WO2024040847A1 - 一种基于双ccd传感器的片材拼接对齐系统及对齐方法 - Google Patents

一种基于双ccd传感器的片材拼接对齐系统及对齐方法 Download PDF

Info

Publication number
WO2024040847A1
WO2024040847A1 PCT/CN2022/144153 CN2022144153W WO2024040847A1 WO 2024040847 A1 WO2024040847 A1 WO 2024040847A1 CN 2022144153 W CN2022144153 W CN 2022144153W WO 2024040847 A1 WO2024040847 A1 WO 2024040847A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
target feature
linear array
ccd sensor
array ccd
Prior art date
Application number
PCT/CN2022/144153
Other languages
English (en)
French (fr)
Inventor
游云
罗人轩
刘祖泽
Original Assignee
重庆编福科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆编福科技有限公司 filed Critical 重庆编福科技有限公司
Publication of WO2024040847A1 publication Critical patent/WO2024040847A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H43/00Use of control, checking, or safety devices, e.g. automatic devices comprising an element for sensing a variable
    • B65H43/08Photoelectric devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H29/00Delivering or advancing articles from machines; Advancing articles to or into piles
    • B65H29/20Delivering or advancing articles from machines; Advancing articles to or into piles by contact with rotating friction members, e.g. rollers, brushes, or cylinders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/10Handled articles or webs
    • B65H2701/11Dimensional aspect of article or web
    • B65H2701/113Size
    • B65H2701/1131Size of sheets

Definitions

  • the invention relates to the technical field of sheet splicing, and in particular to a sheet splicing alignment system and alignment method based on dual CCD sensors.
  • the positions of the two sheets may shift during the movement to the splicing position. Therefore, the two sheets to be spliced need to be aligned through the sheet splicing alignment system before splicing. .
  • photoelectric sensors such as laser sensors composed of a laser transmitter and a laser receiver
  • the photoelectric sensor can only detect the position deviation between the two sheets to be spliced.
  • the edge of the sheet is detected, but it is helpless when other features need to be aligned during splicing (such as printed lines or patterns on the sheet); and the detection range of the photoelectric sensor is relatively narrow, at the position of the two sheets to be spliced.
  • features are easily lost and the edge of the sheet cannot be detected, so manual intervention is often required to adjust the position of the sheet.
  • the present invention aims to solve at least one of the above-mentioned technical problems existing in the prior art. It particularly innovatively proposes a sheet splicing alignment system and alignment method based on dual CCD sensors, which effectively solves the problem of using photoelectric sensors only in the prior art. It can detect the edges of sheets, but has poor applicability and requires high professional quality of operators.
  • the present invention provides a sheet splicing alignment system based on dual CCD sensors for aligning the first sheets to be spliced placed side by side in the X direction. aligned with the corresponding target feature of the second sheet,
  • the sheet splicing and alignment system includes a control module, an actuator and two linear array CCD sensor modules, wherein,
  • the actuator includes a moving platform for placing the first sheet and a driving unit for driving the moving platform to move in the Y direction perpendicular to the X direction;
  • the two linear array CCD sensor modules are respectively communicatively connected to the control module and the two linear array CCD sensor modules are arranged side by side along the X direction.
  • One of the linear array CCD sensor modules is used to collect the corresponding data of the first sheet
  • the first image of the first target area and determine the position information of the first target feature in the first image based on image recognition
  • another linear array CCD sensor module is used to collect the second corresponding to the second sheet.
  • a second image of the target area and determine the position information of the second target feature in the second image based on image recognition, wherein the first target feature and the second target feature are respectively located on the first sheet, Features on the second sheet that need to be aligned when the first sheet and the second sheet are spliced;
  • the control module is communicatively connected with the driving unit, and the control module is used to calculate the moving direction and moving distance of the mobile platform based on the position information of the first target feature and the position information of the second target feature, And generate a drive control signal according to the calculated movement direction and movement distance of the mobile platform, wherein the drive control signal is used to control the drive unit to drive the mobile platform to move to the target position so that the first The target feature is aligned with the second target feature.
  • the photosensitive elements of the two linear array CCD sensor modules are arranged along the Y direction, and the connection between the photosensitive elements at the center positions of the two linear array CCD sensor modules is parallel to the X direction.
  • the linear array CCD sensor module includes an LCD touch screen, the LCD touch screen is used to display the collected image, and is used to receive user interaction operations to mark the target feature on the collected image.
  • Determining the position information of the first target feature in the first image based on image recognition includes:
  • the mapping relationship obtains the position information of the first target feature
  • Determining the position information of the second target feature in the second image based on image recognition includes:
  • the mapping relationship obtains the position information of the second target feature.
  • the driving unit includes a driving motor, a driving gear, a driven gear and a screw pair, the signal input end of the driving motor is connected to the control module, and the output shaft of the driving motor is fixed to the driving gear. connection, the driving gear meshes with the driven gear, the driven gear is fixedly connected with the driving end of the screw rod of the screw pair, and the nut of the screw pair is connected with the moving platform.
  • calculating the moving direction and moving distance of the mobile platform based on the position information of the first target feature and the position information of the second target feature includes:
  • the moving direction and moving distance of the mobile platform are obtained according to the pixel position corresponding to the first target feature and the pixel position corresponding to the second target feature.
  • generating a drive control signal based on the calculated moving direction and moving distance of the mobile platform includes:
  • the drive control signal is generated based on the calculated number of Hall pulses required to drive the drive motor and the rotation direction of the drive motor.
  • the linear array CCD sensor module further includes a monochrome CCD chip, a main control MCU and an RGB backlight module, and the monochrome CCD chip and RGB backlight module are respectively connected to the main control MCU.
  • the present invention also provides a sheet splicing and alignment method based on dual CCD sensors, applying the sheet splicing and alignment system based on dual CCD sensors described in any one of the above first aspects, so The method described includes the following steps:
  • S4 collect images of the first sheet and the second sheet through two linear array CCD sensor modules respectively, and mark target features on the images collected by the two linear array CCD sensor modules;
  • S5 Start the sheet splicing and alignment system to align the first sheet and the second sheet to be spliced through the sheet splicing and aligning system.
  • the aligning the first sheet and the second sheet to be spliced through the sheet splicing alignment system includes:
  • the first image of the first target area corresponding to the first sheet is collected through one of the linear array CCD sensor modules, and the position information of the first target feature in the first image is determined based on image recognition, and through another
  • the linear array CCD sensor module collects a second image of the second target area corresponding to the second sheet, and determines the position information of the second target feature in the second image based on image recognition;
  • the control module calculates the moving direction and moving distance of the mobile platform according to the position information of the first target feature and the position information of the second target feature, and calculates the moving direction and distance of the mobile platform based on the calculated The moving distance generates a drive control signal;
  • the driving unit drives the mobile platform to move to a target position based on the driving control signal to align the first target feature and the second target feature.
  • the present invention provides a sheet splicing alignment system and alignment method based on dual CCD sensors.
  • the target features of the two sheets to be spliced are detected through two CCD sensors arranged side by side, which can effectively identify
  • it can be applied to the alignment and splicing of two sheets with more types of target features and the alignment and splicing of two sheets with larger position deviations.
  • the scope of application is wider.
  • Figure 1 is a schematic structural diagram of a sheet splicing and alignment system based on dual CCD sensors in a preferred embodiment of the present invention
  • Figure 2 is a circuit schematic diagram of a linear array CCD sensor module in a preferred embodiment of the invention
  • FIG. 3 is a circuit schematic diagram of the control module in a preferred embodiment of the present invention.
  • Figure 4 is a schematic flow chart of a sheet splicing and alignment method based on dual CCD sensors in a preferred embodiment of the present invention.
  • connection should be understood in a broad sense.
  • it can be a mechanical connection or an electrical connection, or both.
  • the internal connection between components may be directly connected or indirectly connected through an intermediate medium.
  • the present invention provides a sheet splicing and alignment system based on dual CCD sensors, which is used to align the sheets to be spliced placed side by side in the X direction (such as the direction indicated by the arrow on the first sheet 100 in Figure 1).
  • the corresponding target features of the first sheet 100 and the second sheet 200 are aligned.
  • the system includes a control module 1, an actuator 2 and two linear array CCD sensor modules 3.
  • the actuator 2 includes a mobile platform 21 for placing the first sheet 100 and a driving unit 22 for driving the mobile platform 21 to move in the Y direction perpendicular to the X direction (the direction indicated by the double-headed arrow on the mobile platform 21 in Figure 1 ). .
  • Two linear array CCD sensor modules 3 are respectively communicatively connected with the control module 1 and are arranged side by side along the X direction.
  • One of the linear array CCD sensor modules 3 is used to collect the first image corresponding to the first sheet 100 The first image of the target area, and determine the position information of the first target feature in the first image based on image recognition
  • another linear array CCD sensor module 3 is used to collect the second image of the second target area corresponding to the second sheet 200 image, and determine the position information of the second target feature in the second image based on image recognition, where the first target feature and the second target feature are respectively located on the first sheet 100 and the second sheet 200 and the first sheet Features that need to be aligned when the material 100 and the second sheet 200 are spliced.
  • the first target feature and the second target feature may be the edge of the sheet, the printing on the sheet, the pattern on the sheet, and other features that need to be aligned when the two sheets are spliced.
  • the control module 1 is communicatively connected with the driving unit 22.
  • the control module 1 is used to calculate the moving direction and moving distance of the mobile platform 21 based on the position information of the first target feature and the position information of the second target feature, and calculate the moving direction and distance of the mobile platform 21 based on the calculated position information.
  • the movement direction and movement distance generate a drive control signal, wherein the drive control signal is used to control the drive unit 22 to drive the mobile platform 21 to move to the target position to align the first target feature and the second target feature.
  • the linear array CCD sensor module 3 located above the first sheet 100 scans and takes a picture of the first target area of the first sheet 100 to obtain the first image, and at the same time, based on the image recognition technology, the first target feature is identified in the first image and the position information of the first target feature is calculated and sent to the control module 1; then the first target feature is sent to the control module 1 through another transmission mechanism (not shown in the figure).
  • the second sheet 200 is transported in a direction close to the first sheet 100 (as shown by the arrow on the first sheet 100 in Figure 1, that is, the positive direction of X).
  • the other A linear array CCD sensor module 3 scans and takes a picture of the second target area of the second sheet 200 to obtain a second image.
  • the second target feature is identified in the second image and the second target feature is calculated.
  • the position information is sent to the control module 1; then, the control module 1 calculates the position information of the mobile platform 21 based on the position information of the first target feature and the position information of the second target feature detected by the two linear array CCD sensor modules 3.
  • the moving direction and moving distance are generated, and a driving control signal is generated based on the calculated moving direction and moving distance of the mobile platform 21 and sent to the driving unit 22.
  • the driving unit 22 drives the mobile platform 21 along the two-way direction of the mobile platform 21 in Figure 1 based on the driving control signal.
  • One of the directions indicated by the arrow ie, the positive direction or the negative direction of Y
  • subsequent sheet splicing operations can be performed by the sheet splicing equipment.
  • the sheet splicing and alignment system of this embodiment uses two linear array CCD sensor modules 3 to identify the target features and determine the position information on the first sheet 100 and the second sheet 200 to be spliced, and can effectively identify except Printing lines, patterns and other target features other than sheet edge line features can be applied to the alignment and splicing of two sheets with more types of target features and the alignment and splicing of two sheets with larger position deviations.
  • the scope of application is wider. ;
  • the detection range of the CCD sensor is wider than that of photoelectric sensors such as laser sensors.
  • the detection range of the linear array CCD sensor can be adjusted to 50mm. Under normal circumstances, the deviation of the second sheet 200 during the transmission process will not be so large.
  • this system can meet the alignment usage scenarios of larger deviation materials to a greater extent, and can effectively reduce manual intervention; in addition, due to the linear array CCD
  • the number of pixels in a single row is much higher than that of area array CCD and other photoelectric sensors, so the resolution of the image of the target area is also higher, which in turn makes the specific position information of the target features in the image obtained through image recognition technology more accurate, so
  • the drive control signal generated by the control module 1 based on the position information of the target feature can more accurately control the drive unit 22 to move the mobile platform 21 to the target position more accurately, thus effectively reducing the splicing of two sheets. error.
  • the photosensitive elements of the two linear array CCD sensor modules 3 are arranged along the Y direction, and the connection between the photosensitive elements at the center positions of the two linear array CCD sensor modules 3 is parallel to the X direction. .
  • the coordinate positions of each pixel in the X direction of the two linear array CCD sensor modules 3 can be aligned with each other, thereby effectively avoiding the error between the detected position signal and the actual position information of the target feature of the sheet, and better ensuring Detection accuracy to reduce splicing alignment errors.
  • the linear array CCD sensor module 3 includes an LCD touch screen.
  • the LCD touch screen is used to display the collected images and is used to receive user interaction operations to mark targets on the collected images. feature.
  • the target characteristics of the sheet can be displayed intuitively and clearly through the LCD touch screen of the linear array CCD sensor module 3, and the on-site operator can zoom in on the pictures taken by the linear array CCD sensor through the LCD touch screen of the linear array CCD sensor module 3. Interactively mark target features of the sheet.
  • determining the position information of the first target feature in the first image based on image recognition includes:
  • each first preselected feature in the first image whose chromaticity value jumps greater than the preset chromaticity threshold is calculated to obtain the first preselected feature set, that is, in the first image
  • the first preselected features may be features such as edge lines, printing lines, patterns, etc. in the first image.
  • the third Position information of a target feature Based on the specific position of the pixel point corresponding to the first target feature in the first image, and the mapping relationship between the specific position of each pixel point in the first image and the position coordinates of each pixel point in the imaging area of the linear array CCD sensor module 3, the third Position information of a target feature; the position information is specifically the position coordinates of the first target feature.
  • Determining the position information of the second target feature in the second image based on image recognition includes:
  • each second preselected feature in the second image whose chroma value jump is greater than the preset chroma threshold is calculated to obtain the second preselected feature set, that is, the chroma value jump in the second image is larger than the preset chroma threshold.
  • the second preselected features may be features such as edge lines, printing lines, patterns, etc. in the second image.
  • each second preselected feature also needs to be compared with the chromaticity value of the pre-marked target feature.
  • the corresponding target features (ie, the second target features) in the second image are screened out.
  • the first Location information of the second target feature Based on the specific position of the pixel point corresponding to the second target feature in the second image, and the mapping relationship between the specific position of each pixel point in the second image and the position coordinates of each pixel point in the imaging area of the linear array CCD sensor module 3, the first Location information of the second target feature.
  • the position information is specifically the position coordinates of the second target feature.
  • the above-mentioned preset chromaticity threshold can be specifically set according to the chromaticity values of different target features on different sheets.
  • the driving unit 22 specifically includes a driving motor, a driving gear, a driven gear and a screw pair.
  • the signal input end of the driving motor is connected to the control module 1.
  • the driving motor The output shaft is fixedly connected to the driving gear, the driving gear is meshed with the driven gear, the driven gear is fixedly connected to the driving end of the screw rod of the screw pair, and the nut of the screw pair is fixedly connected to the mobile platform 21.
  • the driving motor drives the driving gear, and the driving gear drives the driven gear to rotate, and the rotation of the driven gear drives the screw of the screw pair to rotate, so that the mobile platform 21 fixedly connected to the nut of the screw pair makes linear motion in the Y direction.
  • the moving platform 21 drives the first sheet 100 to move along the Y direction so that the first target feature on the first sheet 100 is aligned with the second target feature on the second sheet 200 to ensure splicing accuracy.
  • calculating the moving direction and moving distance of the mobile platform 21 based on the position information of the first target feature and the position information of the second target feature includes:
  • the pixel position corresponding to the second target feature is obtained according to the position information of the second target feature, the detection range of the linear array CCD sensor module 3 and the resolution of the linear array CCD sensor module 3;
  • the moving direction and moving distance of the mobile platform 21 are obtained according to the pixel position corresponding to the first target feature and the pixel position corresponding to the second target feature.
  • generating a drive control signal according to the calculated moving direction and moving distance of the mobile platform 21 includes:
  • the drive control signal is generated based on the calculated number of Hall pulses required to drive the drive motor and the rotation direction of the drive motor.
  • the detection range of the two linear array CCD sensor modules 3 is ⁇ 20mm
  • the output signal of the sensor is analog 0 ⁇ 5V
  • the resolution is 1000, which is equivalent to 40mm divided into 1000 parts, each part represents 0.04 mm.
  • the control module 1 calculates that the difference is +6mm based on the above formula, so the drive motor needs to rotate forward to drive the mobile platform 21 to run a distance of 6mm in the positive direction of the Y-axis.
  • the actuator 2 uses a driving motor as power to drive the screw rod of the screw pair to rotate through the driving gear and the driven gear.
  • the nut of the screw pair makes reciprocating motion on the screw rod to drive the mobile platform 21 to move forward and backward in the Y direction. Effect.
  • the transmission ratio between the driving gear and the driven gear is 19:58, and the screw pitch is 4mm.
  • the control module 1 accurately controls the driving motor to run for 137 pulses, and then the mobile platform 21 can drive the first sheet 100 to the target position to achieve alignment of the target features between the first sheet 100 and the second sheet 200 .
  • the linear array CCD sensor module 3 also includes a monochrome CCD chip, a main control MCU and an RGB backlight module.
  • the monochrome CCD chip and the RGB backlight module are respectively connected to the main control MCU.
  • the linear array CCD sensor module 3 collects the image of the corresponding sheet, it starts the RGB backlight module to illuminate the sheet, and controls the monochrome CCD chip through the main control MCU to scan the target area of the sheet to achieve image collection of the target area.
  • the main control MCU simultaneously achieves color restoration of color sheets on the images collected by the three-color CCD chip through backlight conversion of different colors.
  • the circuit schematic diagram of the linear array CCD sensor module 3 is shown in Figure 2. It can be seen from the figure that the linear array CCD sensor module 3 also includes a power supply part, a CCD chip drive circuit and a communication part.
  • the power supply part is used to power the CCD sensor module
  • the CCD chip driver circuit is used to drive the monochrome CCD chip to work
  • the communication part is used to communicate interactively with the control module 1.
  • the circuit schematic diagram of the control module 1 is shown in Figure 3. It can be seen from the figure that the control module 1 mainly includes a power supply part, a main control MCU, a communication part, a storage unit, a motor drive circuit, Interface circuit and external control circuit, among which the power part is used to provide operating power for each unit circuit of the main control module, the main control MCU is used to generate drive control signals based on the received position information of the target features, and the communication part is used to control the module 1 communicates with the linear array CCD sensor module 3.
  • the storage unit is used to store preset parameters, data received by the control module 1 and data generated after calculation by the control module 1.
  • the motor drive circuit is used in the control module 1.
  • the working state of the drive motor is controlled under the control of the main control MCU.
  • the interface circuit is used to realize the connection between the control module 1 and other modules or equipment.
  • the external control circuit is used to connect with the external monitoring terminal to realize the connection between the system and the external monitoring terminal. communication between them.
  • the present invention also provides a sheet splicing and alignment method based on dual CCD sensors, which can be applied to the sheet splicing and alignment system based on dual CCD sensors in any of the above embodiments.
  • the method includes the following steps:
  • S4 collect images of the first sheet and the second sheet through two linear array CCD sensor modules respectively, and mark target features on the images collected by the two linear array CCD sensor modules;
  • aligning the first sheet and the second sheet to be spliced through the sheet splicing alignment system includes:
  • the first image of the first target area corresponding to the first sheet is collected through one of the linear array CCD sensor modules, and the position information of the first target feature in the first image is determined based on image recognition, and the first image is collected through another linear array CCD sensor module.
  • the module collects a second image of the second target area corresponding to the second sheet, and determines the position information of the second target feature in the second image based on image recognition;
  • the control module calculates the moving direction and moving distance of the mobile platform based on the position information of the first target feature and the position information of the second target feature, and generates a drive control signal based on the calculated moving direction and moving distance of the mobile platform;
  • the driving unit drives the mobile platform to move to the target position based on the driving control signal to align the first target feature and the second target feature.
  • the integrated modules/units of the sheet splicing and alignment system based on dual CCD sensors are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium. middle.
  • the present invention can implement all or part of the processes in the methods of the above embodiments, and can also be completed by instructing relevant hardware through a computer program.
  • the computer program can be stored in a computer-readable storage medium, and the computer can When the program is executed by the processor, the steps of each of the above method embodiments can be implemented.
  • the computer program includes computer program code, which may be in the form of source code, object code, executable file or some intermediate form.
  • the computer-readable medium may include: any entity or device capable of carrying the computer program code, recording media, U disk, mobile hard disk, magnetic disk, optical disk, computer memory, read-only memory (ROM, Read-Only Memory) , Random Access Memory (RAM, Random Access Memory), electrical carrier signals, telecommunications signals, and software distribution media, etc.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • electrical carrier signals telecommunications signals
  • software distribution media etc.
  • the content contained in the computer-readable medium can be appropriately added or deleted according to the requirements of legislation and patent practice in the jurisdiction.
  • the computer-readable medium Excludes electrical carrier signals and telecommunications signals.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Image Processing (AREA)

Abstract

一种基于双 CCD传感器的片材拼接对齐系统,片材拼接对齐系统包括控制模块(1)、执行机构(2)和两个线阵CCD传感器模块(3),执行机构(2)包括用于放置第一片材(100)的移动平台(21)和用于驱动移动平台(21)沿与X方向垂直的Y方向移动的驱动单元(22),两个线阵 CCD传感器模块(3)分别与控制模块(1)通信连接且两个线阵CCD传感器模块(3)沿X方向并排布置,控制模块(1)与驱动单元(22)通信连接,用于根据两个线阵CCD传感器模块(3)采集的信号控制驱动单元(22)驱动移动平台(21)移动到目标位置。一种基于双CCD传感器的片材拼接对齐方法,应用于该种基于双CCD传感器的片材拼接对齐系统。如此设置能够有效识别除片材边缘线特征之外的印刷线、图案等其他目标特征,适用范围更加广泛,且可有效提高拼接过程中目标特征对齐的精度。

Description

一种基于双CCD传感器的片材拼接对齐系统及对齐方法 技术领域
本发明涉及片材拼接技术领域,尤其涉及一种基于双CCD传感器的片材拼接对齐系统及对齐方法。
背景技术
对于需要进行片材拼接的场合,两块片材的位置在运动至拼接位置的过程中都有可能发生偏移,因此,拼接之前需要通过片材拼接对齐系统将待拼接的两块片材对齐。
目前,在片材拼接对齐系统中,大多使用光电传感器(例如通过激光发射器和激光接收器构成的激光传感器)来检测待拼接的两块片材之间的位置偏差,然而光电传感器只能对片材边缘进行检测,对拼接时需要对齐其它特征(例如位于片材上的印刷线或图案等特征)的时候就束手无策了;且光电传感器检测范围比较窄,在待拼接的两块片材位置偏差较大的情况下,容易丢失特征,导致检测不到片材的边缘,因此经常需要进行人工干预来调整片材的位置。
发明内容
本发明旨在至少解决现有技术中存在的上述技术问题之一,特别创新地提出了一种基于双CCD传感器的片材拼接对齐系统及对齐方法,有效解决了现有技术中采用光电传感器只能对片材边缘进行检测,适用性较差,且对操作人员的专业素质要求较高的问题。
为了实现本发明的上述目的,根据本发明的第一个方面,本发明提供了一种基于双CCD传感器的片材拼接对齐系统,用于使沿X方向并排放置的待拼接的第一片材和第二片材的对应的目标特征对齐,
所述片材拼接对齐系统包括控制模块、执行机构和两个线阵CCD传感器模块,其中,
所述执行机构包括用于放置所述第一片材的移动平台和用于驱动所述移动平台沿与所述X方向垂直的Y方向移动的驱动单元;
两个所述线阵CCD传感器模块分别与所述控制模块通信连接且两个所述线阵CCD传感器模块沿X方向并排布置,其中一个线阵CCD传感器模块用于采集所述第一片材对应的第一目标区域的第一图像,并基于图像识别确定所述第一图像中的第一目标特征的位置信息,另一个线阵CCD传感器模块用于采集所述第二片材对应的第二目标区域的第二图像,并基于图像识别确定所述第二图像中的第二目标特征的位置信息,其中,所述第一目标特征、第二目标特征分别为位于所述第一片材、第二片材上且第一片材和第二片材拼接时需要对齐的特征;
所述控制模块与所述驱动单元通信连接,所述控制模块用于根据所述第一目标特征的位置信息和所述第二目标特征的位置信息计算所述移动平台的移动方向和移动距离,并根据计算得到的所述移动平台的移动方向和移动距离生成驱动控制信号,其中,所述驱动控制信号用于控制所述驱动单元驱动所述移动平台移动到目标位置,以使所述第一目标特征和第二目标特征对齐。
优选地,两个所述线阵CCD传感器模块的光敏元件均沿Y方向排列,且两个所述线阵CCD传感器模块的中心位置的光敏元件之间的连线与X方向平行。
优选地,所述线阵CCD传感器模块包括LCD触摸屏,所述LCD触摸屏用 于显示采集到的图像,并用于接收用户交互操作以在采集到的图像上标记所述目标特征。
优选地,
所述基于图像识别确定所述第一图像中的第一目标特征的位置信息包括:
基于差分算法和快速傅里叶变换计算出所述第一图像中色度值跳变大于预设色度阈值的预设色度阈值的各第一预选特征得到第一预选特征集;
将所述第一预选特征集中各预选特征的色度值与预先标记的目标特征的色度值进行比对,并根据比对结果确定所述第一目标特征;
基于所述第一目标特征对应的像素点在所述第一图像中的具体位置,以及第一图像中各像素点的具体位置与所述线阵CCD传感器模块的成像区域中各像素点位置坐标的映射关系得到所述第一目标特征的位置信息;
所述基于图像识别确定所述第二图像中的第二目标特征的位置信息包括:
基于差分算法和快速傅里叶变换计算出所述第二图像中色度值跳变大于预设色度阈值的各第二预选特征得到第二预选特征集;
将所述第二预选特征集中各预选特征的色度值与预先标记的目标特征的色度值进行比对,并根据比对结果确定所述第二目标特征;
基于所述第二目标特征对应的像素点在所述第二图像中的具体位置,以及第二图像中各像素点的具体位置与所述线阵CCD传感器模块的成像区域中各像素点位置坐标的映射关系得到所述第二目标特征的位置信息。
优选地,所述驱动单元包括驱动电机、主动齿轮、从动齿轮和丝杠副,所述驱动电机的信号输入端与所述控制模块连接,所述驱动电机的输出轴与所述主动齿轮固定连接,所述主动齿轮与所述从动齿轮啮合,所述从动齿轮与所述丝杠副 的丝杆的驱动端固定连接,所述丝杠副的螺母与所述移动平台连接。
优选地,所述根据所述第一目标特征的位置信息和所述第二目标特征的位置信息计算所述移动平台的移动方向和移动距离包括:
根据所述第一目标特征的位置信息、线阵CCD传感器模块的检测范围和线阵CCD传感器模块的分别率得到所述第一目标特征对应的像素点位置;
根据所述第二目标特征的位置信息、线阵CCD传感器模块的检测范围和线阵CCD传感器模块的分别率得到所述第二目标特征对应的像素点位置;
根据所述第一目标特征对应的像素点位置和第二目标特征对应的像素点位置得到所述移动平台的移动方向和移动距离。
优选地,所述根据计算得到的所述移动平台的移动方向和移动距离生成驱动控制信号包括:
根据计算得到的所述移动平台的移动方向、移动距离和所述主动齿轮与传动齿轮之间的传动比计算所述驱动电机的转动方向和需要转动的圈数;
基于计算得到的所述驱动电机需要转动的圈数和驱动电机旋转一圈所需的霍尔脉冲数计算驱动所述驱动电机所需的霍尔脉冲数;
基于计算得到的驱动所述驱动电机所需的霍尔脉冲数和所述驱动电机的转动方向生成所述驱动控制信号。
优选地,所述线阵CCD传感器模块还包括单色CCD芯片、主控MCU和RGB背光模组,所述单色CCD芯片和RGB背光模组分别与所述主控MCU连接。
根据本发明的第二个方面,本发明还提供了一种基于双CCD传感器的片材拼接对齐方法,应用上述第一方面任一项所述的基于双CCD传感器的片材拼接 对齐系统,所述方法包括如下步骤:
S1,调节两个线阵CCD传感器模块的安装位置,使得两个所述线阵CCD传感器模块的光敏元件均沿Y方向排列,且两个所述线阵CCD传感器模块的中心位置的光敏元件之间的连线与X方向平行;
S2,初始化所述片材拼接对齐系统;
S3,将第一片材和第二片材放置在待拼接位置,使得第一片材与第二片材的对应的目标特征对齐,且使得第一片材和第二片材上的目标特征分别正对两个线阵CCD传感器模块的中心点;
S4,通过两个线阵CCD传感器模块分别采集第一片材和第二片材的图像,并分别在两个线阵CCD传感器模块采集的图像上标记目标特征;
S5,启动所述片材拼接对齐系统,以通过所述片材拼接对齐系统使待拼接的第一片材和第二片材对齐。
优选地,所述通过所述片材拼接对齐系统使待拼接的第一片材和第二片材对齐包括:
通过其中一个线阵CCD传感器模块采集所述第一片材对应的第一目标区域的第一图像,并基于图像识别确定所述第一图像中的第一目标特征的位置信息,并通过另一个线阵CCD传感器模块采集所述第二片材对应的第二目标区域的第二图像,并基于图像识别确定所述第二图像中的第二目标特征的位置信息;
通过所述控制模块根据所述第一目标特征的位置信息和所述第二目标特征的位置信息计算所述移动平台的移动方向和移动距离,并根据计算得到的所述移动平台的移动方向和移动距离生成驱动控制信号;
所述驱动单元基于所述驱动控制信号驱动所述移动平台移动到目标位置,以 使所述第一目标特征和第二目标特征对齐。
由以上方案可知,本发明提供了一种基于双CCD传感器的片材拼接对齐系统及对齐方法,通过两个并排设置的CCD传感器来分别检测待拼接的两块片材的目标特征,能够有效识别除片材边缘线特征之外的印刷线、图案等其他目标特征,可以适用于更多类型的目标特征的两块片材对齐拼接和更大位置偏差的两块片材对齐拼接,适用范围更加广泛,有效提高拼接过程中目标特征对齐的精度,有效解决了现有技术中采用光电传感器只能对片材边缘进行检测,且由于光电传感器检测范围较窄,在待拼接的两块片材的位置偏差较大的情况下容易检测不到片材边缘,适用性较差的问题。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是本发明一种优选实施方式中基于双CCD传感器的片材拼接对齐系统的结构示意图;
图2是发明一种优选实施方式中线阵CCD传感器模块的电路原理图;
图3是本发明一种优选实施方式中控制模块的电路原理图;
图4是本发明一种优选实施方式中基于双CCD传感器的片材拼接对齐方法的流程示意图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
本技术领域技术人员可以理解,除非另外定义,这里使用的所有术语(包括技术术语和科学术语),具有与本发明所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语,应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非被特定定义,否则不会用理想化或过于正式的含义来解释。
在本发明的描述中,需要理解的是,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,除非另有规定和限定,需要说明的是,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是机械连接或电连接,也可以是两个元件内部的连通,可以是直接相连,也可以通过中间媒介间接相连,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
如图1所示,本发明提供了一种基于双CCD传感器的片材拼接对齐系统,用于使沿X方向(如1图中第一片材100上箭头所示方向)并排放置的待拼接的第一片材100和第二片材200的对应的目标特征对齐,该系统包括控制模块1、 执行机构2和两个线阵CCD传感器模块3。
执行机构2包括用于放置第一片材100的移动平台21和用于驱动移动平台21沿与X方向垂直的Y方向(如图1中移动平台21上双向箭头所示方向)移动的驱动单元22。
两个线阵CCD传感器模块3分别与控制模块1通信连接且两个线阵CCD传感器模块3沿X方向并排布置,其中一个线阵CCD传感器模块3用于采集第一片材100对应的第一目标区域的第一图像,并基于图像识别确定第一图像中的第一目标特征的位置信息,另一个线阵CCD传感器模块3用于采集第二片材200对应的第二目标区域的第二图像,并基于图像识别确定第二图像中的第二目标特征的位置信息,其中,第一目标特征、第二目标特征分别为位于第一片材100、第二片材200上且第一片材100和第二片材200拼接时需要对齐的特征。具体地,第一目标特征和第二目标特征可以是片材的边缘、片材上的印刷和片材上的图案等在两块片材拼接时需要对其的特征。
控制模块1与驱动单元22通信连接,控制模块1用于根据第一目标特征的位置信息和第二目标特征的位置信息计算移动平台21的移动方向和移动距离,并根据计算得到的移动平台21的移动方向和移动距离生成驱动控制信号,其中,驱动控制信号用于控制驱动单元22驱动移动平台21移动到目标位置,以使第一目标特征和第二目标特征对齐。
使用时,先将第一片材100放置在移动平台21上的预设位置(具体可以通过输送辊等能够传送片材的传送机构将第一片材100传送至移动平台21的预设位置,片材传送属于现有技术,在此不再赘述),此时,位于第一片材100上方的线阵CCD传感器模块3对第一片材100的第一目标区域进行扫描并拍照得到 第一图像,同时基于图像识别技术在第一图像中识别出第一目标特征并计算出第一目标特征的位置信息并发送给控制模块1;然后通过另一个传送机构(图中未示出)将第二片材200向靠近第一片材100的方向传送(如1图中第一片材100上箭头所示方向,即X的正方向),当第二片材200传送至预定位置时,另一个线阵CCD传感器模块3对第二片材200的第二目标区域进行扫描并拍照得到第二图像,同时基于图像识别技术在第二图像中识别出第二目标特征并计算出第二目标特征的位置信息并发送给控制模块1;接着,控制模块1控制模块1根据两个线阵CCD传感器模块3检测得到的第一目标特征的位置信息和第二目标特征的位置信息计算移动平台21的移动方向和移动距离,并根据计算得到的移动平台21的移动方向和移动距离生成驱动控制信号发送至驱动单元22,驱动单元22根据该驱动控制信号驱动移动平台21沿图1中移动平台21上双向箭头所示方向中的某个方向(即Y的正方向或负方向)移动到目标位置,使得第一目标特征和第二目标特征对齐。第一片材100和第一片材100对齐后,即可通过片材拼接设备进行后续的片材拼接操作。
本实施例的片材拼接对齐系统,通过两个线阵CCD传感器模块3进行待拼接的第一片材100和第二片材200上的目标特征的识别和位置信息的确定,能够有效识别除片材边缘线特征之外的印刷线、图案等其他目标特征,可以适用于更多类型的目标特征的两块片材对齐拼接和更大位置偏差的两块片材对齐拼接,适用范围更加广泛;且CCD传感器的检测范围比激光传感器等光电传感器的检测范围更宽,线阵CCD传感器的检测范围可以调节到50mm,一般情况下第二片材200在传送过程中的偏差基本不会这么大,所以本系统相对于采用光电传感器来检测片材的目标特征的片材对齐系统,能够更大程度地满足更大偏差材料的对 齐使用场景,可有效减少人工干预;另外,由于线阵CCD的单行像素个数远高于面阵CCD和其他光电传感器,因此得到的目标区域的图像的分辨率也更高,进而使得通过图像识别技术得到的图像中目标特征的具体位置信息也更加精确,故可以使得控制模块1根据目标特征的位置信息生成的驱动控制信号可以更加精确地控制驱动单元22使移动平台21更精准地移动到目标位置,因而还可以有效减小两块片材拼接时的拼接误差。
具体地,在本实施例中,两个线阵CCD传感器模块3的光敏元件均沿Y方向排列,且两个线阵CCD传感器模块3的中心位置的光敏元件之间的连线与X方向平行。这样使得两个线阵CCD传感器模块3的各个像素在X方向的坐标位置能够相互对齐,从而有效避免检测到的位置信号和片材的目标特征的实际位置信息之间的误差,更好地保证检测精度以降低拼接对齐误差。
在上一实施例的基础上,在一个实施例中,线阵CCD传感器模块3包括LCD触摸屏,LCD触摸屏用于显示采集到的图像,并用于接收用户交互操作以在采集到的图像上标记目标特征。通过线阵CCD传感器模块3的LCD触摸屏可以直观、清晰地显示片材的目标特征,且现场操作人员可通过线阵CCD传感器模块3的LCD触摸屏在线阵CCD传感器拍摄的图片上对图片进行缩放等交互操作来标记片材的目标特征。
在上述各实施例的基础上,进一步,在一个实施例中,所述基于图像识别确定第一图像中的第一目标特征的位置信息包括:
基于差分算法和快速傅里叶变换计算出第一图像中色度值跳变大于预设色度阈值的预设色度阈值的各第一预选特征得到第一预选特征集,即将第一图像中色度值跳变较大的各个特征挑选出来;具体地,第一预选特征可以是第一图像中 的边缘线、印刷线、图案等特征。
将第一预选特征集中各预选特征的色度值与预先标记的目标特征的色度值进行比对,并根据比对结果确定第一目标特征;由于第一图像中色度值跳变较大的第一预选特征可能有多个,而在片材拼接时,只需要对齐目标特征,因此,还需要从各个第一预选特征中通过与预先标记的目标特征的色度值进行比较的方式将第一图像中对应的目标特征(即第一目标特征)筛选出来。
基于第一目标特征对应的像素点在第一图像中的具体位置,以及第一图像中各像素点的具体位置与线阵CCD传感器模块3的成像区域中各像素点位置坐标的映射关系得到第一目标特征的位置信息;该位置信息具体为第一目标特征的位置坐标。
基于图像识别确定第二图像中的第二目标特征的位置信息包括:
基于差分算法和快速傅里叶变换计算出第二图像中色度值跳变大于预设色度阈值的各第二预选特征得到第二预选特征集,即将第二图像中色度值跳变较大的各个特征挑选出来;具体地,第二预选特征可以是第二图像中的边缘线、印刷线、图案等特征。
将第二预选特征集中各预选特征的色度值与预先标记的目标特征的色度值进行比对,并根据比对结果确定第二目标特征;由于第二图像中色度值跳变较大的第二预选特征可能有多个,而在片材拼接时,只需要对齐目标特征,因此,还需要从各个第二预选特征中通过与预先标记的目标特征的色度值进行比较的方式将第二图像中对应的目标特征(即第二目标特征)筛选出来。
基于第二目标特征对应的像素点在第二图像中的具体位置,以及第二图像中各像素点的具体位置与线阵CCD传感器模块3的成像区域中各像素点位置坐标 的映射关系得到第二目标特征的位置信息。该位置信息具体为第二目标特征的位置坐标。
具体地,上述预设色度阈值可以根据不同片材上不同目标特征的色度值进行具体设定。
在上一实施例的基础上,进一步,在一个实施例中,驱动单元22具体包括驱动电机、主动齿轮、从动齿轮和丝杠副,驱动电机的信号输入端与控制模块1连接,驱动电机的输出轴与主动齿轮固定连接,主动齿轮与从动齿轮啮合,从动齿轮与丝杠副的丝杆的驱动端固定连接,丝杠副的螺母与移动平台21固定连接。通过驱动电机驱动主动齿轮,主动齿轮带动从动齿轮转动,而从动齿轮的转动带动丝杠副的丝杠旋转,从而使与丝杠副的螺母固定连接的移动平台21沿Y方向做直线运动,使移动平台21带动第一片材100沿Y方向移动而使第一片材100上的第一目标特征与第二片材200上的第二目标特征对齐,保证拼接精度。
在上一实施例的基础上,进一步,在一个实施例中,根据第一目标特征的位置信息和第二目标特征的位置信息计算移动平台21的移动方向和移动距离包括:
根据第一目标特征的位置信息、线阵CCD传感器模块3的检测范围和线阵CCD传感器模块3的分别率得到第一目标特征对应的像素点位置;
根据第二目标特征的位置信息、线阵CCD传感器模块3的检测范围和线阵CCD传感器模块3的分别率得到第二目标特征对应的像素点位置;
根据第一目标特征对应的像素点位置和第二目标特征对应的像素点位置得到移动平台21的移动方向和移动距离。
在上一实施例的基础上,进一步,在一个实施例中,根据计算得到的移动平 台21的移动方向和移动距离生成驱动控制信号包括:
根据计算得到的移动平台21的移动方向、移动距离和主动齿轮与传动齿轮之间的传动比计算驱动电机的转动方向和需要转动的圈数;
基于计算得到的驱动电机需要转动的圈数和驱动电机旋转一圈所需的霍尔脉冲数计算驱动驱动电机所需的霍尔脉冲数;
基于计算得到的驱动驱动电机所需的霍尔脉冲数和驱动电机的转动方向生成驱动控制信号。
为了更直观地了解本系统的功能,下面以具体实例对本系统的两块片材的对齐原理进行详细描述:
本实例中,两个线阵CCD传感器模块3的检测范围为±20mm,传感器的输出信号为模拟量0~5V,分辨率为1000,相当于40mm分为1000份,每一份代表的是0.04mm。假如第二片材200上的线阵CCD传感器模块3检测到第二片材200上的目标特征(本实施例中为材料的边缘线)在第400个像素点处,第一片材100上的线阵CCD传感器模块3检测到第一片材100上的目标特征(边缘线)在第550个像素点处,差值为(550-400)*0.04mm;
控制模块1根据上式计算出这个差值为+6mm,因此驱动电机需要正转驱动移动平台21沿Y轴正方向运行6mm的距离。执行机构2是以驱动电机作为动力,经主动齿轮和从动齿轮带动丝杠副的丝杆旋转,丝杠副的螺母在丝杆上做往复运动来带动移动平台21实现沿Y方向的前进后退的效果。本实例中,主动齿轮与从动齿轮之间的传动比为19:58,丝杆螺距为4mm,控制模块1由此可计算出驱动电机转动圈数=(距离6mm/螺距4mm)/传动比(19:58)≈4.58圈,即驱动电机需要转动4.58圈;由于驱动电机每一圈的霍尔脉冲数为30,因此总共需 要转动4.58*30≈137个脉冲。控制模块1精确控制驱动电机运行137个脉冲,则移动平台21可带动第一片材100达到目标位置实现第一片材100与第二片材200之间的目标特征的对齐。
误差分析:驱动电机转动137个脉冲转动了4.567圈,丝杆转动了4.567/传动比(19:58)≈1.495圈,丝杆上的螺母带动移动平台21的运行距离为1.495*螺距4=5.98mm,与实际差值6mm仅存在0.02mm的误差,由此可以看出本系统中,目标特征在对齐时的误差非常小。
在一个实施例中,线阵CCD传感器模块3还包括单色CCD芯片、主控MCU和RGB背光模组,单色CCD芯片和RGB背光模组分别与主控MCU连接。线阵CCD传感器模块3在采集对应片材的图像时,启动RGB背光模组对片材进行照射,通过主控MCU控制单色CCD芯片对片材的目标区域进行扫描实现目标区域的图像采集,主控MCU同时通过不同颜色的背光转换在三色CCD芯片采集的图像上实现彩色片材的颜色还原。
具体地,在一个实例中,线阵CCD传感器模块3的电路原理图如图2所示,从图中可以看出,线阵CCD传感器模块3还包括电源部分、CCD芯片驱动电路和通讯部分,其中电源部分用于为CCD传感器模块供电,CCD芯片驱动电路用于驱动单色CCD芯片工作,通讯部分用于与控制模块1进行交互通信。
具体地,在一个实例中,控制模块1的电路原理图如图3所示,从图中可以看出,控制模块1主要包括电源部分、主控MCU、通讯部分、存储单元、电机驱动电路、接口电路和外接控制电路,其中,电源部分用于为主控模块的各个单元电路提供工作电源,主控MCU用于根据接收到的目标特征的位置信息生成驱动控制信号,通信部分用于控制模块1与线阵CCD传感器模块3之间的通信, 存储单元用于存储预设的参数、控制模块1接收到的数据和控制模块1计算后生成的数据,电机驱动电路用于在控制模块1的主控MCU的控制下控制驱动电机的工作状态,接口电路用于实现控制模块1与其它模块或设备之间的连接,外接控制电路用于与外部监控终端连接,实现本系统与外部监控终端之间的相互通信。
如图4所示,本发明还提供了一种基于双CCD传感器的片材拼接对齐方法,应用于上述任一实施例的基于双CCD传感器的片材拼接对齐系统,该方法包括如下步骤:
S1,调节两个线阵CCD传感器模块的安装位置,使得两个线阵CCD传感器模块的光敏元件均沿Y方向排列,且两个线阵CCD传感器模块的中心位置的光敏元件之间的连线与X方向平行;
S2,初始化片材拼接对齐系统;
S3,将第一片材和第二片材放置在待拼接位置,使得第一片材与第二片材的对应的目标特征对齐,且使得第一片材和第二片材上的目标特征分别正对两个线阵CCD传感器模块的中心点;
S4,通过两个线阵CCD传感器模块分别采集第一片材和第二片材的图像,并分别在两个线阵CCD传感器模块采集的图像上标记目标特征;
S5,启动片材拼接对齐系统,以通过片材拼接对齐系统使待拼接的第一片材和第二片材对齐。
在一个实施例中,通过片材拼接对齐系统使待拼接的第一片材和第二片材对齐包括:
通过其中一个线阵CCD传感器模块采集第一片材对应的第一目标区域的第 一图像,并基于图像识别确定第一图像中的第一目标特征的位置信息,并通过另一个线阵CCD传感器模块采集第二片材对应的第二目标区域的第二图像,并基于图像识别确定第二图像中的第二目标特征的位置信息;
通过控制模块根据第一目标特征的位置信息和第二目标特征的位置信息计算移动平台的移动方向和移动距离,并根据计算得到的移动平台的移动方向和移动距离生成驱动控制信号;
驱动单元基于驱动控制信号驱动移动平台移动到目标位置,以使第一目标特征和第二目标特征对齐。
本实施例中,所述基于双CCD传感器的片材拼接对齐系统集成的模块/单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实现上述实施例方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质可以包括:能够携带所述计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质等。需要说明的是,所述计算机可读介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减,例如在某些司法管辖区,根据立法和专利实践,计算机可读介质不包括电载波信号和电信信号。
本领域的技术人员能够理解,尽管在此的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的范围之内并且形成不同的实施例。例如,在下面的权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

  1. 一种基于双CCD传感器的片材拼接对齐系统,用于使沿X方向并排放置的待拼接的第一片材和第二片材的对应的目标特征对齐,其特征在于,
    所述片材拼接对齐系统包括控制模块、执行机构和两个线阵CCD传感器模块,其中,
    所述执行机构包括用于放置所述第一片材的移动平台和用于驱动所述移动平台沿与所述X方向垂直的Y方向移动的驱动单元;
    两个所述线阵CCD传感器模块分别与所述控制模块通信连接且两个所述线阵CCD传感器模块沿X方向并排布置,其中一个线阵CCD传感器模块用于采集所述第一片材对应的第一目标区域的第一图像,并基于图像识别确定所述第一图像中的第一目标特征的位置信息,另一个线阵CCD传感器模块用于采集所述第二片材对应的第二目标区域的第二图像,并基于图像识别确定所述第二图像中的第二目标特征的位置信息,其中,所述第一目标特征、第二目标特征分别为位于所述第一片材、第二片材上且第一片材和第二片材拼接时需要对齐的特征;
    所述控制模块与所述驱动单元通信连接,所述控制模块用于根据所述第一目标特征的位置信息和所述第二目标特征的位置信息计算所述移动平台的移动方向和移动距离,并根据计算得到的所述移动平台的移动方向和移动距离生成驱动控制信号,其中,所述驱动控制信号用于控制所述驱动单元驱动所述移动平台移动到目标位置,以使所述第一目标特征和第二目标特征对齐。
  2. 根据权利要求1所述的基于双CCD传感器的片材拼接对齐系统,其特征在于,两个所述线阵CCD传感器模块的光敏元件均沿Y方向排列,且两个所述线阵CCD传感器模块的中心位置的光敏元件之间的连线与X方向平行。
  3. 根据权利要求2所述的基于双CCD传感器的片材拼接对齐系统,其特 征在于,所述线阵CCD传感器模块包括LCD触摸屏,所述LCD触摸屏用于显示采集到的图像,并用于接收用户交互操作以在采集到的图像上标记所述目标特征。
  4. 根据权利要求3所述的基于双CCD传感器的片材拼接对齐系统,其特征在于,
    所述基于图像识别确定所述第一图像中的第一目标特征的位置信息包括:
    基于差分算法和快速傅里叶变换计算出所述第一图像中色度值跳变大于预设色度阈值的预设色度阈值的各第一预选特征得到第一预选特征集;
    将所述第一预选特征集中各预选特征的色度值与预先标记的目标特征的色度值进行比对,并根据比对结果确定所述第一目标特征;
    基于所述第一目标特征对应的像素点在所述第一图像中的具体位置,以及第一图像中各像素点的具体位置与所述线阵CCD传感器模块的成像区域中各像素点位置坐标的映射关系得到所述第一目标特征的位置信息;
    所述基于图像识别确定所述第二图像中的第二目标特征的位置信息包括:
    基于差分算法和快速傅里叶变换计算出所述第二图像中色度值跳变大于预设色度阈值的各第二预选特征得到第二预选特征集;
    将所述第二预选特征集中各预选特征的色度值与预先标记的目标特征的色度值进行比对,并根据比对结果确定所述第二目标特征;
    基于所述第二目标特征对应的像素点在所述第二图像中的具体位置,以及第二图像中各像素点的具体位置与所述线阵CCD传感器模块的成像区域中各像素点位置坐标的映射关系得到所述第二目标特征的位置信息。
  5. 根据权利要求4所述的基于双CCD传感器的片材拼接对齐系统,其特 征在于,所述驱动单元包括驱动电机、主动齿轮、从动齿轮和丝杠副,所述驱动电机的信号输入端与所述控制模块连接,所述驱动电机的输出轴与所述主动齿轮固定连接,所述主动齿轮与所述从动齿轮啮合,所述从动齿轮与所述丝杠副的丝杆的驱动端固定连接,所述丝杠副的螺母与所述移动平台连接。
  6. 根据权利要求5所述的基于双CCD传感器的片材拼接对齐系统,其特征在于,
    所述根据所述第一目标特征的位置信息和所述第二目标特征的位置信息计算所述移动平台的移动方向和移动距离包括:
    根据所述第一目标特征的位置信息、线阵CCD传感器模块的检测范围和线阵CCD传感器模块的分别率得到所述第一目标特征对应的像素点位置;
    根据所述第二目标特征的位置信息、线阵CCD传感器模块的检测范围和线阵CCD传感器模块的分别率得到所述第二目标特征对应的像素点位置;
    根据所述第一目标特征对应的像素点位置和第二目标特征对应的像素点位置得到所述移动平台的移动方向和移动距离。
  7. 根据权利要求5所述的基于双CCD传感器的片材拼接对齐系统,其特征在于,
    所述根据计算得到的所述移动平台的移动方向和移动距离生成驱动控制信号包括:
    根据计算得到的所述移动平台的移动方向、移动距离和所述主动齿轮与传动齿轮之间的传动比计算所述驱动电机的转动方向和需要转动的圈数;
    基于计算得到的所述驱动电机需要转动的圈数和驱动电机旋转一圈所需的霍尔脉冲数计算驱动所述驱动电机所需的霍尔脉冲数;
    基于计算得到的驱动所述驱动电机所需的霍尔脉冲数和所述驱动电机的转动方向生成所述驱动控制信号。
  8. 根据权利要求3-7任一项所述的基于双CCD传感器的片材拼接对齐系统,其特征在于,所述线阵CCD传感器模块还包括单色CCD芯片、主控MCU和RGB背光模组,所述单色CCD芯片和RGB背光模组分别与所述主控MCU连接。
  9. 一种基于双CCD传感器的片材拼接对齐方法,其特征在于,应用于权利要求1-8任一项所述的基于双CCD传感器的片材拼接对齐系统,所述方法包括如下步骤:
    S1,调节两个线阵CCD传感器模块的安装位置,使得两个所述线阵CCD传感器模块的光敏元件均沿Y方向排列,且两个所述线阵CCD传感器模块的中心位置的光敏元件之间的连线与X方向平行;
    S2,初始化所述片材拼接对齐系统;
    S3,将第一片材和第二片材放置在待拼接位置,使得第一片材与第二片材的对应的目标特征对齐,且使得第一片材和第二片材上的目标特征分别正对两个线阵CCD传感器模块的中心点;
    S4,通过两个线阵CCD传感器模块分别采集第一片材和第二片材的图像,并分别在两个线阵CCD传感器模块采集的图像上标记目标特征;
    S5,启动所述片材拼接对齐系统,以通过所述片材拼接对齐系统使待拼接的第一片材和第二片材对齐。
  10. 根据权利要求9所述的基于双CCD传感器的片材拼接对齐方法,其特征在于,所述通过所述片材拼接对齐系统使待拼接的第一片材和第二片材对齐包 括:
    通过其中一个线阵CCD传感器模块采集所述第一片材对应的第一目标区域的第一图像,并基于图像识别确定所述第一图像中的第一目标特征的位置信息,并通过另一个线阵CCD传感器模块采集所述第二片材对应的第二目标区域的第二图像,并基于图像识别确定所述第二图像中的第二目标特征的位置信息;
    通过所述控制模块根据所述第一目标特征的位置信息和所述第二目标特征的位置信息计算所述移动平台的移动方向和移动距离,并根据计算得到的所述移动平台的移动方向和移动距离生成驱动控制信号;
    所述驱动单元基于所述驱动控制信号驱动所述移动平台移动到目标位置,以使所述第一目标特征和第二目标特征对齐。
PCT/CN2022/144153 2022-08-23 2022-12-30 一种基于双ccd传感器的片材拼接对齐系统及对齐方法 WO2024040847A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211014716.8A CN115504311A (zh) 2022-08-23 2022-08-23 一种基于双ccd传感器的片材拼接对齐系统及对齐方法
CN202211014716.8 2022-08-23

Publications (1)

Publication Number Publication Date
WO2024040847A1 true WO2024040847A1 (zh) 2024-02-29

Family

ID=84501559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/144153 WO2024040847A1 (zh) 2022-08-23 2022-12-30 一种基于双ccd传感器的片材拼接对齐系统及对齐方法

Country Status (2)

Country Link
CN (1) CN115504311A (zh)
WO (1) WO2024040847A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115504311A (zh) * 2022-08-23 2022-12-23 重庆编福科技有限公司 一种基于双ccd传感器的片材拼接对齐系统及对齐方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101562693A (zh) * 2009-06-01 2009-10-21 中国兵器工业第二〇五研究所 双ccd图像拼接探测器的光学成像拼接装置
US20130174703A1 (en) * 2012-01-10 2013-07-11 Canon Kabushiki Kaisha Post-processing apparatus having sheet alignment function and method of controlling the same
US20130300055A1 (en) * 2012-05-09 2013-11-14 Canon Kabushiki Kaisha Sheet processing apparatus that corrects lateral deviation of a sheet
CN109916328A (zh) * 2017-12-13 2019-06-21 山东大学 一种双ccd激光测量的v形槽标定板及方法
CN115504311A (zh) * 2022-08-23 2022-12-23 重庆编福科技有限公司 一种基于双ccd传感器的片材拼接对齐系统及对齐方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101562693A (zh) * 2009-06-01 2009-10-21 中国兵器工业第二〇五研究所 双ccd图像拼接探测器的光学成像拼接装置
US20130174703A1 (en) * 2012-01-10 2013-07-11 Canon Kabushiki Kaisha Post-processing apparatus having sheet alignment function and method of controlling the same
US20130300055A1 (en) * 2012-05-09 2013-11-14 Canon Kabushiki Kaisha Sheet processing apparatus that corrects lateral deviation of a sheet
CN109916328A (zh) * 2017-12-13 2019-06-21 山东大学 一种双ccd激光测量的v形槽标定板及方法
CN115504311A (zh) * 2022-08-23 2022-12-23 重庆编福科技有限公司 一种基于双ccd传感器的片材拼接对齐系统及对齐方法

Also Published As

Publication number Publication date
CN115504311A (zh) 2022-12-23

Similar Documents

Publication Publication Date Title
US8425047B2 (en) Keystone correction and lens adjustment for projector
EP3348958B1 (en) Multi-line array laser three-dimensional scanning system, and multi-line array laser three-dimensional scanning method
USRE43721E1 (en) Keystone correction using a part of edges of a screen
WO2024040847A1 (zh) 一种基于双ccd传感器的片材拼接对齐系统及对齐方法
CN107421438B (zh) 基于机器视觉的涂膜尺寸检测控制系统及其方法
US8077199B2 (en) Target position identifying apparatus
US20070211206A1 (en) Production method of substrate for liquid crystal display
CN109642785B (zh) 试料容器的位置偏移的检测方法、装置以及拍摄方法
EP0860277A1 (en) A system and method for registration control on-press during press set-up and printing
KR102037384B1 (ko) 패널 검사 장치 및 방법
JPH061628A (ja) 自動ガラススクライバー
CN116113227A (zh) 电路板的偏移校正方法、锡膏检查设备及存储介质
CN109696191B (zh) 一种虚拟现实头戴显示设备的移动延迟测量方法
US7290489B2 (en) Substrate inspecting apparatus and control method thereof
CN104698694A (zh) 一种液晶面板对合设备及方法
CN116297531B (zh) 机器视觉检测方法、系统、介质及设备
EP3416365A1 (en) Image acquisition system, image acquisition processing system, and image acquisition processing method
CN111380668B (zh) 一种深度相机的精度检测系统及其精度检测方法
US11107378B2 (en) Mischarge detection method, mischarge detection apparatus, and display apparatus
CN114791687A (zh) 投影校正方法、装置及投影系统
CN118342115A (zh) 激光轨迹追踪校正方法、激光划线系统及可读存储介质
KR20050018494A (ko) 스캐너의 화상데이터 보정방법
EP4040391B1 (en) Method for calibrating 3d camera by employing calibrated 2d camera
JPH06134977A (ja) 位置決め装置および印刷装置
JP5326735B2 (ja) 多色印刷機における初期見当合わせ方法および装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956378

Country of ref document: EP

Kind code of ref document: A1