WO2020038412A1 - 一种天线调谐方法及无线终端 - Google Patents

一种天线调谐方法及无线终端 Download PDF

Info

Publication number
WO2020038412A1
WO2020038412A1 PCT/CN2019/101842 CN2019101842W WO2020038412A1 WO 2020038412 A1 WO2020038412 A1 WO 2020038412A1 CN 2019101842 W CN2019101842 W CN 2019101842W WO 2020038412 A1 WO2020038412 A1 WO 2020038412A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
radio frequency
signal
module
wireless
Prior art date
Application number
PCT/CN2019/101842
Other languages
English (en)
French (fr)
Inventor
陈浩
王海涛
Original Assignee
青岛海信电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信电器股份有限公司 filed Critical 青岛海信电器股份有限公司
Publication of WO2020038412A1 publication Critical patent/WO2020038412A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/24Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means

Definitions

  • the present invention relates to the field of electronic technology, and in particular, to an antenna tuning method and a wireless terminal.
  • the antenna in a wireless terminal is generally fixed inside the wireless terminal.
  • the directivity of the antenna is greatly affected by the position of the antenna.
  • the position of the wireless terminal and the signal source is fixed, if the direction of the antenna of the wireless terminal is not optimal, The direction will cause the signal quality between the wireless terminal and the signal source to deteriorate, which will affect the communication quality of the terminal device.
  • Embodiments of the present application provide an antenna tuning method and a wireless terminal to improve signal quality of the wireless terminal.
  • An embodiment of the present application provides a wireless terminal including an antenna module including a main antenna and a parasitic component of the main antenna; wherein the main antenna is electrically connected to a radio frequency front-end module through a radio frequency impedance transmission line, and the parasitic component passes through A first channel electrically connected to a radio frequency switch module and electrically connected to the radio frequency impedance transmission line; the first channel is a channel in at least one channel between the parasitic component and the radio frequency switch module;
  • a processing module configured to detect a wireless signal received from the antenna module, and switch the radio frequency switch module to a second channel when a signal indication value of the wireless signal is less than a threshold, so that the parasitic component passes the first Two channels are electrically connected to the radio frequency impedance transmission line; the second channel is a channel of the at least one channel that has the highest signal indication value of the wireless signal.
  • the channel includes a capacitor in series, and each of the at least one channel includes a different capacitance.
  • the processing module is specifically configured to:
  • the processing module before the processing module detects a wireless signal received from an antenna module, the processing module is further configured to:
  • a change in the position of the wireless terminal or a space network environment is detected, or it is determined that a timing scanning period for wireless signals of the wireless terminal arrives.
  • a signal indication value of the wireless signal is any of the following:
  • An embodiment of the present application provides an antenna tuning method, including:
  • the antenna module includes a main antenna, and a parasitic component of the main antenna; wherein the main antenna is electrically connected to a radio frequency front-end module through a radio frequency impedance transmission line, and the parasitic component passes A first channel electrically connected to a radio frequency switch module and electrically connected to the radio frequency impedance transmission line; the first channel is a channel in at least one channel between the parasitic component and the radio frequency switch module;
  • the radio frequency switch module When the signal indication value of the wireless signal is less than a threshold value, the radio frequency switch module is switched to a second channel, so that the parasitic component is electrically connected to the radio frequency impedance transmission line through the second channel; the second channel Among the at least one channel, the channel having the highest signal indication value of the wireless signal.
  • the channel includes a capacitor in series, and each of the at least one channel includes a different capacitance.
  • switching the radio frequency switch module to a second channel includes:
  • the method before the processing module detects a wireless signal received from an antenna module, the method further includes:
  • a change in the position of the wireless terminal or a space network environment is detected, or it is determined that a timing scanning period for wireless signals of the wireless terminal arrives.
  • a signal indication value of the wireless signal is any of the following:
  • FIG. 1 is a schematic structural diagram of a wireless terminal according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a radio frequency switch module according to an embodiment of the present application.
  • FIG. 3 is an antenna radiation pattern provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a wireless terminal according to an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of an antenna tuning method according to an embodiment of the present application.
  • the wireless terminal is a device having a wireless transmitting / receiving function or a chip that can be disposed on the device.
  • the wireless terminal in the embodiments of the present application may be a television, a mobile phone, a tablet, a computer with a wireless transceiver function, a virtual reality (VR) terminal, or an augmented reality (augmented reality (AR) terminal, wireless terminal in industrial control, wireless terminal in self driving, wireless terminal in remote medical, wireless in smart grid Terminals, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, and the like.
  • the embodiment of the present application does not limit the application scenario.
  • the aforementioned devices with wireless transmitting and receiving functions and chips that can be set in the devices are collectively referred to as wireless terminals.
  • FIG. 1 is a schematic structural diagram of a wireless terminal according to an embodiment of the present invention.
  • FIG. 1 shows only the main components of the terminal-side device.
  • the wireless terminal 100 includes a processing module 101, a radio frequency front-end module (FEM) 102, an active guidance chip 103, an impedance transmission line 104, an antenna module 105, an input-output module 109, and a storage module 110.
  • FEM radio frequency front-end module
  • the processing module 101 is mainly used for controlling and processing data of each module in the wireless terminal 101.
  • the FEM 102 is mainly responsible for processing communication protocols and communication data.
  • the FEM can support 802.11 series wireless protocols and mobile communication protocols.
  • the new wireless (NR) system the global mobile communication (GSM) system, the code division multiple access (CDMA) system, and the wideband code division multiple access , WCDMA) system, general packet radio service (GPRS), long term evolution (LTE) system, advanced long term evolution (LTE-A) system, universal mobile communication system ( Universal mobile telecommunication system (UMTS), evolved long term evolution (eLTE) system, and future communication systems.
  • NR new wireless
  • GSM global mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • LTE-A advanced long term evolution
  • UMTS Universal mobile telecommunication system
  • eLTE evolved long term evolution
  • the active guidance chip 103 may receive an instruction from the processing module 101 and output it to a corresponding module.
  • the main antenna 106 and the parasitic component 108 are mainly used for transmitting and receiving radio frequency signals in the form of electromagnetic waves.
  • the specific content of the RF switch module 106 will be described later, and will not be repeated here.
  • the storage module 110 is mainly used for storing software programs and data.
  • the input / output module 109 may be a touch screen, a display screen, a keyboard, or the like, which is mainly used to receive data input by the user and output data to the user.
  • the radio frequency switch module 107 includes a switch and at least one channel.
  • the radio frequency switch module 107 controls a channel electrically connected by the switch to implement switching of the parasitic component 108 to a different channel.
  • the channel includes a capacitor in series, and each channel in the at least one channel includes a different capacitance.
  • the capacitance of each of the four channels may be 0.5pF, 1.2pF, 3.3pF, and 6.8pF.
  • the radio frequency switch module 107 may not be connected to the radio frequency impedance transmission line 104, but directly connected to the active guidance chip 103, and details are not described herein again.
  • the main antenna 106 is physically close to the body of the parasitic component 108 (especially the strongest radiation part), and is parallel or close to each other without intersecting, so it is easy to be coupled by the parasitic component 108 to form a change in radiation field type.
  • the type becomes a controlled directional enhanced field type.
  • the capacitance of each channel in the at least one channel may be between 0.5 pF and 22 pF. Further, the capacitance of each channel can be packaged in 0402, where 04 means 0.04 inches in length and 02 means 0.02 inches in width. For example, Murata, GRM series multilayer capacitors.
  • the antenna module 105 includes a main antenna 106, a radio frequency switch module 107, and a parasitic component 108 of the main antenna 106.
  • the main antenna 106 is electrically connected to the FEM 102 through a radio frequency impedance transmission line 104, and the parasitic component 108 is electrically connected to the radio frequency impedance transmission line 104 through a first channel electrically connected to the radio frequency switch module 107; the first channel Is a channel in at least one channel between the parasitic component 108 and the radio frequency switch module 107.
  • the processing module 101 may control the radio frequency switching module 107 to switch from the first channel to the first channel of the at least one channel. After each switching, a signal indication value of a wireless signal is obtained. A total of at least one signal indication is obtained. The processing module 101 may determine the channel with the highest signal indication value as the first channel, so as to control the radio frequency switch module 107 and switch the switch in the radio frequency switch module 107 to the first channel.
  • the main antenna 106 may adopt a conventional single-frequency antenna design, and is not limited to the shape.
  • the parasitic antenna adopts a monopole or loop type design, is parallel and close to the main antenna 106, but is not connected to it.
  • the length of the parasitic component 108 can be selected from 10-20mm, the width is 0.5-2.0mm, and the distance parallel to or close to the main antenna 106 is 1mm-3mm, depending on the specific debugging effect .
  • the coupling current between the main antenna 106 and the parasitic component 108 is different by different devices (capacitance and inductance). Since the impedance of the entire antenna is changed by changes in the devices on the switch, different radiation field patterns can be generated.
  • the parasitic component 108 participates in forming the electrical characteristics of the main antenna 106 and forms an antenna radiation pattern through a coupling manner; different loads on the parasitic component 108 will make the main antenna 106 obtain
  • the electrical characteristics obtained on the parasitic component 108 are significantly different, and at the same time, the radiation patterns will also be different.
  • the parasitic component 108 when a series capacitor is electrically connected through the RF switch module 107, it generates electromagnetic waves that are coupled to the main antenna 106, changes the current characteristic distribution of the main antenna 106, and changes the phase of the electromagnetic waves it radiates, thereby participating in changing the main
  • the main body of the antenna 106 distributes impedance, and changes the radiation pattern of the main antenna 106.
  • the electromagnetic wave signal radiated by it also plays a role of amplitude and phase modulation on the main antenna 106.
  • the RF switch module 107 includes 4 channels, and the capacitance of each of the 4 channels is 1.5 pF, 3.3 pF, 6.8 pF, and 12 pF.
  • the antenna radiation pattern of the main antenna 106 can be referred to FIG. 3. It can be seen from FIG. 3 that when the parasitic component 108 is connected to different capacitors, the main antenna 106 can obtain different desired signal gains in different directions through coupling.
  • a wider bandwidth (for example, ⁇ 500 MHz) is required, so as to ensure that the influence of the coupling change generated by the parasitic component 108 on the main frequency of the main antenna 106 is within the application bandwidth range.
  • the processing module 101 may be configured to detect a wireless signal received from the antenna module 105, and switch the radio frequency switch module 107 to a second channel when a signal indication value of the wireless signal is less than a threshold value. So that the parasitic component 108 is electrically connected to the radio frequency impedance transmission line 104 through the second channel; the second channel is the channel with the largest signal indication value of the corresponding wireless signal among the at least one channel.
  • the signal indication value of the wireless signal may refer to any of the following:
  • the processing module 101 may send a control command to the radio frequency switch module 107 by actively guiding the sending chip 103 to control the radio frequency switch module 107 to switch channels.
  • the processing module 101 and the active boot sending chip 103 communicate through a general input / output (GPIO) interface.
  • GPIO general input / output
  • the processing module 101 may send and receive data through the FEM 102, and may also perform carrier transmission communication directly through the antenna module 105.
  • the processing module 101 may actively trigger a signal search to detect wireless when it detects a change in the position of the wireless terminal 101 or a change in the space network environment, or determines that the timing scanning period for wireless signals of the wireless terminal 101 arrives Whether the signal indication value of the signal is less than a threshold value, and if it is greater than or equal to the threshold value, the channel selected by the current RF switch module 107 remains unchanged. If it is less than the threshold, continue scanning quickly to confirm the strongest mode of the wireless signal, so as to switch the mode and fix the connection.
  • the processing module 101 may respectively switch the radio frequency switch module 107 from the first channel of the at least one channel to the first at least one channel when the signal indication value of the wireless signal is less than the threshold, to obtain At least one signal indication value; the processing module 101 determines the channel corresponding to the largest signal indication value among the at least one signal indication value as the second channel; and finally switches the radio frequency switch module 107 to the second channel.
  • main antenna 106 can be extended to dual-band antenna applications, such as WiFi 2.4GHz + 5GHz range applications.
  • the wireless terminal 100 in the embodiment of the present application may support a 2 transmit and 2 receive (2T2R) multiple-input multiple-output (MIMO) technology, or a 4T4R MIMO technology.
  • 2T2R 2 transmit and 2 receive
  • MIMO multiple-input multiple-output
  • the wireless terminal 100 When the wireless terminal 100 supports the 2T2R MIMO technology, it may include two communication modules.
  • the wireless terminal 300 includes two antenna modules, namely an antenna module 305 and an antenna module 312.
  • the wireless terminal 300 further includes a processing module 301, FEM302, FEM311, an active guidance chip 203, an impedance transmission line 304, an impedance transmission line 316, an input-output module 309, a storage module 310, and the like. Other situations are not repeated here.
  • FIG. 5 a flowchart of an antenna tuning method is provided according to an embodiment of the present application.
  • the method includes:
  • Step 501 Detect a wireless signal received from an antenna module.
  • the antenna module includes a main antenna and a parasitic component of the main antenna; wherein the main antenna is electrically connected with a radio frequency impedance transmission line, and the parasitic component is connected with the radio frequency through a first channel electrically connected with a radio frequency switch module.
  • a radio frequency impedance transmission line is electrically connected; the first channel is a channel in at least one channel between the parasitic component and the radio frequency switch module;
  • Step 502 When the signal indication value of the wireless signal is less than a threshold, switch the radio frequency switch module to a second channel, so that the parasitic component is electrically connected to the radio frequency impedance transmission line through the second channel.
  • the second channel is a channel of the at least one channel in which the corresponding signal indication value of the wireless signal is the largest.
  • the channel includes a capacitor in series, and each of the at least one channel includes a different capacitance.
  • switching the radio frequency switch module to a second channel includes:
  • the method before the processing module detects a wireless signal received from an antenna module, the method further includes:
  • a change in the position of the wireless terminal or a space network environment is detected, or it is determined that a timing scanning period for wireless signals of the wireless terminal arrives.
  • a signal indication value of the wireless signal is any of the following:

Landscapes

  • Transceivers (AREA)

Abstract

本发明公开了一种天线调谐方法及无线终端,包括:天线模块,包括:主天线,所述主天线的寄生组件;其中,所述主天线通过射频阻抗传输线与射频前端模组电连接,所述寄生组件通过与射频开关模块电连接的第一通道,与所述射频阻抗传输线电连接;所述第一通道为所述寄生组件与所述射频开关模块之间的至少一个通道中的通道;处理模块,用于检测从天线模块接收到的无线信号,并在所述无线信号的信号指示值小于阈值时,将所述射频开关模块切换至第二通道,使得所述寄生组件通过所述第二通道与所述射频阻抗传输线电连接;所述第二通道为所述至少一个通道中,对应的所述无线信号的信号指示值最大的通道。

Description

一种天线调谐方法及无线终端
相关申请的交叉引用
本申请要求在2018年08月22日提交中国专利局、申请号为201810963322.4、申请名称为“一种天线调谐方法及无线终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电子技术领域,尤其涉及一种天线调谐方法及无线终端。
背景技术
随着无线通信技术的发展,无线终端中处理器、射频模块等性能获得了飞跃性的提高,然而随着无线终端的小型化发展,对无线终端中的天线的设计带来了挑战,天线的性能好坏决定了无线终端通信的通信质量。
目前,无线终端中的天线一般固定设置在无线终端内部,天线的方向性受到天线位置的影响较大,当无线终端与信号源的位置固定时,若无线终端的天线的方向不是最优的接收方向,会导致无线终端与信号源之间的信号质量变差,使得终端设备的通信质量受到影响。
为此,如何优化天线,以提高无线终端的信号质量,是一个亟待解决的问题。
发明内容
本申请实施例提供一种天线调谐方法及无线终端,以提高无线终端的信号质量。
本申请实施例提供一种无线终端,包括:天线模块,包括主天线,所述主天线的寄生组件;其中,所述主天线通过射频阻抗传输线与射频前端模组电连接,所述寄生组件通过与射频开关模块电连接的第一通道,与所述射频 阻抗传输线电连接;所述第一通道为所述寄生组件与所述射频开关模块之间的至少一个通道中的通道;
处理模块,用于检测从天线模块接收到的无线信号,并在所述无线信号的信号指示值小于阈值时,将所述射频开关模块切换至第二通道,使得所述寄生组件通过所述第二通道与所述射频阻抗传输线电连接;所述第二通道为所述至少一个通道中,对应的所述无线信号的信号指示值最大的通道。
在一些实施方式中,针对所述至少一个通道中的任一通道,该通道包括一个串联的电容,且所述至少一个通道中每个通道包括的电容的大小不同。
在一些实施方式中,所述处理模块具体用于:
在所述无线信号的信号指示值小于所述阈值时,分别将所述射频开关模块从所述至少一个通道中的第一个通道切换至最后一个通道,获得至少一个信号指示值;
将所述至少一个信号指示值中,最大的信号指示值对应的通道确定为所述第二通道;
将所述射频开关模块切换至所述第二通道。
在一些实施方式中,所述处理模块检测从天线模块接收到的无线信号之前,所述处理模块还用于:
检测到所述无线终端的位置或空间网络环境发生变化,或者,确定对所述无线终端的无线信号的定时扫描周期到达。
在一些实施方式中,所述无线信号的信号指示值为以下任一项:
信号吞吐量;
空间信号强度;
信号噪声比。
本申请实施例提供一种天线调谐方法,包括:
检测从天线模块接收到的无线信号;所述天线模块,包括主天线,所述主天线的寄生组件;其中,所述主天线通过射频阻抗传输线与射频前端模组电连接,所述寄生组件通过与射频开关模块电连接的第一通道,与所述射频 阻抗传输线电连接;所述第一通道为所述寄生组件与所述射频开关模块之间的至少一个通道中的通道;
在所述无线信号的信号指示值小于阈值时,将所述射频开关模块切换至第二通道,使得所述寄生组件通过所述第二通道与所述射频阻抗传输线电连接;所述第二通道为所述至少一个通道中,对应的所述无线信号的信号指示值最大的通道。
在一些实施方式中,针对所述至少一个通道中的任一通道,该通道包括一个串联的电容,且所述至少一个通道中每个通道包括的电容的大小不同。
在一些实施方式中,所述在所述无线信号的信号指示值小于阈值时,将所述射频开关模块切换至第二通道,包括:
在所述无线信号的信号指示值小于所述阈值时,分别将所述射频开关模块从所述至少一个通道中的第一个通道切换至最后一个通道,获得至少一个信号指示值;
将所述至少一个信号指示值中,最大的信号指示值对应的通道确定为所述第二通道;
将所述射频开关模块切换至所述第二通道。
在一些实施方式中,所述处理模块检测从天线模块接收到的无线信号之前,所述方法还包括:
检测到所述无线终端的位置或空间网络环境发生变化,或者,确定对所述无线终端的无线信号的定时扫描周期到达。
在一些实施方式中,所述无线信号的信号指示值为以下任一项:
信号吞吐量;
空间信号强度;
信号噪声比。
附图说明
图1为本申请实施例提供的一种无线终端结构示意图;
图2为本申请实施例提供的一种射频开关模块结构示意图;
图3为本申请实施例提供的一种天线辐射方向图;
图4为本申请实施例提供的一种无线终端结构示意图;
图5为本申请实施例提供的一种天线调谐方法流程示意图。
具体实施方式
为了更好的理解上述技术方案,下面将结合说明书附图及具体的实施方式对上述技术方案进行详细的说明,应当理解本申请实施例以及实施例中的具体特征是对本申请技术方案的详细的说明,而不是对本申请技术方案的限定,在不冲突的情况下,本申请实施例以及实施例中的技术特征可以相互结合。
本发明实施例中,无线终端,为具有无线收发功能的设备或可设置于该设备的芯片。在实际应用中,本申请的实施例中的无线终端可以是电视、手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。本申请中将前述具有无线收发功能的设备及可设置于该设备中的芯片统称为无线终端。
如图1,为本发明实施例提供的一种无线终端结构示意图。
为了便于说明,图1仅示出了终端侧设备的主要部件。如图1所示,无线终端100包括处理模块101、射频前端模组(Front end module,FEM)102、主动引导芯片103、阻抗传输线104、天线模块105、输入输出模块109以及存储模块110等。
处理模块101主要用于无线终端101中的各个模块进行控制,以及进行 数据的处理等;FEM102主要负责对通信协议以及通信数据进行处理,FEM可以支持802.11系列无线协议,也可以支持移动通信协议,例如新无线(new radio,NR)系统、全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general pcket radio service,GPRS)、长期演进(long term evolution,LTE)系统、先进的长期演进(advanced long term evolution,LTE-A)系统、通用移动通信系统(universal mobile telecommunication system,UMTS)、演进的长期演进(evolved long term evolution,eLTE)系统以及未来通信系统等。
主动引导芯片103可以接收处理模块101的指令,并输出至相应的模块。
主天线106、以及寄生组件108主要用于收发电磁波形式的射频信号。射频开关模块106的具体内容,将在后面描述,在此不再赘述。
存储模块110主要用于存储软件程序和数据。输入输出模块109,可以为触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
本申请实施例中,射频开关模块107的具体结构可以参考图2所示。图2中,射频开关模块107包括切换开关和至少一个通道,射频开关模块107通过控制切换开关电连接的通道,实现将寄生组件108切换到不同的通道。针对所述至少一个通道中的任一通道,该通道包括一个串联的电容,且所述至少一个通道中每个通道包括的电容的大小不同。举例来说,射频开关模块107包括4个通道时,4个通道中每个通道的电容的大小可以分别为:0.5pF,1.2pF,3.3pF,6.8pF。
需要说明的是,本申请实施例中,射频开关模块107也可以不与射频阻抗传输线104连接,而是直接与主动引导芯片103连接,在此不再赘述。
图2中,主天线106在物理尺寸上靠近寄生组件108本体(尤其辐射最强部位),平行或紧邻而不相交,从而易被寄生组件108耦合而形成辐射场型的变化,从自由辐射场型变为受控方向性增强型场型。
所述至少一个通道中每个通道的电容大小可以为0.5pF~22pF之间。进一 步的,每个通道的电容可以采用0402封装,其中,04表示长度是0.04英寸,02表示宽度0.02英寸。例如可以为村田制作所,GRM系列叠层电容。
天线模块105包括主天线106、射频开关模块107、主天线106的寄生组件108。其中,所述主天线106通过射频阻抗传输线104与FEM102电连接,所述寄生组件108通过与射频开关模块107电连接的第一通道,与所述射频阻抗传输线104电连接;所述第一通道为所述寄生组件108与所述射频开关模块107之间的至少一个通道中的通道。
在无线终端100初次开机时,处理模块101可以控制射频开关模块107从所述至少一个通道中的第一个通道切换至第至少一个通道,每次切换后,获得一个无线信号的信号指示值,共获得至少一个信号指示值。处理模块101可以将其中信号指示值最大的通道确定为第一通道,从而控制射频开关模块107,将射频开关模块107中的切换开关切换到第一通道。
本申请实施例中,主天线106可以采用常规单频天线设计,不拘于形态。寄生天线采用单极子或者环路(loop)型设计,平行且紧邻主天线106,但不与连接。
举例来说,对于接收2G信号的主天线106,其寄生组件108长度可选为10-20mm,宽度为0.5-2.0mm,与主天线106平行或紧邻距离1mm-3mm,视具体调试效果而定。
通过不同的器件(电容、电感),主天线106与寄生组件108之间的耦合电流是不一样的。由于整个天线的阻抗通过开关上的器件的变化而改变,因此能够产生不同的辐射场型。
本申请实施例中,在引入寄生组件108后,寄生组件108通过耦合的方式,参与形成主天线106的电特性,且形成天线辐射方向图;寄生组件108上不同的负载将使得主天线106获得不同的电特性以及辐射方向图,以开路和短路两种状态为例,寄生组件108上所获得的电特性是明显不同的,与此同时辐射方向图也会两个不相同的。对于寄生组件108而言,当通过射频开关模块107电连接串联的电容时,其产生电磁波耦合至主天线106上,改变 主天线106的电流特征分布,改变其辐射的电磁波相位,从而参与改变主天线106主体分布阻抗,改变主天线106的辐射场型。同时,其作为远场反射臂,其辐射的电磁波信号,对主天线106也起到调幅调相的作用。
举例来说,射频开关模块107包括4个通道,4个通道中每个通道的电容的大小分别为:1.5pF,3.3pF,6.8pF,12pF。当寄生组件108依次通过上述电容对应的通道与射频阻抗传输线104电连接时,主天线106的天线辐射方向图可以参考图3所示。通过图3可以看出,在寄生组件108连接不同电容时,通过耦合的方式,使得主天线106能够在不同方向上获得不同想信号增益。
进一步可选的,主天线106本体在设计时,需带宽较宽(例如≥500MHz),从而保证寄生组件108产生的耦合变化对主天线106主频的影响在应用带宽范围内。
本申请实施例中,处理模块101,可以用于检测从天线模块105接收到的无线信号,并在所述无线信号的信号指示值小于阈值时,将所述射频开关模块107切换至第二通道,使得所述寄生组件108通过所述第二通道与所述射频阻抗传输线104电连接;所述第二通道为所述至少一个通道中,对应的所述无线信号的信号指示值最大的通道。
其中,无线信号的信号指示值可以是指以下任一项:
信号吞吐量;
空间信号强度;
信号噪声比。
进一步的,处理模块101可以通过主动引导发芯片103向射频开关模块107发送控制命令,控制射频开关模块107切换通道。其中,处理模块101与主动引导发芯片103之间通过通用输入/输出(General Purpose Input Output,GPIO)接口通信。
处理模块101可以通过FEM102收发数据,也可以直接通过天线模块105进行载波传输通信。
处理模块101可以在检测到所述无线终端101的位置发生变化或空间网络环境发生变化,或者,确定对所述无线终端101的无线信号的定时扫描周期到达时,主动触发信号的搜索,检测无线信号的信号指示值是否小于阈值,如果大于或等于阈值,则保持当前射频开关模块107选择的通道不变。如果小于阈值,则继续快速扫描,确认无线信号最强模式状态,从而进行模式切换并固定连接。具体的,处理模块101可以在所述无线信号的信号指示值小于所述阈值时,分别将所述射频开关模块107从所述至少一个通道中的第一个通道切换至第至少一个通道,获得至少一个信号指示值;处理模块101再将所述至少一个信号指示值中,最大的信号指示值对应的通道确定为第二通道;最后将所述射频开关模块107切换至所述第二通道。
进一步的,主天线106可延伸至双频天线应用,如WiFi 2.4GHz+5GHz范围应用。
进一步的,本申请实施例中的无线终端100可以支持2发2收(2T2R)多输入多输出技术(Multiple-Input Multiple-Output,MIMO)技术,或者支持4T4R MIMO技术等。
当无线终端100支持2T2R MIMO技术时,可以包括2个通信模块,具体可以参考图4所示。图4中,无线终端300包括两个天线模块,分别为天线模块305和天线模块312。无线终端300还包括处理模块301、FEM302、FEM311、主动引导芯片203、阻抗传输线304、阻抗传输线316、输入输出模块309以及存储模块310等。其它情况不在赘述。
如图5所示,为本申请实施例提供一种天线调谐方法流程示意图。
参见图5,该方法包括:
步骤501:检测从天线模块接收到的无线信号。
所述天线模块,包括主天线,所述主天线的寄生组件;其中,所述主天线通过射频阻抗传输线与电连接,所述寄生组件通过与射频开关模块电连接的第一通道,与所述射频阻抗传输线电连接;所述第一通道为所述寄生组件与所述射频开关模块之间的至少一个通道中的通道;
步骤502:在所述无线信号的信号指示值小于阈值时,将所述射频开关模块切换至第二通道,使得所述寄生组件通过所述第二通道与所述射频阻抗传输线电连接。
所述第二通道为所述至少一个通道中,对应的所述无线信号的信号指示值最大的通道。
上述步骤的具体内容,可以参考前面的描述,在此不再赘述。
在一些实施方式中,针对所述至少一个通道中的任一通道,该通道包括一个串联的电容,且所述至少一个通道中每个通道包括的电容的大小不同。
在一些实施方式中,所述在所述无线信号的信号指示值小于阈值时,将所述射频开关模块切换至第二通道,包括:
在所述无线信号的信号指示值小于所述阈值时,分别将所述射频开关模块从所述至少一个通道中的第一个通道切换至最后一个通道,获得至少一个信号指示值;
将所述至少一个信号指示值中,最大的信号指示值对应的通道确定为所述第二通道;
将所述射频开关模块切换至所述第二通道。
在一些实施方式中,所述处理模块检测从天线模块接收到的无线信号之前,所述方法还包括:
检测到所述无线终端的位置或空间网络环境发生变化,或者,确定对所述无线终端的无线信号的定时扫描周期到达。
在一些实施方式中,所述无线信号的信号指示值为以下任一项:
信号吞吐量;
空间信号强度;
信号噪声比。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程 和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器,使得通过该计算机或其他可编程数据处理设备的处理器执行的指令可实现流程图中的一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

  1. 一种无线终端,包括:
    天线模块,包括主天线,所述主天线的寄生组件;其中,所述主天线通过射频阻抗传输线与射频前端模组电连接,所述寄生组件通过与射频开关模块电连接的第一通道,与所述射频阻抗传输线电连接;所述第一通道为所述寄生组件与所述射频开关模块之间的至少一个通道中的通道;
    处理模块,用于检测从天线模块接收到的无线信号,并在所述无线信号的信号指示值小于阈值时,将所述射频开关模块切换至第二通道,使得所述寄生组件通过所述第二通道与所述射频阻抗传输线电连接;所述第二通道为所述至少一个通道中,对应的所述无线信号的信号指示值最大的通道。
  2. 如权利要求1所述的无线终端,针对所述至少一个通道中的任一通道,该通道包括一个串联的电容,且所述至少一个通道中每个通道包括的电容的大小不同。
  3. 如权利要求1或2所述的无线终端,所述处理模块具体用于:
    在所述无线信号的信号指示值小于所述阈值时,分别将所述射频开关模块从所述至少一个通道中的第一个通道切换至最后一个通道,获得至少一个信号指示值;
    将所述至少一个信号指示值中,最大的信号指示值对应的通道确定为所述第二通道;
    将所述射频开关模块切换至所述第二通道。
  4. 如权利要求1或2所述的无线终端,所述处理模块检测从天线模块接收到的无线信号之前,所述处理模块还用于:
    检测到所述无线终端的位置或空间网络环境发生变化,或者,确定对所述无线终端的无线信号的定时扫描周期到达。
  5. 如权利要求1或2所述的无线终端,所述无线信号的信号指示值为以下任一项:
    信号吞吐量;
    空间信号强度;
    信号噪声比。
  6. 一种天线调谐方法,包括:
    检测从天线模块接收到的无线信号;所述天线模块,包括主天线,所述主天线的寄生组件;其中,所述主天线通过射频阻抗传输线与射频前端模组电连接,所述寄生组件通过与射频开关模块电连接的第一通道,与所述射频阻抗传输线电连接;所述第一通道为所述寄生组件与所述射频开关模块之间的至少一个通道中的通道;
    在所述无线信号的信号指示值小于阈值时,将所述射频开关模块切换至第二通道,使得所述寄生组件通过所述第二通道与所述射频阻抗传输线电连接;所述第二通道为所述至少一个通道中,对应的所述无线信号的信号指示值最大的通道。
  7. 如权利要求6所述的方法,针对所述至少一个通道中的任一通道,该通道包括一个串联的电容,且所述至少一个通道中每个通道包括的电容的大小不同。
  8. 如权利要求6或7所述的方法,所述在所述无线信号的信号指示值小于阈值时,将所述射频开关模块切换至第二通道,包括:
    在所述无线信号的信号指示值小于所述阈值时,分别将所述射频开关模块从所述至少一个通道中的第一个通道切换至最后一个通道,获得至少一个信号指示值;
    将所述至少一个信号指示值中,最大的信号指示值对应的通道确定为所述第二通道;
    将所述射频开关模块切换至所述第二通道。
  9. 如权利要求6或7所述的方法,所述处理模块检测从天线模块接收到的无线信号之前,所述方法还包括:
    检测到所述无线终端的位置或空间网络环境发生变化,或者,确定对所 述无线终端的无线信号的定时扫描周期到达。
  10. 如权利要求6或7所述的方法,所述无线信号的信号指示值为以下任一项:
    信号吞吐量;
    空间信号强度;
    信号噪声比。
PCT/CN2019/101842 2018-08-22 2019-08-21 一种天线调谐方法及无线终端 WO2020038412A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810963322.4 2018-08-22
CN201810963322.4A CN109149109B (zh) 2018-08-22 2018-08-22 一种天线调谐方法及无线终端

Publications (1)

Publication Number Publication Date
WO2020038412A1 true WO2020038412A1 (zh) 2020-02-27

Family

ID=64791241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/101842 WO2020038412A1 (zh) 2018-08-22 2019-08-21 一种天线调谐方法及无线终端

Country Status (2)

Country Link
CN (1) CN109149109B (zh)
WO (1) WO2020038412A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109149109B (zh) * 2018-08-22 2020-10-30 海信视像科技股份有限公司 一种天线调谐方法及无线终端
CN113922060B (zh) * 2021-09-30 2023-06-23 联想(北京)有限公司 一种天线和电子设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006229720A (ja) * 2005-02-18 2006-08-31 Ricoh Co Ltd 指向性アンテナおよび指向性アンテナシステム
CN101595598A (zh) * 2006-11-15 2009-12-02 脉冲芬兰有限公司 内部多频带天线
CN103633419A (zh) * 2012-08-24 2014-03-12 詹诗怡 移动装置
CN104852146A (zh) * 2014-02-14 2015-08-19 神讯电脑(昆山)有限公司 多频天线模块及其自我调整方法
CN105075143A (zh) * 2014-02-17 2015-11-18 华为终端有限公司 一种天线切换系统以及方法
CN106330246A (zh) * 2016-08-17 2017-01-11 珠海格力电器股份有限公司 一种天线切换方法、电路、装置和移动通讯终端
CN108111233A (zh) * 2016-11-24 2018-06-01 中兴通讯股份有限公司 一种移动终端及调谐天线的方法
CN109149109A (zh) * 2018-08-22 2019-01-04 青岛海信电器股份有限公司 一种天线调谐方法及无线终端

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8081940B2 (en) * 2006-09-29 2011-12-20 Broadcom Corporation Method and system for dynamically tuning and calibrating an antenna using an on-chip digitally controlled array of capacitors
JP2011211613A (ja) * 2010-03-30 2011-10-20 Nec Access Technica Ltd 無線アクセスポイント装置、アクセスポイント制御方法、およびアクセスポイント制御プログラム
CN102347791A (zh) * 2011-11-15 2012-02-08 中国航天科工信息技术研究院 一种基于平板天线的移动卫星通信装置
CN105048092A (zh) * 2015-08-14 2015-11-11 常熟泓淋电子有限公司 一种多天线系统的控制装置
CN105390814B (zh) * 2015-10-18 2018-06-26 中国电子科技集团公司第十研究所 具有内校准网络的有源相控阵天线
CN105763208B (zh) * 2016-03-02 2018-10-26 惠州Tcl移动通信有限公司 一种调谐优化天线信号的方法及系统
CN105632764B (zh) * 2016-03-07 2019-03-15 珠海格力电器股份有限公司 可调控电容装置和有源天线及移动通讯终端
CN106100675B (zh) * 2016-05-23 2019-08-13 Oppo广东移动通信有限公司 一种射频前端装置、天线装置及移动终端

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006229720A (ja) * 2005-02-18 2006-08-31 Ricoh Co Ltd 指向性アンテナおよび指向性アンテナシステム
CN101595598A (zh) * 2006-11-15 2009-12-02 脉冲芬兰有限公司 内部多频带天线
CN103633419A (zh) * 2012-08-24 2014-03-12 詹诗怡 移动装置
CN104852146A (zh) * 2014-02-14 2015-08-19 神讯电脑(昆山)有限公司 多频天线模块及其自我调整方法
CN105075143A (zh) * 2014-02-17 2015-11-18 华为终端有限公司 一种天线切换系统以及方法
CN106330246A (zh) * 2016-08-17 2017-01-11 珠海格力电器股份有限公司 一种天线切换方法、电路、装置和移动通讯终端
CN108111233A (zh) * 2016-11-24 2018-06-01 中兴通讯股份有限公司 一种移动终端及调谐天线的方法
CN109149109A (zh) * 2018-08-22 2019-01-04 青岛海信电器股份有限公司 一种天线调谐方法及无线终端

Also Published As

Publication number Publication date
CN109149109B (zh) 2020-10-30
CN109149109A (zh) 2019-01-04

Similar Documents

Publication Publication Date Title
WO2020019942A1 (zh) 射频系统及相关产品
US10263319B2 (en) Antenna with swappable radiation direction and communication device thereof
CN103297077B (zh) 调校共振频率及判断阻抗变化的方法及其电路和通讯装置
TWI540788B (zh) 無線通訊裝置及調整天線匹配的方法
JP3211445U (ja) ダイバーシティ用途のための相関調整を有するモーダルアンテナ
CN104638344A (zh) 一种自适应切换的主、分集天线及通信终端
JP2016507980A (ja) ミリ波フェーズドアレイ・ビームアライメント方法および通信装置
WO2013166777A1 (zh) 一种智能开关移动终端天线的方法及相应移动终端
WO2018006590A1 (zh) 一种天线调谐参数的处理方法及移动终端
US9484978B2 (en) System and method for communication with adjustable signal phase and power
WO2021047385A1 (zh) 天线装置、通信产品及天线方向图的重构方法
US9287941B2 (en) Beam forming and steering using LTE diversity antenna
US8639194B2 (en) Tunable antenna with a conductive, physical component co-located with the antenna
CN109728417B (zh) 天线及其控制方法和电子设备
WO2020038412A1 (zh) 一种天线调谐方法及无线终端
WO2022127250A1 (zh) 毫米波抗干扰方法、装置、终端及存储介质
CN104577332A (zh) 提高天线间杂散隔离度全闭环自动调谐控制装置及方法
CN107408758B (zh) 天线、天线控制方法、天线控制装置及天线系统
TW201807881A (zh) 具有多天線的電子裝置
EP4239891A1 (en) Electronic device for operating transmission path and control method therefor
CN215268270U (zh) 天线切换装置和终端
KR20220134904A (ko) 전자 장치 및 복수의 안테나들을 포함하는 전자 장치에서 안테나의 설정을 제어하는 방법
EP4373001A1 (en) Electronic device, and method for controlling setting of antenna in electronic device comprising plurality of antennas
Lysko et al. High-performance low-power smart antenna for smart world applications
US20220150038A1 (en) Antenna optimization method in multiple connection environment and electronic device using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19853088

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19853088

Country of ref document: EP

Kind code of ref document: A1