WO2024038949A1 - Method for manufacturing gear part by using liquid phase sintering, and gear part manufactured thereby - Google Patents

Method for manufacturing gear part by using liquid phase sintering, and gear part manufactured thereby Download PDF

Info

Publication number
WO2024038949A1
WO2024038949A1 PCT/KR2022/014777 KR2022014777W WO2024038949A1 WO 2024038949 A1 WO2024038949 A1 WO 2024038949A1 KR 2022014777 W KR2022014777 W KR 2022014777W WO 2024038949 A1 WO2024038949 A1 WO 2024038949A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
manufacturing
molded body
core body
sintering
Prior art date
Application number
PCT/KR2022/014777
Other languages
French (fr)
Korean (ko)
Inventor
엄익두
이상민
박수경
민원식
이수훈
Original Assignee
유한회사 두리
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 유한회사 두리 filed Critical 유한회사 두리
Publication of WO2024038949A1 publication Critical patent/WO2024038949A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/08Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of toothed articles, e.g. gear wheels; of cam discs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium

Definitions

  • the present invention relates to a manufacturing method of gear parts and gear parts manufactured by the manufacturing method.
  • it can be manufactured by performing heterogeneous bonding using liquid phase sintering.
  • the method of manufacturing gears involves manufacturing metal rods through several processes such as mechanical processing and heat treatment, which requires a lot of manpower and time, resulting in increased manufacturing costs and high unit costs.
  • the raw material cost of the gear manufacturing method by powder metallurgy is approximately 1.5 times more expensive than that of metal powder, and the more alloying of the metal powder, the higher the raw material cost. This difference makes it difficult to secure price competitiveness in manufacturing costs compared to existing methods, even if manufacturing costs are reduced due to simplification of the manufacturing process.
  • Korean Patent Publication No. 10-1522513 a prior art, discloses a manufacturing method for manufacturing helical gears by sintering metal powder.
  • the purpose of the present invention is to provide a manufacturing method of gear parts that can reduce raw material and processing costs, and gear parts manufactured by the manufacturing method.
  • carbon emissions can be reduced because additional heat treatment processes to secure physical properties are not required.
  • a method for manufacturing gear parts includes preparing iron-based powder metallurgy powder; Forming a molded body including a hollow body and teeth disposed on the outer peripheral surface by molding the powder metallurgy powder; Preparing a core body made of bulk metal and assembling the core body so that the core body is disposed in the hollow of the molded body; and sintering the assembled molded body and core body.
  • the powder metallurgy powder may contain 0.5 to 10.0% chromium (Cr) and 0.5 to 3.0% carbon (C) based on the total weight of the powder metallurgy powder.
  • the molding pressure may be 5.5 to 7.5 ton/cm 2 .
  • the molding density of the molded body may be 5.5 to 6.5 g/cm 3
  • the sintered density of the sintered body produced by sintering the molded body may be 7.0 to 8.0 g/cm 3 .
  • the powder metallurgy powder of the molded body may be liquid-phase sintered.
  • Gear parts according to embodiments of the present invention are manufactured by the manufacturing method described above.
  • the manufacturing method of gear parts according to an embodiment of the present invention can reduce raw material and processing costs in manufacturing gear parts.
  • carbon emissions can be reduced because additional heat treatment processes to secure physical properties are not required.
  • gear parts manufactured by the above manufacturing method have excellent physical properties such as sintered density and hardness.
  • Figures 2(a) to (d) are photographs of the boundaries of the sintered body and the core body among the gear parts manufactured in Examples 1 to 4, respectively.
  • Figures 3(a) to (e) are photographs of the boundaries of the sintered body and the core body among the gear parts manufactured in Examples 5 to 9, respectively.
  • a method for manufacturing gear parts includes preparing iron-based powder metallurgy powder; Forming a molded body including a hollow body and teeth disposed on the outer peripheral surface by molding the powder metallurgy powder; Preparing a core body made of bulk metal and assembling the core body so that the core body is disposed in the hollow of the molded body; and sintering the assembled molded body and core body.
  • the step of preparing the iron-based powder metallurgy powder can be prepared by purchasing or manufacturing the powder metallurgy powder. In this case, it can be prepared by mixing various types of powder.
  • the powder metallurgy powder may be a powder containing iron (Fe) as a main component, and may further include components such as chromium (Cr), nickel (Ni), molybdenum (Mo), and carbon (C). , it may further contain unavoidably added impurities.
  • the powder metallurgy powder may be one in which all elements such as chromium (Cr), nickel (Ni), molybdenum (Mo), carbon (C), and the balance iron (Fe) are included in one particle. In another embodiment, it may be a mixture of iron-based powder and powder containing other ingredients. In a preferred embodiment, the powder metallurgy powder may be any one of MetaMixs-1CR, MetaMixs-3CR, MetaMixs-4CR, and MetaMixs-8CR manufactured by Metacomposites.
  • the chromium (Cr) is used to provide hardness above a certain level to gear parts.
  • the content of chromium (Cr) may be 0.5 to 10.0%, preferably 0.8 to 8.5%, and more preferably 3.5 to 8.5%, based on the total weight of the powder metallurgy powder. If the content of chromium (Cr) is too low, there is a problem that the hardness of the sintered body formed by sintering the molded body is lowered. In particular, when the chromium (Cr) content is less than 0.8%, it is difficult to satisfy Rockwell C scale of 40 or higher. Conversely, if the chromium (Cr) content is too high, the molding pressure to form the molded body increases excessively, raw material costs increase, and there may be problems of defects and accidents.
  • the carbon (C) is used to improve the sintering characteristics of the molded body. More specifically, the carbon (C) can perform the function of causing liquid phase sintering when the molded body is sintered at 1000 to 1250°C.
  • Liquid phase sintering means liquefying powder metallurgy powder to accelerate sintering between particles and densification.
  • carbon (C) in the powder metallurgy powder higher hardness can be obtained compared to the case of performing conventional solid-state sintering by sintering the iron-based powder metallurgy powder at 1000 to 1250 ° C.
  • the bonding strength with the core body can be improved.
  • liquid sintering is possible at a low temperature, thereby solving problems such as occurrence of defects and increased process costs.
  • the content of carbon (C) may be 0.5 to 3.0%, preferably 1.5 to 2.5%, and more preferably 2.14 to 2.5% based on the total weight of the powder metallurgy powder. If the carbon (C) content is too low, liquid phase sintering does not occur, resulting in a decrease in sintered density and hardness. Conversely, if the carbon (C) content is too high, carbon (C) is not evenly dispersed in the powder metallurgy powder, so sintering does not occur evenly, and there is a problem that physical properties vary depending on the area.
  • the molybdenum (Mo) and nickel (Ni) function to increase the hardness of the sintered body.
  • the content of each component may be 0.1 to 5.0% for molybdenum (Mo) and 0.1 to 5.0% for nickel (Ni), based on the total weight of the powder metallurgy powder. If the content of molybdenum (Mo) and nickel (Ni) is higher than the corresponding content, the hardness of the powder particles increases, causing a problem of increasing the molding pressure, and the friction between powders increases, leading to a problem of having to further increase the content of lubricant. there is. If the content of molybdenum (Mo) and nickel (Ni) is lower than the corresponding content, there is a problem that the hardness of the sintered body is lowered.
  • the step of molding the powder metallurgy powder to form a molded body including a hollow body and teeth disposed on the outer peripheral surface is a step of manufacturing a molded body that maintains a constant shape by applying a certain pressure to the powder metallurgy powder.
  • This step can be performed by filling a mold with a certain shape with the powder metallurgy powder and then pressing the mold with molding pressure.
  • the molding pressure is a value that allows the molding density of the molded body to reach a specific range described below, and may be 5.5 to 7.5 ton/cm 2 , preferably 5.8 to 6.2 ton/cm 2 . If the molding pressure is too low, the bonding force between the powders decreases, making it difficult to maintain the shape, and there is a problem that the molding density varies depending on the molding area. If the molding pressure is too high, the shrinkage rate decreases during sintering, which reduces the bonding force with the core body, and excessive force is applied to the mold, which can cause mold damage and increase manufacturing costs.
  • the process temperature and time may vary depending on the components of the powder metallurgy powder or the size of the part being manufactured. In one embodiment, this step can be performed at room temperature, preferably between 15 and 30°C.
  • the molded body manufactured in this step has a lower molding density compared to the sintered density of the sintered body obtained by sintering the molded body.
  • the molding density may be 0.68 to 0.93, preferably 0.75 to 0.85, relative to the sintered density, and the molding density may be 5.5 to 6.5 g/cm 3 , preferably 5.7 to 6.0 g/cm 3 . If the molding density is low, it is easy to break when ejected and it is difficult to maintain the shape of the product. If the molding density is high, the shrinkage rate may decrease, which may result in poor bonding between the molded body and the core body, and high pressure must be applied during molding, which increases process costs and increases the incidence of defects.
  • the shape or size of the molded body is not particularly limited. However, the thickness suitable for manufacturing a more precise shape may be 15 to 25 mm. Additionally, the inner diameter may be 25 to 40 mm, and the outer diameter based on the outermost angle of the teeth may be 35 to 50 mm.
  • the step of assembling the core body so that it is placed in the hollow of the molded body is a step of arranging the core body and the molded body at a position for joining.
  • the core body may be made of various metals or alloys, and may preferably be made of steel or carbon steel.
  • the core body may have already been manufactured through a sintering process, or may be manufactured through a forging or rolling process, and the subsequent sintering process causes shrinkage within 1% by volume, preferably within 0.5%. You can.
  • the core body may have a donut shape with a hollow interior, but its shape or size is not particularly limited.
  • the outer diameter of the core body may be 99 to 99.7% of the inner diameter of the core body.
  • the outer diameter of the core body may be 24.7 to 39.6 mm.
  • the thickness of the molded body may be 15 to 30 mm and the inner diameter may be 15 to 20 mm. In this way, by setting the length ratio of the outer diameter of the core body and the inner diameter of the molded body, the bonding force between the core body and the molded body can be improved.
  • the step of sintering the assembled molded body and the core body is a step of converting the molded body into a sintered body and shrinking its volume to control the size of the molded body and contacting the molded body and the core body.
  • This step can be performed at a temperature of 1000 to 1250°C, preferably 1135 to 1200°C. If the sintering temperature is too high, there is a problem that the shape of the molded body is deformed and the process cost increases, and if the sintering temperature is too low, there is a problem that sintering density and hardness are lowered due to solid-phase sintering instead of liquid-phase sintering. In one embodiment, this step may be performed in a reducing atmosphere with a hydrogen:nitrogen volume ratio of 1:9. Although not particularly limited, this step can be performed for 20 minutes to 1 hour.
  • the molded body can be formed into a sintered body by liquid phase sintering.
  • a high shrinkage rate of the molded body can be secured during sintering by liquid-phase sintering of the powder metallurgy powder, and the sintered body can be made to have high sintered density and hardness after sintering is completed.
  • the sintering density of the sintered body produced by sintering the molded body is higher than the molding density of the molded body.
  • sintering may be performed so that the molding density is 0.68 to 0.93 times the sintered density, preferably 0.75 to 0.85 times.
  • the sintering density of the sintered body may be 7.0 to 8.0 g/cm 3 , preferably 7.4 g/cm 3 or more.
  • the hardness may be 40 or higher on the Rockwell C scale.
  • Example 1 MetaMixs-FE, an iron-based powder from Metacomposite (Korea) as a powder metallurgy powder (2.4% carbon and the balance iron based on the total weight of the powder), was placed in a mold and pressed in a 200 Ton press from Jeonghwa Press Co., Ltd. (Korea).
  • the molding pressure was set to 6.0 Ton/cm2 per unit area, and a molded product was manufactured with an outer diameter of 40.7 mm, an inner diameter of 32.1 mm, and a height of 18.5 mm.
  • the molding density of the molded product was measured using MD-300S from AlfaMirage (Japan), and the appearance of the molded product was observed with the naked eye.
  • the sintered density of the sintered body was measured using MD-300S from AlfaMirage (Japan), and the hardness was measured using a Rockwell hardness tester HR-521 from Mitutoyo (Japan).
  • Example 2 Same as Example 1, except that MetaMixs-0.85Mo, an iron-based powder from Metacomposites (Korea) (0.88% molybdenum, 2.4% carbon, and the balance iron based on the total weight of the powder) was used as the powder metallurgy powder. It was prepared and measured properly.
  • Korea an iron-based powder from Metacomposites
  • Example 3 The same as Example 1, except that MetaMixs-1CR, an iron-based powder from Metacomposites (Korea) (0.9% chromium, 2.4% carbon, and the balance iron based on the total weight of the powder) was used as the powder metallurgy powder. Prepared and measured.
  • Example 4 The same as Example 1, except that MetaMixs-3CR, an iron-based powder from Metacomposites (Korea) (3.0% chromium, 2.4% carbon, and the balance iron based on the total weight of the powder) was used as the powder metallurgy powder. Prepared and measured.
  • Example 5 The same as Example 1, except that MetaMixs-4CR, an iron-based powder from Metacomposites (Korea) (4.2% chromium, 2.4% carbon, and the balance iron based on the total weight of the powder) was used as the powder metallurgy powder. Prepared and measured.
  • Example 6 The same as Example 1, except that MetaMixs-8CR, an iron-based powder from Metacomposites (Korea) (8.1% chromium, 2.4% carbon, and the balance iron based on the total weight of the powder) was used as the powder metallurgy powder. Prepared and measured.
  • Example 7 The same as Example 1, except that MetaMixs-12CR, an iron-based powder from Metacomposites (Korea) (12.4% chromium, 2.4% carbon, and the balance iron based on the total weight of the powder) was used as the powder metallurgy powder. Prepared and measured.
  • Example 8 The same as Example 1, except that MetaMixs-16CR, an iron-based powder from Metacomposites (Korea) (16.4% chromium, 2.4% carbon, and the balance iron based on the total weight of the powder) was used as the powder metallurgy powder. Prepared and measured.
  • Example 9 The same as Example 1, except that MetaMixs-17CR, an iron-based powder from Metacomposites (Korea) (16.9% chromium, 2.4% carbon, and the balance iron based on the total weight of the powder) was used as the powder metallurgy powder. Prepared and measured.
  • Example 10 Example 1, except that MetaMixs-8CR-LC, an iron-based powder from Metacomposites (Korea) (8.1% chromium, 1.5% carbon, and the balance iron based on the total weight of the powder) was used as the powder metallurgy powder. It was prepared and measured in the same way.
  • Korea an iron-based powder from Metacomposites
  • MetaMixs-8CR an iron-based powder from Metacomposites (Korea) (8.0% chromium, 2.4% carbon, and the balance iron based on the total weight of the powder), was used as a powder metallurgy powder, with an outer diameter of 40.7 mm, an inner diameter of 21 mm, and a height of 18.5 mm. It was molded in mm and manufactured and measured in the same manner as in Example 1, except that the core body was not used.
  • Example 1 Example 1 and Example 1, except that MetaMixs-8CR-REF (8.1% chromium, 0.03% carbon and the balance iron based on the total weight of the powder), an iron-based powder from Metacomposites (Korea), was used as the powder metallurgy powder. It was prepared and measured in the same way.
  • MetaMixs-8CR-REF 8.1% chromium, 0.03% carbon and the balance iron based on the total weight of the powder
  • an iron-based powder from Metacomposites Korea
  • Comparative Example 3 Manufactured in the same manner as in Example 1, except that 89.34.03 Intralube HD (carbon 0.42%, molybdenum 0.83% and the balance iron based on the total weight of the powder) from Hoganas (Sweden) was used as the powder metallurgy powder. Measured.
  • Comparative Example 4 Powder metallurgy powder 89.34.03 Intralube HD from Hoganas (Sweden) (0.42% carbon, 0.83% molybdenum, and the balance iron based on the total weight of the powder) and F-10 from Imery, an artificial graphite, were mixed to the total weight of the powder. It was prepared and measured in the same manner as in Example 1, except that it was added to 2.80% of .
  • Comparative Example 5 Manufactured and measured in the same manner as Example 1, except that the molding pressure was set to 5.0 ton/cm 2 .
  • Comparative Example 6 Manufactured and measured in the same manner as Example 1, except that the molding pressure was set to 8.0 ton/cm 2 .
  • Figures 2(a) to (d) are photographs of the boundaries of the sintered body and the core body among the gear parts manufactured in Examples 1 to 4, respectively, and Figures 3(a) to (e) are photographs of the boundaries of the gear parts manufactured in Examples 5 to 9, respectively.
  • This is a photo of the boundary between the sintered body and the core body among the gear parts manufactured in . Photographed at a magnification of 500 using MA-100 from Nikon (Japan). Based on the boundary shown in each photo, the upper part is the sintered body and the lower part is the core body.
  • Example 1 2.4 6.0 Core body + sintered body combined structure Good 6.62 7.710 36.3
  • Example 2 2.4 6.0 Core body + sintered body combined structure Good 6.47 7.687 38.9
  • Example 3 2.4 6.0 Core body + sintered body combined structure Good 6.073 7.643 40.9
  • Example 4 2.4 6.0 Core body + sintered body combined structure Good 6.013 7.737 44.3
  • Example 5 2.4 6.0 Core body + sintered body combined structure Good 5.983 7.656 50.3
  • Example 6 2.4 6.0 Core body + sintered body combined structure Good 5.983 7.656 59.7
  • Example 7 2.4 6.0 Core body + sintered body combined structure Good 6.01 7.56 40.8
  • Example 8 2.4 6.0 Core body + sintered body combined structure Good 5.955 7.563 43
  • Example 9 2.4 6.0 Core body + sintered body combined structure Good 5.883 7.513 39.8
  • Example 10 Example 10
  • Comparative Example 1 is a case in which no core body was used inside, and distortion occurred because the sintered area was too large. Additionally, excessive shrinkage occurred, resulting in poor dimensional accuracy after sintering. Comparative Examples 2 and 3 contained less than 0.5% of carbon and did not contain chromium, so the molding density was high and the shrinkage rate was low, resulting in low sintered density and hardness.
  • Comparative Example 4 contained a carbon content of 3.22%, and although the hardness was high, some bubbles were observed due to the high carbon content making uniform mixing difficult.
  • Comparative Example 5 when the molding pressure was low, the powder metallurgy powder of the molded product was weakly bonded, and the teeth were broken during the demolding operation to remove the molded product from the mold. Comparative Example 6 is a case where the molding pressure was too high, and excessive pressure was applied to the surface of the molded product, and small scratches were observed on the surface. Pores were also observed in the sintered body.
  • the molding density of Examples 5 and 6 was measured to be 6.0 g/cm 3 or less, which shows that the sintered density and hardness are excellent.
  • Examples 7 to 9 as the chromium content exceeded 10%, the sintered density and hardness tended to decrease.
  • the carbon content is suitable to be 0.5 to 3.0% based on the total weight of the powder metallurgy powder, and that the process of heterogeneous bonding by placing a core body inside is preferable.
  • the content of chromium is preferably 0.5 to 10.0%, and most preferably 3.5 to 8.5%, based on the total weight of the powder metallurgy powder.

Abstract

The present invention relates to a method for manufacturing a gear part, and a gear part manufactured thereby. The method for manufacturing a gear part according to an embodiment of the present invention comprises the steps of: preparing iron-based powder for powder metallurgy; forming a molded body including a hollow part and teeth disposed on the outer peripheral surface thereof by molding the powder for powder metallurgy; preparing a core body made of bulk metal and assembling the core body such that the core body is disposed in the hollow part of the molded body; and sintering the assembled molded body and core body.

Description

액상소결을 이용한 기어 부품의 제조 방법 및 그 제조 방법에 의해 제조된 기어 부품Manufacturing method of gear parts using liquid sintering and gear parts manufactured by the manufacturing method
본 발명은 기어 부품의 제조 방법 및 그 제조 방법에 의해 제조된 기어 부품에 관한 것이다. 일 실시 예에서 액상소결을 이용하여 이종접합을 수행하여 제조할 수 있다.The present invention relates to a manufacturing method of gear parts and gear parts manufactured by the manufacturing method. In one embodiment, it can be manufactured by performing heterogeneous bonding using liquid phase sintering.
일반적으로 기어를 제조하는 방법은 금속봉을 기계적 가공과 열처리 등의 여러 공정으로 제조하며, 많은 인력과 시간이 소요되므로, 제조 비용이 증가하여 단가가 높은 문제가 있다.In general, the method of manufacturing gears involves manufacturing metal rods through several processes such as mechanical processing and heat treatment, which requires a lot of manpower and time, resulting in increased manufacturing costs and high unit costs.
이러한 문제를 해결하기 위해 제조 공정이 단순하고, 자동화가 가능하여 제조 단가가 낮은 분말야금에 의한 기어 제조 방법이 개발되고 있으나, 기존 공법에 비해 물리적인 특성, 즉 소결 밀도와 경도가 낮아 기어 제품 적용에 어려움이 있다.To solve this problem, a gear manufacturing method using powder metallurgy is being developed, which has a simple manufacturing process, can be automated, and has a low manufacturing cost. However, compared to the existing method, the physical properties, i.e., sintering density and hardness, are lower, so it is applied to gear products. There is difficulty in
또한, 분말야금에 의한 기어 제조방법의 원재료비는 금속분말이 대략 1.5배 정도 비싸며, 금속분말의 합금화가 많을수록 원재료비가 상승하게 된다. 이러한 차이는 제조 공정의 단순화로 제조 단가가 감소되더라도, 기존 공법에 비해 제조 단가의 가격경쟁력을 확보하기 어렵다.In addition, the raw material cost of the gear manufacturing method by powder metallurgy is approximately 1.5 times more expensive than that of metal powder, and the more alloying of the metal powder, the higher the raw material cost. This difference makes it difficult to secure price competitiveness in manufacturing costs compared to existing methods, even if manufacturing costs are reduced due to simplification of the manufacturing process.
선행기술인 한국 등록특허공보 제10-1522513호는 금속분말을 소결하여 헬리컬기어를 제조하는 제조방법을 개시하고 있다. Korean Patent Publication No. 10-1522513, a prior art, discloses a manufacturing method for manufacturing helical gears by sintering metal powder.
본 발명은 원재료 및 가공 공정 비용의 절감이 가능한 기어 부품의 제조 방법 및 그 제조 방법에 의해 제조된 기어 부품을 제공함을 목적으로 한다. The purpose of the present invention is to provide a manufacturing method of gear parts that can reduce raw material and processing costs, and gear parts manufactured by the manufacturing method.
또한, 공정이 단순하고 제조비용을 절약할 수 있다. Additionally, the process is simple and manufacturing costs can be saved.
또한, 크기가 큰 기어 부품을 제조하더라도 소결되는 부분이 적은 바, 뒤틀림 등의 변형을 방지할 수 있다.In addition, even if large-sized gear parts are manufactured, only a small number of parts are sintered, so deformation such as distortion can be prevented.
또한, 물성 확보를 위한 추가적인 열처리 공정이 필요하지 않기 때문에 탄소 배출을 줄일 수 있다. Additionally, carbon emissions can be reduced because additional heat treatment processes to secure physical properties are not required.
또한, 성형체의 높은 수축율을 확보하여 성형체와 코어체의 이종접합 간의 강한 결합이 가능하다. In addition, by securing a high shrinkage rate of the molded body, a strong bond between the heterojunction of the molded body and the core body is possible.
또한, 소결밀도 및 경도 등의 물성이 우수하다. In addition, it has excellent physical properties such as sintered density and hardness.
본 발명의 실시 예를 따르는 기어 부품의 제조 방법은, 철계 분말야금분말을 준비하는 단계; 상기 분말야금분말을 성형하여 중공 및 외주면에 배치된 톱니를 포함하는 성형체를 형성하는 단계; 벌크금속제로된 코어체를 준비하고, 상기 코어체가 상기 성형체의 중공에 배치되도록 조립하는 단계; 및 상기 조립된 성형체 및 코어체를 소결하는 단계를 포함한다. A method for manufacturing gear parts according to an embodiment of the present invention includes preparing iron-based powder metallurgy powder; Forming a molded body including a hollow body and teeth disposed on the outer peripheral surface by molding the powder metallurgy powder; Preparing a core body made of bulk metal and assembling the core body so that the core body is disposed in the hollow of the molded body; and sintering the assembled molded body and core body.
상기 분말야금분말은 분말야금분말 전체 중량에 대하여 크롬(Cr)을 0.5 내지10.0% 및 탄소(C)를 0.5 내지 3.0% 포함할 수 있다.The powder metallurgy powder may contain 0.5 to 10.0% chromium (Cr) and 0.5 to 3.0% carbon (C) based on the total weight of the powder metallurgy powder.
상기 성형체를 형성하는 단계에서 성형압력은 5.5 내지 7.5 ton/cm2일 수 있다. In the step of forming the molded body, the molding pressure may be 5.5 to 7.5 ton/cm 2 .
상기 성형체를 형성하는 단계에서 상기 성형체의 성형밀도는 5.5 내지 6.5 g/cm3이고, 상기 소결하는 단계에서 상기 성형체가 소결하여 생성된 소결체의 소결밀도는 7.0 내지 8.0 g/cm3일 수 있다. In the step of forming the molded body, the molding density of the molded body may be 5.5 to 6.5 g/cm 3 , and in the sintering step, the sintered density of the sintered body produced by sintering the molded body may be 7.0 to 8.0 g/cm 3 .
상기 소결하는 단계에서 상기 성형체의 분말야금분말은 액상소결될 수 있다.In the sintering step, the powder metallurgy powder of the molded body may be liquid-phase sintered.
본 발명의 실시 예를 따르는 기어 부품은 앞서 설명한 제조 방법에 의해 제조된 것이다. Gear parts according to embodiments of the present invention are manufactured by the manufacturing method described above.
본 발명의 실시 예를 따르는 기어 부품의 제조 방법은 기어 부품을 제조함에 있어서 원재료 및 가공 공정 비용의 절감이 가능하다.The manufacturing method of gear parts according to an embodiment of the present invention can reduce raw material and processing costs in manufacturing gear parts.
또한, 공정이 단순하고 제조비용을 절약할 수 있다. Additionally, the process is simple and manufacturing costs can be saved.
또한, 크기가 큰 기어 부품을 제조하더라도 소결되는 부분이 적은 바, 뒤틀림 등의 변형을 방지할 수 있다.In addition, even if large-sized gear parts are manufactured, only a small number of parts are sintered, so deformation such as distortion can be prevented.
또한, 물성 확보를 위한 추가적인 열처리 공정이 필요하지 않기 때문에 탄소 배출을 줄일 수 있다. Additionally, carbon emissions can be reduced because additional heat treatment processes to secure physical properties are not required.
또한, 성형체의 높은 수축율을 확보하여 성형체와 코어체의 이종접합 간의 강한 결합이 가능하다. In addition, by securing a high shrinkage rate of the molded body, a strong bond between the heterojunction of the molded body and the core body is possible.
또한, 상기 제조 방법으로 제조된 기어 부품은 소결밀도 및 경도 등의 물성이 우수하다. In addition, gear parts manufactured by the above manufacturing method have excellent physical properties such as sintered density and hardness.
도 1(a) 내지 (c)는 각각 실시 예6에서 제조한 성형체, 코어체 및 소결체와 코어체가 결합된 기어 부품의 사진이다. 1(a) to (c) are photographs of the molded body, the core body, and the gear parts in which the sintered body and the core body are combined, respectively, manufactured in Example 6.
도 2(a) 내지 (d)는 각각 실시 예1 내지 4에서 제조된 기어 부품 중 소결체 및 코어체의 경계를 촬영한 사진이다. Figures 2(a) to (d) are photographs of the boundaries of the sintered body and the core body among the gear parts manufactured in Examples 1 to 4, respectively.
도 3(a) 내지 (e)는 각각 실시 예5 내지 9에서 제조된 기어 부품 중 소결체 및 코어체의 경계를 촬영한 사진이다.Figures 3(a) to (e) are photographs of the boundaries of the sintered body and the core body among the gear parts manufactured in Examples 5 to 9, respectively.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 형태들을 다음과 같이 설명한다. 그러나, 본 발명의 실시 형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다. 또한, 본 발명의 실시 형태는 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다. 명세서 전체에서 어떤 구성요소를 "포함"한다는 것은 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있다는 것을 의미한다. Hereinafter, preferred embodiments of the present invention will be described with reference to the attached drawings. However, the embodiments of the present invention may be modified into various other forms, and the scope of the present invention is not limited to the embodiments described below. Additionally, the embodiments of the present invention are provided to more completely explain the present invention to those with average knowledge in the relevant technical field. Throughout the specification, “including” an element means that other elements may be further included rather than excluding other elements, unless specifically stated otherwise.
본 발명의 실시 예를 따르는 기어 부품의 제조 방법은, 철계 분말야금분말을 준비하는 단계; 상기 분말야금분말을 성형하여 중공 및 외주면에 배치된 톱니를 포함하는 성형체를 형성하는 단계; 벌크금속제로된 코어체를 준비하고, 상기 코어체가 상기 성형체의 중공에 배치되도록 조립하는 단계; 및 상기 조립된 성형체 및 코어체를 소결하는 단계를 포함한다. A method for manufacturing gear parts according to an embodiment of the present invention includes preparing iron-based powder metallurgy powder; Forming a molded body including a hollow body and teeth disposed on the outer peripheral surface by molding the powder metallurgy powder; Preparing a core body made of bulk metal and assembling the core body so that the core body is disposed in the hollow of the molded body; and sintering the assembled molded body and core body.
상기 철계 분말야금분말을 준비하는 단계는 분말야금분말을 구입하거나 제조하여 준비할 수 있다. 이경우, 다양한 종류의 분말을 혼합하여 준비할 수 있다. The step of preparing the iron-based powder metallurgy powder can be prepared by purchasing or manufacturing the powder metallurgy powder. In this case, it can be prepared by mixing various types of powder.
상기 분말야금분말은 철(Fe)을 주된 성분으로 포함하는 분말일 수 있으며, 여기에 크롬(Cr), 니켈(Ni), 몰리브덴(Mo), 탄소(C) 등의 성분을 더 포함할 수 있고, 불가피하게 첨가되는 불순물을 더 포함할 수 있다. The powder metallurgy powder may be a powder containing iron (Fe) as a main component, and may further include components such as chromium (Cr), nickel (Ni), molybdenum (Mo), and carbon (C). , it may further contain unavoidably added impurities.
상기 분말야금분말은 하나의 입자에 크롬(Cr), 니켈(Ni), 몰리브덴(Mo), 탄소(C) 및 잔부 철(Fe) 등의 원소가 모두 포함된 형태의 것일 수 있다. 다른 실시 예에서는 철계 분말과 다른 성분을 포함하는 분말이 혼합된 형태의 것일 수 있다. 바람직한 실시 예에서, 상기 분말야금분말은 메타컴포지트 사의 MetaMixs-1CR, MetaMixs-3CR, MetaMixs-4CR, MetaMixs-8CR 중 어느 하나일 수 있다. The powder metallurgy powder may be one in which all elements such as chromium (Cr), nickel (Ni), molybdenum (Mo), carbon (C), and the balance iron (Fe) are included in one particle. In another embodiment, it may be a mixture of iron-based powder and powder containing other ingredients. In a preferred embodiment, the powder metallurgy powder may be any one of MetaMixs-1CR, MetaMixs-3CR, MetaMixs-4CR, and MetaMixs-8CR manufactured by Metacomposites.
상기 크롬(Cr)은 기어 부품에 일정 수준 이상의 경도를 부여하기 위한 것이다. The chromium (Cr) is used to provide hardness above a certain level to gear parts.
상기 크롬(Cr)의 함량은 분말야금분말 전체 중량에 대하여 0.5 내지 10.0%, 바람직하게는 0.8 내지 8.5%, 보다 바람직하게는 3.5 내지 8.5%일 수 있다. 크롬(Cr)의 함량이 너무 낮은 경우에는 상기 성형체가 소결되어 형성된 소결체의 경도가 낮아지는 문제가 있다. 특히, 크롬(Cr)의 함량이 0.8% 미만인 경우에는 로크웰 C스케일 40 이상을 만족하기 어렵다. 반대로, 크롬(Cr)의 함량이 너무 높은 경우에는 성형체를 형성하기 위한 성형압력이 과도하게 상승하며, 원재료비가 상승하고 불량 발생 및 사고 발생의 문제가 있을 수 있다. The content of chromium (Cr) may be 0.5 to 10.0%, preferably 0.8 to 8.5%, and more preferably 3.5 to 8.5%, based on the total weight of the powder metallurgy powder. If the content of chromium (Cr) is too low, there is a problem that the hardness of the sintered body formed by sintering the molded body is lowered. In particular, when the chromium (Cr) content is less than 0.8%, it is difficult to satisfy Rockwell C scale of 40 or higher. Conversely, if the chromium (Cr) content is too high, the molding pressure to form the molded body increases excessively, raw material costs increase, and there may be problems of defects and accidents.
상기 탄소(C)는 상기 성형체의 소결특성을 향상하기 위한 것이다. 보다 구체적으로, 상기 탄소(C)는 상기 성형체를 1000 내지 1250℃ 로 소결 시 액상소결이 일어나도록 하는 기능을 수행할 수 있다. 액상소결이란 분말야금분말을 액상화하여 입자간의 소결을 가속화하고 치밀화하는 것을 의미한다. 일 실시 예에서, 상기 분말야금분말에 탄소(C)를 더 포함하도록 함으로써, 철계 분말야금분말을 1000 내지 1250℃에서 소결하여 통상적인 고상소결을 수행하는 경우에 비하여 높은 경도를 얻을 수 있고, 상기 코어체와의 접합력을 향상시킬 수 있다. 또한, 탄소(C)를 더 포함함으로 인하여 낮은 온도에서 액상소결이 가능하기 때문에 불량 발생, 공정 비용 증가 등의 문제를 해결할 수 있다. The carbon (C) is used to improve the sintering characteristics of the molded body. More specifically, the carbon (C) can perform the function of causing liquid phase sintering when the molded body is sintered at 1000 to 1250°C. Liquid phase sintering means liquefying powder metallurgy powder to accelerate sintering between particles and densification. In one embodiment, by further including carbon (C) in the powder metallurgy powder, higher hardness can be obtained compared to the case of performing conventional solid-state sintering by sintering the iron-based powder metallurgy powder at 1000 to 1250 ° C. The bonding strength with the core body can be improved. In addition, by including more carbon (C), liquid sintering is possible at a low temperature, thereby solving problems such as occurrence of defects and increased process costs.
상기 탄소(C)의 함량은 분말야금분말 전체 중량에 대하여 0.5 내지 3.0%, 바람직하게는 1.5 내지 2.5%, 보다 바람직하게는 2.14 내지 2.5%일 수 있다. 상기 탄소(C)의 함량이 너무 낮은 경우에는 액상소결이 일어나지 않아 소결밀도 및 경도가 감소하는 문제가 있다. 반대로, 상기 탄소(C)의 함량이 너무 높은 경우에는 탄소(C)가 분말야금분말 중에 고르게 분산되지 않아 소결이 고르게 일어나지 않으며 부위에 따라 물성이 달라지는 문제가 있다. The content of carbon (C) may be 0.5 to 3.0%, preferably 1.5 to 2.5%, and more preferably 2.14 to 2.5% based on the total weight of the powder metallurgy powder. If the carbon (C) content is too low, liquid phase sintering does not occur, resulting in a decrease in sintered density and hardness. Conversely, if the carbon (C) content is too high, carbon (C) is not evenly dispersed in the powder metallurgy powder, so sintering does not occur evenly, and there is a problem that physical properties vary depending on the area.
상기 몰리브덴(Mo) 및 니켈(Ni)은 소결체의 경도를 높이는 기능을 수행한다. The molybdenum (Mo) and nickel (Ni) function to increase the hardness of the sintered body.
각 성분의 함량은 분말야금분말 전체 중량을 기준으로 할 때, 몰리브덴(Mo) 0.1 내지 5.0%, 니켈(Ni) 0.1 내지 5.0%일 수 있다. 상기 몰리브덴(Mo) 및 니켈(Ni)의 함량이 해당 함량보다 높은 경우에는 분말 입자의 경도가 상승하여, 성형압력을 높이는 문제가 있고, 분말 사이의 마찰이 커져 윤활제의 함량을 더 높여야 하는 문제가 있다. 상기 몰리브덴(Mo) 및 니켈(Ni)의 함량이 해당 함량보다 낮은 경우에는 소결체의 경도가 낮아지는 문제가 있다.The content of each component may be 0.1 to 5.0% for molybdenum (Mo) and 0.1 to 5.0% for nickel (Ni), based on the total weight of the powder metallurgy powder. If the content of molybdenum (Mo) and nickel (Ni) is higher than the corresponding content, the hardness of the powder particles increases, causing a problem of increasing the molding pressure, and the friction between powders increases, leading to a problem of having to further increase the content of lubricant. there is. If the content of molybdenum (Mo) and nickel (Ni) is lower than the corresponding content, there is a problem that the hardness of the sintered body is lowered.
상기 분말야금분말을 성형하여 중공 및 외주면에 배치된 톱니를 포함하는 성형체를 형성하는 단계는 상기 분말야금분말에 일정한 압력을 가하여 일정한 형상을 유지하는 성형체를 제조하는 단계이다. The step of molding the powder metallurgy powder to form a molded body including a hollow body and teeth disposed on the outer peripheral surface is a step of manufacturing a molded body that maintains a constant shape by applying a certain pressure to the powder metallurgy powder.
본 단계는 일정한 형상을 갖는 금형에 상기 분말야금분말을 채운 후, 성형압력으로 상기 금형을 가압하여 수행할 수 있다. 상기 성형압력은 성형체의 성형밀도가 아래에서 설명하는 특정한 범위에 도달하도록 하는 수치로서, 5.5 내지 7.5 ton/cm2, 바람직하게는 5.8 내지 6.2 ton/cm2일 수 있다. 성형압력이 너무 낮은 경우에는 분말 사이의 결합력이 감소하여 형상의 유지가 어렵고, 성형 부위마다 성형밀도가 달라지는 문제가 있다. 성형압력이 너무 높은 경우에는 소결 시 수축율이 감소하여 코어체와의 접합력이 감소하고, 금형에 무리한 힘을 가하게 되어 금형이 파손되며 제조 비용이 증가하는 문제가 발생할 수 있다. This step can be performed by filling a mold with a certain shape with the powder metallurgy powder and then pressing the mold with molding pressure. The molding pressure is a value that allows the molding density of the molded body to reach a specific range described below, and may be 5.5 to 7.5 ton/cm 2 , preferably 5.8 to 6.2 ton/cm 2 . If the molding pressure is too low, the bonding force between the powders decreases, making it difficult to maintain the shape, and there is a problem that the molding density varies depending on the molding area. If the molding pressure is too high, the shrinkage rate decreases during sintering, which reduces the bonding force with the core body, and excessive force is applied to the mold, which can cause mold damage and increase manufacturing costs.
본 단계에서 공정 온도 및 시간은 분말야금분말의 성분이나 제조하는 부품의 크기 등에 따라 달라질 수 있다. 일 실시 예에서, 본 단계는 상온, 바람직하게는 15 내지 30℃에서 수행할 수 있다. In this step, the process temperature and time may vary depending on the components of the powder metallurgy powder or the size of the part being manufactured. In one embodiment, this step can be performed at room temperature, preferably between 15 and 30°C.
본 단계에서 제조된 성형체는, 이를 소결하여 얻은 소결체의 소결밀도에 비하여 낮은 성형밀도를 갖는다. 이와 같이 성형밀도를 소결밀도에 비하여 낮게 형성함으로써 상기 성형체가 소결 과정 동안 3 내지 10%(부피분율) 수축하여 상기 코어체와 강하게 결합하도록 할 수 있다. 본 단계에서 성형밀도는 소결밀도에 대하여 0.68 내지 0.93, 바람직하게는 0.75 내지 0.85일 수 있으며, 상기 성형밀도는 5.5 내지 6.5 g/cm3, 바람직하게는 5.7 내지 6.0 g/cm3일수 있다. 성형밀도가 낮으면 취출 시 부서지기 쉬우며 제품의 형상을 유지하기 어렵다. 성형밀도가 높으면 수축율이 감소하여 성형체 및 코어체의 접합이 불량해질 수 있고 성형 시 높은 압력을 가해야 하므로 공정비용이 증가하고 불량 발생률이 높아지는 문제가 있다. The molded body manufactured in this step has a lower molding density compared to the sintered density of the sintered body obtained by sintering the molded body. In this way, by setting the molding density lower than the sintering density, the molded body can shrink by 3 to 10% (volume fraction) during the sintering process and be strongly bonded to the core body. In this step, the molding density may be 0.68 to 0.93, preferably 0.75 to 0.85, relative to the sintered density, and the molding density may be 5.5 to 6.5 g/cm 3 , preferably 5.7 to 6.0 g/cm 3 . If the molding density is low, it is easy to break when ejected and it is difficult to maintain the shape of the product. If the molding density is high, the shrinkage rate may decrease, which may result in poor bonding between the molded body and the core body, and high pressure must be applied during molding, which increases process costs and increases the incidence of defects.
상기 성형체의 형상이나 크기는 특별히 제한하지 않는다. 다만, 보다 정밀한 형상의 제조에 적합한 두께는 15 내지 25mm일 수 있다. 또한, 내경은 25 내지 40mm, 톱니의 최외각을 기준으로 한 외경은 35 내지 50mm일 수 있다.The shape or size of the molded body is not particularly limited. However, the thickness suitable for manufacturing a more precise shape may be 15 to 25 mm. Additionally, the inner diameter may be 25 to 40 mm, and the outer diameter based on the outermost angle of the teeth may be 35 to 50 mm.
상기 코어체가 상기 성형체의 중공에 배치되도록 조립하는 단계는 상기 코어체와 성형체를 접합하기 위한 위치에 배치하는 단계이다. The step of assembling the core body so that it is placed in the hollow of the molded body is a step of arranging the core body and the molded body at a position for joining.
상기 코어체는 다양한 금속 또는 합금으로 이루어진 것일 수 있으며, 바람직하게는 철강 또는 탄소강으로 제조된 것일 수 있다. 상기 코어체는 이미 소결 공정을 거쳐 제조된 것이거나, 단조나 압연 공정을 통해 제조된 것일 수 있으며, 이후의 소결 공정에 의해 수축이 부피분율로 1%이내, 바람직하게는 0.5%이내로 발생하는 것일 수 있다. The core body may be made of various metals or alloys, and may preferably be made of steel or carbon steel. The core body may have already been manufactured through a sintering process, or may be manufactured through a forging or rolling process, and the subsequent sintering process causes shrinkage within 1% by volume, preferably within 0.5%. You can.
상기 코어체는 내부에 중공을 갖는 도넛 형상일 수 있으나, 그 형상이나 크기를 특별히 제한하지 않는다. 다만, 상기 성형체와의 우수한 접합력을 확보하고 성형체의 변형을 최소화하기 위해, 상기 코어체의 외경은 상기 코어체의 내경의 99 내지 99.7%일 수 있다. 이 경우 상기 코어체의 외경은 24.7 내지 39.6mm 일 수 있다. 또한, 상기 성형체의 두께는 15 내지 30mm, 내경은 15 내지 20mm일 수 있다. 이와 같이, 상기 코어체의 외경 및 상기 성형체의 내경의 길이 비를 설정함으로써 상기 코어체 및 성형체의 접합력을 향상시킬 수 있다. The core body may have a donut shape with a hollow interior, but its shape or size is not particularly limited. However, in order to ensure excellent adhesion to the molded body and minimize deformation of the molded body, the outer diameter of the core body may be 99 to 99.7% of the inner diameter of the core body. In this case, the outer diameter of the core body may be 24.7 to 39.6 mm. Additionally, the thickness of the molded body may be 15 to 30 mm and the inner diameter may be 15 to 20 mm. In this way, by setting the length ratio of the outer diameter of the core body and the inner diameter of the molded body, the bonding force between the core body and the molded body can be improved.
상기 조립된 성형체 및 코어체를 소결하는 단계는 성형체를 소결체로 변환하면서 그 부피가 수축되도록 하여 상기 성형체의 크기를 제어하고 성형체와 코어체를 접하는 단계이다. The step of sintering the assembled molded body and the core body is a step of converting the molded body into a sintered body and shrinking its volume to control the size of the molded body and contacting the molded body and the core body.
본 단계는 1000 내지 1250℃, 바람직하게는 1135 내지 1200℃의 온도에서 수행할 수 있다. 소결 온도가 너무 높으면 성형체의 형상이 변형되고 공정 비용이 상승하는 문제가 있고, 소결 온도가 너무 낮으면 액상소결이 아닌 고상소결이 되어 소결밀도 및 경도가 낮아지는 문제가 있다. 일 실시 예에서, 본 단계는 수소:질소의 부피비가 1:9인 환원 분위기에서 수행할 수 있다. 특별히 제한하지 않지만, 본 단계는 20분 내지 1 시간 동안 수행할 수 있다.This step can be performed at a temperature of 1000 to 1250°C, preferably 1135 to 1200°C. If the sintering temperature is too high, there is a problem that the shape of the molded body is deformed and the process cost increases, and if the sintering temperature is too low, there is a problem that sintering density and hardness are lowered due to solid-phase sintering instead of liquid-phase sintering. In one embodiment, this step may be performed in a reducing atmosphere with a hydrogen:nitrogen volume ratio of 1:9. Although not particularly limited, this step can be performed for 20 minutes to 1 hour.
본 단계에서 상기 성형체는 액상소결하여 소결체로 형성될 수 있다. 앞서 설명한 바와 같이, 본 발명의 실시 예에서는 분말야금분말을 액상 소결함으로써 소결 중 성형체의 높은 수축율을 확보할 수 있으며, 소결 완료 후에 소결체가 높은 소결 밀도 및 경도를 갖도록 할 수 있다. In this step, the molded body can be formed into a sintered body by liquid phase sintering. As described above, in the embodiment of the present invention, a high shrinkage rate of the molded body can be secured during sintering by liquid-phase sintering of the powder metallurgy powder, and the sintered body can be made to have high sintered density and hardness after sintering is completed.
앞서 설명한 바와 같이, 성형체가 소결하여 생성된 소결체의 소결밀도는 성형체의 성형밀도에 비하여 높다. 구체적으로, 성형밀도가 소결밀도의 0.68 내지 0.93, 바람직하게는 0.75 내지 0.85배가 되도록 소결을 진행할 수 있다. 본 단계에서 상기 소결체의 소결밀도는 7.0 내지 8.0 g/cm3, 바람직하게는 7.4 g/cm3 이상일 수 있다. 또한, 경도는 로크웰 C스케일 40 이상일 수 있다. As previously explained, the sintering density of the sintered body produced by sintering the molded body is higher than the molding density of the molded body. Specifically, sintering may be performed so that the molding density is 0.68 to 0.93 times the sintered density, preferably 0.75 to 0.85 times. In this step, the sintering density of the sintered body may be 7.0 to 8.0 g/cm 3 , preferably 7.4 g/cm 3 or more. Additionally, the hardness may be 40 or higher on the Rockwell C scale.
기어 부품의 제조Manufacturing of gear parts
실시 예1: 분말야금분말로 메타컴포지트 사(한국)의 철계 분말인 MetaMixs-FE(분말 전체 중량 기준으로 탄소 2.4% 및 잔부 철)을 금형에 넣고 ㈜정화프레스 사(한국)의 200Ton 프레스에서, 단위면적당 6.0 Ton/㎠으로 성형압력을 셋팅하여 외경 40.7mm, 내경 32.1mm 및 높이 18.5mm로 성형하여 성형품을 제조하였다. 상기 성형품의 성형밀도를 AlfaMirage 사(일본)의 MD-300S를 이용하여 측정하였으며, 육안으로 성형품의 외관을 관찰하였다. 다음으로, 탄소강 S45C를 기계 가공하여 제조한 도넛형상의 코어체(외경 32.0mm, 내경 21.0mm 및 높이 28mm)를 준비하여 상기 성형품의 중공에 놓고 Fluidtherm 사(인도)의 벨트 소결로에서 소결 온도 1,140℃(소결 분위기 수소:질소 = 1:9)로 30분 동안 소결하였다. 상기 성형체가 소결된 소결체의 소결밀도를 AlfaMirage 사(일본)의 MD-300S를 이용하여 측정하였고, 경도를 Mitutoyo 사(일본)의 로크웰 경도계 HR-521를 이용하여 측정하였다.Example 1: MetaMixs-FE, an iron-based powder from Metacomposite (Korea) as a powder metallurgy powder (2.4% carbon and the balance iron based on the total weight of the powder), was placed in a mold and pressed in a 200 Ton press from Jeonghwa Press Co., Ltd. (Korea). The molding pressure was set to 6.0 Ton/cm2 per unit area, and a molded product was manufactured with an outer diameter of 40.7 mm, an inner diameter of 32.1 mm, and a height of 18.5 mm. The molding density of the molded product was measured using MD-300S from AlfaMirage (Japan), and the appearance of the molded product was observed with the naked eye. Next, a donut-shaped core body (outer diameter 32.0 mm, inner diameter 21.0 mm, and height 28 mm) manufactured by machining carbon steel S45C was prepared, placed in the hollow of the molded product, and sintered at a temperature of 1,140 in a belt sintering furnace of Fluidtherm (India). It was sintered at ℃ (sintering atmosphere hydrogen:nitrogen = 1:9) for 30 minutes. The sintered density of the sintered body was measured using MD-300S from AlfaMirage (Japan), and the hardness was measured using a Rockwell hardness tester HR-521 from Mitutoyo (Japan).
실시 예2: 분말야금분말로 메타컴포지트 사(한국)의 철계 분말인 MetaMixs-0.85Mo(분말 전체 중량 기준으로 몰리브덴 0.88%, 탄소 2.4% 및 잔부 철)을 사용한 것을 제외하고, 실시 예1과 동일하게 제조 및 측정하였다. Example 2: Same as Example 1, except that MetaMixs-0.85Mo, an iron-based powder from Metacomposites (Korea) (0.88% molybdenum, 2.4% carbon, and the balance iron based on the total weight of the powder) was used as the powder metallurgy powder. It was prepared and measured properly.
실시 예3: 분말야금분말로 메타컴포지트 사(한국)의 철계 분말인 MetaMixs-1CR(분말 전체 중량 기준으로 크롬 0.9%, 탄소 2.4% 및 잔부 철)을 사용한 것을 제외하고, 실시 예1과 동일하게 제조 및 측정하였다. Example 3: The same as Example 1, except that MetaMixs-1CR, an iron-based powder from Metacomposites (Korea) (0.9% chromium, 2.4% carbon, and the balance iron based on the total weight of the powder) was used as the powder metallurgy powder. Prepared and measured.
실시 예4: 분말야금분말로 메타컴포지트 사(한국)의 철계 분말인 MetaMixs-3CR(분말 전체 중량 기준으로 크롬 3.0%, 탄소 2.4% 및 잔부 철)을 사용한 것을 제외하고, 실시 예1과 동일하게 제조 및 측정하였다.Example 4: The same as Example 1, except that MetaMixs-3CR, an iron-based powder from Metacomposites (Korea) (3.0% chromium, 2.4% carbon, and the balance iron based on the total weight of the powder) was used as the powder metallurgy powder. Prepared and measured.
실시 예5: 분말야금분말로 메타컴포지트 사(한국)의 철계 분말인 MetaMixs-4CR(분말 전체 중량 기준으로 크롬 4.2%, 탄소 2.4% 및 잔부 철)을 사용한 것을 제외하고, 실시 예1과 동일하게 제조 및 측정하였다.Example 5: The same as Example 1, except that MetaMixs-4CR, an iron-based powder from Metacomposites (Korea) (4.2% chromium, 2.4% carbon, and the balance iron based on the total weight of the powder) was used as the powder metallurgy powder. Prepared and measured.
실시 예6: 분말야금분말로 메타컴포지트 사(한국)의 철계 분말인 MetaMixs-8CR(분말 전체 중량 기준으로 크롬 8.1%, 탄소 2.4% 및 잔부 철)을 사용한 것을 제외하고, 실시 예1과 동일하게 제조 및 측정하였다.Example 6: The same as Example 1, except that MetaMixs-8CR, an iron-based powder from Metacomposites (Korea) (8.1% chromium, 2.4% carbon, and the balance iron based on the total weight of the powder) was used as the powder metallurgy powder. Prepared and measured.
실시 예7: 분말야금분말로 메타컴포지트 사(한국)의 철계 분말인 MetaMixs-12CR(분말 전체 중량 기준으로 크롬 12.4%, 탄소 2.4% 및 잔부 철)을 사용한 것을 제외하고, 실시 예1과 동일하게 제조 및 측정하였다.Example 7: The same as Example 1, except that MetaMixs-12CR, an iron-based powder from Metacomposites (Korea) (12.4% chromium, 2.4% carbon, and the balance iron based on the total weight of the powder) was used as the powder metallurgy powder. Prepared and measured.
실시 예8: 분말야금분말로 메타컴포지트 사(한국)의 철계 분말인 MetaMixs-16CR(분말 전체 중량 기준으로 크롬 16.4%, 탄소 2.4% 및 잔부 철)을 사용한 것을 제외하고, 실시 예1과 동일하게 제조 및 측정하였다.Example 8: The same as Example 1, except that MetaMixs-16CR, an iron-based powder from Metacomposites (Korea) (16.4% chromium, 2.4% carbon, and the balance iron based on the total weight of the powder) was used as the powder metallurgy powder. Prepared and measured.
실시 예9: 분말야금분말로 메타컴포지트 사(한국)의 철계 분말인 MetaMixs-17CR(분말 전체 중량 기준으로 크롬 16.9%, 탄소 2.4% 및 잔부 철)을 사용한 것을 제외하고, 실시 예1과 동일하게 제조 및 측정하였다.Example 9: The same as Example 1, except that MetaMixs-17CR, an iron-based powder from Metacomposites (Korea) (16.9% chromium, 2.4% carbon, and the balance iron based on the total weight of the powder) was used as the powder metallurgy powder. Prepared and measured.
실시 예10: 분말야금분말로 메타컴포지트 사(한국)의 철계 분말인 MetaMixs-8CR-LC(분말 전체 중량 기준으로 크롬 8.1%, 탄소 1.5% 및 잔부 철)을 사용한 것을 제외하고, 실시 예1과 동일하게 제조 및 측정하였다.Example 10: Example 1, except that MetaMixs-8CR-LC, an iron-based powder from Metacomposites (Korea) (8.1% chromium, 1.5% carbon, and the balance iron based on the total weight of the powder) was used as the powder metallurgy powder. It was prepared and measured in the same way.
비교 예1: 분말야금분말로 메타컴포지트 사(한국)의 철계 분말인 MetaMixs-8CR(분말 전체 중량 기준으로 크롬 8.0%, 탄소 2.4% 및 잔부 철)을 사용하여 외경 40.7mm, 내경 21mm 및 높이 18.5mm로 성형하였으며, 코어체를 사용하지 않은 것을 제외하고, 실시 예1과 동일하게 제조 및 측정하였다. Comparative Example 1: MetaMixs-8CR, an iron-based powder from Metacomposites (Korea) (8.0% chromium, 2.4% carbon, and the balance iron based on the total weight of the powder), was used as a powder metallurgy powder, with an outer diameter of 40.7 mm, an inner diameter of 21 mm, and a height of 18.5 mm. It was molded in mm and manufactured and measured in the same manner as in Example 1, except that the core body was not used.
비교 예2: 분말야금분말로 메타컴포지트 사(한국)의 철계 분말인 MetaMixs-8CR-REF(분말 전체 중량 기준으로 크롬 8.1%, 탄소 0.03% 및 잔부 철)을 사용한 것을 제외하고, 실시 예1과 동일하게 제조 및 측정하였다. Comparative Example 2: Example 1 and Example 1, except that MetaMixs-8CR-REF (8.1% chromium, 0.03% carbon and the balance iron based on the total weight of the powder), an iron-based powder from Metacomposites (Korea), was used as the powder metallurgy powder. It was prepared and measured in the same way.
비교 예3: 분말야금분말로 Hoganas 사(스웨덴)의 89.34.03 Intralube HD(분말 전체 중량 기준으로 탄소 0.42%, 몰리브덴 0.83% 및 잔부 철)을 사용한 것을 제외하고, 실시 예1과 동일하게 제조 및 측정하였다. Comparative Example 3: Manufactured in the same manner as in Example 1, except that 89.34.03 Intralube HD (carbon 0.42%, molybdenum 0.83% and the balance iron based on the total weight of the powder) from Hoganas (Sweden) was used as the powder metallurgy powder. Measured.
비교 예4: 분말야금분말로 Hoganas 사(스웨덴)의 89.34.03 Intralube HD(분말 전체 중량 기준으로 탄소 0.42%, 몰리브덴 0.83% 및 잔부 철)에 인조흑연인 Imery사의 F-10을 혼합분말 전체 중량의 2.80%가 되도록 첨가한 것을 제외하고, 실시 예1과 동일하게 제조 및 측정하였다.Comparative Example 4: Powder metallurgy powder 89.34.03 Intralube HD from Hoganas (Sweden) (0.42% carbon, 0.83% molybdenum, and the balance iron based on the total weight of the powder) and F-10 from Imery, an artificial graphite, were mixed to the total weight of the powder. It was prepared and measured in the same manner as in Example 1, except that it was added to 2.80% of .
비교 예5: 성형압력을 5.0 ton/cm2으로 한 것을 제외하고, 실시 예1과 동일하게 제조 및 측정하였다. Comparative Example 5: Manufactured and measured in the same manner as Example 1, except that the molding pressure was set to 5.0 ton/cm 2 .
비교 예6: 성형압력을 8.0 ton/cm2으로 한 것을 제외하고, 실시 예1과 동일하게 제조 및 측정하였다. Comparative Example 6: Manufactured and measured in the same manner as Example 1, except that the molding pressure was set to 8.0 ton/cm 2 .
도 1(a) 내지 (c)는 각각 실시 예6에서 제조한 성형체, 코어체 및 소결체와 코어체가 결합된 기어 부품의 사진이다. 1(a) to (c) are photographs of the molded body, the core body, and the gear parts in which the sintered body and the core body are combined, respectively, manufactured in Example 6.
도 2(a) 내지 (d)는 각각 실시 예1 내지 4에서 제조된 기어 부품 중 소결체 및 코어체의 경계를 촬영한 사진이고, 도 3(a) 내지 (e)는 각각 실시 예5 내지 9에서 제조된 기어 부품 중 소결체 및 코어체의 경계를 촬영한 사진이다. Nikon 사(일본)의 MA-100을 이용하여 배율 500로 촬영하였다. 각 사진에 나타난 경계를 기준으로 위쪽이 소결체이고 아래쪽이 코어체이다. Figures 2(a) to (d) are photographs of the boundaries of the sintered body and the core body among the gear parts manufactured in Examples 1 to 4, respectively, and Figures 3(a) to (e) are photographs of the boundaries of the gear parts manufactured in Examples 5 to 9, respectively. This is a photo of the boundary between the sintered body and the core body among the gear parts manufactured in . Photographed at a magnification of 500 using MA-100 from Nikon (Japan). Based on the boundary shown in each photo, the upper part is the sintered body and the lower part is the core body.
또한, 실시 예 및 비교 예에서 측정한 성형밀도, 소결밀도 및 경도와, 외관관찰 결과를 표 1에 기재하였다.In addition, the molding density, sintering density, and hardness measured in Examples and Comparative Examples, as well as the external observation results, are listed in Table 1.
구분division 탄소함량
(중량%)
carbon content
(weight%)
성형압력
(ton/cm2)
molding pressure
(ton/ cm2 )
구조structure 육안관찰결과Visual observation results 성형밀도
(g/cm3)
Molding density
(g/ cm3 )
소결밀도
(g/cm3)
Sintered Density
(g/ cm3 )
경도
(HRC)
Hardness
(HRC)
실시 예1Example 1 2.42.4 6.06.0 코어체+소결체 결합구조Core body + sintered body combined structure 양호Good 6.626.62 7.7107.710 36.336.3
실시 예2Example 2 2.42.4 6.06.0 코어체+소결체 결합구조Core body + sintered body combined structure 양호Good 6.476.47 7.6877.687 38.938.9
실시 예3Example 3 2.42.4 6.06.0 코어체+소결체 결합구조Core body + sintered body combined structure 양호Good 6.0736.073 7.6437.643 40.940.9
실시 예4Example 4 2.42.4 6.06.0 코어체+소결체 결합구조Core body + sintered body combined structure 양호Good 6.0136.013 7.7377.737 44.344.3
실시 예5Example 5 2.42.4 6.06.0 코어체+소결체 결합구조Core body + sintered body combined structure 양호Good 5.9835.983 7.6567.656 50.350.3
실시 예6Example 6 2.42.4 6.06.0 코어체+소결체 결합구조Core body + sintered body combined structure 양호Good 5.9835.983 7.6567.656 59.759.7
실시 예7Example 7 2.42.4 6.06.0 코어체+소결체 결합구조Core body + sintered body combined structure 양호Good 6.016.01 7.567.56 40.840.8
실시 예8Example 8 2.42.4 6.06.0 코어체+소결체 결합구조Core body + sintered body combined structure 양호Good 5.9555.955 7.5637.563 4343
실시 예9Example 9 2.42.4 6.06.0 코어체+소결체 결합구조Core body + sintered body combined structure 양호Good 5.8835.883 7.5137.513 39.839.8
실시 예10Example 10 1.51.5 6.06.0 코어체+소결체 결합구조Core body + sintered body combined structure 양호Good 6.1786.178 7.1867.186 34.534.5
비교 예1Comparison example 1 2.42.4 6.06.0 소결체 단일 구조Sintered body single structure 양호Good 6.2536.253 7.5987.598 57.957.9
비교 예2Comparison example 2 0.030.03 6.06.0 코어체+소결체 결합구조Core body + sintered body combined structure 양호Good 6.3306.330 7.0657.065 4.14.1
비교 예3Comparison example 3 0.420.42 6.06.0 코어체+소결체 결합구조Core body + sintered body combined structure 양호Good 7.1307.130 7.1547.154 17.217.2
비교 예4Comparison example 4 3.223.22 6.06.0 코어체+소결체 결합구조Core body + sintered body combined structure 소결체 표면 기공 관찰Observation of sintered body surface pores 5.5265.526 7.6107.610 61.561.5
비교 예5Comparison example 5 2.42.4 5.05.0 코어체+소결체 결합구조Core body + sintered body combined structure 성형품의 일부 톱니가 파손Some teeth of the molded product are broken 5.6735.673 7.6467.646 59.659.6
비교 예6Comparison example 6 2.42.4 8.08.0 코어체+소결체 결합구조Core body + sintered body combined structure 성형품의 톱니 측면에 다수 흠집 및 소결체 표면에 기공 관찰Observation of multiple scratches on the tooth side of the molded product and pores on the surface of the sintered body 6.4326.432 7.6847.684 59.759.7
비교 예1은 내부에 코어체를 사용하지 않은 경우로서, 소결되는 영역이 너무 크기 때문에 뒤틀림이 발생하였다. 또한, 과도한 수축이 발생하여 소결 후 치수 정밀도가 열악하였다. 비교 예2 및 3은 탄소의 함량이 0.5% 미만으로 함유되었고 크롬이 포함되지 않은 것으로서, 성형밀도가 높고 수축율이 낮았으며, 이로 인하여 소결밀도 및 경도가 낮은 값을 보였다. Comparative Example 1 is a case in which no core body was used inside, and distortion occurred because the sintered area was too large. Additionally, excessive shrinkage occurred, resulting in poor dimensional accuracy after sintering. Comparative Examples 2 and 3 contained less than 0.5% of carbon and did not contain chromium, so the molding density was high and the shrinkage rate was low, resulting in low sintered density and hardness.
비교 예4는 탄소 함량이 3.22%로 함유된 것으로, 경도는 높게 나왔지만, 탄소의 함량이 많아 균일한 혼합이 어려워 기포가 일부 관찰되었다.Comparative Example 4 contained a carbon content of 3.22%, and although the hardness was high, some bubbles were observed due to the high carbon content making uniform mixing difficult.
비교 예5는 성형압력이 낮은 경우에는 성형품의 분말야금분말이 약하게 결합하여, 성형품을 금형에서 제거하는 탈형 작업 시에 톱니가 파손되었다. 비교 예6은 성형압력이 너무 높은 경우로서, 성형품의 표면에 과도한 압력이 가해져 표면에 작은 스크래치(흠)이 관찰되었다. 소결체에서도 기공이 관찰되었다.In Comparative Example 5, when the molding pressure was low, the powder metallurgy powder of the molded product was weakly bonded, and the teeth were broken during the demolding operation to remove the molded product from the mold. Comparative Example 6 is a case where the molding pressure was too high, and excessive pressure was applied to the surface of the molded product, and small scratches were observed on the surface. Pores were also observed in the sintered body.
실시 예 중에서 실시 예5 및 6이 성형밀도가 6.0 g/cm3 이하로 측정되었으며, 이로 인하여 소결밀도 및 경도가 우수함을 알 수 있다. 실시 예7 내지 9의 경우에는 크롬의 함량이 10%를 초과함에 따라 소결밀도 및 경도가 오히려 감소하는 경향을 보였다. Among the examples, the molding density of Examples 5 and 6 was measured to be 6.0 g/cm 3 or less, which shows that the sintered density and hardness are excellent. In Examples 7 to 9, as the chromium content exceeded 10%, the sintered density and hardness tended to decrease.
위 실시 예 및 비교 예의 대비를 통해, 탄소의 함량이 분말야금분말 전체 중량에 대하여 0.5 내지 3.0%가 적합하고, 내부에 코어체를 두어 이종결합하는 공정이 바람직함을 알 수 있다. 또한, 크롬의 함량은 분말야금분말 전체 중량에 대하여 0.5 내지 10.0%이 바람직하고, 3.5 내지 8.5%가 가장 바람직한 것을 알 수 있다. Through the comparison of the above examples and comparative examples, it can be seen that the carbon content is suitable to be 0.5 to 3.0% based on the total weight of the powder metallurgy powder, and that the process of heterogeneous bonding by placing a core body inside is preferable. In addition, it can be seen that the content of chromium is preferably 0.5 to 10.0%, and most preferably 3.5 to 8.5%, based on the total weight of the powder metallurgy powder.
본 발명은 상술한 실시 형태 및 첨부된 도면에 의해 한정되는 것이 아니며 첨부된 청구범위에 의해 한정하고자 한다. 따라서, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 당 기술분야의 통상의 지식을 가진 자에 의해 다양한 형태의 치환, 변형 및 변경이 가능할 것이며, 이 또한 본 발명의 범위에 속한다고 할 것이다. The present invention is not limited by the above-described embodiments and attached drawings, but is intended to be limited by the attached claims. Accordingly, various forms of substitution, modification, and change may be made by those skilled in the art without departing from the technical spirit of the present invention as set forth in the claims, and this also falls within the scope of the present invention. something to do.

Claims (6)

  1. 철계 분말야금분말을 준비하는 단계;Preparing iron-based powder metallurgy powder;
    상기 분말야금분말을 성형하여 중공 및 외주면에 배치된 톱니를 포함하는 성형체를 형성하는 단계;Forming a molded body including a hollow body and teeth disposed on the outer peripheral surface by molding the powder metallurgy powder;
    벌크금속제로된 코어체를 준비하고, 상기 코어체가 상기 성형체의 중공에 배치되도록 조립하는 단계; 및Preparing a core body made of bulk metal and assembling the core body so that the core body is disposed in the hollow of the molded body; and
    상기 조립된 성형체 및 코어체를 소결하는 단계를 포함하는,Comprising the step of sintering the assembled molded body and core body,
    기어 부품의 제조 방법.Manufacturing method of gear parts.
  2. 제1항에 있어서,According to paragraph 1,
    상기 분말야금분말은 분말야금분말 전체 중량에 대하여 크롬(Cr)을 0.5 내지10.0% 및 탄소(C)를 0.5 내지 3.0% 포함하는 것인,The powder metallurgy powder contains 0.5 to 10.0% chromium (Cr) and 0.5 to 3.0% carbon (C) based on the total weight of the powder metallurgy powder,
    기어 부품의 제조 방법.Manufacturing method of gear parts.
  3. 제1항에 있어서,According to paragraph 1,
    상기 성형체를 형성하는 단계에서 성형압력은 5.5 내지 7.5 ton/cm2In the step of forming the molded body, the molding pressure is 5.5 to 7.5 ton/cm 2
    기어 부품의 제조 방법.Manufacturing method of gear parts.
  4. 제1항에 있어서,According to paragraph 1,
    상기 성형체를 형성하는 단계에서 상기 성형체의 성형밀도는 5.5 내지 6.5 g/cm3이고,In the step of forming the molded body, the molding density of the molded body is 5.5 to 6.5 g/cm 3 ,
    상기 소결하는 단계에서 상기 성형체가 소결하여 생성된 소결체의 소결밀도는 7.0 내지 8.0 g/cm3인, In the sintering step, the sintered body produced by sintering the molded body has a sintered density of 7.0 to 8.0 g/cm 3 ,
    기어 부품의 제조 방법.Manufacturing method of gear parts.
  5. 제1항에 있어서,According to paragraph 1,
    상기 소결하는 단계에서 상기 성형체의 분말야금분말은 액상소결되는 것인,In the sintering step, the powder metallurgy powder of the molded body is liquid-phase sintered,
    기어 부품의 제조 방법.Manufacturing method of gear parts.
  6. 제1항의 제조방법에 의해 제조된 기어 부품.Gear parts manufactured by the manufacturing method of claim 1.
PCT/KR2022/014777 2022-08-16 2022-09-30 Method for manufacturing gear part by using liquid phase sintering, and gear part manufactured thereby WO2024038949A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220101830A KR20240024383A (en) 2022-08-16 2022-08-16 Manufacturing method for gear part and gear part manufactured by the same
KR10-2022-0101830 2022-08-16

Publications (1)

Publication Number Publication Date
WO2024038949A1 true WO2024038949A1 (en) 2024-02-22

Family

ID=89941875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/014777 WO2024038949A1 (en) 2022-08-16 2022-09-30 Method for manufacturing gear part by using liquid phase sintering, and gear part manufactured thereby

Country Status (2)

Country Link
KR (1) KR20240024383A (en)
WO (1) WO2024038949A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100966266B1 (en) * 2009-11-16 2010-06-28 (주)씬터온 Manufacturing method of sinter hardening powder metal machine part
KR20120102915A (en) * 2011-03-09 2012-09-19 (주)씬터온 Manufacturing method of sinter hardened after warm die compacting with high density for powder metal machine part
KR101540036B1 (en) * 2013-09-17 2015-07-28 주식회사 티엠시 A Sintered Body having Dual Ring Structure and a Manufacturing Method for the same
WO2019087397A1 (en) * 2017-11-06 2019-05-09 日立化成株式会社 Gear
KR102130490B1 (en) * 2018-12-18 2020-07-06 주식회사 엔이피 Fe-based Metal Parts Producing Method Used For Automobile Steering Wheel

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101522513B1 (en) 2015-03-19 2015-05-26 윤석삼 Method for manufacuring a helical gear using powder metallugy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100966266B1 (en) * 2009-11-16 2010-06-28 (주)씬터온 Manufacturing method of sinter hardening powder metal machine part
KR20120102915A (en) * 2011-03-09 2012-09-19 (주)씬터온 Manufacturing method of sinter hardened after warm die compacting with high density for powder metal machine part
KR101540036B1 (en) * 2013-09-17 2015-07-28 주식회사 티엠시 A Sintered Body having Dual Ring Structure and a Manufacturing Method for the same
WO2019087397A1 (en) * 2017-11-06 2019-05-09 日立化成株式会社 Gear
KR102130490B1 (en) * 2018-12-18 2020-07-06 주식회사 엔이피 Fe-based Metal Parts Producing Method Used For Automobile Steering Wheel

Also Published As

Publication number Publication date
KR20240024383A (en) 2024-02-26

Similar Documents

Publication Publication Date Title
US2695425A (en) Method of making sintered nylon articles and resultant product
US20130039797A1 (en) Manufacture of high-performance neodymium iron boron permanent magnet material
CN108947520B (en) Preparation method of ITO (indium tin oxide) sintered target material
WO2015046732A1 (en) Method of manufacturing anisotropic hot-deformed magnet using hot-deformation process and hot-deformed magnet manufactured thereby
WO2019212100A1 (en) Method for manufacturing rare-earth permanent magnet
WO2024038949A1 (en) Method for manufacturing gear part by using liquid phase sintering, and gear part manufactured thereby
JP2004517215A (en) Powder metallurgy for producing high density molded parts.
WO2018034551A1 (en) Method for preparing metal composite and metal composite prepared thereby
WO2019107816A1 (en) Method for manufacturing tungsten-molybdenum alloy
WO2019212101A1 (en) Method for manufacturing rare earth permanent magnet
WO2020111772A1 (en) Method for manufacturing rare earth magnet
JPH0368708A (en) Method for reforming porous body having opened pores
WO2020045865A1 (en) Method for preparing magnetic powder and magnetic powder
WO2021080399A1 (en) Binder composition for preparing sintered body and method for removing binder
KR100256358B1 (en) The manufacturing method for sintering magnetic alloy with fe-si line
CN106971801A (en) A kind of plus La does N45 neodymium iron boron formula and its processing method
JPS59140335A (en) Manufacture of rare earth-cobalt sintered magnet of different shape
EP0181317B1 (en) Process for manufacturing a porous filter body from metal powder
WO2020032777A1 (en) Method for manufacturing oxide dispersion strengthened alloy using organic/inorganic mixed composition as raw material
KR102356988B1 (en) Dispersion Hardened Silver-based Composite for Measuring Device Element of Electronic Parts and Manufacturing Process of the Dispersion Hardened Silver-based Composite by Powder Metallurgy
WO2012015258A2 (en) Method for manufacturing silicon carbide sintered material using ball
WO2022035175A1 (en) Balance weight for electric compressor motor and manufacturing method therefor
WO2023096473A1 (en) Canning-free hot isostatic pressing powder metallurgy method
WO2020022652A1 (en) Rolling rolls manufactured by joining and pressure-impregnating dissimilar materials, and manufacturing method therefor
WO2024014639A1 (en) Method for manufacturing fe-xsi(x=4-10.0wt%) alloy compressed powder core by high-temperature molding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22955821

Country of ref document: EP

Kind code of ref document: A1