第二预设要求,则将传输链路切换至备用链路,并终止业务数据的回传;
第三判断模块16,其设置为若RSRP数值满足所述第二预设要求,则进一步判断当前链路的SINR数值是否满足第三预设要求;
数据处理模块17,其设置为若SINR数值不满足所述第三预设要求,则降低待传输的业务数据的质量以进行数据传输;
传输模块18,其设置为若SINR数值满足所述第三预设要求,则按预设方式配置数据回传参数进行业务数据传输;
所述第一判断模块12还设置为在无人机位置更新后,重新进行无人机位置与接入基站的水平直线距离判断。
进一步的,所述无人机还包括第四判断模块19、第五判断模块20:
所述第四判断模块19设置为在所述第三判断模块16判断当前链路的SINR数值满足所述第三预设要求后,进一步判断业务数据的丢包率是否满足第四预设要求;
所述第三判断模块16还设置为若丢包率不满足所述第四预设要求,则返回重新判断SINR数值;
所述第五判断模块20设置为若丢包率满足所述第四预设要求,则判断上行速率是否满足对应清晰度下的边缘速率要求;
所述数据处理模块17还设置为若上行速率不满足要求,则增加关键帧间隔,减少数据大小;
所述传模块18还设置为若上行速率满足要求,则按照预设的最优方式配置数据回传参数。
进一步的,
所述第一预设要求为距离小于X公里;所述第二预设要求为RSRP数值大于YdBm;所述第三预设要求为SINR数值大于ZdB;
其中,0km<X≤当前提供服务基站覆盖半径;-115dBm<Y≤-105dBm;0dB≤Z≤15dB。
进一步的,
所述第四预设要求为丢包率小于1%。
进一步的,所述数据处理模块17具体设置为将业务数据降低视频码率、变更编码标准和降低清晰度。
进一步的,所述预设周期满足以下要求:
1s≤预设周期≤当前提供服务基站覆盖半径/无人机最大移动速度。
本公开实施例的无人机数据传输系统用于实施方法实施例一和实施例二中的无人机数据传输方法,所以描述的较为简单,具体可以参见前面方法实施例一和实施例二中的相关描述,此处不再赘述。
此外,如图4所示,本公开实施例四还提供一种电子设备,包括存储器100和处理器200,所述存储器100中存储有计算机程序,当所述处理器200运行所述存储器100存储的计算机程序时,所述处理器200执行上述各种可能的方法。
其中,存储器100与处理器200连接,存储器100可采用闪存或只读存储器或其他存储器,处理器200可采用中央处理器或单片机。
此外,本公开实施例还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行上述各种可能的方法。
该计算机可读存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、计算机程序模块或其他数据)的任何方法或技术中实施的易失性或非易失性、可移除或不可移除的介质。计算机可读存储介质包括但不限于RAM(Random Access Memory,随机存取存储器),ROM(Read-Only Memory,只读存储器),EEPROM(Electrically Erasable Programmable read only memory,带电可擦可编程只读存储器)、闪存或其他存储器技术、CD-ROM(Compact Disc Read-Only Memory,光盘只读存储器),数字多功能盘(DVD,Digital Video Disc)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (10)

  1. 一种无人机数据传输方法,其特征在于,所述方法包括:
    获取无人机位置以及无人机连接的基站的信息,并以预设周期进行更新;
    判断无人机位置与接入基站的水平直线距离是否满足第一预设要求;
    若水平直线距离不满足所述第一预设要求,则切换传输控制协议tcp协议以优先确保飞行数据传输,若水平直线距离满足所述第一预设要求,则进一步判断当前链路的参考信号接收功率RSRP数值是否满足第二预设要求;
    若RSRP数值不满足所述第二预设要求,则将传输链路切换至备用链路,并终止业务数据的回传,若RSRP数值满足所述第二预设要求,则进一步判断当前链路的信号与干扰加噪声比SINR数值是否满足第三预设要求;
    若SINR数值不满足所述第三预设要求,则降低待传输的业务数据的质量进行数据传输,若SINR数值满足所述第三预设要求,则按预设方式配置数据回传参数进行业务数据传输;
    在无人机位置更新后,重新进行无人机位置与接入基站的水平直线距离判断。
  2. 根据权利要求1所述的数据传输方法,其特征在于,所述方法还包括:
    在判断当前链路的SINR数值满足所述第三预设要求后,进一步判断业务数据的丢包率是否满足第四预设要求;
    若丢包率不满足所述第四预设要求,则返回重新判断SINR数值;
    若丢包率满足所述第四预设要求,则判断上行速率是否满足对应清晰度下的边缘速率要求,若上行速率不满足要求,则增加关键帧间隔,减少数据大小,若上行速率满足要求,则按照预设的最优方式配置数据回传参数。
  3. 根据权利要求1或2所述的数据传输方法,其特征在于,所述方法还包括:
    所述第一预设要求为距离小于X公里;所述第二预设要求为RSRP数值大于YdBm;所述第三预设要求为SINR数值大于ZdB;
    其中,0km<X≤当前提供服务基站覆盖半径;-115dBm<Y≤-105dBm;0dB≤Z≤15dB。
  4. 根据权利要求2所述的数据传输方法,其特征在于,所述方法还包括:
    所述第四预设要求为丢包率小于1%。
  5. 根据权利要求2所述的数据传输方法,其特征在于,所述降低待传输的业务数据的质量包括:
    降低视频码率、变更编码标准和降低清晰度。
  6. 根据权利要求1所述的数据传输方法,其特征在于,所述预设周期满足以下要求:
    1s≤预设周期≤当前提供服务基站覆盖半径/无人机最大移动速度。
  7. 一种无人机数据传输系统,其特征在于,所述无人机数据传输系统包括无人机,所述无人机包括:
    更新模块,其设置为获取无人机位置以及无人机连接的基站的信息,并以预设周期进行更新;
    第一判断模块,其设置为判断无人机位置与接入基站的水平直线距离是否满足第一预设要求;
    第一切换模块,其设置为若水平直线距离不满足所述第一预设要求,则切换tcp协议以优先确保飞行数据传输;
    第二判断模块,其设置为若水平直线距离满足所述第一预设要求,则进一步判断当前链路的RSRP数值是否满足第二预设要求;
    第二切换模块,其设置为若RSRP数值不满足所述第二预设要求, 则将传输链路切换至备用链路,并终止业务数据的回传;
    第三判断模块,其设置为若RSRP数值满足所述第二预设要求,则进一步判断当前链路的SINR数值是否满足第三预设要求;
    数据处理模块,其设置为若SINR数值不满足所述第三预设要求,则降低待传输的业务数据的质量进行数据传输;
    传输模块,其设置为若SINR数值满足所述第三预设要求,则按预设方式配置数据回传参数进行业务数据传输;
    所述第一判断模块还设置为在无人机位置更新后,重新进行无人机位置与接入基站的水平直线距离判断。
  8. 根据权利要求7所述的无人机,其特征在于,所述无人机还包括第四判断模块、第五判断模块:
    所述第四判断模块设置为在所述第三判断模块判断当前链路的SINR数值满足所述第三预设要求后,进一步判断业务数据的丢包率是否满足第四预设要求;
    所述第三判断模块还设置为若丢包率不满足所述第四预设要求,则返回重新判断SINR数值;
    所述第五判断模块设置为若丢包率满足,则判断上行速率是否满足对应清晰度下的边缘速率要求;
    所述数据处理模块还设置为若上行速率不满足要求,则增加关键帧间隔,减少数据大小;
    所述传模块还设置为若上行速率满足要求,则按照预设的最优方式配置数据回传参数。
  9. 一种电子设备,其特征在于,包括存储器和处理器,所述存储器中存储有计算机程序,当所述处理器运行所述存储器存储的计算机程序时,所述处理器执行如权利要求1-6中任一项所述的无人机数据传输方法。
  10. 一种计算机可读存储介质,包括:计算机程序,当其在计算机上运行时,使得计算机执行根据权利要求1-6中任一项所述的无人机数据传输方法。
PCT/CN2023/111910 2022-08-24 2023-08-09 无人机数据传输方法、系统、电子设备及存储介质 WO2024041381A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211018996.XA CN115396012B (zh) 2022-08-24 2022-08-24 无人机数据传输方法、系统、电子设备及存储介质
CN202211018996.X 2022-08-24

Publications (1)

Publication Number Publication Date
WO2024041381A1 true WO2024041381A1 (zh) 2024-02-29

Family

ID=84120204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/111910 WO2024041381A1 (zh) 2022-08-24 2023-08-09 无人机数据传输方法、系统、电子设备及存储介质

Country Status (2)

Country Link
CN (1) CN115396012B (zh)
WO (1) WO2024041381A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115396012B (zh) * 2022-08-24 2023-06-02 中国联合网络通信集团有限公司 无人机数据传输方法、系统、电子设备及存储介质
CN116131922B (zh) * 2023-02-15 2023-10-31 广州爱浦路网络技术有限公司 一种控制链路切换方法、电子设备、系统
CN117395747B (zh) * 2023-12-13 2024-03-15 思翼科技(深圳)有限公司 一种无人机远程遥控组网方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022000222A1 (zh) * 2020-06-30 2022-01-06 深圳市大疆创新科技有限公司 信息处理方法、无人机、服务器及存储介质
CN114286038A (zh) * 2021-12-27 2022-04-05 中国联合网络通信集团有限公司 视频数据传输方法、机载终端、计算机设备及存储介质
CN115396012A (zh) * 2022-08-24 2022-11-25 中国联合网络通信集团有限公司 无人机数据传输方法、系统、电子设备及存储介质

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107294923A (zh) * 2016-04-01 2017-10-24 中兴通讯股份有限公司 调整视频编码速率的方法及装置
CN106375062A (zh) * 2016-08-29 2017-02-01 浙江华飞智能科技有限公司 一种遥控系统的控制方法及主设备
JP6635902B2 (ja) * 2016-09-29 2020-01-29 株式会社Nttドコモ 基地局、通信端末、ドローン、プログラム
KR102536118B1 (ko) * 2017-12-30 2023-05-23 인텔 코포레이션 차량 무선 통신을 위한 방법 및 디바이스
CN111263411A (zh) * 2018-12-03 2020-06-09 中国移动通信集团浙江有限公司 一种语数业务分层传输的方法、基站和设备
CN113763755B (zh) * 2020-06-04 2023-10-27 中移(成都)信息通信科技有限公司 三维警示围栏制作方法、航路规划方法、飞行调整方法
CN112073287B (zh) * 2020-08-20 2022-04-12 湖南三一智能控制设备有限公司 数据传输装置、控制方法、传输方法和tcp服务装置
CN111915936B (zh) * 2020-09-03 2022-05-13 中国联合网络通信集团有限公司 无人机监管方法、装置和用户终端
CN113556189B (zh) * 2021-06-24 2022-09-16 中国联合网络通信集团有限公司 无人机的天线调整方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022000222A1 (zh) * 2020-06-30 2022-01-06 深圳市大疆创新科技有限公司 信息处理方法、无人机、服务器及存储介质
CN114286038A (zh) * 2021-12-27 2022-04-05 中国联合网络通信集团有限公司 视频数据传输方法、机载终端、计算机设备及存储介质
CN115396012A (zh) * 2022-08-24 2022-11-25 中国联合网络通信集团有限公司 无人机数据传输方法、系统、电子设备及存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MONTEMAYOR MATT MIGUEL-LUIZ; MONTILLANA JAY-AR; BAUTISTA ANTHONY JAMES; ZHUO EUGENIA: "Development of Real-Time Remote Sensor Data Transmission System for UAV", 2022 8TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND ROBOTICS (ICCAR), IEEE, 8 April 2022 (2022-04-08), pages 369 - 374, XP034129735, DOI: 10.1109/ICCAR55106.2022.9782631 *
WANG LI-PING: "UAV Measurement and Control and High Speed Data Transmission System", MEASUREMENT & CONTROL TECHNOLOGY., vol. 41, no. 8, 1 August 2022 (2022-08-01), pages 122 - 126, XP093143324, DOI: 10.19708/j.ckjs.2022.03.246 *

Also Published As

Publication number Publication date
CN115396012B (zh) 2023-06-02
CN115396012A (zh) 2022-11-25

Similar Documents

Publication Publication Date Title
WO2024041381A1 (zh) 无人机数据传输方法、系统、电子设备及存储介质
US10135719B2 (en) Transmitting and receiving data based on multipath
US11838787B2 (en) Functional architecture and interface for non-real-time ran intelligent controller
CN205265924U (zh) 一种无人飞行器
US7280506B2 (en) Apparatus for controlling multi-mode radio access and method for the same
CN207234831U (zh) 一种基于边缘计算和切片技术的5g网络架构
CN105070017A (zh) 一种无人机无线通信方法和系统
CN204833674U (zh) 一种无人机控制及多媒体数据传输系统
WO2015070625A1 (zh) 一种网络数据传输方法、装置及系统
WO2020135369A1 (zh) 一种无人机通信方法、设备及系统
US10455469B2 (en) Radar channel switching for Wi-Fi virtual reality
Baltaci et al. Analyzing real-time video delivery over cellular networks for remote piloting aerial vehicles
US10222793B2 (en) Method and system for controlling remotely piloted aircraft
CN112867088B (zh) 一种“云-边-端”通信架构的动态调节方法及系统
CN112637815B (zh) 一种支持4g/5g双模在线的无人机数图传输通信设备
TW202145824A (zh) 以行動通訊網路實現工業自動化之裝置及其運作方法
CN115515191A (zh) 私有服务质量管理方法、设备、系统及存储介质
CN107734585A (zh) 电力通信组网系统及控制方法
CN115396939A (zh) 无人机多类型数据的传输方法及无人机
WO2024032434A1 (zh) 业务控制方法、装置、通信设备及可读存储介质
CN113709822A (zh) 以移动通信网络实现工业自动化的装置及其运作方法
US11968561B2 (en) Dynamic service aware bandwidth reporting and messaging for mobility low latency transport
CN114039647B (zh) 一种基于时间同步的北斗态势数据融合方法
CN113949489B (zh) 无人机双链路综合调度系统的调度方法
WO2023216170A1 (en) Deterministic communication with dual-connectivity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856471

Country of ref document: EP

Kind code of ref document: A1