WO2024040683A1 - 一种全环境适用的风机立塔发电系统和发电控制方法 - Google Patents

一种全环境适用的风机立塔发电系统和发电控制方法 Download PDF

Info

Publication number
WO2024040683A1
WO2024040683A1 PCT/CN2022/122515 CN2022122515W WO2024040683A1 WO 2024040683 A1 WO2024040683 A1 WO 2024040683A1 CN 2022122515 W CN2022122515 W CN 2022122515W WO 2024040683 A1 WO2024040683 A1 WO 2024040683A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
wind
door panel
air
traction
Prior art date
Application number
PCT/CN2022/122515
Other languages
English (en)
French (fr)
Inventor
叶林
Original Assignee
浙江龙耀风电新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江龙耀风电新能源科技有限公司 filed Critical 浙江龙耀风电新能源科技有限公司
Publication of WO2024040683A1 publication Critical patent/WO2024040683A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/10Combinations of wind motors with apparatus storing energy
    • F03D9/11Combinations of wind motors with apparatus storing energy storing electrical energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/04Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/06Controlling wind motors  the wind motors having rotation axis substantially perpendicular to the air flow entering the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/30Lightning protection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/40Ice detection; De-icing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/30Wind motors specially adapted for installation in particular locations
    • F03D9/34Wind motors specially adapted for installation in particular locations on stationary objects or on stationary man-made structures
    • F03D9/35Wind motors specially adapted for installation in particular locations on stationary objects or on stationary man-made structures within towers, e.g. using chimney effects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Definitions

  • the invention relates to the technical field of wind power generation, and specifically relates to a wind turbine tower power generation system and power generation control method applicable to all environments.
  • Wind turbines are outdoor working systems and must face various weather conditions and environments.
  • the winter monsoon in cold areas is the season when wind energy is abundant, but it also brings freezing damage to fan equipment.
  • Traditional fans are large in size, and the freezing of the fan blades will directly break the fan blades.
  • the existing traditional large-volume outdoor fan structures are basically useless. It is possible to use active anti-icing or de-icing protection measures on the wind turbine. The only measure that can ensure safety is to shut down the machine and use the external de-icing method of the wind blade helicopter to ensure the safety of the wind blades from ice damage.
  • Today's traditional outdoor fans are all integrated fans with a large frame and a single runner. They have strong lightning-inducing capabilities and a high probability of direct lightning strikes. Moreover, the runner and the bracket are electrically grounded. The tall metal frame is easy to trigger lightning, and the electrical system is easily damaged by lightning strikes. , once damaged, the maintenance cost of large fans will be very high, and the value of secondary maintenance and utilization of small fans will be lost; and the integrated fans with a single runner in a large frame are inconvenient to transport and install on site.
  • Fan noise is a potential safety hazard that affects the surrounding residential environment.
  • Traditional large fans have large mechanical noise and long transmission distances, seriously affecting the lives of surrounding residents.
  • a wind turbine tower power generation system suitable for all environments including a tower body and a main controller.
  • the tower body is provided with a first column and wind power generation modules connected to the first column and stacked in sequence.
  • the wind power generation module includes a mounting platform, a damper frame connected to the outer periphery of the mounting platform, and a vertical fan installed on the mounting platform.
  • An upward and/or upward moving and/or upward moving fan is provided between the mounting platform and the damper frame.
  • the air door panel switch assembly moves downward.
  • the air door panel switch assembly is located on the facade adjacent to the first column.
  • An air guide is provided between adjacent air door frames.
  • the air door panel switch assembly is driven by a traction mechanism.
  • the traction mechanism is electrically connected to the main controller, the vertical fan is arranged opposite to the direction of the air guide, the main controller collects the overload signal of the vertical fan, and the traction mechanism drives the damper plate
  • the switch assembly is used to close/open the opening of the air guide opening to control the air volume of the air inlet of the vertical fan.
  • the present invention is further configured such that the wind door panel includes an upwind door panel and a downwind door panel, and the upwind door panel and the downwind door panel on the wind power generation module in the same group are offset in the vertical direction, and the wind power generation module The upwind door panel/downwind door panel on the wind power generation module and the downwind door panel/upwind door panel on the adjacent wind power generation module are in the same vertical direction.
  • the present invention is further configured that the upper and lower ends of the air door frame facing the installation platform are provided with upper and lower clamping grooves, and when the air guide opening is opened, the upper air door panel is arranged in the lower clamping groove, so When the air guide opening is opened, the downwind door panel is arranged in the upper slot.
  • the width of the upwind door panel and the width of the downwind door panel are both no larger than the width of the air door frame. There is a gap between the air door frames.
  • a first fixed rod or a second fixed rod, the first fixed rod and the second fixed rod are offset in the vertical direction, and the upwind door panel and the downwind door panel are placed on the first fixed rod or on the second fixed rod.
  • the traction mechanism includes a first traction group and a second traction group arranged on each side of the damper frame
  • the first traction group includes a first traction motor, a first traction rope and a first Support wheel sets, the first support wheel sets are respectively arranged at the top and bottom of the tower body, the first traction rope is connected between the first support wheel sets, the first traction motor and the The first traction rope is connected
  • the second traction group includes a second traction motor, a second traction rope and a second support wheel set, and the second support wheel set is respectively provided at the top and bottom of the vertical tower body,
  • the second traction rope is connected between the second support wheel sets, the second traction motor is connected to the second traction rope, and the damper panels on the adjacent wind power generation modules are connected respectively.
  • the first traction rope and the second traction rope drive the upwind door panel/downwind door panel to rise or fall.
  • the present invention is further configured such that the air door frame is provided with a convex edge at the center on the side away from the installation platform, and air release slopes are provided on both sides of the convex edge, and the air release slopes are close to the air guide openings on both upper and lower sides.
  • the present invention is further configured that the wind power generation module further includes a heating and de-icing assembly, and the heating and de-icing assembly includes a heating element, a temperature sensor and a de-icing controller, and the temperature sensor and the heating element are both connected to the The de-icing controller is electrically connected, and the heating element is arranged inside the damper frame and/or at the blade bearing portion of the vertical fan.
  • the present invention is further configured such that the outer periphery of the main body of the upright tower is provided with a second upright column and/or a third upright column corresponding to the first upright column, and the second upright column and/or the third upright column are respectively connected with the said first upright column.
  • the first upright column is fixedly connected, a fixed air outlet is provided between the second upright column and the first upright column, a fixed air vent is provided on the fixed air outlet, and an adjusting air outlet is provided between the third upright column and the second upright column.
  • the regulating air outlet is provided with a guide rod and an regulating air plate movably connected to the guide rod.
  • the regulating air plate is controlled by a pulling mechanism, and the pulling mechanism includes a pulling motor, a pulling rope and a Pulling wheel sets, the pulling wheel sets are respectively fixed on the top and bottom of the adjustment air outlet, the pulling rope is connected between the pulling wheel sets, the pulling motor and the pulling rope connection, the pulling motor is electrically connected to the main controller, a wind meter is provided on the main body of the vertical tower, and the wind meter is electrically connected to the main controller.
  • the present invention is further configured that a steel cable fixing point is provided on the outer periphery of the main body of the tower, an anti-bird steel cable is connected between the first upright column and at least three of the steel cable fixing points, and the second upright column and /Or an anti-bird steel cable is directly or indirectly connected between the third column and at least three of the steel cable fixing points.
  • the present invention is further configured that the top of the first column is provided with an induction lightning-cancelling lightning rod, and the tops of the second column and/or the third column are provided with an induction-type lightning rod.
  • the present invention is further configured that a DC energy storage component is further provided in the main body of the vertical tower, the DC energy storage component is connected and communicates with the main controller, and the DC energy storage component is electrically connected with the vertical wind turbine.
  • a wind turbine tower power generation control method using the above wind turbine tower power generation system, includes:
  • the main controller controls the operation of the first traction motor and/or the second traction motor according to the overload signal of the vertical fan and the power consumption of the external load, driving the upwind door panel and the downwind door panel to perform upward or downward movements. Realize the adjustment of the opening of the air guide, so that the vertical fans on the wind turbine tower power generation system can provide the required power to the external load without overload operation;
  • the de-icing controller controls the operation of the heating element according to the temperature signal collected by the temperature sensor to increase the temperature of the inside of the damper frame and/or the blade bearing part of the vertical fan;
  • the main controller controls the operation of the first traction motor and/or the second traction motor according to the power consumption of the external load and/or the energy storage status of the DC energy storage component, and drives the upwind door panel and downwind door panel to rise or fall to realize the air guide. opening adjustment.
  • the present invention is further configured such that the main controller obtains external wind force information according to the wind meter, controls the operation of the traction motor, drives the wind adjustment plate to perform an upward or downward action, realizes the adjustment of the opening of the air outlet, and makes the fan
  • the vertical tower power generation system is used to vent or guide wind.
  • the wind turbine tower power generation system adopts a composite stacking method in structure, so that the wind power generation modules can be combined in the vertical space with the same structural platform to meet the strength requirements and reduce the difficulty of design, processing and installation.
  • the main controller collects data from each vertical Fan overload signal, when the vertical fan is overloaded due to excessive external wind, the main controller controls the traction mechanism to drive the air door plate to move to reduce the opening of the air guide, thereby reducing the wind force on the vertical motor and avoiding vertical The motor is overloaded.
  • the main controller controls the traction mechanism to work, driving the damper plate to move to increase the opening of the air guide, thereby improving the power generation efficiency of the vertical motor.
  • the wind turbine tower power generation system ensures the efficient output of electric energy under the premise of overload safety of the generator output system. Specifically, based on the principle of maximum wind power utilization, it is started according to the overload of one of the wind turbines, load power output demand and typhoon resistance requirements, and the air door panel is started.
  • the lifting degree enables the adjustment of the opening of the air guide, which solves the prohibitive benefits of wind farm installation in islands and coastal wind energy-rich areas, maximizes the use of wind power green resources, improves the green energy efficiency of wind power, and reduces the cost of electricity per hour of wind power. , enhance the economic and social benefits of green energy in the entire wind power market.
  • the wind door panels of each group of wind power generation modules adopt a staggered structure of upwind door panels and downwind door panels.
  • the air guide When the air guide is fully opened, the upper and lower wind door panels will shrink within the wind door frame, maximizing the increase in the number of wind power generation modules.
  • the air inlet area between the air guides can improve the overall wind energy utilization rate of the wind turbine tower power generation system; in order to ensure the normal operation of the air door panels on the same facade, two sets of independent traction mechanisms need to be used on the same facade to realize each layer
  • the upper and lower air door panels are raised or lowered; the upper and lower air door panels are guided by fixed rods, which improves the reliability of the air door panel lifting and ensures that the air door panel itself can withstand strong winds.
  • the middle part of the damper frame of each group of wind power generation modules forms left and right wind discharge slopes, which are used to vent and decompress strong winds in front of the damper frame, effectively reducing the impact of strong winds on the wind power generation modules.
  • Each steel cable fixed point is connected to the corresponding column by an anti-bird steel cable, which serves as an alarm protection against bird collision; at the same time, it is further strengthened.
  • the center of gravity of the wind turbine tower power generation system is stable and safe; the anti-bird rope is easy to install and replace, and can be replaced at low cost according to the maintenance needs during the service life, thus ensuring the operational safety of the entire wind turbine tower life and extending the safe service life of the wind turbine.
  • a heating and de-icing component is installed in the wind power generation module to prevent accidents in which the fan shaft of the vertical fan freezes and stops.
  • the enclosed space of the installation platform with the wind door panel closed can be actively used to heat and de-ice the fan to ensure normal operation of the fan in ice and snow weather. power generation requirements.
  • the number of wind turbines output at one time can be combined and dispatched according to the wind intensity to ensure that the tower outputs stable electric energy.
  • Figure 1 is a front view of the wind turbine tower power generation system according to Embodiment 1 of the present invention.
  • Figure 2 is a perspective view of a wind power generation module according to Embodiment 1 of the present invention.
  • Figure 3 is a perspective view of the damper frame in Embodiment 1 of the present invention.
  • Figure 4 is a schematic elevation view of a wind turbine tower power generation system in Embodiment 1 of the present invention.
  • Figure 5 is a schematic diagram of a certain facade traction system of the wind turbine vertical tower power generation system in Embodiment 1 of the present invention.
  • Figure 6 is a schematic diagram of the traction mechanism in Embodiment 1 of the present invention.
  • Figure 7 is an electrical connection block diagram of the wind turbine tower power generation system in Embodiment 1 of the present invention.
  • Figure 8 is a block diagram of the electrical connection of the heating and de-icing assembly in Embodiment 1 of the present invention.
  • Figure 9 is a front view of the wind turbine tower power generation system in Embodiment 2 of the present invention.
  • Figure 10 is a top view of the wind turbine tower power generation system according to Embodiment 2 of the present invention.
  • Figure 11 is a front view of the wind turbine tower power generation system in Embodiment 3 of the present invention.
  • Figure 12 is a top view of the wind turbine tower power generation system in Embodiment 3 of the present invention.
  • Figure 13 is a partial perspective view of the wind turbine tower power generation system in Embodiment 3 of the present invention.
  • Figure 14 is a perspective view of the wind turbine tower power generation system in Embodiment 4 of the present invention.
  • Figure 15 is an enlarged view of part A in Figure 14.
  • Figure 16 is a front view of the wind turbine tower power generation system in Embodiment 4 of the present invention.
  • Figure 17 is a top view of the wind turbine tower power generation system in Embodiment 4 of the present invention.
  • connection should be understood in a broad sense.
  • it can be a fixed connection, an integral connection, or It can be a detachable connection; it can be a mechanical connection or an electrical connection, or it can be an internal connection between two components; it can be a direct connection, or it can be an indirect connection through an intermediate medium.
  • connection should be understood in a broad sense.
  • it can be a fixed connection, an integral connection, or It can be a detachable connection; it can be a mechanical connection or an electrical connection, or it can be an internal connection between two components; it can be a direct connection, or it can be an indirect connection through an intermediate medium.
  • it can be determined according to the specific requirements. Understand the specific meaning of the above terms.
  • the technical solution of this embodiment is a wind turbine tower power generation system, which includes a tower body 100 and a main controller 200.
  • the tower body 100 is provided with a first column 110 and is connected to the third column.
  • a wind power generation module 120 is stacked on a column 110 in sequence.
  • the wind power generation module 120 includes a mounting platform 121, a wind door frame 122 connected to the outer periphery of the mounting platform 121, and a vertical fan 123 installed on the mounting platform 121.
  • a damper panel switch assembly that moves upward and/or moves downward is provided between the installation platform 121 and the damper frame 122.
  • the damper panel switch assembly is located on the facade of two adjacent first columns 110.
  • An air guide port 126 is provided between the upper and lower adjacent damper frames 122.
  • the damper panel switch assembly is driven by a traction mechanism 130.
  • the power source of the traction mechanism 130 is electrically connected to the main controller 200.
  • the vertical fan 123 is arranged opposite to the air guide 126.
  • the main controller 200 collects the overload signal of the vertical fan 123.
  • the traction mechanism 130 drives the damper panel switch assembly to close/open the air guide 126.
  • the opening of the vertical fan 123 is used to control the air volume of the air inlet.
  • first upright columns 110 there are four first upright columns 110 , that is, the tower body 100 has four facades; in other embodiments, the number of the first upright columns 110 can also be three or four. As mentioned above, depending on the number of first columns 110, the elevation of the main body of the tower will also change relatively.
  • the main controller 200 controls the starting and stopping of the vertical fan 123 through the driving module.
  • the overload signal of the vertical fan 123 may be to collect at least one of the current signal, voltage signal, power signal and temperature signal of the vertical fan 123 .
  • each air inlet surface of the vertical fan 123 in the installation platform 121 and the air inlet surface of the outer peripheral facade are arranged in parallel, and there is no overlapping layout, which improves the wind power conversion efficiency of the vertical fan.
  • the installation position of the main controller 200 is not limited and can be installed as needed, so it is not shown in the figure.
  • the wind door panel switch assembly includes an upwind door panel 124 and a downwind door panel 125.
  • the upwind door panel 124 and the downwind door panel 125 on the wind power generation module 120 of the same group are misaligned in the vertical direction. It is provided that the upwind door panel 124/the downwind door panel 125 on the wind power generation module 120 and the downwind door panel 125/the upwind door panel 124 on the adjacent wind power generation module 120 are in the same vertical direction.
  • superior Using a structure with staggered upper and lower air door panels, when the air guide is fully opened, the upper and lower air door panels will shrink within the air door frame, maximizing the air inlet area of the air guide between the wind power generation modules and improving the vertical height of the wind turbine. The overall wind energy utilization rate of the tower power generation system.
  • the damper panel switch assembly may only be provided with an upward/downward moving damper panel.
  • Such a one-way moving damper panel can also play a role in adjusting the opening of the air guide opening, but is relatively Compared with the staggered upper and lower air door panel air guides, the air inlet area is smaller.
  • the upper and lower ends of the air door frame 122 facing the installation platform 121 are provided with upper and lower slots 127 and 128.
  • the air guide opening 126 When the air guide opening 126 is opened, the upper wind door panel 124 is disposed there.
  • the width of the damper frame 122 A first fixed rod 129 or a second fixed rod 1210 is arranged between the damper frames 122.
  • the first fixed rod 129 and the second fixed rod 1210 are offset in the vertical direction and have the same
  • the upwind door panel 124 and the downwind door panel 125 on the wind power generation module 120 of the group are respectively placed on the first fixed rod 129 and the second fixed rod 1210.
  • the wind power generation module The upwind door panel 124 on the wind turbine 120 and the downwind door panel 125 on the adjacent wind power generation module 120 are connected to the first fixed rod 129 or the second fixed rod 1210 .
  • the upper slot 127 and the lower slot 128 are used to store the lower and upper air door panels when the air guide 126 is fully opened, and are also used to limit the upper and lower air door panels when they are closed in place; the first fixed rod 129 and the second fixed rod 1210 It is used to guide the upper and lower air door panels during the lifting process, improves the lifting reliability of the air door panel switch assembly, and also ensures that the air door panel switch assembly itself can resist strong winds.
  • the traction mechanism 130 includes a first traction group and a second traction group provided on each facade of the damper frame 122.
  • the first traction group includes a first traction motor 131, a first The traction rope 132 and the first support wheel set 133 are respectively provided at the top and bottom of the tower body 100.
  • the first traction rope 132 is connected to the first support wheel set 133.
  • the first traction motor 131 is connected to the first traction rope 132.
  • the second traction group includes a second traction motor 134, a second traction rope 135 and a second support wheel set 136.
  • Support wheel sets 136 are respectively provided at the top and bottom of the tower body 100 , the second traction rope 135 is connected between the second support wheel sets 136 , the second traction motor 134 and the second The traction rope 135 is connected, and the damper panel switch assembly on the adjacent wind power generation module 120 is connected to the first traction rope 132 and the second traction rope 135 respectively.
  • the first traction rope 132 and the The second traction rope 135 drives the upwind door panel 124/the downwind door panel 125 to rise or fall.
  • the first traction rope 132 and the second traction rope 135 are both provided with moving blocks or moving plates 137, and travel switches 138 are provided at both ends of the moving plate 137 along with the movement of the traction rope.
  • the movable distance is not less than the movable distance of the upwind door panel 124 or the leeward door panel 125 .
  • each group of wind power generation modules 120 There are 6 groups of wind power generation modules 120, in order from top to bottom. They are the first wind power generation module 120-1, the second wind power generation module 120-2, the third wind power generation module 120-3, the fourth wind power generation module 120-4, and the fifth wind power generation module 120-5.
  • the sixth wind power generation module 120-6; the downwind door panel 125-1 of the first wind power generation module 120-1 and the upwind door panel 124-2 of the second wind power generation module 120-2 are on the same first fixed rod 129 , the downwind door panel 125-3 of the third wind power generation module 120-3 and the upwind door panel 124-4 of the fourth wind power generation module 120-4 are on the same first fixed rod 129, and the fifth wind power generation module 120-5
  • the upwind door panel 124-3 of the power generation module 120-3 is on the same second fixed rod 1210, the downwind door panel 125-4 of the fourth wind power generation module 120-4 and the upwind door panel 124 of the fifth wind power generation module 120-5 -5 on the same second fixed rod 1210; the first fixed rod 129 and the second fixed rod 1210 are disposed in an offset manner; the downwind door panel 125-1 of the first wind power generation module 120-1 and the third wind power generation module 120-3
  • the door panel 124-3 is connected to the first traction rope 132; the upwind door panel 124-2 of the second wind power generation module 120-2, the upwind door panel 124-4 of the fourth wind power generation module 120-4, and the sixth wind power generation module
  • a convex edge 1221 is provided at the center of the side of the damper frame 122 away from the installation platform 121 .
  • the convex edge 1221 is the most protruding part of the outer surface of the damper frame 122 .
  • the convex edge 1221 There are air release slopes 1222 on both sides of the door frame. The air release slopes 1222 are wider as they are further away from the convex edge 1221. The air release slopes 1222 are used to release the wind and decompress the strong wind in front of the air door frame 122, which is effective.
  • the wind discharge slope 1222 is transitioned to the air guide opening 126 on both upper and lower sides by a wind guide slope 1223, and the wind guide slope 1223 extends diagonally along the convex edge 1221 to
  • the air guide opening 126 has a cross-section with a trumpet shape that is wide on the outside and narrow on the inside, which can convert part of the resistance wind facing the air door frame 122 into dynamic wind and increase the wind power level entering the vertical tower through acceleration. Improve wind energy utilization efficiency under light wind conditions.
  • the wind power generation module 120 also includes a heating and de-icing assembly.
  • the heating and de-icing assembly includes a heating element 141, a temperature sensor 142 and a de-icing controller 143.
  • the temperature sensor 142 and the de-icing controller The heating elements 141 are all electrically connected to the deicing controller 143.
  • the heating elements 141 are arranged inside the damper frame 122 and at the blade bearings of the vertical fan 123.
  • the temperature sensor 142 is arranged on the wind power generation unit.
  • the heating and de-icing component prevents accidents in which the fan shaft of the vertical fan freezes and stops. At the same time, it can actively use the installation platform after the damper panel is closed to form a closed space for heating and de-icing, so as to meet the requirements for normal power generation of the fan in ice and snow weather.
  • an induction lightning-cancelling lightning rod 190 is provided on the top of the first column 110.
  • the lightning-canceling lightning rod 190 provides lightning protection for the wind turbine tower power generation system in thunderstorm weather.
  • the induction lightning elimination type lightning rod 190 please refer to the Chinese patent with publication number CN102354910B.
  • a DC energy storage component 300 is also provided in the vertical tower body 100.
  • the DC energy storage component 300 is connected and communicates with the main controller 200.
  • the DC energy storage component 300 is connected to the vertical Fan 123 is electrically connected.
  • first traction motor 131 and the second traction motor 134 can be connected to the main controller 200 through a rotary encoder to realize stepless adjustment of the lifting and lowering of the damper plate switch assembly, thereby improving the efficiency of the fan. Smooth adjustment of the opening of the air guide 126 of the vertical tower power generation system can also improve the conversion efficiency of wind energy.
  • a warning light is provided on the outer surface of the tower body 100 for night warning.
  • the content of the vertical wind turbine 123 can be referred to the Chinese patent publication number CN113187666A, a type of wind power generation equipment and wind power generation equipment in the system; several of the vertical wind turbines are uniform on each facade according to the wind turbine tower power generation system.
  • the vertical fan is installed on one side of the center point of the installation platform, and is centrally symmetrically arranged with the center point of the installation platform as the symmetry point.
  • the overall height of the wind turbine tower power generation system is low, within 20 meters; taking the 20-meter wind turbine tower power generation system as an example, each wind power generation module is 2 meters high, excluding the bottom and top 4 meters height, a total of 8 platforms can install 32 vertical fans.
  • the normal wind power utilization of each vertical fan is level 7 wind.
  • a 0.5 square blade area generates 6-10 kilowatts of power.
  • the output power of the wind turbine tower is 200-300 kilowatt.
  • a steel cable fixing point 180 is also provided on the outer periphery of the tower body, and the steel cable fixing point 180 is correspondingly arranged on the first upright column.
  • an anti-bird steel cable 181 is connected between each first column 110 and its three nearest steel cable fixing points 180, so that An anti-bird steel cable net is formed on the periphery of the tower body 100 to provide warning and protection against bird collisions, and at the same time further strengthens the center of gravity stability and safety requirements of the wind turbine tower power generation system.
  • the overall height of the wind turbine tower power generation system is medium, within 50 meters; taking the 50-meter wind turbine tower power generation system as an example, each wind power generation module is 2 meters high, excluding the bottom and top, which are 4 meters high. , a total of 23 platforms can install 92 vertical wind turbines.
  • the normal wind power utilization of each vertical wind turbine is level 7 wind.
  • a 0.5 square blade area generates 6-10 kilowatts of power.
  • the output power of the wind turbine tower is 552-920 kilowatts. .
  • a second column 150 corresponding to the first column 110 is also provided on the outer periphery of the tower body 100.
  • the two upright columns 150 are fixedly connected to the first upright column 110.
  • a fixed air outlet 151 is provided between the second upright column 150 and the first upright column 110.
  • the fixed air outlet 151 is provided with a fixed air plate 152.
  • the fixed air plate 152 occupies half of the area of the fixed air outlet 151 , and the fixed air plate 152 is disposed close to the second column 150 .
  • the fixed air outlets of the first column and the second column can quickly discharge the wind, further improving the stability of the wind turbine tower power generation system in strong winds.
  • the second upright column 150 and the first upright column 110 are fixedly connected by a metal beam, and the second upright column 150 is provided at an extension of the diagonal connection line of the first upright column 110.
  • the height of the second upright column 150 is lower than the height of the first upright column 110 .
  • a lightning elimination type lightning rod 190 is also provided on the top of the second column 150 .
  • anti-bird steel cables 181 are also connected between each second column 150 and its three nearest steel cable fixing points 180 .
  • the overall height of the wind turbine tower power generation system is relatively high, within 100 meters.
  • each wind power generation module is 2 meters high, excluding the bottom and top of 4 meters. height, a total of 48 platforms can install 192 vertical fans.
  • the normal wind power utilization of each vertical fan is level 7 wind.
  • a 0.5 square blade area generates 6-10 kilowatts of power.
  • the output power of the wind turbine tower is 1152-1920 kilowatt.
  • a third column 160 corresponding to the first column 110 is provided on the outer periphery of the main body of the tower. 160 is fixedly connected to the first upright column 110 or the second upright column 150.
  • An adjustment air outlet 161 is provided between the third upright column 160 and the second upright column 150, and a guide rod 163 is provided on the adjustment air outlet 161. and an adjusting wind plate 162 movably connected to the guide rod 163.
  • the adjusting wind plate 162 is controlled by a pulling mechanism 170.
  • the pulling mechanism 170 includes a pulling motor 171, a pulling rope 172 and a pulling wheel.
  • the pulling wheel sets 173 are respectively fixed on the top and bottom of the adjustment air outlet 161, the pulling rope 172 is connected between the pulling wheel sets 173, the pulling motor 171 and the The pulling rope 172 is connected, the pulling motor 171 is electrically connected to the main controller 200, the tower body 100 is provided with a wind meter 174, and the wind meter 174 is electrically connected to the main controller 200. connect.
  • the air vents 161 with adjustable air vent sizes, and the air regulating plates 162 move up and down in unison, so only one set of air vents 161 needs to be provided.
  • the pulling mechanism can realize the movement of all the wind adjustment plates 162 on the facade between the second column 150 and the third column 160 .
  • the wind meter 174 measures the wind force as strong wind and sends the wind level signal to the main controller 200.
  • the main controller 200 controls the pulling mechanism 170 to work, and the pulling motor 171 drives the adjusting wind plate 162 to move to open the adjustment.
  • the wind outlet 161 is used to quickly vent the wind.
  • the wind meter 174 measures the wind force as weak wind and sends the wind level signal to the main controller 200.
  • the main controller 200 controls the pulling mechanism 170 to work.
  • the pulling motor 171 drives the wind adjustment plate 162 to move to close the air adjustment outlet 161, thereby guiding the wind to the air guide outlet 126 and enhancing the wind force entering the air guide outlet 126.
  • the adjustable air outlet with adjustable size plays the dual role of strengthening the stability of strong winds and increasing the wind power of small winds.
  • another independent controller may also be provided for the operation of the pulling mechanism 170 .
  • the third upright column 160 is fixedly connected to the second upright column 150 or the first upright column 110 by using a metal cross beam, and the third upright column 160 is disposed on the diagonal connection line of the first upright column 110 At the extension point, the height of the third upright column 160 is lower than the height of the second upright column 150 .
  • a lightning elimination type lightning rod 190 is also provided on the top of the third column 160 .
  • an anti-bird steel cable 181 is also connected between each third column 160 and its three nearest steel cable fixing points 180.
  • the second column 150 The direct connection with the steel cable fixed point 180 becomes the anti-bird steel cable connected between the second column 150 and the third column 160, that is, the indirect connection.
  • the overall height of the wind turbine tower power generation system is relatively high, more than 100 meters; taking the 150-meter wind turbine tower power generation system as an example, each wind power generation module is 2 meters high, excluding the bottom and top 4 meters Height, a total of 73 platforms can install 222 vertical fans.
  • the normal wind power utilization of each vertical fan is level 7 wind.
  • a 0.5 square blade area generates 6-10 kilowatts.
  • the output power of the wind turbine tower is 1332-2220 kilowatt.
  • a wind turbine tower power generation control method using the wind turbine tower power generation system described in the above-mentioned Embodiment 1 or Embodiment 2 or Embodiment 3, including:
  • the main controller controls the operation of the first traction motor and/or the second traction motor according to the overload signal of the vertical fan and the power consumption of the external load, driving the upwind door panel and the downwind door panel to perform upward or downward movements. Realize the adjustment of the opening of the air guide, so that the vertical fans on the wind turbine tower power generation system can provide the required power to the external load without overload operation;
  • the de-icing controller controls the operation of the heating element according to the temperature signal collected by the temperature sensor to increase the temperature of the inside of the damper frame and/or the blade bearing part of the vertical fan;
  • the main controller controls the operation of the first traction motor and/or the second traction motor according to the power consumption of the external load and/or the energy storage situation of the DC energy storage component, and drives the upwind door panel and the downwind door panel to perform upward or downward movements, thereby achieving Adjustment of the air guide opening.
  • the power consumption of the external load is obtained through the voltage and current signal on the power consumption side of the load.
  • the wind turbine tower power generation control method controls the opening degree of the damper based on the requirement that the vertical wind turbine in the tower is not overloaded, and uses a delay decrement and progressive method to restore the wind power according to the wind force changes measured by the wind meter.
  • the opening of the air guide to maximize the utilization of wind energy.
  • the wind turbine tower power generation system also controls the opening of the air guide opening based on the power output of the external load and the energy storage status of the DC energy storage component, thereby controlling the air volume entering the vertical fan air inlet.
  • the opening of the air guide is appropriately increased.
  • the wind turbine tower power generation system meets the power consumption of the external load, and the DC energy storage component cannot To store energy, just appropriately reduce the opening of the air guide to meet the power generation capacity of the external load.
  • the main controller can also obtain severe weather information, such as super typhoon warning information, through wireless communication, and close the air guide in advance, so that the wind turbine tower power generation system enters a fully closed state.
  • severe weather information such as super typhoon warning information
  • Embodiment 5 The difference between this embodiment and Embodiment 5 is that the automatic opening and closing function of the external adjustment air outlet of the tower body is added.
  • a wind turbine tower power generation control method using the wind turbine tower power generation system described in the above-mentioned Embodiment 4, including:
  • the main controller controls the operation of the first traction motor and/or the second traction motor according to the overload signal of the vertical fan and the power consumption of the external load, driving the upwind door panel and the downwind door panel to perform upward or downward movements. Realize the adjustment of the opening of the air guide, so that the vertical fans on the wind turbine tower power generation system can provide the required power to the external load without overload operation;
  • the de-icing controller controls the operation of the heating element according to the temperature signal collected by the temperature sensor to increase the temperature of the inside of the damper frame and/or the blade bearing part of the vertical fan;
  • the main controller controls the operation of the first traction motor and/or the second traction motor according to the power consumption of the external load and/or the energy storage situation of the DC energy storage component, and drives the upwind door panel and the downwind door panel to perform upward or downward movements, thereby achieving Adjustment of the opening of the air guide;
  • the main controller obtains external wind strength information according to the wind meter, controls the work of the traction motor, drives the adjusting wind plate to perform an upward or downward action, realizes the adjustment of the opening of the adjusting air outlet, and enables the wind turbine tower power generation system to proceed Ventilate or guide wind.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Wind Motors (AREA)

Abstract

本发明公开了一种全环境适用的风机立塔发电系统和发电控制方法,风机立塔发电系统包括立塔主体和主控制器,立塔主体上设置有第一立柱和连接在第一立柱上且依次层叠的风力发电模组,风力发电模组包括安装平台、风门框和垂直风机,安装平台和风门框之间设置有向上移动和/或向下移动的风门板开关组件,相邻风门框之间设有导风口,风门板开关组件受牵引机构驱动,牵引机构与主控制器电连接,牵引机构驱动风门板开关组件用于关闭/开启导风口,垂直风机与导风口相对设置,主控制器采集垂直风机的过载信号。本发明解决了海岛、沿海风能富集地区的风电场安装的禁益,最大程度上利用了风电绿色资源,提升风电绿色能源效益。

Description

一种全环境适用的风机立塔发电系统和发电控制方法 技术领域
本发明涉及风力发电技术领域,具体涉及一种全环境适用的风机立塔发电系统和发电控制方法。
背景技术
风力发电机为户外工作系统,要面对各种不同的气象条件环境。
传统风力发电机,由于风机风能转换效益低,受风机单机一体结构思路局限,在发电输出功率增加上只能采用单一的增大风叶长度措施,靠风机占空体积增大扫风面积,这个风力发电思路同时会带来系列抗气象环境安全的问题:
风能富集的强风区,是风机使用效益最好的场合,但这种场合会有恶劣天气的影响,例如台风、飓风等。当遇12级以上台风时,传统风机就会发生倾覆损坏,特别是这些强台风区,其几年一度的台风强度会可能达到15-17级的超强台风,这对大部分的风机,都会是毁灭性的灾害,从安全发电方面考虑,风力发电系统的安全指标应该有抗超级台风(15-18级)的可靠保护措施,应对强风区的恶劣风力环境。
寒冷地区的冬季季风是风能富集的季节,但也会带来风机设备的冻害,传统风机体积大,风叶的结冰直接会折断风叶,现有传统户外大体积的风机结构,基本不可能在风机上采用主动防结冰或除冰保护措施,唯一能够保证安全的措施就是停机,并采用风叶直升机外部除冰方法,以保证风叶的冰害安全。
现今户外的传统风机都是大框架单个转轮的一体风机,引雷能力强,直接雷击概率高,而且转轮和支架电气共地,高大的金属框架容易引雷,电气系统很容易遭雷击损坏,一旦损坏,对大风机维护成本很高,对小风机就会失去二次维护利用的价值;而且大框架单个转轮的一体风机运输及现场安装均不方便。
传统风机的大型风电场拥有数以百计的风力涡轮机叶片,而与风力涡轮机叶片的碰撞是风电场导致鸟类死亡的直接原因,风机叶片的旋转高度范围一般在40m-120m,如果鸟类飞行中遇到风力涡轮机叶片而不能及时改变路线,具有很高的撞击风险,这对大型鸟类伤害更大,传统风机的具体应对措施只能是择址和驱鸟措施,但效果有限。
风机噪声是影响周边民居环境的安全隐患难题,传统大风机,机械噪声大,传输距离远,严重影响周围居民的生活。
传统风机完全凭借所处环境风力实现电力的输出,这样的发电系统的电力输出不稳定、不高效,无法同时兼顾风力最大利用率和安全发电。
因此,对于传统风机的现有结构,对这些全工作环境存在的问题,并非视而不见,而是因存在先天的风机结构的思路方向性错误,造成不可解决的技术缺陷,这种确实存在的安全隐患,使得风机需要远离(300米)人居和线网密集场所才能安装使用,而风能富集的海岛、沿海一线,大都为人居集中和线网密集场合,对现有传统风机这种风能利用的高价值场合都 是安全禁用的红线范围内,没有立项利用的可能,造成风能资源的巨大浪费。
发明内容
为解决上述问题,本发明提供的技术方案为:
一种全环境适用的风机立塔发电系统,包括立塔主体和主控制器,所述立塔主体上设置有第一立柱和连接在所述第一立柱上且依次层叠的风力发电模组,所述风力发电模组包括安装平台、连接在所述安装平台外周的风门框和安装在所述安装平台的垂直风机,所述安装平台和所述风门框之间设置有向上移动和/或向下移动的风门板开关组件,所述风门板开关组件位于相邻所述第一立柱的立面上,相邻所述风门框之间设有导风口,所述风门板开关组件受牵引机构驱动,所述牵引机构与所述主控制器电连接,所述垂直风机与所述导风口方向相对设置,所述主控制器采集所述垂直风机的过载信号,所述牵引机构驱动所述风门板开关组件用于关闭/开启所述导风口的开度来控制所述垂直风机的进风口风量。
本发明进一步设置为所述风门板包括上风门板和下风门板,处于同一组的所述风力发电模组上的所述上风门板和所述下风门板在垂直方向上错位设置,所述风力发电模组上的所述上风门板/所述下风门板与相邻的所述风力发电模组上的所述下风门板/所述上风门板处于同一垂直方向上。
本发明进一步设置为所述风门框朝向所述安装平台一侧的上下两端设置有上卡槽和下卡槽,所述导风口开启时所述上风门板设置在所述下卡槽内,所述导风口开启时所述下风门板设置在所述上卡槽内,所述上风门板的宽度和所述下风门板的宽度均大不于所述风门框的宽度,所述风门框之间设置有第一固定棒或第二固定棒,所述第一固定棒与所述第二固定棒在垂直方向上错位设置,所述上风门板和所述下风门板穿置在所述第一固定棒上或所述第二固定棒上。
本发明进一步设置为所述牵引机构包括设置在所述风门框的每个侧面的第一牵引组和第二牵引组,所述第一牵引组包括第一牵引电机、第一牵引绳和第一支撑轮组,所述第一支撑轮组分别设置在所述立塔主体的顶部和底部,所述第一牵引绳连接在所述第一支撑轮组之间,所述第一牵引电机与所述第一牵引绳连接,所述第二牵引组包括第二牵引电机、第二牵引绳和第二支撑轮组,所述第二支撑轮组分别设置在所述立塔主体的顶部和底部,所述第二牵引绳连接在所述第二支撑轮组之间,所述第二牵引电机与所述第二牵引绳连接,相邻的所述风力发电模组上的所述风门板分别连接所述第一牵引绳和所述第二牵引绳,所述第一牵引绳和所述第二牵引绳带动所述上风门板/所述下风门板进行上升或下降。
本发明进一步设置为所述风门框远离所述安装平台一侧的中心设有凸边,所述凸边的两侧设置有泄风斜面,所述泄风斜面靠近上下两侧的所述导风口均过渡有导风斜面,所述导风斜面沿所述凸边斜延至所述导风口。
本发明进一步设置为所述风力发电模组还包括加热除冰组件,所述加热除冰组件包括加热件、温度传感器和除冰控制器组成,所述温度传感器和所述加热件均与所述除冰控制器电连接,所述加热件设置在所述风门框的内侧和/或所述垂直风机的风叶轴承部位。
本发明进一步设置为所述立塔主体的外周设置有与所述第一立柱相对应的第二立柱和/或 第三立柱,所述第二立柱和/或所述第三立柱分别与所述第一立柱固定连接,所述第二立柱和第一立柱之间设有固定风口,所述固定风口上设置有固定风板,所述第三立柱和所述第二立柱之间设有调节风口,所述调节风口上设置有导向棒和活动连接在所述导向棒上的调节风板,所述调节风板受控于牵拉机构,所述牵拉机构包括牵拉电机、牵拉绳和牵拉轮组,所述牵拉轮组分别固定在所述调节风口的顶部和底部,所述牵拉绳连接在所述牵拉轮组之间,所述牵拉电机与所述牵拉绳连接,所述牵拉电机与所述主控制器电连接,所述立塔主体上设置有测风仪,所述测风仪与所述主控制器电连接。
本发明进一步设置为所述立塔主体的外周还设置有钢索固定点,所述第一立柱与至少三个所述钢索固定点之间连接有防鸟钢索,所述第二立柱和/或所述第三立柱与至少三个所述钢索固定点之间直接或间接连接有防鸟钢索。
本发明进一步设置为所述第一立柱的顶端设置有感应消雷型避雷针,所述第二立柱和/或所述第三立柱的顶端设置有感应消雷型避雷针。
本发明进一步设置为所述立塔主体内还设置有直流蓄能组件,所述直流蓄能组件与所述主控制器连接通信,所述直流蓄能组件与所述垂直风机电连接。
一种风机立塔发电控制方法,采用上述的风机立塔发电系统,包括:
所述主控制器根据所述垂直风机的过载信号和外部负载用电情况,控制第一牵引电机和/或第二牵引电机工作,带动所述上风门板和所述下风门板进行上升或下降动作,实现导风口的开度调节,使风机立塔发电系统上的垂直风机不发生过载运行的情况下向外部负载提供的所需电能;
所述除冰控制器根据所述温度传感器采集的温度信号,控制所述加热件工作,使所述风门框的内侧和/或所述垂直风机的风叶轴承部位的温度升高;
主控制器根据外部负载用电情况和/或直流蓄能组件的储能情况,控制第一牵引电机和/或第二牵引电机工作,带动上风门板和下风门板进行上升或下降动作,实现导风口的开度调节。
本发明进一步设置为所述主控制器根据所述测风仪获取外部风力大小信息,控制牵拉电机工作,带动所述调节风板进行上升或下降动作,实现调节风口的开度调节,使风机立塔发电系统进行泄风或导风。
采用本发明提供的技术方案,与现有技术相比,具有如下有益效果:
1.风机立塔发电系统在结构上采用复合层叠的方式,使风力发电模组能够以相同结构平台在垂直空间组合,满足强度要求并降低设计、加工、安装的难度,主控制器采集各个垂直风机的过载信号,当垂直风机因为外部风力过大导致风机过载运行时,主控制器控制牵引机构工作,驱使风门板移动减少导风口的开度,从而减少风对垂直电机的作用力,避免垂直电机过载,反之,当垂直风机因外部风力较小未达到满载运行时,主控制器控制牵引机构工作,驱使风门板移动增大导风口的开度,从而提高垂直电机的发电效率。风机立塔发电系统保证发电机输出系统的过载安全前提下高效电能地输出,具体以最大风力利用为原则,根据其中之一风机过载、负载用电输出需求和抗台要求启动,进行风门板的升降程度从而实现导风口 的开度调节,解决了海岛、沿海风能富集地区的风电场安装的禁益,最大程度上利用了风电绿色资源,实现风电绿色能源效益提升,降低风电的度电成本,提升整个风电市场绿色能源的经济和社会效益。
2.通过在风机立塔发电系统内安装平台上设置固定安装的垂直风机,保证风机机身的稳定安全要求;通过立塔风机功率组合方式,减少单个风叶的承力强度,相对提高风叶的机械强度;通过增设自动风门板,在风机立塔系统遇强风时,通过自动风门的调节对进入风机立塔系统内的风力进行阻隔,进而对内部的垂直风机起到保护作用,同时防止内部垂直风机因电气设备过载而损坏;模块化的独立垂直风机也便于检修和更换,后期维护更加便捷,香蕉于传统大型风机降低了风机的机械噪声,可以在电力线网密布的人居场合安装使用。
3.每组风力发电模组的风门板采用错开设置的上风门板和下风门板的结构,在导风口完全打开时,上、下风门板会收缩在风门框内,最大化地增加风力发电模组之间导风口的进风面积,提高风机立塔发电系统整体的风能利用率;为了保证同一立面上的风门板的正常运行,因此同一立面需要采用两组独立的牵引机构,来实现各层的上、下风门板的上升或下降;上、下风门板采用固定棒进行导向,提高风门板升降可靠性,也保证了风门板本身抗击强风的要求。
4.每组风力发电模组的风门框中部形成左右两侧的泄风斜面,用于风门框正面强风的泄风减压,有效降低强风对风力发电模组的冲击力,泄风斜面与导风口之间过渡衔接有导风斜面,使导风口形成喇叭外大内小的外扩形状,能够把风门框正对的部分阻力风转换成动力风,通过加速增加进入立塔内的风力等级,提高小风情况下的风能利用效益。
5.在风机立塔的外周设置多个钢索固定点,每个钢索固定点分别与相应的立柱之间连接有防鸟钢索,起到防鸟撞碰的告警保护作用;同时进一步加强风机立塔发电系统的重心稳定安全要求;防鸟索安装更换方便,能够根据使用期的维护需要低成本更换,从而保证整个风机立塔使用期的运行安全性,延长风机的安全使用年限。
6.在风力发电模组内设置有加热除冰组件,防止垂直风机的风机转轴结冰停转的事故发生,同时可以主动利用风门板关闭的安装平台封闭空间加热除冰,达到冰雪天气风机正常发电的要求。
7.通过风机立塔系统内部风机独立设置的直流蓄能组件,可以根据风力强度,组合调度一次输出的风机台数,保证立塔输出稳定的电能。
8.通过在各个立柱的顶部设置感应消雷型避雷针,对风机立塔发电系统起到雷雨天气的防雷安全保护。
附图说明
图1为本发明实施例1风机立塔发电系统主视图。
图2为本发明实施例1风力发电模组立体图。
图3为本发明实施例1风门框立体图。
图4为本发明实施例1风机立塔发电系统某一立面示意图。
图5为本发明实施例1风机立塔发电系统某一立面牵引系统示意图。
图6为本发明实施例1牵引机构示意图。
图7为本发明实施例1风机立塔发电系统电气连接方框图。
图8为本发明实施例1加热除冰组件电气连接方框图。
图9为本发明实施例2风机立塔发电系统主视图。
图10为本发明实施例2风机立塔发电系统俯视图。
图11为本发明实施例3风机立塔发电系统主视图。
图12为本发明实施例3风机立塔发电系统俯视图。
图13为本发明实施例3风机立塔发电系统局部立体图。
图14为本发明实施例4风机立塔发电系统立体图。
图15为图14中A部放大图。
图16为本发明实施例4风机立塔发电系统主视图。
图17为本发明实施例4风机立塔发电系统俯视图。
具体实施方式
为进一步了解本发明的内容,结合附图及实施例对本发明作详细描述。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,一体地连接,也可以是可拆卸连接;可以是机械连接或电连接,也可以是两个元件内部的连通;可以是直接相连,也可以通过中间媒介间接相连,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
实施例1
结合附图1至附图8,本实施例技术方案风机立塔发电系统,包括立塔主体100和主控制器200,所述立塔主体100上设置有第一立柱110和连接在所述第一立柱110上且依次层叠的风力发电模组120,所述风力发电模组120包括安装平台121、连接在所述安装平台121外周的风门框122和安装在所述安装平台121的垂直风机123,所述安装平台121和所述风门框122之间设置有向上移动和/或向下移动的风门板开关组件,所述风门板开关组件位于相邻两根所述第一立柱110的立面上,上下相邻所述风门框122之间设有导风口126,所述风门板开关组件受牵引机构130驱动,所述牵引机构130的动力源与所述主控制器200电连接,所述垂直风机123与所述导风口126相对设置,所述主控制器200采集所述垂直风机123的过载信号,所述牵引机构130驱动所述风门板开关组件用于关闭/开启所述导风口126的开度来控制所述垂直风机123的进风口风量。
在本实施例中,所述第一立柱110设置有四根,即立塔主体100具有四个立面;在另外的实施例中,所述第一立柱110的数量也可以为三根以及四根以上,根据第一立柱110数量的不同,立塔主体的立面也会相对发生变化。
在本实施例中,所述主控制器200通过驱动模块来控制所述垂直风机123的启停。
在本实施例中,所述垂直风机123的过载信号可以是采集垂直风机123的电流信号、电压信号、功率信号和温度信号中的至少一个。
在本实施例中,所述安装平台121内垂直风机123的各进风口面位置与所述外周立面进风口面都是以平行设置,不存在重叠布局,提高垂直风机风电转化效率。
在本实施例中,对所述主控制器200的安装位置并不进行限定,根据需要进行安装,因此图中并未示出。
在本实施例中,所述风门板开关组件包括上风门板124和下风门板125,处于同一组的所述风力发电模组120上的所述上风门板124和所述下风门板125在垂直方向上错位设置,所述风力发电模组120上的所述上风门板124/所述下风门板125与相邻的所述风力发电模组120上的所述下风门板125/所述上风门板124处于同一垂直方向上。采用错开设置的上风门板和下风门板的结构,在导风口完全打开时,上、下风门板会收缩在风门框内,最大化地增加风力发电模组之间导风口的进风面积,提高风机立塔发电系统整体的风能利用率。
在另外的实施例中,所述风门板开关组件也可以仅仅设置有向上/下移动的风门板,此类单向移动的风门板也能起到所述导风口开度调节的作用,但是相较于错位设置的上、下风门板导风口的进风面积较小。
在本实施例中,所述风门框122朝向所述安装平台121一侧的上下两端设置有上卡槽127和下卡槽128,所述导风口126开启时所述上风门板124设置在所述下卡槽128内,所述导风口126开启时所述下风门板125设置在所述上卡槽127内,所述上风门板124的宽度和所述下风门板125的宽度均大不于所述风门框122的宽度,所述风门框122之间设置有第一固定棒129或第二固定棒1210,所述第一固定棒129与所述第二固定棒1210在垂直方向上错位设置,同一组的所述风力发电模组120上的所述上风门板124和所述下风门板125分别穿置在所述第一固定棒129上和所述第二固定棒1210上,所述风力发电模组120上的所述上风门板124和相邻的所述风力发电模组120上的所述下风门板125连接在所述第一固定棒129上或所述第二固定棒1210上。其中上卡槽127和下卡槽128用于下、上风门板在导风口126完全打开时的收纳,也为上、下风门板关闭到位时的限位;第一固定棒129和第二固定棒1210用于上、下风门板在升降过程中的导向,提高风门板开关组件升降可靠性,也保证了风门板开关组件本身抗击强风的要求。
在本实施例中,所述牵引机构130包括设置在所述风门框122的每个立面的第一牵引组和第二牵引组,所述第一牵引组包括第一牵引电机131、第一牵引绳132和第一支撑轮组133,所述第一支撑轮组133分别设置在所述立塔主体100的顶部和底部,所述第一牵引绳132连接在所述第一支撑轮组133之间,所述第一牵引电机131与所述第一牵引绳132连接,所述第二牵引组包括第二牵引电机134、第二牵引绳135和第二支撑轮组136,所述第二支撑轮组136分别设置在所述立塔主体100的顶部和底部,所述第二牵引绳135连接在所述第二支撑轮组136之间,所述第二牵引电机134与所述第二牵引绳135连接,相邻的所述风力发电模组120上的所述风门板开关组件分别连接所述第一牵引绳132和所述第二牵引绳135,所述 第一牵引绳132和所述第二牵引绳135带动所述上风门板124/所述下风门板125进行上升或下降。
在本实施例中,第一牵引绳132、第二牵引绳135上均设置有移动块或移动板137,在移动板137随牵引绳移动行程的两端设置有行程开关138,移动板137的可移动距离不小于上风门板124或下风门板125的可移动距离。
结合附图4和附图5,针对上述各组风力发电模组120的风门板开关组件、固定棒及牵引机构排布结构进行说明:设置有6组风力发电模组120,从上至下依次为第一风力发电模组120-1、第二风力发电模组120-2、第三风力发电模组120-3、第四风力发电模组120-4、第五风力发电模组120-5、第六风力发电模组120-6;第一风力发电模组120-1的下风门板125-1和第二风力发电模组120-2的上风门板124-2同一根第一固定棒129上,第三风力发电模组120-3的下风门板125-3和第四风力发电模组120-4的上风门板124-4同一根第一固定棒129上,第五风力发电模组120-5的下风门板125-5和第六风力发电模组120-6的上风门板124-6同一根第一固定棒129上;第二风力发电模组120-2的下风门板125-2和第三风力发电模组120-3的上风门板124-3同一根第二固定棒1210上,第四风力发电模组120-4的下风门板125-4和第五风力发电模组120-5的上风门板124-5同一根第二固定棒1210上;第一固定棒129和第二固定棒1210错位设置;第一风力发电模组120-1的下风门板125-1、第三风力发电模组120-3的下风门板125-3、第五风力发电模组120-5的下风门板125-5、第五风力发电模组120-5的上风门板124-5和第三风力发电模组120-3的下风门板124-3连接在第一牵引绳132上;第二风力发电模组120-2的上风门板124-2、第四风力发电模组120-4的上风门板124-4、第六风力发电模组120-6的上风门板124-6、第四风力发电模组120-4的下风门板125-4和第二风力发电模组120-2的上风门板125-2连接在第二牵引绳135上。从而实现各组风力发电模组上的上风门板、下风门板的配合以及同步升降。
在本实施例中,所述风门框122远离所述安装平台121一侧的中心设有凸边1221,所述凸边1221为风门框122的外表面最凸出的部位,所述凸边1221的两侧设置有泄风斜面1222,所述泄风斜面1222离所述凸边1221越远的位置宽度越宽,所述泄风斜面1222用于风门框122正面强风的泄风减压,有效降低强风对风力发电模组120的冲击力;所述泄风斜面1222靠近上下两侧的所述导风口126均过渡有导风斜面1223,所述导风斜面1223沿所述凸边1221斜延至所述导风口126,使得所述导风口126的截面呈外宽内窄的喇叭形状,能够把风门框122正对的部分阻力风转换成动力风,通过加速增加进入立塔内的风力等级,提高小风情况下的风能利用效益。
在本实施例中,所述风力发电模组120还包括加热除冰组件,所述加热除冰组件包括加热件141、温度传感器142和除冰控制器143组成,所述温度传感器142和所述加热件141均与所述除冰控制器143电连接,所述加热件141设置在所述风门框122的内侧和所述垂直风机123的风叶轴承部位,所述温度传感器142设置在风力发电模组120内部。加热除冰组件防止垂直风机的风机转轴结冰停转的事故发生,同时可以主动利用风门板关闭后安装平台形成封闭空间加热除冰,达到冰雪天气风机正常发电的要求。
在本实施例中,所述第一立柱110的顶端设置有感应消雷型避雷针190,消雷型避雷针190对风机立塔发电系统起到雷雨天气的防雷保护。感应消雷型避雷针190可以参考公开号为CN102354910B的中国专利。
在本实施例中,所述立塔主体100内还设置有直流蓄能组件300,所述直流蓄能组件300与所述主控制器200连接通信,所述直流蓄能组件300与所述垂直风机123电连接。
在另外的实施例中,所述第一牵引电机131和所述第二牵引电机134可通过旋转编码器与所述主控制器200连接,实现风门板开关组件升降的无级可调,提高风机立塔发电系统的导风口126开度的平滑调节,从另一方面也可以提升对风能的转换效率。
在本实施例中,所述立塔主体100的外表面设置有警示灯,用于夜晚警示。
在本实施例中,所述垂直风机123的内容可参考公开号为CN113187666A的中国专利一种风力发电设备和系统中的风力发电设备;若干所述垂直风机根据风机立塔发电系统各个立面均匀受风效益最好和风机占空最小原则设计,所述垂直风机安装在所述安装平台中心点的一侧,以所述安装平台中心点为对称点呈中心对称布置。
在本实施例中,风机立塔发电系统的整体高度较低,在20米以内;以20米的风机立塔发电系统为例,每个风力发电模组高2米,除去底部和顶部4米高度,共有8个平台可以安装垂直风机32台,每个垂直风机的正常风力利用为7级风,一个0.5平方风叶面积发电功率6-10千瓦,风机立塔的输出利用功率为200-300千瓦。
实施例2
再结合附图9、10,本实施例与实施例1不同的是,所述立塔主体的外周还设置有钢索固定点180,所述钢索固定点180相应布置在所述第一立柱110的外侧,具体的是第一立柱110对角连接线上的延伸处,每根所述第一立柱110与其最近三个所述钢索固定点180之间连接有防鸟钢索181,从而在所述立塔本体100的外围构成防鸟钢索网,起到防鸟撞碰的告警保护作用,同时进一步加强风机立塔发电系统的重心稳定安全要求。
在本实施例中,风机立塔发电系统的整体高度中等,在50米以内;以50米的风机立塔发电系统为例,每个风力发电模组高2米,除去底部和顶部4米高度,共有23个平台可以安装垂直风机92台,每个垂直风机的正常风力利用为7级风,一个0.5平方风叶面积发电功率6-10千瓦,风机立塔的输出利用功率为552-920千瓦。
实施例3
再结合附图11至附图13,本实施例与实施例2不同的是,所述立塔主体100的外周还设置有与所述第一立柱110相对应的第二立柱150,所述第二立柱150与所述第一立柱110固定连接,所述第二立柱150和第一立柱110之间设有固定风口151,所述固定风口151上设置有固定风板152,所述固定风板152占据所述固定风口151的一半面积,所述固定风板152靠近所述第二立柱150设置。在强风情况下,通过第一立柱和第二立柱的固定风口快速泄风,进一步提高风机立塔发电系统在强风时候的稳定性能。
在本实施例中,所述第二立柱150和所述第一立柱110之间采用金属横梁固定连接,所述第二立柱150设置在所述第一立柱110对角连接线上的延伸处,所述第二立柱150的高度 低于所述第一立柱110的高度。
在本实施例中,所述第二立柱150的顶端也设置有消雷型避雷针190。
在本实施例中,每根所述第二立柱150与其最近三个所述钢索固定点180之间也连接有防鸟钢索181。
在本实施例中,风机立塔发电系统的整体高度较高,在100米以内;以100米的风机立塔发电系统为例,每个风力发电模组高2米,除去底部和顶部4米高度,共有48个平台可以安装垂直风机192台,每个垂直风机的正常风力利用为7级风,一个0.5平方风叶面积发电功率6-10千瓦,风机立塔的输出利用功率为1152-1920千瓦。
实施例4
再结合附图14至附图17,本实施例与实施例3不同的是,所述立塔主体的外周设置有与所述第一立柱110相对应的第三立柱160,所述第三立柱160与所述第一立柱110或所述第二立柱150固定连接,所述第三立柱160和所述第二立柱150之间设有调节风口161,所述调节风口161上设置有导向棒163和活动连接在所述导向棒163上的调节风板162,所述调节风板162受控于牵拉机构170,所述牵拉机构170包括牵拉电机171、牵拉绳172和牵拉轮组173,所述牵拉轮组173分别固定在所述调节风口161的顶部和底部,所述牵拉绳172连接在所述牵拉轮组173之间,所述牵拉电机171与所述牵拉绳172连接,所述牵拉电机171与所述主控制器200电连接,所述立塔主体100上设置有测风仪174,所述测风仪174与所述主控制器200电连接。
在本实施例中,所述第二立柱150和所述第三立柱160之间设置的是风口大小可调节的调节风口161,且调节风板162是上下一致移动的,因此只需要设置一组牵拉机构就能实现第二立柱150和第三立柱160之间立面上所有调节风板162的移动。在强风情况下,测风仪174测得风力为强风并将风力等级信号发送给主控制器200,主控制器200控制牵拉机构170工作,牵拉电机171驱使调节风板162移动从而打开调节风口161,从而进行快速泄风;反之在弱风情况下,测风仪174测得风力为弱风并将风力等级信号发送给主控制器200,主控制器200控制牵拉机构170工作,牵拉电机171驱使调节风板162移动从而关闭调节风口161,从而向导风口126进行导风,增强进入导风口126的风力。风口大小可调节的调节风口起到强风加强稳定和小风加风增加风力的双重兼顾作用。
在另外的实施例中,也可以设置另外独立的控制器用于牵拉机构170的工作。
在本实施例中,所述第三立柱160采用金属横梁与所述第二立柱150或所述第一立柱110固定连接,所述第三立柱160设置在所述第一立柱110对角连接线上的延伸处,所述第三立柱160的高度低于所述第二立柱150的高度。
在本实施例中,所述第三立柱160的顶端也设置有消雷型避雷针190。
在本实施例中,每根所述第三立柱160与其最近三个所述钢索固定点180之间也连接有防鸟钢索181,与实施例3不同的是,所述第二立柱150与所述钢索固定点180直接连接变为所述第二立柱150与所述第三立柱160之间连接有防鸟钢索,即所述的间接连接。
在本实施例中,风机立塔发电系统的整体高度偏高,在100米以上;以150米的风机立 塔发电系统为例,每个风力发电模组高2米,除去底部和顶部4米高度,共有73个平台可以安装垂直风机222台,每个垂直风机的正常风力利用为7级风,一个0.5平方风叶面积发电功率6-10千瓦,风机立塔的输出利用功率为1332-2220千瓦。
实施例5
一种风机立塔发电控制方法,采用上述实施例1或实施例2或实施例3所述的风机立塔发电系统,包括:
所述主控制器根据所述垂直风机的过载信号和外部负载用电情况,控制第一牵引电机和/或第二牵引电机工作,带动所述上风门板和所述下风门板进行上升或下降动作,实现导风口的开度调节,使风机立塔发电系统上的垂直风机不发生过载运行的情况下向外部负载提供的所需电能;
所述除冰控制器根据所述温度传感器采集的温度信号,控制所述加热件工作,使所述风门框的内侧和/或所述垂直风机的风叶轴承部位的温度升高;
所述主控制器根据外部负载用电情况和/或直流蓄能组件的储能情况,控制第一牵引电机和/或第二牵引电机工作,带动上风门板和下风门板进行上升或下降动作,实现导风口的开度调节。
在本实施例中,通过负载用电侧的电压电流信号来获取外部负载用电情况。
在本实施例中,风机立塔发电控制方法以立塔内垂直风机不过载为要求控制风门的打开程度,并根据测风仪测得的风力变化情况,采用延时递减和递进方式,恢复导风口的最大利用风能的开度。
在本实施例中,风机立塔发电系统还根据外部负载用电输出禁益情况和直流蓄能组件的储能情况,控制导风口的开度,从而控制进入垂直风机进风口的风量。当风机立塔发电系统满足外部负载用电,而直流蓄能组件还可以储能,就适当地提高导风口的开度,当风机立塔发电系统满足外部负载用电,且直流蓄能组件无法再储能,就适当地降低导风口的开度满足外部负载用电的发电量即可。
在另外的实施例中,所述主控制器还可以通过无线通信获取恶劣天气信息,例如超强台风的预警信息,提前关闭导风口,使风机立塔发电系统进入全封闭状态。
实施例6
本实施例与实施例5不同的是,增加了立塔主体外部调节风口的自动开闭功能。
一种风机立塔发电控制方法,采用上述实施例4所述的风机立塔发电系统,包括:
所述主控制器根据所述垂直风机的过载信号和外部负载用电情况,控制第一牵引电机和/或第二牵引电机工作,带动所述上风门板和所述下风门板进行上升或下降动作,实现导风口的开度调节,使风机立塔发电系统上的垂直风机不发生过载运行的情况下向外部负载提供的所需电能;
所述除冰控制器根据所述温度传感器采集的温度信号,控制所述加热件工作,使所述风门框的内侧和/或所述垂直风机的风叶轴承部位的温度升高;
所述主控制器根据外部负载用电情况和/或直流蓄能组件的储能情况,控制第一牵引电机 和/或第二牵引电机工作,带动上风门板和下风门板进行上升或下降动作,实现导风口的开度调节;
所述主控制器根据所述测风仪获取外部风力大小信息,控制牵拉电机工作,带动所述调节风板进行上升或下降动作,实现调节风口的开度调节,使风机立塔发电系统进行泄风或导风。
以上示意性的对本发明及其实施方式进行了描述,该描述没有限制性,附图中所示的也只是本发明的实施方式之一,实际的结构并不局限于此。所以,如果本领域的普通技术人员受其启示,在不脱离本发明创造宗旨的情况下,不经创造性的设计出与该技术方案相似的结构方式及实施例,均应属于本发明的保护范围。

Claims (12)

  1. 一种全环境适用的风机立塔发电系统,其特征在于,包括立塔主体和主控制器,所述立塔主体上设置有第一立柱和连接在所述第一立柱上且依次层叠的风力发电模组,所述风力发电模组包括安装平台、连接在所述安装平台外周的风门框和安装在所述安装平台的垂直风机,所述安装平台和所述风门框之间设置有向上移动和/或向下移动的风门板开关组件,所述风门板开关组件位于相邻所述第一立柱的立面上,相邻所述风门框之间设有导风口,所述风门板开关组件受牵引机构驱动,所述牵引机构与所述主控制器电连接,所述垂直风机与所述导风口方向相对设置,所述主控制器采集所述垂直风机的过载信号,所述牵引机构驱动所述风门板开关组件用于关闭/开启所述导风口的开度来控制所述垂直风机的进风口风量。
  2. 根据权利要求1所述的一种全环境适用的风机立塔发电系统,其特征在于,所述风门板开关组件包括上风门板和下风门板,处于同一组的所述风力发电模组上的所述上风门板和所述下风门板在垂直方向上错位设置,所述风力发电模组上的所述上风门板/所述下风门板与相邻的所述风力发电模组上的所述下风门板/所述上风门板处于同一垂直方向上。
  3. 根据权利要求2所述的一种全环境适用的风机立塔发电系统,其特征在于,所述风门框朝向所述安装平台一侧的上下两端设置有上卡槽和下卡槽,所述导风口开启时所述上风门板设置在所述下卡槽内,所述导风口开启时所述下风门板设置在所述上卡槽内,所述上风门板的宽度和所述下风门板的宽度均大不于所述风门框的宽度,所述风门框之间设置有第一固定棒或第二固定棒,所述第一固定棒与所述第二固定棒在垂直方向上错位设置,所述上风门板和所述下风门板穿置在所述第一固定棒上或所述第二固定棒上。
  4. 根据权利要求2所述的一种全环境适用的风机立塔发电系统,其特征在于,所述牵引机构包括设置在所述风门框的每个侧面的第一牵引组和第二牵引组,所述第一牵引组包括第一牵引电机、第一牵引绳和第一支撑轮组,所述第一支撑轮组分别设置在所述立塔主体的顶部和底部,所述第一牵引绳连接在所述第一支撑轮组之间,所述第一牵引电机与所述第一牵引绳连接,所述第二牵引组包括第二牵引电机、第二牵引绳和第二支撑轮组,所述第二支撑轮组分别设置在所述立塔主体的顶部和底部,所述第二牵引绳连接在所述第二支撑轮组之间,所述第二牵引电机与所述第二牵引绳连接,相邻的所述风力发电模组上的所述风门板分别连接所述第一牵引绳和所述第二牵引绳,所述第一牵引绳和所述第二牵引绳带动所述上风门板/所述下风门板进行上升或下降。
  5. 根据权利要求1所述的一种全环境适用的风机立塔发电系统,其特征在于,所述风门框远离所述安装平台一侧的中心设有凸边,所述凸边的两侧设置有泄风斜面,所述泄风斜面靠近上下两侧的所述导风口均过渡有导风斜面,所述导风斜面沿所述凸边斜延至所述导风口。
  6. 根据权利要求1所述的一种全环境适用的风机立塔发电系统,其特征在于,所述风力发电模组还包括加热除冰组件,所述加热除冰组件包括加热件、温度传感器和除冰控制器组成,所述温度传感器和所述加热件均与所述除冰控制器电连接,所述加热件设置在所述风门框的内侧和/或所述垂直风机的风叶轴承部位。
  7. 根据权利要求1所述的一种全环境适用的风机立塔发电系统,其特征在于,所述立塔主体的外周设置有与所述第一立柱相对应的第二立柱和/或第三立柱,所述第二立柱和/或所 述第三立柱分别与所述第一立柱固定连接,所述第二立柱和第一立柱之间设有固定风口,所述固定风口上设置有固定风板,所述第三立柱和所述第二立柱之间设有调节风口,所述调节风口上设置有导向棒和活动连接在所述导向棒上的调节风板,所述调节风板受控于牵拉机构,所述牵拉机构包括牵拉电机、牵拉绳和牵拉轮组,所述牵拉轮组分别固定在所述调节风口的顶部和底部,所述牵拉绳连接在所述牵拉轮组之间,所述牵拉电机与所述牵拉绳连接,所述牵拉电机与所述主控制器电连接,所述立塔主体上设置有测风仪,所述测风仪与所述主控制器电连接。
  8. 根据权利要求7所述的一种全环境适用的风机立塔发电系统,其特征在于,所述立塔主体的外周还设置有钢索固定点,所述第一立柱与至少三个所述钢索固定点之间连接有防鸟钢索,所述第二立柱和/或所述第三立柱与至少三个所述钢索固定点之间直接或间接连接有防鸟钢索。
  9. 根据权利要求7所述的一种全环境适用的风机立塔发电系统,其特征在于,所述第一立柱的顶端设置有感应消雷型避雷针,所述第二立柱和/或所述第三立柱的顶端设置有感应消雷型避雷针。
  10. 根据权利要求1所述的一种全环境适用的风机立塔发电系统,其特征在于,所述立塔主体内还设置有直流蓄能组件,所述直流蓄能组件与所述主控制器连接通信,所述直流蓄能组件与所述垂直风机电连接。
  11. 一种风机立塔发电控制方法,其特征在于,采用权利要求1至10中任意一项所述的风机立塔发电系统,包括:
    主控制器根据垂直风机的过载信号和外部负载用电情况,控制第一牵引电机和/或第二牵引电机工作,带动上风门板和下风门板进行上升或下降动作,实现导风口的开度调节,使风机立塔发电系统上的垂直风机不发生过载运行的情况下向外部负载提供的所需电能;
    除冰控制器根据温度传感器采集的温度信号,控制加热件工作,使风门框的内侧和/或垂直风机的风叶轴承部位的温度升高;
    主控制器根据外部负载用电情况和/或直流蓄能组件的储能情况,控制第一牵引电机和/或第二牵引电机工作,带动上风门板和下风门板进行上升或下降动作,实现导风口的开度调节。
  12. 根据权利要求11所述的一种风机立塔发电控制方法,其特征在于,还包括:
    主控制器根据测风仪获取外部风力大小信息,控制牵拉电机工作,带动调节风板进行上升或下降动作,实现调节风口的开度调节,使风机立塔发电系统进行泄风或导风。
PCT/CN2022/122515 2022-08-26 2022-09-29 一种全环境适用的风机立塔发电系统和发电控制方法 WO2024040683A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211035616.3 2022-08-26
CN202211035616.3A CN115342028A (zh) 2022-08-26 2022-08-26 一种全环境适用的风机立塔发电系统和发电控制方法

Publications (1)

Publication Number Publication Date
WO2024040683A1 true WO2024040683A1 (zh) 2024-02-29

Family

ID=83953571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/122515 WO2024040683A1 (zh) 2022-08-26 2022-09-29 一种全环境适用的风机立塔发电系统和发电控制方法

Country Status (2)

Country Link
CN (1) CN115342028A (zh)
WO (1) WO2024040683A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024172689A1 (ru) * 2023-02-14 2024-08-22 Сергей Николаевич БЕЛОЗЕРОВ Ветротурбинная установка

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201428554Y (zh) * 2009-05-19 2010-03-24 四川腾中重工机械有限公司 立式风能发电机用集风导向系统
CN102588225A (zh) * 2012-03-12 2012-07-18 山东斯巴特电力驱动技术有限公司 一种圆柱形框架结构无轴风力发电塔
CN102691627A (zh) * 2012-05-21 2012-09-26 李树广 多层钢筋混凝土框架与对接组合风叶立式风力发电系统
WO2013128968A1 (ja) * 2012-02-29 2013-09-06 三菱重工業株式会社 風力発電装置の制御装置、風力発電装置、ウインドファーム、及び風力発電装置の制御方法
CN111520281A (zh) * 2020-03-23 2020-08-11 北京恒聚化工集团有限责任公司 用于垂直轴风力发电装置的变桨风门机构
CN113565675A (zh) * 2021-08-20 2021-10-29 杭州百承钢构科技有限公司 一种风机立塔系统、调节方法和水制氢一体系统
CN114294169A (zh) * 2022-01-27 2022-04-08 桐庐恒新金属科技有限公司 一种屋顶全环境适用风机装置和系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101660497B (zh) * 2008-12-12 2012-09-05 中金富华能源科技有限公司 多层多柱组合式立轴风力发电系统
DE102011014476B4 (de) * 2011-01-14 2016-03-10 Thomas R. Class Windturbine
CN103511186B (zh) * 2013-09-11 2016-03-23 李树广 装有对偶风叶及多层钢筋混凝土框架的立式风力发电系统
JP2017096239A (ja) * 2015-11-27 2017-06-01 株式会社ケイセブン 縦型風車
CN113187666A (zh) * 2021-05-28 2021-07-30 桐庐恒新金属科技有限公司 一种风力发电设备和系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201428554Y (zh) * 2009-05-19 2010-03-24 四川腾中重工机械有限公司 立式风能发电机用集风导向系统
WO2013128968A1 (ja) * 2012-02-29 2013-09-06 三菱重工業株式会社 風力発電装置の制御装置、風力発電装置、ウインドファーム、及び風力発電装置の制御方法
CN102588225A (zh) * 2012-03-12 2012-07-18 山东斯巴特电力驱动技术有限公司 一种圆柱形框架结构无轴风力发电塔
CN102691627A (zh) * 2012-05-21 2012-09-26 李树广 多层钢筋混凝土框架与对接组合风叶立式风力发电系统
CN111520281A (zh) * 2020-03-23 2020-08-11 北京恒聚化工集团有限责任公司 用于垂直轴风力发电装置的变桨风门机构
CN113565675A (zh) * 2021-08-20 2021-10-29 杭州百承钢构科技有限公司 一种风机立塔系统、调节方法和水制氢一体系统
CN114294169A (zh) * 2022-01-27 2022-04-08 桐庐恒新金属科技有限公司 一种屋顶全环境适用风机装置和系统

Also Published As

Publication number Publication date
CN115342028A (zh) 2022-11-15

Similar Documents

Publication Publication Date Title
US8269362B2 (en) Constant direction four quadrant lift type vertical shaft wind power generator
JP5544356B2 (ja) ウインドダイバータ
WO2012028042A1 (zh) 集风立式风力发电系统
WO2024040683A1 (zh) 一种全环境适用的风机立塔发电系统和发电控制方法
CN207039532U (zh) 一种屋顶联动跟踪光伏支架及光伏发电系统
CN101368542A (zh) 垂直活动叶片风能太阳能发电机
CN101520024A (zh) 风筒式风力发电装置
US9581135B2 (en) Cable-suspended wind energy generator
CN202348583U (zh) 多绕组变极变速风叶立式风力发电系统
CN201574891U (zh) 多级叶轮风力发电机
CN201281003Y (zh) 活叶调速型风力发电机组
CN114251221A (zh) 一种用于风力发电的自动调节导风系统及风轮
CN103485979A (zh) 综合利用自然能源的能源利用系统
CN220081587U (zh) 一种可抗强风的垂直轴风力发电机
CN102410145B (zh) 多绕组变极变速风叶立式风力发电系统
CN103511187A (zh) 一种聚风型风力发电装置
CN111245347A (zh) 一种提高防风能力的光伏发电设备
CN203770026U (zh) 一种聚风型风力发电装置
Ragheb Wind turbines in the urban environment
CN221347126U (zh) 一种风力发电机及屋面风力发电装置
CN212990563U (zh) 可抗击台风的交通指示路牌
CN214887464U (zh) 用于风力发电机的尾舵及一种水平轴风力发电机
CN117605614B (zh) 一种风力发电机、发电装置及风光发电墙体
CN220935057U (zh) 一种分布式屋顶光伏组件
CN218479881U (zh) 一种屋顶全环境适用风机装置、系统、直流用电系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956225

Country of ref document: EP

Kind code of ref document: A1