WO2024041253A1 - 功耗调整方法、装置、设备、存储介质和程序产品 - Google Patents

功耗调整方法、装置、设备、存储介质和程序产品 Download PDF

Info

Publication number
WO2024041253A1
WO2024041253A1 PCT/CN2023/106913 CN2023106913W WO2024041253A1 WO 2024041253 A1 WO2024041253 A1 WO 2024041253A1 CN 2023106913 W CN2023106913 W CN 2023106913W WO 2024041253 A1 WO2024041253 A1 WO 2024041253A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio frequency
communication mode
gain
amplifier
communication
Prior art date
Application number
PCT/CN2023/106913
Other languages
English (en)
French (fr)
Inventor
赵旭
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2024041253A1 publication Critical patent/WO2024041253A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/52TPC using AGC [Automatic Gain Control] circuits or amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/401Circuits for selecting or indicating operating mode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the technical field of computer equipment, and in particular to a power consumption adjustment method, device, equipment, storage medium and program product.
  • this application provides a power consumption adjustment method.
  • the methods include:
  • the transceiver environment information is used to characterize the data transceiver environment in which the electronic device is currently located; perform a power consumption adjustment operation according to the transceiver environment information; wherein the power consumption adjustment operation includes adjustment At least one of a communication mode of the radio frequency link and adjusting the gain of an amplifier in the radio frequency link.
  • this application also provides a power consumption adjustment device.
  • the device includes:
  • An acquisition module used to obtain the transceiver environment information of the electronic device, where the transceiver environment information is used to characterize the data transceiver environment in which the electronic device is currently located;
  • An adjustment module configured to perform power consumption adjustment operations according to the sending and receiving environment information
  • the power consumption adjustment operation includes at least one of adjusting a communication mode of a radio frequency link and adjusting a gain of an amplifier in the radio frequency link.
  • this application also provides an electronic device.
  • the electronic device includes a memory and a processor.
  • the memory stores a computer program.
  • the processor executes the computer program, the steps described in the first aspect are implemented.
  • this application also provides a computer-readable storage medium.
  • the computer-readable storage medium has a computer program stored thereon, and when the computer program is executed by a processor, the steps described in the first aspect are implemented.
  • this application also provides a computer program product.
  • the computer program product includes a computer program that implements the steps described in the first aspect when executed by a processor.
  • the above power consumption adjustment method, device, equipment, storage medium and program product obtains the transceiver environment information of the electronic device and performs the power consumption adjustment operation based on the transceiver environment information, wherein the transceiver environment information is used to characterize the current status of the electronic device.
  • the power consumption adjustment operation includes at least one of the operation of adjusting the communication mode of the radio frequency link and the operation of adjusting the gain of the amplifier in the radio frequency link.
  • the electronic device can transmit and receive data according to its own current environment to dynamically adjust at least one of the communication mode of the radio frequency link and the gain of the amplifier to achieve adjustment of power consumption. In this way, it is possible to ensure that the quality of wireless communication of electronic devices can meet the current data
  • the power consumption caused by wireless communication is reduced, so a balance between communication quality and power consumption can be achieved.
  • Figure 1 is a flow chart of a power consumption adjustment method in an embodiment
  • Figure 2 is a schematic diagram of the signal path included in the radio frequency link in MIMO communication mode in one embodiment
  • Figure 3 is a schematic diagram of the signal path included in the radio frequency link in the main diversity communication mode in one embodiment
  • Figure 4 is a schematic diagram of a signal path included in a radio frequency link in SISO communication mode in another embodiment
  • Figure 5 is a block diagram of an amplifier in one embodiment
  • FIG. 6 is a circuit schematic diagram of the FEM in one embodiment
  • Figure 7 is a flow chart of performing a power consumption adjustment operation based on sending and receiving environment information in one embodiment
  • Figure 8 is a graph showing the relationship between transmit power and bit error rate in one embodiment
  • Figure 9 is a schematic diagram of performing a power consumption adjustment operation according to the response information sent by the communication peer device in one embodiment
  • Figure 10 is a schematic diagram of another implementation of a power consumption adjustment operation based on the response information sent by the communication peer device in one embodiment
  • Figure 11 is a block diagram of a power consumption adjustment device in an embodiment
  • Figure 12 is an internal structure diagram of an electronic device in an embodiment
  • Figure 13 is an internal structural diagram of an electronic device in another embodiment.
  • AR is the abbreviation of Augmented Reality, which means augmented reality. It is a technology that cleverly integrates virtual information with the real world. It widely uses multimedia, three-dimensional modeling, real-time tracking and registration, intelligent interaction, sensing and other technical means. , simulate computer-generated text, images, three-dimensional models, music, videos and other virtual information, and then apply it to the real world. The two types of information complement each other, thereby achieving "enhancement" of the real world.
  • AR glasses are a product that uses AR technology on electronic glasses. It can realize many functions. It can be regarded as a miniature mobile phone. It can determine the user's state by tracking the trajectory of the eye's gaze and enable corresponding functions.
  • VR is the abbreviation of Virtual Reality, which means virtual reality.
  • VR glasses can also be called virtual reality head-mounted display equipment, referred to as VR head-mounted display.
  • VR glasses are a kind of technology that uses simulation technology, computer graphics, human-computer interface technology, and multimedia technology. , sensing technology, network technology and other technologies, it is a new means of human-computer interaction created with the help of computers and the latest sensor technology.
  • AR and VR can be collectively referred to as XR.
  • AR glasses Normally, XR glasses require wireless data transmission with external devices such as mobile phones or routers.
  • AR glasses in order to reduce weight, volume and heat, AR glasses generally only include display and audio circuits, while the data processing function It needs to be implemented by a mobile phone, which requires wireless data transmission between the AR glasses and the mobile phone.
  • a mobile phone which requires wireless data transmission between the AR glasses and the mobile phone.
  • VR glasses a large amount of data needs to be transferred from the routing end (usually a router or mobile phone) to the glasses end when running high-definition immersive games.
  • wireless data transmission between VR glasses and mobile phones or routers is also required.
  • WIFI technology has become the preferred solution for wireless data transmission between XR glasses and mobile phones/routers due to its advantages such as stability, low latency and high transmission rate.
  • WIFI technology also has its own shortcomings.
  • FEM Front-end Modules; Chinese: Front-end Module.
  • FEM can realize the transmission of radio frequency signals.
  • Amplification, as well as receiving amplification, can also implement functions such as power detection, control and switching.
  • the addition of FEM will lead to an increase in power consumption.
  • this application provides a power consumption adjustment method, device, equipment, storage medium and program product, which can achieve a balance between wireless communication quality and power consumption.
  • the execution subject of the power consumption adjustment method provided by the embodiments of the present application may be a power consumption adjustment device.
  • the power consumption adjustment device may be implemented as part or all of the electronic device through software, hardware, or a combination of software and hardware.
  • electronic equipment can It is a wearable device, such as AR glasses or VR glasses.
  • the electronic device can also be other types of devices besides wearable devices, such as smart speakers, smart TVs, smart phones, etc.
  • This application implements This example does not limit the type of electronic equipment.
  • the execution subject is an electronic device.
  • Figure 1 shows a flow chart of a power consumption adjustment method provided by an embodiment of the present application.
  • the execution subject of the power consumption adjustment method can be an electronic device.
  • the power consumption adjustment method can Includes the following steps:
  • Step 101 The electronic device obtains the sending and receiving environment information.
  • the transceiver environment information is used to characterize the data transceiver environment in which the electronic device is currently located.
  • the data transceiver environment can specifically refer to the WIFI data transceiver environment.
  • the data transceiver environment can include data throughput and whether the data can be corrected. Reception status, etc.
  • the transceiving environment information may include data throughput rate, bit error rate (English: Packet symbol errorrate; abbreviation: PER) or response information (ACK) sent by the communication peer device, etc., where the response information is used to indicate communication
  • the peer device successfully receives the data sent by the electronic device.
  • the transceiving environment information in the embodiments of the present application is not limited to the three information types mentioned above. As long as the information can characterize the data transceiving environment, it should be included in the transceiving environment information in the embodiments of the present application. within the range.
  • Step 102 The electronic device performs a power consumption adjustment operation based on the transceiving environment information.
  • the power consumption adjustment operation may include an operation to reduce power consumption. If the electronic device determines that the data transmission and reception environment it is currently in is better based on the transmission and reception environment information, it means that the electronic device currently has room to reduce the quality of wireless communication. In this case Under this circumstance, electronic devices can sacrifice their own wireless communication quality in exchange for reduced power consumption.
  • the power consumption adjustment operation may also include an operation to increase power consumption. If the electronic device determines that the data transmission and reception environment it is currently in is poor based on the transmission and reception environment information, it means that the data transmission and reception environment at this time is difficult to satisfy. For the electronic device to work normally, in this case, the electronic device needs to sacrifice power consumption to give priority to the wireless communication quality required for normal operation.
  • the electronic device determines that the current data sending and receiving environment it is in happens to be a critical data sending and receiving environment based on the sending and receiving environment information.
  • the electronic device has no room to reduce the quality of wireless communication.
  • the electronic device may not perform the power consumption adjustment operation, but maintain the current power consumption state unchanged.
  • the electronic device can periodically obtain the transceiver environment information, and periodically perform power consumption adjustment operations based on the transceiver environment information. In this way, timely adjustment of the power consumption of the electronic device can be achieved.
  • the power consumption adjustment operation in step 102 may be at least one of the following operations.
  • the following operations please refer to the following embodiments:
  • the power consumption adjustment method provided by this embodiment obtains the transceiver environment information of the electronic device, and performs a power consumption adjustment operation based on the transceiver environment information, where the transceiver environment information is used to characterize the data transceiver environment in which the electronic device is currently located,
  • the power consumption adjustment operation includes at least one of an operation of adjusting the communication mode of the radio frequency link and an operation of adjusting the gain of the amplifier in the radio frequency link.
  • the electronic device can dynamically adjust the radio frequency according to its current data transmission and reception environment.
  • At least one of the communication mode of the link and the gain of the amplifier is used to adjust the power consumption. In this way, it is possible to ensure that the quality of the wireless communication of the electronic device can meet the current data sending and receiving environment. Reduce the power consumption caused by wireless communication, so a balance between communication quality and power consumption can be achieved.
  • adjusting the communication mode of the radio frequency link may include: adjusting the communication mode of the radio frequency link from the first mode to the second mode, where the first mode and the second mode The communication rates corresponding to the modes are different.
  • adjusting the communication mode of the radio frequency link in the embodiment of the present application means switching the radio frequency link between communication modes with different communication rates.
  • the first mode may be a MIMO (English: multiple-in multipleout; Chinese: multiple-input multiple-output) communication mode, a main diversity communication mode, and a SISO (English: single input single output; Chinese : single input single output)
  • the second mode is a mode other than the first mode among the MIMO communication mode, the main diversity communication mode and the SISO communication mode.
  • the first mode is the MIMO communication mode
  • the second mode may be the main diversity communication mode or the SISO communication mode.
  • the second mode may be the MIMO communication mode or the SISO communication mode.
  • SISO communication mode When the first mode is the SISO communication mode, the second mode may be the MIMO communication mode or the main diversity communication mode.
  • MIMO multipath effects
  • both the sender and the receiver use multiple antennas that can work simultaneously to communicate.
  • the transmitter uses multiple antennas to send multiple radio frequency signals at the same time, and the receiver uses multiple antennas to receive multiple radio frequency signals. Data is recovered from the signal.
  • Figure 2 exemplarily shows the signal path included in the radio frequency link in the electronic device in the MIMO communication mode. It should be noted that the radio frequency link in Figure 2 is a WIFI radio frequency link.
  • the radio frequency link in the electronic device may include a first radio frequency link in a radio frequency chip (abbreviation: RF IC) 21 and a second radio frequency link in a radio frequency front-end circuit (English: RF Front-end) 22 path, wherein the first radio frequency link includes a signal generator (English: WLAN Processor), two MAC layer processing circuits (respectively MAC-A and MAC-B), two physical layer processing circuits (respectively PHY-A and PHY-B), switch (English: switch), 2G radio frequency signal conversion circuit (English: WLAN 2G Radio) and 5G/6G radio frequency signal conversion circuit (English: WLAN 5G/6G Radio), the second radio frequency link includes 2 FEM, one of which is connected to the 2G radio frequency signal conversion circuit, and the other FEM is connected to the 5G/6G radio frequency signal conversion circuit.
  • the second radio frequency link also includes 4 filters (English: Saw), 2 combined Router (English: Diplexer) and two antennas (English: Antenna).
  • the radio frequency link in electronic equipment includes two signal paths (chain0 and chain1) in MIMO communication mode. Among them, chain0 and chain1 are equal to each other. Within chain0 and chain1, they are divided into reception (RX) channel and transmit (TX) channel. In other words, when the radio frequency link is in MIMO communication mode, two signal paths, chain0 and chain1, will be used, and inside chain0 and chain1, one RX path and one TX path will be used respectively, so in the radio frequency chain When the channel is in MIMO communication mode, a total of 2 RX channels and 2 TX channels are used.
  • the main diversity antenna can include the main antenna and the diversity antenna.
  • the main antenna is responsible for transmitting and receiving radio frequency signals.
  • the diversity antenna is only responsible for receiving radio frequency signals but not transmitting radio frequency signals.
  • the receiving end can combine the radio frequency signals received by the main antenna and the diversity antenna to obtain diversity gain.
  • Figure 3 exemplarily shows the signal path included in the radio frequency link in the electronic device in the main diversity communication mode. It should be noted that the radio frequency link in Figure 3 is a WIFI radio frequency link.
  • the radio frequency link in the electronic device also includes two Signal paths (chain0 and chain1), however, in the main diversity communication mode, chain0 and chain1 are not equal to each other.
  • chain0 and chain1 are divided into the main set path and the diversity path (chain0 in the figure is The main set channel is marked with a solid line segment, chain1 is the diversity channel, marked with a dotted line segment).
  • the main set channel includes the TX channel and the RX channel, while the diversity channel only includes the RX channel and does not include the TX channel.
  • a total of 2 RX channels and 1 TX channel are used.
  • the main diversity communication mode Compared with the MIMO communication mode, the main diversity communication mode has a lower communication rate and weaker coverage, but the corresponding power consumption is also lower. What needs to be pointed out here is that the main power consumption of WIFI is caused by TX communication, and the power consumption of RX communication is relatively small.
  • SISO refers to a communication mode that uses a single antenna to transmit and receive radio frequency signals.
  • Figure 4 exemplarily shows the signal path included in the radio frequency link in the electronic device in the SISO communication mode. It should be noted that the radio frequency link in Figure 4 is a WIFI radio frequency link.
  • the circuits included in the radio frequency link shown in Figure 4 are consistent with Figure 2. The embodiments of the present application will not be repeated here. Different from the MIMO communication mode and the main diversity communication mode, the SISO communication mode only includes one signal path (chain0 or chain1), this signal path contains a TX path and an RX path. In other words, when the radio frequency link is in SISO communication mode, a total of 1 RX path and 1 TX path are used.
  • SISO communication mode Compared with MIMO communication mode and main diversity communication mode, SISO communication mode has a lower communication rate and weaker coverage, but the corresponding power consumption is also lower.
  • the electronic device can be controlled to switch between MIMO communication mode, main diversity communication mode and SISO communication mode.
  • the gain of the amplifier is closely related to the power consumption. Generally speaking, the greater the gain of the amplifier, the greater the power consumption, and the smaller the gain of the amplifier, the smaller the power consumption.
  • amplifiers are often composed of multi-stage circuits.
  • Figure 5 shows an exemplary block diagram of an amplifier.
  • the input stage mainly realizes the connection with the signal source and amplifies the signal
  • the intermediate stage mainly realizes voltage amplification, amplifying the weak input voltage to a sufficient amplitude
  • the output stage mainly realizes the power amplification of the signal to meet the output load.
  • Required power usually, every time the amplifier is lowered by one level, the gain of the amplifier will be reduced accordingly, and the power will be reduced accordingly. At the same time, the power consumption will also be reduced.
  • the gain of the amplifier will be reduced accordingly. It will also increase accordingly, the power will also increase accordingly, and at the same time, the power consumption will also increase.
  • the gain of the amplifier can be adjusted, and the power consumption can be adjusted by adjusting the gain of the amplifier.
  • the power consumption adjustment operation in the embodiment of the present application may include adjusting the gain of the amplifier in the radio frequency link. Adjustment.
  • the radio frequency link of the electronic device includes a first radio frequency link inside the radio frequency chip and a second radio frequency link inside the radio frequency front-end circuit.
  • the gain of the amplifier in the link may include: adjusting the gain of the first amplifier in the radio frequency chip; and/or adjusting the gain of the second amplifier included in the FEM in the radio frequency front-end circuit.
  • a FEM can include two power amplifiers (English: PowerAmplifier; referred to as: PA) for power amplification, two for receiving A low-noise amplifier (English: low noise amplifier; referred to as: LNA) for signal amplification, two couplers, two switches (used to control the pass-through state), multiple capacitors and two ground resistors.
  • the FEM also includes Two TX interfaces, two RX interfaces, two CPLR interfaces, two ANT interfaces and SEL/LNAEN/PAEN control lines.
  • the CPLR interface is connected to the power coupling circuit (for coupling power detection), and the ANT interface is common to the antenna. terminal connection, the SEL/LNAEN/PAEN control line is used for FEM logic state control.
  • the second amplifier included in the FEM described above in the embodiment of the present application may refer to the PA shown in Figure 6. This is considering that in the radio frequency front-end circuit, the part that consumes the most power is the FEM, and inside the FEM, the power The part that consumes the most is PA.
  • switching between PA gain gears can be achieved through the GPIO logic control level on the periphery of the FEM.
  • Table 1 shows the different gain levels corresponding to different logic levels of the SEL/LNAEN/PAEN control lines.
  • the gain gear of the PA is 5GTx_gain1a.
  • Table 2 shows the current value consumed by the PA itself at different gain levels. It is easy to understand that the current value consumed by the PA itself can reflect the power consumption. Generally speaking, the higher the current value consumed by the PA itself, the greater the power consumption. The larger the PA, the greater the power consumption. The smaller the current consumed by the PA itself, the smaller the power consumption.
  • the radio frequency chip in addition to the amplifier in the FEM, the radio frequency chip also contains an amplifier (the first amplifier), and the amplifier consumes the most power in the radio frequency chip. Therefore, when performing power consumption adjustment operations, The gain of the first amplifier in the radio frequency chip can also be adjusted.
  • the first amplifier may be an operational amplifier in a DAC (Chinese: digital-to-analog converter) in a radio frequency chip.
  • the DAC generally includes four parts, namely a weighted resistor network and an operational amplifier. , reference power supplies and analog switches. Similar to the way of adjusting the PA gain, in the embodiment of the present application, the logic control level of the first amplifier inside the radio frequency chip can be controlled by modifying the value in the internal register of the radio frequency chip, thereby realizing the gains of the first amplifier. Switching between gears.
  • the power consumption adjustment operation can be performed based on the transceiver environment information. Includes the following steps:
  • Step 701 The electronic device adjusts the communication mode of the radio frequency link according to the data throughput rate.
  • the electronic device can adjust the communication mode of the radio frequency link according to its current data throughput rate. In this way, the electronic device can adjust its communication rate according to its current data throughput rate, based on In this way, a balance between communication speed and power consumption of electronic devices is finally achieved.
  • the data throughput rate is within the first throughput rate range, it means that the current data throughput rate of the electronic device can support normal communication of the electronic device, and there is still some room for downward adjustment in the data throughput rate of the electronic device, where the first The throughput rate interval is set based on the data throughput rate required by the electronic device for normal communication.
  • the electronic device can adjust the communication mode of the radio frequency link from a communication mode with a higher communication rate to a communication mode with a lower communication rate. , In other words, the electronic device can reduce the communication rate of the radio frequency link, sacrificing the communication rate in exchange for a reduction in power consumption.
  • the electronic device adjusts the communication mode of the radio frequency link from a communication mode with a higher communication rate to a communication mode with a lower communication rate, which may include the following situations: 1.
  • the electronic device changes the communication mode of the radio frequency link from MIMO The communication mode is switched to the main diversity communication mode; 2.
  • the electronic device switches the communication mode of the radio frequency link from the main diversity communication mode to the SISO communication mode; 3.
  • the electronic device switches the communication mode of the radio frequency link from the MIMO communication mode to SISO communication. model.
  • the data throughput rate is in the second throughput rate interval, it means that the current data throughput rate is no longer able to support normal communication of the electronic device, and the data throughput rate of the electronic device needs to be increased to ensure normal communication of the electronic device, where the second throughput rate is The upper bound of the throughput rate interval is less than or equal to the lower bound of the first throughput rate interval.
  • the electronic device can adjust the communication mode of the radio frequency link from a communication mode with a lower communication rate to a communication mode with a higher communication rate. In other words, the electronic device The device can increase the communication rate of the radio frequency link to prioritize the communication rate required for the normal operation of the electronic device at the expense of power consumption.
  • the electronic device adjusts the communication mode of the radio frequency link from a communication mode with a lower communication rate to a communication mode with a higher communication rate, which may include the following situations: 1.
  • the electronic device changes the communication mode of the radio frequency link from the main communication mode to the communication mode with a higher communication rate.
  • the diversity communication mode is switched to the MIMO communication mode; 2.
  • the electronic device switches the communication mode of the radio frequency link from the SISO communication mode to the main diversity communication mode; 3.
  • the electronic device switches the communication mode of the radio frequency link from the SISO communication mode to MIMO communication. model.
  • the electronic device has neither room to lower the data throughput rate nor to increase the data Throughput rate is necessary. At this time, the electronic device may not adjust the communication mode of the radio frequency link, but maintain the current communication mode of the radio frequency link unchanged.
  • the electronic device can continue to determine whether the communication mode of the radio frequency link needs to be adjusted based on the data throughput rate after each adjustment of the communication mode of the radio frequency link.
  • this The adjustment of the communication mode of the radio frequency link in the application embodiment is not a one-time operation, but is real-time.
  • Step 702 The electronic device adjusts the gain of the amplifier in the radio frequency link according to the bit error rate.
  • the amplifier undertakes the function of transmitting signal amplification. Therefore, the gain of the amplifier is related to the signal transmission power. Generally speaking, the smaller the gain of the amplifier, the smaller the signal transmission power. The greater the gain of the amplifier, the signal The transmission power will be correspondingly greater. Lower transmit power will lead to an increase in the bit error rate.
  • Figure 8 shows the relationship curve between transmit power and bit error rate. The abscissa in Figure 8 is the transmit power in dbm. , the ordinate is the bit error rate. Therefore, in this embodiment of the present application, the electronic device can adjust the gain of the amplifier in the radio frequency link according to its current bit error rate. In this way, the electronic device can adjust its own transmit power according to its current bit error rate. Based on this method, the balance between the transmission power and power consumption of the electronic device is finally achieved.
  • bit error rate is within the second bit error rate interval, it means that the bit error rate of the current electronic device can support normal communication of the electronic device, and there is still room for improvement in the bit error rate of the electronic device, where the bit error rate of the electronic device is within the second bit error rate interval.
  • the second bit error rate interval is set based on the bit error rate required by the electronic device during normal communication.
  • the electronic device can reduce the gain of the amplifier in the radio frequency link, thereby reducing the transmit power of the electronic device by sacrificing the transmit power. in exchange for reduced power consumption.
  • bit error rate is in the first bit error rate interval, it means that the current bit error rate of the electronic device has affected the normal communication of the electronic device, and the bit error rate of the electronic device needs to be further reduced to ensure normal communication of the electronic device, where , the lower bound of the first bit error rate interval is greater than or equal to the upper bound of the second bit error rate interval.
  • the electronic device can increase the gain of the amplifier in the radio frequency link, thereby increasing the transmission power of the electronic device at the expense of power consumption.
  • the cost is to give priority to meeting the bit error rate required for the normal operation of electronic equipment.
  • bit error rate is located in the third bit error rate interval, where the third bit error rate interval is located between the first bit error rate interval and the second bit error rate interval (the third bit error rate interval).
  • the bit error rate interval only exists when the lower bound of the first bit error rate interval is greater than the upper bound of the second bit error rate interval).
  • the electronic device has neither room to increase the bit error rate nor further To reduce the bit error rate, the electronic device may not adjust the gain of the amplifier in the radio frequency link, but maintain the current gain of the amplifier in the radio frequency link unchanged.
  • reducing the gain of the amplifier in the radio frequency link may include: preferentially reducing the gain of the second amplifier included in the FEM in the radio frequency front-end circuit, and when the gain of the second amplifier is reduced to the minimum Next, reduce the gain of the first amplifier in the radio frequency chip.
  • Increasing the gain of the amplifier in the radio frequency link may include: giving priority to increasing the gain of the first amplifier in the radio frequency chip. When the gain of the first amplifier in the radio frequency chip is increased to the maximum, then increasing the FEM included in the radio frequency front-end circuit. the gain of the second amplifier.
  • Prioritizing the gain of the second amplifier included in the FEM in the radio frequency front-end circuit can ensure that the operation of reducing the gain of the amplifier in the radio frequency link is performed. In the early stage, the power consumption of electronic equipment can be significantly reduced. Prioritizing the gain of the first amplifier in the radio frequency chip can ensure that the power consumption of the electronic equipment is reduced in the early stage of increasing the gain of the amplifier in the radio frequency link. There will be no sudden increase in consumption.
  • the electronic device can continue to determine whether it is necessary to adjust the gain of the amplifier in the radio frequency link based on the bit error rate after each adjustment of the gain of the amplifier in the radio frequency link.
  • the adjustment of the gain of the amplifier in the radio frequency link in the embodiment of the present application is not a one-time operation, but real-time.
  • step 701 can be executed first, and then step 702, or step 702 can be executed first, and then step 701 can be executed. Step 701 and step 702 are executed simultaneously.
  • this application will take the electronic device as XR glasses as an example to briefly introduce the content of power consumption adjustment operations in different usage scenarios of XR.
  • Scenario 1 Short-distance high-speed wireless communication, such as using VR glasses to watch high-definition movies and using VR glasses to play games Scenes and the like.
  • the upper and lower bounds of the first bit error rate interval can be set larger to improve the radio frequency.
  • the threshold of the gain of the amplifier in the link, and at the same time, the upper and lower bounds of the second bit error rate interval are also set larger, thereby lowering the threshold of reducing the gain of the amplifier in the radio frequency link.
  • due to the throughput rate requirements of high-speed communication is relatively high, so the communication mode of the radio frequency link can only be adjusted to the main diversity communication mode at least, and cannot be adjusted to the SISO communication mode. This can be achieved by setting the first throughput rate interval and the second throughput rate interval.
  • Scenario 2 Short-range, low-speed wireless communication, such as wireless data interaction between AR glasses and mobile phones.
  • the upper and lower bounds of the first bit error rate interval can be set larger to improve the radio frequency.
  • the threshold of the gain of the amplifier in the link, and at the same time, the upper and lower bounds of the second bit error rate interval are also set larger, thereby lowering the threshold of reducing the gain of the amplifier in the radio frequency link.
  • the communication mode of the radio frequency link can be adjusted to the main diversity communication mode and the SISO communication mode (compared to the SISO communication mode, the main diversity communication mode can enhance coverage). This can be achieved by adjusting the first throughput rate range and the second throughput rate range. This is achieved by setting the throughput rate range.
  • Scenario 3 Long-distance low-speed wireless communication, such as a scenario where the user is far away from the router but still uses VR glasses for wireless Internet access.
  • the distance between the XR glasses and the mobile phone/router is relatively far, which has certain requirements for the WIFI transmission power of the XR glasses. Therefore, in this scenario, the upper and lower bounds of the first bit error rate interval can be set smaller to reduce the increase in radio frequency.
  • the threshold for the gain of the amplifier in the link, and the upper and lower bounds of the second bit error rate interval are also set smaller, thereby raising the threshold for reducing the gain of the amplifier in the radio frequency link. Since low-speed communication has low requirements for throughput, Therefore, the communication mode of the radio frequency link can be adjusted to the main diversity communication mode and the SISO communication mode, which can be achieved by setting the first throughput rate interval and the second throughput rate interval.
  • Scenario 4 Long-distance high-speed wireless communication, such as a scenario where the user is far away from the router but still uses VR glasses to watch high-definition movies and play games.
  • the upper and lower bounds of the first bit error rate interval can be set smaller to reduce the increase in the radio frequency chain.
  • the threshold for the gain of the amplifier in the radio frequency link is set, and the upper and lower bounds of the second bit error rate interval are also set smaller, thereby raising the threshold for reducing the gain of the amplifier in the radio frequency link.
  • the communication mode of the radio frequency link can only be adjusted to the main diversity communication mode at least, and cannot be adjusted to the SISO communication mode. This can be achieved by setting the first throughput rate interval and the second throughput rate interval.
  • the transceiving environment information may also include response information sent by the communication peer device of the electronic device.
  • the sending and receiving environment information includes response information sent by the communication peer device of the electronic device
  • performing the power consumption adjustment operation according to the sending and receiving environment information may include The following steps: the electronic device performs a power consumption adjustment operation based on whether the response information is successfully received.
  • the electronic device successfully receives the response information, it performs at least one of the following first power consumption adjustment operations, where the first power consumption adjustment operation is essentially an operation to reduce power consumption:
  • the electronic device can reduce the radio frequency
  • the communication rate of the link is reduced by sacrificing the communication rate in exchange for reduced power consumption.
  • the electronic device can also reduce the gain of the amplifier in the RF link, thereby reducing the transmit power of the electronic device. This is achieved by sacrificing the transmit power. Reduction in power consumption.
  • the electronic device adjusts the communication mode of the radio frequency link from a communication mode with a higher communication rate to a communication mode with a lower communication rate, which may include the following situations: 1.
  • the electronic device adjusts the communication mode of the radio frequency link.
  • the communication mode is switched from the MIMO communication mode to the main diversity communication mode; 2.
  • the electronic device switches the communication mode of the radio frequency link from the main diversity communication mode to the SISO communication mode;
  • the electronic device switches the communication mode of the radio frequency link from the MIMO communication mode Switch to SISO communication mode.
  • Reducing the gain of the amplifier in the radio frequency link may include: preferentially reducing the gain of the second amplifier included in the FEM in the radio frequency front-end circuit, When the gain of the second amplifier is reduced to the minimum, the gain of the first amplifier in the radio frequency chip is then reduced.
  • the electronic device can preferentially adjust the communication mode of the radio frequency link from a communication mode with a higher communication rate to a communication rate.
  • the electronic device can continue to reduce the gain of the amplifier in the radio frequency link.
  • the electronic device performs an operation of reducing the gain of the amplifier in the radio frequency link. If the current communication mode of the radio frequency link is If the communication mode is not the communication mode with the lowest communication rate, the electronic device performs an operation of adjusting the communication mode of the radio frequency link from a communication mode with a higher communication rate to a communication mode with a lower communication rate.
  • the process of the electronic device performing the operation of reducing the gain of the amplifier in the radio frequency link includes: if the current gain of the second amplifier included in the FEM in the radio frequency front-end circuit is the minimum gain, then performing the operation of reducing the gain of the first amplifier in the radio frequency chip. In the gain operation, if the current gain of the second amplifier is not the minimum gain, the operation of reducing the gain of the second amplifier is performed.
  • the electronic device performs at least one of the following second power consumption adjustment operations, where the essence of the second power consumption adjustment operation is an operation of increasing power consumption:
  • the electronic device does not successfully receive the response information sent by the communication peer device, it means that the current electronic device and the communication peer device are no longer able to communicate normally, and the wireless communication quality of the electronic device needs to be improved to ensure the normal operation of the electronic device and the communication peer device.
  • Communication at this time, the electronic device can increase the communication rate of the radio frequency link, and the electronic device can also increase the gain of the amplifier in the radio frequency link, thereby increasing the transmit power of the electronic device, and giving priority to satisfying electronic requirements at the expense of power consumption.
  • the wireless communication quality required by the device and the communication peer device is not successfully receive the response information sent by the communication peer device, it means that the current electronic device and the communication peer device are no longer able to communicate normally, and the wireless communication quality of the electronic device needs to be improved to ensure the normal operation of the electronic device and the communication peer device.
  • the electronic device can increase the communication rate of the radio frequency link, and the electronic device can also increase the gain of the amplifier in the radio frequency link, thereby increasing the transmit power of the electronic device, and
  • the electronic device adjusts the communication mode of the radio frequency link from a communication mode with a lower communication rate to a communication mode with a higher communication rate, which may include the following situations: 1.
  • the electronic device adjusts the communication mode of the radio frequency link.
  • the communication mode is switched from the main diversity communication mode to the MIMO communication mode; 2.
  • the electronic device switches the communication mode of the radio frequency link from the SISO communication mode to the main diversity communication mode; 3.
  • the electronic device switches the communication mode of the radio frequency link from the SISO communication mode Switch to MIMO communication mode.
  • Increasing the gain of the amplifier in the radio frequency link may include: giving priority to increasing the gain of the first amplifier in the radio frequency chip. When the gain of the first amplifier in the radio frequency chip is increased to the maximum, then increasing the FEM included in the radio frequency front-end circuit. the gain of the second amplifier.
  • the electronic device when the electronic device does not successfully receive the response information sent by the communication peer device, optionally, the electronic device can preferentially increase the gain of the amplifier in the radio frequency link.
  • the gain of the amplifier in the radio frequency link increases.
  • the electronic device can adjust the communication mode of the radio frequency link from a communication mode with a higher communication rate to a communication mode with a lower communication rate.
  • Prioritizing the gain of the amplifier in the radio frequency link can ensure that the power consumption of the electronic device does not increase suddenly in the early stage of performing operations that increase power consumption.
  • the operation of increasing the gain of the amplifier is performed. If the current gain of the amplifier is the maximum gain, the communication mode of the radio frequency link is changed from a communication mode with a lower communication rate. Adjust to a communication mode with a higher communication rate. It should be pointed out that the gain of the amplifier is the maximum gain means that the gains of the first amplifier and the second amplifier are both the maximum gain.
  • the process of the electronic device performing the operation of increasing the gain of the amplifier includes: if the current gain of the first amplifier in the radio frequency chip is not the maximum gain, then performing the operation of increasing the gain of the first amplifier; if the current gain of the first amplifier When the gain is the maximum gain, an operation of increasing the gain of the second amplifier included in the FEM in the radio frequency front-end circuit is performed.
  • FIG. 9 and FIG. 10 illustrate a schematic diagram of performing a power consumption adjustment operation based on the response information (ACK) sent by the communication peer device.
  • the electronic device when the electronic device can successfully receive the response information sent by the communication peer device, the electronic device can The communication mode of the radio frequency link is switched from the MIMO communication mode to the main diversity communication mode, and then to the SISO communication mode.
  • the communication mode of the radio frequency link has been switched to the SISO communication mode, if the electronic device can still receive the communication
  • the electronic device can reduce the PA in the FEM of the radio frequency front-end circuit from high gain to medium gain, and then to low gain.
  • the electronic device can reduce the gain of the amplifier in the DAC in the radio frequency chip from high gain to medium gain, and then to low gain.
  • the electronic device can increase the gain of the amplifier in the DAC.
  • the electronic device can increase the gain of the amplifier in the DAC, increase the The power consumption adjustment operation is performed sequentially by increasing the gain of the PA and switching the communication mode of the radio frequency link to a communication mode with a higher communication rate.
  • embodiments of the present application also provide a power consumption adjustment device for implementing the above-mentioned power consumption adjustment method.
  • the solution to the problem provided by this device is similar to the solution recorded in the above method. Therefore, for the specific limitations in one or more embodiments of the power consumption adjustment device provided below, please refer to the above description of the power consumption adjustment method. Limitations will not be repeated here.
  • a power consumption adjustment device 1100 including: an acquisition module 1101 and an adjustment module 1102.
  • the acquisition module 1101 is used to acquire the transceiver environment information of the electronic device, and the transceiver environment information is used to characterize the data transceiver environment in which the electronic device is currently located.
  • the adjustment module 1102 is configured to perform a power consumption adjustment operation according to the transceiver environment information.
  • the power consumption adjustment operation includes at least one of adjusting the communication mode of the radio frequency link and adjusting the gain of the amplifier in the radio frequency link.
  • the adjustment module 1102 is specifically used to: adjust the communication mode of the radio frequency link from the first mode to the second mode, and the communication rates corresponding to the first mode and the second mode. different.
  • the first mode is one of MIMO communication mode, main diversity communication mode and SISO communication mode
  • the second mode is one of MIMO communication mode, main diversity communication mode and SISO communication mode. Modes other than the first mode.
  • the adjustment module 1102 is specifically used to: adjust the gain of the first amplifier in the radio frequency chip; and/or adjust the gain of the second amplifier included in the FEM in the radio frequency front-end circuit.
  • the transceiving environment information includes data throughput rate and bit error rate; the adjustment module 1102 is specifically used to: adjust the communication mode of the radio frequency link according to the data throughput rate; according to the bit error rate rate to adjust the gain of the amplifier in the RF link.
  • the adjustment module 1102 is specifically configured to: if the data throughput rate is within the first throughput rate interval, adjust the communication mode of the radio frequency link from a communication mode with a higher communication rate to A communication mode with a lower communication rate; if the data throughput rate is in the second throughput rate interval, the communication mode of the radio frequency link is adjusted from a communication mode with a lower communication rate to a communication mode with a higher communication rate, wherein, the The upper bound of the second throughput rate interval is less than or equal to the lower bound of the first throughput rate interval.
  • the adjustment module 1102 is specifically used to: if the bit error rate is within the first bit error rate interval, increase the gain of the amplifier in the radio frequency link; if the bit error rate is within In the second bit error rate interval, the gain of the amplifier in the radio frequency link is reduced, where the lower bound of the first bit error rate interval is greater than or equal to the upper bound of the second bit error rate interval.
  • the transceiving environment information includes response information sent by the communication counterpart device of the electronic device, and the response information is used to indicate that the communication counterpart device successfully received the data sent by the electronic device;
  • the adjustment module 1102 is specifically configured to: perform the power consumption adjustment operation according to whether the response information is successfully received.
  • the adjustment module 1102 is specifically configured to: if the response information is successfully received, perform at least one of the following first power consumption adjustment operations: change the communication mode of the radio frequency link Adjust from a communication mode with a higher communication rate to a communication mode with a lower communication rate; reduce the gain of the amplifier in the radio frequency link.
  • the adjustment module 1102 is specifically configured to: if the current communication mode of the radio frequency link is the communication mode with the lowest communication rate, perform an operation of reducing the gain of the amplifier in the radio frequency link. ; If the current communication mode of the radio frequency link is not the communication mode with the lowest communication rate, perform an operation of adjusting the communication mode of the radio frequency link from a communication mode with a higher communication rate to a communication mode with a lower communication rate.
  • the adjustment module 1102 is specifically used to: if the current gain of the second amplifier included in the FEM in the radio frequency front-end circuit is the minimum gain, reduce the gain of the first amplifier in the radio frequency chip. If the current gain of the second amplifier is not the minimum gain, then perform the operation of reducing the gain of the second amplifier.
  • the adjustment module 1102 is specifically configured to: if the response information is not successfully received, perform at least one of the following second power consumption adjustment operations: change the communication of the radio frequency link The mode is adjusted from a communication mode with a lower communication rate to a communication mode with a higher communication rate; the gain of the amplifier in the radio frequency link is increased.
  • the adjustment module 1102 is specifically used to: if the current gain of the amplifier is not the maximum gain, perform an operation of increasing the gain of the amplifier; if the current gain of the amplifier is the maximum gain , then the communication mode of the radio frequency link is adjusted from a communication mode with a lower communication rate to a communication mode with a higher communication rate.
  • the adjustment module 1102 is specifically used to: if the current gain of the first amplifier in the radio frequency chip is not the maximum gain, perform an operation of increasing the gain of the first amplifier; if the current gain of the first amplifier in the radio frequency chip is not the maximum gain; The current gain of the first amplifier is the maximum gain, and then the operation of increasing the gain of the second amplifier included in the FEM in the radio frequency front-end circuit is performed.
  • Each module in the above power consumption adjustment device can be implemented in whole or in part by software, hardware and combinations thereof.
  • Each of the above modules can be embedded in or independent of the processor in the electronic device in the form of hardware, or can be stored in the memory of the electronic device in the form of software, so that the processor can call and execute the operations corresponding to each of the above modules.
  • an electronic device is provided.
  • the electronic device may be XR glasses, and its internal structure diagram may be as shown in FIG. 12 .
  • the electronic device includes a processor, memory, radio frequency link, display screen, and input device connected by a system bus.
  • the processor of the electronic device is used to provide computing and control capabilities.
  • the memory of the electronic device includes non-volatile storage media and internal memory.
  • the non-volatile storage medium stores operating systems and computer programs.
  • This internal memory provides an environment for the execution of operating systems and computer programs in non-volatile storage media.
  • the radio frequency link of this electronic device is used to send and receive radio frequency signals.
  • the computer program implements a power consumption adjustment method when executed by a processor.
  • the display screen of the electronic device may be a liquid crystal display or an electronic ink display.
  • the input device of the electronic device may be a touch layer covered on the display screen, or may be a button, trackball or touch pad provided on the housing of the electronic device. , it can also be an external keyboard, trackpad or mouse, etc.
  • FIG. 12 is only a block diagram of a partial structure related to the solution of the present application, and does not constitute a limitation on the electronic equipment to which the solution of the present application is applied.
  • Specific electronic devices can May include more or fewer parts than shown, or combine certain parts, or have a different arrangement of parts.
  • Figure 13 shows a schematic diagram of components related to the radio frequency link inside the electronic device in the embodiment of the present application. As shown in Figure 13, it includes two combiners 101 and 102 and two antennas 103 and 104. , 2 FEM105 and 106, WLAN chip 107, logic switch 108, MCU 109 and CPU 110. Among them, FEM 105 and FEM 106 correspond to the WIFI2.4G frequency band and WIFI 5G frequency band respectively.
  • WLAN chip 107 is connected to FEM 105, FEM 106 and logic switch 108 respectively.
  • FEM 105 is connected to combiner 101 and combiner 102 respectively.
  • FEM 106 is connected to combiner 101 and combiner 102 respectively.
  • the combiner 101 is connected to the antenna 103, the combiner 102 is connected to the antenna 104, the logic switch 108 is also connected to the FEM 105, FEM 106 and MCU 109, and the MCU 109 is connected to the CPU 110.
  • Figure 13 shows different types of connection paths with different connection line types.
  • the different types of connection paths mainly include radio frequency paths, control paths and data paths.
  • the radio frequency path is used to transmit WIFI radio frequency signals and control
  • the channel is used to transmit To transmit control signals
  • the data path is used to transmit data.
  • both the MCU 109 and the WLAN chip 107 are connected to the logic switch 108 through the control path. That is, both the MCU 109 and the WLAN chip 107 can control the logic switch 108. However, in the optional embodiment of the present application , the control priority of the MCU 109 to the logic switch 108 is greater than the control priority of the WLAN chip 107 to the logic switch 108 .
  • the MCU 109 can obtain various communication data from the CPU 110 through the data path, such as throughput rate, bit error rate, etc. After the MCU 109 obtains the communication data from the CPU 110, it can control the logic switch 108 based on the communication data.
  • the FEM 105 and/or FEM 106 can be controlled by controlling the logic switch 108, thereby performing the operation described in the embodiment of this application.
  • the power consumption adjustment operation may include at least one of adjusting the communication mode of the radio frequency link and adjusting the gain of the amplifier in the radio frequency link.
  • the embodiment of this application achieves the purpose of flexibly adjusting the power consumption of the electronic device according to the current data sending and receiving environment of the electronic device by creatively adding two devices, the MCU 109 and the logic switch 108.
  • an electronic device including a memory and a processor.
  • a computer program is stored in the memory.
  • the processor executes the computer program, it implements the following steps:
  • the transceiver environment information of the electronic device which is used to characterize the data transceiver environment in which the electronic device is currently located; perform a power consumption adjustment operation according to the transceiver environment information; wherein the power consumption adjustment operation includes adjusting the radio frequency link At least one of a communication mode and adjusting the gain of an amplifier in the radio frequency link.
  • the processor when the processor executes the computer program, the processor further implements the following steps: adjusting the communication mode of the radio frequency link from a first mode to a second mode, where the first mode and the second mode correspond to different communication rates.
  • the first mode is one of MIMO communication mode, main diversity communication mode and SISO communication mode
  • the second mode is one of MIMO communication mode, main diversity communication mode and SISO communication mode except the first one. Patterns other than patterns.
  • the processor when the processor executes the computer program, the following steps are also implemented: adjusting the gain of the first amplifier in the radio frequency chip; and/or adjusting the gain of the second amplifier included in the FEM in the radio frequency front-end circuit.
  • the transceiving environment information includes data throughput rate and bit error rate.
  • the processor executes the computer program, the following steps are also implemented: adjusting the communication mode of the radio frequency link according to the data throughput rate; adjusting according to the bit error rate. The gain of the amplifiers in this RF chain.
  • the processor when the processor executes the computer program, the processor also implements the following steps: if the data throughput rate is within the first throughput rate interval, adjusting the communication mode of the radio frequency link from a communication mode with a higher communication rate to a communication rate. A lower communication mode; if the data throughput rate is in the second throughput rate interval, the communication mode of the radio frequency link is adjusted from a communication mode with a lower communication rate to a communication mode with a higher communication rate, wherein the second The upper bound of the throughput rate interval is less than or equal to the lower bound of the first throughput rate interval.
  • the processor when the processor executes the computer program, the processor also implements the following steps: if the bit error rate is in the first bit error rate interval, increasing the gain of the amplifier in the radio frequency link; if the bit error rate is in the second bit error rate interval The lower bound of the first bit error rate interval is greater than or equal to the upper bound of the second bit error rate interval, thereby reducing the gain of the amplifier in the radio frequency link.
  • the transceiving environment information includes response information sent by the communication counterpart device of the electronic device, the response information is used to indicate that the communication counterpart device successfully received the data sent by the electronic device, and the processor executes the computer program The following steps are also implemented: performing the power consumption adjustment operation according to whether the response information is successfully received.
  • the processor also implements the following steps when executing the computer program: if the response information is successfully received, performing at least one of the following first power consumption adjustment operations: changing the communication mode of the radio frequency link to communication The communication mode with a higher communication rate is adjusted to the communication mode with a lower communication rate; the gain of the amplifier in the radio frequency link is reduced.
  • the processor also implements the following steps when executing the computer program: if the current communication mode of the radio frequency link is the communication mode with the lowest communication rate, perform an operation of reducing the gain of the amplifier in the radio frequency link; if The current communication mode of this radio frequency link is not is the communication mode with the lowest communication rate, then an operation of adjusting the communication mode of the radio frequency link from a communication mode with a higher communication rate to a communication mode with a lower communication rate is performed.
  • the processor also implements the following steps when executing the computer program: if the current gain of the second amplifier included in the FEM in the radio frequency front-end circuit is the minimum gain, perform an operation of reducing the gain of the first amplifier in the radio frequency chip. ; If the current gain of the second amplifier is not the minimum gain, perform an operation of reducing the gain of the second amplifier.
  • the processor also implements the following steps when executing the computer program: if the response information is not successfully received, performing at least one of the following second power consumption adjustment operations: changing the communication mode of the radio frequency link to The communication mode with a lower communication rate is adjusted to a communication mode with a higher communication rate; the gain of the amplifier in the radio frequency link is increased.
  • the processor also implements the following steps when executing the computer program: if the current gain of the amplifier is not the maximum gain, then performing an operation of increasing the gain of the amplifier; if the current gain of the amplifier is the maximum gain, then Adjusting the communication mode of the radio frequency link from a communication mode with a lower communication rate to a communication mode with a higher communication rate is performed.
  • the processor also implements the following steps when executing the computer program: if the current gain of the first amplifier in the radio frequency chip is not the maximum gain, perform an operation of increasing the gain of the first amplifier; if the first amplifier If the current gain of the amplifier is the maximum gain, the operation of increasing the gain of the second amplifier included in the FEM in the radio frequency front-end circuit is performed.
  • a computer-readable storage medium is provided with a computer program stored thereon.
  • the computer program is executed by a processor, the following steps are implemented:
  • the transceiver environment information of the electronic device which is used to characterize the data transceiver environment in which the electronic device is currently located; perform a power consumption adjustment operation according to the transceiver environment information; wherein the power consumption adjustment operation includes adjusting the radio frequency link At least one of a communication mode and adjusting the gain of an amplifier in the radio frequency link.
  • the following steps are also implemented: adjusting the communication mode of the radio frequency link from a first mode to a second mode, the first mode and the second mode corresponding to different communication rates. .
  • the first mode is one of MIMO communication mode, main diversity communication mode and SISO communication mode
  • the second mode is one of MIMO communication mode, main diversity communication mode and SISO communication mode except the first one. Patterns other than patterns.
  • the computer program when executed by the processor, the computer program also implements the following steps: adjusting the gain of the first amplifier in the radio frequency chip; and/or adjusting the gain of the second amplifier included in the FEM in the radio frequency front-end circuit.
  • the transceiving environment information includes data throughput rate and bit error rate.
  • the following steps are also implemented: adjusting the communication mode of the radio frequency link according to the data throughput rate; according to the bit error rate Adjust the gain of the amplifiers in this RF link.
  • the following steps are also implemented: if the data throughput rate is within the first throughput rate interval, adjusting the communication mode of the radio frequency link from a communication mode with a higher communication rate to a communication mode. A communication mode with a lower communication rate; if the data throughput rate is in the second throughput rate interval, the communication mode of the radio frequency link is adjusted from a communication mode with a lower communication speed to a communication mode with a higher communication speed, wherein the third communication mode
  • the upper bound of the second throughput rate interval is less than or equal to the lower bound of the first throughput rate interval.
  • the following steps are also implemented: if the bit error rate is within the first bit error rate interval, increasing the gain of the amplifier in the radio frequency link; if the bit error rate is within the first bit error rate interval, If there are two bit error rate intervals, the gain of the amplifier in the radio frequency link is reduced, where the lower bound of the first bit error rate interval is greater than or equal to the upper bound of the second bit error rate interval.
  • the transceiving environment information includes response information sent by the communication counterpart device of the electronic device.
  • the response information is used to indicate that the communication counterpart device successfully received the data sent by the electronic device.
  • the computer program is processed by the processor. During execution, the following steps are also implemented: performing the power consumption adjustment operation according to whether the response information is successfully received.
  • the following steps are also implemented: if the response information is successfully received, performing at least one of the following first power consumption adjustment operations: changing the communication mode of the radio frequency link to The communication mode with a higher communication rate is adjusted to a communication mode with a lower communication rate; the gain of the amplifier in the radio frequency link is reduced.
  • the following steps are also implemented: if the current communication mode of the radio frequency link is the communication mode with the lowest communication rate, then performing an operation of reducing the gain of the amplifier in the radio frequency link; If the current communication mode of the radio frequency link is not the communication mode with the lowest communication rate, the communication mode of the radio frequency link is adjusted from the communication mode with the higher communication rate to the communication mode. Operation in lower rate communication mode.
  • the following steps are also implemented: if the current gain of the second amplifier included in the FEM in the radio frequency front-end circuit is the minimum gain, then performing a process of reducing the gain of the first amplifier in the radio frequency chip. Operation; if the current gain of the second amplifier is not the minimum gain, perform the operation of reducing the gain of the second amplifier.
  • the following steps are also implemented: if the response information is not successfully received, performing at least one of the following second power consumption adjustment operations: changing the communication mode of the radio frequency link Adjust from a communication mode with a lower communication rate to a communication mode with a higher communication rate; increase the gain of the amplifier in the radio frequency link.
  • the following steps are also implemented: if the current gain of the amplifier is not the maximum gain, perform an operation of increasing the gain of the amplifier; if the current gain of the amplifier is the maximum gain, Then the communication mode of the radio frequency link is adjusted from a communication mode with a lower communication rate to a communication mode with a higher communication rate.
  • the following steps are also implemented: if the current gain of the first amplifier in the radio frequency chip is not the maximum gain, then performing an operation of increasing the gain of the first amplifier; if the current gain of the first amplifier in the radio frequency chip is not the maximum gain; If the current gain of one amplifier is the maximum gain, the operation of increasing the gain of the second amplifier included in the FEM in the radio frequency front-end circuit is performed.
  • a computer program product comprising a computer program that when executed by a processor implements the following steps:
  • the transceiver environment information of the electronic device which is used to characterize the data transceiver environment in which the electronic device is currently located; perform a power consumption adjustment operation according to the transceiver environment information; wherein the power consumption adjustment operation includes adjusting the radio frequency link At least one of a communication mode and adjusting the gain of an amplifier in the radio frequency link.
  • the following steps are also implemented: adjusting the communication mode of the radio frequency link from a first mode to a second mode, the first mode and the second mode corresponding to different communication rates. .
  • the first mode is one of MIMO communication mode, main diversity communication mode and SISO communication mode
  • the second mode is one of MIMO communication mode, main diversity communication mode and SISO communication mode except the first one. Patterns other than patterns.
  • the computer program when executed by the processor, the computer program also implements the following steps: adjusting the gain of the first amplifier in the radio frequency chip; and/or adjusting the gain of the second amplifier included in the FEM in the radio frequency front-end circuit.
  • the transceiving environment information includes data throughput rate and bit error rate.
  • the following steps are also implemented: adjusting the communication mode of the radio frequency link according to the data throughput rate; according to the bit error rate Adjust the gain of the amplifiers in this RF link.
  • the following steps are also implemented: if the data throughput rate is within the first throughput rate interval, adjusting the communication mode of the radio frequency link from a communication mode with a higher communication rate to a communication mode. A communication mode with a lower communication rate; if the data throughput rate is in the second throughput rate interval, the communication mode of the radio frequency link is adjusted from a communication mode with a lower communication speed to a communication mode with a higher communication speed, wherein the third communication mode
  • the upper bound of the second throughput rate interval is less than or equal to the lower bound of the first throughput rate interval.
  • the following steps are also implemented: if the bit error rate is within the first bit error rate interval, increasing the gain of the amplifier in the radio frequency link; if the bit error rate is within the first bit error rate interval, If there are two bit error rate intervals, the gain of the amplifier in the radio frequency link is reduced, where the lower bound of the first bit error rate interval is greater than or equal to the upper bound of the second bit error rate interval.
  • the transceiving environment information includes response information sent by the communication counterpart device of the electronic device.
  • the response information is used to indicate that the communication counterpart device successfully received the data sent by the electronic device.
  • the computer program is processed by the processor. During execution, the following steps are also implemented: performing the power consumption adjustment operation according to whether the response information is successfully received.
  • the following steps are also implemented: if the response information is successfully received, performing at least one of the following first power consumption adjustment operations: changing the communication mode of the radio frequency link to The communication mode with a higher communication rate is adjusted to a communication mode with a lower communication rate; the gain of the amplifier in the radio frequency link is reduced.
  • the following steps are also implemented: if the current communication mode of the radio frequency link is the communication mode with the lowest communication rate, then performing an operation of reducing the gain of the amplifier in the radio frequency link; If the current communication mode of the radio frequency link is not the communication mode with the lowest communication rate, an operation of adjusting the communication mode of the radio frequency link from a communication mode with a higher communication rate to a communication mode with a lower communication rate is performed.
  • the following steps are also implemented: if the current gain of the second amplifier included in the FEM in the radio frequency front-end circuit is the minimum gain, then performing a process of reducing the gain of the first amplifier in the radio frequency chip. Operation; if the current gain of the second amplifier is not the minimum gain, perform the operation of reducing the gain of the second amplifier.
  • the following steps are also implemented: if the response information is not successfully received, performing at least one of the following second power consumption adjustment operations: changing the communication mode of the radio frequency link Adjust from a communication mode with a lower communication rate to a communication mode with a higher communication rate; increase the gain of the amplifier in the radio frequency link.
  • the following steps are also implemented: if the current gain of the amplifier is not the maximum gain, perform an operation of increasing the gain of the amplifier; if the current gain of the amplifier is the maximum gain, Then the communication mode of the radio frequency link is adjusted from a communication mode with a lower communication rate to a communication mode with a higher communication rate.
  • the following steps are also implemented: if the current gain of the first amplifier in the radio frequency chip is not the maximum gain, then performing an operation of increasing the gain of the first amplifier; if the current gain of the first amplifier in the radio frequency chip is not the maximum gain; If the current gain of one amplifier is the maximum gain, the operation of increasing the gain of the second amplifier included in the FEM in the radio frequency front-end circuit is performed.
  • the user information including but not limited to user equipment information, user personal information, etc.
  • data including but not limited to data used for analysis, stored data, displayed data, etc.
  • the computer program can be stored in a non-volatile computer-readable storage.
  • the computer program when executed, may include the processes of the above method embodiments.
  • Any reference to memory, database or other media used in the embodiments provided in this application may include at least one of non-volatile and volatile memory.
  • Non-volatile memory can include read-only memory (ROM), magnetic tape, floppy disk, flash memory, optical memory, high-density embedded non-volatile memory, resistive memory (ReRAM), magnetic variable memory (Magnetoresistive Random Access Memory (MRAM), ferroelectric memory (Ferroelectric Random Access Memory, FRAM), phase change memory (Phase Change Memory, PCM), graphene memory, etc.
  • Volatile memory may include random access memory (Random Access Memory, RAM) or external cache memory, etc.
  • RAM Random Access Memory
  • RAM random access memory
  • RAM Random Access Memory
  • the databases involved in the various embodiments provided in this application may include at least one of a relational database and a non-relational database.
  • Non-relational databases may include blockchain-based distributed databases, etc., but are not limited thereto.
  • the processors involved in the various embodiments provided in this application may be general-purpose processors, central processing units, graphics processors, digital signal processors, programmable logic devices, quantum computing-based data processing logic devices, etc., and are not limited to this.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transceivers (AREA)

Abstract

本申请涉及一种功耗调整方法、装置、设备、存储介质和程序产品。所述方法包括:获取电子设备的收发环境信息,所述收发环境信息用于表征所述电子设备当前所处的数据收发环境;根据所述收发环境信息执行功耗调整操作;其中,所述功耗调整操作包括调整射频链路的通信模式和调整所述射频链路中放大器的增益中的至少一种。采用本方法能够实现通信质量与功耗之间的平衡。

Description

功耗调整方法、装置、设备、存储介质和程序产品
本申请引用于2022年8月24日递交的名称为“功耗调整方法、装置、设备、存储介质和程序产品”,申请号为2022110201872的中国专利申请,其通过引用被全部并入本申请。
技术领域
本申请涉及计算机设备技术领域,特别是涉及一种功耗调整方法、装置、设备、存储介质和程序产品。
背景技术
当前,诸如可穿戴设备等的电子设备在人们的日常生活中已经越来越常见了,其中,AR眼镜和VR眼镜就是两种典型的可穿戴设备。一般来说,电子设备需要通过无线通信的方式与其他的电子设备进行通信,然而,无线通信往往需要一定的功耗,而对于部分电子设备而言,由于其对重量、体积以及成本等都有严格的要求,因此,其对功耗的承受能力有限。
现有技术中,电子设备要么牺牲无线通信的质量以降低功耗,要么就需要增加电池容量以及散热设备以支持电子设备的高功耗,然而,这无疑会影响电子设备的重量、体积以及成本等。
当前,如何提供一种方法以平衡电子设备无线通信的质量以及电子设备对重量、体积以及成本等的要求已经成为了一个亟待解决的问题。
发明内容
基于此,有必要针对上述技术问题,提供一种功耗调整方法、装置、设备、存储介质和程序产品。
第一方面,本申请提供了一种功耗调整方法。所述方法包括:
获取电子设备的收发环境信息,所述收发环境信息用于表征所述电子设备当前所处的数据收发环境;根据所述收发环境信息执行功耗调整操作;其中,所述功耗调整操作包括调整射频链路的通信模式和调整所述射频链路中放大器的增益中的至少一种。
第二方面,本申请还提供了一种功耗调整装置。所述装置包括:
获取模块,用于获取电子设备的收发环境信息,所述收发环境信息用于表征所述电子设备当前所处的数据收发环境;
调整模块,用于根据所述收发环境信息执行功耗调整操作;
其中,所述功耗调整操作包括调整射频链路的通信模式和调整所述射频链路中放大器的增益中的至少一种。
第三方面,本申请还提供了一种电子设备。所述电子设备包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现上述第一方面所述的步骤。
第四方面,本申请还提供了一种计算机可读存储介质。所述计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述第一方面所述的步骤。
第五方面,本申请还提供了一种计算机程序产品。所述计算机程序产品,包括计算机程序,该计算机程序被处理器执行时实现上述第一方面所述的步骤。
上述功耗调整方法、装置、设备、存储介质和程序产品,通过获取电子设备的收发环境信息,并根据该收发环境信息执行功耗调整操作,其中,该收发环境信息用于表征电子设备当前所处的数据收发环境,功耗调整操作包括调整射频链路的通信模式的操作以及调整射频链路中放大器的增益的操作中的至少一种,这样,就可以使电子设备根据自身当前的数据收发环境来动态地调整射频链路的通信模式和放大器的增益中的至少一项,从而实现对功耗的调整,通过这样的方式,可以实现在保证电子设备的无线通信的质量能够满足当前的数据收发环境的情况下,降低因为无线通信而带来的功耗,因此,可以达到通信质量与功耗之间的平衡。
附图说明
图1为一个实施例中功耗调整方法的流程图;
图2为一个实施例中射频链路在MIMO通信模式下所包含的信号通路的示意图;
图3为一个实施例中射频链路在主分集通信模式下所包含的信号通路的示意图;
图4为另一个实施例中射频链路在SISO通信模式下所包含的信号通路的示意图;
图5为一个实施例中放大器的组成框图;
图6为一个实施例中FEM的电路示意图;
图7为一个实施例中根据收发环境信息执行功耗调整操作的流程图;
图8为一个实施例中发射功率与误码率之间的关系曲线图;
图9为一个实施例中根据通信对端设备发送的响应信息执行功耗调整操作的示意图;
图10为一个实施例中另一根据通信对端设备发送的响应信息执行功耗调整操作的示意图;
图11为一个实施例中功耗调整装置的框图;
图12为一个实施例中电子设备的内部结构图;
图13为另一个实施例中电子设备的内部结构图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
当前,诸如可穿戴设备等的电子设备在人们的日常生活中已经越来越常见了,其中,AR眼镜和VR眼镜就是两种典型的可穿戴设备。
AR是Augmented Reality的缩写,意为增强现实,是一种将虚拟信息与真实世界巧妙融合的技术,广泛运用了多媒体、三维建模、实时跟踪及注册、智能交互、传感等多种技术手段,将计算机生成的文字、图像、三维模型、音乐、视频等虚拟信息模拟仿真后,应用到真实世界中,两种信息互为补充,从而实现对真实世界的“增强”。AR眼镜是一种把AR技术利用在电子眼镜上的产品,可以实现诸多功能,可看作是一台微型的手机,通过跟踪眼球视线轨迹判断用户所处的状态,并且可以开启相应功能。
VR是Virtual Reality的缩写,意为虚拟现实,VR眼镜也可以称为虚拟现实头戴显示器设备,简称VR头显,VR眼镜是一种利用仿真技术与计算机图形学、人机接口技术、多媒体技术、传感技术、网络技术等多种技术集合的产品,是借助计算机及最新传感器技术创造的一种崭新的人机交互手段。一般来讲,可以将AR和VR统称为XR。
通常情况下,XR眼镜需要与手机或者路由器等外部设备进行无线数据传输,以AR眼镜为例,为了降低重量、体积和发热,AR眼镜一般仅包含显示和音频部分的电路,而数据处理功能则需要由手机来实现,这就要求AR眼镜与手机进行无线数据传输,而对于VR眼镜,高清沉浸式游戏运行时需要将大量的数据从路由端(通常为路由器或者手机)传递到眼镜端,这无疑也要求VR眼镜与手机或者路由器进行无线数据传输。
当前,WIFI技术以其稳定、低延时和较高的传输速率等优势,成为XR眼镜与手机/路由器之间进行无线数据传输的首选方案。但WIFI技术也有其自身的缺点,为了保证足够的覆盖范围(通常数十米范围),其外围电路需要搭配FEM(英文:Front-end Modules;中文:前端模块),FEM可以实现射频信号的发送放大以及接收放大,还可以实现诸如功率检测、控制和开关的功能。然而,FEM的加入会导致功耗的增加。
这使得XR眼镜开发人员处于两难的境地,要么去掉XR眼镜的射频链路中的一部分电路,以牺牲无线通信的质量为代价来实现功耗的降低,要么增加电池容量和散热设备以支持高功耗,然而,增加电池容量和散热设备无疑会影响XR眼镜的重量、体积以及成本等。针对这一问题,当前亟需一种方法来平衡无线通信的质量以及XR眼镜对重量、体积以及成本等的要求。有鉴于此,本申请提供了一种功耗调整方法、装置、设备、存储介质和程序产品,能够达到无线通信质量与功耗之间的平衡。
需要说明的是,本申请实施例提供的功耗调整方法,其执行主体可以是功耗调整装置,该功耗调整装置可以通过软件、硬件或者软硬件结合的方式实现成为电子设备的部分或者全部。其中,电子设备可 以为可穿戴设备,例如,AR眼镜或者VR眼镜等,当然,该电子设备还可以为除可穿戴设备以外的其他类型的设备,例如,智能音箱、智能电视机、智能手机等等,本申请实施例不对该电子设备的类型进行限定。下述方法实施例中,均以执行主体是电子设备来进行说明。
请参考图1,其示出了本申请实施例提供的一种功耗调整方法的流程图,该功耗调整方法的执行主体可以为电子设备,如图1所示,该功耗调整方法可以包括以下步骤:
步骤101、电子设备获取收发环境信息。
其中,该收发环境信息用于表征电子设备当前所处的数据收发环境,可选的,该数据收发环境可以特指WIFI数据收发环境,该数据收发环境可以包括数据吞吐情况以及数据是否能够被正确接收的情况等。对应地,该收发环境信息可以包括数据吞吐率、误码率(英文:Packet symbol errorrate;简称:PER)或者通信对端设备发送的响应信息(ACK)等,其中,该响应信息用于指示通信对端设备成功接收到电子设备发送的数据。
需要说明的是,本申请实施例中的收发环境信息并不局限于上文所述的三种信息类型,只要是能够表征数据收发环境的信息都应包含在本申请实施例的收发环境信息的范围内。
步骤102、电子设备根据该收发环境信息执行功耗调整操作。
功耗调整操作可以包括减小功耗的操作,若电子设备根据收发环境信息确定自身当前所处的数据收发环境较好,则说明电子设备当前尚有降低无线通信质量的空间,在这种情况下,电子设备可以牺牲自身的无线通信质量来换取功耗的降低。
当然,在一些情况下,功耗调整操作还可以包括增大功耗的操作,若电子设备根据收发环境信息确定自身当前所处的数据收发环境较差,则说明此时的数据收发环境难以满足电子设备正常的工作,在这种情况下,电子设备就需要牺牲功耗来优先满足正常工作所需的无线通信质量。
实际应用中,还有一种情况是电子设备根据收发环境信息确定自身当前所处的数据收发环境恰好为临界的数据收发环境,在这种情况下,电子设备既没有降低无线通信质量的空间,也没有提升无线通信质量的必要,此时,电子设备可以不执行功耗调整操作,而是维持当前的功耗状态不变。
需要说明的是,在本申请实施例中,电子设备可以周期性地获取收发环境信息,并周期性地根据收发环境信息执行功耗调整操作,这样,就可以实现电子设备功耗的及时调整。
可选的,步骤102中的功耗调整操作可以为以下操作中的至少一种,关于以下操作的具体说明详见之后的实施例:
1、调整射频链路的通信模式的操作。
2、调整射频链路中放大器的增益的操作。
本实施例提供的功耗调整方法,通过获取电子设备的收发环境信息,并根据该收发环境信息执行功耗调整操作,其中,该收发环境信息用于表征电子设备当前所处的数据收发环境,功耗调整操作包括调整射频链路的通信模式的操作以及调整射频链路中放大器的增益的操作中的至少一种,这样,就可以使电子设备根据自身当前的数据收发环境来动态地调整射频链路的通信模式和放大器的增益中的至少一项,从而实现对功耗的调整,通过这样的方式,可以实现在保证电子设备的无线通信的质量能够满足当前的数据收发环境的情况下,降低因为无线通信而带来的功耗,因此,可以达到通信质量与功耗之间的平衡。
对于无线通信而言,通信速率与功耗息息相关,一般来说,通信速率越高,功耗也就越高,通信速率越低,功耗也就越低。基于这一因素,在本申请的可选实施例中,调整射频链路的通信模式可以包括:将射频链路的通信模式由第一模式调整为第二模式,其中,第一模式和第二模式对应的通信速率不同,换言之,本申请实施例中调整射频链路的通信模式指的是将射频链路在不同通信速率的通信模式中切换。
在本申请的可选实施例中,该第一模式可以为MIMO(英文:multiple-in multipleout;中文:多输入多输出)通信模式、主分集通信模式和SISO(英文:single input single output;中文:单输入单输出) 通信模式中的一种,该第二模式为MIMO通信模式、主分集通信模式和SISO通信模式中除第一模式以外的模式。例如,在第一模式为MIMO通信模式的情况下,第二模式可以为主分集通信模式或者SISO通信模式,在第一模式为主分集通信模式的情况下,第二模式可以为MIMO通信模式或者SISO通信模式,在第一模式为SISO通信模式的情况下,第二模式可以为MIMO通信模式或者主分集通信模式。
为了使读者易于理解本申请实施例提供的技术方案,下面,将对MIMO、主分集和SISO分别进行简要说明。
1、MIMO。
一般来讲,多径效应会影响信号质量,因此传统的天线系统都在如何消除多径效应上进行研究改进,而MIMO正好相反,它利用多径效应来改善无线通信质量。在MIMO系统中,收发双方使用多副可以同时工作的天线进行通信,其中,发射机采用多副天线同时发送多路射频信号,接收机再利用多副天线接收多路射频信号,并从这些射频信号中将数据恢复出来。
请参考图2,其示例性地示出了电子设备中的射频链路在MIMO通信模式下所包含的信号通路,需要指出的是,图2中的射频链路为WIFI射频链路。
如图2所示,电子设备中的射频链路可以包括射频芯片(简称:RF IC)21内的第一射频链路以及射频前端电路(英文:RF Front-end)22内的第二射频链路,其中,第一射频链路包括信号发生器(英文:WLAN Processor)、两个MAC层处理电路(分别为MAC-A和MAC-B)、两个物理层处理电路(分别为PHY-A和PHY-B)、开关(英文:switch),2G射频信号转换电路(英文:WLAN 2G Radio)以及5G/6G射频信号转换电路(英文:WLAN 5G/6G Radio),第二射频链路包括2颗FEM,其中一颗FEM与2G射频信号转换电路连接,另外一颗FEM与5G/6G射频信号转换电路连接,该第二射频链路还包括4个滤波器(英文:Saw)、2个合路器(英文:Diplexer)以及两个天线(英文:Antenna)。
请参考图2,电子设备中的射频链路在MIMO通信模式下包含两个信号通路(chain0和chain1),其中,chain0和chain1互相对等,在chain0和chain1内部,又分为接收(RX)通路和发射(TX)通路。换言之,在射频链路处于MIMO通信模式时,会使用到chain0和chain1两条信号通路,且,在chain0和chain1内部,又会分别使用到1条RX通路和1条TX通路,则在射频链路处于MIMO通信模式时,共使用到2条RX通路和2条TX通路。
2、主分集。
英文为Main andDiversity,主分集天线可以包括主集天线和分集天线。主集天线,负责射频信号的发送和接收,分集天线,只负责接收射频信号而不发送射频信号,接收端可以把主集天线和分集天线收到的射频信号进行合并处理,从而获得分集增益。
请参考图3,其示例性地示出了电子设备中的射频链路在主分集通信模式下包含的信号通路,需要指出的是,图3中的射频链路为WIFI射频链路。
图3所示的射频链路包含的电路与图2一致,本申请实施例在此不再赘述,与MIMO通信模式类似地,电子设备中的射频链路在主分集通信模式下也包含两个信号通路(chain0和chain1),但是,在主分集通信模式下,chain0和chain1互相不对等,其中,在主分集通信模式下,chain0和chain1被划分为主集通路和分集通路(图中chain0为主集通路,以实线段标记,chain1为分集通路,以虚线段标记),主集通路包含TX通路和RX通路,而分集通路仅包含RX通路,而不包含TX通路,则在射频链路处于主分集通信模式时,共使用到2条RX通路和1条TX通路。
相比较于MIMO通信模式而言,主分集通信模式的通信速率更低,覆盖更弱,但相应的功耗也更低。这里需要指出的是,WIFI的主要功耗是TX通信带来的,RX通信的功耗相对很少。
3、SISO。
SISO指的是采用单根天线进行射频信号的发射和接收的通信模式。
请参考图4,其示例性地示出了电子设备中的射频链路在SISO通信模式下包含的信号通路,需要指出的是,图4中的射频链路为WIFI射频链路。
图4所示的射频链路包含的电路与图2一致,本申请实施例在此不再赘述,与MIMO通信模式和主分集通信模式不同的是,SISO通信模式仅包含一条信号通路(chain0或者chain1),在该信号通路内部包含TX通路和RX通路,换言之,在射频链路处于SISO通信模式时,共使用到1条RX通路和1条TX通路。
相比较于MIMO通信模式和主分集通信模式,SISO通信模式的通信速率更低,覆盖更弱,但相应的功耗也更低。
在实际应用中,通过修改射频芯片内部寄存器中的值,可以控制电子设备在MIMO通信模式、主分集通信模式以及SISO通信模式之间进行切换。
除此以外,在无线通信中,放大器的增益与功耗也是息息相关的,一般来说,放大器的增益越大,功耗也就越大,放大器的增益越小,功耗也就越小。
在实际应用中,为了得到足够大的放大倍数或者考虑到输入电阻、输出电阻等特殊要求,放大器往往由多级电路组成,请参考图5,其示出了一种示例性的放大器的组成框图,其中的输入级主要实现与信号源的衔接并对信号进行放大,中间级主要实现电压放大,将微弱的输入电压放大到足够的幅度,输出级主要实现信号的功率放大,以达到满足输出负载需要的功率,通常情况下,放大器内部每降低一级,放大器的增益也会相应降低,功率也会相应降低,同时,功耗也会降低,对应地,放大器内部每增加一级,放大器的增益也会相应增加,功率也会相应增加,同时,功耗也会增加。
基于以上说明可知,放大器的增益可以进行调节,且,通过调整放大器的增益可以实现对功耗的调整,基于此,本申请实施例的功耗调整操作可以包括对射频链路中放大器的增益进行调整。
以图2至图4所示的射频链路为例,电子设备的射频链路包括射频芯片内部的第一射频链路和射频前端电路内部的第二射频链路,则可选的,调整射频链路中放大器的增益可以包括:调整射频芯片内的第一放大器的增益;和/或,调整射频前端电路中FEM包括的第二放大器的增益。
请参考图6,其示出了FEM的电路示意图,如图6所示,一颗FEM中可以包括两个用于功率放大的功率放大器(英文:PowerAmplifier;简称:PA)、两个用于接收信号放大的低噪声放大器(英文:low noise amplifier;简称:LNA)、两个耦合器、两个开关(用于控制直通状态)、多个电容以及两个接地电阻,除此以外,FEM还包括两个TX接口、两个RX接口、两个CPLR接口、两个ANT接口以及SEL/LNAEN/PAEN控制线,其中,CPLR接口与功率耦合电路连接(用于耦合功率检测),ANT接口与天线公共端连接,SEL/LNAEN/PAEN控制线用于FEM的逻辑状态控制。
本申请实施例上文中所述的FEM包括的第二放大器指的可以是图6所示的PA,这是考虑到在射频前端电路中,功耗最大的部分为FEM,而在FEM内部,功耗最大的部分为PA。
在实际应用中,可以通过FEM外围的GPIO逻辑控制电平来实现PA各增益档位之间的切换。
请参考表1,其示出了SEL/LNAEN/PAEN控制线不同的逻辑电平所对应的不同增益档位。
表1

如表1所示,在PAEN_x、LNAEN_x、SEL3_x、SEL4_x的逻辑电平分别为1、0、0、0的情况下,PA的增益档位为5GTx_gain1a。此外,如表1所示,可以通过调整PAEN_x、LNAEN_x、SEL3_x、SEL4_x四条控制线的逻辑电平来实现PA增益档位的切换,因此,最多可以实现24=16个增益档位间的切换。
请参考表2,其示出了不同的增益档位下PA本身消耗的电流值,容易理解地,PA本身消耗的电流值可以反映功耗的大小,一般来说,PA本身消耗的电流值越大,功耗也就越大,PA本身消耗的电流值越小,功耗就越小。
表2

电子设备的射频链路中,除了FEM中包含放大器以外,在射频芯片中同样包含放大器(第一放大器),且在射频芯片中功耗最大的也是放大器,因此,在进行功耗调整操作时,也可以对射频芯片中的第一放大器的增益进行调整。
在本申请的可选实施例中,该第一放大器可以为射频芯片中DAC(中文:数模转换器)中的运算放大器,其中,DAC一般包括4个部分,分别为权电阻网络、运算放大器、基准电源以及模拟开关。与调整PA增益的方式类似地,在本申请实施例中,可以通过修改射频芯片内部寄存器中的值,从而控制射频芯片内部的第一放大器的逻辑控制电平,进而实现第一放大器的各增益档位之间的切换。
请参考图7,基于以上对功耗调整操作的说明,在收发环境信息包括数据吞吐率和误码率的情况下,可选的,本申请实施例中根据收发环境信息执行功耗调整操作可以包括以下步骤:
步骤701、电子设备根据数据吞吐率调整射频链路的通信模式。
如上文所述,不同的通信模式对应的通信速率不同,且,不同的通信速率所需的功耗不同。因此,在本申请实施例中,电子设备可以根据当前自身的数据吞吐率调整射频链路的通信模式,这样,就可以使电子设备能够根据当前自身的数据吞吐率来调整自身的通信速率,基于这样的方式,最终实现电子设备的通信速率与功耗之间的平衡。
具体来说,若数据吞吐率位于第一吞吐率区间,则说明当前电子设备的数据吞吐率能够支持电子设备的正常通信,电子设备的数据吞吐率尚有一定的下调空间,其中,该第一吞吐率区间是根据电子设备正常通信时所需的数据吞吐率设定的,此时,电子设备可以将射频链路的通信模式由通信速率较高的通信模式调整为通信速率较低的通信模式,换言之,电子设备可以降低射频链路的通信速率,通过牺牲通信速率的方式来换取功耗的降低。
可选的,电子设备将射频链路的通信模式由通信速率较高的通信模式调整为通信速率较低的通信模式可以包括以下几种情况:1、电子设备将射频链路的通信模式由MIMO通信模式切换为主分集通信模式;2、电子设备将射频链路的通信模式由主分集通信模式切换为SISO通信模式;3、电子设备将射频链路的通信模式由MIMO通信模式切换为SISO通信模式。
而若数据吞吐率位于第二吞吐率区间,则说明当前的数据吞吐率已经难以支持电子设备的正常通信,电子设备的数据吞吐率需要进行上调才能保证电子设备的正常通信,其中,该第二吞吐率区间的上界小于等于第一吞吐率区间的下界,此时,电子设备可以将射频链路的通信模式由通信速率较低的通信模式调整为通信速率较高的通信模式,换言之,电子设备可以增加射频链路的通信速率,以牺牲功耗的代价来优先满足电子设备正常工作所需的通信速率。
可选的,电子设备将射频链路的通信模式由通信速率较低的通信模式调整为通信速率较高的通信模式可以包括以下几种情况:1、电子设备将射频链路的通信模式由主分集通信模式切换为MIMO通信模式;2、电子设备将射频链路的通信模式由SISO通信模式切换为主分集通信模式;3、电子设备将射频链路的通信模式由SISO通信模式切换为MIMO通信模式。
当然,实际应用中,还有一种情况是数据吞吐率位于第三吞吐率区间,其中,该第三吞吐率区间位于第一吞吐率区间和第二吞吐率区间之间(第三吞吐率区间仅在第二吞吐率区间的上界小于第一吞吐率区间的下界的情况下存在),在这种情况下,电子设备既没有下调数据吞吐率的空间,也没有增加数据 吞吐率的必要,此时,电子设备可以不对射频链路的通信模式进行调整,而是维持当前的射频链路的通信模式不变。
需要指出的是,在本申请的可选实施例中,电子设备可以在每次调整射频链路的通信模式之后,继续根据数据吞吐率来确定是否需要调整射频链路的通信模式,换言之,本申请实施例中对射频链路的通信模式的调整并不是一次性的,而是实时的。
步骤702、电子设备根据误码率调整射频链路中放大器的增益。
实际应用中,放大器承担了发射信号放大的功能,因此,放大器的增益与信号发射功率相关,一般来讲,放大器的增益越小,信号发射功率也就相应越小,放大器的增益越大,信号发射功率也就相应越大。而较低的发射功率会导致误码率的增加,请参考图8,其示出了发射功率与误码率之间的关系曲线,其中,图8中的横坐标为发射功率,单位为dbm,纵坐标为误码率。因此,在本申请实施例中,电子设备可以根据当前自身的误码率调整射频链路中放大器的增益,这样,就可以使电子设备能够根据当前自身的误码率来调整自身的发射功率,基于这样的方式,最终实现电子设备的发射功率与功耗之间的平衡。
具体来说,若误码率位于第二误码率区间,则说明当前电子设备的误码率能够支持电子设备的正常通信,电子设备的误码率尚有一定的上调空间,其中,该第二误码率区间是根据电子设备正常通信时要求的误码率设定的,此时,电子设备可以减小射频链路中放大器的增益,从而减小电子设备的发射功率,通过牺牲发射功率的方式来换取功耗的降低。
而若误码率位于第一误码率区间,则说明当前电子设备的误码率已经导致电子设备的正常通信受到影响,电子设备的误码率需要进一步降低才能保证电子设备的正常通信,其中,第一误码率区间的下界大于等于第二误码率区间的上界,此时,电子设备可以增大射频链路中放大器的增益,从而增大电子设备的发射功率,以牺牲功耗的代价来优先满足电子设备正常工作所要求的误码率。
当然,实际应用中,还有一种情况是误码率位于第三误码率区间,其中,该第三误码率区间位于第一误码率区间和第二误码率区间之间(第三误码率区间仅在第一误码率区间的下界大于第二误码率区间的上界的情况下存在),在这种情况下,电子设备既没有上调误码率的空间,也没有进一步减小误码率的必要,此时,电子设备可以不对射频链路中放大器的增益进行调整,而是维持当前的射频链路中放大器的增益不变。
需要指出的是,在步骤702中,减小射频链路中放大器的增益可以包括:优先减小射频前端电路中FEM包括的第二放大器的增益,在第二放大器的增益减小至最小的情况下,再减小射频芯片中第一放大器的增益。
增大射频链路中放大器的增益可以包括:优先增大射频芯片中第一放大器的增益,在射频芯片中第一放大器的增益增大至最大的情况下,再增大射频前端电路中FEM包括的第二放大器的增益。
这是考虑到射频链路中FEM是功耗的主要消耗部件,优先减小射频前端电路中FEM包括的第二放大器的增益,可以保证在执行减小射频链路中放大器的增益这一操作的前期,电子设备的功耗就可以出现显著地下降,而优先增大射频芯片中第一放大器的增益,可以保证在执行增大射频链路中放大器的增益这一操作的前期,电子设备的功耗不至于出现骤增。
需要指出的是,在本申请的可选实施例中,电子设备可以在每次调整射频链路中放大器的增益之后,继续根据误码率来确定是否需要调整射频链路中放大器的增益,换言之,本申请实施例中对射频链路中放大器的增益的调整并不是一次性的,而是实时的。
还需要指出的是,本申请不限定步骤701和步骤702的执行次序,实际应用中,可以是先执行步骤701,再执行步骤702,也可以是先执行步骤702,再执行步骤701,还可以是步骤701和步骤702同步执行。
在步骤701和步骤702所述实施方式的基础上,下面,本申请将以电子设备为XR眼镜为例,对XR的不同使用场景下功耗调整操作的内容进行简要介绍。
场景1:近距离高速无线通信,诸如利用VR眼镜观看高清电影的场景,利用VR眼镜进行游戏的 场景之类。
此场景下XR眼镜和手机/路由器的距离比较近,其对XR眼镜的WIFI发射功率要求较低,故此场景下可将第一误码率区间的上下界设置得较大,从而提高增大射频链路中放大器的增益的门槛,同时将第二误码率区间的上下界设置得也较大,从而降低减小射频链路中放大器的增益的门槛,同时,由于高速通信对吞吐率的要求较高,故射频链路的通信模式最低只能调整至主分集通信模式,而不能调整至SISO通信模式,这一点可以通过对第一吞吐率区间和第二吞吐率区间的设定来实现。
场景2:近距离低速无线通信,诸如AR眼镜与手机之间进行无线数据交互的场景。
此场景下XR眼镜和手机/路由器的距离比较近,其对XR眼镜的WIFI发射功率要求较低,故此场景下可将第一误码率区间的上下界设置得较大,从而提高增大射频链路中放大器的增益的门槛,同时将第二误码率区间的上下界设置得也较大,从而降低减小射频链路中放大器的增益的门槛,同时,由于低速通信对吞吐率的要求较低,故射频链路的通信模式可调整至主分集通信模式和SISO通信模式(相比SISO通信模式,主分集通信模式可以增强覆盖),这一点可以通过对第一吞吐率区间和第二吞吐率区间的设定来实现。
场景3:远距离低速无线通信,诸如用户远离路由器,但仍在使用VR眼镜进行无线上网的场景。
此场景下XR眼镜和手机/路由器的距离比较远,其对XR眼镜的WIFI发射功率有一定要求,故此场景下可将第一误码率区间的上下界设置得较小,从而降低增大射频链路中放大器的增益的门槛,同时将第二误码率区间的上下界设置也较小,从而提高减小射频链路中放大器的增益的门槛,由于低速通信对吞吐率的要求较低,故射频链路的通信模式可调整至主分集通信模式和SISO通信模式,这一点可以通过对第一吞吐率区间和第二吞吐率区间的设定来实现。
场景4:远距离高速无线通信,诸如用户远离路由器,但仍在使用VR眼镜观看高清电影,进行游戏之类的场景。
此场景下XR眼镜和手机/路由器的距离比较远,其对眼镜的WIFI发射功率有一定要求,故此场景下可将第一误码率区间的上下界设置得较小,从而降低增大射频链路中放大器的增益的门槛,同时将第二误码率区间的上下界设置也较小,从而提高减小射频链路中放大器的增益的门槛,同时,由于高速通信对吞吐率的要求较高,故射频链路的通信模式最低只能调整至主分集通信模式,而不能调整至SISO通信模式,这一点可以通过对第一吞吐率区间和第二吞吐率区间的设定来实现。
在本申请实施例中,收发环境信息除了可以包括数据吞吐率和误码率之外,还可以包括电子设备的通信对端设备发送的响应信息。基于以上对功耗调整操作的说明,在收发环境信息包括电子设备的通信对端设备发送的响应信息的情况下,可选的,本申请实施例中根据收发环境信息执行功耗调整操作可以包括以下步骤:电子设备根据是否成功接收到响应信息,执行功耗调整操作。
具体来说,若电子设备成功接收到该响应信息,则执行以下第一功耗调整操作中的至少一种,其中,第一功耗调整操作实质就是降低功耗的操作:
1、将射频链路的通信模式由通信速率较高的通信模式调整为通信速率较低的通信模式。
2、减小射频链路中放大器的增益。
若电子设备成功接收到通信对端设备发送的响应信息,则说明当前电子设备和通信对端设备能够正常通信,电子设备的无线通信质量尚有一定的下调空间,此时,电子设备可以降低射频链路的通信速率,通过牺牲通信速率的方式来换取功耗的降低,电子设备也可以减小射频链路中放大器的增益,从而减小电子设备的发射功率,通过牺牲发射功率的方式来换取功耗的降低。
与上文所述类似地,电子设备将射频链路的通信模式由通信速率较高的通信模式调整为通信速率较低的通信模式可以包括以下几种情况:1、电子设备将射频链路的通信模式由MIMO通信模式切换为主分集通信模式;2、电子设备将射频链路的通信模式由主分集通信模式切换为SISO通信模式;3、电子设备将射频链路的通信模式由MIMO通信模式切换为SISO通信模式。
减小射频链路中放大器的增益可以包括:优先减小射频前端电路中FEM包括的第二放大器的增益, 在第二放大器的增益减小至最小的情况下,再减小射频芯片中第一放大器的增益。
除此以外,在电子设备能够成功接收到通信对端设备发送的响应信息的情况下,可选的,电子设备可以优先将射频链路的通信模式由通信速率较高的通信模式调整为通信速率较低的通信模式,在将射频链路的通信模式切换为通信速率最低的通信模式(也即是SISO通信模式)的情况下,电子设备可以继续减小射频链路中放大器的增益。
这是考虑到通信模式的切换相较于减小射频链路中放大器的增益而言,对功耗的降低贡献更大,优先执行将射频链路的通信模式由通信速率较高的通信模式调整为通信速率较低的通信模式的操作,可以保证电子设备在执行减小功耗的操作的前期,就可以使功耗有显著的降低。
具体来说,若射频链路当前的通信模式为通信速率最低的通信模式(也即是SISO通信模式),则电子设备执行减小射频链路中放大器的增益的操作,若射频链路当前的通信模式不为通信速率最低的通信模式,则电子设备执行将射频链路的通信模式由通信速率较高的通信模式调整为通信速率较低的通信模式的操作。
其中,电子设备执行减小射频链路中放大器的增益的操作的过程包括:若射频前端电路中FEM包括的第二放大器当前的增益为最小增益,则执行减小射频芯片内的第一放大器的增益的操作,若该第二放大器当前的增益不为最小增益,则执行减小第二放大器的增益的操作。
若未成功接收到响应信息,则电子设备执行以下第二功耗调整操作中的至少一种,其中,第二功耗调整操作的实质就是增大功耗的操作:
1、将射频链路的通信模式由通信速率较低的通信模式调整为通信速率较高的通信模式。
2、增大射频链路中放大器的增益。
若电子设备未成功接收到通信对端设备发送的响应信息,则说明当前电子设备和通信对端设备已经无法正常通信,电子设备的无线通信质量需要提高才能保证电子设备和通信对端设备的正常通信,此时,电子设备可以增大射频链路的通信速率,电子设备也可以增大射频链路中放大器的增益,从而增大电子设备的发射功率,以牺牲功耗的代价来优先满足电子设备与通信对端设备所要求的无线通信质量。
与上文所述类似地,电子设备将射频链路的通信模式由通信速率较低的通信模式调整为通信速率较高的通信模式可以包括以下几种情况:1、电子设备将射频链路的通信模式由主分集通信模式切换为MIMO通信模式;2、电子设备将射频链路的通信模式由SISO通信模式切换为主分集通信模式;3、电子设备将射频链路的通信模式由SISO通信模式切换为MIMO通信模式。
增大射频链路中放大器的增益可以包括:优先增大射频芯片中第一放大器的增益,在射频芯片中第一放大器的增益增大至最大的情况下,再增大射频前端电路中FEM包括的第二放大器的增益。
除此以外,在电子设备未成功接收到通信对端设备发送的响应信息的情况下,可选的,电子设备可以优先增大射频链路中放大器的增益,在射频链路中放大器的增益增大至最大的情况下,电子设备可以将射频链路的通信模式由通信速率较高的通信模式调整为通信速率较低的通信模式。
优先增大射频链路中放大器的增益,可以保证电子设备在执行增大功耗的操作的前期,电子设备的功耗不至于出现骤增。
具体来说,若放大器当前的增益不为最大增益,则执行增大放大器的增益的操作,若放大器当前的增益为最大增益,则执行将射频链路的通信模式由通信速率较低的通信模式调整为通信速率较高的通信模式。需要指出的是,放大器的增益为最大增益指的是第一放大器和第二放大器的增益均为最大增益。
其中,电子设备执行增大放大器的增益的操作的过程包括:若射频芯片内的第一放大器当前的增益不为最大增益,则执行增大第一放大器的增益的操作;若第一放大器当前的增益为最大增益,则执行增大射频前端电路中FEM包括的第二放大器的增益的操作。
为了使读者易于理解上述实施例提供的技术方案,请参考图9和图10,其示出了根据通信对端设备发送的响应信息(ACK)来执行功耗调整操作的示意图。
如图9所示,在电子设备能够成功接收到通信对端设备发送的响应信息的情况下,电子设备可以将 射频链路的通信模式由MIMO通信模式切换至主分集通信模式,再切换至SISO通信模式,在已经将射频链路的通信模式切换为SISO通信模式的情况下,若电子设备仍然能够接收到通信对端设备发送的响应信息,则电子设备可以将射频前端电路的FEM中的PA由高增益降低至中等增益,再降低至低增益,在PA的增益降低至低增益的情况下,若电子设备还能接收到通信对端设备发送的响应信息,则电子设备可以将射频芯片中DAC内的放大器的增益由高增益降低至中等增益,再降低至低增益。
如图10所示,若在射频芯片中DAC内的放大器的增益降低至中等增益之后,电子设备无法成功接收通信对端设备发送的响应信息,则电子设备可以增大DAC内的放大器的增益,当然,尽管图10未示出,但是读者应该理解,在后续步骤中,若电子设备仍然无法成功接收通信对端设备发送的响应信息,则电子设备可以按照增大DAC内的放大器的增益、增大PA的增益以及将射频链路的通信模式切换为通信速率更高的通信模式的顺序执行功耗调整操作。
应该理解的是,虽然如上所述的各实施例所涉及的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,如上所述的各实施例所涉及的流程图中的至少一部分步骤可以包括多个步骤或者多个阶段,这些步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤中的步骤或者阶段的至少一部分轮流或者交替地执行。
基于同样的发明构思,本申请实施例还提供了一种用于实现上述所涉及的功耗调整方法的功耗调整装置。该装置所提供的解决问题的实现方案与上述方法中所记载的实现方案相似,故下面所提供的一个或多个功耗调整装置实施例中的具体限定可以参见上文中对于功耗调整方法的限定,在此不再赘述。
在一个实施例中,如图11所示,提供了一种功耗调整装置1100,包括:获取模块1101以及调整模块1102。
其中,该获取模块1101,用于获取电子设备的收发环境信息,该收发环境信息用于表征该电子设备当前所处的数据收发环境。
该调整模块1102,用于根据该收发环境信息执行功耗调整操作。其中,该功耗调整操作包括调整射频链路的通信模式和调整该射频链路中放大器的增益中的至少一种。
在本申请的可选实施例中,该调整模块1102,具体用于:将该射频链路的通信模式由第一模式调整为第二模式,该第一模式和该第二模式对应的通信速率不同。
在本申请的可选实施例中,该第一模式为MIMO通信模式、主分集通信模式和SISO通信模式中的一种,该第二模式为MIMO通信模式、主分集通信模式和SISO通信模式中除该第一模式以外的模式。
在本申请的可选实施例中,该调整模块1102,具体用于:调整射频芯片内的第一放大器的增益;和/或,调整射频前端电路中FEM包括的第二放大器的增益。
在本申请的可选实施例中,该收发环境信息包括数据吞吐率和误码率;该调整模块1102,具体用于:根据该数据吞吐率调整该射频链路的通信模式;根据该误码率调整该射频链路中放大器的增益。
在本申请的可选实施例中,该调整模块1102,具体用于:若该数据吞吐率位于第一吞吐率区间,则将该射频链路的通信模式由通信速率较高的通信模式调整为通信速率较低的通信模式;若该数据吞吐率位于第二吞吐率区间,则将该射频链路的通信模式由通信速率较低的通信模式调整为通信速率较高的通信模式,其中,该第二吞吐率区间的上界小于等于该第一吞吐率区间的下界。
在本申请的可选实施例中,该调整模块1102,具体用于:若该误码率位于第一误码率区间,则增大该射频链路中放大器的增益;若该误码率位于第二误码率区间,则减小该射频链路中放大器的增益,其中,该第一误码率区间的下界大于等于该第二误码率区间的上界。
在本申请的可选实施例中,该收发环境信息包括该电子设备的通信对端设备发送的响应信息,该响应信息用于指示该通信对端设备成功接收到该电子设备发送的数据;该调整模块1102,具体用于:根据是否成功接收到该响应信息,执行该功耗调整操作。
在本申请的可选实施例中,该调整模块1102,具体用于:若成功接收到该响应信息,则执行以下第一功耗调整操作中的至少一种:将该射频链路的通信模式由通信速率较高的通信模式调整为通信速率较低的通信模式;减小该射频链路中放大器的增益。
在本申请的可选实施例中,该调整模块1102,具体用于:若该射频链路当前的通信模式为通信速率最低的通信模式,则执行减小该射频链路中放大器的增益的操作;若该射频链路当前的通信模式不为通信速率最低的通信模式,则执行将该射频链路的通信模式由通信速率较高的通信模式调整为通信速率较低的通信模式的操作。
在本申请的可选实施例中,该调整模块1102,具体用于:若射频前端电路中FEM包括的第二放大器当前的增益为最小增益,则执行减小射频芯片内的第一放大器的增益的操作;若该第二放大器当前的增益不为最小增益,则执行减小该第二放大器的增益的操作。
在本申请的可选实施例中,该调整模块1102,具体用于:若未成功接收到该响应信息,则执行以下第二功耗调整操作中的至少一种:将该射频链路的通信模式由通信速率较低的通信模式调整为通信速率较高的通信模式;增大该射频链路中放大器的增益。
在本申请的可选实施例中,该调整模块1102,具体用于:若该放大器当前的增益不为最大增益,则执行增大该放大器的增益的操作;若该放大器当前的增益为最大增益,则执行将该射频链路的通信模式由通信速率较低的通信模式调整为通信速率较高的通信模式。
在本申请的可选实施例中,该调整模块1102,具体用于:若射频芯片内的第一放大器当前的增益不为最大增益,则执行增大该第一放大器的增益的操作;若该第一放大器当前的增益为最大增益,则执行增大射频前端电路中FEM包括的第二放大器的增益的操作。
上述功耗调整装置装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于电子设备中的处理器中,也可以以软件形式存储于电子设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
在一个实施例中,提供了一种电子设备,该电子设备可以是XR眼镜,其内部结构图可以如图12所示。该电子设备包括通过系统总线连接的处理器、存储器、射频链路、显示屏和输入装置。其中,该电子设备的处理器用于提供计算和控制能力。该电子设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统和计算机程序。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该电子设备的射频链路用于收发射频信号。该计算机程序被处理器执行时以实现一种功耗调整方法。该电子设备的显示屏可以是液晶显示屏或者电子墨水显示屏,该电子设备的输入装置可以是显示屏上覆盖的触摸层,也可以是电子设备外壳上设置的按键、轨迹球或触控板,还可以是外接的键盘、触控板或鼠标等。
本领域技术人员可以理解,图12中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的电子设备的限定,具体的电子设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
请参考图13,其示出了本申请实施例中电子设备内部射频链路相关的元器件的示意图,如图13所示,其包括2个合路器101和102、2个天线103和104、2颗FEM105和106、WLAN芯片107、逻辑开关108、MCU 109以及CPU 110,其中,FEM 105和FEM 106分别对应于WIFI2.4G频段和WIFI 5G频段。
如图13所示,WLAN芯片107与FEM 105、FEM 106以及逻辑开关108分别连接,FEM 105与合路器101和合路器102分别连接,FEM 106与合路器101和合路器102分别连接,合路器101与天线103连接,合路器102与天线104连接,逻辑开关108还与FEM 105、FEM 106以及MCU 109连接,MCU 109与CPU 110连接。
其中,图13中以不同的连接线类型表明了不同类型的连接通路,其中,该不同类型的连接通路主要包括射频通路、控制通路以及数据通路,其中,射频通路用于传输WIFI射频信号,控制通路用于传 输控制信号,数据通路用于传输数据。
在图13中,MCU 109和WLAN芯片107都通过控制通路与逻辑开关108连接,也即是,MCU 109和WLAN芯片107都可以对逻辑开关108进行控制,然而,在本申请的可选实施例中,MCU 109对逻辑开关108的控制优先级大于WLAN芯片107对逻辑开关108的控制优先级。
MCU 109可以通过数据通路从CPU 110处获取各种通信数据,例如,吞吐率、误码率等,MCU 109从CPU 110处获取到通信数据之后,可以根据该通信数据,通过控制逻辑开关108来执行本申请实施例所述的功耗调整操作,具体来讲,可以通过控制逻辑开关108来控制FEM 105和/或FEM 106(包括调整FEM中放大器的增益),从而执行本申请实施例所述的功耗调整操作,如上文所述,该功耗调整操作可以包括调整射频链路的通信模式和调整所述射频链路中放大器的增益中的至少一种。
本申请实施例正是通过创造性地加入了MCU 109和逻辑开关108两颗器件,实现了根据电子设备当前所处的数据收发环境来灵活调整电子设备的功耗的目的。
需要指出的是,尽管图13中示出了2个合路器101和102、2个天线103和104、2颗FEM 105和106等,但是读者应该理解,实际应用中电子设备可以包括比2个合路器101和102、2个天线103和104、2颗FEM 105和106更多或者更少的器件,实际应用中FEM还可以对应其他的频段,例如,WIFI6G频段等,其可以基于实际需要灵活设置,本申请实施例对此不做具体限定。
在一个实施例中,提供了一种电子设备,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现以下步骤:
获取电子设备的收发环境信息,该收发环境信息用于表征该电子设备当前所处的数据收发环境;根据该收发环境信息执行功耗调整操作;其中,该功耗调整操作包括调整射频链路的通信模式和调整该射频链路中放大器的增益中的至少一种。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:将该射频链路的通信模式由第一模式调整为第二模式,该第一模式和该第二模式对应的通信速率不同。
在一个实施例中,该第一模式为MIMO通信模式、主分集通信模式和SISO通信模式中的一种,该第二模式为MIMO通信模式、主分集通信模式和SISO通信模式中除该第一模式以外的模式。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:调整射频芯片内的第一放大器的增益;和/或,调整射频前端电路中FEM包括的第二放大器的增益。
在一个实施例中,该收发环境信息包括数据吞吐率和误码率,处理器执行计算机程序时还实现以下步骤:根据该数据吞吐率调整该射频链路的通信模式;根据该误码率调整该射频链路中放大器的增益。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:若该数据吞吐率位于第一吞吐率区间,则将该射频链路的通信模式由通信速率较高的通信模式调整为通信速率较低的通信模式;若该数据吞吐率位于第二吞吐率区间,则将该射频链路的通信模式由通信速率较低的通信模式调整为通信速率较高的通信模式,其中,该第二吞吐率区间的上界小于等于该第一吞吐率区间的下界。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:若该误码率位于第一误码率区间,则增大该射频链路中放大器的增益;若该误码率位于第二误码率区间,则减小该射频链路中放大器的增益,其中,该第一误码率区间的下界大于等于该第二误码率区间的上界。
在一个实施例中,该收发环境信息包括该电子设备的通信对端设备发送的响应信息,该响应信息用于指示该通信对端设备成功接收到该电子设备发送的数据,处理器执行计算机程序时还实现以下步骤:根据是否成功接收到该响应信息,执行该功耗调整操作。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:若成功接收到该响应信息,则执行以下第一功耗调整操作中的至少一种:将该射频链路的通信模式由通信速率较高的通信模式调整为通信速率较低的通信模式;减小该射频链路中放大器的增益。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:若该射频链路当前的通信模式为通信速率最低的通信模式,则执行减小该射频链路中放大器的增益的操作;若该射频链路当前的通信模式不 为通信速率最低的通信模式,则执行将该射频链路的通信模式由通信速率较高的通信模式调整为通信速率较低的通信模式的操作。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:若射频前端电路中FEM包括的第二放大器当前的增益为最小增益,则执行减小射频芯片内的第一放大器的增益的操作;若该第二放大器当前的增益不为最小增益,则执行减小该第二放大器的增益的操作。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:若未成功接收到该响应信息,则执行以下第二功耗调整操作中的至少一种:将该射频链路的通信模式由通信速率较低的通信模式调整为通信速率较高的通信模式;增大该射频链路中放大器的增益。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:若该放大器当前的增益不为最大增益,则执行增大该放大器的增益的操作;若该放大器当前的增益为最大增益,则执行将该射频链路的通信模式由通信速率较低的通信模式调整为通信速率较高的通信模式。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:若射频芯片内的第一放大器当前的增益不为最大增益,则执行增大该第一放大器的增益的操作;若该第一放大器当前的增益为最大增益,则执行增大射频前端电路中FEM包括的第二放大器的增益的操作。
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现以下步骤:
获取电子设备的收发环境信息,该收发环境信息用于表征该电子设备当前所处的数据收发环境;根据该收发环境信息执行功耗调整操作;其中,该功耗调整操作包括调整射频链路的通信模式和调整该射频链路中放大器的增益中的至少一种。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:将该射频链路的通信模式由第一模式调整为第二模式,该第一模式和该第二模式对应的通信速率不同。
在一个实施例中,该第一模式为MIMO通信模式、主分集通信模式和SISO通信模式中的一种,该第二模式为MIMO通信模式、主分集通信模式和SISO通信模式中除该第一模式以外的模式。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:调整射频芯片内的第一放大器的增益;和/或,调整射频前端电路中FEM包括的第二放大器的增益。
在一个实施例中,该收发环境信息包括数据吞吐率和误码率,计算机程序被处理器执行时还实现以下步骤:根据该数据吞吐率调整该射频链路的通信模式;根据该误码率调整该射频链路中放大器的增益。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:若该数据吞吐率位于第一吞吐率区间,则将该射频链路的通信模式由通信速率较高的通信模式调整为通信速率较低的通信模式;若该数据吞吐率位于第二吞吐率区间,则将该射频链路的通信模式由通信速率较低的通信模式调整为通信速率较高的通信模式,其中,该第二吞吐率区间的上界小于等于该第一吞吐率区间的下界。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:若该误码率位于第一误码率区间,则增大该射频链路中放大器的增益;若该误码率位于第二误码率区间,则减小该射频链路中放大器的增益,其中,该第一误码率区间的下界大于等于该第二误码率区间的上界。
在一个实施例中,该收发环境信息包括该电子设备的通信对端设备发送的响应信息,该响应信息用于指示该通信对端设备成功接收到该电子设备发送的数据,计算机程序被处理器执行时还实现以下步骤:根据是否成功接收到该响应信息,执行该功耗调整操作。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:若成功接收到该响应信息,则执行以下第一功耗调整操作中的至少一种:将该射频链路的通信模式由通信速率较高的通信模式调整为通信速率较低的通信模式;减小该射频链路中放大器的增益。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:若该射频链路当前的通信模式为通信速率最低的通信模式,则执行减小该射频链路中放大器的增益的操作;若该射频链路当前的通信模式不为通信速率最低的通信模式,则执行将该射频链路的通信模式由通信速率较高的通信模式调整为通信 速率较低的通信模式的操作。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:若射频前端电路中FEM包括的第二放大器当前的增益为最小增益,则执行减小射频芯片内的第一放大器的增益的操作;若该第二放大器当前的增益不为最小增益,则执行减小该第二放大器的增益的操作。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:若未成功接收到该响应信息,则执行以下第二功耗调整操作中的至少一种:将该射频链路的通信模式由通信速率较低的通信模式调整为通信速率较高的通信模式;增大该射频链路中放大器的增益。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:若该放大器当前的增益不为最大增益,则执行增大该放大器的增益的操作;若该放大器当前的增益为最大增益,则执行将该射频链路的通信模式由通信速率较低的通信模式调整为通信速率较高的通信模式。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:若射频芯片内的第一放大器当前的增益不为最大增益,则执行增大该第一放大器的增益的操作;若该第一放大器当前的增益为最大增益,则执行增大射频前端电路中FEM包括的第二放大器的增益的操作。
在一个实施例中,提供了一种计算机程序产品,包括计算机程序,该计算机程序被处理器执行时实现以下步骤:
获取电子设备的收发环境信息,该收发环境信息用于表征该电子设备当前所处的数据收发环境;根据该收发环境信息执行功耗调整操作;其中,该功耗调整操作包括调整射频链路的通信模式和调整该射频链路中放大器的增益中的至少一种。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:将该射频链路的通信模式由第一模式调整为第二模式,该第一模式和该第二模式对应的通信速率不同。
在一个实施例中,该第一模式为MIMO通信模式、主分集通信模式和SISO通信模式中的一种,该第二模式为MIMO通信模式、主分集通信模式和SISO通信模式中除该第一模式以外的模式。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:调整射频芯片内的第一放大器的增益;和/或,调整射频前端电路中FEM包括的第二放大器的增益。
在一个实施例中,该收发环境信息包括数据吞吐率和误码率,计算机程序被处理器执行时还实现以下步骤:根据该数据吞吐率调整该射频链路的通信模式;根据该误码率调整该射频链路中放大器的增益。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:若该数据吞吐率位于第一吞吐率区间,则将该射频链路的通信模式由通信速率较高的通信模式调整为通信速率较低的通信模式;若该数据吞吐率位于第二吞吐率区间,则将该射频链路的通信模式由通信速率较低的通信模式调整为通信速率较高的通信模式,其中,该第二吞吐率区间的上界小于等于该第一吞吐率区间的下界。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:若该误码率位于第一误码率区间,则增大该射频链路中放大器的增益;若该误码率位于第二误码率区间,则减小该射频链路中放大器的增益,其中,该第一误码率区间的下界大于等于该第二误码率区间的上界。
在一个实施例中,该收发环境信息包括该电子设备的通信对端设备发送的响应信息,该响应信息用于指示该通信对端设备成功接收到该电子设备发送的数据,计算机程序被处理器执行时还实现以下步骤:根据是否成功接收到该响应信息,执行该功耗调整操作。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:若成功接收到该响应信息,则执行以下第一功耗调整操作中的至少一种:将该射频链路的通信模式由通信速率较高的通信模式调整为通信速率较低的通信模式;减小该射频链路中放大器的增益。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:若该射频链路当前的通信模式为通信速率最低的通信模式,则执行减小该射频链路中放大器的增益的操作;若该射频链路当前的通信模式不为通信速率最低的通信模式,则执行将该射频链路的通信模式由通信速率较高的通信模式调整为通信速率较低的通信模式的操作。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:若射频前端电路中FEM包括的第二放大器当前的增益为最小增益,则执行减小射频芯片内的第一放大器的增益的操作;若该第二放大器当前的增益不为最小增益,则执行减小该第二放大器的增益的操作。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:若未成功接收到该响应信息,则执行以下第二功耗调整操作中的至少一种:将该射频链路的通信模式由通信速率较低的通信模式调整为通信速率较高的通信模式;增大该射频链路中放大器的增益。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:若该放大器当前的增益不为最大增益,则执行增大该放大器的增益的操作;若该放大器当前的增益为最大增益,则执行将该射频链路的通信模式由通信速率较低的通信模式调整为通信速率较高的通信模式。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:若射频芯片内的第一放大器当前的增益不为最大增益,则执行增大该第一放大器的增益的操作;若该第一放大器当前的增益为最大增益,则执行增大射频前端电路中FEM包括的第二放大器的增益的操作。
需要说明的是,本申请所涉及的用户信息(包括但不限于用户设备信息、用户个人信息等)和数据(包括但不限于用于分析的数据、存储的数据、展示的数据等),均为经用户授权或者经过各方充分授权的信息和数据。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、数据库或其它介质的任何引用,均可包括非易失性和易失性存储器中的至少一种。非易失性存储器可包括只读存储器(Read-Only Memory,ROM)、磁带、软盘、闪存、光存储器、高密度嵌入式非易失性存储器、阻变存储器(ReRAM)、磁变存储器(Magnetoresistive Random Access Memory,MRAM)、铁电存储器(Ferroelectric Random Access Memory,FRAM)、相变存储器(Phase Change Memory,PCM)、石墨烯存储器等。易失性存储器可包括随机存取存储器(Random Access Memory,RAM)或外部高速缓冲存储器等。作为说明而非局限,RAM可以是多种形式,比如静态随机存取存储器(Static Random Access Memory,SRAM)或动态随机存取存储器(Dynamic Random Access Memory,DRAM)等。本申请所提供的各实施例中所涉及的数据库可包括关系型数据库和非关系型数据库中至少一种。非关系型数据库可包括基于区块链的分布式数据库等,不限于此。本申请所提供的各实施例中所涉及的处理器可为通用处理器、中央处理器、图形处理器、数字信号处理器、可编程逻辑器、基于量子计算的数据处理逻辑器等,不限于此。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请的保护范围应以所附权利要求为准。

Claims (18)

  1. 一种功耗调整方法,其中,所述方法包括:
    获取电子设备的收发环境信息,所述收发环境信息用于表征所述电子设备当前所处的数据收发环境;
    根据所述收发环境信息执行功耗调整操作;
    其中,所述功耗调整操作包括调整射频链路的通信模式和调整所述射频链路中放大器的增益中的至少一种。
  2. 根据权利要求1所述的方法,其中,所述调整射频链路的通信模式,包括:
    将所述射频链路的通信模式由第一模式调整为第二模式,所述第一模式和所述第二模式对应的通信速率不同。
  3. 根据权利要求2所述的方法,其中,所述第一模式为多输入多输出MIMO通信模式、主分集通信模式和单输入单输出SISO通信模式中的一种,所述第二模式为MIMO通信模式、主分集通信模式和SISO通信模式中除所述第一模式以外的模式。
  4. 根据权利要求1所述的方法,其中,所述调整所述射频链路中放大器的增益,包括:
    调整射频芯片内的第一放大器的增益;和/或,
    调整射频前端电路中前端模块FEM包括的第二放大器的增益。
  5. 根据权利要求1至4任一所述的方法,其中,所述收发环境信息包括数据吞吐率和误码率;所述根据所述收发环境信息执行功耗调整操作,包括:
    根据所述数据吞吐率调整所述射频链路的通信模式;
    根据所述误码率调整所述射频链路中放大器的增益。
  6. 根据权利要求5所述的方法,其中,所述根据所述数据吞吐率调整所述射频链路的通信模式,包括:
    若所述数据吞吐率位于第一吞吐率区间,则将所述射频链路的通信模式由通信速率较高的通信模式调整为通信速率较低的通信模式;
    若所述数据吞吐率位于第二吞吐率区间,则将所述射频链路的通信模式由通信速率较低的通信模式调整为通信速率较高的通信模式,其中,所述第二吞吐率区间的上界小于等于所述第一吞吐率区间的下界。
  7. 根据权利要求5所述的方法,其中,所述根据所述误码率调整所述射频链路中放大器的增益,包括:
    若所述误码率位于第一误码率区间,则增大所述射频链路中放大器的增益;
    若所述误码率位于第二误码率区间,则减小所述射频链路中放大器的增益,其中,所述第一误码率区间的下界大于等于所述第二误码率区间的上界。
  8. 根据权利要求1至4中任一所述的方法,其中,所述收发环境信息包括所述电子设备的通信对端设备发送的响应信息,所述响应信息用于指示所述通信对端设备成功接收到所述电子设备发送的数据;所述根据所述收发环境信息执行功耗调整操作,包括:
    根据是否成功接收到所述响应信息,执行所述功耗调整操作。
  9. 根据权利要求8所述的方法,其中,所述根据是否成功接收到所述响应信息,执行所述功耗调整操作,包括:
    若成功接收到所述响应信息,则执行以下第一功耗调整操作中的至少一种:
    将所述射频链路的通信模式由通信速率较高的通信模式调整为通信速率较低的通信模式;
    减小所述射频链路中放大器的增益。
  10. 根据权利要求9所述的方法,其中,所述执行以下第一功耗调整操作中的至少一种,包括:
    若所述射频链路当前的通信模式为通信速率最低的通信模式,则执行减小所述射频链路中放大器的增益的操作;
    若所述射频链路当前的通信模式不为通信速率最低的通信模式,则执行将所述射频链路的通信模式由通信速率较高的通信模式调整为通信速率较低的通信模式的操作。
  11. 根据权利要求10所述的方法,其中,所述执行减小所述射频链路中放大器的增益的操作,包括:
    若射频前端电路中FEM包括的第二放大器当前的增益为最小增益,则执行减小射频芯片内的第一放大器的增益的操作;
    若所述第二放大器当前的增益不为最小增益,则执行减小所述第二放大器的增益的操作。
  12. 根据权利要求8所述的方法,其中,所述根据是否成功接收到所述响应信息,执行所述功耗调整操作,包括:
    若未成功接收到所述响应信息,则执行以下第二功耗调整操作中的至少一种:
    将所述射频链路的通信模式由通信速率较低的通信模式调整为通信速率较高的通信模式;
    增大所述射频链路中放大器的增益。
  13. 根据权利要求12所述的方法,其中,所述执行以下第二功耗调整操作中的至少一种,包括:
    若所述放大器当前的增益不为最大增益,则执行增大所述放大器的增益的操作;
    若所述放大器当前的增益为最大增益,则执行将所述射频链路的通信模式由通信速率较低的通信模式调整为通信速率较高的通信模式。
  14. 根据权利要求13所述的方法,其中,所述若所述放大器当前的增益不为最大增益,则执行增大所述放大器的增益的操作,包括:
    若射频芯片内的第一放大器当前的增益不为最大增益,则执行增大所述第一放大器的增益的操作;
    若所述第一放大器当前的增益为最大增益,则执行增大射频前端电路中FEM包括的第二放大器的增益的操作。
  15. 一种功耗调整装置,其中,所述方法包括:
    获取模块,用于获取电子设备的收发环境信息,所述收发环境信息用于表征所述电子设备当前所处的数据收发环境;
    调整模块,用于根据所述收发环境信息执行功耗调整操作;
    其中,所述功耗调整操作包括调整射频链路的通信模式和调整所述射频链路中放大器的增益中的至少一种。
  16. 一种电子设备,包括存储器和处理器,所述存储器存储有计算机程序,其中,所述处理器执行所述计算机程序时实现权利要求1至14中任一项所述的方法的步骤。
  17. 一种计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现权利要求1至14中任一项所述的方法的步骤。
  18. 一种计算机程序产品,包括计算机程序,其中,该计算机程序被处理器执行时实现权利要求1至14中任一项所述的方法的步骤。
PCT/CN2023/106913 2022-08-24 2023-07-12 功耗调整方法、装置、设备、存储介质和程序产品 WO2024041253A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211020187.2 2022-08-24
CN202211020187.2A CN115361736A (zh) 2022-08-24 2022-08-24 功耗调整方法、装置、设备、存储介质和程序产品

Publications (1)

Publication Number Publication Date
WO2024041253A1 true WO2024041253A1 (zh) 2024-02-29

Family

ID=84003759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/106913 WO2024041253A1 (zh) 2022-08-24 2023-07-12 功耗调整方法、装置、设备、存储介质和程序产品

Country Status (2)

Country Link
CN (1) CN115361736A (zh)
WO (1) WO2024041253A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115361736A (zh) * 2022-08-24 2022-11-18 Oppo广东移动通信有限公司 功耗调整方法、装置、设备、存储介质和程序产品

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160081026A1 (en) * 2014-09-11 2016-03-17 Samsung Electronics Co., Ltd. Method for minimizing power consumption and electronic device implementing the same
CN110536390A (zh) * 2019-09-02 2019-12-03 Oppo(重庆)智能科技有限公司 射频电路的控制方法、装置与计算机存储介质
WO2020102928A1 (zh) * 2018-11-19 2020-05-28 深圳市欢太科技有限公司 一种无线信号发送方法、无线信号发送装置及终端设备
CN112637943A (zh) * 2020-12-17 2021-04-09 Oppo广东移动通信有限公司 射频组件工作模式控制方法、装置、电子设备和存储介质
CN114598402A (zh) * 2020-12-03 2022-06-07 Oppo广东移动通信有限公司 用于确定电子设备的射频功率放大器的功耗的方法
CN115361736A (zh) * 2022-08-24 2022-11-18 Oppo广东移动通信有限公司 功耗调整方法、装置、设备、存储介质和程序产品

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160081026A1 (en) * 2014-09-11 2016-03-17 Samsung Electronics Co., Ltd. Method for minimizing power consumption and electronic device implementing the same
WO2020102928A1 (zh) * 2018-11-19 2020-05-28 深圳市欢太科技有限公司 一种无线信号发送方法、无线信号发送装置及终端设备
CN110536390A (zh) * 2019-09-02 2019-12-03 Oppo(重庆)智能科技有限公司 射频电路的控制方法、装置与计算机存储介质
CN114598402A (zh) * 2020-12-03 2022-06-07 Oppo广东移动通信有限公司 用于确定电子设备的射频功率放大器的功耗的方法
CN112637943A (zh) * 2020-12-17 2021-04-09 Oppo广东移动通信有限公司 射频组件工作模式控制方法、装置、电子设备和存储介质
CN115361736A (zh) * 2022-08-24 2022-11-18 Oppo广东移动通信有限公司 功耗调整方法、装置、设备、存储介质和程序产品

Also Published As

Publication number Publication date
CN115361736A (zh) 2022-11-18

Similar Documents

Publication Publication Date Title
US11665710B2 (en) Wireless devices and systems including examples of configuration modes for baseband units and remote radio heads
WO2024041253A1 (zh) 功耗调整方法、装置、设备、存储介质和程序产品
US11552686B2 (en) Beam reporting based on detection of a trigger event
KR20170104238A (ko) 신호를 송수신하는 전자 장치 및 방법
US20220255706A1 (en) Hybrid automatic repeat request-acknowledgement (harq-ack) feedback position determining method and communications device
US10354609B2 (en) Functional mode aware resource management
CN112740769A (zh) 对多无线电系统中的天线功率进行粒度调节
CN109525999A (zh) Dmrs确定方法、配置方法、终端和基站
US9343039B2 (en) Efficient displayport wireless AUX communication
US20080318619A1 (en) Ic with mmw transceiver communications
CN114124124B (zh) 射频前端模组、可穿戴设备、数据传输方法和存储介质
WO2024098998A1 (zh) 射频模组、可穿戴设备和电子设备
CN104424949A (zh) 用于发送和接收语音分组的方法和实现该方法的电子设备
WO2014051784A1 (en) Peer setup of predefined modulation transmission
WO2022028138A1 (zh) 上行信道的传输方法、终端、基站及存储介质
US20220346073A1 (en) Pdcch configuration method and terminal
CN112585918B (zh) 控制方法及相关设备
CN116155445A (zh) 上行预编码信息接收方法、指示方法、终端及网络侧设备
WO2023160535A1 (zh) 解调参考信号信息确定方法、指示方法及相关设备
WO2023165393A1 (zh) 传输方法、装置、终端和存储介质
CN205304861U (zh) 一种基于dma的基带信号处理系统
WO2024078456A1 (zh) 上行控制信息传输方法、装置及终端
WO2023151592A1 (zh) 预编码的确定方法、装置、设备及可读存储介质
WO2023131316A1 (zh) 探测参考信号的端口映射方法和终端
WO2024140578A1 (zh) 基于ai模型的csi反馈方法、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856343

Country of ref document: EP

Kind code of ref document: A1