WO2024040584A1 - 接入控制方法、装置、计算机设备和存储介质 - Google Patents

接入控制方法、装置、计算机设备和存储介质 Download PDF

Info

Publication number
WO2024040584A1
WO2024040584A1 PCT/CN2022/115184 CN2022115184W WO2024040584A1 WO 2024040584 A1 WO2024040584 A1 WO 2024040584A1 CN 2022115184 W CN2022115184 W CN 2022115184W WO 2024040584 A1 WO2024040584 A1 WO 2024040584A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
voltage
battery pack
target
voltage value
Prior art date
Application number
PCT/CN2022/115184
Other languages
English (en)
French (fr)
Inventor
卢艳华
余东旭
徐祥祥
梁李柳元
梁鹏飞
Original Assignee
宁德时代未来能源(上海)研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代未来能源(上海)研究院有限公司 filed Critical 宁德时代未来能源(上海)研究院有限公司
Priority to PCT/CN2022/115184 priority Critical patent/WO2024040584A1/zh
Publication of WO2024040584A1 publication Critical patent/WO2024040584A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present application relates to the field of electric power technology, and in particular to an access control method, device, computer equipment and storage medium.
  • High-voltage direct-mounted energy storage systems based on the application of modular multi-level cascade technology are increasingly widely used in power grids.
  • the high-voltage direct-mounted energy storage system is a type of energy storage system that uses modular multi-level cascade technology to distribute and integrate energy storage units into each energy storage module to realize a high-voltage direct-mounted energy storage system. It can realize AC and DC at the same time. Power conversion and energy storage have the advantages of high modularity, good harmonic characteristics, and low equivalent switching frequency.
  • the high-voltage direct-mounted energy storage system includes multiple energy storage modules, and each energy storage module includes a power unit and an energy storage unit.
  • the process of connecting the battery pack in the high-voltage direct-mounted energy storage system is: after AC startup or DC startup, when the voltage of the power unit in each energy storage module reaches the rated value, and the operation and maintenance personnel manually observe the energy storage system After there are no abnormalities, the operation and maintenance personnel manually issue an access command to connect the battery pack in the energy storage unit to the high-voltage direct-mounted energy storage system.
  • this application provides an access control method.
  • the methods include:
  • determining the charging voltage based on the first voltage of each battery pack and the rated voltage value of the power unit in the energy storage module includes:
  • the charging voltage is determined based on the target voltage value and the rated voltage value.
  • determining the target voltage value based on the first voltage of each battery pack includes:
  • the average or minimum value of the first voltage of each battery pack is determined as the target voltage value.
  • determining the charging voltage according to the target voltage value and the rated voltage value includes:
  • the rated voltage value is used as the charging voltage; the first preset threshold value is determined based on the rated voltage value.
  • the method further includes:
  • the target voltage value is compared with the second preset threshold to obtain a comparison result, wherein the second preset threshold is determined according to the rated voltage value of the power unit. , the second preset threshold is smaller than the first preset threshold;
  • the charging voltage is determined based on the comparison result.
  • determining the charging voltage according to the comparison result includes:
  • the target voltage value is greater than the second preset threshold, then use the target voltage value as the charging voltage;
  • the maximum value is used as the charging voltage; the maximum value is the maximum value among the first voltages of each battery pack.
  • the method further includes:
  • the target energy storage module is determined from each of the energy storage modules according to the cut-off number.
  • controlling the battery pack of the target energy storage module in the energy storage system to access the energy storage system according to the charging voltage includes:
  • the battery pack in the target energy storage module is controlled to be connected to the energy storage system.
  • controlling the battery pack in the target energy storage module to access the energy storage system based on the difference includes:
  • an access instruction is sent to the control system; the access instruction is used to instruct the battery pack in the target energy storage module to be connected to the energy storage system.
  • determining the number of energy storage modules to remove based on the bus voltage and the charging voltage includes:
  • the number of energy storage modules to be removed is determined based on the bus voltage and the rated voltage value.
  • determining the number of energy storage modules to remove based on the bus voltage and the charging voltage includes:
  • the number of cutouts is determined based on the difference between the total number of energy storage modules in the energy storage system and the ratio.
  • this application also provides an access control device.
  • the device includes:
  • An acquisition module used to acquire the first voltage of the battery pack in each energy storage module in the energy storage system
  • a first determination module configured to determine the charging voltage of each power unit based on the first voltage of each battery pack and the rated voltage value of the power unit in each energy storage module;
  • the access module is used to control the battery pack of the target energy storage module in the energy storage system to access the energy storage system according to the charging voltage.
  • this application also provides a computer device.
  • the computer device includes a memory and a processor.
  • the memory stores a computer program.
  • the processor executes the computer program, the steps of any of the above methods are implemented.
  • this application also provides a computer-readable storage medium.
  • the computer-readable storage medium has a computer program stored thereon, and when the computer program is executed by a processor, the steps of any of the above methods are implemented.
  • this application also provides a computer program product.
  • the computer program product includes a computer program that implements the steps of any of the above methods when executed by a processor.
  • the above access control method, device, computer equipment and storage medium obtain the first voltage of the battery pack in each energy storage module in the energy storage system, and use the first voltage of each battery pack and the power in each energy storage module to The rated voltage value of the unit determines the charging voltage of each power unit, and then controls the battery pack of the target energy storage module in the energy storage system to access the energy storage system according to the charging voltage.
  • this application can determine the charging voltage of each power unit based on the first voltage of each battery group and the rated voltage value of the power unit in each energy storage module, and the first voltage of the battery group is equivalent to the actual voltage of each battery group, Therefore, the charging voltage of each power unit comprehensively considers the actual voltage of each battery pack and the rated voltage value of the power unit in each energy storage module, and then controls the battery pack access of the target energy storage module in the energy storage system according to the charging voltage.
  • the actual voltage of each battery pack matches the charging voltage of the power unit in each energy storage module. Therefore, this application avoids the current problem of connecting the battery pack due to the actual voltage of the battery pack and the rated power unit. The voltage values do not match, causing impact to the battery pack and damaging the battery pack during the process of connecting the battery pack, thus avoiding damage to the battery pack during the process of connecting the battery pack.
  • Figure 1 is an application environment diagram of the access control method in the embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of the energy storage module in the embodiment of the present application.
  • Figure 3 is a schematic flow chart of the access control method in the embodiment of the present application.
  • Figure 4 is a schematic flowchart of determining charging voltage in an embodiment of the present application.
  • Figure 5 is a schematic flowchart of determining charging voltage in an embodiment of the present application.
  • Figure 6 is a schematic flowchart of another method of determining charging voltage in an embodiment of the present application.
  • Figure 7 is a schematic flowchart of determining a target energy storage module in an embodiment of the present application.
  • Figure 8 is a schematic flow chart of accessing a battery pack in an embodiment of the present application.
  • Figure 9 is a schematic flowchart of determining the number of resections in an embodiment of the present application.
  • Figure 10 is a schematic diagram of an AC high-voltage direct-mounted energy storage system
  • FIG. 11 shows an AC/DC hybrid high-voltage direct-mounted energy storage system
  • Figure 12 is a schematic diagram of the overall flow of the access control method in this application.
  • Figure 13 is a structural block diagram of the access control device in the embodiment of the present application.
  • Figure 14 is an internal structure diagram of a computer device in an embodiment of the present application.
  • FIG 1 is an application environment diagram of the access control method in the embodiment of the present application.
  • the access control method provided by the embodiment of the present application can be applied to the valve control system shown in Figure 1.
  • Figure 1 shows the system architecture diagram of a high-voltage direct-mounted energy storage system.
  • the high-voltage direct-mounted energy storage system is hereinafter referred to as the energy storage system.
  • the energy storage system can be configured between the high-voltage DC transmission line, that is, the positive DC bus and the negative DC bus.
  • the energy storage system includes an isolation knife gate, a starting resistor, a starting resistor bypass switch, a reactor 1, a reactor 2, at least one energy storage module SM, a valve control system and a control system.
  • n is an integer greater than or equal to 1.
  • the total number n of energy storage modules can be configured according to the voltage level of the power transmission system.
  • SM n represents the nth energy storage module.
  • FIG. 2 is a schematic structural diagram of the energy storage module in the embodiment of the present application.
  • the energy storage module in Figure 1 such as SM1
  • the energy storage module in Figure 1 includes a power unit 201 and an energy storage unit 202.
  • the power unit is a half-bridge structure as an example.
  • the power unit may also be a full-bridge or full-bridge-like structure, which is not limited in this embodiment.
  • the power unit 201 includes a power unit controller 203, a bypass switch 204, a fully controlled switch 205, a fully controlled switch 206, a capacitor 207, a voltage equalizing resistor 208, a contactor 209, a contactor 210, a battery control system 211, and a precharger. Circuits and Batteries215.
  • the precharge circuit includes S1 switch 212, S2 switch 213 and precharge resistor 214.
  • the isolation switch is used to control whether the energy storage system is connected to the transmission line; the starting resistor is used to reduce the inrush current when the energy storage system is connected to the transmission line; the starting resistor bypass switch is used to stabilize the energy storage system. After being connected to the transmission line, the resistor bypass will be activated to increase the charging current; Reactor 1 and Reactor 2 are used to suppress harmonics and short-circuit currents.
  • control system realizes the control and protection of the energy storage system.
  • the control system is communicatively connected with the valve control system, the valve control system is communicatively connected with the power unit controller, and the power unit controller is communicatively connected with the battery control system.
  • the converter realizes the exchange of active power and reactive power with the AC grid.
  • the power unit controller 203 is used to control and protect various devices in the power unit 201.
  • the power unit controller 203 controls the bypass switch 204 to open, thereby bypassing the power unit 201 from the energy storage system.
  • the full control switch 205 and the full control switch 206 are used to realize the blocking, input and removal of the power unit 201. When the full control switch 205 and the full control switch 206 are both disconnected, the power unit 201 is blocked; when the full control switch 205 is turned off, the power unit 201 is blocked.
  • Capacitor 207 supports and stabilizes the voltage of the power unit 201 .
  • the voltage equalizing resistor 208 is used to equalize the voltage of the capacitor 207 in the power unit 201 .
  • the contactor 209 and the contactor 210 are used to isolate the energy storage unit 202 from the energy storage system when the energy storage unit 202 fails.
  • the battery control system is used to control and protect each device in the energy storage unit 202, and to balance control the battery pack 215 in the energy storage unit 202.
  • the precharge circuit is used to access the battery pack 215 in the energy storage unit 202 and control the buffering of the battery pack 215 at the time of access.
  • the battery pack 215 provides energy support for the energy storage system.
  • the current access method of the battery pack in the energy storage system is: when the isolation knife gate is closed, the transmission line operates, the power unit in each energy storage module is blocked, and then the power unit in each energy storage module is blocked.
  • the capacitor voltage of the power unit reaches the rated voltage value, for example, the capacitor 207 in SM1 reaches the rated voltage value.
  • the operation and maintenance personnel of the energy storage system manually issue an access command, thereby closing the switch in the precharge circuit to connect the battery pack in the energy storage unit to the energy storage system.
  • the S1 switch 213 in SM1 is closed, the battery pack 215 in the energy storage unit 202 is connected to the energy storage system.
  • the actual voltage of the battery pack does not match the rated voltage value of the power unit.
  • the actual voltage of the battery pack is smaller than the rated voltage value of the power unit. If the battery pack is still connected under this condition, a voltage difference will occur between the battery pack and the power unit, which will easily cause impact to the battery pack and damage the battery pack during the process of connecting the battery pack.
  • FIG 3 is a schematic flowchart of an access control method in an embodiment of the present application. This method can be applied to the valve control system shown in Figure 1. In one embodiment, as shown in Figure 3, it includes the following steps:
  • the valve control system obtains the first voltage of the battery pack in each energy storage module in the energy storage system.
  • the valve control system includes a central processing unit (Central Processing Unit, CPU) and may also include a digital signal processor ( Digital Signal Processing (DSP), field-programmable gate array (Field-Programmable GateArray, FPGA) or other programmable logic devices.
  • CPU Central Processing Unit
  • DSP Digital Signal Processing
  • FPGA Field-Programmable GateArray
  • the first voltage is a voltage determined based on the state of charge (SOC) of each battery pack, which can be understood as the actual voltage of each battery pack before it is connected to the energy storage system. Assuming that the energy storage system includes 10 energy storage modules, the valve control system will obtain the first voltage of the 10 battery groups in these 10 energy storage modules.
  • SOC state of charge
  • one possible implementation method is that the battery control system 211 obtains the first voltage of the battery pack 215 and sends the first voltage to the power unit controller 203.
  • the power unit controller 203 obtains the first voltage.
  • the first voltage is forwarded to the valve control system, and then the valve control system obtains the first voltage of the battery pack 215 in the energy storage module SM1.
  • the valve control system can also obtain the first voltage of the battery pack in other energy storage modules, which will not be described again here.
  • valve control system After the valve control system obtains the first voltage of the battery pack in each energy storage module in the energy storage system, it caches the first voltage of each battery pack. After the cache is successful, the valve control system can return a Acknowledging the signal indicates that the first voltage of the battery pack has been successfully stored.
  • S302 Determine the charging voltage of each power unit based on the first voltage of each battery pack and the rated voltage value of the power unit in each energy storage module.
  • the rated voltage values of the power units in each energy storage module can be the same and stored in the valve control system. It should be noted that the charging voltage of each power unit is the charging target value of the capacitor in each energy storage unit.
  • the rated voltage value of the power unit in each energy storage module can also be regarded as the rated voltage value of the capacitor in each energy storage unit, for example, the rated voltage value of the capacitor 207 in FIG. 2 .
  • the rated voltage value of each power unit is equal to the rated voltage value of the capacitor of each power unit, and the charging voltage of each power unit is the voltage value that the capacitor in each energy storage unit is expected to reach.
  • the valve control system determines the charging voltage of each power unit based on the first voltage of each battery group and the rated voltage value of the power unit in each energy storage module. For example, the valve control system can compare the first voltage of each battery group with the rated voltage value of each power unit. If the difference between the first voltage of each battery group and the rated voltage value of each power unit is greater than a preset difference threshold, then the first voltage of each battery pack is used as the charging voltage of each power unit; if the difference between the first voltage of each battery pack and the rated voltage value of each power unit is not greater than the preset difference threshold, then the The rated voltage value of each power unit is used as the charging voltage of each power unit, which is not limited in the embodiments of the present application.
  • S303 Control the battery pack of the target energy storage module in the energy storage system to access the energy storage system according to the charging voltage.
  • the target energy storage module is at least one module in each energy storage module SM n .
  • the target energy storage module can be specified by the operation and maintenance personnel through the control system, or it can be randomly determined by the valve control system from each energy storage module SM n , or it can also be determined by the valve control system based on the bus voltage and charging voltage. In this embodiment No restrictions.
  • the valve control system controls the battery pack of the target energy storage module in the energy storage system to access the energy storage system according to the charging voltage.
  • the valve control system will only connect the battery packs in SM1 and SM2 to the energy storage system according to the charging voltage.
  • One possible way to achieve this is to connect the battery packs in SM1 and SM2 to the energy storage system when the capacitor voltage of the power units in SM1 and SM2 is equal to the charging voltage.
  • the access control method provided by this application obtains the first voltage of the battery pack in each energy storage module in the energy storage system, and determines based on the first voltage of each battery pack and the rated voltage value of the power unit in each energy storage module.
  • the charging voltage of each power unit is then controlled to connect the battery pack of the target energy storage module in the energy storage system to the energy storage system according to the charging voltage.
  • this application can determine the charging voltage of each power unit based on the first voltage of each battery group and the rated voltage value of the power unit in each energy storage module, and the first voltage of the battery group is equivalent to the actual voltage of each battery group, Therefore, the charging voltage of each power unit comprehensively considers the actual voltage of each battery pack and the rated voltage value of the power unit in each energy storage module, and then controls the battery pack access of the target energy storage module in the energy storage system according to the charging voltage.
  • the actual voltage of each battery pack matches the charging voltage of the power unit in each energy storage module. Therefore, this application avoids the current problem of connecting the battery pack due to the actual voltage of the battery pack and the rated power unit. The voltage values do not match, causing impact to the battery pack and damaging the battery pack during the process of connecting the battery pack, thus avoiding damage to the battery pack during the process of connecting the battery pack.
  • FIG. 4 is a schematic flowchart of determining a charging voltage in an embodiment of the present application. Referring to FIG. 4 , this embodiment relates to an optional implementation of how to determine a charging voltage. Based on the above embodiment, the above-mentioned S302 determines the charging voltage of each power unit according to the first voltage of each battery pack and the rated voltage value of the power unit in each energy storage module, including the following steps:
  • S401 Determine the target voltage value according to the first voltage of each battery pack.
  • the valve control system determines the target voltage value based on the first voltage of each battery group, for example, the median of the first voltages of each battery group is used as the target voltage value, which is not limited in this embodiment.
  • the target voltage value is a reference voltage value determined by the valve control system based on the first voltage of each battery pack. That is to say, the target voltage value is a reference determined based on the actual voltage of each battery pack before it is connected to the energy storage system. voltage value, and then the valve control system can determine the charging voltage based on the target voltage value and the rated voltage value of the power unit.
  • S402 Determine the charging voltage according to the target voltage value and the rated voltage value.
  • the valve control system determines the charging voltage based on the target voltage value and the rated voltage value of the power unit in each energy storage module. For example, the valve control system compares the target voltage value with the rated voltage value of the power unit in each energy storage module. If the difference between the target voltage value and the rated voltage value of each power unit is greater than the preset difference threshold, the target voltage value is As the charging voltage of each power unit. In other words, if the target voltage value is not much different from the rated voltage value, the valve control system directly uses the rated voltage value of each power unit as the charging voltage; if the target voltage value is very different from the rated voltage value, the valve control system uses the target voltage value as the charging voltage. value as the charging voltage. Therefore, when the battery pack of the target energy storage module in the energy storage system is connected to the energy storage system, the charging voltage matches the actual voltage of each battery pack.
  • This embodiment determines the target voltage value based on the first voltage of each battery pack, and then determines the charging voltage based on the target voltage value and the rated voltage value. Since the target voltage value is first determined based on the first voltage of each battery pack, it only needs to be based on the target voltage value. Voltage value and rated voltage value can determine the charging voltage that matches the actual voltage of the battery pack, so that the valve control system can control the battery pack of the target energy storage module in the energy storage system to access the energy storage system according to the charging voltage, so , the process of connecting the battery pack to the energy storage system not only improves the safety of the battery pack connection process, but also improves the access efficiency of the connection process.
  • the above-mentioned S401 determines the target voltage value based on the first voltage of each battery pack, which can be implemented in the following manner:
  • the average or minimum value of the first voltage of each battery pack is determined as the target voltage value.
  • the valve control system determines the average or minimum value of the first voltage of each battery pack as the target voltage value. For example, in each control cycle, the valve control system sorts the first voltages of the battery packs corresponding to the energy storage modules SM1 to SMn to obtain the minimum and maximum values, and uses the minimum value of the first voltage of each battery pack as The target voltage value; alternatively, the valve control system determines the average value of the first voltage of the battery group corresponding to each energy storage module SM1 ⁇ SMn, rounds the average value of the first voltage of each battery group, and calculates the rounded value. The average value of the first voltage of each battery group is used as the target voltage value. Of course, the valve control system can also directly use the average value of the first voltage of the battery group corresponding to each energy storage module SM1 to SMn as the target voltage value.
  • This embodiment determines the average or minimum value of the first voltage of each battery pack as the target voltage value. Therefore, when determining the charging voltage based on the target voltage value and the rated voltage value, the actual voltage of the battery pack in each energy storage module is considered. , thereby controlling the battery pack of the target energy storage module in the energy storage system according to the charging voltage. When the battery pack is connected to the energy storage system, the actual voltage of each battery pack matches the charging voltage of the power unit in each energy storage module, avoiding the need for connection. The battery pack will be damaged during the insertion process, thereby improving the service life and safety of the battery pack.
  • the above-mentioned S402 determines the charging voltage according to the target voltage value and the rated voltage value, which can be achieved in the following ways:
  • the rated voltage value is used as the charging voltage; the first preset threshold value is determined based on the rated voltage value.
  • the first preset threshold is determined based on the rated voltage value, for example, the first coefficient multiplied by the rated voltage value, and the first coefficient is a number greater than 0 and less than 1. Assuming that the rated voltage is 200V and the first coefficient is 0.9, the first preset threshold is 180V.
  • the valve control system uses the rated voltage value as the charging voltage.
  • the target voltage value is the average value of the first voltages of each battery group. If the average value of the first voltages of each battery group is greater than the first preset threshold, the valve control system uses the rated voltage value as the charging voltage.
  • the rated voltage value is used as the charging voltage. Since the first preset threshold is determined based on the rated voltage value, and when the target voltage value is greater than the rated voltage value within a certain range, the rated voltage value of the power unit is used as the charging voltage. Therefore, during the process of connecting the battery pack, due to the battery pack The first voltage matches the charging voltage of the power unit, thereby avoiding damage to the battery pack during the process of connecting the battery pack.
  • FIG. 5 is a schematic flowchart of determining a charging voltage in an embodiment of the present application. Referring to FIG. 5 , this embodiment relates to an optional implementation of how to determine a charging voltage. Based on the above embodiments, the above access control method also includes the following steps:
  • the target voltage value is not greater than the first preset threshold, compare the target voltage value with the second preset threshold to obtain a comparison result, where the second preset threshold is determined according to the rated voltage value of the power unit, and the second The preset threshold is smaller than the first preset threshold.
  • the second preset threshold is also determined based on the rated voltage value of the power unit, and the second preset threshold is smaller than the first preset threshold.
  • the second preset threshold is the second coefficient multiplied by the rated voltage value, the second coefficient is a number greater than 0 and less than 1, and the second coefficient is less than the first coefficient. Assuming that the rated voltage value is 200V and the second coefficient is 0.8, the second preset threshold is 160V.
  • the valve control system compares the target voltage value with the second preset threshold to obtain a comparison result.
  • the target voltage value is the average value of the first voltage of each battery group.
  • the valve control system compares the average value of the first voltage of each battery group with the second preset value. The threshold is compared to obtain the comparison result.
  • the charging voltage can be determined based on the comparison result. For example, when the comparison result indicates that the average value of the first voltages of each battery group is greater than the second preset threshold, the valve control system may use the average value of the first voltages of each battery group as the charging voltage.
  • the target voltage value is not greater than the first preset threshold
  • the target voltage value is compared with the second preset threshold to obtain a comparison result
  • the charging voltage is determined based on the comparison result. Since the second preset threshold is determined based on the rated voltage value of the power unit, and the second preset threshold is smaller than the first preset threshold, the valve control system compares the target voltage value with the second preset threshold to obtain a comparison result. If the comparison The result is that the target voltage value is less than the second preset threshold, which means that the gap between the target voltage value and the rated voltage value is large. In this case, the maximum value of the first voltage of each battery pack can be used as the charging voltage. This can quickly narrow the gap between the target voltage value and the rated voltage value, ensuring that the first voltage matches the charging voltage of the power unit during the process of connecting the battery pack, thus avoiding damage to the battery pack during the process of connecting the battery pack. .
  • FIG. 6 is a schematic flowchart of another method of determining the charging voltage in an embodiment of the present application. Referring to FIG. 6 , this embodiment relates to an optional implementation of how to determine the charging voltage. Based on the above embodiment, the above-mentioned S502 determines the charging voltage according to the comparison result, including the following steps:
  • the valve control system uses the target voltage value as the charging voltage.
  • the target voltage value is the charging voltage for each battery.
  • the valve control system may use the average value of the first voltage of each battery group as the charging voltage.
  • the maximum value is the maximum value among the first voltages of each battery pack.
  • the valve control system uses the maximum value of the first voltages of each battery pack as the charging voltage.
  • the target voltage value is the average value of the first voltage of each battery group.
  • the valve control system can change the first voltage of each battery group. The maximum value among the voltages is used as the charging voltage.
  • the second preset threshold is less than the first preset threshold.
  • the valve control system uses the maximum value of the first voltages of each battery pack as the charging voltage, thereby reducing the difference between the charging voltage of the battery pack and the rated voltage value of the power unit.
  • the target voltage value is used as the charging voltage. If the target voltage value is not greater than the second preset threshold, the maximum of the first voltages of each battery pack is used. value as the charging voltage. Since the second preset threshold is determined based on the rated voltage value of the power unit, and when the target voltage value is greater than the second preset threshold value, the target voltage value is used as the charging voltage. Therefore, it is avoided that the actual voltage of the battery pack is less than the rated voltage of the power unit. Voltage value when the battery pack is connected.
  • the maximum value of the first voltages of each battery pack is used as the charging voltage, so that the actual voltage of the battery pack matches the charging voltage of the power unit as much as possible, thereby avoiding The battery pack is damaged during the process of connecting the battery pack.
  • the valve control system integrates the first voltages of each battery group, and there is no difference between the determined charging voltage and the actual voltage of each battery group. It will vary greatly.
  • the target voltage value is the minimum value of the first voltage of each battery group, the risk of connecting the battery group corresponding to the minimum first voltage is the greatest, and the valve control system sets the minimum value of the first voltage of each battery group. As the target voltage value, it is further avoided that the battery pack corresponding to the minimum first voltage is damaged when the battery pack is connected.
  • FIG. 7 is a schematic flowchart of determining a target energy storage module in an embodiment of the present application. Referring to FIG. 7 , this embodiment relates to an optional implementation of how to determine a target energy storage module. Based on the above embodiments, the above access control method also includes the following steps:
  • S701 determine the number of energy storage modules to be removed based on the bus voltage and charging voltage.
  • the valve control system determines the charging voltage of each power unit based on the first voltage of each battery pack and the rated voltage value of the power unit in each energy storage module, it needs to determine the number of energy storage modules to be removed, so that Determine the target energy storage module. Since the charging voltage of each energy storage module determined by the valve control system is the same, the valve control system can directly determine the number of energy storage modules to be removed based on the bus voltage and charging voltage. One possible way is that after the valve control system determines the charging voltage, it directly determines the number of energy storage modules to be removed based on the bus voltage and charging voltage.
  • each energy storage module SM n in the energy storage system since each energy storage module SM n in the energy storage system is connected in series, each energy storage module will divide the bus voltage. Therefore, the valve control system can determine the voltage of each energy storage system based on the bus voltage and charging voltage. The number of modules that should be working is used to determine the number of energy storage modules to be removed.
  • determining the number of energy storage modules to be removed can be achieved in the following ways:
  • valve control system determines the ratio of the bus voltage and the charging voltage. If the ratio is not an integer, the ratio can be rounded up to obtain a new ratio, and then the total number of energy storage modules SM n can be obtained. The difference obtained by subtracting the new ratio from the number is used as the number of removed energy storage modules.
  • valve control system determines the ratio of the bus voltage and the charging voltage. If the ratio is not an integer, the ratio can be rounded down to obtain a new ratio, and then the energy storage module SM n The difference obtained by subtracting the new ratio from the total number is used as the number of removed energy storage modules.
  • S702 Determine the target energy storage module from each energy storage module according to the number of resections.
  • the valve control system determines the target energy storage module from each energy storage module based on the number of removals.
  • the valve control system can randomly determine the target energy storage modules based on the number of removals, or determine the target energy storage modules in sequence based on the number of removals.
  • the valve control system can also set removal priorities for each energy storage module in advance, and then based on the removal of individual modules.
  • valve control system controls the battery packs in SM1, SM2 and SM3 to access the energy storage system according to the charging voltage.
  • This embodiment determines the number of energy storage modules to be removed based on the bus voltage and charging voltage, and then determines the target energy storage module from each energy storage module based on the number of removals. Since the target energy storage module is determined based on the bus voltage and charging voltage, the target energy storage module is a module that meets the battery pack access requirements, and can then control the battery pack access of the target energy storage module in the energy storage system based on the charging voltage. into the energy storage system.
  • FIG. 8 is a schematic flow chart of accessing a battery pack in an embodiment of the present application. Referring to Figure 8, this embodiment relates to an optional implementation method of how to control the access of the battery pack in the target energy storage module to the energy storage system. .
  • the above-mentioned S303, controlling the battery pack of the target energy storage module in the energy storage system to access the energy storage system according to the charging voltage includes the following steps:
  • the valve control system when the valve control system successfully stores the first voltage of the battery pack, the valve control system will return an acknowledgment signal to the power unit controller.
  • the power unit controller When the power unit controller receives the acknowledgment signal, the power The unit controller will send the current voltage of the power unit to the valve control at a certain frequency. For example, the power unit controller sends the current voltage of the power unit to the valve control system every 10 seconds.
  • the current voltage of the power unit is the current voltage of the capacitor in the power unit, such as the current voltage of capacitor 207 in Figure 2 .
  • the valve control system determines the difference between the current voltage of the power unit in the target energy storage module and the charging voltage. Specifically, the valve control system can determine the difference between the current voltage and the charging voltage of the power unit in the target energy storage module once every second.
  • S802 Control the battery pack in the target energy storage module to access the energy storage system based on the difference.
  • the valve control system after the valve control system determines the difference between the current voltage of the power unit in the target energy storage module and the charging voltage, it can directly control the battery pack in the target energy storage module to access the energy storage system based on the difference. For example, when the ratio of the difference to the third preset threshold is equal to 1, it indicates that the current voltage of the power unit has reached the charging voltage, that is, the current voltage of the capacitor in the power unit has reached the charging voltage, then the valve control system directly Control the battery pack in the target energy storage module to connect to the energy storage system.
  • This embodiment determines the difference between the current voltage of the power unit in the target energy storage module and the charging voltage, and controls the battery pack in the target energy storage module to access the energy storage system based on the difference. Since the battery pack in the target energy storage module is controlled to be connected to the energy storage system according to the difference between the current voltage of the power unit and the charging voltage, and the charging voltage is determined based on the first voltage and the rated voltage value, therefore, the actual voltage of each battery pack It matches the charging voltage of the power unit in each energy storage module, so that when the battery pack in the target energy storage module is connected to the energy storage system, it will not have an impact on the battery pack.
  • the above-mentioned S801 determines the difference between the current voltage and the charging voltage of the power unit in the target energy storage module, which can be achieved in the following ways:
  • an access instruction is sent to the control system; the access instruction is used to instruct the battery pack in the target energy storage module to be connected to the energy storage system.
  • the valve control system if the difference between the current voltage and the charging voltage of the power unit in the target energy storage module is less than the third preset threshold, the valve control system sends an access instruction to the control system to connect the battery in the target energy storage module.
  • the group is connected to the energy storage system.
  • the third preset threshold can be set based on experience, for example, 0.1.
  • the control system can determine that the energy storage system has no alarms or abnormal faults, and then issue a battery pack access command to the energy storage valve control system to control the target energy storage.
  • the precharge circuit in the module is used to connect the battery pack in the target energy storage module to the energy storage system.
  • the valve control system does not directly instruct the battery pack in the target energy storage module to connect to the energy storage system, but sends a signal through the control system.
  • the battery pack in the target energy storage module will be connected to the energy storage system only after the access command is issued, which avoids connecting the battery pack when the energy storage system is abnormal and improves the safety of battery pack access.
  • an access instruction is sent to the control system; the access instruction is used to instruct the battery pack in the target energy storage module to be connected to the energy storage system.
  • the difference between the current voltage of the power unit in the target energy storage module and the charging voltage is less than the third preset threshold, it indicates that the current voltage of the power unit is close enough to the charging voltage.
  • the battery pack in the target energy storage module is Connecting to the energy storage system can avoid connecting the battery pack when the actual voltage of the battery pack is less than the rated voltage of the power unit, thereby improving the safety of the battery pack.
  • the process of connecting the battery pack is controlled by the valve control system and the control system and does not require human operation, which improves the efficiency and intelligence of the battery pack connection.
  • the above-mentioned S701 determines the number of energy storage modules to be removed based on the bus voltage and charging voltage, which can be achieved in the following ways:
  • the number of energy storage modules to be removed is determined based on the bus voltage and charging voltage.
  • valve control system determines the charging voltage
  • it also needs to receive an instruction from the control system to allow controllable charging, so that it can determine the number of energy storage modules to be removed and determine the number of energy storage modules based on the bus voltage and charging voltage.
  • the number of resections is the same as that of S701 and will not be repeated here.
  • the number of energy storage modules to be removed is determined based on the bus voltage and charging voltage, further improving the safety and intelligence during the battery pack access process.
  • FIG. 9 is a schematic flowchart of determining the number of resections in an embodiment of the present application. Referring to FIG. 9 , this embodiment relates to an optional implementation of how to determine the number of resections. Based on the above embodiment, the above-mentioned S701 determines the number of energy storage modules to be removed based on the bus voltage and charging voltage, and also includes the following steps:
  • S901 determine the ratio of bus voltage to charging voltage.
  • the charging voltage determined by the valve control system is U set
  • the bus voltage in the transmission line that is, the voltage between the positive DC bus and the negative DC bus in Figure 1 is U dac .
  • the valve control system determines the ratio of U dac /U set based on the bus voltage U dac and the charging voltage U set , thereby determining the number of modules that each energy storage system should work on.
  • S902 Determine the number of removals based on the difference between the total number of energy storage modules in the energy storage system and the ratio.
  • the valve control system can determine the number of energy storage modules to be removed by subtracting U dac /U set from the total number n of energy storage modules. It should be noted that determining the number of energy storage modules to be removed can also be achieved in the following ways:
  • the valve control system rounds up the difference obtained by subtracting U dac /U set from the total number n, and the result is used as the number of energy storage modules to be removed.
  • the ratio of the bus voltage to the charging voltage is determined, and the number of cutouts is determined based on the difference between the total number of energy storage modules in the energy storage system and the ratio. Therefore, the target energy storage module is a module that meets the battery pack access requirements, and can then control the battery pack of the target energy storage module in the energy storage system to access the energy storage system according to the charging voltage.
  • FIG. 10 is a schematic diagram of an AC high-voltage direct-mounted energy storage system
  • Figure 11 is an AC-DC hybrid high-voltage direct-mounted energy storage system.
  • each phase of the AC bus is connected with cascaded energy storage modules.
  • the number of cascaded energy storage modules can still be determined according to the AC high-voltage
  • the voltage level and capacity of the direct-mounted energy storage system are configured. Different from the above-mentioned high-voltage direct-mounted energy storage system applied to DC, when the switch on the AC side is closed, the valve control system directly charges the cascade modules of each phase without control, and the valve control system determines The number of resections varies.
  • the number of removals is obtained based on the ratio of the total number of energy storage modules in the AC high-voltage direct-mounted energy storage system minus the AC phase voltage divided by the charging voltage.
  • the valve control system can distinguish whether it is currently operating in the DC starting mode or the AC starting mode according to the instructions of the control system. Then the valve control system sets different cutting rates and number of cuts for AC and DC respectively.
  • FIG 12 is a schematic diagram of the overall flow of the access control method in this application.
  • the energy storage system enters the uncontrolled charging stage.
  • the valve control system sends a blocking signal to the power unit controller. command to block the power module.
  • the battery control system in each energy storage module obtains the first voltage of each battery group and sends each first voltage to the power unit controller, and the power unit controller forwards the first voltage to The valve control system obtains the first voltage of each energy storage module. Then, the valve control system determines the target voltage value according to the first voltage of each battery pack.
  • the rated voltage values of the power units in each energy storage module are the same and have been stored in the valve control system.
  • the valve control system determines based on the first voltage of each battery pack and the rated voltage value of the power unit in each energy storage module. Charging voltage of each power unit. Specifically, take the target voltage value as an average value of the first voltages of each battery pack as an example. If the average value of the first voltage of each battery group is greater than the first preset threshold, the valve control system uses the rated voltage value as the charging voltage; if the average value of the first voltage of each battery group is not greater than the first preset threshold, then The target voltage value is compared with a second preset threshold.
  • the average value of the first voltage of each battery group is greater than the second preset threshold, then the average value of the first voltage of each battery group is used as the charging voltage; if the average value of the first voltage of each battery group is not greater than the second preset threshold, Assuming a threshold value, the maximum value among the first voltages of each battery pack is used as the charging voltage.
  • the valve control system After the valve control system determines the charging voltage, it will wait for the controllable charging instruction from the control system.
  • the valve control system receives the controllable charging instruction from the control system, the energy storage system enters the controllable charging stage.
  • the valve control system will issue a lockout or cutoff to each power unit controller. Specifically, the valve control system first determines the ratio of the bus voltage to the charging voltage, and determines the number of cutouts based on the difference between the total number of energy storage modules in the energy storage system and the ratio. Then the valve control system determines the number of cutouts from each module based on the number of cutoffs. Determine the target energy storage module in the energy storage module.
  • the valve control system issues a removal command to each energy storage module that needs to be removed, that is, each energy storage module that is not a target energy storage module, and then the power unit of the energy storage module that needs to be removed receives the removal command and controls the corresponding power unit. resection.
  • the valve control system periodically obtains the current voltage of the power unit in the target energy storage module, and determines the difference between the current voltage of the power unit in the target energy storage module and the charging voltage. If the difference is less than the third preset threshold , then an access instruction is sent to the control system; the access instruction is used to instruct the battery pack in the target energy storage module to be connected to the energy storage system.
  • the valve control system will return a charging completion signal to the control system and wait for the energy storage system to be unlocked.
  • the battery control system first controls the switch S1 to close. After a certain period of time, it determines that the charging current is within the allowable range, then controls the switch S1 to close, and opens the switch S2 to access the battery pack.
  • the power unit controller can obtain the first voltage of each battery pack and the current voltage of the power unit to the valve control system in parallel.
  • the valve control system can also obtain the first voltage of each battery pack and the current voltage of the power unit to the valve control system in parallel, and automatically store them separately.
  • the valve control system can further adjust the number of cutoffs so that the current voltage of the power unit rises to the level of the power unit. Rated voltage value, thereby reducing the impact when the energy storage system is unlocked.
  • the valve control system can adaptively and dynamically adjust the charging voltage at the time when the battery pack is connected, and reduce the electrical impact when the battery pack is connected. Moreover, the entire process of connecting the battery pack automatically interacts with each other at all levels, eliminating the need for human operation and reducing manual participation in judgment, resulting in better flexibility and higher efficiency.
  • embodiments of the present application also provide an access control device for implementing the above-mentioned access control method.
  • the implementation solution provided by this device to solve the problem is similar to the implementation solution recorded in the above method. Therefore, for the specific limitations in one or more access control device embodiments provided below, please refer to the above description of the access control method. Limitations will not be repeated here.
  • FIG. 13 is a structural block diagram of an access control device in an embodiment of the present application.
  • an access control device 1300 is provided in an embodiment of the present application, including: an acquisition module 1301, a first determination module 1302 and Access module 1303, where:
  • the acquisition module 1301 is used to acquire the first voltage of the battery pack in each energy storage module in the energy storage system.
  • the first determination module 1302 is used to determine the charging voltage of each power unit according to the first voltage of each battery group and the rated voltage value of the power unit in each energy storage module.
  • the access module 1303 is used to control the battery pack of the target energy storage module in the energy storage system to access the energy storage system according to the charging voltage.
  • the access control device obtained by this application obtains the first voltage of the battery pack in each energy storage module in the energy storage system, and determines based on the first voltage of each battery pack and the rated voltage value of the power unit in each energy storage module.
  • the charging voltage of each power unit is then controlled to connect the battery pack of the target energy storage module in the energy storage system to the energy storage system according to the charging voltage.
  • this application can determine the charging voltage of each power unit based on the first voltage of each battery group and the rated voltage value of the power unit in each energy storage module, and the first voltage of the battery group is equivalent to the actual voltage of each battery group, Therefore, the charging voltage of each power unit comprehensively considers the actual voltage of each battery pack and the rated voltage value of the power unit in each energy storage module, and then controls the battery pack access of the target energy storage module in the energy storage system according to the charging voltage.
  • the actual voltage of each battery pack matches the charging voltage of the power unit in each energy storage module. Therefore, this application avoids the current problem of connecting the battery pack due to the actual voltage of the battery pack and the rated power unit. The voltage values do not match, causing impact to the battery pack and damaging the battery pack during the process of connecting the battery pack, thus avoiding damage to the battery pack during the process of connecting the battery pack.
  • the first determination module 1302 includes:
  • the first determination unit is used to determine the target voltage value according to the first voltage of each battery pack.
  • the second determination unit is used to determine the charging voltage according to the target voltage value and the rated voltage value.
  • the first determination unit is specifically configured to determine the average or minimum value of the first voltage of each battery pack as the target voltage value.
  • the second determination unit is also configured to use the rated voltage value as the charging voltage if the target voltage value is greater than the first preset threshold; the first preset threshold is determined based on the rated voltage value.
  • the access control device 1300 also includes:
  • a comparison module configured to compare the target voltage value with a second preset threshold value if the target voltage value is not greater than a first preset threshold value, and obtain a comparison result, wherein the second preset threshold value is determined according to the rated voltage value of the power unit , the second preset threshold is smaller than the first preset threshold.
  • the second determination module is used to determine the charging voltage according to the comparison result.
  • the second determination module includes:
  • the third determination unit is configured to use the target voltage value as the charging voltage if the target voltage value is greater than the second preset threshold.
  • the fourth determination unit is configured to use the maximum value as the charging voltage if the target voltage value is not greater than the second preset threshold; the maximum value is the maximum value among the first voltages of each battery pack.
  • the access control device 1300 also includes:
  • the third determination module is used to determine the number of energy storage modules to be removed based on the bus voltage and charging voltage.
  • the fourth determination module is used to determine the target energy storage module from each energy storage module according to the number of resections.
  • the access module 1303 includes:
  • the fifth determination unit is used to determine the difference between the current voltage and the charging voltage of the power unit in the target energy storage module.
  • the access unit is used to control the access of the battery pack in the target energy storage module to the energy storage system based on the difference.
  • the access unit is specifically configured to send an access instruction to the control system if the difference is less than the third preset threshold; the access instruction is used to instruct the battery pack in the target energy storage module to connect to the energy storage system.
  • the third determination module is also used to determine the number of energy storage modules to be removed based on the bus voltage and charging voltage when receiving a controllable charging instruction sent by the control system.
  • the third determination module also includes:
  • the sixth determination unit is used to determine the ratio of the bus voltage and the charging voltage
  • the seventh determination unit is used to determine the number of removals based on the difference between the total number of energy storage modules in the energy storage system and the ratio.
  • Each module in the above-mentioned access control device can be implemented in whole or in part by software, hardware, and combinations thereof.
  • Each of the above modules may be embedded in or independent of the processor of the computer device in the form of hardware, or may be stored in the memory of the computer device in the form of software, so that the processor can call and execute the operations corresponding to the above modules.
  • FIG. 14 is an internal structure diagram of a computer device in an embodiment of the present application.
  • a computer device is provided.
  • the computer device may be a server, and its internal structure diagram may be as shown in FIG. 14 .
  • the computer device includes a processor, memory, and network interfaces connected through a system bus. Among them, the processor of the computer device is used to provide computing and control capabilities.
  • the memory of the computer device includes non-volatile storage media and internal memory.
  • the non-volatile storage medium stores operating systems, computer programs and databases. This internal memory provides an environment for the execution of operating systems and computer programs in non-volatile storage media.
  • the computer device's database is used to store XX data.
  • the network interface of the computer device is used to communicate with external terminals through a network connection.
  • the computer program implements an access control method when executed by the processor.
  • Figure 14 is only a block diagram of a partial structure related to the solution of the present application, and does not constitute a limitation on the computer equipment to which the solution of the present application is applied.
  • Specific computer equipment can May include more or fewer parts than shown, or combine certain parts, or have a different arrangement of parts.
  • a computer device including a memory and a processor.
  • a computer program is stored in the memory.
  • the processor executes the computer program, it implements the following steps:
  • the processor also implements the following steps when executing the computer program:
  • the charging voltage is determined according to the target voltage value and the rated voltage value.
  • the processor also implements the following steps when executing the computer program:
  • the average or minimum value of the first voltage of each battery pack is determined as the target voltage value.
  • the processor also implements the following steps when executing the computer program:
  • the rated voltage value is used as the charging voltage; the first preset threshold is determined based on the rated voltage value.
  • the processor also implements the following steps when executing the computer program:
  • the target voltage value is compared with a second preset threshold to obtain a comparison result, wherein the second preset threshold is determined according to the power unit The rated voltage value is determined, and the second preset threshold is smaller than the first preset threshold;
  • the charging voltage is determined based on the comparison result.
  • the processor also implements the following steps when executing the computer program:
  • the target voltage value is greater than the second preset threshold, then use the target voltage value as the charging voltage;
  • the maximum value is used as the charging voltage; the maximum value is the maximum value among the first voltages of each battery pack.
  • the processor also implements the following steps when executing the computer program:
  • the target energy storage module is determined from each of the energy storage modules according to the number of resections.
  • the processor also implements the following steps when executing the computer program:
  • the processor also implements the following steps when executing the computer program:
  • an access instruction is sent to the control system; the access instruction is used to instruct the battery pack in the target energy storage module to be connected to the energy storage system.
  • the processor also implements the following steps when executing the computer program:
  • the number of energy storage modules to be removed is determined based on the bus voltage and the charging voltage.
  • the processor also implements the following steps when executing the computer program:
  • the number of cutouts is determined based on the difference between the total number of energy storage modules in the energy storage system and the ratio.
  • a computer-readable storage medium is provided with a computer program stored thereon.
  • the computer program is executed by a processor, the following steps are implemented:
  • the computer program when executed by the processor, also implements the following steps:
  • the charging voltage is determined according to the target voltage value and the rated voltage value.
  • the computer program when executed by the processor, also implements the following steps:
  • the average or minimum value of the first voltage of each battery pack is determined as the target voltage value.
  • the computer program when executed by the processor, also implements the following steps:
  • the rated voltage value is used as the charging voltage; the first preset threshold is determined based on the rated voltage value.
  • the computer program when executed by the processor, also implements the following steps:
  • the target voltage value is compared with a second preset threshold to obtain a comparison result, wherein the second preset threshold is determined according to the power unit The rated voltage value is determined, and the second preset threshold is smaller than the first preset threshold;
  • the charging voltage is determined based on the comparison result.
  • the computer program when executed by the processor, also implements the following steps:
  • the target voltage value is greater than the second preset threshold, then use the target voltage value as the charging voltage;
  • the maximum value is used as the charging voltage; the maximum value is the maximum value among the first voltages of each battery pack.
  • the computer program when executed by the processor, also implements the following steps:
  • the target energy storage module is determined from each of the energy storage modules according to the number of resections.
  • the computer program when executed by the processor, also implements the following steps:
  • the computer program when executed by the processor, also implements the following steps:
  • an access instruction is sent to the control system; the access instruction is used to instruct the battery pack in the target energy storage module to be connected to the energy storage system.
  • the computer program when executed by the processor, also implements the following steps:
  • the number of energy storage modules to be removed is determined based on the bus voltage and the charging voltage.
  • the computer program when executed by the processor, also implements the following steps:
  • the number of cutouts is determined based on the difference between the total number of energy storage modules in the energy storage system and the ratio.
  • a computer program product comprising a computer program that when executed by a processor implements the following steps:
  • the computer program when executed by the processor, also implements the following steps:
  • the charging voltage is determined according to the target voltage value and the rated voltage value.
  • the computer program when executed by the processor, also implements the following steps:
  • the average or minimum value of the first voltage of each battery pack is determined as the target voltage value.
  • the computer program when executed by the processor, also implements the following steps:
  • the rated voltage value is used as the charging voltage; the first preset threshold is determined based on the rated voltage value.
  • the computer program when executed by the processor, also implements the following steps:
  • the target voltage value is compared with a second preset threshold to obtain a comparison result, wherein the second preset threshold is determined according to the power unit The rated voltage value is determined, and the second preset threshold is smaller than the first preset threshold;
  • the charging voltage is determined based on the comparison result.
  • the computer program when executed by the processor, also implements the following steps:
  • the target voltage value is greater than the second preset threshold, then use the target voltage value as the charging voltage;
  • the maximum value is used as the charging voltage; the maximum value is the maximum value among the first voltages of each battery pack.
  • the computer program when executed by the processor, also implements the following steps:
  • the target energy storage module is determined from each of the energy storage modules according to the number of resections.
  • the computer program when executed by the processor, also implements the following steps:
  • the computer program when executed by the processor, also implements the following steps:
  • an access instruction is sent to the control system; the access instruction is used to instruct the battery pack in the target energy storage module to be connected to the energy storage system.
  • the computer program when executed by the processor, also implements the following steps:
  • the number of energy storage modules to be removed is determined based on the bus voltage and the charging voltage.
  • the computer program when executed by the processor, also implements the following steps:
  • the number of cutouts is determined based on the difference between the total number of energy storage modules in the energy storage system and the ratio.
  • Non-volatile memory can include read-only memory (ROM), magnetic tape, floppy disk, flash memory or optical memory, etc.
  • Volatile memory may include random access memory (RAM) or external cache memory.
  • RAM can be in many forms, such as static random access memory (Static Random Access Memory, SRAM) or dynamic random access memory (Dynamic Random Access Memory, DRAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请涉及一种接入控制方法、装置、计算机设备和存储介质。所述方法包括:获取储能系统中各储能模块中电池组的第一电压,并根据各电池组的第一电压和各储能模块中功率单元的额定电压值,确定各功率单元的充电电压,进而根据充电电压控制储能系统中的目标储能模块的电池组接入储能系统。采用本方法能够避免在接入电池组的过程中损伤电池组。

Description

接入控制方法、装置、计算机设备和存储介质 技术领域
本申请涉及电力技术领域,特别是涉及一种接入控制方法、装置、计算机设备和存储介质。
背景技术
基于模块化多电平级联技术应用的高压直挂式储能系统越来越广泛地应用于电网中。高压直挂式储能系统是一种利用模块化多电平级联技术,将储能单元分布式集成在各个储能模块中,实现高压直挂式的储能系统,其可以同时实现交直流功率转换和能量储存,具有模块化程度高、谐波特性好、等效开关频率低等优势。
高压直挂式储能系统包括多个储能模块,各储能模块均包括功率单元和储能单元。目前,高压直挂式储能系统中的电池组接入的过程为:交流启动或者直流启动后,当各储能模块中的功率单元的电压达到额定值,并且运维人员人为观察储能系统无异常后,再通过运维人员手动下发接入命令将储能单元中的电池组接入高压直挂式储能系统中。
然而,目前电池组的接入方式中,容易导致在接入电池组过程中给电池组带来冲击,损伤电池组。
发明内容
基于此,有必要针对上述技术问题,提供一种能够避免在接入电池组的过程中损伤电池组的接入控制方法、装置、计算机设备和存储介质。
第一方面,本申请提供了一种接入控制方法。所述方法包括:
获取储能系统中各储能模块中电池组的第一电压;
根据各该电池组的第一电压和各该储能模块中功率单元的额定电压值,确定各该功率单元的充电电压;
根据该充电电压控制该储能系统中的目标储能模块的电池组接入该储能系统。
在其中一个实施例中,该根据各该电池组的第一电压和该储能模块中功率单元的额定电压值,确定充电电压,包括:
根据各该电池组的第一电压确定目标电压值;
根据该目标电压值和该额定电压值,确定充电电压。
在其中一个实施例中,该根据各该电池组的第一电压确定目标电压值,包括:
将各该电池组的第一电压的平均值或最小值确定为该目标电压值。
在其中一个实施例中,该根据该目标电压值和该额定电压值,确定充电电压,包括:
若该目标电压值大于第一预设阈值,则将该额定电压值作为该充电电压;该第一预设阈值根据该额定电压值确定。
在其中一个实施例中,所述方法还包括:
若该目标电压值不大于该第一预设阈值,则将该目标电压值与第二预设阈值进行比较,得到比较结果,其中,该第二预设阈值根据该功率单元的额定电压值确定,该第二预设阈值小于该第一预设阈值;
根据该比较结果确定该充电电压。
在其中一个实施例中,该根据该比较结果确定该充电电压,包括:
若该目标电压值大于该第二预设阈值,则将该目标电压值作为该充电电压;
若该目标电压值不大于该第二预设阈值,则将最大值作为该充电电压;该最大值为各该电池组的第一电压中的最大值。
在其中一个实施例中,所述方法还包括:
根据母线电压和该充电电压,确定储能模块的切除个数;
根据该切除个数从各该储能模块中确定该目标储能模块。
在其中一个实施例中,该根据该充电电压控制该储能系统中的目标储能模块的电池组接入该储能系统,包括:
确定该目标储能模块中功率单元的当前电压与该充电电压的差值;
根据该差值控制该目标储能模块中电池组接入该储能系统。
在其中一个实施例中,该根据该差值控制该目标储能模块中电池组接入该储能系统,包括:
若该差值小于第三预设阈值,则向控制系统发送接入指令;该接入指令用于指示将该目标储能模块中电池组接入该储能系统。
在其中一个实施例中,该根据母线电压和该充电电压,确定储能模块的切除个数,包括:
在接收到控制系统发送的可控充电指令的情况下,根据母线电压和该额定电压值,确定储能模块的切除个数。
在其中一个实施例中,该根据母线电压和该充电电压,确定储能模块的切除个数,包括:
确定该母线电压与该充电电压的比值;
根据该储能系统中各储能模块的总个数与该比值的差值确定该切除个数。
第二方面,本申请还提供了一种接入控制装置。所述装置包括:
获取模块,用于获取储能系统中各储能模块中电池组的第一电压;
第一确定模块,用于根据各该电池组的第一电压和各该储能模块中功率单元的额定电压值,确定各该功率单元的充电电压;
接入模块,用于根据该充电电压控制该储能系统中的目标储能模块的电池组接入该储能系统。
第三方面,本申请还提供了一种计算机设备。所述计算机设备包括存储器和处理器, 所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现上述任一方法的步骤。
第四方面,本申请还提供了一种计算机可读存储介质。所述计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述任一方法的步骤。
第五方面,本申请还提供了一种计算机程序产品。所述计算机程序产品,包括计算机程序,该计算机程序被处理器执行时实现上述任一方法的步骤。
上述接入控制方法、装置、计算机设备和存储介质,通过获取储能系统中各储能模块中电池组的第一电压,并根据各该电池组的第一电压和各该储能模块中功率单元的额定电压值,确定各该功率单元的充电电压,进而根据该充电电压控制该储能系统中的目标储能模块的电池组接入该储能系统。由于本申请能够根据各电池组的第一电压和各储能模块中功率单元的额定电压值,确定各功率单元的充电电压,而且,电池组的第一电压相当于各电池组的实际电压,因此,各功率单元的充电电压综合考虑了各电池组的实际电压和各储能模块中功率单元的额定电压值,进而,根据充电电压控制储能系统中的目标储能模块的电池组接入储能系统时,各电池组的实际电压和各储能模块中功率单元的充电电压是匹配的,从而本申请避免了目前接入电池组的过程中由于电池组的实际电压和功率单元的额定电压值并不匹配,导致在接入电池组过程中给电池组带来冲击、损伤电池组的问题,避免了在接入电池组的过程中损伤电池组。
附图说明
图1为本申请实施例中接入控制方法的应用环境图;
图2为本申请实施例中储能模块的结构示意图;
图3为本申请实施例中接入控制方法的流程示意图;
图4为本申请实施例中一种确定充电电压的流程示意图;
图5为本申请实施例中一种确定充电电压的流程示意图;
图6为本申请实施例中另一种确定充电电压的流程示意图;
图7为本申请实施例中一种确定目标储能模块的流程示意图;
图8为本申请实施例中一种接入电池组的流程示意图;
图9为本申请实施例中一种确定切除个数的流程示意图;
图10为交流的高压直挂式储能系统示意图;
图11为交直流混合的高压直挂式储能系统;
图12为本申请中接入控制方法的整体流程示意图;
图13为本申请实施例中接入控制装置的结构框图;
图14为本申请实施例中计算机设备的内部结构图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
图1为本申请实施例中接入控制方法的应用环境图,本申请实施例提供的接入控制方法可以应用于如图1所示的阀控系统中。图1示出了高压直挂式储能系统的系统架构图,高压直挂式储能系统下文简称储能系统。如图1所示,储能系统可以配置在高压直流输电线路,即正极直流母线和负极直流母线之间。储能系统包括隔离刀闸、启动电阻、启动电阻旁路开关、电抗器1、电抗器2、至少一个储能模块SM、阀控系统和控制系统。其中,n是大于等于1的整数,储能模块的总个数n可根据输电系统的电压等级进行配置,SM n表示第n个储能模块。
为了更清楚地对本申请中的应用环境进行解释,在此结合图2进行说明。图2为本申请实施例中储能模块的结构示意图。如图2所示,图1中的储能模块,例如SM1,包括功率单元201和储能单元202。图2中以功率单元为半桥式结构进行举例,功率单元还可以是全桥式或类全桥式结构,本实施例不做限制。功率单元201包括功率单元控制器203、旁路开关204、全控型开关205、全控型开关206、电容207、均压电阻208、接触器209、接触器210、电池控制系统211、预充回路和电池组215。预充回路包括S1开关212、S2开关213和预充电阻214。
图1中,隔离刀闸用于控制储能系统是否接入输电线路;启动电阻用于减小储能系统接入输电线路时的冲击电流;启动电阻旁路开关用于在储能系统稳定地接入输电线路中后,将启动电阻旁路,以增大充电电流;电抗器1和电抗器2用于抑制谐波和短路电流。
进一步地,结合图1和图2,控制系统实现对储能系统的控制和保护。控制系统与阀控系统通信连接,阀控系统与功率单元控制器通信连接,功率单元控制器与电池控制系统通信连接。当交流电网与换流器之间的断路器合闸后,换流器实现与交流电网的有功功率和无功功率交换。
具体地,功率单元控制器203用于控制和保护功率单元201中的各个器件。在储能系统发生故障时,功率单元控制器203控制旁路开关204断开,从而使得该功率单元201从储能系统中旁路退出。全控型开关205和全控型开关206用于实现对功率单元201的闭锁、投入和切除,当全控型开关205和全控型开关206都断开时,功率单元201闭锁;当全控型开关205闭合、全控型开关206断开时,功率单元201投入;当全控型开关205开关断开、全控型开关206闭合时,功率单元201切除。电容207支撑和稳定该功率单元201的电压。均压电阻208用于均衡功率单元201中电容207的电压。接触器209和接触器210用于在储能单元202故障时,将储能单元202从储能系统中隔离。电池控制系统用于控制和保护储能单元202中的各个器件,以及均衡控制储能单元202中的电池组215。预充回路用于接入储能单元202中的电池组215,并控制电池组215在接入时刻的缓冲。电池组215提供储能系统的能量支撑。
具体地,结合图1和图2,目前储能系统中电池组的接入方式是:当隔离刀闸闭合后,输电线路工作,各储能模块中的功率单元闭锁,进而各储能模块中的功率单元的电容电压达到额定电压值,例如SM1中的电容207达到额定电压值。进而,储能系统的运维人员在观察到储能系统无异常后,手动下发接入命令,从而预充回路中的开关闭合,以实现将储能单元中的电池组接入储能系统,例如SM1中S1开关213闭合后,储能单元202中的电池组215接入储能系统。
然而,目前电池组的接入方式中,电池组的实际电压和功率单元的额定电压值并不匹配,例如电池组的实际电压小于功率单元的额定电压值。若此种情况下仍将电池组接入,电池组和功率单元产生压差,就容易导致在接入电池组过程中给电池组带来冲击,损伤电池组。
基于此,有必要针对上述技术问题,提供一种能够避免在接入电池组的过程中损伤电池组的接入控制方法。
图3为本申请实施例中接入控制方法的流程示意图,该方法可以应用于图1所示的阀控系统中,在一个实施例中,如图3所示,包括以下步骤:
S301,获取储能系统中各储能模块中电池组的第一电压。
在本实施例中,阀控系统获取储能系统中各储能模块中电池组的第一电压,其中,阀控系统包括中央处理器(CentralProcessing Unit,CPU),还可以包括数字信号处理器(Digital SignalProcessing,DSP)、现场可编程门阵列(Field-Programmable GateArray,FPGA)或者其他可编程逻辑器件。
第一电压是根据各电池组的荷电状态(state ofcharge,SOC)确定的电压,可以理解为各电池组在接入储能系统前的实际电压。假设储能系统包括10个储能模块,则阀控系统就会获取这10个储能模块中10个电池组的第一电压。
以图2为例,一种可以实现的方式是,电池控制系统211获取电池组215的第一电压,并将该第一电压发送给功率单元控制器203,功率单元控制器203获取到该第一电压后,将该第一电压转发至阀控系统,进而阀控系统获取到储能模块SM1中电池组215的第一电压。同理,阀控系统也能够获取到其他储能模块中电池组的第一电压,在此不再赘述。
进一步地,阀控系统获取储能系统中各储能模块中电池组的第一电压后,将各电池组的第一电压进行缓存,缓存成功后,阀控系统可以返回给功率单元控制器一个确收信号,表明已经成功存储了电池组的第一电压。
S302,根据各电池组的第一电压和各储能模块中功率单元的额定电压值,确定各功率单元的充电电压。
在本实施例中,各储能模块中功率单元的额定电压值可以相同并存储在阀控系统中。需要说明的是,各功率单元的充电电压是各储能单元中电容的充电目标值。各储能模块中功率单元的额定电压值,也可以视为各储能单元中电容的额定电压值,例如为图2中的电容207的额定电压值。换句话说,各功率单元的额定电压值等于各功率单元的电容的额定 电压值,各功率单元的充电电压是期望各储能单元中的电容能够达到的电压值。
进一步地,阀控系统根据各电池组的第一电压和各储能模块中功率单元的额定电压值,确定各功率单元的充电电压。例如,阀控系统可以将各电池组的第一电压分别与功率单元的额定电压值作比较,若各电池组的第一电压与各功率单元的额定电压值的差值大于预设的差值阈值,则将各电池组的第一电压作为各功率单元的充电电压;若各电池组的第一电压与各功率单元的额定电压值的差值不大于该预设的差值阈值,则仍将各功率单元的额定电压值作为各功率单元的充电电压,本申请实施例中并不以此为限。
S303,根据充电电压控制储能系统中的目标储能模块的电池组接入储能系统。
在本实施例中,结合图1,目标储能模块为各储能模块SM n中的至少一个模块。目标储能模块可以是运维人员通过控制系统指定的,也可以是阀控系统从各储能模块SM n随机确定的,还可以是阀控系统根据母线电压和充电电压确定的,本实施例不做限制。
进一步地,阀控系统根据充电电压控制储能系统中的目标储能模块的电池组接入储能系统。例如,目标储能模块为图1中的SM1和SM2,则阀控系统根据充电电压,仅将SM1和SM2中的电池组接入储能系统。一种可以实现的方式是,当SM1和SM2中功率单元的电容电压等于充电电压时,将SM1和SM2中的电池组接入储能系统。
本申请提供的接入控制方法,通过获取储能系统中各储能模块中电池组的第一电压,并根据各电池组的第一电压和各储能模块中功率单元的额定电压值,确定各功率单元的充电电压,进而根据充电电压控制储能系统中的目标储能模块的电池组接入储能系统。由于本申请能够根据各电池组的第一电压和各储能模块中功率单元的额定电压值,确定各功率单元的充电电压,而且,电池组的第一电压相当于各电池组的实际电压,因此,各功率单元的充电电压综合考虑了各电池组的实际电压和各储能模块中功率单元的额定电压值,进而,根据充电电压控制储能系统中的目标储能模块的电池组接入储能系统时,各电池组的实际电压和各储能模块中功率单元的充电电压是匹配的,从而本申请避免了目前接入电池组的过程中由于电池组的实际电压和功率单元的额定电压值并不匹配,导致在接入电池组过程中给电池组带来冲击、损伤电池组的问题,避免了在接入电池组的过程中损伤电池组。
图4为本申请实施例中一种确定充电电压的流程示意图,参照图4,本实施例涉及的是如何确定充电电压的一种可选的实现方式。在上述实施例的基础上,上述的S302,根据各电池组的第一电压和各储能模块中功率单元的额定电压值,确定各功率单元的充电电压,包括如下步骤:
S401,根据各电池组的第一电压确定目标电压值。
在本实施例中,阀控系统根据各电池组的第一电压确定目标电压值,例如将各电池组的第一电压的中位数作为目标电压值,本实施例不做限制。其中,目标电压值是阀控系统根据各电池组的第一电压确定的一个参考电压值,也就是说,目标电压值是根据各电池组在接入储能系统前的实际电压确定的一个参考电压值,进而阀控系统能够根据目标电压值和功率单元的额定电压值确定充电电压。
S402,根据目标电压值和额定电压值,确定充电电压。
在本实施例中,阀控系统根据目标电压值和各储能模块中功率单元的额定电压值,确定充电电压。例如,阀控系统比较目标电压值和各储能模块中功率单元的额定电压值,若目标电压值与各功率单元的额定电压值的差值大于预设的差值阈值,则将目标电压值作为各功率单元的充电电压。换句话说,若目标电压值和额定电压值相差不大,阀控系统直接将各功率单元的额定电压值作为充电电压;若目标电压值和额定电压值相差比较大,阀控系统将目标电压值作为充电电压。故而,储能系统中的目标储能模块的电池组接入储能系统时,充电电压和各电池组的实际电压是匹配的。
本实施例根据各电池组的第一电压确定目标电压值,进而根据目标电压值和额定电压值,确定充电电压,由于先根据各电池组的第一电压确定目标电压值,因此仅需要根据目标电压值和额定电压值,就可以确定与电池组的实际电压匹配的充电电压,从而阀控系统就能根据充电电压控制储能系统中的目标储能模块的电池组接入储能系统,如此,电池组接入储能系统的过程不仅提高了电池组接入过程中的安全性,还提高了接入过程的接入效率。
可选的,上述的S401,根据各电池组的第一电压确定目标电压值,可以通过如下方式实现:
将各电池组的第一电压的平均值或最小值确定为目标电压值。
在本实施例中,阀控系统将各电池组的第一电压的平均值或最小值确定为目标电压值。例如,阀控系统在每个控制周期内,将各储能模块SM1~SMn对应的电池组的第一电压进行排序得到最小值和最大值,并将各电池组的第一电压的最小值作为目标电压值;或者,阀控系统确定各储能模块SM1~SMn对应的电池组的第一电压的平均值,对各电池组的第一电压的平均值进行取整,并将取整后的各电池组的第一电压的平均值作为目标电压值,当然,阀控系统也可以直接将各储能模块SM1~SMn对应的电池组的第一电压的平均值作为目标电压值。
本实施例将各电池组的第一电压的平均值或最小值确定为目标电压值,因此在根据目标电压值和额定电压值确定充电电压时,考虑了各储能模块中电池组的实际电压,从而根据充电电压控制储能系统中的目标储能模块的电池组接入储能系统时,各电池组的实际电压和各储能模块中功率单元的充电电压是匹配的,避免了在接入电池组的过程中损伤电池组,提高了电池组的使用寿命和安全性。
可选的,上述的S402,根据目标电压值和额定电压值,确定充电电压,可以通过如下方式实现:
若目标电压值大于第一预设阈值,则将额定电压值作为充电电压;第一预设阈值根据额定电压值确定。
在本实施例中,第一预设阈值根据额定电压值确定,例如为第一系数乘以额定电压值,第一系数为大于0小于1的数。假设额定电压值为200V,第一系数取0.9,则第一预设阈 值为180V。
进一步地,若目标电压值大于第一预设阈值,则阀控系统将额定电压值作为充电电压。例如目标电压值为各电池组的第一电压的平均值,若各电池组的第一电压的平均值大于第一预设阈值,则阀控系统将额定电压值作为充电电压。
在本实施例中,若目标电压值大于第一预设阈值,则将额定电压值作为充电电压。由于第一预设阈值根据额定电压值确定,并在目标电压值在一定范围内大于额定电压值时,将功率单元的额定电压值作为充电电压,因此,接入电池组的过程中由于电池组的第一电压和功率单元的充电电压是匹配的,从而避免了接入电池组的过程中损伤电池组。
图5为本申请实施例中一种确定充电电压的流程示意图,参照图5,本实施例涉及的是如何确定充电电压的一种可选的实现方式。在上述实施例的基础上,上述的接入控制方法还包括如下步骤:
S501,若目标电压值不大于第一预设阈值,则将目标电压值与第二预设阈值进行比较,得到比较结果,其中,第二预设阈值根据功率单元的额定电压值确定,第二预设阈值小于第一预设阈值。
在本实施例中,第二预设阈值同样根据功率单元的额定电压值确定,第二预设阈值小于第一预设阈值。例如第二预设阈值为第二系数乘以额定电压值,第二系数为大于0小于1的数,第二系数小于第一系数。假设额定电压值为200V,第二系数取0.8,则第二预设阈值为160V。
进一步地,若目标电压值不大于第一预设阈值,则阀控系统将目标电压值与第二预设阈值进行比较,得到比较结果。例如目标电压值为各电池组的第一电压的平均值,在目标电压值不大于第一预设阈值的情况下,阀控系统将各电池组的第一电压的平均值与第二预设阈值进行比较,得到比较结果。
S502,根据比较结果确定充电电压。
在本实施例中,当阀控系统确定了各电池组的第一电压的平均值与第二预设阈值的比较结果后,能够根据该比较结果确定充电电压。例如,当比较结果表示各电池组的第一电压的平均值大于第二预设阈值时,阀控系统可以将各电池组的第一电压的平均值作为充电电压。
本实施例若目标电压值不大于第一预设阈值,则将目标电压值与第二预设阈值进行比较,得到比较结果,进而根据比较结果确定充电电压。由于第二预设阈值根据功率单元的额定电压值确定,第二预设阈值小于第一预设阈值,因此,阀控系统将目标电压值与第二预设阈值比较,得到比较结果,若比较结果为目标电压值小于第二预设阈值,则意味着目标电压值与额定电压值之间的差距较大,此种情况下,可以将各电池组的第一电压的最大值作为充电电压,从而能够快速缩小目标电压值与额定电压值之间的差距,保证电池组接入的过程中第一电压和功率单元的充电电压是匹配的,从而避免了接入电池组的过程中损伤电池组。
图6为本申请实施例中另一种确定充电电压的流程示意图,参照图6,本实施例涉及的是如何确定充电电压的一种可选的实现方式。在上述实施例的基础上,上述的S502,根据比较结果确定充电电压,包括如下步骤:
S601,若目标电压值大于第二预设阈值,则将目标电压值作为充电电压。
在本实施例中,根据目标电压值与第二预设阈值的比较结果,若目标电压值大于第二预设阈值,则阀控系统将目标电压值作为充电电压,例如目标电压值为各电池组的第一电压的平均值,当比较结果表示各电池组的第一电压的平均值大于第二预设阈值时,阀控系统可以将各电池组的第一电压的平均值作为充电电压。
S602,若目标电压值不大于第二预设阈值,则将最大值作为充电电压;最大值为各电池组的第一电压中的最大值。
在本实施例中,若目标电压值不大于第二预设阈值,则阀控系统将各电池组的第一电压中的最大值作为充电电压。例如目标电压值为各电池组的第一电压的平均值,当比较结果表示各电池组的第一电压的平均值不大于第二预设阈值时,阀控系统可以将各电池组的第一电压中的最大值作为充电电压。
其中,第二预设阈值小于第一预设阈值,当目标电压值不大于第二预设阈值时,说明目标电压值和功率单元的额定电压值之间的差异较大,并且目标电压值小于功率单元的额定电压值。因此,为了使充电电压接近功率单元的额定电压值,阀控系统将各电池组的第一电压中的最大值作为充电电压,缩小了电池组的充电电压和功率单元的额定电压值的差异。
在本实施例中,若目标电压值大于第二预设阈值,则将目标电压值作为充电电压,若目标电压值不大于第二预设阈值,则将各电池组的第一电压中的最大值作为充电电压。由于第二预设阈值根据功率单元的额定电压值确定,并且当目标电压值大于第二预设阈值时,将目标电压值作为充电电压,因此避免了在电池组的实际电压小于功率单元的额定电压值时将电池组接入的情况。进一步地,若目标电压值不大于第二预设阈值,将各电池组的第一电压中的最大值作为充电电压,使得电池组的实际电压和功率单元的充电电压尽可能匹配,从而避免在接入电池组的过程中损伤电池组。
可以理解的是,当目标电压值为各电池组的第一电压的平均值时,阀控系统综合了各电池组的第一电压,确定的充电电压与各电池组的实际电压之间都不会相差很大。当目标电压值为各电池组的第一电压的最小值时,最小的第一电压所对应的电池组接入的风险是最大的,而阀控系统将各电池组的第一电压的最小值作为目标电压值,进一步避免了最小的第一电压所对应的电池组接入时导致该电池组损伤。
图7为本申请实施例中一种确定目标储能模块的流程示意图,参照图7,本实施例涉及的是如何确定目标储能模块的一种可选的实现方式。在上述实施例的基础上,上述的接入控制方法还包括如下步骤:
S701,根据母线电压和充电电压,确定储能模块的切除个数。
在本实施例中,阀控系统根据各电池组的第一电压和各储能模块中功率单元的额定电压值,确定各功率单元的充电电压后,需要确定储能模块的切除个数,从而确定目标储能模块。由于阀控系统确定的各储能模块的充电电压相同,阀控系统可以直接根据母线电压和充电电压,确定储能模块的切除个数。一种可以实现的方式是,阀控系统确定充电电压之后直接根据母线电压和充电电压,确定储能模块的切除个数。
具体地,由于储能系统中各储能模块SM n是串联连接的,各储能模块会对母线电压进行分压,因此,阀控系统根据母线电压和充电电压就能确定了各储能系统应当工作的模块数量,从而确定储能模块的切除个数。
其中,确定储能模块的切除个数可以通过如下方式实现:
一种可以实现的方式是,阀控系统确定母线电压和充电电压的比值,若比值不为整数,则可以对该比值进行向上取整得到新的比值,进而将储能模块SM n的总个数减去新的比值所得到的差值作为储能模块的切除个数。
另一种可以实现的方式是,阀控系统确定母线电压和充电电压的比值,若比值不为整数,则可以对该比值进行向下取整得到新的比值,进而将储能模块SM n的总个数减去新的比值所得到的差值作为储能模块的切除个数。
S702,根据切除个数从各储能模块中确定目标储能模块。
在本实施例中,阀控系统根据切除个数从各储能模块中确定目标储能模块。阀控系统可以根据切除个数随机确定目标储能模块,或者根据切除个数按照顺序确定目标储能模块,当然,阀控系统也可以提前为各储能模块设立切除优先级,进而根据切除个数和切除优先级确定目标储能模块。例如,结合图1,n=5,切除个数为2,则阀控系统根据切除优先级,确定切除SM4和SM5,则目标储能模块为SM1、SM2和SM3。可以理解的是,切除储能模块是指该储能模块中的功率单元切除。
进一步地,阀控系统根据充电电压控制SM1、SM2和SM3中的电池组接入储能系统。
本实施例根据母线电压和充电电压,确定储能模块的切除个数,进而根据切除个数从各储能模块中确定目标储能模块。由于目标储能模块是基于母线电压和充电电压确定的,因此,目标储能模块是满足电池组接入需求的模块,进而能够根据充电电压控制储能系统中的目标储能模块的电池组接入储能系统。
图8为本申请实施例中一种接入电池组的流程示意图,参照图8,本实施例涉及的是如何控制目标储能模块中电池组接入储能系统的一种可选的实现方式。在上述实施例的基础上,上述的S303,根据充电电压控制储能系统中的目标储能模块的电池组接入储能系统,包括如下步骤:
S801,确定目标储能模块中功率单元的当前电压与充电电压的差值。
在本实施例中,当阀控系统成功存储了电池组的第一电压后,阀控系统会返回给功率单元控制器一个确收信号,当功率单元控制器接收到该确收信号后,功率单元控制器会按照一定的频率向阀控发送功率单元的当前电压。例如,功率单元控制器每10s向阀控系统 发送功率单元的当前电压。其中,功率单元的当前电压就是功率单元中电容的当前电压,例如图2中电容207的当前电压。
可以理解的是,当确定目标储能模块后,目标储能模块中功率单元的当前电压,也即功率单元中的电容的当前电压会逐渐升高,直到储能模块中功率单元的当前电压达到或者接近充电电压。由于功率单元的充电电压是期望功率单元的电压能够达到的一个电压值,因此,阀控系统会确定目标储能模块中功率单元的当前电压与充电电压的差值。具体地,阀控系统可以每秒确定一次目标储能模块中功率单元的当前电压与充电电压的差值。
S802,根据差值控制目标储能模块中电池组接入储能系统。
在本实施例中,阀控系统在确定了目标储能模块中功率单元的当前电压与充电电压的差值后,就可以直接根据差值控制目标储能模块中电池组接入储能系统。例如,当该差值与第三预设阈值的比值等于1时,表明功率单元的当前电压已经达到了充电电压,也即功率单元中电容的当前电压已经达到了充电电压,则阀控系统直接控制目标储能模块中电池组接入储能系统。
本实施例确定目标储能模块中功率单元的当前电压与充电电压的差值,并根据差值控制目标储能模块中电池组接入储能系统。由于根据功率单元的当前电压与充电电压的差控制控制目标储能模块中电池组接入储能系统,而充电电压是根据第一电压和额定电压值确定的,因此,各电池组的实际电压和各储能模块中功率单元的充电电压是匹配的,进而将目标储能模块中电池组接入储能系统时,不会给电池组带来冲击。
可选的,上述的S801,确定目标储能模块中功率单元的当前电压与充电电压的差值,可以通过如下方式实现:
若差值小于第三预设阈值,则向控制系统发送接入指令;接入指令用于指示将目标储能模块中电池组接入储能系统。
在本实施例中,若目标储能模块中功率单元的当前电压与充电电压的差值小于第三预设阈值,则阀控系统向控制系统发送接入指令,以将目标储能模块中电池组接入储能系统。其中,第三预设阈值可以根据经验设置,例如为0.1。
具体地,阀控系统向控制系统发送接入指令后,控制系统可以在判断储能系统无告警和异常故障后,再向储能阀控系统下发电池组接入命令,进而控制目标储能模块中的预充回路,以将目标储能模块中电池组接入储能系统。本实施例在当前电压与充电电压的差值小于第三预设阈值的情况下,并不是由阀控系统直接指示将目标储能模块中电池组接入储能系统,而是通过控制系统发送接入指令后才会将目标储能模块中电池组接入储能系统,避免了在储能系统异常时接入电池组的情况,提高了电池组接入的安全性。
本实施例中若差值小于第三预设阈值,则向控制系统发送接入指令;接入指令用于指示将目标储能模块中电池组接入储能系统。当目标储能模块中功率单元的当前电压与充电电压的差值小于第三预设阈值时,表明该功率单元的当前电压已经足够接近充电电压,此种情况下将目标储能模块中电池组接入储能系统,就能避免在电池组的实际电压小于功率 单元的额定电压值时将电池组接入的情况,提高电池组的安全性。并且,电池组接入的过程由阀控系统和控制系统进行控制,不需要人为操作,提高了电池组接入的效率和智能性。
可选的,上述的S701,根据母线电压和充电电压,确定储能模块的切除个数,可以通过如下方式实现:
在接收到控制系统发送的可控充电指令的情况下,根据母线电压和充电电压,确定储能模块的切除个数。
在本实施例中,阀控系统确定充电电压之后,还需接收到控制系统允许可控充电的指令,进而才能根据母线电压和充电电压,确定储能模块的切除个数,确定储能模块的切除个数和S701相同,在此不再赘述。
本实施例在接收到控制系统发送的可控充电指令的情况下,根据母线电压和充电电压,确定储能模块的切除个数,进一步提高了电池组接入过程中的安全性和智能性。
图9为本申请实施例中一种确定切除个数的流程示意图,参照图9,本实施例涉及的是如何确定切除个数的一种可选的实现方式。在上述实施例的基础上,上述的S701,根据母线电压和充电电压,确定储能模块的切除个数,还包括如下步骤:
S901,确定母线电压与充电电压的比值。
在本实施例中,阀控系统确定的充电电压为U set,输电线路中母线电压,也即图1中正极直流母线与负极直流母线之间的电压为U dac。进而阀控系统根据母线电压U dac和充电电压U set,确定U dac/U set的比值,从而确定了各储能系统应当工作的模块数量。
S902,根据储能系统中各储能模块的总个数与比值的差值确定切除个数。
在本实施例中,阀控系统将储能模块的总个数n减去U dac/U set,就能确定储能模块的切除个数。需要说明的是,确定储能模块的切除个数也可以通过如下方式实现:
阀控系统对总个数n减去U dac/U set得到的差值进行向上取整后得到的结果作为储能模块的切除个数。
本实施例中确定母线电压与充电电压的比值,并根据储能系统中各储能模块的总个数与比值的差值确定切除个数。因此,目标储能模块是满足电池组接入需求的模块,进而能够根据充电电压控制储能系统中的目标储能模块的电池组接入储能系统。
上述以接入控制方法应用在直流的高压直挂式储能系统为例进行说明,本申请提供的接入控制方法也可以应用在交流的高压直挂式储能系统和交直流混合的高压直挂式储能系统中,如图10和图11所示。图10为交流的高压直挂式储能系统示意图,图11为交直流混合的高压直挂式储能系统。
如图10所示,交流的高压直挂式储能系统中,交流母线的每一相均串入了级联的储能模块,级联的储能模块的个数仍然可以根据该交流的高压直挂式储能系统的电压等级和容量进行配置。与上述应用在直流的高压直挂式储能系统不同的是,当交流侧的开关合闸后,阀控系统直接对每一相的级联模块进行不控充电,并且,阀控系统确定的切除个数不同。在交流的高压直挂式储能系统,切除个数是根据交流的高压直挂式储能系统中储能模 块的总个数减去交流相电压除以充电电压的比值得到的。
如图11所示,在交直流混合的高压直挂式储能系统中,阀控系统能够根据控制系统的指令区分当前运行于直流启动方式还是交流启动方式。进而阀控系统分别为交流和直流设置不同的切除速率和切除个数。
为了更清楚地对本申请提供的接入控制方法进行解释,在此结合图12说明。图12为本申请中接入控制方法的整体流程示意图。如图12所示,当断路器合闸且储能系统中的隔离刀闸闭合后,储能系统进入不控充电阶段,在不控充电阶段,阀控系统向功率单元控制器下发的闭锁命令,以使功率模块闭锁。在阀控系统的控制下,各储能模块中的电池控制系统获取各电池组的第一电压,并将各第一电压发送给功率单元控制器,功率单元控制器将该第一电压转发至阀控系统,从而阀控系统获取各储能模块的第一电压。然后,阀控系统根据各电池组的第一电压确定目标电压值。
进一步地,各储能模块中功率单元的额定电压值相同,并且已经存储在阀控系统中,阀控系统根据各电池组的第一电压和各储能模块中功率单元的额定电压值,确定各功率单元的充电电压。具体地,以目标电压值是各电池组的第一电压的平均值为例。若各电池组的第一电压的平均值大于第一预设阈值,则阀控系统将额定电压值作为充电电压;若各电池组的第一电压的平均值不大于第一预设阈值,则将目标电压值与第二预设阈值进行比较。若各电池组的第一电压的平均值大于第二预设阈值,则将各电池组的第一电压的平均值作为充电电压;若各电池组的第一电压的平均值不大于第二预设阈值,则将各电池组的第一电压中的最大值作为充电电压。
阀控系统确定充电电压后,将会等待控制系统的可控充电指令。当阀控系统接收到控制系统的可控充电指令后,储能系统进入可控充电阶段,在可控充电阶段,阀控系统会下发闭锁或切除至各功率单元控制器。具体地,阀控系统首先确定母线电压与充电电压的比值,并根据储能系统中各储能模块的总个数与比值的差值确定切除个数,然后阀控系统根据切除个数从各储能模块中确定目标储能模块。例如,阀控系统为需要切除的储能模块,即非目标储能模块的各储能模块下发切除命令,进而需要切除的储能模块的功率单元接收到该切除命令,控制对应的功率单元切除。
更进一步地,阀控系统周期性地获取目标储能模块中功率单元的当前电压,并确定目标储能模块中功率单元的当前电压与充电电压的差值,若差值小于第三预设阈值,则向控制系统发送接入指令;接入指令用于指示将目标储能模块中电池组接入储能系统。当电池组接入储能系统后,阀控系统会向控制系统返回充电完成信号,等待储能系统的解锁。电池控制系统接收到接入命令后,首先控制开关S1闭合,经一定时间判断充电电流在允许范围内,再控制开关S1闭合,开关S2打开实现电池组接入。
需要说明的是,功率单元控制器可以并行获取各电池组的第一电压和功率单元的当前电压至阀控系统。同样地,阀控系统也可以并行获取到各电池组的第一电压和功率单元的当前电压至阀控系统,并自动分别存储。
进一步地,当电池组接入储能系统后,如果在充电电压偏离功率单元的额定电压值一定范围,则阀控系统可以进一步调整切除个数,使得功率单元的当前电压升高到功率单元的额定电压值,从而减小储能系统解锁时刻冲击。
综上所述,本申请提供的接入控制方法,阀控系统能够自适应且动态地调整电池组接入时刻的充电电压,减小电池组接入时的电气冲击。并且电池组接入的整个过程各层级间自动交互,无需人为操作,减少了人工参与判断,灵活性更好、效率更高。
应该理解的是,虽然如上所述的各实施例所涉及的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,如上所述的各实施例所涉及的流程图中的至少一部分步骤可以包括多个步骤或者多个阶段,这些步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤中的步骤或者阶段的至少一部分轮流或者交替地执行。
基于同样的发明构思,本申请实施例还提供了一种用于实现上述所涉及的接入控制方法的接入控制装置。该装置所提供的解决问题的实现方案与上述方法中所记载的实现方案相似,故下面所提供的一个或多个接入控制装置实施例中的具体限定可以参见上文中对于接入控制方法的限定,在此不再赘述。
图13为本申请实施例中接入控制装置的结构框图,如图13所示,在本申请实施例中提供了一种接入控制装置1300,包括:获取模块1301、第一确定模块1302和接入模块1303,其中:
获取模块1301,用于获取储能系统中各储能模块中电池组的第一电压。
第一确定模块1302,用于根据各电池组的第一电压和各储能模块中功率单元的额定电压值,确定各功率单元的充电电压。
接入模块1303,用于根据充电电压控制储能系统中的目标储能模块的电池组接入储能系统。
本申请提供的接入控制装置,通过获取储能系统中各储能模块中电池组的第一电压,并根据各电池组的第一电压和各储能模块中功率单元的额定电压值,确定各功率单元的充电电压,进而根据充电电压控制储能系统中的目标储能模块的电池组接入储能系统。由于本申请能够根据各电池组的第一电压和各储能模块中功率单元的额定电压值,确定各功率单元的充电电压,而且,电池组的第一电压相当于各电池组的实际电压,因此,各功率单元的充电电压综合考虑了各电池组的实际电压和各储能模块中功率单元的额定电压值,进而,根据充电电压控制储能系统中的目标储能模块的电池组接入储能系统时,各电池组的实际电压和各储能模块中功率单元的充电电压是匹配的,从而本申请避免了目前接入电池组的过程中由于电池组的实际电压和功率单元的额定电压值并不匹配,导致在接入电池组过程中给电池组带来冲击、损伤电池组的问题,避免了在接入电池组的过程中损伤电池组。
可选的,第一确定模块1302包括:
第一确定单元,用于根据各电池组的第一电压确定目标电压值。
第二确定单元,用于根据目标电压值和额定电压值,确定充电电压。
可选的,第一确定单元,具体用于将各电池组的第一电压的平均值或最小值确定为目标电压值。
可选的,第二确定单元,还用于若目标电压值大于第一预设阈值,则将额定电压值作为充电电压;第一预设阈值根据额定电压值确定。
可选的,接入控制装置1300还包括:
比较模块,用于若目标电压值不大于第一预设阈值,则将目标电压值与第二预设阈值进行比较,得到比较结果,其中,第二预设阈值根据功率单元的额定电压值确定,第二预设阈值小于第一预设阈值。
第二确定模块,用于根据比较结果确定充电电压。
可选的,第二确定模块包括:
第三确定单元,用于若目标电压值大于第二预设阈值,则将目标电压值作为充电电压。
第四确定单元,用于若目标电压值不大于第二预设阈值,则将最大值作为充电电压;最大值为各电池组的第一电压中的最大值。
可选的,接入控制装置1300还包括:
第三确定模块,用于根据母线电压和充电电压,确定储能模块的切除个数。
第四确定模块,用于根据切除个数从各储能模块中确定目标储能模块。
可选的,接入模块1303包括:
第五确定单元,用于确定目标储能模块中功率单元的当前电压与充电电压的差值。
接入单元,用于根据差值控制目标储能模块中电池组接入储能系统。
可选的,接入单元,具体用于若差值小于第三预设阈值,则向控制系统发送接入指令;接入指令用于指示将目标储能模块中电池组接入储能系统。
可选的,第三确定模块,还用于在接收到控制系统发送的可控充电指令的情况下,根据母线电压和充电电压,确定储能模块的切除个数。
可选的,第三确定模块还包括:
第六确定单元,用于确定母线电压与充电电压的比值;
第七确定单元,用于根据储能系统中各储能模块的总个数与比值的差值确定切除个数。
上述接入控制装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
图14为本申请实施例中计算机设备的内部结构图,在本申请实施例中提供了一种计算机设备,该计算机设备可以是服务器,其内部结构图可以如图14所示。该计算机设备包括通过系统总线连接的处理器、存储器和网络接口。其中,该计算机设备的处理器用于 提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质和内存储器。该非易失性存储介质存储有操作系统、计算机程序和数据库。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的数据库用于存储XX数据。该计算机设备的网络接口用于与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现一种接入控制方法。
本领域技术人员可以理解,图14中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
在一个实施例中,提供了一种计算机设备,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现以下步骤:
获取储能系统中各储能模块中电池组的第一电压;
根据各所述电池组的第一电压和各所述储能模块中功率单元的额定电压值,确定各所述功率单元的充电电压;
根据所述充电电压控制所述储能系统中的目标储能模块的电池组接入所述储能系统。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:
根据各所述电池组的第一电压确定目标电压值;
根据所述目标电压值和所述额定电压值,确定充电电压。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:
将各所述电池组的第一电压的平均值或最小值确定为所述目标电压值。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:
若所述目标电压值大于第一预设阈值,则将所述额定电压值作为所述充电电压;所述第一预设阈值根据所述额定电压值确定。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:
若所述目标电压值不大于所述第一预设阈值,则将所述目标电压值与第二预设阈值进行比较,得到比较结果,其中,所述第二预设阈值根据所述功率单元的额定电压值确定,所述第二预设阈值小于所述第一预设阈值;
根据所述比较结果确定所述充电电压。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:
若所述目标电压值大于所述第二预设阈值,则将所述目标电压值作为所述充电电压;
若所述目标电压值不大于所述第二预设阈值,则将最大值作为所述充电电压;所述最大值为各所述电池组的第一电压中的最大值。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:
根据母线电压和所述充电电压,确定储能模块的切除个数;
根据所述切除个数从各所述储能模块中确定所述目标储能模块。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:
确定所述目标储能模块中功率单元的当前电压与所述充电电压的差值;
根据所述差值控制所述目标储能模块中电池组接入所述储能系统。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:
若所述差值小于第三预设阈值,则向控制系统发送接入指令;所述接入指令用于指示将所述目标储能模块中电池组接入所述储能系统。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:
在接收到控制系统发送的可控充电指令的情况下,根据母线电压和所述充电电压,确定储能模块的切除个数。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:
确定所述母线电压与所述充电电压的比值;
根据所述储能系统中各储能模块的总个数与所述比值的差值确定所述切除个数。
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现以下步骤:
获取储能系统中各储能模块中电池组的第一电压;
根据各所述电池组的第一电压和各所述储能模块中功率单元的额定电压值,确定各所述功率单元的充电电压;
根据所述充电电压控制所述储能系统中的目标储能模块的电池组接入所述储能系统。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:
根据各所述电池组的第一电压确定目标电压值;
根据所述目标电压值和所述额定电压值,确定充电电压。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:
将各所述电池组的第一电压的平均值或最小值确定为所述目标电压值。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:
若所述目标电压值大于第一预设阈值,则将所述额定电压值作为所述充电电压;所述第一预设阈值根据所述额定电压值确定。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:
若所述目标电压值不大于所述第一预设阈值,则将所述目标电压值与第二预设阈值进行比较,得到比较结果,其中,所述第二预设阈值根据所述功率单元的额定电压值确定,所述第二预设阈值小于所述第一预设阈值;
根据所述比较结果确定所述充电电压。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:
若所述目标电压值大于所述第二预设阈值,则将所述目标电压值作为所述充电电压;
若所述目标电压值不大于所述第二预设阈值,则将最大值作为所述充电电压;所述最大值为各所述电池组的第一电压中的最大值。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:
根据母线电压和所述充电电压,确定储能模块的切除个数;
根据所述切除个数从各所述储能模块中确定所述目标储能模块。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:
确定所述目标储能模块中功率单元的当前电压与所述充电电压的差值;
根据所述差值控制所述目标储能模块中电池组接入所述储能系统。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:
若所述差值小于第三预设阈值,则向控制系统发送接入指令;所述接入指令用于指示将所述目标储能模块中电池组接入所述储能系统。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:
在接收到控制系统发送的可控充电指令的情况下,根据母线电压和所述充电电压,确定储能模块的切除个数。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:
确定所述母线电压与所述充电电压的比值;
根据所述储能系统中各储能模块的总个数与所述比值的差值确定所述切除个数。
在一个实施例中,提供了一种计算机程序产品,包括计算机程序,该计算机程序被处理器执行时实现以下步骤:
获取储能系统中各储能模块中电池组的第一电压;
根据各所述电池组的第一电压和各所述储能模块中功率单元的额定电压值,确定各所述功率单元的充电电压;
根据所述充电电压控制所述储能系统中的目标储能模块的电池组接入所述储能系统。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:
根据各所述电池组的第一电压确定目标电压值;
根据所述目标电压值和所述额定电压值,确定充电电压。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:
将各所述电池组的第一电压的平均值或最小值确定为所述目标电压值。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:
若所述目标电压值大于第一预设阈值,则将所述额定电压值作为所述充电电压;所述第一预设阈值根据所述额定电压值确定。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:
若所述目标电压值不大于所述第一预设阈值,则将所述目标电压值与第二预设阈值进行比较,得到比较结果,其中,所述第二预设阈值根据所述功率单元的额定电压值确定,所述第二预设阈值小于所述第一预设阈值;
根据所述比较结果确定所述充电电压。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:
若所述目标电压值大于所述第二预设阈值,则将所述目标电压值作为所述充电电压;
若所述目标电压值不大于所述第二预设阈值,则将最大值作为所述充电电压;所述最大值为各所述电池组的第一电压中的最大值。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:
根据母线电压和所述充电电压,确定储能模块的切除个数;
根据所述切除个数从各所述储能模块中确定所述目标储能模块。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:
确定所述目标储能模块中功率单元的当前电压与所述充电电压的差值;
根据所述差值控制所述目标储能模块中电池组接入所述储能系统。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:
若所述差值小于第三预设阈值,则向控制系统发送接入指令;所述接入指令用于指示将所述目标储能模块中电池组接入所述储能系统。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:
在接收到控制系统发送的可控充电指令的情况下,根据母线电压和所述充电电压,确定储能模块的切除个数。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:
确定所述母线电压与所述充电电压的比值;
根据所述储能系统中各储能模块的总个数与所述比值的差值确定所述切除个数。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和易失性存储器中的至少一种。非易失性存储器可包括只读存储器(Read-Only Memory,ROM)、磁带、软盘、闪存或光存储器等。易失性存储器可包括随机存取存储器(Random Access Memory,RAM)或外部高速缓冲存储器。作为说明而非局限,RAM可以是多种形式,比如静态随机存取存储器(Static Random Access Memory,SRAM)或动态随机存取存储器(Dynamic Random Access Memory,DRAM)等。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (15)

  1. 一种接入控制方法,其特征在于,所述方法包括:
    获取储能系统中各储能模块中电池组的第一电压;
    根据各所述电池组的第一电压和各所述储能模块中功率单元的额定电压值,确定各所述功率单元的充电电压;
    根据所述充电电压控制所述储能系统中的目标储能模块的电池组接入所述储能系统。
  2. 根据权利要求1所述的方法,其特征在于,所述根据各所述电池组的第一电压和所述储能模块中功率单元的额定电压值,确定充电电压,包括:
    根据各所述电池组的第一电压确定目标电压值;
    根据所述目标电压值和所述额定电压值,确定充电电压。
  3. 根据权利要求2所述的方法,其特征在于,所述根据各所述电池组的第一电压确定目标电压值,包括:
    将各所述电池组的第一电压的平均值或最小值确定为所述目标电压值。
  4. 根据权利要求2或3所述的方法,其特征在于,所述根据所述目标电压值和所述额定电压值,确定充电电压,包括:
    若所述目标电压值大于第一预设阈值,则将所述额定电压值作为所述充电电压;所述第一预设阈值根据所述额定电压值确定。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    若所述目标电压值不大于所述第一预设阈值,则将所述目标电压值与第二预设阈值进行比较,得到比较结果,其中,所述第二预设阈值根据所述功率单元的额定电压值确定,所述第二预设阈值小于所述第一预设阈值;
    根据所述比较结果确定所述充电电压。
  6. 根据权利要求5所述的方法,其特征在于,所述根据所述比较结果确定所述充电电压,包括:
    若所述目标电压值大于所述第二预设阈值,则将所述目标电压值作为所述充电电压;
    若所述目标电压值不大于所述第二预设阈值,则将最大值作为所述充电电压;所述最大值为各所述电池组的第一电压中的最大值。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述方法还包括:
    根据母线电压和所述充电电压,确定储能模块的切除个数;
    根据所述切除个数从各所述储能模块中确定所述目标储能模块。
  8. 根据权利要求7所述的方法,其特征在于,所述根据所述充电电压控制所述储能系统中的目标储能模块的电池组接入所述储能系统,包括:
    确定所述目标储能模块中功率单元的当前电压与所述充电电压的差值;
    根据所述差值控制所述目标储能模块中电池组接入所述储能系统。
  9. 根据权利要求8所述的方法,其特征在于,所述根据所述差值控制所述目标储能模块中电池组接入所述储能系统,包括:
    若所述差值小于第三预设阈值,则向控制系统发送接入指令;所述接入指令用于指示将所述目标储能模块中电池组接入所述储能系统。
  10. 根据权利要求7-9任一项所述的方法,其特征在于,所述根据母线电压和所述充电电压,确定储能模块的切除个数,包括:
    在接收到控制系统发送的可控充电指令的情况下,根据母线电压和所述充电电压,确定储能模块的切除个数。
  11. 根据权利要求8-10任一项所述的方法,其特征在于,所述根据母线电压和所述充电电压,确定储能模块的切除个数,包括:
    确定所述母线电压与所述充电电压的比值;
    根据所述储能系统中各储能模块的总个数与所述比值的差值确定所述切除个数。
  12. 一种接入控制装置,其特征在于,所述装置包括:
    获取模块,用于获取储能系统中各储能模块中电池组的第一电压;
    第一确定模块,用于根据各所述电池组的第一电压和各所述储能模块中功率单元的额定电压值,确定各所述功率单元的充电电压;
    接入模块,用于根据所述充电电压控制所述储能系统中的目标储能模块的电池组接入所述储能系统。
  13. 一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求1至11中任一项所述的方法的步骤。
  14. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1至11中任一项所述的方法的步骤。
  15. 一种计算机程序产品,包括计算机程序,其特征在于,该计算机程序被处理器执行时实现权利要求1至11中任一项所述的方法的步骤。
PCT/CN2022/115184 2022-08-26 2022-08-26 接入控制方法、装置、计算机设备和存储介质 WO2024040584A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/115184 WO2024040584A1 (zh) 2022-08-26 2022-08-26 接入控制方法、装置、计算机设备和存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/115184 WO2024040584A1 (zh) 2022-08-26 2022-08-26 接入控制方法、装置、计算机设备和存储介质

Publications (1)

Publication Number Publication Date
WO2024040584A1 true WO2024040584A1 (zh) 2024-02-29

Family

ID=90012189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115184 WO2024040584A1 (zh) 2022-08-26 2022-08-26 接入控制方法、装置、计算机设备和存储介质

Country Status (1)

Country Link
WO (1) WO2024040584A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017114802A1 (en) * 2015-12-29 2017-07-06 Vito Nv Device and method for the reconfiguration of a rechargeable energy storage device into separate battery connection strings
CN107134821A (zh) * 2017-04-18 2017-09-05 上海蔚来汽车有限公司 电动汽车及其低压蓄电池电量管理系统
CN109888809A (zh) * 2019-04-17 2019-06-14 苏州恒电能源动力科技有限公司 一种家用储能电池组自动并联控制方法
CN110758170A (zh) * 2018-07-26 2020-02-07 比亚迪股份有限公司 电池充电的方法、装置、存储介质以及车辆和云服务器
CN110970964A (zh) * 2019-04-24 2020-04-07 宁德时代新能源科技股份有限公司 电池组均衡控制方法、装置、设备和介质
CN112467838A (zh) * 2020-11-23 2021-03-09 阳光电源股份有限公司 储能系统及其能量均衡控制方法、光储一体多机并联系统
CN112910026A (zh) * 2020-12-21 2021-06-04 国网甘肃省电力公司电力科学研究院 一种考虑分布式储能系统电池组均衡性的储能电池充放电方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017114802A1 (en) * 2015-12-29 2017-07-06 Vito Nv Device and method for the reconfiguration of a rechargeable energy storage device into separate battery connection strings
CN107134821A (zh) * 2017-04-18 2017-09-05 上海蔚来汽车有限公司 电动汽车及其低压蓄电池电量管理系统
CN110758170A (zh) * 2018-07-26 2020-02-07 比亚迪股份有限公司 电池充电的方法、装置、存储介质以及车辆和云服务器
CN109888809A (zh) * 2019-04-17 2019-06-14 苏州恒电能源动力科技有限公司 一种家用储能电池组自动并联控制方法
CN110970964A (zh) * 2019-04-24 2020-04-07 宁德时代新能源科技股份有限公司 电池组均衡控制方法、装置、设备和介质
CN112467838A (zh) * 2020-11-23 2021-03-09 阳光电源股份有限公司 储能系统及其能量均衡控制方法、光储一体多机并联系统
CN112910026A (zh) * 2020-12-21 2021-06-04 国网甘肃省电力公司电力科学研究院 一种考虑分布式储能系统电池组均衡性的储能电池充放电方法

Similar Documents

Publication Publication Date Title
EP2294687B1 (en) Battery energy source arrangement and voltage source converter system
EP2814132B1 (en) Parallel accumulator system and method of control thereof
WO2014156564A1 (ja) 蓄電池及び蓄電池の動作方法
KR101837205B1 (ko) 배터리 에너지 저장 시스템 및 그 제어 방법
CN106849288B (zh) 一种电池模组连接电路和储能装置
CN113078714B (zh) 一种储能系统及储能系统控制方法
CN110571886A (zh) 电池系统的电压均衡的控制方法及系统
US11277013B2 (en) Power storage system having a plurality of power storage blocks interconnected in parallel and control device
WO2017132113A1 (en) Energization control for establishing microgrids
JP2015159631A (ja) 蓄電システム、蓄電システムの制御装置および制御方法
EP3985781A1 (en) Parallel battery management method
JP2015534434A (ja) バッテリ管理のための仮想セル法
WO2023029606A1 (zh) 一种电池模组、储能系统及其控制方法
WO2024040584A1 (zh) 接入控制方法、装置、计算机设备和存储介质
CN110739748A (zh) 一种用于切除故障电池的电池组在线均衡电路
CN116317003A (zh) 一种储能系统及其控制方法
CN113824143B (zh) 一种基于h桥级联的电动车退役电池二次利用系统
CN109546695B (zh) 一种电池管理方法和装置、设备和系统
CN114928126A (zh) 电池组的输出控制方法、输出控制装置及储能设备
CN112701693A (zh) 一种电压暂降治理系统、方法、设备和存储介质
CN116094119B (zh) 一种重构的电化学储能系统及方法
CN116317025B (zh) 一种储能系统充放电控制方法及系统
US11855465B1 (en) Full current balancing method of state of charge for energy storage system
CN117375054B (zh) 储能系统高压接入控制方法、储能系统、设备及存储介质
CN219697296U (zh) 能量存储系统、能量转换系统以及电网

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956130

Country of ref document: EP

Kind code of ref document: A1