WO2024040866A1 - 一种尿素装置用高压尿素溶液减压节能装置及工艺方法 - Google Patents

一种尿素装置用高压尿素溶液减压节能装置及工艺方法 Download PDF

Info

Publication number
WO2024040866A1
WO2024040866A1 PCT/CN2023/073561 CN2023073561W WO2024040866A1 WO 2024040866 A1 WO2024040866 A1 WO 2024040866A1 CN 2023073561 W CN2023073561 W CN 2023073561W WO 2024040866 A1 WO2024040866 A1 WO 2024040866A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
urea
solution
hydraulic turbine
urea solution
Prior art date
Application number
PCT/CN2023/073561
Other languages
English (en)
French (fr)
Inventor
余志文
夏炎华
孙景伟
左静
孙喜
Original Assignee
中国五环工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国五环工程有限公司 filed Critical 中国五环工程有限公司
Publication of WO2024040866A1 publication Critical patent/WO2024040866A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C273/00Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • C07C273/02Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups of urea, its salts, complexes or addition compounds
    • C07C273/04Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups of urea, its salts, complexes or addition compounds from carbon dioxide and ammonia
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/08Adaptations for driving, or combinations with, pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/02Mechanical layout characterised by the means for converting the movement of the fluid-actuated element into movement of the finally-operated member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/14Energy-recuperation means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D3/00Arrangements for supervising or controlling working operations
    • F17D3/01Arrangements for supervising or controlling working operations for controlling, signalling, or supervising the conveyance of a product

Definitions

  • the invention belongs to the technical field of urea production, and specifically relates to a high-pressure urea solution decompression and energy-saving device for urea equipment and a process method.
  • Granular urea is a bulk commodity. my country's actual annual urea production capacity has exceeded about 70 million tons, and the actual annual output has exceeded 55 million tons.
  • Industrial urea production uses different process technologies to react raw ammonia and carbon dioxide in a high-pressure urea synthesis tower to generate urea (the equilibrium conversion rate is generally 50 to 70%), and the urea solution is gradually heated and concentrated to a certain concentration under reduced pressure, and then It is sent to the granulation unit for granulation, and the final granular urea product is obtained after air cooling.
  • the decompressed urea solution and flash gas phase enter the medium-low pressure process such as a medium-pressure decomposition tower or a low-pressure decomposition tower.
  • a medium-pressure decomposition tower or a low-pressure decomposition tower During the pressure reduction process, a large amount of pressure can be directly lost on the liquid level regulating valve LIC, resulting in a large amount of energy waste.
  • Figure 1 shows the existing urea process.
  • the pressure is reduced directly through the regulating valve to reduce the pressure from 13.0 to 25.0MPa (A) to 0.1 to 6.0MPa (A).
  • A 13.0 to 25.0MPa
  • A 0.1 to 6.0MPa
  • a large amount of pressure can be directly transferred to the urea process. It is lost on the valve, causing a lot of energy waste.
  • the purpose of the present invention is to solve the above energy waste problem and provide a high-pressure urea solution pressure reduction and energy-saving device and process method for the urea device that can efficiently recover the pressure energy of the high-pressure urea solution and reduce the power consumption of the urea device.
  • the object of the present invention is to provide a high-pressure urea solution pressure reducing and energy-saving device for a urea plant, which includes a hydraulic turbine, a liquid level regulating valve, a hydraulic turbine-driven power unit and a manual remote control valve.
  • the manual remote control valve The third solution outlet is connected to the first solution inlet of the hydraulic turbine, the high-pressure urea solution is connected to the second solution inlet of the liquid level control valve, and the other is connected to the third solution inlet of the manual remote control valve.
  • the first gas-liquid outlet of the flat and the second gas-liquid outlet of the liquid level regulating valve are both connected to the medium and low pressure process.
  • the power device is a high-pressure ammonium methane pump or generator in a urea device.
  • it also includes a coaxial compensation motor connected to the hydraulic turbine.
  • a process method for a high-pressure urea solution decompression energy-saving device for a urea device as described above is also provided as follows:
  • the high-pressure urea solution is sent all the way to the third solution inlet of the manual remote control valve, and then comes out from the third solution outlet and is sent to the first solution inlet of the hydraulic turbine.
  • the high-pressure urea solution coming out of the other way passes through the second solution inlet of the liquid level regulating valve. After the urea solution comes out of the second gas-liquid outlet, part of the liquid decompresses and flashes into gas, and the remaining decompressed urea solution and flash gas Phase enters the medium and low pressure process.
  • the urea solution diversion valve on the turbine outlet pipeline is opened to discharge the urea solution to the urea solution tank.
  • steam is introduced for purging to prevent urea crystallization.
  • the beneficial effects of the present invention are: a large amount of pressure lost on the liquid level regulating valve during the pressure reduction process can be recycled through the hydraulic turbine drive power device, which will greatly reduce the power consumption of the urea device. ; If the hydraulic turbine needs to be shut down for maintenance, all urea solutions will be adjusted through the liquid level regulating valve, making it easy for maintenance.
  • Figure 1 is a schematic diagram of an existing urea process device
  • Figure 2 is a schematic diagram of the high-pressure urea solution pressure reduction and energy-saving device of the urea device of the present invention.
  • 1-hydraulic turbine 1.1-first solution inlet, 1.2-first gas and liquid outlet, 2-liquid level regulating valve, 2.1-second solution inlet, 2.2-second gas and liquid outlet, 3-power device, 4-Manual remote control valve, 4.1-Third solution inlet, 4.2-Third solution outlet, 5-Coaxial compensation motor.
  • the high-pressure urea solution pressure reducing and energy-saving device for the urea plant includes a hydraulic turbine 1, a liquid level regulating valve 2, and a power unit 3 driven by the hydraulic turbine 1 (the power unit is high-pressure ammonium methane in the urea plant). pump or generator), manual remote control valve 4 and coaxial compensation motor 5.
  • the third solution outlet 4.2 of the manual remote control valve 4 is connected to the first solution inlet 1.1 of the hydraulic turbine 1.
  • the high-pressure urea solution passes through the liquid level all the way.
  • the second solution inlet 2.1 of the regulating valve 2 enters the liquid level regulating valve 2, and the other way passes through the third solution inlet 4.1 of the manual remote control regulating valve 4 and enters the manual remote regulating valve 4.
  • the urea solution and flash gas phase coming out of the second gas-liquid outlet 2.2 of the position regulating valve 2 are sent to the medium-low pressure process such as the medium-pressure decomposition tower or the low-pressure decomposition tower of the urea plant.
  • the high-pressure urea solution coming out of the stripping tower passes through the manual remote control valve 4 and enters the hydraulic turbine 1.
  • the other path directly enters the liquid level regulating valve 2.
  • Turbine 1 passes most of about 90% of the urea solution, and the remaining about 10% of the urea solution passes through the liquid level regulating valve 2, the stripping tower (or other water-soluble
  • the liquid level in the high-pressure equipment such as the urea synthesis tower in the liquid full cycle process is fine-tuned by the liquid level regulating valve 2.
  • the hydraulic turbine 1 drives the power unit 3 of the urea unit.
  • the deficiency is compensated by the coaxial compensation motor 5.
  • the decompressed urea solution and flash vapor phase enter medium-low pressure processes such as medium-pressure decomposition towers or low-pressure decomposition towers.
  • medium-pressure decomposition towers or low-pressure decomposition towers.
  • the hydraulic turbine 1 can drive the power unit 3 in the urea device, thereby recovering this part of the lost pressure energy. Utilize, save energy and reduce consumption.
  • the liquid level regulating valve 2 operates in parallel with the hydraulic turbine 1, and the liquid level of the stripping tower (or other high-pressure equipment such as the urea synthesis tower in the aqueous solution full cycle process) is fine-tuned through the liquid level regulating valve 2, that is, the rest is from About 10% high-pressure urea solution coming out of the stripping tower (or other high-pressure equipment such as the urea synthesis tower in the aqueous solution full cycle process) passes through the second solution inlet 2.1 of the liquid level regulating valve 2, and the pressure of the urea solution after coming out of the second gas-liquid outlet 2.2 From 13.0 to 25.0MPa (A) to 0.1 to 6.0MPa (A), part of the liquid decompresses and flashes into gas.
  • the decompressed urea solution and flash vapor phase also enter the medium-low pressure decomposition tower or low-pressure decomposition tower, etc. process.
  • the speed of hydraulic turbine 1 remains basically unchanged under normal working conditions. If the speed needs to be adjusted, it can be controlled by the manual remote control valve 4 in front of hydraulic turbine 1. In addition, if the hydraulic turbine 1 needs to be shut down for maintenance, all urea solutions will be controlled through the parallel liquid level regulating valve 2. Therefore, the urea device can still operate stably after adopting the device of the present invention, and the hydraulic turbine is easy to maintain.
  • hydraulic turbine 1 Since urea solution is easy to crystallize, hydraulic turbine 1 is equipped with heat insulation. When hydraulic turbine 1 is stopped, immediately open the urea solution diversion valve on the turbine outlet pipeline to discharge the urea solution to the urea solution tank. When the urea solution is Immediately after the pressure is relieved, steam is introduced to purge to prevent urea crystallization.
  • the large amount of pressure lost on the liquid level regulating valve during the pressure reduction process can be recycled through the hydraulic turbine drive power unit, which will greatly reduce the power consumption of the urea unit. According to calculations, the pressure lost per ton of urea can be converted into electricity consumption. If the pressure is reduced from 14.4MPa to 2.2MPa, approximately 4kWh/ton of urea products will be saved. If the pressure lost by all the units that have been put into production can be recovered, the actual output According to statistics, my country can save 220 million kilowatt-hours of electricity every year.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种尿素装置用高压尿素溶液减压节能装置,包括液力透平(1)、液位调节阀(2)、液力透平(1)驱动的动力装置(3)及手动遥控调节阀(4),手动遥控调节阀(4)的第三溶液出口(4.2)与液力透平(1)的第一溶液进口(1.1)连接,高压尿素溶液一路与液位调节阀(2)的第二溶液进口(2.1)连接、另一路与手动遥控调节阀(4)的第三溶液进口(4.1)连接,液力透平(1)第一气液出口(1.2)和液位调节阀(2)的第二气液出口(2.2)均与中低压工序连接。还公开一种尿素装置用高压尿素溶液减压节能装置的工艺方法。将减压过程中在液位调节阀上损耗掉的大量压力能通过液力透平驱动动力装置进行回收利用,将大大降低尿素装置的电力消耗;液力透平如需停车检修,所有尿素溶液全部通过液位调节阀来调节,易于检修。

Description

一种尿素装置用高压尿素溶液减压节能装置及工艺方法 技术领域
本发明属于尿素生产技术领域,具体涉及一种尿素装置用高压尿素溶液减压节能装置及工艺方法。
背景技术
颗粒状尿素是一种大宗商品,我国实际尿素年产能已超过7000万吨左右,实际年产量超过5500万吨。工业化尿素生产是利用不同的工艺技术将原料氨和二氧化碳在高压尿素合成塔反应生成尿素(平衡转化率一般为50~70%),并将尿素溶液逐级减压加热浓缩到一定的浓度,然后送往造粒单元造粒,并经空气冷却后得到最终颗粒尿素产品。
目前,世界上最先进的几种尿素工艺技术,都是将从汽提塔(或其它如水溶液全循环工艺尿素合成塔等高压设备)出来的压力为13.0~25.0MPa(A)、温度为150~200℃的高压尿素溶液经过液位调节阀直接减压到0.1~6.0MPa(A)、温度降到90~170℃,尿素溶液中的甲铵减压分解成氨和二氧化碳以及尿素溶液中未反应的氨和二氧化碳也减压闪蒸成气体,减压后的尿素溶液及闪蒸气相进入中压分解塔或低压分解塔等中低压工序。在减压过程中大量的压力能直接在液位调节阀LIC上损耗掉,造成大量的能量浪费。如图1所示为现有尿素工艺,直接通过调节阀进行减压将压力从13.0~25.0MPa(A)减压到0.1~6.0MPa(A),在减压过程中大量的压力能直接在阀门上损耗掉,造成大量的能量浪费。
发明内容
本发明的目的就是为了解决上述能量浪费问题,提供一种能够高效回收高压尿素溶液压力能、降低尿素装置电耗的尿素装置用高压尿素溶液减压节能装置及工艺方法。
本发明的目的是提供一种尿素装置用高压尿素溶液减压节能装置,包括液力透平、液位调节阀、液力透平驱动的动力装置及手动遥控调节阀,所述手动遥控调节阀的第三溶液出口与液力透平的第一溶液进口连接,高压尿素溶液一路与液位调节阀的第二溶液进口连接、另一路与手动遥控调节阀的第三溶液进口连接,液力透平第一气液出口和液位调节阀的第二气液出口均与中低压工序连接。
进一步地,所述动力装置为尿素装置中的高压甲铵泵或发电机。
进一步地,还包括与液力透平相连的同轴补偿电机。
还提供一种如上述所述尿素装置用高压尿素溶液减压节能装置的工艺方法如下:
高压尿素溶液一路送到手动遥控调节阀第三溶液入口,然后从第三溶液出口出来后送入液力透平的第一溶液入口,经过液力透平第一气液出口出来的尿素溶液,一部分液体减压闪 蒸成气体,剩余减压后的尿素溶液及闪蒸气相进入中低压工序;高压尿素溶液减压后的压力能通过液力透平来驱动尿素装置中的动力装置;
高压尿素溶液另一路出来的高压尿素溶液通过液位调节阀第二溶液入口,从第二气液出口出来后尿素溶液,一部分液体减压闪蒸成气体,剩余减压后的尿素溶液及闪蒸气相进入中低压工序。
进一步地,当所述液力透平停车检修时,关闭手动遥控调节阀,所有尿素溶液全部通过液位调节阀。
进一步地,当所述液力透平停车时打开透平出口管线上的尿素溶液导淋阀外排尿素溶液到尿素溶液槽,当尿素溶液压力卸下来后通入蒸汽进行吹扫防止尿素结晶。
与现有技术相比,本发明有益效果为:将减压过程中在液位调节阀上损耗掉的大量压力能通过液力透平驱动动力装置进行回收利用,将大大降低尿素装置的电力消耗;液力透平如需停车检修,所有尿素溶液全部通过液位调节阀来调节,易于检修。
附图说明
图1为现有现有尿素工艺装置示意图;
图2为本发明尿素装置高压尿素溶液减压节能装置示意图。
其中1-液力透平、1.1-第一溶液进口、1.2-第一气液出口、2-液位调节阀、2.1-第二溶液进口、2.2-第二气液出口、3-动力装置、4-手动遥控调节阀、4.1-第三溶液进口、4.2-第三溶液出口、5-同轴补偿电机。
具体实施方式
下面参照附图对本发明装置及工艺方法进行进一步详细说明:
如图1所示尿素装置用高压尿素溶液减压节能装置,包括液力透平1、液位调节阀2、液力透平1驱动的动力装置3(动力装置为尿素装置中的高压甲铵泵或发电机)、手动遥控调节阀4及同轴补偿电机5,手动遥控调节阀4的第三溶液出口4.2与液力透平1的第一溶液进口1.1连接,高压尿素溶液一路通过液位调节阀2的第二溶液进口2.1进入液位调节阀2、另一路通过手动遥控调节阀4的第三溶液进口4.1进入手动遥控调节阀4,液力透平1第一气液出口1.2和液位调节阀2的第二气液出口2.2出来的尿素溶液和闪蒸气相都送往尿素装置中压分解塔或低压分解塔等中低压工序。
从汽提塔(或其它如水溶液全循环工艺尿素合成塔等高压设备)出来的高压尿素溶液一路经过手动遥控调节阀4进入液力透平1、另一路直接进入液位调节阀2,液力透平1通过大部分约90%的尿素溶液,剩余的约10%尿素溶液通过液位调节阀2,汽提塔(或其它如水溶 液全循环工艺尿素合成塔等高压设备)内液位由液位调节阀2微调控制。
液力透平1驱动尿素装置的动力装置3,当液力透平1所产生的功率无法刚好满足驱动动力装置3所需的功率时,不足部分通过同轴补偿电机5进行补偿。
高压尿素溶液减压节能装置的具体工艺方法如下:
首先将从尿素装置汽提塔(或其它如水溶液全循环工艺尿素合成塔等高压设备)出来的压力为13.0~25.0MPa(A)、温度为150~200℃的高压尿素溶液的约90%流量送到手动遥控调节阀4第三溶液入口4.1,然后从第三溶液出口4.2出来后送入液力透平1的第一溶液入口1.1,经过液力透平1第一气液出口1.2出来的尿素溶液压力降至0.1~6.0MPa(A),部分液体减压闪蒸成气体。减压后的尿素溶液及闪蒸气相进入中压分解塔或低压分解塔等中低压工序。高压尿素溶液的压力从13.0~25.0MPa(A)降到0.1~6.0MPa(A)的压力能通过液力透平1来驱动尿素装置中的动力装置3,从而将这部分损失的压力能回收利用,节能降耗。
同时,液位调节阀2与液力透平1并联操作,通过液位调节阀2微调控制汽提塔(或其它如水溶液全循环工艺尿素合成塔等高压设备)液位,即剩下的从汽提塔(或其它如水溶液全循环工艺尿素合成塔等高压设备)出来的约10%高压尿素溶液通过液位调节阀2第二溶液入口2.1,从第二气液出口2.2出来后尿素溶液压力从13.0~25.0MPa(A)降到0.1~6.0MPa(A),部分液体减压闪蒸成气体,减压后的尿素溶液及闪蒸气相也进入中压分解塔或低压分解塔等中低压工序。
液力透平1的转速正常工况下基本维持不变,若需调节转速可以通过液力透平1前的手动遥控调节阀4控制。另外,液力透平1如需停车检修,所有尿素溶液全部通过并联的液位调节阀2来控制,因此,采用本发明装置后尿素装置仍然可以稳定操作,液力透平易于检修。
由于尿素溶液容易结晶,因此液力透平1有伴热保温,当液力透平1停车时立即打开透平出口管线上的尿素溶液导淋阀外排尿素溶液到尿素溶液槽,当尿素溶液压力卸下来后立即通入蒸汽进行吹扫防止尿素结晶。
将减压过程中在液位调节阀上损耗掉的大量压力能通过液力透平驱动动力装置进行回收利用,将大大降低尿素装置的电力消耗。据计算,每吨尿素损失的压力能折成电耗,如压力按14.4MPa降到2.2MPa计算,约节省4kWh/吨尿素产品,如果将所有已投产装置损失的压力能进行回收,按实际产量计,我国每年可以节约用电2.2亿度。

Claims (6)

  1. 一种尿素装置用高压尿素溶液减压节能装置,其特征在于:包括液力透平(1)、液位调节阀(2)、液力透平(1)驱动的动力装置(3)及手动遥控调节阀(4),所属手动遥控调节阀(4)的第三溶液出口(4.2)与液力透平(1)的第一溶液进口(1.1)连接,高压尿素溶液一路与液位调节阀(2)的第二溶液进口(2.1)连接、另一路与手动遥控调节阀(4)的第三溶液进口(4.1)连接,液力透平(1)第一气液出口(1.2)和液位调节阀(2)的第二气液出口(2.2)均与中低压工序连接。
  2. 根据权利要求1所述尿素装置用高压尿素溶液减压节能装置,其特征在于:所述动力装置(3)为尿素装置中的高压甲铵泵或发电机。
  3. 根据权利要求1所述尿素装置用高压尿素溶液减压节能装置,其特征在于:还包括与液力透平(1)相连的同轴补偿电机(5)。
  4. 一种如权利要求1所述尿素装置用高压尿素溶液减压节能装置的工艺方法,其特征在于:所述工艺方法如下:
    高压尿素溶液一路送到手动遥控调节阀(4)第三溶液入口(4.1),然后从第三溶液出口(4.2)出来后送入液力透平(1)的第一溶液入口(1.1),经过液力透平(1)第一气液出口(1.2)出来的尿素溶液,一部分液体减压闪蒸成气体,剩余减压后的尿素溶液及闪蒸气相进入中低压工序;高压尿素溶液减压后的压力能通过液力透平(1)来驱动尿素装置中的动力装置(3);
    高压尿素溶液另一路出来的高压尿素溶液通过液位调节阀(2)第二溶液入口(2.1),从第二气液出口(2.2)出来后尿素溶液,一部分液体减压闪蒸成气体,剩余减压后的尿素溶液及闪蒸气相进入中低压工序。
  5. 根据权利要求4所述尿素装置用高压尿素溶液减压节能装置的工艺方法,其特征在于:当所述液力透平(1)停车检修时,关闭手动遥控调节阀(4),所有尿素溶液全部通过液位调节阀(2)。
  6. 根据权利要求4所述尿素装置用高压尿素溶液减压节能装置的工艺方法,其特征在于:当所述液力透平(1)停车时打开透平出口管线上的尿素溶液导淋阀外排尿素溶液到尿素溶液槽,当尿素溶液压力卸下来后通入蒸汽进行吹扫防止尿素结晶。
PCT/CN2023/073561 2022-08-26 2023-01-28 一种尿素装置用高压尿素溶液减压节能装置及工艺方法 WO2024040866A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211033335.4A CN115681244A (zh) 2022-08-26 2022-08-26 一种尿素装置用高压尿素溶液减压节能装置及工艺方法
CN202211033335.4 2022-08-26

Publications (1)

Publication Number Publication Date
WO2024040866A1 true WO2024040866A1 (zh) 2024-02-29

Family

ID=85061075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/073561 WO2024040866A1 (zh) 2022-08-26 2023-01-28 一种尿素装置用高压尿素溶液减压节能装置及工艺方法

Country Status (2)

Country Link
CN (1) CN115681244A (zh)
WO (1) WO2024040866A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08325221A (ja) * 1995-06-02 1996-12-10 Toyo Eng Corp 尿素製造方法
CN201783322U (zh) * 2010-09-01 2011-04-06 中国海洋石油总公司 一种co2汽提塔甲铵液能量回收装置
CN102900477A (zh) * 2011-07-27 2013-01-30 北京航天动力研究所 大功率液力透平能量回收系统
CN103408467A (zh) * 2013-08-08 2013-11-27 中国五环工程有限公司 低能耗co2汽提法尿素工艺及系统
CN206897128U (zh) * 2017-06-05 2018-01-19 中石化宁波工程有限公司 一种合成气净化节能系统
CN210481310U (zh) * 2019-06-20 2020-05-08 山东晋煤明升达化工有限公司 一种低温甲醇洗能量回收利用的装置
CN114409573A (zh) * 2022-01-05 2022-04-29 中国五环工程有限公司 改进的低能耗co2汽提法尿素工艺

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08325221A (ja) * 1995-06-02 1996-12-10 Toyo Eng Corp 尿素製造方法
CN201783322U (zh) * 2010-09-01 2011-04-06 中国海洋石油总公司 一种co2汽提塔甲铵液能量回收装置
CN102900477A (zh) * 2011-07-27 2013-01-30 北京航天动力研究所 大功率液力透平能量回收系统
CN103408467A (zh) * 2013-08-08 2013-11-27 中国五环工程有限公司 低能耗co2汽提法尿素工艺及系统
CN206897128U (zh) * 2017-06-05 2018-01-19 中石化宁波工程有限公司 一种合成气净化节能系统
CN210481310U (zh) * 2019-06-20 2020-05-08 山东晋煤明升达化工有限公司 一种低温甲醇洗能量回收利用的装置
CN114409573A (zh) * 2022-01-05 2022-04-29 中国五环工程有限公司 改进的低能耗co2汽提法尿素工艺

Also Published As

Publication number Publication date
CN115681244A (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
WO2024040866A1 (zh) 一种尿素装置用高压尿素溶液减压节能装置及工艺方法
CN113526525B (zh) 一种余热梯级回收的合成氨塔及可再生能源合成氨系统
CN102515099A (zh) 从合成氨液氨储槽弛放气中回收氢气的膜分离方法及装置
CN220070763U (zh) 一种从三氯蔗糖副产氯化氢中分离高纯氯化氢的装置
CN102515201B (zh) 一种氨碱法生产纯碱产生的废清液的循环回收方法及装置
CN105524006A (zh) 一种节能环保型氰尿酸、食品级硫酸和氨基磺酸的联产工艺
CN205677679U (zh) 以液氨为介质的余热回收系统
CN103407971B (zh) 一种生产液体二氧化硫的工艺
CN218665415U (zh) 以完成液为原料蒸馏制备氢溴酸的设备
CN112239390B (zh) 乙烯深冷回收系统
CN204039301U (zh) 一种二氧化碳汽提尿素扩产装置
CN109734104B (zh) 一种利用合成氨的驰放气系统生产氨水的装置及方法
CN110451467B (zh) 一种多工况氩气回收装置
CN107869651B (zh) 液氯与氯气共线生产与使用工艺及其设备
CN211896829U (zh) 系统结晶冲淋工艺处理系统
CN106679243B (zh) 一种降低液氨消耗的制冷系统
CN212369609U (zh) 工艺冷凝液能量综合回收利用系统
CN213708185U (zh) 乙烯深冷回收系统
CN216155480U (zh) 一种焦炉煤气生产液氨联产三聚氰胺的装置
CN218510692U (zh) 一种氨合成冷交换器放氨装置
CN109595878B (zh) 一种合成氨、尿素联产液体二氧化碳的方法
CN218860653U (zh) 双气化炉联产制备尿素系统
CN104402768B (zh) 一种用低纯度液氨为原料生产尿素的工艺
CN219377092U (zh) 一种生产食品级二氧化碳加氧系统
CN220048092U (zh) 一种二萘酚吹萘系统中对萘回收利用的装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23855963

Country of ref document: EP

Kind code of ref document: A1