WO2024040790A1 - 车辆控制的方法、装置、电子设备和车辆 - Google Patents

车辆控制的方法、装置、电子设备和车辆 Download PDF

Info

Publication number
WO2024040790A1
WO2024040790A1 PCT/CN2022/136387 CN2022136387W WO2024040790A1 WO 2024040790 A1 WO2024040790 A1 WO 2024040790A1 CN 2022136387 W CN2022136387 W CN 2022136387W WO 2024040790 A1 WO2024040790 A1 WO 2024040790A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
trailer
included angle
angle
attitude
Prior art date
Application number
PCT/CN2022/136387
Other languages
English (en)
French (fr)
Inventor
邵华
金大鹏
向海波
赫连晓会
张铁胜
崔延红
Original Assignee
北汽福田汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北汽福田汽车股份有限公司 filed Critical 北汽福田汽车股份有限公司
Publication of WO2024040790A1 publication Critical patent/WO2024040790A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle

Definitions

  • the present disclosure relates to the field of vehicle assisted driving, and specifically, to a vehicle control method, device, electronic equipment and vehicle.
  • ADAS Advanced Driver Assistance System
  • ADAS Advanced Driver Assistance System
  • the purpose of the present disclosure is to provide a vehicle control method, device, electronic equipment and vehicle.
  • the present disclosure provides a vehicle control method, which is applied to a vehicle; the vehicle is connected to a trailer, and the method includes:
  • the vehicle is controlled to travel according to the first included angle and the second included angle.
  • the trailer is provided with a gyroscope, and obtaining the trailer attitude information of the trailer includes:
  • determining the first angle between the vehicle and the trailer based on the trailer attitude information includes:
  • the first included angle between the vehicle and the trailer is determined based on the trailer attitude information, the yaw angle information and the steering wheel angle information.
  • controlling the driving of the vehicle according to the first included angle and the second included angle includes:
  • the smallest included angle among the first included angle and the second included angle is used as the first target included angle
  • controlling the driving of the vehicle according to the first target angle includes:
  • the vehicle is controlled to stop driving.
  • controlling the driving of the vehicle according to the first target angle includes:
  • the vehicle When the driving state of the vehicle is a straight-line reversing state, the vehicle is controlled to reverse based on the first target included angle.
  • the method also includes:
  • the smallest included angle among the third included angle and the second included angle is used as the second target included angle
  • the vehicle is controlled to reverse along the target reversing path.
  • the present disclosure provides a vehicle control device, the device is applied to a vehicle; the vehicle is connected to a trailer, and the device includes:
  • the first acquisition module is used to acquire the trailer attitude information of the trailer
  • a first determination module configured to determine a first angle between the vehicle and the trailer based on the trailer attitude information
  • a second acquisition module configured to acquire image information of a preset attitude mark on the trailer, where the preset attitude mark is used to characterize the attitude change of the trailer relative to the vehicle;
  • a second determination module configured to determine a second angle between the vehicle and the trailer based on the image information
  • a first control module is used to control the movement of the vehicle according to the first included angle and the second included angle.
  • the trailer is provided with a gyroscope
  • the device further includes:
  • the third acquisition module is used to acquire the trailer attitude information of the trailer sent by the gyroscope.
  • the device also includes:
  • the first included angle calculation module is used to obtain the yaw angle information and the steering wheel angle information of the vehicle; determine the relationship between the vehicle and the trailer based on the trailer attitude information, the yaw angle information and the steering wheel angle information. the first included angle between
  • the device also includes:
  • the second control module is configured to use the smallest included angle among the first included angle and the second included angle as the first target included angle; and control the driving of the vehicle according to the first target included angle.
  • the device also includes:
  • a vehicle stopping module is configured to control the vehicle to stop driving when the first target included angle is greater than or equal to the duration of the preset included angle and greater than or equal to the preset time threshold.
  • the device also includes:
  • a straight-line reversing module is used to control the vehicle to reverse according to the first target angle when the driving state of the vehicle is a straight-line reversing state.
  • the device also includes:
  • a non-linear reversing module configured to obtain the third included angle between the vehicle and the trailer set by the driver of the vehicle when the driving state of the vehicle is a non-linear reversing state;
  • the smallest included angle among the third included angle and the second included angle is used as the second target included angle
  • the vehicle is controlled to reverse along the target reversing path.
  • the present disclosure provides a non-transitory computer-readable storage medium on which a computer program is stored.
  • the program is executed by a processor, the steps of the vehicle control method are implemented.
  • an electronic device including:
  • a processor configured to execute the computer program in the memory to implement the steps of the above vehicle control method.
  • the present disclosure provides a vehicle, including the electronic device described in the fourth aspect.
  • the present disclosure obtains the trailer attitude information of the trailer; determines the first angle between the vehicle and the trailer according to the trailer attitude information; and obtains the image information of the preset attitude mark on the trailer, and the preset attitude mark is used for Characterizing the attitude change of the trailer relative to the vehicle; determining the second angle between the vehicle and the trailer based on the image information; controlling the movement of the vehicle based on the first angle and the second angle; through the gyroscope
  • the trailer attitude information obtained from the vehicle can obtain the angle between the vehicle and the trailer, which can assist the driver in judging the operation of the vehicle, reduce the difficulty of driving a vehicle connected to a trailer, and improve the comfort and safety during driving.
  • FIG. 1 is a flowchart of a vehicle control method according to an exemplary embodiment.
  • FIG. 2 is a structural block diagram of a vehicle control device according to an exemplary embodiment.
  • FIG. 3 is a structural block diagram of an electronic device according to an exemplary embodiment.
  • Figure 4 is a structural block diagram of a vehicle according to an exemplary embodiment.
  • the application scenario of the present disclosure is introduced.
  • the present disclosure is applied in a scenario where a vehicle is connected to a trailer.
  • the vehicle will be equipped with an ADAS system to assist the driver in driving the vehicle.
  • the ADAS domain controller is connected to the camera, Lidar and millimeter wave radar are connected; and are connected to multimedia, instrument cluster, steering system and braking system through CAN bus; by sensing the surrounding environment at any time during driving, and combining with navigation map data, system calculation and analysis are performed. This allows the driver to be aware of possible dangers in advance.
  • the present disclosure provides a vehicle control method, device, electronic device and vehicle, which assists vehicle driving by installing a gyroscope on a trailer and adding an auxiliary function switch on the vehicle.
  • the auxiliary function switch can be an integrated self-resetting switch, and different functions can be implemented by performing different touch operations on the auxiliary function switch.
  • the touch operations can be pressing operations, left-turn operations, right-turn operations, etc.
  • this function can include trailer calibration function, driving assistance function, straight-line reversing function and non-straight-line reversing function.
  • the trailer calibration function can be entered.
  • the gyroscope and the auxiliary function switch are respectively connected to the vehicle.
  • the gyroscope is used to collect the trailer attitude information of the trailer to sense the environment around the trailer and send the collected trailer attitude information to the vehicle.
  • the vehicle controls the vehicle according to the control instructions. Driving, assisting the driver in driving a vehicle with a trailer attached.
  • Figure 1 is a flow chart of a vehicle control method according to an exemplary embodiment. As shown in Figure 1, the method is applied to a vehicle, and the vehicle is connected to a trailer. The method may include the following steps:
  • the trailer is provided with a gyroscope, and the gyroscope is used to collect the attitude information of the trailer.
  • the attitude information of the trailer can be the attitude angle of the trailer.
  • the trailer sent by the gyroscope can be obtained.
  • the trailer attitude information is sent to the vehicle.
  • the vehicle may include an ADAS system, and the ADAS system may include an ADAS domain controller.
  • the vehicle may pass the ADAS domain
  • the controller obtains the trailer attitude information of the trailer sent by the gyroscope.
  • the vehicle's yaw angle information and steering wheel angle information can be obtained, and the third distance between the vehicle and the trailer can be determined based on the trailer attitude information, the yaw angle information, and the steering wheel angle information. An angle.
  • the preset attitude mark is used to represent the attitude change of the trailer relative to the vehicle.
  • the preset attitude mark can be set on the connection device between the trailer and the vehicle.
  • the preset attitude mark can be a checkerboard.
  • the pattern calibration board can also be a dot array pattern calibration board.
  • the image information of the preset gesture mark can be obtained through a camera, and the obtained image information is sent to the ADAS domain controller of the vehicle, and the ADAS domain controller of the vehicle receives the image information. , thereby obtaining the image information.
  • the ADAS domain controller can calculate the attitude change of the trailer relative to the vehicle based on the angle change of the image information.
  • the smallest included angle among the first included angle and the second included angle can be used as the first target included angle, and the vehicle is controlled to travel according to the first target included angle, for example , the vehicle can be controlled through the vehicle's ESP (Electronic Stability Program, electronic stability system).
  • ESP Electronic Stability Program, electronic stability system
  • the angle between the vehicle and the trailer can be obtained through the trailer attitude information obtained from the gyroscope, which can assist the driver in judging the operation of the vehicle, reduce the difficulty of driving a vehicle connected to a trailer, and improve the safety during driving. Comfort and safety.
  • the trailer needs to be calibrated when connecting the trailer to ensure the consistency between the actual data and the input data.
  • the preset parameter information, the image information of the preset attitude mark, and the direction information of the gyroscope may be used to control the auxiliary function switch. Vehicle and trailer calibration.
  • the driver short-presses the auxiliary function switch, and the ADAS system enters the trailer calibration function.
  • the vehicle's on-board display can display the trailer auxiliary function interface, and the driver can input marking information through the control device to mark the trailer.
  • Tag information includes trailer name, brake level and trailer type.
  • the preset parameters can include the following four parameters:
  • the gyroscope After marking the trailer, when the vehicle is traveling in a straight line in a preset direction at a preset speed, the gyroscope will calibrate the preset direction as the zero point direction; the zero point direction is used to characterize the vehicle and the trailer. The center position is on the same straight line.
  • the trailer auxiliary function interface displayed on the vehicle monitor can display the words "Calibration Successful", which is used to indicate that the vehicle and trailer have been calibrated.
  • the preset speed range may be 6km/h-39km/h.
  • trailers that may be used can be calibrated in advance, and there is no need to calibrate again when they are used, which simplifies the use process and improves work efficiency.
  • controlling the driving of the vehicle according to the first target included angle may include: when the first target included angle is greater than or equal to the duration of the preset included angle and greater than or equal to the preset time threshold, Control the vehicle to stop.
  • the first target angle is greater than or equal to the preset angle
  • the above duration is greater than or equal to the preset time threshold. In this case, it indicates that the trailer is in a state of excessive swing for a long time, the vehicle stability is poor, and traffic accidents are prone to occur. Therefore, in the above situation, by controlling the vehicle to stop driving, safety accidents in the vehicle can be avoided.
  • the range of the preset angle may be 5°-10°, such as 5°, 6°, 8° or 10°, and the maximum preset time threshold may be 2s, such as 200ms or 500ms.
  • the driving assistance function is entered, and when the duration is greater than or equal to the preset time threshold, the ADAS domain controller of the vehicle sends a braking signal to the vehicle.
  • the system sends a braking command, and the braking system controls the vehicle to stop based on the braking command.
  • alarm information is output, and the alarm information is used to prompt the driver of the vehicle to control the vehicle to stop. travel. In this way, it can prompt the driver that the swing of the trailer is too large, allowing the driver to stabilize or stop the vehicle in time, thereby improving the safety of the driving process.
  • the vehicle when the driving state of the vehicle is a straight-line reversing state, the vehicle is controlled to reverse based on the first target included angle.
  • a first steering instruction is sent to the steering system of the vehicle, and the steering system controls the vehicle to reverse according to the first steering instruction.
  • the driver can trigger a third touch operation by short pressing the auxiliary function switch, and send a first steering instruction to the vehicle's steering system according to the third touch operation. In this way, it can be ensured that the vehicle and trailer are always in the same straight line during the reversing process, reducing the difficulty of reversing.
  • the above-mentioned touch operation of the auxiliary function switch can achieve different functions in different application scenarios. For example, when the trailer calibration function is entered by short pressing the auxiliary function switch and the calibration is completed, short press again Pressing the auxiliary function switch can realize driving assistance or linear reversing functions.
  • the touch operation can also be pressing the auxiliary function switch twice in succession or pressing and holding the auxiliary function switch. This disclosure is not limited here.
  • the third angle between the vehicle and the trailer set by the driver of the vehicle can be obtained; according to the third angle angle and the second included angle to determine the target reversing path; control the vehicle to reverse according to the target reversing path.
  • the non-straight reversing state may include a turning reversing state, a side parking state, a reversing into a parking state, etc.
  • determining the target reversing path according to the third included angle and the second included angle may include: taking the smallest included angle among the third included angle and the second included angle as the second included angle. target angle, and determine the target reversing path based on the second target angle. In this way, the target reversing path can be made more accurate, the time spent in reversing can be reduced, and the difficulty of the driver's reversing operation can be reduced.
  • a third included angle between the vehicle and the trailer is obtained according to the fourth touch operation; according to the third included angle and the second included angle angle to determine the target reversing path; at this time, the ADAS domain controller sends a second steering command to the vehicle's steering system based on the target reversing path, and the steering system controls the vehicle to reverse along the target reversing path based on the second steering command.
  • the driver can press and hold the auxiliary function switch to enter the non-linear reversing auxiliary function; at this time, the vehicle's on-board display can display the environment behind the vehicle, and according to the driver's left or right rotation of the auxiliary function switch Operation to display the target reversing path. In this way, the driver can see the target reversing path on the on-board display, which facilitates the reversing operation and reduces the difficulty of driving.
  • the present disclosure obtains the trailer attitude information of the trailer; determines the first angle between the vehicle and the trailer according to the trailer attitude information; and obtains the image information of the preset attitude mark on the trailer.
  • the attitude mark is used to represent the attitude change of the trailer relative to the vehicle; determine the second angle between the vehicle and the trailer according to the image information; control the driving of the vehicle according to the first angle and the second angle ;
  • Figure 2 is a structural block diagram of a vehicle control device 200 according to an exemplary embodiment; the device 200 includes a first acquisition module 210, a first determination module 220, a second acquisition module 230, a second determination module 240 and first control module 250;
  • the first acquisition module 210 is used to acquire the trailer attitude information of the trailer
  • the first determination module 220 is used to determine the first angle between the vehicle and the trailer based on the trailer attitude information
  • the second acquisition module 230 is used to acquire image information of a preset attitude mark on the trailer, where the preset attitude mark is used to characterize the attitude change of the trailer relative to the vehicle;
  • the second determination module 240 is used to determine a second angle between the vehicle and the trailer based on the image information
  • the first control module 250 is used to control the movement of the vehicle according to the first included angle and the second included angle.
  • the trailer is provided with a gyroscope
  • the device also includes:
  • the third acquisition module is used to acquire the trailer attitude information of the trailer sent by the gyroscope.
  • the device also includes:
  • the first angle calculation module is used to obtain the yaw angle information and the steering wheel angle information of the vehicle; determine the first angle between the vehicle and the trailer based on the trailer attitude information, the yaw angle information and the steering wheel angle information. angle.
  • the device also includes:
  • the second control module is configured to use the smallest included angle between the first included angle and the second included angle as the first target included angle; and control the driving of the vehicle according to the first target included angle.
  • the device also includes:
  • the vehicle stopping module is configured to control the vehicle to stop driving when the first target included angle is greater than or equal to the duration of the preset included angle and greater than or equal to the preset time threshold.
  • the device also includes:
  • the linear reversing module is used to control the reversing of the vehicle according to the first target angle when the driving state of the vehicle is a linear reversing state.
  • the device also includes:
  • a non-linear reversing module used to obtain the third included angle between the vehicle and the trailer set by the driver of the vehicle when the driving state of the vehicle is a non-linear reversing state;
  • the smallest included angle between the third included angle and the second included angle is used as the second target included angle
  • FIG. 3 is a structural block diagram of an electronic device 300 according to an exemplary embodiment.
  • the electronic device 300 may include: a processor 301 and a memory 302 .
  • the electronic device 300 may also include one or more of a multimedia component 303, an input/output interface 304, and a communication component 305.
  • the processor 301 is used to control the overall operation of the electronic device 300 to complete all or part of the steps in the above vehicle control method.
  • the memory 302 is used to store various types of data to support operations on the electronic device 300. These data may include, for example, instructions for any application program or method operating on the electronic device 300, as well as application-related data. For example, contact data, messages sent and received, pictures, audios, videos, etc.
  • the memory 302 can be implemented by any type of volatile or non-volatile storage device or their combination, such as static random access memory (Static Random Access Memory, referred to as SRAM), electrically erasable programmable read-only memory ( Electrically Erasable Programmable Read-Only Memory (EEPROM for short), Erasable Programmable Read-Only Memory (EPROM for short), Programmable Read-Only Memory (Programmable Read-Only Memory for short), read-only Memory (Read-Only Memory, ROM for short), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM static random access memory
  • EEPROM Electrically Erasable Programmable Read-Only Memory
  • EPROM Erasable Programmable Read-Only Memory
  • Programmable Read-Only Memory PROgrammable Read-Only Memory
  • Read-Only Memory Read-Only Memory
  • magnetic memory flash memory
  • magnetic disk or optical disk
  • Multimedia components 303 may include screen and audio components.
  • the screen may be a touch screen, for example, and
  • the audio component may include a microphone for receiving external audio signals.
  • the received audio signals may be further stored in memory 302 or sent via communication component 305 .
  • the audio component also includes at least one speaker for outputting audio signals.
  • the input/output interface 304 provides an interface between the processor 301 and other interface modules.
  • the other interface modules may be keyboards, mice, buttons, etc. These buttons can be virtual buttons or physical buttons.
  • the communication component 305 is used for wired or wireless communication between the electronic device 300 and other devices.
  • Wireless communication such as Wi-Fi, Bluetooth, Near Field Communication (NFC), 2G, 3G, 4G, 5G, NB-IOT (Narrow Band Internet of Things), or one of them Or a combination of multiple types, so the corresponding communication component 305 may include: Wi-Fi module, Bluetooth module, and NFC module.
  • the electronic device 300 may be configured by one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), or Digital Signal Processing Devices (DSPs). Signal Processing Device (DSPD for short), Programmable Logic Device (PLD for short), Field Programmable Gate Array (FPGA for short), controller, microcontroller, microprocessor or other electronic components Implement, a method for performing vehicle control as described above.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPs Digital Signal Processing Devices
  • DSPs Digital Signal Processing Device
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • a computer-readable storage medium including program instructions is also provided, and when the program instructions are executed by a processor, the steps of the above method for vehicle control are implemented.
  • the computer-readable storage medium may be the above-mentioned memory 302 including program instructions, and the above-mentioned program instructions may be executed by the processor 301 of the electronic device 300 to complete the above-mentioned vehicle control method.
  • FIG. 4 is a structural block diagram of a vehicle 400 according to an exemplary embodiment. As shown in FIG. 4 , the vehicle 400 includes an electronic device 300 .
  • a computer program product comprising a computer program executable by a programmable device, the computer program having a function for performing the above when executed by the programmable device.
  • the code portion of the vehicle control method is also provided, the computer program product comprising a computer program executable by a programmable device, the computer program having a function for performing the above when executed by the programmable device.
  • any combination of various embodiments of the present disclosure can also be carried out, and as long as they do not violate the idea of the present disclosure, they should also be regarded as the contents disclosed in the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种车辆控制的方法、装置、电子设备和车辆,获取拖车的拖车姿态信息,根据拖车姿态信息确定车辆与拖车之间的第一夹角;获取拖车上的预设姿态标记的图像信息,预设姿态标记用于表征拖车相对车辆的姿态变化;根据图像信息确定车辆与拖车之间的第二夹角;根据第一夹角和第二夹角,控制车辆行驶。

Description

车辆控制的方法、装置、电子设备和车辆 技术领域
本公开涉及车辆辅助驾驶领域,具体地,涉及一种车辆控制的方法、装置、电子设备和车辆。
背景技术
现有技术中,ADAS(Advanced Driver Assistance System,高级辅助驾驶系统)可以辅助驾驶员驾驶车辆,在车辆行驶的过程中,随时感应周围的环境,从而预先向驾驶员提醒可能发生的危险,有效增加车辆驾驶的舒适性和安全性。
但是当车辆后方连接有拖车时,该系统很难感知到拖车周围的环境,无法为驾驶员提醒可能发生的危险,导致车辆驾驶的难度增加,舒适性和安全性降低。
发明内容
本公开的目的是提供一种车辆控制的方法、装置、电子设备和车辆。
为了实现上述目的,第一方面,本公开提供一种车辆控制的方法,应用于车辆;所述车辆连接有拖车,所述方法包括:
获取所述拖车的拖车姿态信息;
根据所述拖车姿态信息确定所述车辆与所述拖车之间的第一夹角;
获取所述拖车上的预设姿态标记的图像信息,所述预设姿态标记用于表征所述拖车相对所述车辆的姿态变化;
根据所述图像信息确定所述车辆与所述拖车之间的第二夹角;
根据所述第一夹角和所述第二夹角,控制所述车辆行驶。
可选地,所述拖车上设置有陀螺仪,所述获取所述拖车的拖车姿态信息,包括:
获取所述陀螺仪发送的所述拖车的拖车姿态信息。
可选地,所述根据所述拖车姿态信息确定所述车辆与所述拖车之间的第一夹角,包括:
获取所述车辆的横摆角信息和方向盘转角信息;
根据所述拖车姿态信息、所述横摆角信息和所述方向盘转角信息确定所述车辆与所述拖车之间的所述第一夹角。
可选地,所述根据所述第一夹角和所述第二夹角,控制所述车辆行驶,包括:
将所述第一夹角和所述第二夹角中最小的夹角,作为第一目标夹角;
根据所述第一目标夹角控制所述车辆行驶。
可选地,所述根据所述第一目标夹角控制所述车辆行驶,包括:
在所述第一目标夹角大于或等于预设夹角的持续时间,大于或等于预设时间阈值的情况下,控制所述车辆停止行驶。
可选地,所述根据所述第一目标夹角控制所述车辆行驶,包括:
在所述车辆的行驶状态为直线倒车状态的情况下,根据所述第一目标夹角控制所述车辆倒车。
可选地,所述方法还包括:
在所述车辆的行驶状态为非直线倒车状态的情况下,获取所述车辆的驾驶员设置的所述车辆与所述拖车之间的第三夹角;
将所述第三夹角和所述第二夹角中的最小夹角,作为第二目标夹角;
根据所述第二目标夹角确定目标倒车路径;
控制所述车辆按照所述目标倒车路径倒车。
第二方面,本公开提供一种车辆控制的装置,所述装置应用于车辆;所述车辆连接有 拖车,所述装置包括:
第一获取模块,用于获取所述拖车的拖车姿态信息;
第一确定模块,用于根据所述拖车姿态信息确定所述车辆与所述拖车之间的第一夹角;
第二获取模块,用于获取所述拖车上的预设姿态标记的图像信息,所述预设姿态标记用于表征所述拖车相对所述车辆的姿态变化;
第二确定模块,用于根据所述图像信息确定所述车辆与所述拖车之间的第二夹角;
第一控制模块,用于根据所述第一夹角和所述第二夹角,控制所述车辆行驶。
可选地,所述拖车上设置有陀螺仪,所述装置还包括:
第三获取模块,用于获取所述陀螺仪发送的所述拖车的拖车姿态信息。
可选地,所述装置还包括:
第一夹角计算模块,用于获取所述车辆的横摆角信息和方向盘转角信息;根据所述拖车姿态信息、所述横摆角信息和所述方向盘转角信息确定所述车辆与所述拖车之间的所述第一夹角。
可选地,所述装置还包括:
第二控制模块,用于将所述第一夹角和所述第二夹角中最小的夹角,作为第一目标夹角;根据所述第一目标夹角控制所述车辆行驶。
可选地,所述装置还包括:
车辆停止模块,用于在所述第一目标夹角大于或等于预设夹角的持续时间,大于或等于预设时间阈值的情况下,控制所述车辆停止行驶。
可选地,所述装置还包括:
直线倒车模块,用于在所述车辆的行驶状态为直线倒车状态的情况下,根据所述第一目标夹角控制所述车辆倒车。
可选地,所述装置还包括:
非直线倒车模块,用于在所述车辆的行驶状态为非直线倒车状态的情况下,获取所述车辆的驾驶员设置的所述车辆与所述拖车之间的第三夹角;
将所述第三夹角和所述第二夹角中的最小夹角,作为第二目标夹角;
根据所述第二目标夹角确定目标倒车路径;
控制所述车辆按照所述目标倒车路径倒车。
第三方面,本公开提供一种非临时性计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述车辆控制方法的步骤。
第四方面,本公开提供一种电子设备,包括:
存储器,其上存储有计算机程序;
处理器,用于执行所述存储器中的所述计算机程序,以实现上述车辆控制方法的步骤。
第五方面,本公开提供一种车辆,包括第四方面所述的电子设备。
本公开通过获取该拖车的拖车姿态信息;根据该拖车姿态信息确定该车辆与该拖车之间的第一夹角;获取该拖车上的预设姿态标记的图像信息,该预设姿态标记用于表征该拖车相对该车辆的姿态变化;根据该图像信息确定该车辆与该拖车之间的第二夹角;根据该第一夹角和该第二夹角,控制该车辆行驶;通过从陀螺仪中获取的拖车姿态信息得到车辆与拖车之间的夹角,可以辅助驾驶员判断车辆的运行情况,降低了对连接有拖车的车辆的驾驶难度,提高了驾驶过程中的舒适性和安全性。
本公开的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实 施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1是根据一示例性实施例示出的一种车辆控制的方法的流程图。
图2是根据一示例性实施例示出的一种车辆控制的装置的结构框图。
图3是根据一示例性实施例示出的一种电子设备的结构框图。
图4是根据一示例性实施例示出的一种车辆的结构框图。
具体实施方式
以下结合附图对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
首先对本公开的应用场景进行介绍,本公开应用在车辆连接有拖车的场景,现有技术中,车辆都会安装ADAS系统,辅助驾驶员驾驶车辆,在ADAS系统中,ADAS域控制器分别与摄像头、激光雷达、毫米波雷达连接;并通过CAN总线与多媒体、组合仪表、转向系统和制动系统连接;通过在行驶过程中随时感应周围的环境,并结合导航地图数据,进行系统的运算与分析,从而预先让驾驶员察觉到可能发生的危险。
但是,发明人发现,当车辆连接有拖车时,拖车的摇摆情况会增加驾驶难度,并且车辆总体长度增加,在车辆进行倒车和停车时难度也会增加,由于ADAS系统安装在车辆上,只能感知车辆周围环境,无法感知拖车的情况,增加了驾驶难度。
因此,本公开提供一种车辆控制的方法、装置、电子设备和车辆,通过在拖车上安装陀螺仪,并在车辆上添加辅助功能开关,从而辅助车辆驾驶。该辅助功能开关可以是集成式自复位开关,通过对该辅助功能开关进行不同的触控操作,可以实现不同的功能,示例地,该触控操作可以是按压操作、左旋操作、右旋操作等,该功能可以包括拖车标定功能、行车辅助功能、直线倒车功能和非直线倒车功能。例如,当驾驶员对该辅助功能开关进行短按操作时,可以进入拖车标定功能。该陀螺仪和辅助功能开关分别与车辆连接,该陀螺仪用于采集拖车的拖车姿态信息,从而感知拖车周围环境,并将采集到的拖车姿态信息发送至该车辆,该车辆根据控制指令控制车辆行驶,辅助驾驶员驾驶连接有拖车的车辆。
下面结合实施例对本公开进行说明。
图1是根据一示例性实施例示出的一种车辆控制的方法的流程图,如图1所示,该方法应用于车辆,该车辆连接有拖车,该方法可以包括以下步骤:
S101、获取该拖车的拖车姿态信息。
其中,该拖车上设置有陀螺仪,该陀螺仪用于采集拖车姿态信息,该拖车姿态信息可以是该拖车的姿态角,在一种可能的实现方式中,可以获取该陀螺仪发送的该拖车的拖车姿态信息,在获取到该拖车姿态信息后,将该拖车姿态信息发送至车辆,示例地,该车辆可以包括ADAS系统,该ADAS系统可以包括ADAS域控制器,该车辆可以通过该ADAS域控制器获取该陀螺仪发送的该拖车的拖车姿态信息。
S102、根据该拖车姿态信息确定该车辆与该拖车之间的第一夹角。
在一种可能的实现方式中,可以获取该车辆的横摆角信息和方向盘转角信息,并根据该拖车姿态信息、该横摆角信息和该方向盘转角信息确定该车辆与该拖车之间的第一夹角。
S103、获取该拖车上的预设姿态标记的图像信息。
其中,该预设姿态标记用于表征该拖车相对该车辆的姿态变化,该预设姿态标记可以设置在该拖车与该车辆之间的连接装置上,例如,该预设姿态标记可以是棋盘格图案的标定板,也可以是圆点阵列图案的标定板,当车辆与拖车之间发生姿态变化时,该标定板上目标图案的位置会发生变化,根据该目标图案的位置相对于初始位置的变化角度,确定出该拖车相对该车辆的姿态变化。
在一种可能的实现方式中,可以通过摄像头获取该预设姿态标记的图像信息,并将获 取到的该图像信息发送至车辆的ADAS域控制器,车辆的ADAS域控制器接收到该图像信息,从而获取到该图像信息。
S104、根据该图像信息确定该车辆与该拖车之间的第二夹角。
示例地,该ADAS域控制器在获取到该图像信息后,可以根据该图像信息的角度变化计算出该拖车相对该车辆的姿态变化。
需要说明的是,根据该图像信息确定该车辆与该拖车之间的第二夹角的具体计算方式可以参考相关技术中的计算方式,此处不再赘述。
S105、根据该第一夹角和该第二夹角,控制该车辆行驶。
在一种可能的实现方式中,可以将该第一夹角和该第二夹角中最小的夹角,作为第一目标夹角,并根据该第一目标夹角控制该车辆行驶,示例地,可以通过车辆的ESP(Electronic Stability Program,电子稳定系统)控制该车辆行驶。
这样,通过从陀螺仪中获取的拖车姿态信息得到车辆与拖车之间的夹角,可以辅助驾驶员判断车辆的运行情况,降低了对连接有拖车的车辆的驾驶难度,提高了驾驶过程中的舒适性和安全性。
需要说明的是,考虑到不同拖车的尺寸和形状不同,在连接拖车时需要对拖车进行标定,保证实际数据和输入数据的一致性。在一些实施例中,在执行上述步骤S101前,可以响应于驾驶员对辅助功能开关的第一触控操作,根据预设参数信息、预设姿态标记的图像信息和陀螺仪的方向信息对该车辆和拖车进行标定。
示例地,驾驶员短按该辅助功能开关,ADAS系统进入拖车标定功能,此时,该车辆的车载显示器可以展示拖车辅助功能界面,驾驶员可以通过控制设备输入标记信息,对该拖车进行标记,标记信息包括拖车名称、制动水平和拖车类型。
其中,该预设参数可以包括以下四种参数:
1、车辆的指定位置(如车牌所在的位置)到车辆与拖车的连接装置中心位置的水平距离;
2、连接装置中心位置到预设姿态标记中心位置的水平距离;
3、摄像头到预设姿态标记中心位置的距离;
4、车辆尾部到拖车车轴中心位置的水平距离。
在对该拖车标记完成后,在该车辆以预设速度沿预设方向直线行驶实物情况下,该陀螺仪将该预设方向标定为零点方向;该零点方向用于表征该车辆和该拖车的中心位置在同一直线上。此时,车载显示器展示的拖车辅助功能界面可以展示“标定成功”字样,该字样用于表征该车辆和拖车标定完成。其中,该预设速度范围可以是6km/h-39km/h。
这样,可以提前对可能用到的拖车进行标定,等到使用时无需再次标定,简化了使用流程,提高了工作效率。
在一些实施例中,根据该第一目标夹角控制该车辆行驶,可以包括:在该第一目标夹角大于或等于预设夹角的持续时间,大于或等于预设时间阈值的情况下,控制该车辆停止行驶。其中,在第一目标夹角大于或等于预设夹角的情况下,表明车辆和拖车之间的夹角过大,造成拖车的摇摆幅度过大,在上述持续时间大于或等于预设时间阈值的情况下,则表明拖车处于长时间摇摆幅度过大的状态,车辆稳定性较差,容易发生交通事故。因此,在上述情况下,通过控制车辆停止行驶,避免车辆发生安全事故。
其中,该预设夹角的范围可以是5°-10°,如5°、6°、8°或者10°,该预设时间阈值最大可以是2s,如200ms或者500ms。
示例地,响应于驾驶员对辅助功能开关的第二触控操作,进入行车辅助功能,在该持续时间大于或等于该预设时间阈值的情况下,车辆的ADAS域控制器向车辆的制动系统发送制动指令,该制动系统根据该制动指令控制该车辆停止行驶。
另外,在该第一目标夹角大于或等于预设夹角的持续时间,大于或等于预设时间阈值的情况下,输出告警信息,该告警信息用于提示该车辆的驾驶员控制该车辆停止行驶。这样,能够提示驾驶员拖车的摇摆幅度过大,使得驾驶员能够及时稳定车辆或停止车辆,提高了驾驶过程的安全性。
在另一些实施例中,在该车辆的行驶状态为直线倒车状态的情况下,根据该第一目标夹角控制该车辆倒车。
示例地,响应于驾驶员对辅助功能开关的第三触控操作,向车辆的转向系统发送第一转向指令,该转向系统根据该第一转向指令控制该车辆倒车。例如,驾驶员可以通过短按辅助功能开关触发第三触控操作,并根据该第三触控操作向车辆的转向系统发送第一转向指令。这样,可以保证倒车过程中,车辆和拖车始终处于同一直线上,降低了倒车难度。
需要说明的是,上述对该辅助功能开关进行的触控操作,在不同的应用场景下可以实现不同的功能,例如,当通过短按该辅助功能开关进入拖车标定功能并且完成标定后,再次短按该辅助功能开关可以实现行车辅助或直线倒车的功能,另外,该触控操作也可以是连续两次按压或者长按该辅助功能开关,本公开在此不做限定。
在另一些实施例中,还可以在该车辆的行驶状态为非直线倒车状态的情况下,获取该车辆的驾驶员设置的该车辆与该拖车之间的第三夹角;根据该第三夹角和该第二夹角,确定目标倒车路径;控制该车辆按照该目标倒车路径倒车。
其中,该非直线倒车状态可以包括转弯倒车状态、靠边停车状态或倒车入库状态等。
在一种可能的实现方式中,根据该第三夹角和该第二夹角,确定目标倒车路径可以包括:将该第三夹角和该第二夹角中的最小夹角,作为第二目标夹角,并根据该第二目标夹角确定目标倒车路径。这样,可以使目标倒车路径更为精准,减少了倒车耗费的时间,降低了驾驶员进行倒车操作的难度。
示例地,响应于驾驶员对辅助功能开关的第四触控操作,根据该第四触控操作得到该车辆与该拖车之间的第三夹角;根据该第三夹角和该第二夹角,确定目标倒车路径;此时,ADAS域控制器根据该目标倒车路径向车辆的转向系统发送第二转向指令,该转向系统根据该第二转向指令控制该车辆沿该目标倒车路径倒车。
例如,驾驶员可以长按该辅助功能开关,进入非直线倒车辅助功能;此时,该车辆的车载显示器可以展示车辆后方的环境画面,并且,根据驾驶员对该辅助功能开关的左旋或右旋操作,展示目标倒车路径。这样,驾驶员可以在车载显示器中看到目标倒车路径,方便进行倒车操作,降低了驾驶难度。
综上所述,本公开通过获取该拖车的拖车姿态信息;根据该拖车姿态信息确定该车辆与该拖车之间的第一夹角;获取该拖车上的预设姿态标记的图像信息,该预设姿态标记用于表征该拖车相对该车辆的姿态变化;根据该图像信息确定该车辆与该拖车之间的第二夹角;根据该第一夹角和该第二夹角,控制该车辆行驶;通过从陀螺仪中获取的拖车姿态信息得到车辆与拖车之间的夹角,可以辅助驾驶员判断车辆的运行情况,降低了对连接有拖车的车辆的驾驶难度,提高了驾驶过程中的舒适性和安全性。
图2是根据一示例性实施例示出的一种车辆控制的装置200的结构框图;该装置200包括第一获取模块210、第一确定模块220、第二获取模块230、第二确定模块240和第一控制模块250;
该第一获取模块210,用于获取该拖车的拖车姿态信息;
该第一确定模块220,用于根据该拖车姿态信息确定该车辆与该拖车之间的第一夹角;
该第二获取模块230,用于获取该拖车上的预设姿态标记的图像信息,该预设姿态标记用于表征该拖车相对该车辆的姿态变化;
该第二确定模块240,用于根据该图像信息确定该车辆与该拖车之间的第二夹角;
该第一控制模块250,用于根据该第一夹角和该第二夹角,控制该车辆行驶。
可选地,该拖车上设置有陀螺仪,该装置还包括:
第三获取模块,用于获取该陀螺仪发送的该拖车的拖车姿态信息。
可选地,该装置还包括:
第一夹角计算模块,用于获取该车辆的横摆角信息和方向盘转角信息;根据该拖车姿态信息、该横摆角信息和该方向盘转角信息确定该车辆与该拖车之间的该第一夹角。
可选地,该装置还包括:
第二控制模块,用于将该第一夹角和该第二夹角中最小的夹角,作为第一目标夹角;根据该第一目标夹角控制该车辆行驶。
可选地,该装置还包括:
车辆停止模块,用于在该第一目标夹角大于或等于预设夹角的持续时间,大于或等于预设时间阈值的情况下,控制该车辆停止行驶。
可选地,该装置还包括:
直线倒车模块,用于在该车辆的行驶状态为直线倒车状态的情况下,根据该第一目标夹角控制该车辆倒车。
可选地,该装置还包括:
非直线倒车模块,用于在该车辆的行驶状态为非直线倒车状态的情况下,获取该车辆的驾驶员设置的该车辆与该拖车之间的第三夹角;
将该第三夹角和该第二夹角中的最小夹角,作为第二目标夹角;
根据该第二目标夹角确定目标倒车路径;
控制该车辆按照该目标倒车路径倒车。
图3是根据一示例性实施例示出的一种电子设备300的结构框图。如图3所示,该电子设备300可以包括:处理器301,存储器302。该电子设备300还可以包括多媒体组件303,输入/输出接口304,以及通信组件305中的一者或多者。
其中,处理器301用于控制该电子设备300的整体操作,以完成上述车辆控制的方法中的全部或部分步骤。存储器302用于存储各种类型的数据以支持在该电子设备300的操作,这些数据例如可以包括用于在该电子设备300上操作的任何应用程序或方法的指令,以及应用程序相关的数据,例如联系人数据、收发的消息、图片、音频、视频等等。该存储器302可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,例如静态随机存取存储器(Static Random Access Memory,简称SRAM),电可擦除可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,简称EEPROM),可擦除可编程只读存储器(Erasable Programmable Read-Only Memory,简称EPROM),可编程只读存储器(Programmable Read-Only Memory,简称PROM),只读存储器(Read-Only Memory,简称ROM),磁存储器,快闪存储器,磁盘或光盘。多媒体组件303可以包括屏幕和音频组件。其中屏幕例如可以是触摸屏,音频组件用于输出和/或输入音频信号。例如,音频组件可以包括一个麦克风,麦克风用于接收外部音频信号。所接收的音频信号可以被进一步存储在存储器302或通过通信组件305发送。音频组件还包括至少一个扬声器,用于输出音频信号。输入/输出接口304为处理器301和其他接口模块之间提供接口,上述其他接口模块可以是键盘,鼠标,按钮等。这些按钮可以是虚拟按钮或者实体按钮。通信组件305用于该电子设备300与其他设备之间进行有线或无线通信。无线通信,例如Wi-Fi,蓝牙,近场通信(Near Field Communication,简称NFC),2G、3G、4G、5G、NB-IOT(Narrow Band Internet of Things,窄带物联网),或者它们中一种或者多种的组合,因此相应的该通信组件305可以包括:Wi-Fi模块,蓝牙模块,NFC模块。
在一示例性实施例中,电子设备300可以被一个或多个应用专用集成电路(Application  Specific Integrated Circuit,简称ASIC)、数字信号处理器(Digital Signal Processor,简称DSP)、数字信号处理设备(Digital Signal Processing Device,简称DSPD)、可编程逻辑器件(Programmable Logic Device,简称PLD)、现场可编程门阵列(Field Programmable Gate Array,简称FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述车辆控制的方法。
在另一示例性实施例中,还提供了一种包括程序指令的计算机可读存储介质,该程序指令被处理器执行时实现上述车辆控制的方法的步骤。例如,该计算机可读存储介质可以为上述包括程序指令的存储器302,上述程序指令可由电子设备300的处理器301执行以完成上述车辆控制的方法。
图4是根据一示例性实施例示出的一种车辆400的结构框图,如图4所示,该车辆400包括电子设备300。
在另一示例性实施例中,还提供一种计算机程序产品,该计算机程序产品包含能够由可编程的装置执行的计算机程序,该计算机程序具有当由该可编程的装置执行时用于执行上述车辆控制的方法的代码部分。
以上结合附图详细描述了本公开的优选实施方式,但是,本公开并不限于上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,这些简单变型均属于本公开的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,本公开对各种可能的组合方式不再另行说明。
此外,本公开的各种不同的实施方式之间也可以进行任意组合,只要其不违背本公开的思想,其同样应当视为本公开所公开的内容。

Claims (10)

  1. 一种车辆控制的方法,其特征在于,应用于车辆;所述车辆连接有拖车,所述方法包括:
    获取所述拖车的拖车姿态信息;
    根据所述拖车姿态信息确定所述车辆与所述拖车之间的第一夹角;
    获取所述拖车上的预设姿态标记的图像信息,所述预设姿态标记用于表征所述拖车相对所述车辆的姿态变化;
    根据所述图像信息确定所述车辆与所述拖车之间的第二夹角;
    根据所述第一夹角和所述第二夹角,控制所述车辆行驶。
  2. 根据权利要求1所述的方法,其特征在于,所述拖车上设置有陀螺仪,所述获取所述拖车的拖车姿态信息,包括:
    获取所述陀螺仪发送的所述拖车的拖车姿态信息。
  3. 根据权利要求1所述的方法,其特征在于,所述根据所述拖车姿态信息确定所述车辆与所述拖车之间的第一夹角,包括:
    获取所述车辆的横摆角信息和方向盘转角信息;
    根据所述拖车姿态信息、所述横摆角信息和所述方向盘转角信息确定所述车辆与所述拖车之间的所述第一夹角。
  4. 根据权利要求1所述的方法,其特征在于,所述根据所述第一夹角和所述第二夹角,控制所述车辆行驶,包括:
    将所述第一夹角和所述第二夹角中最小的夹角,作为第一目标夹角;
    根据所述第一目标夹角控制所述车辆行驶。
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述第一目标夹角控制所述车辆行驶,包括:
    在所述第一目标夹角大于或等于预设夹角的持续时间,大于或等于预设时间阈值的情况下,控制所述车辆停止行驶。
  6. 根据权利要求4所述的方法,其特征在于,所述根据所述第一目标夹角控制所述车辆行驶,包括:
    在所述车辆的行驶状态为直线倒车状态的情况下,根据所述第一目标夹角控制所述车辆倒车。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,所述方法还包括:
    在所述车辆的行驶状态为非直线倒车状态的情况下,获取所述车辆的驾驶员设置的所述车辆与所述拖车之间的第三夹角;
    将所述第三夹角和所述第二夹角中的最小夹角,作为第二目标夹角;
    根据所述第二目标夹角确定目标倒车路径;
    控制所述车辆按照所述目标倒车路径倒车。
  8. 一种车辆控制的装置,其特征在于,应用于车辆;所述车辆连接有拖车,所述装置包括:
    第一获取模块,用于获取所述拖车的拖车姿态信息;
    第一确定模块,用于根据所述拖车姿态信息确定所述车辆与所述拖车之间的第一夹角;
    第二获取模块,用于获取所述拖车上的预设姿态标记的图像信息,所述预设姿态标记用于表征所述拖车相对所述车辆的姿态变化;
    第二确定模块,用于根据所述图像信息确定所述车辆与所述拖车之间的第二夹角;
    第一控制模块,用于根据所述第一夹角和所述第二夹角,控制所述车辆行驶。
  9. 一种电子设备,其特征在于,包括:
    存储器,其上存储有计算机程序;
    处理器,用于执行所述存储器中的所述计算机程序,以实现权利要求1-7中任一项所述方法的步骤。
  10. 一种车辆,其特征在于,包括权利要求9所述的电子设备。
PCT/CN2022/136387 2022-08-26 2022-12-02 车辆控制的方法、装置、电子设备和车辆 WO2024040790A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211034233.4A CN117657144A (zh) 2022-08-26 2022-08-26 车辆控制的方法、装置、电子设备和车辆
CN202211034233.4 2022-08-26

Publications (1)

Publication Number Publication Date
WO2024040790A1 true WO2024040790A1 (zh) 2024-02-29

Family

ID=90012274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/136387 WO2024040790A1 (zh) 2022-08-26 2022-12-02 车辆控制的方法、装置、电子设备和车辆

Country Status (2)

Country Link
CN (1) CN117657144A (zh)
WO (1) WO2024040790A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102745193A (zh) * 2011-04-19 2012-10-24 福特全球技术公司 用于拖车倒车辅助的拖车路径曲率控制
CN105644433A (zh) * 2014-10-07 2016-06-08 现代摩比斯株式会社 基于影像识别的拖车轨迹推定系统及其方法
US20170129403A1 (en) * 2015-11-11 2017-05-11 Ford Global Technologies, Llc Trailer monitoring system and method
CN108010053A (zh) * 2016-11-02 2018-05-08 Lg电子株式会社 提供环视图像的装置和方法、车辆及计算机可读存储介质
CN112362055A (zh) * 2020-12-01 2021-02-12 苏州挚途科技有限公司 姿态估计方法、装置和电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102745193A (zh) * 2011-04-19 2012-10-24 福特全球技术公司 用于拖车倒车辅助的拖车路径曲率控制
CN105644433A (zh) * 2014-10-07 2016-06-08 现代摩比斯株式会社 基于影像识别的拖车轨迹推定系统及其方法
US20170129403A1 (en) * 2015-11-11 2017-05-11 Ford Global Technologies, Llc Trailer monitoring system and method
CN108010053A (zh) * 2016-11-02 2018-05-08 Lg电子株式会社 提供环视图像的装置和方法、车辆及计算机可读存储介质
CN112362055A (zh) * 2020-12-01 2021-02-12 苏州挚途科技有限公司 姿态估计方法、装置和电子设备

Also Published As

Publication number Publication date
CN117657144A (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
US9902425B2 (en) System for guiding trailer along target route during reversing maneuver
EP2786917B1 (en) Birds-eye view parking assist system and method
US20170349213A1 (en) System And Method For Displaying A Forward Drive Trajectory, Providing A Jackknifing Warning And Providing A Trailer Turn Aid
US9902427B2 (en) Parking assistance device, parking assistance method, and non-transitory computer readable medium storing program
US10427716B2 (en) Hitch assist system and method
US20160059888A1 (en) System for a Towing Vehicle
KR20190134919A (ko) 선행 차량 출발 알림 장치 및 방법
US10252748B2 (en) Driving assist device
JP6814706B2 (ja) 走行支援装置及び走行支援方法
US10152835B2 (en) Vehicle control device
US10802478B2 (en) Hitch assist system and method for autonomously maneuvering a vehicle in a user-specified target travel direction
CN111361638A (zh) 车辆感知装置的控制方法、装置、可读存储介质及车辆
US20190315365A1 (en) Apparatus and method for controlling driving in vehicle
WO2024040790A1 (zh) 车辆控制的方法、装置、电子设备和车辆
JP6821644B2 (ja) 車両制御装置及び車両制御方法
US11104342B2 (en) Vehicle control device, vehicle, and vehicle control method
AU2018236752B2 (en) Driving assistance apparatus and driving assistance method
CN111619562B (zh) 车辆控制装置、车辆和车辆控制方法
JP2015107675A (ja) 駐車支援装置
US20220410885A1 (en) Vehicle and control method thereof
WO2024031453A1 (zh) 车辆控制方法、装置、终端设备及计算机可读存储介质
JP2008068783A (ja) 操舵支援装置
JP2017154512A (ja) 車両制御装置
CN118082967A (zh) 车辆控制方法、装置、车辆及存储介质
KR20200023828A (ko) 선회 차량 충돌 방지 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956324

Country of ref document: EP

Kind code of ref document: A1