WO2024041044A9 - 终端天线的控制方法和装置 - Google Patents

终端天线的控制方法和装置 Download PDF

Info

Publication number
WO2024041044A9
WO2024041044A9 PCT/CN2023/094264 CN2023094264W WO2024041044A9 WO 2024041044 A9 WO2024041044 A9 WO 2024041044A9 CN 2023094264 W CN2023094264 W CN 2023094264W WO 2024041044 A9 WO2024041044 A9 WO 2024041044A9
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
reflection coefficient
human body
real
sar
Prior art date
Application number
PCT/CN2023/094264
Other languages
English (en)
French (fr)
Other versions
WO2024041044A1 (zh
Inventor
蔡晓涛
刘亮
周大为
叶春辉
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Priority to EP23789484.5A priority Critical patent/EP4351017A1/en
Priority to US18/558,088 priority patent/US20240204816A1/en
Publication of WO2024041044A1 publication Critical patent/WO2024041044A1/zh
Publication of WO2024041044A9 publication Critical patent/WO2024041044A9/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/3827Portable transceivers
    • H04B1/3833Hand-held transceivers
    • H04B1/3838Arrangements for reducing RF exposure to the user, e.g. by changing the shape of the transceiver while in use
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0458Arrangements for matching and coupling between power amplifier and antenna or between amplifying stages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits

Definitions

  • the present application relates to the field of terminal technology, and in particular to a method and device for controlling a terminal antenna.
  • SAR specific absorption rate
  • the present application provides a control method and device for a terminal antenna, which can detect the approach of a human body without changing the radio frequency conducted power.
  • the conducted power is no longer reduced, but the reflection coefficient of the antenna port is increased by adjusting the state of the antenna itself, thereby achieving the purpose of reducing the SAR value.
  • a method for controlling a terminal antenna comprising: obtaining a real-time reflection coefficient of an antenna of a terminal device; judging whether the antenna is in a human body usage scenario based on the real-time reflection coefficient; if the antenna is in a human body usage scenario, determining whether a specific absorption ratio SAR of the antenna is greater than or equal to a first preset threshold; if the SAR is greater than or equal to the first preset threshold, adjusting an adjustable device of the antenna to increase the reflection coefficient of a transmission frequency band of the antenna, the adjustable device comprising a capacitor and/or an inductor.
  • the terminal antenna control method provided in the present application increases the reflection coefficient of the antenna's transmission frequency band by adjusting the value of the capacitance and/or inductance in the antenna, thereby reducing the SAR of the antenna.
  • the SAR of the antenna can be reduced without reducing the conducted power of the antenna.
  • the reflection coefficient of the antenna is a value between 0 and 1.
  • the real-time reflection coefficient refers to the instantaneous reflection coefficient of the antenna.
  • the real-time reflection coefficient refers to the reflection coefficient of the antenna detected by the terminal device after the human body approaches the antenna.
  • determining whether the antenna is in a human usage scenario based on the real-time reflection coefficient includes: calculating the distance difference between the real-time reflection coefficient and the free space FS reflection coefficient of the antenna on the Smith chart; and determining whether the antenna is in a human usage scenario based on the distance difference.
  • the FS reflection coefficient of the antenna is generally in an impedance matching state, and the antenna in the FS state has a smaller reflection coefficient.
  • the human body will affect the near-field distribution of the antenna, and the port reflection coefficient of the antenna will change, resulting in a distance difference between the position of the reflection coefficient on the Smith chart when the human body is close to the state and the position of the reflection coefficient on the Smith chart when the human body is in the FS state.
  • calculating the distance difference between the real-time reflection coefficient and the free space FS reflection coefficient of the antenna on the Smith chart includes: determining a first coordinate point of the real-time reflection coefficient on the Smith chart; determining a second coordinate point of the FS reflection coefficient of the antenna on the Smith chart; calculating the distance between the first coordinate point and the second coordinate point, and determining the distance as the distance difference.
  • the Smith chart is a calculation diagram of a family of circles of equivalent values of normalized input impedance (or admittance) plotted on a reflection system dispersion plane, and the reflection coefficient of an antenna can be represented on the Smith chart.
  • the reflection coefficient of a coordinate point closer to the center of the circle is closer to 0; the reflection coefficient of a coordinate point farther from the center of the circle is closer to 1.
  • judging whether the antenna is in a human body usage scenario based on the distance difference includes: determining that the antenna is in a human body usage scenario when the distance difference is greater than or equal to a second preset threshold.
  • the second preset threshold is the value of the distance between the first coordinate point and the second coordinate point.
  • control method of the terminal antenna further includes: if the antenna is not in a human body usage scenario, determining that the antenna is in a FS state and maintaining the current state of the antenna.
  • the antenna is not in human use, it means that the distance between the human body and the antenna is far, which will not affect the transmission performance of the antenna, that is, the antenna is in the FS state. At this time, it has been determined that the electromagnetic radiation generated by the terminal device will not affect the human body, and it is only necessary to maintain the current state of the antenna.
  • the terminal antenna control method further includes: if the SAR is less than the first preset threshold, maintaining the current state of the antenna.
  • the detected SAR of the antenna is less than the first preset threshold, it means that the SAR of the antenna meets the SAR regulatory requirements, and there is no need to adjust the current state of the antenna.
  • a control device for a terminal antenna which is used to execute the method in any possible implementation of the first aspect.
  • the device includes a module for executing the method in any possible implementation of the first aspect.
  • the present application provides another terminal antenna control device, including a processor, the processor is coupled to a memory, and can be used to execute instructions in the memory to implement the method in any possible implementation of the first aspect.
  • the device also includes a memory.
  • the device also includes a communication interface, and the processor is coupled to the communication interface.
  • the apparatus is a terminal device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the device is a chip configured in a terminal device.
  • the communication interface may be an input/output interface.
  • a processor comprising: an input circuit, an output circuit, and a processing circuit.
  • the processing circuit is used to receive a signal through the input circuit and transmit a signal through the output circuit, so that the processor executes the method in any possible implementation of the first aspect.
  • the processor can be a chip
  • the input circuit can be an input pin
  • the output circuit can be an output pin
  • the processing circuit can be a transistor, a gate circuit, a trigger, and various logic circuits.
  • the input signal received by the input circuit can be received and input by, for example, but not limited to, a receiver
  • the signal output by the output circuit can be, for example, but not limited to, output to a transmitter and transmitted by the transmitter
  • the input circuit and the output circuit can be the same circuit, which is used as an input circuit and an output circuit at different times.
  • the embodiments of the present application do not limit the specific implementation methods of the processor and various circuits.
  • a processing device comprising a processor and a memory.
  • the processor is used to read instructions stored in the memory, and can receive signals through a receiver and transmit signals through a transmitter to execute the method in any possible implementation of the first aspect.
  • the number of the processors is one or more, and the number of the memories is one or more.
  • the memory may be integrated with the processor, or the memory may be provided separately from the processor.
  • the memory can be a non-transitory memory, such as a read-only memory (ROM), which can be integrated with the processor on the same chip or can be set on different chips.
  • ROM read-only memory
  • the relevant data interaction process can be a process of outputting indication information from a processor
  • receiving capability information can be a process of receiving input capability information from a processor.
  • the processed output data can be output to a transmitter, and the input data received by the processor can come from a receiver.
  • the transmitter and the receiver can be collectively referred to as a transceiver.
  • the processing device in the fifth aspect mentioned above can be a chip.
  • the processor can be implemented by hardware or by software.
  • the processor can be a logic circuit, an integrated circuit, etc.; when implemented by software, the processor can be a general-purpose processor, which is implemented by reading the software code stored in the memory.
  • the memory can be integrated in the processor or can be located outside the processor and exist independently.
  • a computer program product comprising: a computer program (also referred to as code, or instruction), which, when executed, enables a computer to execute a method in any possible implementation of the first aspect.
  • a computer program also referred to as code, or instruction
  • a computer-readable storage medium which stores a computer program (also referred to as code, or instructions) which, when executed on a computer, enables the computer to execute a method in any possible implementation of the first aspect.
  • a computer program also referred to as code, or instructions
  • FIG1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • FIG2 is a schematic flow chart of a method for controlling a terminal antenna provided in an embodiment of the present application
  • FIG3 is a schematic diagram of the positions of different reflection coefficients on a Smith chart provided in an embodiment of the present application.
  • FIG4 is a schematic diagram of the structure of an antenna provided in an embodiment of the present application.
  • FIG5 is a schematic diagram of the structure of a radio frequency circuit provided in an embodiment of the present application.
  • FIG6 is a schematic diagram of a reflection coefficient and efficiency curve of an antenna provided in an embodiment of the present application.
  • FIG7 is a schematic diagram of current distribution of an antenna provided in an embodiment of the present application.
  • FIG8 is a schematic diagram of an antenna provided in an embodiment of the present application in a human body usage scenario
  • FIG11 is a schematic diagram of a reflection coefficient curve of an antenna before and after capacitance adjustment provided in an embodiment of the present application
  • FIG12 is a schematic diagram of the position of the reflection coefficient of the front and rear antennas on the Smith chart according to an embodiment of the present application after capacitance adjustment;
  • FIG13 is a schematic diagram of inductance adjustment provided in an embodiment of the present application.
  • FIG14 is a schematic diagram of a reflection coefficient curve of the antenna before and after the inductance value is adjusted according to an embodiment of the present application
  • FIG15 is a schematic diagram of the positions of the reflection coefficients of the front and rear antennas on the Smith chart after inductance adjustment provided by an embodiment of the present application;
  • FIG16 is a process diagram of a method for controlling a terminal antenna provided in an embodiment of the present application.
  • 17 is a schematic diagram of the structure of a control device for a terminal antenna provided in an embodiment of the present application.
  • FIG. 18 is a schematic diagram of the structure of another terminal antenna control device provided in an embodiment of the present application.
  • words such as “first” and “second” are used to distinguish the same items or similar items with substantially the same functions and effects.
  • the first value and the second value are only used to distinguish different values, and do not limit their order.
  • words such as “first” and “second” do not limit the quantity and execution order, and words such as “first” and “second” do not necessarily limit them to be different.
  • At least one refers to one or more
  • plural refers to two or more.
  • And/or describes the association relationship of associated objects, indicating that three relationships may exist.
  • a and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone, where A and B can be singular or plural.
  • the character “/” generally indicates that the objects associated before and after are in an “or” relationship.
  • At least one of the following” or similar expressions refers to any combination of these items, including any combination of single or plural items.
  • At least one of a, b, or c can represent: a, b, c, a-b, a--c, b-c, or a-b-c, where a, b, c can be single or multiple.
  • the terminal device in the embodiments of the present application may also be referred to as: user equipment (UE), mobile station (MS), mobile terminal (MT), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication equipment, user agent or user device, etc.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • access terminal user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication equipment, user agent or user device, etc.
  • Terminal equipment can be a device that provides voice/data connectivity to users, such as handheld devices with wireless connection functions, vehicle-mounted devices, etc.
  • some examples of terminal equipment include: mobile phones, tablet computers, laptops, PDAs, mobile internet devices (MID), Wearable devices, virtual reality (VR) devices, augmented reality (AR) devices, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical surgery, wireless terminals in smart grids, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop (WLL) stations, personal digital assistants (PDAs), handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in 5G networks or terminal devices in future evolved public land mobile networks (PLMNs), etc., and the present application is not limited to this.
  • MID mobile internet devices
  • VR virtual reality
  • AR augmented reality
  • the network device involved in the present application can be a device that communicates with a terminal device.
  • the network device can also be called an access network device or a wireless access network device. It can be a transmission reception point (TRP), an evolved NodeB (eNB or eNodeB) in an LTE system, a home base station (for example, home evolved NodeB, or home Node B, HNB), a baseband unit (BBU), or a wireless controller in a cloud radio access network (CRAN) scenario, or the network device can be a relay station, an access point, a vehicle-mounted device, a wearable device, a network device in a 5G network, or a network device in a future evolved PLMN network, etc.
  • TRP transmission reception point
  • eNB or eNodeB evolved NodeB
  • HNB home evolved NodeB
  • BBU baseband unit
  • CRAN cloud radio access network
  • the network device can be a relay station, an access point, a vehicle-mounted device, a
  • the above network devices can also be urban base stations, micro base stations, pico base stations, femto base stations, etc., and the present application does not limit this.
  • the terminal device transmits and receives signals through the antenna.
  • the process of the antenna transmitting and receiving signals is the process of the antenna receiving or transmitting electromagnetic waves.
  • the terminal device transmits electromagnetic waves through the antenna, if a human body is close to the terminal device, the electromagnetic radiation generated by the terminal device will have a certain impact on the human body.
  • the application scenario involved in the embodiment of this application is introduced below in conjunction with Figure 1.
  • FIG1 is a schematic diagram of an application scenario 100 of an embodiment of the present application.
  • a terminal device 101 communicates with a network device 102, specifically, the terminal device 101 sends information to the network device 102, or the terminal device 101 receives information from the network device 102.
  • the antenna in the terminal device 101 will emit or receive electromagnetic waves and generate electromagnetic radiation. Since a person holds the terminal device 101, part of the electromagnetic radiation will be absorbed by the human body, thereby affecting some performance parameters of the antenna in the terminal device 101. At the same time, the electromagnetic radiation absorbed by the human body will also affect human health.
  • FIG. 1 is only an example of an application scenario of the embodiment of the present application, and the embodiment of the present application can be applied to but not limited to the above application scenarios.
  • the product form and quantity of the terminal device 101 and the network device 102 shown in FIG. 1 are only exemplary, and more or less quantities belong to the protection scope of the present application, and the present application does not make specific restrictions on the product form of the terminal device 101 and the network device 102.
  • SAR is usually used to measure the impact of electromagnetic radiation generated by terminal equipment on the human body.
  • SAR refers to the amount of radio frequency energy absorbed by the human body. The lower the SAR value, the less impact the electromagnetic radiation generated by the terminal equipment has on the human body.
  • SAR regulations of different countries can be different or the same.
  • the SAR regulations specify the value that the SAR of the terminal equipment cannot exceed. For example, when the SAR regulations specify 2W/kg-whole body exposure, the limit value of SAR for whole body exposure is 2W/kg.
  • SAR detection devices such as SAR sensors are usually used to detect the use scenarios of antennas in terminal devices.
  • the antenna in the terminal device is usually power-backed, that is, the transmit power of the antenna is reduced to reduce the SAR of the terminal device.
  • Power backoff of the antenna in the terminal device is usually achieved by adjusting the RF circuit connected to the antenna.
  • the RF circuit connected to the antenna is connected to multiple antennas, the transmit power of the multiple antennas will all be reduced.
  • an embodiment of the present application provides a control method for a terminal antenna.
  • the embodiment of the present application can recognize the approach of a human body without changing the RF conducted power.
  • the conducted power is no longer reduced.
  • the purpose of reducing the SAR value is achieved by adjusting the state of the antenna itself and increasing the reflection coefficient of the antenna port.
  • FIG2 is a flow chart of a method 200 for controlling a terminal antenna provided in an embodiment of the present application.
  • the method 200 may be applicable to the above-mentioned application scenario 100.
  • the method 200 comprises the following steps:
  • the antenna in the embodiment of the present application can be used to transmit and/or receive electromagnetic wave signals.
  • the reflection coefficient of the antenna (represented by ⁇ in this article) is a value between 0 and 1, that is, 0 ⁇ 1.
  • the real-time reflection coefficient refers to the instantaneous reflection coefficient of the antenna. For example, when a human body approaches the antenna, the real-time reflection coefficient refers to the reflection coefficient of the antenna detected by the terminal device after the human body approaches the antenna.
  • S202 Determine whether the antenna is in a human body usage scenario based on the real-time reflection coefficient.
  • the human body usage scenario refers to a scenario when a human body uses a terminal device, that is, a scenario when a human body is close to an antenna in the terminal device.
  • the antenna is not in human use, it means that the distance between the human body and the antenna is far, which will not affect the antenna's transmission performance, that is, the antenna is in FS state. At this time, it has been determined that the electromagnetic radiation generated by the terminal device will not affect the human body, and the antenna only needs to maintain its current state.
  • the first preset threshold may be a SAR value specified in SAR regulations, such as 2W/kg.
  • SAR regulations such as 2W/kg.
  • the terminal device may determine whether the amount of radio frequency energy absorbed by the human body is excessive, that is, determine the radio frequency energy absorbed by the human body by detecting the SAR value of the antenna in the terminal device. It should be understood that in the embodiment of the present application, the SAR of the terminal device is equivalent to the SAR of the antenna in the terminal device.
  • the detected SAR of the antenna is less than the first preset threshold, it means that the SAR of the antenna meets the SAR regulatory requirements, and there is no need to adjust the current state of the antenna.
  • the adjustable device includes capacitors and/or inductors.
  • the SAR is greater than or equal to the first preset threshold, it means that the SAR of the antenna of the terminal device does not meet the SAR regulatory requirements and the SAR needs to be reduced.
  • Reducing the SAR of the antenna can be achieved by increasing the reflection coefficient of the transmission frequency band of the antenna.
  • Increasing the reflection coefficient of the transmission frequency band of the antenna can be achieved by adjusting the adjustable device in the antenna.
  • the adjustable device of the antenna can be a capacitor and/or an inductor, and the number of capacitors and inductors can be one or more.
  • the adjustable device of the antenna may also include a switch, which is not specifically limited in the embodiments of the present application.
  • the control method of the terminal antenna increases the reflection coefficient of the antenna's transmission frequency band by adjusting the adjustable device in the antenna, thereby reducing the SAR of the antenna.
  • This method can not only reduce the SAR of the antenna and reduce the impact of the electromagnetic radiation generated by the terminal device on the human body, but also does not require power backoff of the antenna, so that the above method will not affect the wireless transmission performance of the remaining antennas except the antenna.
  • the above S202 can be implemented in the following manner: calculate the distance difference between the real-time reflection coefficient and the free space FS reflection coefficient of the antenna on the Smith chart; determine whether the distance difference is greater than or equal to a second preset threshold, if the distance difference is greater than the second preset threshold, determine that the antenna is in a human body usage scenario.
  • the terminal device can determine a first coordinate point of the real-time reflection coefficient on the Smith chart and a second coordinate point of the FS reflection coefficient of the antenna on the Smith chart, and calculate the distance between the first coordinate point and the second coordinate point, and determine the distance as the above-mentioned distance difference.
  • the Smith chart is a calculation diagram of a family of circles of equivalent values of normalized input impedance (or admittance) plotted on a reflection system dispersion plane, and the reflection coefficient of an antenna can be represented on the Smith chart.
  • the reflection coefficient of a point closer to the center of the circle is closer to 0; the reflection coefficient of a point farther from the center of the circle is closer to 1.
  • the reflection coefficient of a point on the circumference of the Smith chart is 1, and the reflection coefficient of the center of the circle is 0.
  • the reflection coefficient of an antenna can be any value between 0 and 1.
  • FIG3 is a schematic diagram of the positions of different reflection coefficients on the Smith chart provided in an embodiment of the present application.
  • point O represents the coordinate point of the reflection coefficient of the antenna in the FS state on the Smith chart, that is, the second coordinate point mentioned above.
  • the reflection coefficient of the antenna changes, and the antenna reflection coefficient at this time is called the real-time reflection coefficient.
  • the position of the real-time reflection coefficient in the Smith chart will be offset compared to the position of the FS transmission coefficient of the antenna in the Smith chart, corresponding to point I in FIG3, that is, the first coordinate point mentioned above.
  • the embodiment of the present application uses the distance between the first coordinate point and the second coordinate point to determine whether the antenna is in a human body usage scenario.
  • the second preset threshold is the value of the distance between the first coordinate point and the second coordinate point.
  • the distance between the first coordinate point and the second coordinate point is greater than or equal to the second preset threshold, it means that the human body is close to the antenna, which has a greater impact on the antenna, and the antenna is in a human body usage scenario. Otherwise, it means that the human body is far away from the antenna, the wireless performance of the antenna is less affected by the human body, and the antenna is in the FS state.
  • the terminal device can further determine the distance between the human body and the antenna according to the distance between the first coordinate point and the second coordinate point.
  • the SAR is usually tested in two scenarios: 5mm distance between the antenna and the human body and 0mm distance between the antenna and the human body.
  • the SAR regulations have different requirements for the SAR in the two scenarios: 5mm distance between the antenna and the human body and 0mm distance between the antenna and the human body.
  • the position of the reflection coefficient of the antenna detected in the Smith chart is the third coordinate point
  • the position of the reflection coefficient of the antenna detected in the Smith chart is the fourth coordinate point.
  • the distance between the first coordinate point and the second coordinate point is L3
  • the distance between the third coordinate point and the second coordinate point is L1
  • the distance between the fourth coordinate point and the second coordinate point is L2.
  • L1-a1 ⁇ L3 ⁇ L1+a1 the distance between the antenna and the human body is 5mm, and 0 ⁇ a1 ⁇ L1.
  • L2-a2 ⁇ L3 ⁇ L2+a2 the distance between the antenna and the human body is 0mm
  • a1 and a2 are preset values.
  • the structure of the antenna in the above method 200 is described in detail below with reference to FIG. 4 .
  • Fig. 4 is a schematic diagram of the structure of an antenna 400 provided in an embodiment of the present application.
  • the antenna 400 includes: an antenna panel 401, a feeding port 402 and a switch tuning position 403.
  • the feeding port 402 is used to feed current.
  • the switch tuning position 403 is used to tune the resonant frequency of the antenna.
  • the real-time reflection coefficient of the antenna may be detected by a radio frequency circuit 500 as shown in FIG. 5 .
  • FIG5 is a schematic diagram of the structure of a radio frequency circuit 500 provided in an embodiment of the present application.
  • the radio frequency circuit 500 includes an integrated baseband chip (system on a chip, SOC) 506, a radio frequency integrated circuit (RFIC) chip 501, a power amplifier 502, a low noise amplifier 503, a switch 504, and a coupler 505.
  • SOC system on a chip
  • RFIC radio frequency integrated circuit
  • the SOC 506 is connected to one end of the RFIC chip 501
  • the other end of the RFIC chip 501 is connected to the power amplifier 502 and the low noise amplifier 503
  • the other ends of the power amplifier 502 and the low noise amplifier 503 are connected to the switch 504, and the other end of the switch 504 is connected to the antenna 400.
  • the coupler 505 is used to detect the incident power and the reflected power of the antenna 400, and send the detected reflected power and incident power to the RFIC chip 501.
  • the RFIC chip 501 is used to receive the incident power and reflected power detected by the coupler 505, calculate the reflection coefficient of the antenna 400 according to the received incident power and reflected power, and send the reflection coefficient to the SOC 506.
  • the SOC 506 has the functions of integrating baseband chips, CPUs, graphics processors, embedded neural network processors (neural-network processing units, NPU) and other chips, and is used to process the received data and control the capacitance and/or inductance in the adjustment circuit.
  • Figure 5 is only an example of a radio frequency circuit provided for the implementation of the present application.
  • the devices in the radio frequency circuit are only exemplary, and more or fewer devices fall within the protection scope of the present application.
  • the radio frequency circuit 500 may also include filters, frequency converters, etc., and the radio frequency circuit 500 may also include more antennas and/or branch antennas. The embodiments of the present application do not limit this.
  • Fig. 6 is a schematic diagram of a reflection coefficient and efficiency curve of an antenna provided in an embodiment of the present application. As shown in Fig. 6, curve 601 is a reflection coefficient curve of the antenna, and curve 602 is an efficiency curve of the antenna.
  • the ordinate corresponding to the reflection coefficient curve 601 is a value related to the reflection coefficient detected in the above-mentioned RF circuit 500, which is 10*lg
  • the resonant frequency of the antenna when the resonant frequency of the antenna is operating at 1.75 GHz, on the reflection coefficient curve 601 of the antenna, the value related to the reflection coefficient is -15.716, and the antenna The reflection coefficient is the lowest, and on the antenna efficiency curve 602, the antenna efficiency is the highest.
  • the B3 frequency band refers to a specific frequency band of the antenna uplink/downlink.
  • the B3 frequency band can refer to: uplink frequency band 1.710-1.785GHz; downlink frequency band 1.805-1.880GHz. That is, the frequency band in which the antenna transmits electromagnetic waves to the network device is 1.710-1.785GHz; the frequency band in which the antenna receives electromagnetic waves emitted by the network device is 1.805-1.880GHz.
  • Figure 7 is a schematic diagram of the current distribution of the antenna 400 provided in an embodiment of the present application.
  • the arrow 404 in Figure 7 is used to indicate the direction of the current inside the different components of the antenna 400.
  • the terminal device can determine whether the antenna is in a human body usage scenario based on the reflection coefficient detected by the above-mentioned RF circuit 500.
  • the human body usage scenario is described in detail below in conjunction with Figure 8.
  • FIG8 is a schematic diagram of an antenna provided in an embodiment of the present application in a human body use scenario.
  • the antenna may be the antenna 400 as shown in FIG4 .
  • Scenario (a) of FIG8 shows a schematic diagram of an antenna in a human body use scenario when the distance between the antenna and the human body is 5 mm.
  • Scenario (b) of FIG8 shows a schematic diagram of an antenna in a human body use scenario when the distance between the antenna and the human body is 0 mm.
  • the SAR in two scenarios where the distance between the antenna and the human body is 5 mm and the distance between the antenna and the human body is 0 mm, is usually tested to test whether the terminal device meets the requirements of SAR regulations.
  • FIG9 is a schematic diagram of the position of the antenna reflection coefficient on the Smith chart in different scenarios provided by an embodiment of the present application.
  • point A is the reflection coefficient of the antenna when the antenna is in the FS state
  • point B is the reflection coefficient of the antenna when the distance between the antenna and the human body is 5 mm
  • point C is the reflection coefficient of the antenna when the distance between the antenna and the human body is 0 mm.
  • the reflection coefficient of the antenna will continue to change as the scene in which the antenna is located and the distance between the human body and the antenna change.
  • the embodiment of the present application adjusts the value of the capacitor and/or inductor in the antenna, thereby increasing the reflection coefficient of the antenna's transmission frequency band, so that the SAR value of the antenna is reduced.
  • its uplink frequency band and downlink frequency band are determined. Exemplarily, it is assumed that the uplink frequency band of the antenna is 1.710-1.785GHz; the downlink frequency band is 1.805-1.880GHz.
  • the uplink frequency band is the frequency band in which the antenna transmits signals, which involves the transmission performance of the antenna; the downlink frequency band is the frequency band in which the antenna receives signals, which involves the receiving performance of the antenna.
  • the SAR of the antenna only involves the process of the antenna transmitting signals, that is, only considering the process of the antenna transmitting signals, the SAR of the antenna meets the SAR regulatory requirements.
  • the resonant frequency of the antenna can be adjusted by adjusting the adjustable device of the antenna, so that the reflection coefficient of the antenna changes when the uplink frequency band and downlink frequency band of the antenna remain unchanged. If the reflection coefficient of the uplink frequency band of the antenna increases, the SAR of the antenna decreases.
  • the SOC 506 in the RF circuit 500 shown in FIG5 can be used to adjust the adjustable device of the antenna, thereby increasing the reflection coefficient of the transmission frequency band of the antenna.
  • the SOC 506 can adjust the adjustable device of the antenna through the mobile industry processor interface (MIPI)/port expander (GPIO), increase the reflection coefficient of the transmission frequency band of the antenna, and thus reduce the SAR of the antenna.
  • MIPI mobile industry processor interface
  • GPIO port expander
  • the terminal device may increase the transmission coefficient of the antenna in the transmission frequency band by adjusting the capacitance value of the antenna.
  • the terminal device adjusts the capacitance value of the antenna from a first value to a second value to increase the reflection coefficient of the antenna's transmission frequency band, thereby reducing the SAR of the antenna, wherein the second value is less than the first value.
  • the first value and the second value may be, for example, 1.4 pF, 0.8 pF, etc.
  • FIG10 is a schematic diagram of capacitance adjustment provided by an embodiment of the present application.
  • 1 is the feeding port of the antenna
  • 3 is the switch tuning position of the antenna.
  • the terminal device can adjust the capacitance value of the antenna from 1.4 pF to 0.8 pF through the RF circuit 500 shown in FIG5 .
  • FIG 11 is a schematic diagram of the reflection coefficient curve of the antenna before and after the capacitance value is adjusted according to an embodiment of the present application.
  • Curve 1101 is the reflection coefficient curve of the antenna when the capacitance in the antenna is 1.4pF
  • curve 1102 is the reflection coefficient curve of the antenna when the capacitance in the antenna is 0.8pF.
  • the reflection coefficient curve of the antenna will change when the capacitance value in the antenna is reduced.
  • the reflection coefficient of the antenna corresponding to each frequency increases accordingly, thereby increasing the reflection coefficient of the antenna in the uplink frequency band.
  • the RF circuit 500 shown in FIG. 5 may be used to detect the reflection coefficient of the antenna before and after the capacitance value is adjusted and in scenarios where the human body is at different distances from the antenna. The detection results are shown in FIG. 12 .
  • FIG12 is a schematic diagram of the position of the reflection coefficient of the antenna on the Smith chart before and after the capacitance adjustment provided by the embodiment of the present application.
  • point B is the position of the reflection coefficient of the antenna on the Smith chart when the capacitance is 1.4pF and the human body is 5mm away from the antenna
  • point E is the position of the reflection coefficient of the antenna on the Smith chart when the capacitance is 0.8pF and the human body is 5mm away from the antenna
  • point C is the position of the reflection coefficient of the antenna on the Smith chart when the capacitance is 1.4pF and the human body is 0mm away from the antenna
  • point F is the position of the reflection coefficient of the antenna on the Smith chart when the capacitance is 0.8pF and the human body is 0mm away from the antenna.
  • Table 1 The difference of SAR and conducted power of the antenna before and after capacitance adjustment
  • FIG. 10 is only an example of the terminal device increasing the antenna reflection coefficient by adjusting the capacitance value.
  • the terminal device may adjust the capacitance value according to the position of the real-time reflection coefficient of the antenna on the Smith chart. As well as the internal circuit structure of the antenna, the capacitance value in the antenna is adjusted. For example, when the antenna is connected in series with a capacitor and the real-time reflection coefficient of the antenna is above the pure resistance line on the Smith chart, the terminal device can increase the capacitance value of the capacitor to increase the reflection coefficient of the antenna's transmission frequency band.
  • the above-mentioned pure resistance line is a straight line passing through the center of the circle in the Smith chart.
  • the terminal device may increase the reflection coefficient of the transmission frequency band of the antenna by adjusting the inductance value of the antenna.
  • the terminal device adjusts the inductance value of the antenna from the third value to the fourth value to increase the reflection coefficient of the transmission frequency band of the antenna, thereby reducing the SAR of the antenna, wherein the fourth value is less than the third value.
  • the third value and the fourth value may be, for example, 4 nanohenry (nH), 6nH, etc.
  • FIG13 is a schematic diagram of inductance adjustment provided in an embodiment of the present application.
  • 1 is the feeding port of the antenna
  • 3 is the switch tuning position of the antenna.
  • the terminal device can adjust the inductance 1 of the antenna from 7nH to 4.3nH and the inductance 2 from 22nH to 6nH through the RF circuit 500 shown in FIG5 . After the inductance value of the antenna becomes smaller, its reflection coefficient curve changes as shown in FIG14 .
  • FIG14 is a schematic diagram of the reflection coefficient curve of the antenna before and after the inductance value is adjusted according to an embodiment of the present application.
  • Curve 1401 is the reflection coefficient curve of the antenna when the inductance 1 in the antenna is 7nH and the inductance 2 is 22nH;
  • Curve 1402 is the reflection coefficient curve of the antenna when the inductance 1 in the antenna is 4.3nH and the inductance 2 in the antenna is 6nH. It can be seen that by adjusting the inductance value in the antenna, the reflection coefficient curve of the antenna changes, and the resonant frequency band of the antenna is shifted toward the receiving direction as a whole.
  • the uplink frequency band of the antenna is 1.710-1.785GHz
  • the reflection coefficient of the antenna corresponding to each frequency increases accordingly, thereby increasing the reflection coefficient of the antenna and reducing the SAR in the uplink frequency band.
  • the downlink frequency band of the antenna is 1.805-1.880GHz
  • the reflection coefficient of the antenna corresponding to each frequency decreases, so that the reflection coefficient of the antenna decreases in the downlink frequency band of the antenna.
  • the reflection coefficient is reduced, making the antenna's receiving performance better. Therefore, by adjusting the inductance value in the antenna, not only the SAR of the antenna is reduced, but also the receiving performance of the antenna is further improved.
  • the RF circuit 500 shown in FIG. 5 may be used to detect the reflection coefficient of the antenna before and after the inductance value is adjusted and in scenarios where the human body is at different distances from the antenna. The detection results are shown in FIG. 15 .
  • FIG15 is a schematic diagram of the position of the reflection coefficient of the antenna on the Smith chart before and after the inductance adjustment provided by the embodiment of the present application.
  • point B is the position of the reflection coefficient of the antenna on the Smith chart when the inductance 1 in the antenna is 7nH, the inductance 2 is 22nH, and the human body is 5mm away from the antenna
  • point M is the position of the reflection coefficient of the antenna on the Smith chart when the inductance 1 in the antenna is 4.3nH, the inductance 2 is 6nH, and the human body is 5mm away from the antenna
  • point C is the position of the reflection coefficient of the antenna on the Smith chart when the inductance 1 in the antenna is 7nH, the inductance 2 is 22nH, and the human body is 0mm away from the antenna
  • point N is the position of the reflection coefficient of the antenna on the Smith chart when the inductance 1 in the antenna is 4.3nH, the inductance 2 is 6nH, and the human body is 0mm away from the antenna
  • the terminal device reduces the SAR of the antenna without affecting the conducted power of the antenna.
  • FIG. 13 above is only an example of a terminal device increasing the antenna reflection coefficient by adjusting the inductance value.
  • the terminal device may adjust the inductance value in the antenna according to the position of the real-time reflection coefficient of the antenna on the Smith chart and the internal circuit structure of the antenna. Therefore, in different situations, the terminal device may also increase the reflection coefficient of the antenna's transmission frequency band by increasing the inductance value in the antenna.
  • the terminal device can increase the reflection coefficient of the antenna's transmission frequency band by adjusting the capacitance and inductance in the antenna. That is, the terminal device can adjust both the capacitance and inductance of the antenna to change the capacitance and inductance, which will not be described in detail in the embodiments of the present application.
  • the terminal device can increase the reflection coefficient of the antenna's transmission frequency band and thereby reduce the SAR of the antenna by adjusting the capacitance value of the antenna from a first value to a second value and the inductance value from a third value to a fourth value, wherein the second value is smaller than the first value and the fourth value is smaller than the third value.
  • the number of capacitors and inductors of the antenna is only exemplary, and more or less numbers are all within the protection scope of this application.
  • the terminal device can adjust all the capacitors and/or all the inductors in the antenna, and can also adjust some of the capacitors and/or some of the inductors.
  • the number of inductors of the antenna can be 3 or another number, and the number of inductors to be adjusted can be 2 or another number.
  • the capacitance values and inductance values in Figures 10 and 13 are also exemplary. The capacitance values and inductance values of the antenna can be adjusted to other values, and the embodiments of this application are not limited to this.
  • Fig. 16 is a schematic diagram of a process of a terminal antenna control method provided in an embodiment of the present application. As shown in Fig. 16, the terminal antenna control method includes 5 processes: process 1, process 2, process 3, process 4, and process 5.
  • the radio frequency circuit in the terminal device detects the real-time reflection coefficient of the antenna in the terminal device at specific time periods.
  • process 1 the human body approaches and uses the terminal device.
  • process 2 the real-time reflection coefficient of the antenna is detected by the radio frequency circuit in the terminal device, and through data analysis, it is determined that the antenna is in the human body use scenario at this time.
  • process 3 the SAR value of the antenna is detected.
  • the SAR of the antenna is 2W/kg, which is greater than the first preset threshold of 2W/kg, so the SAR of the antenna needs to be further reduced.
  • process 4 the logic state of the antenna is adjusted by the radio frequency circuit of the antenna, so that the capacitance value in the antenna is adjusted from 1.4pF to 0.8pF.
  • FIG17 is a schematic diagram of the structure of a terminal antenna control device 1700 provided in an embodiment of the present application.
  • the device 1700 includes: an acquisition module 1701 and a processing module 1702 .
  • the apparatus 1700 is used to implement the steps corresponding to the terminal device in the above method 200.
  • An acquisition module 1701 is used to acquire a real-time reflection coefficient of an antenna of a terminal device
  • the processing module 1702 is used to determine whether the antenna is in a human body usage scenario based on the real-time reflection coefficient; if the antenna is in a human body usage scenario, determine whether the specific absorption ratio SAR of the antenna is greater than or equal to a first preset threshold; if the SAR is greater than or equal to the first preset threshold, adjust the adjustable device of the antenna to increase the reflection coefficient of the antenna's transmission frequency band, and the adjustable device includes a capacitor and/or an inductor.
  • the processing module 1702 is specifically used to: calculate the distance difference between the real-time reflection coefficient and the free space FS reflection coefficient of the antenna on the Smith chart; and determine whether the antenna is in a human body usage scenario based on the distance difference.
  • the processing module 1702 is specifically used to: determine a first coordinate point of the real-time reflection coefficient on the Smith chart; determine a second coordinate point of the FS reflection coefficient of the antenna on the Smith chart; calculate the distance between the first coordinate point and the second coordinate point, and determine the distance as the difference between the real-time reflection coefficient and the FS reflection coefficient of the antenna on the Smith chart.
  • the processing module 1702 is specifically configured to: when the difference is greater than or equal to a second preset threshold, determine that the antenna is in a human body usage scenario.
  • the processing module 1702 is further configured to: if the antenna is not in a human body usage scenario, determine that the antenna is in the FS state, and maintain the current state of the antenna.
  • the processing module 1702 is further configured to: if the SAR is less than a first preset threshold, maintain the current state of the antenna.
  • the device 1700 here is embodied in the form of a functional module.
  • the term "module” here may refer to an application specific integrated circuit (ASIC), an electronic circuit, a processor (such as a shared processor, a dedicated processor or a group processor, etc.) and a memory for executing one or more software or firmware programs, a combined logic circuit and/or other suitable components that support the described functions.
  • ASIC application specific integrated circuit
  • the device 1700 can be specifically a terminal device in the above-mentioned embodiment, and the device 1700 can be used to execute the various processes and/or steps corresponding to the terminal device in the above-mentioned method embodiment. To avoid repetition, it will not be repeated here.
  • the above-mentioned device 1700 has the function of implementing the corresponding steps executed by the SOC in the above-mentioned method; the above-mentioned function can be implemented by hardware, or by hardware executing the corresponding software implementation.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the above-mentioned processing module 1702 may include a determination module and an adjustment module.
  • the determination module can be used to implement the various steps and/or processes for performing the determination action corresponding to the above-mentioned processing module, and the adjustment module can be used to implement the various steps and/or processes for performing the adjustment action corresponding to the above-mentioned processing module.
  • the determination module and the adjustment module can be replaced by the SOC to respectively perform the relevant processing operations in each method embodiment.
  • the device 1700 in Fig. 17 may also be a chip or a chip system, such as a SOC.
  • the processing module 1702 may be a transceiver circuit of the chip, which is not limited here.
  • FIG18 shows a schematic structural diagram of another terminal antenna control device 1800 provided in an embodiment of the present application.
  • the device 1800 includes a processor 1801, a transceiver 1802, and a memory 1803.
  • the processor 1801, the transceiver 1802, and the memory 1803 communicate with each other through an internal connection path, the memory 1803 is used to store instructions, and the processor 1801 is used to execute the instructions stored in the memory 1803 to control the transceiver 1802 to send and/or receive signals.
  • the device 1800 can be specifically a terminal device in the above embodiment, and can be used to execute the various steps and/or processes corresponding to the terminal device in the above method embodiment.
  • the memory 1803 may include a read-only memory and a random access memory, and provide instructions and data to the processor. A part of the memory may also include a non-volatile random access memory.
  • the memory may also store information about the device type.
  • the processor 1801 may be used to execute instructions stored in the memory, and when the processor 1801 executes the instructions stored in the memory, the processor 1801 is used to execute the various steps and/or processes of the above method embodiment.
  • the transceiver 1802 may include a transmitter and a receiver, the transmitter may be used to implement the various steps and/or processes corresponding to the above transceiver for performing the sending action, and the receiver may be used to implement the various steps and/or processes corresponding to the above transceiver for performing the receiving action.
  • the processor may be a central processing unit (CPU), or other general-purpose processors, digital signal processors (DSP), application-specific integrated circuits (ASIC), field programmable gate arrays (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • CPU central processing unit
  • DSP digital signal processors
  • ASIC application-specific integrated circuits
  • FPGA field programmable gate arrays
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • each step of the above method can be completed by an integrated logic circuit of hardware in a processor or an instruction in the form of software.
  • the steps of the method disclosed in conjunction with the embodiment of the present application can be directly embodied as a hardware processor for execution, or a combination of hardware and software modules in a processor for execution.
  • the software module can be located in a mature storage medium in the art such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory or an electrically erasable programmable memory, a register, etc.
  • the storage medium is located in a memory, and the processor executes the instructions in the memory, and completes the steps of the above method in conjunction with its hardware. To avoid repetition, it is not described in detail here.
  • the present application also provides a computer-readable storage medium, which is used to store a computer program, and the computer program is used to implement the method shown in the above method embodiment.
  • the present application also provides a computer program product, which includes a computer program (also referred to as code or instruction).
  • a computer program also referred to as code or instruction.
  • the computer program runs on a computer, the computer can execute the method shown in the above method embodiment.
  • modules and algorithm steps of each example described in conjunction with the embodiments disclosed herein can be implemented in electronic hardware, or a combination of computer software and electronic hardware. Whether these functions are performed in hardware or software depends on the specific application and design constraints of the technical solution. Professional and technical personnel can use different methods to implement the described functions for each specific application, but such implementation should not be considered to be beyond the scope of this application.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the modules is only a logical function division. There may be other division methods in actual implementation, such as Multiple modules or components may be combined or integrated into another system, or some features may be ignored or not performed.
  • the coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or module, which may be electrical, mechanical or other forms.
  • modules described as separate components may or may not be physically separated, and the components shown as modules may or may not be physical modules, that is, they may be located in one place or distributed on multiple network modules. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional module in each embodiment of the present application may be integrated into one processing module, or each module may exist physically separately, or two or more modules may be integrated into one module.
  • the functions are implemented in the form of software function modules and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application can be essentially or partly embodied in the form of a software product that contributes to the prior art.
  • the computer software product is stored in a storage medium and includes several instructions for a computer device (which can be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), disk or optical disk, and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Support Of Aerials (AREA)

Abstract

本申请提供了一种终端天线的控制方法和装置。该方法包括:获取终端设备的天线的实时反射系数;根据所述实时反射系数与所述天线的自由空间FS反射系数在史密斯圆图上位置的距离差值,判断所述天线是否处于人体使用场景;若所述天线处于人体使用场景,确定所述天线的特定吸收比SAR是否大于或等于第一预设阈值;若所述SAR大于或等于所述第一预设阈值,则调节所述天线的可调器件,以增大所述天线的发射频段的反射系数,所述可调器件包含电容和/或电感。

Description

终端天线的控制方法和装置
本申请要求于2022年08月23日提交中国国家知识产权局、申请号为202211009495.5、申请名称为“终端天线的控制方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及终端技术领域,尤其涉及一种终端天线的控制方法和装置。
背景技术
随着终端设备的不断发展与广泛使用,终端设备产生的电磁辐射对人体的影响受到了越来越多的关注。目前,通常采用特定吸收比(specific absorption rate,SAR)衡量终端设备产生的电磁辐射对人体的影响。SAR值越低,代表该终端设备产生的电磁辐射对于人体的影响越小。因此,通常对终端设备进行SAR测试,只有SAR值满足SAR法规的限制的终端设备才能进入市场销售。
为了使终端设备产生的电磁辐射满足SAR法规的限制,目前亟需提供一种方法,以降低终端设备的SAR值。
发明内容
本申请提供了一种终端天线的控制方法和装置,能够在不改变射频传导功率的情况下,通过识别人体靠近,在需要降SAR的时候,不再降低传导功率,而是通过调节天线自身的状态,增大天线端口反射系数,实现降低SAR值的目的。
第一方面,提供了一种终端天线的控制方法,该方法包括:获取终端设备的天线的实时反射系数;根据所述实时反射系数,判断所述天线是否处于人体使用场景;若所述天线处于人体使用场景,确定所述天线的特定吸收比SAR是否大于或等于第一预设阈值;若所述SAR大于或等于所述第一预设阈值,则调节所述天线的可调器件,以增大所述天线的发射频段的反射系数,所述可调器件包含电容和/或电感。
本申请提供的终端天线的控制方法,通过调节天线中的电容和/或电感的值,增大天线的发射频段的反射系数,进而降低天线的SAR。通过该方法无需降低天线的传导功率即可降低天线的SAR。
应理解,天线的反射系数为处于0~1之间的值。实时反射系数是指天线的即时反射系数。例如,当有人体靠近天线时,实时反射系数是指人体靠近天线后终端设备检测得到的天线的反射系数。
在第一方面的某些实现方式中,所述根据所述实时反射系数,判断所述天线是否处于人体使用场景,包括:计算所述实时反射系数与所述天线的自由空间FS反射系数在史密斯圆图上位置的距离差值;根据所述距离差值,判断所述天线是否处于人体使用场景。
应理解,天线的FS反射系数一般处于阻抗匹配状态,处于FS状态的天线具有较小的反射系数。随着人体靠近天线,人体会对天线的近场分布产生影响,天线的端口反射系数会发生变化,产生了人体靠近状态时的反射系数在史密斯圆图上的位置与FS状态时的反射系数在史密斯圆图上的位置的距离差。
在第一方面的某些实现方式中,所述计算所述实时反射系数与所述天线的自由空间FS反射系数在史密斯圆图上位置的距离差值,包括:确定所述实时反射系数在史密斯圆图上的第一坐标点;确定所述天线的FS反射系数在史密斯圆图上的第二坐标点;计算所述第一坐标点与所述第二坐标点之间的距离,并将所述距离确定为所述距离差值。
应理解,史密斯圆图是在反射系散平面上标绘有归一化输入阻抗(或导纳)等值圆族的计算图,天线的反射系数可以在史密斯圆图上进行表示。在史密斯圆图中,与圆心距离越近的坐标点的反射系数越接近0;离圆心越远的坐标点的反射系数越接近1。
在第一方面的某些实现方式中,所述根据所述距离差值,判断所述天线是否处于人体使用场景,包括:在所述距离差值大于或等于第二预设阈值的情况下,确定所述天线处于人体使用场景。
应理解,第二预设阈值为第一坐标点与第二坐标点之间的距离的值。
在第一方面的某些实现方式中,上述终端天线的控制方法还包括:若所述天线未处于人体使用场景,确定所述天线处于FS状态,并保持所述天线的当前状态。
应理解,若天线未处于人体使用状态,说明人体与天线之间的距离较远,不会对天线的发射性能产生影响,即天线处于FS状态。此时,已经确定终端设备产生的电磁辐射不会对人体造成影响,只需保持天线的当前状态即可。
在第一方面的某些实现方式中,上述终端天线的控制方法还包括:若所述SAR小于所述第一预设阈值,保持所述天线的当前状态。
应理解,若检测得到的天线的SAR小于第一预设阈值,说明天线的SAR符合SAR法规要求,此时无需调节天线的当前状态。
第二方面,提供了一种终端天线的控制装置,用于执行上述第一方面中任一种可能的实现方式中的方法。具体地,该装置包括用于执行上述第一方面中任一种可能的实现方式中的方法的模块。
第三方面,本申请提供了又一种终端天线的控制装置,包括处理器,该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面中任一种可能实现方式中的方法。可选地,该装置还包括存储器。可选地,该装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该装置为终端设备。当该装置为终端设备时,上述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该装置为配置于终端设备中的芯片。当该装置为配置于终端设备中的芯片时,上述通信接口可以是输入/输出接口。
第四方面,提供了一种处理器,包括:输入电路、输出电路和处理电路。所述处理电路用于通过所述输入电路接收信号,并通过所述输出电路发射信号,使得所述处理器执行上述第一方面中任一种可能实现方式中的方法。
在具体实现流程中,上述处理器可以为芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
第五方面,提供了一种处理装置,包括处理器和存储器。该处理器用于读取存储器中存储的指令,并可通过接收器接收信号,通过发射器发射信号,以执行上述第一方面中任一种可能实现方式中的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
在具体实现流程中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请对存储器的类型以及存储器与处理器的设置方式不做限定。
应理解,相关的数据交互流程例如发送指示信息可以为从处理器输出指示信息的流程,接收能力信息可以为处理器接收输入能力信息的流程。具体地,处理输出的数据可以输出给发射器,处理器接收的输入数据可以来自接收器。其中,发射器和接收器可以统称为收发器。
上述第五方面中的处理装置可以是一个芯片,该处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
第六方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行上述第一方面中任一种可能实现方式中的方法。
第七方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面中任一种可能实现方式中的方法。
附图说明
图1是本申请实施例的应用场景的示意图;
图2是本申请实施例提供的一种终端天线的控制方法的流程示意图;
图3是本申请实施例提供的不同反射系数在史密斯圆图上的位置示意图;
图4是本申请实施例提供的一种天线的结构示意图;
图5是本申请实施例提供的一种射频电路的结构示意图;
图6是本申请实施例提供的一种天线的反射系数及效率曲线示意图;
图7是本申请实施例提供的天线的电流分布示意图;
图8是本申请实施例提供的天线处于人体使用场景的示意图;
图9是本申请实施例提供的不同场景下天线反射系数于史密斯圆图上位置的示意图;
图10是本申请实施例提供的电容值调节示意图;
图11是本申请实施例提供的电容值调节前后天线的反射系数曲线示意图;
图12是本申请实施例提供的电容调节前后天线的反射系数于史密斯圆图上位置的示意图;
图13是本申请实施例提供的电感调节示意图;
图14是本申请实施例提供的电感值调节前后天线的反射系数曲线示意图;
图15是本申请实施例提供的电感调节前后天线的反射系数于史密斯圆图上位置的示意图;
图16是本申请实施例提供的一种终端天线的控制方法的过程示意图;
图17是本申请实施例提供的终端天线的控制装置的结构示意图;
图18是本申请实施例提供的另一种终端天线的控制装置的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。例如,第一数值和第二数值仅仅是为了区分不同的数值,并不对其先后顺序进行限定。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
需要说明的是,本申请实施例中,“示例性地”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性地”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性地”或者“例如”等词旨在以具体方式呈现相关概念。
本申请实施例中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a--c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
本申请实施例中的终端设备也可以称为:用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是一种向用户提供语音/数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端设备的举例包括:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、 可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请对此并不限定。
本申请涉及的网络设备可以是与终端设备通信的设备,该网络设备也可以称为接入网设备或无线接入网设备,它可以是传输接收点(transmission reception point,TRP),还可以是LTE系统中的演进型基站(evolved NodeB,eNB或eNodeB),还可以是家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,还可以是WLAN中的接入点(access point,AP),还可以是NR系统中的gNB,上述网络设备还可以是城市基站、微基站、微微基站、毫微微基站等等,本申请对此不做限定。
终端设备通过天线实现信号的收发,天线收发信号的过程即天线接收或者发射电磁波的过程。终端设备通过天线发射电磁波时,若有人体靠近该终端设备,终端设备产生的电磁辐射会对人体产生一定的影响。为了便于理解本申请,下面结合图1对本申请实施例所涉及的应用场景进行介绍。
图1为本申请实施例的应用场景100的示意图。如图1所示,终端设备101与网络设备102进行通信,具体可以是终端设备101向网络设备102发送信息,或者,终端设备101接收来自网络设备102的信息。这样,终端设备101中的天线会发射或接收电磁波,产生电磁辐射。由于人手持该终端设备101,会导致部分电磁辐射被人体吸收,进而导致终端设备101中的天线的部分性能参数受到影响,同时人体吸收的电磁辐射也会对人体健康产生影响。
应理解,图1仅是对本申请实施例的应用场景的示例,本申请实施例可以应用于但不限于上述的应用场景。并且,图1中所示的终端设备101、网络设备102的产品形态和数量仅是示例性的,更多或更少的数量均属于本申请的保护范畴,且本申请不对终端设备101、网络设备102的产品形态做具体限制。
目前,通常采用SAR衡量终端设备产生的电磁辐射对人体的影响,SAR是指人体吸收的射频能量的量,SAR值越低,代表该终端设备产生的电磁辐射对于人体的影响越小。终端设备进入市场销售前,通常要满足SAR法规的要求,即终端设备的SAR需要低于SAR法规中规定的SAR值。不同国家的SAR法规可以不同或者相同,SAR法规中规定了终端设备的SAR不能超过的值,例如,当SAR法规中规定2W/kg-全身暴露时,代表全身暴露的SAR的限值为2W/kg。
为了降低终端设备的电磁辐射对于人体的影响,降低终端设备的SAR,通常会采用SAR传感器等SAR检测设备检测终端设备中天线的使用场景,当有人体靠近终端设备中的天线时,通常会对终端设备中的天线进行功率回退,即降低天线的发射功率,以降低该终端设备的SAR。对终端设备中的天线进行功率回退通常通过调节与该天线连接的射频电路实现。然而,在与该天线连接的射频电路连接有多个天线的情况下,该多个天线的发射功率均会降低。
有鉴于此,本申请实施例提供一种终端天线的控制方法,在降低终端设备SAR时,无需进行功率回退,换句话说,本申请实施例能够在不改变射频传导功率的情况下,通过识别人体靠近,在需要降SAR的时候,不再降低传导功率,而是通过调节天线自身的状态,增大天线端口反射系数,实现降低SAR值的目的。
下面结合图2至图16对本申请实施例的终端天线的控制方法进行详细介绍,该方法可以由终端设备执行,也可以由终端设备中的芯片执行,本申请实施例对此不做具体限制。
图2为本申请实施例提供的一种终端天线的控制方法200的流程示意图。该方法200可以适用于上述的应用场景100。该方法200包括以下步骤:
S201、获取终端设备的天线的实时反射系数。
示例性地,本申请实施例中的天线可以用于发射和/或接收电磁波信号。天线的反射系数(本文用τ表示)为0到1之间的值,即0≤τ≤1。实时反射系数是指天线的即时反射系数。例如,当有人体靠近天线时,实时反射系数是指人体靠近天线后终端设备检测得到的天线的反射系数。
S202、根据实时反射系数,判断天线是否处于人体使用场景。
人体使用场景即人体使用终端设备时的场景,即人体靠近终端设备中的天线的场景。
S203、若天线未处于人体使用场景,确定天线处于自由空间(free space,FS)状态,并保持天线的当前状态,本方法的流程结束。
若天线未处于人体使用状态,说明人体与天线之间的距离较远,不会对天线的发射性能产生影响,即天线处于FS状态。此时,已经确定终端设备产生的电磁辐射不会对人体造成影响,只需保持天线的当前状态即可。
S204、若天线处于人体使用场景,确定天线的特定吸收比SAR是否大于或等于第一预设阈值。
示例性地,上述第一预设阈值可以是SAR法规中规定的SAR的值,例如,2W/kg等。当天线处于人体使用场景时,人体会吸收终端设备中天线的部分射频能量,从而对人体造成影响。此时,终端设备可以确定人体吸收的射频能量的量是否过多,即通过检测终端设备中天线的SAR值确定人体吸收的射频能量。应理解,本申请实施例中,终端设备的SAR等价于该终端设备中天线的SAR。
S205、若SAR小于第一预设阈值,保持天线的当前状态,本方法的流程结束。
若检测得到的天线的SAR小于第一预设阈值,说明天线的SAR符合SAR法规要求,此时无需调节天线的当前状态。
S206、若SAR大于或等于第一预设阈值,则调节天线的可调器件,以增大天线的 发射频段的反射系数,可调器件包含电容和/或电感。
具体而言,若SAR大于或等于第一预设阈值,说明终端设备的天线的SAR不满足SAR法规要求,需要降低SAR。降低天线的SAR,可以通过增大天线的发射频段的反射系数实现。增大天线的发射频段的反射系数可以通过调节天线中可调器件实现,天线的可调器件可以为电容和/或电感,电容和电感的数量可以为一个或多个。可选地,天线的可调器件还可以包括开关,本申请的实施例对此不做具体限定。
本申请实施例提供的终端天线的控制方法,通过调节天线中的可调器件,增大天线的发射频段的反射系数,进而降低天线的SAR。通过该方法不仅能够降低天线的SAR,减小终端设备产生的电磁辐射对于人体的影响,同时还无需对该天线进行功率回退,使得上述的方法不会影响除了该天线外的其余天线的无线发射性能。
作为一个可选的实施例,上述S202可以通过如下方式实现:计算实时反射系数与天线的自由空间FS反射系数在史密斯圆图上位置的距离差值;确定距离差值是否大于或等于第二预设阈值,若该距离差值大于第二预设阈值,则确定天线处于人体使用场景。
可以理解,当有人体靠近天线时,会对导致天线的反射系数发生变化,使得天线的实时反射系数不同于FS反射系数。
在一种可能的实现方式中,终端设备可以确定实时反射系数在史密斯圆图上的第一坐标点和天线的FS反射系数在史密斯圆图上的第二坐标点,并计算第一坐标点与第二坐标点之间的距离,将该距离确定为上述距离差值。
应理解,史密斯圆图是在反射系散平面上标绘有归一化输入阻抗(或导纳)等值圆族的计算图,天线的反射系数可以在史密斯圆图上进行表示。在史密斯圆图中,与圆心距离越近的点的反射系数越接近0;离圆心越远的点的反射系数越接近1。在史密斯圆图的圆周上的点的反射系数为1,圆心的反射系数为0,天线的反射系数可以为处于0和1之间的任意值。
下面结合图3对不同反射系数的点在史密斯圆图上的位置进行详细说明。
图3为本申请实施例提供的不同反射系数在史密斯圆图上的位置示意图。在图3中,O点表示天线在FS状态下的反射系数在史密斯圆图上的坐标点,即上述第二坐标点。当有人体靠近天线时,天线的反射系数发生变化,此时的天线反射系数称为实时反射系数。实时反射系数在史密斯圆图中的位置相比于该天线的FS发射系数在史密斯圆图中的位置会发生偏移,对应图3中的I点,即上述第一坐标点。当人体距离天线的距离越近时,人体对于天线的性能的影响越大,天线的反射系数变化程度越大,进而使得第一坐标点与第二坐标点之间的距离越远。因此,本申请实施例采用第一坐标点与第二坐标点之间的距离确定天线是否处于人体使用场景。
应理解,上述第二预设阈值为预设的第一坐标点与第二坐标点之间的距离的值。当第一坐标点与第二坐标点之间的距离大于或等于第二预设阈值时,说明人体距离天线较近,对天线的影响较大,天线处于人体使用场景。否则,则说明人体距离天线的距离较远,天线的无线性能受人体的影响较小,天线处于FS状态。
当天线处于人体使用状态时,进一步地,终端设备可以根据第一坐标点与第二坐标点之间的距离,确定人体与天线之间的距离。
应理解,在终端设备进入市场销售前,通常会检测天线与人体距离为5mm、天线与人体距离为0mm两种场景下的SAR。且SAR法规中对于天线与人体距离为5mm、天线与人体距离为0mm两种场景下的SAR的要求不同。
具体地,终端设备中的天线与人体距离为5mm时,检测得到的天线的反射系数在史密斯圆图中的位置为第三坐标点,终端设备中的天线与人体距离为0mm时,检测得到的天线的反射系数在史密斯圆图中的位置为第四坐标点。假设第一坐标点与第二坐标点之间的距离为L3,第三坐标点与第二坐标点之间的距离为L1,第四坐标点与第二坐标点之间的距离为L2。当L1-a1≤L3≤L1+a1时,天线与人体之间的距离为5mm,0≤a1≤L1。当L2-a2≤L3≤L2+a2时,天线与人体之间的距离为0mm,0≤a2≤L2。a1、a2为预设的值。
下面结合图4对上述方法200中的天线的结构进行详细说明。
图4为本申请实施例提供的一种天线400的结构示意图。如图4所示,天线400包括:天线面板401、馈电端口402和开关调谐位置403。馈电端口402用于馈入电流。开关调谐位置403用于调谐天线的谐振频率。
在一种可能的实现方式中,天线的实时反射系数可以通过如图5所示的射频电路500进行检测。
图5为本申请实施例提供的一种射频电路500的结构示意图。如图5所示,射频电路500包括集成基带芯片(system on a chip,SOC)506、射频集成电路(radio frequency integrated circuit,RFIC)芯片501、功率放大器502、低噪声放大器503、开关504以及耦合器505。其中,SOC 506与RFIC芯片501的一端连接,RFIC芯片501的另一端与功率放大器502和低噪声放大器503连接,功率放大器502和低噪声放大器503的另一端与开关504连接,开关504的另一端连接至天线400。耦合器505用于检测天线400的入射功率和反射功率,并将检测得到的反射功率和入射功率发送至RFIC芯片501。RFIC芯片501用于接收耦合器505检测到的入射功率和反射功率,并根据接收的入射功率和反射功率计算得到天线400的反射系数,并将该反射系数发送至SOC 506。SOC 506具有集合基带芯片、CPU、图形处理器、嵌入式神经网络处理器(neural-network processing units,NPU)等芯片的功能,用于对接收到的数据进行处理,并控制调节电路中的电容和/或电感。
应理解,图5仅是本申请实施提供的一种射频电路的示例,该射频电路中的器件仅是示例性的,更多或更少的器件均属于本申请的保护范畴,例如,射频电路500中还可以包括滤波器、变频器等,射频电路500中还可以包括更多的天线和/或分支天线,本申请实施例对此不作限定。
图6为本申请实施例提供的一种天线的反射系数及效率曲线的示意图。如图6所示,曲线601为天线的反射系数曲线,曲线602为天线的效率曲线。
在图6中,反射系数曲线601对应的纵坐标为与上述射频电路500中检测得到的反射系数相关的数值,该数值为10*lg|τ|,lg|τ|表示以10为底对|τ|取对数运算;效率曲线602对应的纵坐标为天线效率的对数,天线效率为天线辐射出去的功率和输入到天线的有效功率之比,是恒小于1的值。从图6中可以看出,当天线的谐振频率工作在1.75GHz时,在天线的反射系数曲线601上,与反射系数相关的数值为-15.716,天线 的反射系数最低,在天线的效率曲线602上,天线的效率最高。
当天线的频率工作在1.75GHz时,天线带宽可以有效覆盖B3频段。B3频段指天线上行/下行的一段特定的频段,例如,B3频段可以指:上行频段1.710-1.785GHz;下行频段1.805-1.880GHz。即天线向网络设备发射电磁波的频段为1.710-1.785GHz;天线接收网络设备发射的电磁波的频段为1.805-1.880GHz。此时,天线的电流分布可以如图7所示。图7为本申请实施例提供的天线400的电流分布示意图。图7中的箭头404用于表示天线400的不同部件内部的电流方向。
当人体靠近天线时,会对天线的性能产生影响,使得天线的部分性能参数发生变化。因此,当天线处于人体使用场景后,天线的反射系数会发生变化,进而使得终端设备可以根据天线的实时反射系数判断天线是否处于人体使用场景。在本申请实施例中,终端设备可以基于上述的射频电路500检测得到的反射系数,确定天线是否处于人体使用场景。下面结合图8对人体使用场景进行详细描述。
图8为本申请实施例提供的天线处于人体使用场景的示意图。如图8所示,天线可以为如图4所示的天线400。当人体靠近天线时,由于人体组织液中含有大量的电解质,因此会吸收部分射频能量,对天线的性能产生影响。图8的场景(a)示出了天线与人体距离为5mm时的天线处于人体使用场景的示意图。图8的场景(b)示出了天线与人体距离为0mm时的天线处于人体使用场景的示意图。在终端设备进入市场销售前,通常会检测天线与人体距离为5mm、天线与人体距离为0mm两种场景下的SAR,以测试该终端设备是否满足SAR法规的要求。
下面结合图9对不同场景下的天线的反射系数不同进行详细说明。
图9为本申请实施例提供的不同场景下天线反射系数于史密斯圆图上位置的示意图。如图9所示,点A为天线处于FS状态时天线的反射系数;点B为天线与人体之间的距离为5mm时天线的反射系数;点C为天线与人体之间的距离为0mm时天线的反射系数。从图中可以看出,随着天线所处的场景以及人体与天线之间距离的变化,天线的反射系数会不断变化。
本申请实施例通过调节天线中电容和/或电感的值,进而增大天线的发射频段的反射系数,使得天线的SAR值降低。应理解,对于特定的天线,其上行频段、下行频段是确定的。示例性地,假设天线上行频段为1.710-1.785GHz;下行频段为1.805-1.880GHz。上行频段为天线发射信号的频段,涉及天线的发射性能;下行频段为天线接收信号的频段,涉及天线的接收性能。天线的SAR只涉及天线发射信号的过程,即只考虑天线在发射信号过程中,天线的SAR符合SAR法规要求。
对于天线的谐振频率,可以通过调节天线的可调器件进行调节,使得在天线的上行频段、下行频段不变的情况下,天线的反射系数发生变化。若天线上行频段的反射系数增大,则天线的SAR降低。
示例性地,可以采用如图5所示的射频电路500中的SOC 506调节天线的可调器件,进而增大天线的发射频段的反射系数。在该射频电路中,SOC 506可以通过移动产业处理器接口(mobile industry processor interface,MIPI)/端口扩展器(general purpose input output,GPIO)调节天线的可调器件,增大天线的发射频段的反射系数,进而降低天线的SAR。
在一种可能的实现方式中,终端设备可以通过调节天线的电容值,以增大天线的发射频段的发射系数。
示例性地,终端设备将天线的电容值由第一数值调节为第二数值,以增大天线的发射频段的反射系数,进而降低天线的SAR,其中,第二数值小于第一数值。第一数值、第二数值例如可以为1.4皮法(pF)、0.8pF等。
图10为本申请实施例提供的电容值调节示意图。如图10所示,图10中所示的电路中,1为天线的馈电端口,3为天线的开关调谐位置。终端设备可以通过如图5所示的射频电路500,将天线的电容值由1.4pF调节为0.8pF。
天线的电容值变小后,其反射系数曲线变化如图11所示。图11为本申请实施例提供的电容值调节前后天线的反射系数曲线示意图。曲线1101为天线中电容为1.4pF时的天线的反射系数曲线;曲线1102为天线中电容为0.8pF时的天线的反射系数曲线。从图11中可以看出,将天线中的电容值减小,天线的反射系数曲线会发生变化。示例性地,若天线的上行频段为1.710-1.785GHz,在调节天线的电容值后,每个频率下对应的天线的反射系数均相应增大,进而使得在该上行频段下,天线的反射系数增大。
示例性地,可以采用如图5所示的射频电路500对电容值调节前后、人体与天线不同距离的场景下的天线的反射系数进行检测,检测结果如图12所示。
图12为本申请实施例提供的电容调节前后天线的反射系数于史密斯圆图上位置的示意图。如图12所示,点B为电容为1.4pF,且人体距离天线5mm时,天线的反射系数于史密斯圆图上的位置;点E为电容为0.8pF,且人体距离天线5mm时,天线的反射系数于史密斯圆图上的位置;点C为电容为1.4pF,且人体距离天线0mm时,天线的反射系数于史密斯圆图上的位置;点F为电容为0.8pF,且人体距离天线0mm时,天线的反射系数于史密斯圆图上的位置。从图12中可以看出,点E相比与点B,点F相比于点C,其距离史密斯圆图中圆心的距离均增大,相应地,其距离史密斯圆图圆周的距离均减小,说明在调节天线中的电容值后,天线的发射频段的反射系数增大。
在本申请实施例中,不同谐振频率下,电容调节前后的天线的SAR及传导功率差值如表一所示。
表一电容调节前后天线的SAR及传导功率差值
从表一可以看出,随着天线中串联的电容值的降低,天线的SAR降低,同时,不会影响该天线的传导功率。
应理解,上述图10仅是终端设备通过调节电容值从而增大天线反射系数的一种示例,在不同的情况下,终端设备可以根据天线的实时反射系数在史密斯圆图上的位置, 以及天线的内部电路结构,对天线中的电容值进行调整。例如,当天线串联有一个电容,且天线的实时反射系数在史密斯圆图上的位置在纯电阻线上方时,则终端设备可以通过增大该电容的电容值,以使天线的发射频段的反射系数增大。上述纯电阻线为史密斯圆图中经过圆心的直线。
在另一种可能的实施方式中,终端设备可以通过调节天线的电感值,以增大天线的发射频段的反射系数。
示例性地,终端设备将天线的电感值由第三数值调节为第四数值,以增大天线的发射频段的反射系数,进而降低天线的SAR,其中,第四数值小于第三数值。第三数值、第四数值例如可以为4纳亨(nH)、6nH等。
图13为本申请实施例提供的电感调节示意图。如图13所示,图13中所示的电路中,1为天线的馈电端口,3为天线的开关调谐位置。示例性地,终端设备可以通过如图5所示的射频电路500,将天线的电感1从7nH调节至4.3nH,将电感2从22nH调节至6nH。天线的电感值变小后,其反射系数曲线变化如图14所示。
图14为本申请实施例提供的电感值调节前后天线的反射系数曲线示意图。曲线1401为天线中电感1为7nH、电感2为22nH时的天线的反射系数曲线;曲线1402为天线中电感1为4.3nH、电感2为6nH时的天线的反射系数曲线。可以看出,通过调节天线中的电感值,使得天线的反射系数曲线发生变化,天线的谐振频段整体向接收方向偏移。示例性地,若天线的上行频段为1.710-1.785GHz,在天线的电感1和电感2的电感值降低后,每个频率下对应的天线的反射系数均相应增大,进而使得在该上行频段下,天线的反射系数增大,SAR减小。同时,若天线的下行频段为1.805-1.880GHz,在调节天线的电感值后,每个频率对应的天线的反射系数均减小,使得在天线的下行频段中,天线的反射系数降低。
本领域的技术人员可以理解,天线的下行频段中,其反射系数降低,使得天线的接收性能更加优良。因此,通过调节天线中的电感值,不仅使得天线的SAR降低,同时还进一步提升了天线的接收性能。
示例性地,可以采用如图5所示的射频电路500对电感值调节前后、人体与天线不同距离的场景下的天线的反射系数进行检测,检测结果如图15所示。
图15为本申请实施例提供的电感调节前后天线的反射系数于史密斯圆图上位置的示意图。如图15所示,点B为天线中电感1为7nH、电感2为22nH,且人体距离天线5mm时,天线的反射系数于史密斯圆图上的位置;点M为天线中电感1为4.3nH、电感2为6nH,且人体距离天线5mm时,天线的反射系数于史密斯圆图上的位置;点C为天线中电感1为7nH、电感2为22nH,且人体距离天线0mm时,天线的反射系数于史密斯圆图上的位置;点N为天线中电感1为4.3nH、电感2为6nH,且人体距离天线0mm时,天线的反射系数于史密斯圆图上的位置。从图15中可以看出,点M相比与点B,点N相比于点C,其距离史密斯圆图中圆心的距离均增大,相应的,其距离史密斯圆图圆周的距离均减小,说明在调节天线中的电感值后,天线的发射频段的反射系数增大。
在不同谐振频率下,电感调节前后的天线的SAR及传导功率差值如表二所示。
表二电感调节前后天线的SAR及传导功率差值
从表二可以看出,终端设备通过调节天线中串联的电感值,天线的SAR降低,同时,不会影响该天线的传导功率。
应理解,上述图13仅是终端设备通过调节电感值从而增大天线反射系数的一种示例。在不同的情况下,终端设备可以根据天线的实时反射系数在史密斯圆图上的位置,以及天线的内部电路结构,对天线中的电感值进行调整。因此,在不同的情况下,终端设备也可能通过增大天线中的电感值,增大天线的发射频段的反射系数。
在又一种可能的实现方式中,终端设备可以通过调节天线中的电容值和电感值,以增大天线的发射频段的反射系数。即终端设备可以对天线的电容和电感均进行调节,改变电容值和电感值,本申请实施例对此不再赘述。
示例性地,终端设备可以通过将天线的电容值由第一数值调节为第二数值,电感值由第三数值调节为第四数值,以增大天线的发射频段的反射系数,进而降低天线的SAR,其中,第二数值小于第一数值,第四数值小于第三数值。
应理解,上述三种可能的实施方式中,天线的电容、电感的数量仅是示例性的,更多或更少的数量均属本申请的保护范畴。同时,终端设备可以对天线中的全部电容和/或全部电感进行调节,也可以对其中部分电容和/或部分电感进行调节,例如,在图13中,天线的电感的数量可以为3个,也可以为其余个数,进行调节的电感的数量可以为2个,也可以为别的个数。此外,图10、图13中的电容值、电感值也是示例性的,天线的电容值、电感值可以调节为其他数值,本申请实施例对此不作限定。
下面结合图16对终端天线的控制方法的具体实施过程进行描述。
图16为本申请实施例提供的一种终端天线的控制方法的过程示意图。如图16所示,该终端天线的控制方法共包括5个过程:过程1、过程2、过程3、过程4、过程5。
终端设备中的射频电路每隔特定的时间周期均会对终端设备中的天线的实时反射系数进行检测。过程1中,人体靠近并使用终端设备。过程2中通过该终端设备中的射频电路检测该天线的实时反射系数,通过数据分析,确定此时天线处于人体使用场景。在过程3中,检测天线的SAR值,天线的SAR为2W/kg,大于第一预设阈值2W/kg,因此需要进一步降低天线的SAR。在过程4中,通过天线的射频电路调节天线的逻辑状态,使得天线中的电容值由1.4pF调节为0.8pF。在过程5中,通过射频电路对天线反射系数的检测,发现天线的实时反射系数在史密斯圆图中位置由点2处移动到点3处,即调整后的第一坐标点与第二坐标点之间的距离增大,天线的发射频段的反射系数增大,且检测得到的SAR为1.01W/kg,低于第一预设阈值2W/kg。
上文结合图2至图16,详细描述了本申请实施例的终端天线的控制方法,下面将结合图17和图18,详细描述本申请实施例的终端天线的控制装置。
图17为本申请实施例提供的终端天线的控制装置1700的结构示意图,该装置1700包括:获取模块1701和处理模块1702。
在一种可能的实现方式中,该装置1700用于实现上述方法200中终端设备对应的步骤。
获取模块1701,用于获取终端设备的天线的实时反射系数;
处理模块1702,用于根据实时反射系数,判断天线是否处于人体使用场景;若天线处于人体使用场景,确定天线的特定吸收比SAR是否大于或等于第一预设阈值;若SAR大于或等于第一预设阈值,则调节天线的可调器件,以增大天线的发射频段的反射系数,可调器件包含电容和/或电感。
可选地,处理模块1702具体用于:计算实时反射系数与天线的自由空间FS反射系数在史密斯圆图上位置的距离差值;根据距离差值,判断天线是否处于人体使用场景。
可选地,处理模块1702具体用于:确定实时反射系数在史密斯圆图上的第一坐标点;确定天线的FS反射系数在史密斯圆图上的第二坐标点;计算第一坐标点与第二坐标点之间的距离,并将距离确定为实时反射系数与天线的FS反射系数在史密斯圆图上位置的距离差值。
可选地,处理模块1702具体用于:在差值大于或等于第二预设阈值的情况下,确定天线处于人体使用场景。
可选地,处理模块1702还用于:若天线未处于人体使用场景,确定天线处于FS状态,并保持天线的当前状态。
可选地,处理模块1702还用于:若SAR小于第一预设阈值,保持天线的当前状态。
应理解,这里的装置1700以功能模块的形式体现。这里的术语“模块”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,装置1700可以具体为上述实施例中的终端设备,装置1700可以用于执行上述方法实施例中与终端设备对应的各个流程和/或步骤,为避免重复,在此不再赘述。
上述装置1700具有实现上述方法中SOC执行的相应步骤的功能;上述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。例如,上述处理模块1702可以包括确定模块和调节模块,该确定模块可以用于实现上述处理模块对应的用于执行确定动作的各个步骤和/或流程,该调节模块可以用于实现上述处理模块对应的用于执行调节动作的各个步骤和/或流程。该确定模块、调节模块可以由SOC替代,分别执行各个方法实施例中的相关的处理操作。
在本申请的实施例,图17中的装置1700也可以是芯片或者芯片系统,例如:SOC。对应的,处理模块1702可以是该芯片的收发电路,在此不做限定。
图18示出了本申请实施例提供的另一种终端天线的控制装置1800的结构示意图。 该装置1800包括处理器1801、收发器1802和存储器1803。其中,处理器1801、收发器1802和存储器1803通过内部连接通路互相通信,该存储器1803用于存储指令,该处理器1801用于执行该存储器1803存储的指令,以控制该收发器1802发送信号和/或接收信号。
应理解,装置1800可以具体为上述实施例中的终端设备,并且可以用于执行上述方法实施例中与终端设备对应的各个步骤和/或流程。可选地,该存储器1803可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型的信息。该处理器1801可以用于执行存储器中存储的指令,并且当该处理器1801执行存储器中存储的指令时,该处理器1801用于执行上述方法实施例的各个步骤和/或流程。该收发器1802可以包括发射器和接收器,该发射器可以用于实现上述收发器对应的用于执行发送动作的各个步骤和/或流程,该接收器可以用于实现上述收发器对应的用于执行接收动作的各个步骤和/或流程。
应理解,在本申请实施例中,该处理器可以是中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器执行存储器中的指令,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
本申请还提供了一种计算机可读存储介质,该计算机可读存储介质用于存储计算机程序,该计算机程序用于实现上述方法实施例中所示的方法。
本申请还提供了一种计算机程序产品,该计算机程序产品包括计算机程序(也可以称为代码,或指令),当该计算机程序在计算机上运行时,该计算机可以执行上述方法实施例所示的方法。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的模块及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如 多个模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或模块的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。
所述功能如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应所述以权利要求的保护范围为准。

Claims (20)

  1. 一种终端天线的控制方法,其特征在于,包括:
    获取终端设备的天线的实时反射系数;
    根据所述实时反射系数,判断所述天线是否处于人体使用场景;
    若所述天线处于人体使用场景,确定所述天线的特定吸收比SAR是否大于或等于第一预设阈值;
    若所述SAR大于或等于所述第一预设阈值,则调节所述天线的可调器件,以增大所述天线的发射频段的反射系数,所述可调器件包含电容和/或电感。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述实时反射系数,判断所述天线是否处于人体使用场景,包括:
    计算所述实时反射系数与所述天线的自由空间FS反射系数在史密斯圆图上位置的距离差值;
    根据所述距离差值,判断所述天线是否处于人体使用场景。
  3. 根据权利要求2所述的方法,其特征在于,所述计算所述实时反射系数与所述天线的自由空间FS反射系数在史密斯圆图上位置的距离差值,包括:
    确定所述实时反射系数在史密斯圆图上的第一坐标点;
    确定所述天线的FS反射系数在史密斯圆图上的第二坐标点;
    计算所述第一坐标点与所述第二坐标点之间的距离,并将所述距离确定为所述距离差值。
  4. 根据权利要求2或3所述的方法,其特征在于,所述根据所述距离差值,判断所述天线是否处于人体使用场景,包括:
    在所述距离差值大于或等于第二预设阈值的情况下,确定所述天线处于人体使用场景。
  5. 根据权利要求1-3中任一项所述的方法,其特征在于,所述方法还包括:
    若所述天线未处于人体使用场景,确定所述天线处于FS状态,并保持所述天线的当前状态。
  6. 根据权利要求1-3中任一项所述的方法,其特征在于,所述方法还包括:
    若所述SAR小于所述第一预设阈值,保持所述天线的当前状态。
  7. 一种终端天线的控制装置,其特征在于,包括:
    获取模块,用于获取终端设备的天线的实时反射系数;
    处理模块,用于根据所述实时反射系数,判断所述天线是否处于人体使用场景;若所述天线处于人体使用场景,确定所述天线的特定吸收比SAR是否大于或等于第一预设阈值;若所述SAR大于或等于所述第一预设阈值,则调节所述天线的可调器件,以增大所述天线的发射频段的反射系数,所述可调器件包含电容和/或电感。
  8. 根据权利要求7所述的装置,其特征在于,所述处理模块具体用于:
    计算所述实时反射系数与所述天线的自由空间FS反射系数在史密斯圆图上位置的距离差值;
    根据所述距离差值,判断所述天线是否处于人体使用场景。
  9. 根据权利要求8所述的装置,其特征在于,所述处理模块具体用于:
    确定所述实时反射系数在史密斯圆图上的第一坐标点;
    确定所述天线的FS反射系数在史密斯圆图上的第二坐标点;
    计算所述第一坐标点与所述第二坐标点之间的距离,并将所述距离确定为所述距离差值。
  10. 根据权利要求8或9所述的装置,其特征在于,所述处理模块具体用于:
    在所述距离差值大于或等于第二预设阈值的情况下,确定所述天线处于人体使用场景。
  11. 根据权利要求7-9中任一项所述的装置,其特征在于,所述处理模块还用于:
    若所述天线未处于人体使用场景,确定所述天线处于FS状态,并保持所述天线的当前状态。
  12. 根据权利要求7-9中任一项所述的装置,其特征在于,所述处理模块还用于:
    若所述SAR小于所述第一预设阈值,保持所述天线的当前状态。
  13. 一种终端天线的控制装置,其特征在于,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储计算机程序,当所述处理器调用所述计算机程序时,使得所述装置执行如权利要求1至6中任一项所述的方法。
  14. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序包括用于实现如权利要求1至6中任一项所述的方法的指令。
  15. 一种计算机程序产品,其特征在于,所述计算机程序产品中包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得所述计算机实现如权利要求1至6中任一项所述的方法。
  16. 一种终端天线的控制方法,其特征在于,包括:
    获取终端设备的天线的实时反射系数;
    根据所述实时反射系数,判断所述天线是否处于人体使用场景;
    若所述天线处于人体使用场景,确定所述天线的特定吸收比SAR是否大于或等于第一预设阈值;
    若所述SAR小于所述第一预设阈值,保持所述天线的当前状态;
    若所述SAR大于或等于所述第一预设阈值,则调节所述天线的可调器件,以增大所述天线的发射频段的反射系数,所述可调器件包含电容和/或电感。
  17. 根据权利要求16所述的方法,其特征在于,所述根据所述实时反射系数,判断所述天线是否处于人体使用场景,包括:
    计算所述实时反射系数与所述天线的自由空间FS反射系数在史密斯圆图上位置的距离差值;
    根据所述距离差值,判断所述天线是否处于人体使用场景。
  18. 根据权利要求17所述的方法,其特征在于,所述计算所述实时反射系数与所述天线的自由空间FS反射系数在史密斯圆图上位置的距离差值,包括:
    确定所述实时反射系数在史密斯圆图上的第一坐标点;
    确定所述天线的FS反射系数在史密斯圆图上的第二坐标点;
    计算所述第一坐标点与所述第二坐标点之间的距离,并将所述距离确定为所述距 离差值。
  19. 根据权利要求17或18所述的方法,其特征在于,所述根据所述距离差值,判断所述天线是否处于人体使用场景,包括:
    在所述距离差值大于或等于第二预设阈值的情况下,确定所述天线处于人体使用场景。
  20. 根据权利要求16-18中任一项所述的方法,其特征在于,所述方法还包括:
    若所述天线未处于人体使用场景,确定所述天线处于FS状态,并保持所述天线的当前状态。
PCT/CN2023/094264 2022-08-23 2023-05-15 终端天线的控制方法和装置 WO2024041044A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP23789484.5A EP4351017A1 (en) 2022-08-23 2023-05-15 Control method and apparatus for terminal antenna
US18/558,088 US20240204816A1 (en) 2022-08-23 2023-05-15 Terminal antenna control method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211009495.5A CN115085755B (zh) 2022-08-23 2022-08-23 终端天线的控制方法和装置
CN202211009495.5 2022-08-23

Publications (2)

Publication Number Publication Date
WO2024041044A1 WO2024041044A1 (zh) 2024-02-29
WO2024041044A9 true WO2024041044A9 (zh) 2024-06-06

Family

ID=83244759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/094264 WO2024041044A1 (zh) 2022-08-23 2023-05-15 终端天线的控制方法和装置

Country Status (4)

Country Link
US (1) US20240204816A1 (zh)
EP (1) EP4351017A1 (zh)
CN (1) CN115085755B (zh)
WO (1) WO2024041044A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115085755B (zh) * 2022-08-23 2023-01-24 荣耀终端有限公司 终端天线的控制方法和装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7053629B2 (en) * 2001-09-28 2006-05-30 Siemens Communications, Inc. System and method for detecting the proximity of a body
US7146139B2 (en) * 2001-09-28 2006-12-05 Siemens Communications, Inc. System and method for reducing SAR values
EP1533915A1 (en) * 2003-11-20 2005-05-25 Siemens Aktiengesellschaft A method for adjusting the transmission power of a radio transmitter, and a device for the same
JP4856288B1 (ja) * 2010-08-10 2012-01-18 パイオニア株式会社 インピーダンス整合装置、制御方法
CN102098243B (zh) * 2010-12-29 2016-04-13 中兴通讯股份有限公司 天线阻抗匹配装置及方法
CN103609026B (zh) * 2011-06-21 2016-09-21 谷歌公司 控制mtd天线vswr和用于sar控制的耦合
CN108777744A (zh) * 2018-05-28 2018-11-09 深圳市万普拉斯科技有限公司 天线辐射性能的调控方法、装置及移动终端
CN108832281B (zh) * 2018-06-13 2021-05-18 瑞声精密制造科技(常州)有限公司 降低sar值的天线系统及其控制方法
US20200044612A1 (en) * 2018-07-31 2020-02-06 Advanced Micro Devices, Inc. Transmitter dynamic rf power control via vswr detection for wireless radios
CN109120786A (zh) * 2018-08-20 2019-01-01 北京小米移动软件有限公司 移动终端天线的控制方法、装置及存储介质
US10979089B2 (en) * 2018-11-27 2021-04-13 Samsung Electronics Co., Ltd. Method and device for measuring antenna reflection coefficient
CN114125142B (zh) * 2020-08-28 2023-02-03 荣耀终端有限公司 一种移动终端的控制方法、移动终端、芯片系统及存储介质
CN114040489B (zh) * 2021-09-30 2022-11-01 荣耀终端有限公司 确定功率回退量的方法、电子设备和计算机可读存储介质
CN115085755B (zh) * 2022-08-23 2023-01-24 荣耀终端有限公司 终端天线的控制方法和装置

Also Published As

Publication number Publication date
WO2024041044A1 (zh) 2024-02-29
US20240204816A1 (en) 2024-06-20
EP4351017A1 (en) 2024-04-10
CN115085755B (zh) 2023-01-24
CN115085755A (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
CN112399535B (zh) 基于sar调整发射功率的电子装置及操作电子装置的方法
CN108601073B (zh) 降低sar的方法、移动终端及计算机可读存储介质
US11329516B2 (en) Charging method and apparatus
CN109219930A (zh) 无线通信设备的特定吸收比率控制方法及无线通信设备
US10972145B1 (en) Method for antenna selection for concurrent independent transmissions via multiple antennas
WO2024041044A9 (zh) 终端天线的控制方法和装置
US11212835B2 (en) Method of transmitting information in unlicensed band, network device, and terminal
TWI540788B (zh) 無線通訊裝置及調整天線匹配的方法
US20200374816A1 (en) Transmission power regulation of antennas
CN109891764A (zh) 波束测量的方法及装置
WO2023160151A1 (zh) 比吸收率的调节方法、天线装置、终端设备及存储介质
CN112448732B (zh) 无线设备的射频暴露控制方法、装置及无线设备
CN110798882B (zh) 一种提升上行性能的方法、装置及用户终端
US20230007598A1 (en) Transmit power of wireless communication
EP4277032A1 (en) Antenna, ultra-wideband antenna array, and electronic device
WO2020038412A1 (zh) 一种天线调谐方法及无线终端
TW201528608A (zh) 無線通訊裝置
CN113038558B (zh) 连接状态切换方法、电子设备和计算机可读存储介质
US11304192B2 (en) Output power based on communication bands
WO2023024655A1 (zh) 比吸收率调节方法、装置、电子设备和存储介质
CN106034350B (zh) 电子装置及其无线模块的功率调整方法
EP3720176A1 (en) Method for transmitting information, terminal device, and network device
CN115622583A (zh) 比吸收率合规控制方法、装置及终端设备
CN114843753A (zh) 天线装置及其控制方法、电子设备
TWM654503U (zh) 電子裝置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 18558088

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2023789484

Country of ref document: EP

Effective date: 20231024