WO2024038743A1 - Transformer - Google Patents

Transformer Download PDF

Info

Publication number
WO2024038743A1
WO2024038743A1 PCT/JP2023/027328 JP2023027328W WO2024038743A1 WO 2024038743 A1 WO2024038743 A1 WO 2024038743A1 JP 2023027328 W JP2023027328 W JP 2023027328W WO 2024038743 A1 WO2024038743 A1 WO 2024038743A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
transformer
outer coil
insulator
substrate
Prior art date
Application number
PCT/JP2023/027328
Other languages
French (fr)
Japanese (ja)
Inventor
将信 辻
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Publication of WO2024038743A1 publication Critical patent/WO2024038743A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F19/00Fixed transformers or mutual inductances of the signal type
    • H01F19/04Transformers or mutual inductances suitable for handling frequencies considerably beyond the audio range
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body

Definitions

  • the present disclosure relates to a transformer.
  • Patent Document 1 discloses a semiconductor integrated circuit as an insulated gate driver including a transformer having a first coil on the primary side and a second coil on the secondary side.
  • transformers such as those described above are required to have improved dielectric strength.
  • a transformer according to an embodiment of the present disclosure includes a substrate having an upper surface and a lower surface of the substrate, a first insulator in contact with the upper surface of the substrate, a second insulator in contact with the lower surface of the substrate, and disposed within the first insulator. an outer coil and an inner coil, the inner coil being disposed inside the outer coil and not overlapping the outer coil when viewed from a direction perpendicular to the upper surface of the substrate.
  • the transformer that is one aspect of the present disclosure, it is possible to improve the dielectric strength.
  • FIG. 1 is a circuit diagram schematically showing the configuration of a signal transmission device including a transformer according to the first embodiment.
  • 2 is a schematic plan view schematically showing the signal transmission device of FIG. 1.
  • FIG. 3 is a schematic plan view of a transformer in the signal transmission device of FIG. 2.
  • FIG. 4 is a cross-sectional view taken along line F4-F4 in FIG.
  • FIG. 5 is a sectional view taken along the line F5-F5 in FIG.
  • FIG. 6 is a schematic cross-sectional view of a transformer of a comparative example.
  • FIG. 7 is a schematic cross-sectional view of a modified example of the transformer.
  • FIG. 8 is a schematic cross-sectional view of a modified example of the transformer.
  • FIG. 9 is a schematic perspective view showing outer coil conductor wiring in a modified example of the transformer shown in FIG.
  • FIG. 10 is a schematic cross-sectional view of a modified example of the transformer.
  • FIG. 11 is a schematic cross-sectional view of a modified example of the transformer.
  • FIG. 12 is a circuit diagram schematically showing the configuration of a power transmission device according to a modification.
  • FIG. 13 is a circuit diagram schematically showing the configuration of a power transmission device according to a modified example.
  • FIG. 14 is a circuit diagram schematically showing the configuration of a signal transmission device including a transformer according to the second embodiment.
  • FIG. 15 is a schematic plan view schematically showing the signal transmission device of FIG. 14.
  • FIG. 16 is a schematic plan view of a transformer in the signal transmission device of FIG. 15.
  • FIG. 15 is a schematic plan view schematically showing the signal transmission device of FIG. 14.
  • FIG. 17 is a sectional view taken along the line F17-F17 in FIG. 16.
  • FIG. 18 is a sectional view taken along the line F18-F18 in FIG. 16.
  • FIG. 19 is an explanatory diagram of the operation in the transformer of the second embodiment.
  • FIG. 20 is a schematic cross-sectional view of a modified example of the transformer.
  • FIG. 21 is a schematic cross-sectional view of a modified example of the transformer.
  • FIG. 22 is a schematic perspective view showing the outer coil conductor wiring in the transformer according to the modified example of FIG. 21.
  • FIG. FIG. 23 is a schematic cross-sectional view of a modified example of the transformer.
  • FIG. 24 is a schematic cross-sectional view of a modified example of the transformer.
  • FIG. 20 is a schematic cross-sectional view of a modified example of the transformer.
  • FIG. 21 is a schematic cross-sectional view of a modified example of the transformer.
  • FIG. 22 is a schematic perspective view showing the outer coil
  • FIG. 25 is a circuit diagram schematically showing the configuration of a modified signal transmission device.
  • FIG. 26 is a schematic plan view of the signal transmission device of FIG. 25.
  • FIG. 27 is a schematic plan view schematically showing a modified example of the transformer of the second embodiment.
  • FIG. 28 is a schematic plan view schematically showing a modified example of the transformer of the second embodiment.
  • FIG. 29 is a schematic plan view schematically showing a modified example of the transformer of the second embodiment.
  • the expression “at least one” as used herein means “one or more” of the desired options.
  • the expression “at least one” as used herein means “only one option” or “both of the two options” if the number of options is two.
  • the expression “at least one” as used herein means “only one option” or “any combination of two or more options” if there are three or more options. means.
  • FIG. 1 is a circuit diagram schematically showing the configuration of a signal transmission device including a transformer according to the first embodiment.
  • 2 is a schematic plan view schematically showing the signal transmission device of FIG. 1.
  • FIG. The first embodiment is configured as a signal transmission device 10 including a transformer 15.
  • the signal transmission device 10 is a device that transmits a pulse signal while electrically insulating a primary terminal 11 and a secondary terminal 12.
  • Signal transmission device 10 is, for example, a digital isolator.
  • the signal transmission device 10 includes a primary circuit 13 electrically connected to a primary terminal 11, a secondary circuit 14 electrically connected to a secondary terminal 12, and a primary circuit 13.
  • a transformer 15 that electrically insulates the secondary circuit 14 is included.
  • the primary side circuit 13 is a circuit configured to operate when the first voltage V1 is applied.
  • the primary circuit 13 is electrically connected to, for example, an external control device (not shown).
  • the primary circuit 13 includes a transmitting circuit 13T.
  • the secondary side circuit 14 is a circuit configured to operate when a second voltage V2 different from the first voltage V1 is applied.
  • the second voltage V2 is higher than the first voltage V1, for example.
  • the first voltage V1 and the second voltage V2 are DC voltages.
  • the secondary circuit 14 is electrically connected to, for example, a drive circuit that is controlled by a control device.
  • An example of a drive circuit is a switching circuit.
  • the secondary circuit 14 includes a receiving circuit 14R. A ground for the primary circuit 13 and a ground for the secondary circuit 14 are provided independently.
  • the transformer 15 is connected between the transmitting circuit 13T and the receiving circuit 14R.
  • the transformer 15 includes a primary coil 16 and a secondary coil 17.
  • the primary coil 16 is connected to a transmitting circuit 13T, and the secondary coil 17 is connected to a receiving circuit 14R.
  • a control signal from, for example, a control device is input to the transmission circuit 13T of the primary side circuit 13 through the primary side terminal 11.
  • the control signal is received by the receiving circuit 14R of the secondary circuit 14 from the transmitting circuit 13T of the primary circuit 13 via the transformer 15.
  • the signal transmitted to the secondary circuit 14 is output from the secondary circuit 14 to the drive circuit through the secondary terminal 12.
  • the primary side circuit 13 and the secondary side circuit 14 are electrically insulated by the transformer 15. More specifically, while the transformer 15 restricts the transmission of DC voltage between the primary circuit 13 and the secondary circuit 14, it allows the transmission of pulse signals.
  • the state where the primary side circuit 13 and the secondary side circuit 14 are insulated refers to the state where the transmission of DC voltage is cut off between the primary side circuit 13 and the secondary side circuit 14. This means that transmission of pulse signals from the primary circuit 13 to the secondary circuit 14 is permitted. In this way, the secondary circuit 14 is configured to receive the signal from the primary circuit 13.
  • the dielectric strength voltage of the signal transmission device 10 is, for example, 2500 Vrms or more and 7500 Vrms or less.
  • the dielectric strength voltage of the signal transmission device 10 of the first embodiment is approximately 5700 Vrms.
  • the specific numerical value of the dielectric strength voltage of the signal transmission device 10 is not limited to this and is arbitrary.
  • the signal transmission device 10 is a semiconductor device in which a plurality of semiconductor chips are packaged into one package.
  • the package format of the signal transmission device 10 is, for example, an SO (Small Outline) system, and in the first embodiment is an SOP (Small Outline Package). Note that the package format of the signal transmission device 10 can be changed arbitrarily.
  • the signal transmission device 10 includes a first chip 31, a second chip 32, and a transformer 40 as semiconductor chips.
  • the first chip 31 includes the primary side circuit 13 shown in FIG.
  • the second chip 32 includes the secondary side circuit 14 shown in FIG.
  • the transformer 40 includes the transformer 15 (the primary coil 16 and the secondary coil 17) shown in FIG.
  • the signal transmission device 10 includes a first die pad 21 on the primary side and a second die pad 22 on the secondary side. Both the first die pad 21 and the second die pad 22 are formed into a flat plate shape. Both the first die pad 21 and the second die pad 22 are made of a conductive material.
  • each die pad 21, 22 is formed of a material containing Cu (copper). Note that each die pad 21, 22 may be formed of other metal materials such as Al (aluminum).
  • the material constituting each die pad 21, 22 is not limited to a conductive material.
  • each die pad 21, 22 may be made of ceramic such as alumina. That is, each die pad 21, 22 may be formed of a material having electrical insulation properties.
  • the first die pad 21 and the second die pad 22 are arranged side by side and spaced apart from each other.
  • the arrangement direction of the first die pad 21 and the second die pad 22 is defined as the x direction.
  • the direction orthogonal to the x direction is defined as the y direction. Note that in the following description, plan view means viewing from the z direction.
  • the first chip 31 and transformer 40 are mounted on the first die pad 21.
  • the first chip 31 and the transformer 40 are bonded to the first die pad 21 by bonding materials 25 and 26.
  • the bonding materials 25 and 26 are, for example, conductive bonding materials such as solder and Ag (silver) paste.
  • an insulating bonding material such as epoxy resin may be used.
  • the material of the bonding material 25 of the first chip 31 and the material of the bonding material 26 of the transformer 40 may be different from each other.
  • the second chip 32 is mounted on the second die pad 22.
  • the second chip 32 is bonded to the second die pad 22 by a bonding material 27.
  • the bonding material 27 is, for example, a conductive bonding material such as solder or Ag paste. Note that as the bonding material 27, an insulating bonding material such as epoxy resin may be used.
  • the signal transmission device 10 includes a plurality of primary leads 23 and a plurality of secondary leads 24.
  • FIG. 2 shows four primary leads 23A to 23D and four secondary leads 24A to 24D.
  • the primary leads 23A and 23D are connected to the first die pad 21.
  • the primary leads 23B and 23C are connected to the first chip 31 by primary wires W11A and W11B.
  • the primary leads 23B and 23C are used for supplying operating voltage to the first chip 31, inputting signals, and the like.
  • the primary lead 23B or the primary lead 23C is used as the primary terminal 11 shown in FIG.
  • the first chip 31 is connected to the first die pad 21 by a wire W12.
  • the number, shape, connection state, etc. of the primary leads 23 can be changed as appropriate.
  • Wires W11A, W11B, and W12 are bonding wires formed by a wire bonding device.
  • the wires W11A, W11B, and W12 are made of a conductor such as Au (gold), Al,
  • the secondary leads 24A and 24D are connected to the second die pad 22.
  • the secondary leads 24B and 24C are connected to the second chip 32 by secondary wires W17A and W17B.
  • the secondary leads 24B and 24C are used for supplying operating voltage to the second chip 32, outputting signals, and the like.
  • the secondary lead 24B or the secondary lead 24C is used as the secondary terminal 12 shown in FIG.
  • the second chip 32 is connected to the second die pad 22 by a wire W16.
  • the number, shape, connection state, etc. of the secondary leads 24 can be changed as appropriate.
  • Wires W16, W17A, and W17B are bonding wires formed by a wire bonding device.
  • the wires W16, W17A, and W17B are made of a conductor such as Au, Al, or Cu.
  • the first chip 31 is connected to the transformer 40 by wires W13A and W13B.
  • the transformer 40 is connected to the second chip 32 by wires W15A and W15B.
  • Wires W13A, W13B, W15A, and W15B are bonding wires formed by a wire bonding device.
  • the wires W13A, W13B, W15A, and W15B are made of a conductor such as Au, Al, or Cu.
  • the signal transmission device 10 further includes a sealing resin 28.
  • the sealing resin 28 seals a portion of each die pad 21, 22, each chip 31, 32, a transformer 40, and each lead 23, 24.
  • the sealing resin 28 is made of an electrically insulating material. A black epoxy resin is used as an example of such a material.
  • the sealing resin 28 is formed into a rectangular plate shape with the thickness direction in the z direction.
  • the transformer 40 is mounted on the first die pad 21. That is, both the transformer 40 and the first chip 31 are mounted on the first die pad 21.
  • the transformer 40 and the first chip 31 are spaced apart from each other in the x direction on the first die pad 21 . Therefore, it can be said that the first chip 31, the transformer 40, and the second chip 32 are arranged apart from each other in the x direction.
  • the first chip 31, the transformer 40, and the second chip 32 are arranged in this order. In other words, the transformer 40 is arranged between the first chip 31 and the second chip 32 in the x direction.
  • the distance between the first die pad 21 and the second die pad 22 in the x direction is larger than the distance between the first chip 31 and the transformer 40 in the x direction. Therefore, the distance between the first chip 31 and the transformer 40 is smaller than the distance between the transformer 40 and the second chip 32 in the x direction. In other words, the transformer 40 is arranged closer to the first chip 31 than the second chip 32.
  • FIG. 3 is a schematic plan view of the transformer 40. 4 is a sectional view taken along the line F4-F4 in FIG. 3, and FIG. 5 is a sectional view taken along the line F5-F5 in FIG. In FIG. 3, the outer coil 60 and the inner coil 70 are shown in solid lines for easy understanding.
  • the transformer 40 is a transformer chip that includes an outer coil 60 and an inner coil 70.
  • the primary coil 16 shown in FIG. 1 includes an outer coil 60.
  • the secondary coil 17 shown in FIG. 1 includes an inner coil 70.
  • the transformer 40 includes a chip main surface 41 and a chip back surface 42 facing opposite to the chip main surface 41. Furthermore, the transformer 40 includes four chip side surfaces 43, 44, 45, and 46 perpendicular to both the chip main surface 41 and the chip back surface 42.
  • the chip side surfaces 43 and 44 constitute both end surfaces of the transformer 40 in the y direction.
  • the chip side surfaces 45 and 46 constitute both end surfaces of the transformer 40 in the x direction.
  • the transformer 40 includes a substrate 51, a first insulator 52 disposed on the substrate 51, and a second insulator 53 disposed below the substrate 51.
  • the substrate 51 has a substrate upper surface 51S and a substrate lower surface 51R facing oppositely to each other in the z direction.
  • the substrate 51 is made of, for example, a semiconductor substrate, a glass substrate, or the like.
  • the substrate 51 is a substrate formed from a material containing Si (silicon). Examples of the Si substrate used for the substrate 51 include a semiconductor substrate made of a single-crystal intrinsic semiconductor material, a p-type semiconductor substrate containing acceptor-type impurities, and an n-type semiconductor substrate containing donor-type impurities.
  • the substrate 51 may be made of a wide bandgap semiconductor or a compound semiconductor as a semiconductor substrate. Furthermore, instead of the semiconductor substrate, the substrate 51 may be an insulating substrate made of a material containing glass.
  • a wide band gap semiconductor is a semiconductor substrate having a band gap of 2.0 eV or more.
  • the wide bandgap semiconductor may be SiC (silicon carbide), GaN (gallium nitride), Ga 2 O 3 (gallium oxide), or the like.
  • the compound semiconductor may be a III-V compound semiconductor.
  • the compound semiconductor may include at least one of AlN (aluminum nitride), InN (indium nitride), GaN, and GaAs (gallium arsenide).
  • the first insulator 52 is formed on the substrate 51.
  • the first insulator 52 is in contact with the top surface 51S of the substrate 51.
  • the first insulator 52 includes a lower surface 52R in contact with the substrate 51 and an upper surface 52S on the opposite side of the lower surface 52R.
  • the upper surface 52S of the first insulator 52 constitutes the chip main surface 41 of the transformer 40.
  • the first insulator 52 of the first embodiment includes a plurality of insulating layers 521 to 526, 52U.
  • the plurality of insulating layers 521 to 526, 52U are stacked in the z direction from the top surface 51S of the substrate 51. Therefore, it can be said that the z direction is the thickness direction of the first insulator 52. Further, the z direction can also be said to be the lamination direction of the plurality of insulating layers 521 to 526, 52U included in the first insulator 52.
  • the lowermost insulating layer 521 is in contact with the upper substrate surface 51S of the substrate 51.
  • the upper surface of the uppermost insulating layer 52U constitutes a chip main surface 41 of the transformer 40.
  • the uppermost insulating layer 52U among the plurality of insulating layers 521 to 526, 52U will be referred to as the second insulating layer 52U, and the insulating layers 521 to 526 other than the second insulating layer 52U will be referred to as the first insulating layer. May be shown as 521-526.
  • the first insulating layers 521 to 526 are made of, for example, a material containing Si.
  • a material containing Si As the material containing Si, SiO 2 (silicon oxide), SiN (silicon nitride), SiC, SiCN (nitrogen-doped silicon carbide), etc. can be used. Note that at least one of the first insulating layers 521 to 526 may be made of a different material. Further, at least one of the first insulating layers 521 to 526 may be formed by stacking a plurality of films.
  • the first insulating layers 521 to 526 may be composed of a thin film formed of a material containing SiN, SiC, SiCN, etc., and an interlayer insulating film formed of a material containing SiO 2 .
  • the first insulating layers 521 to 526 may be formed as one insulating layer without being distinguished from each other.
  • the second insulating layer 52U is made of, for example, a material containing resin having electrical insulation properties.
  • the second insulating layer 52U is formed of, for example, a passivation film including a nitride film and a resin film having electrical insulation properties.
  • the nitride film includes, for example, materials such as Si 3 N 4 , SiN, and SiCN.
  • the resin film includes, for example, polyimide (PI). Note that the second insulating layer 52U may be formed of a material containing Si, similar to the first insulating layers 521 to 526.
  • the second insulator 53 is formed under the substrate 51.
  • the second insulator 53 is in contact with the lower surface 51R of the substrate 51.
  • the second insulator 53 includes an upper surface 53S in contact with the substrate lower surface 51R of the substrate 51, and a lower surface 53R on the opposite side to the upper surface 53S.
  • the lower surface 53R of the second insulator 53 constitutes the back surface 42 of the chip of the transformer 40.
  • the second insulator 53 of the first embodiment includes a plurality of insulating layers 531 to 534.
  • the plurality of insulating layers 531 to 534 are stacked in the z direction from the bottom surface 51R of the substrate 51. Therefore, it can be said that the z direction is the thickness direction of the second insulator 53. Further, the z direction can also be said to be the lamination direction of the plurality of insulating layers 531 to 534 included in the second insulator 53.
  • the uppermost insulating layer 531 is in contact with the lower substrate surface 51R of the substrate 51.
  • the lower surface of the lowermost insulating layer 534 constitutes the back surface 42 of the chip of the transformer 40 .
  • the second insulator 53 can be formed of the same material as the first insulator 52.
  • the insulating layers 531 to 534 of the second insulator 53 are made of, for example, a material containing Si.
  • the material containing Si, SiO 2 , SiN, SiC, SiCN, etc. can be used.
  • at least one of the insulating layers 531 to 534 may be made of a different material.
  • at least one of the insulating layers 531 to 534 may be formed by stacking a plurality of films.
  • the insulating layers 531 to 534 may be composed of a thin film formed of a material containing SiN, SiC, SiCN, etc., and an interlayer insulating film formed of a material containing SiO 2 .
  • the insulating layers 531 to 534 may be formed as one insulating layer without being distinguished from each other.
  • the second insulator 53 can also be formed of a different material from the first insulator 52.
  • the insulating layers 531 to 534 of the second insulator 53 may be formed of, for example, a material containing electrically insulating resin. As this material, for example, a material containing polyimide can be used.
  • transformer 40 includes an outer coil 60 and an inner coil 70. As shown in FIGS. As shown in FIG. 4, outer coil 60 and inner coil 70 are embedded in first insulator 52. As shown in FIG.
  • the outer coil 60 includes a first end 60A and a second end 60B opposite to the first end 60A.
  • the outer coil 60 is formed in a circular spiral shape when viewed from above.
  • the first end 60A is located inside the spiral
  • the second end 60B is located outside the spiral.
  • the outer coil 60 is wound in a spiral shape, with the first end 60A being the inner end and the second end 60B being the outer end.
  • the outer coil 60 is provided on the first insulating layer 526, which is the uppermost layer among the plurality of first insulating layers 521 to 526. That is, the outer coil 60 is disposed closer to the upper surface 52S of the first insulator 52.
  • the outer coil 60 is formed of a material containing one or more appropriately selected from Ti (titanium), TiN (titanium nitride), Au, Ag, Cu, Al, and W (tungsten).
  • the outer coil 60 of the first embodiment is made of a material containing Al.
  • Inner coil 70 is arranged inside outer coil 60.
  • the inner coil 70 is arranged so as not to overlap the outer coil 60 in plan view.
  • the inner coil 70 includes a first end 70A and a second end 70B opposite to the first end 70A.
  • the inner coil 70 is formed in a circular spiral shape when viewed from above.
  • the first end 70A is arranged inside the spiral
  • the second end 70B is arranged outside the spiral.
  • the inner coil 70 is wound in a spiral shape with the first end 70A being the inner end and the second end 70B being the outer end.
  • the inner coil 70 may have the first end 70A as the outer end and the second end 70B as the inner end.
  • the inner coil 70 is provided in the first insulating layer 526, which is the uppermost layer among the plurality of first insulating layers 521 to 526. That is, the inner coil 70 is disposed closer to the upper surface 52S of the first insulator 52.
  • the inner coil 70 is formed of a material containing one or more appropriately selected from Ti, TiN, Au, Ag, Cu, Al, and W.
  • the inner coil 70 of the first embodiment is made of a material containing Al.
  • the transformer 40 includes a wiring section 80.
  • the wiring section 80 is electrically connected to the outer coil 60.
  • the wiring portion 80 is electrically connected to the first end 60A of the outer coil 60. Note that in FIG. 4, the wiring section 80 is schematically shown.
  • the wiring section 80 includes a connection wiring 81, vias 82 and 83, and a terminal section 84.
  • the wiring portion 80 is formed of a material containing one or more appropriately selected from Ti, TiN, Au, Ag, Cu, Al, and W.
  • the terminal portion 84 is arranged near the chip side surface 46.
  • the terminal portion 84 is arranged at the same position in the y direction as the first end 60A of the outer coil 60 in plan view. Note that the arrangement position of the terminal portion 84 may be changed arbitrarily.
  • connection wiring 81 is arranged below the outer coil 60.
  • the connection wiring 81 is provided in the first insulating layer 524 two layers below the first insulating layer 526 on which the outer coil 60 is provided. Note that the position where the connection wiring 81 is provided may be changed as appropriate within a range where it does not come into contact with the outer coil 60.
  • the connection wiring 81 is formed to extend from the first end 81A connected to the outer coil 60 toward the chip side surface 46.
  • the connection wiring 81 extends from the first end 60A of the outer coil 60 to the terminal portion 84 in a plan view.
  • a first end 81A of the connection wiring 81 is electrically connected to a first end 60A of the outer coil 60 via a via 82.
  • the second end 81B of the connection wiring 81 is electrically connected to the terminal portion 84 via the via 83.
  • the second insulating layer 52U includes an opening 52U1 that exposes the second end 60B of the outer coil 60 and an opening 52U2 that exposes a part of the wiring section 80.
  • Wires W13A and W13B are connected to the second end 60B and the terminal portion 84 exposed through the openings 52U1 and 52U2. That is, it can be said that the second end 60B and the terminal portion 84 exposed through the openings 52U1 and 52U2 are connection pads that connect the wires W13A and W13B.
  • wires W13A and W13B are connected to the first chip 31. Therefore, the second end 60B and the terminal portion 84 exposed through the openings 52U1 and 52U2 can also be called connection pads that connect the transformer 40 to the first chip 31.
  • the second insulating layer 52U includes a plurality of openings 52U3 and 52U4 that expose a portion of the inner coil 70.
  • the opening 52U3 is formed to expose the first end 70A of the inner coil 70.
  • the opening 52U4 is formed to expose the second end 70B of the inner coil 70.
  • a wire W15A is connected to the first end 70A of the inner coil 70 exposed through the opening 52U3.
  • a wire W15B is connected to the second end 70B of the inner coil 70 exposed through the opening 52U4. That is, it can be said that the first end 70A exposed through the opening 52U3 and the second end 70B exposed through the opening 52U4 are connection pads that connect the wires W15A and W15B.
  • These wires W15A and W15B are connected to the second chip 32, as shown in FIG. Therefore, the first end 70A and the second end 70B exposed through the openings 52U3 and 52U4 can also be called connection pads that connect the transformer 40 to the second chip 32.
  • the outer coil 60 and the inner coil 70 are electrically insulated from each other and configured to be magnetically coupled.
  • the transformer 40 of the first embodiment is configured such that the outer coil 60 and the inner coil 70 can be magnetically coupled along a plane parallel to the upper surface 51S of the substrate 51.
  • the inner coil 70 is arranged inside the outer coil 60. Therefore, a current flows in the inner coil 70 in a direction that corresponds to the direction of the magnetic flux generated by the current flowing in the outer coil 60.
  • the inner coil 70 and the outer coil 60 are arranged at the same position in the z direction and on the same plane perpendicular to the thickness direction of the first insulator 52. Therefore, the distance D70 from the substrate 51 to the inner coil 70 is equal to the distance D60 from the substrate 51 to the outer coil 60.
  • connection wiring 81 of the wiring section 80 connected to the outer coil 60 is arranged below the outer coil 60. Therefore, the distance D80 from the substrate 51 to the connection wiring 81 is smaller than the distance D60 from the substrate 51 to the outer coil 60 and the distance D70 from the substrate 51 to the inner coil 70. Therefore, in the transformer 40 of the first embodiment, the distance D80 from the substrate 51 to the connection wiring 81 is the second shortest distance between the outer coil 60 and the inner coil 70 and the substrate 51 in the thickness direction.
  • the distances D11 and D12 between the outer coil 60 and the inner coil 70 are equal to each other.
  • the distances D11 and D12 are the first shortest distances between the outer coil 60 and the inner coil 70.
  • the distances D11 and D12 can be, for example, 10 ⁇ m or more and 20 ⁇ m or less.
  • the distance from the substrate 51 to the outer coil 60 and the inner coil 70 in the z direction is the thickness T52 of the first insulator 52.
  • the distance from the upper surface 53S to the lower surface 53R is the thickness T53 of the second insulator 53.
  • the thickness T52 of the first insulator 52 is thicker than the thickness T53 of the second insulator 53.
  • the thickness T52 of the first insulator 52 and the thickness T53 of the second insulator 53 can be set according to the dielectric strength voltage of the transformer 40.
  • the thickness T52 of the first insulator 52 and the thickness of the second insulator 53 are set such that the total value of the second shortest distance D80 and the thickness T53 of the second insulator 53 is equal to or greater than the first shortest distance D11, D12.
  • the distance T53 and the distances D11 and D12 between the outer coil 60 and the inner coil 70 can be set.
  • the thickness T52 of the first insulator 52, specifically the distance D70 to the coil (inner coil 70 in the first embodiment) electrically connected to the second chip 32, can be 5 ⁇ m or more and 10 ⁇ m or less.
  • the thickness T53 of the second insulator 53 can be 5 ⁇ m or more and 10 ⁇ m or less.
  • the configuration of the transformer 40 can be changed as appropriate depending on the relationship among the first shortest distances D11 and D21, the second shortest distance D80, and the thickness T53 of the second insulator 53.
  • the thickness T52 of the first insulator 52 and the thickness T53 of the second insulator 53 may be made equal.
  • the thickness T53 of the second insulator 53 may be made thicker than the thickness of the first insulator 52.
  • FIG. 6 shows a cross-sectional structure of a transformer 40X of a comparative example.
  • the transformer 40X of the comparative example includes only the first insulator 52 on the substrate 51 and does not include the second insulator 53.
  • the primary coil 16X and the secondary coil 17X are arranged in an overlapping manner in the thickness direction of the first insulator 52 on the substrate 51.
  • the transformer 40X of the comparative example includes a primary coil 16X and a secondary coil 17X that are arranged to be magnetically coupled in the thickness direction of the first insulator 52.
  • the dielectric strength of the comparative example transformer 40X is determined by the distance between the primary coil 16X and the secondary coil 17X.
  • warpage occurs in the substrate 51 and the first insulator 52 due to the stress in the substrate 51 and the first insulator 52 due to the difference between the material of the substrate 51 and the material of the first insulator 52.
  • the transformer 40 of the first embodiment includes a first insulator 52 provided on a substrate 51 and a second insulator 53 provided below the substrate 51.
  • the first insulator 52 is in contact with the upper substrate surface 51S of the substrate 51
  • the second insulator 53 is in contact with the lower substrate surface 51R of the substrate 51. Therefore, the stress generated by the first insulator 52 in contact with the substrate upper surface 51S and the stress generated by the second insulator 53 in contact with the substrate lower surface 51R cancel each other out with respect to the substrate 51, thereby reducing stress in the transformer 40. Therefore, warpage of the transformer 40 can be reduced.
  • the first insulator 52 and the second insulator 53 are made of the same material. Therefore, stress in the transformer 40 can be further reduced compared to the case where the first insulator 52 and the second insulator 53 are made of different materials. Thereby, the warpage of the substrate 51, that is, the warpage of the transformer 40 can be further reduced.
  • the transformer 40 of the first embodiment includes the second insulator 53, thereby canceling out the stress caused by the first insulator 52, thereby reducing the stress in the transformer 40. Therefore, the thicknesses T52 and T53 of the first insulator 52 and the second insulator 53 can be made thicker than the transformer 40X of the comparative example. Thereby, the dielectric strength voltage of the transformer 40 can be further improved.
  • the transformer 40 is mounted on the first die pad 21.
  • the potential of the first die pad 21 is equal to the common voltage of the first chip 31 mounted on the first die pad 21.
  • the substrate 51 is sandwiched between a first insulator 52 and a second insulator 53. Therefore, the substrate 51 is electrically at a floating potential from the first chip 31 and the second chip 32. In other words, the substrate 51 is electrically floating.
  • the outer coil 60 and the inner coil 70 are arranged closer to the upper surface of the first insulator 52.
  • parasitic capacitors C11 and C12 are generated between the outer coil 60 and the substrate 51 and between the inner coil 70 and the substrate 51.
  • a parasitic capacitor C53 is generated between the first die pad 21 and the conductive bonding material 26 and the substrate 51.
  • the outer coil 60 (the primary coil 16 shown in FIG. 1) is electrically connected to the first chip 31 including the primary circuit 13. Both the first chip 31 and the transformer 40 are mounted on the first die pad 21. Therefore, the common voltage of the substrate 51 of the transformer 40 and the primary circuit 13 of the first chip 31 is the same.
  • the inner coil 70 (the secondary coil 17 shown in FIG. 1) is electrically connected to the second chip 32 including the secondary circuit 14. Therefore, the inner coil 70 has the same common voltage as the secondary circuit 14.
  • the potential of the substrate 51 is a voltage obtained by dividing the common voltage of the first die pad 21 and the common voltage of the inner coil 70 by the capacitance values of the parasitic capacitors C53 and C12.
  • the dielectric strength voltage of the transformer 40 of the first embodiment can be increased from that of the transformer of the comparative example. It can be twice the dielectric strength voltage.
  • the outer coil 60 and the inner coil 70 are arranged at the same position in the thickness direction of the first insulator 52 and on the same plane perpendicular to the thickness direction.
  • the dielectric strength between the outer coil 60 and the inner coil 70 is determined by the first shortest distances D11 and D12 between the outer coil 60 and the inner coil 70.
  • the first shortest distances D11 and D12 can be adjusted by the shapes of the outer coil 60 and the inner coil 70, that is, the layout design of the transformer 40. That is, the dielectric strength between the outer coil 60 and the inner coil 70 of the transformer 40 can be adjusted by designing the layout of the transformer 40. Therefore, the dielectric strength voltage of the transformer 40 can be easily changed.
  • the wiring resistance values of the outer coil 60 and the inner coil 70 affect the amount of current flowing through the outer coil 60 and the inner coil 70, respectively, and the degree of magnetic coupling.
  • the wiring resistance value of the outer coil 60 is obtained by widening the wiring width of the outer coil 60 and decreasing the aspect ratio of the wiring thickness to the wiring width.
  • the wiring resistance value of the inner coil 70 can be obtained by widening the wiring width of the inner coil 70 and decreasing the aspect ratio of the wiring thickness to the wiring width.
  • the primary coil 16X and the secondary coil 17X are arranged in the thickness direction of the first insulator 52. Therefore, if the wiring width of the primary coil 16X and the secondary coil 17X is increased when viewed from the thickness direction of the first insulator 52, the opposing area of the primary coil 16X and the secondary coil 17X increases. Therefore, the capacitance value of the parasitic capacitor increases.
  • the outer coil 60 and the inner coil 70 face each other in the x direction and the y direction. Therefore, even if the wiring width is increased, the facing area of the outer coil 60 and the inner coil 70 does not change. That is, the capacitance values of the parasitic capacitors C11 and C12 between the outer coil 60 and the inner coil 70 do not change. That is, compared to the transformer 40X of the comparative example, the wiring resistance value can be reduced without increasing the capacitance value of the parasitic capacitors C11 and C12 between the coils. As a result, current flows more easily in the outer coil 60 and inner coil 70 of the transformer 40, so that the amount of magnetic flux generated in the transformer 40 can be increased. In the transformer 40, it is possible to improve the efficiency of magnetic coupling between the outer coil 60 and the inner coil 70, and thus to improve the transfer characteristics.
  • the transformer 40 of the first embodiment provides the following effects.
  • (1-1) The transformer 40 of the first embodiment includes a first insulator 52 provided on a substrate 51 and a second insulator 53 provided below the substrate 51.
  • the first insulator 52 is in contact with the upper substrate surface 51S of the substrate 51
  • the second insulator 53 is in contact with the lower substrate surface 51R of the substrate 51. Therefore, the stress generated by the first insulator 52 in contact with the substrate upper surface 51S and the stress generated by the second insulator 53 in contact with the substrate lower surface 51R cancel each other out with respect to the substrate 51, thereby reducing stress in the transformer 40. Therefore, warpage of the transformer 40 can be reduced.
  • the first insulator 52 and the second insulator 53 are made of the same material. Therefore, stress in the transformer 40 can be further reduced compared to the case where the first insulator 52 and the second insulator 53 are made of different materials. Thereby, the warpage of the substrate 51, that is, the warpage of the transformer 40 can be further reduced.
  • the transformer 40 of the first embodiment includes the second insulator 53, thereby canceling out stress caused by the first insulator 52, thereby reducing stress in the transformer 40. Therefore, the thicknesses T52 and T53 of the first insulator 52 and the second insulator 53 can be made thicker than the transformer 40X of the comparative example. Thereby, the dielectric strength voltage of the transformer 40 can be further improved.
  • a parasitic capacitor C53 is generated between the substrate 51 and the first die pad 21 (bonding material 26), and a parasitic capacitor C12 is generated between the substrate 51 and the inner coil 70. Therefore, the potential of the substrate 51 is a voltage obtained by dividing the common voltage of the first die pad 21 and the common voltage of the inner coil 70 by the capacitance values of the parasitic capacitors C53 and C12.
  • the dielectric strength voltage of the transformer 40 of the first embodiment can be increased from that of the transformer 40X of the comparative example. It can be twice the dielectric strength voltage.
  • the outer coil 60 and the inner coil 70 are arranged at the same position in the thickness direction of the first insulator 52 and on the same plane perpendicular to the thickness direction.
  • the dielectric strength between the outer coil 60 and the inner coil 70 is determined by the first shortest distances D11 and D12 between the outer coil 60 and the inner coil 70.
  • the first shortest distances D11 and D12 can be adjusted by the shapes of the outer coil 60 and the inner coil 70, that is, the layout design of the transformer 40. That is, the dielectric strength between the outer coil 60 and the inner coil 70 of the transformer 40 can be adjusted by designing the layout of the transformer 40. Therefore, the dielectric strength voltage of the transformer 40 can be easily changed.
  • the wiring resistance values of the outer coil 60 and the inner coil 70 affect the amount of current flowing through the outer coil 60 and the inner coil 70, respectively, and the degree of magnetic coupling.
  • the wiring resistance value of the outer coil 60 is obtained by widening the wiring width of the outer coil 60 and decreasing the aspect ratio of the wiring thickness to the wiring width.
  • the wiring resistance value of the inner coil 70 can be obtained by widening the wiring width of the inner coil 70 and decreasing the aspect ratio of the wiring thickness to the wiring width.
  • the outer coil 60 and the inner coil 70 face each other in the x direction and the y direction. Therefore, even if the wiring width is increased, the facing area of the outer coil 60 and the inner coil 70 does not change. That is, the capacitance values of the parasitic capacitors C11 and C12 between the outer coil 60 and the inner coil 70 do not change. That is, compared to the transformer 40X of the comparative example, the wiring resistance value can be reduced without increasing the capacitance value of the parasitic capacitors C11 and C12 between the coils. As a result, current flows more easily in the outer coil 60 and inner coil 70 of the transformer 40, so that the amount of magnetic flux generated in the transformer 40 can be increased. In the transformer 40, it is possible to improve the efficiency of magnetic coupling between the outer coil 60 and the inner coil 70, and thus to improve the transfer characteristics.
  • the first embodiment described above can be modified as follows, for example.
  • the first embodiment and each of the following modified examples can be combined with each other as long as no technical contradiction occurs.
  • the same parts as in the first embodiment are given the same reference numerals as in the first embodiment, and the explanation thereof will be omitted.
  • the modified transformer 40A shown in FIG. 7 includes an outer coil 60 formed on two first insulating layers 527 and 529.
  • the outer coils 60 of the first insulating layers 527 and 529 are connected in parallel by vias 65.
  • the wiring resistance value of the outer coils 60 can be reduced. Note that the number of first insulating layers forming the outer coil 60 can be three or more.
  • the transformer 40A includes two inner coils 70 formed on the two first insulating layers 527 and 529.
  • the inner coils 70 of the first insulating layers 527 and 529 are connected in parallel by vias 75 .
  • the wiring resistance value of the inner coils 70 can be reduced. Note that the number of first insulating layers forming the inner coil 70 can be three or more.
  • the modified transformer 40B shown in FIGS. 8 and 9 includes an outer coil 60 and an outer coil 63 connected to the outer coil 60.
  • the outer coil 63 is arranged so as to overlap the outer coil 60 when viewed from the z direction.
  • the outer coil 63 includes coil portions 631 and 632 formed in two first insulating layers 527 and 529, respectively.
  • the coil portions 631 and 632 are connected in series between the outer coil 60 and the wiring portion 80 by vias 65 .
  • an outer coil 63 is connected between the wiring section 80 and the outer coil 60. Therefore, the number of turns of the outer coil 60 can be increased. Thereby, the amount of magnetic flux generated by the outer coil 60 can be increased.
  • outer coils 63 (631, 632) formed on the two first insulating layers 527, 529 may be connected in parallel. Further, the outer coil 60 may be formed in a plurality of first insulating layers and connected in parallel, as shown in FIG. 7 . By connecting the outer coil 60 and the outer coil 63 in parallel in this manner, it is possible to increase the number of turns and suppress an increase in the wiring resistance value.
  • the inner coil 70 is disposed on the first insulating layer 529.
  • the first insulating layer on which the inner coil 70 is placed can be arbitrarily changed.
  • the modified transformer 40C shown in FIG. 10 differs from the transformer 40B shown in FIG.
  • the coil portion 631 is arranged so as not to overlap with the coil portion 631 when viewed from the z direction.
  • the inner coil 70 is arranged in a first insulating layer 525 different from the first insulating layer 527 in which the outer coil 60 is arranged.
  • the inner coil 70 only needs to be arranged in a first insulating layer different from the first insulating layer 527 in which the outer coil 60 is arranged, and may be arranged in the first insulating layer 526, for example.
  • the first embodiment described above is embodied in a signal transmission device that transmits signals using the transformer 40.
  • the transformer 40 may be configured as a transmission device (power transmission device) that transmits power.
  • FIG. 12 is a circuit diagram illustrating an example of the configuration of a modified power transmission device 300.
  • This power transmission device 300 includes a control circuit 301, an oscillator 302, a transformer 15 (40), diodes 303, 304, 305, 306, and a smoothing capacitor 307.
  • Control circuit 301, oscillator 302, transformer 15 (40), diodes 303 to 306, and smoothing capacitor 307 are sealed with sealing resin 28, similar to signal transmission device 10 of the first embodiment.
  • a DC power supply 311 is connected to the control circuit 301.
  • Oscillator 302 is controlled by control circuit 301 and outputs an AC signal.
  • This AC signal is transmitted by transformer 40.
  • a DC voltage is supplied to the load 312 by diodes 303 to 306 and a smoothing capacitor 307. That is, this power transmission device 300 works as a DC voltage conversion circuit (DC-DC converter) that converts the voltage of the DC power supply 311 into the operating voltage of the load 312.
  • DC-DC converter DC voltage conversion circuit
  • FIG. 13 is a circuit diagram showing an example of the configuration of a power transmission device according to a modification.
  • This power transmission device 320 includes a control circuit 301, an oscillator 302, two transformers 40, diodes 304 and 306, and a smoothing capacitor 307.
  • a neutral point between the secondary coils 17 of the two transformers 40 is electrically connected to the secondary terminal 322B.
  • a load 312 is connected to the secondary terminals 322A and 322B.
  • This power transmission device 320 works as a direct current voltage conversion circuit (DC-DC converter) that converts the voltage of the direct current power supply 311 into the operating voltage of the load 312.
  • DC-DC converter direct current voltage conversion circuit
  • the shapes of the outer coil 60 and the inner coil 70 in plan view can be arbitrarily changed.
  • the outer coil 60 and the inner coil 70 may be formed into a rectangular shape.
  • the outer coil 60 and the inner coil 70 may be formed into a rectangular shape with rounded corners.
  • the outer coil 60 and the inner coil 70 may be formed in an elliptical shape.
  • the wire W13B can also be configured to be directly connected to the outer coil 60.
  • the distance between the first end 60A of the outer coil 60 and the inner coil 70 (inner coil 70) is greater than or equal to the distance required for the dielectric strength of the transformer 40.
  • the wire W13B can be connected to the first end 60A of the outer coil 60.
  • FIG. 14 is a circuit diagram schematically showing the configuration of a signal transmission device including a transformer according to the second embodiment.
  • FIG. 15 is a schematic plan view schematically showing the signal transmission device of FIG. 14.
  • the second embodiment is configured as a signal transmission device 110 including a transformer 115.
  • the signal transmission device 110 is a device that transmits a pulse signal while electrically insulating between the primary terminal 11 and the secondary terminal 12.
  • Signal transmission device 110 is, for example, a digital isolator.
  • the signal transmission device 110 includes a primary circuit 13 electrically connected to the primary terminal 11, a secondary circuit 14 electrically connected to the secondary terminal 12, and the primary circuit 13.
  • a transformer 115 that electrically isolates the secondary circuit 14 is included.
  • the primary side circuit 13 is a circuit configured to operate when the first voltage V1 is applied.
  • the primary circuit 13 is electrically connected to, for example, an external control device (not shown).
  • the primary circuit 13 includes a transmitting circuit 13T.
  • the secondary side circuit 14 is a circuit configured to operate when a second voltage V2 different from the first voltage V1 is applied.
  • the second voltage V2 is higher than the first voltage V1, for example.
  • the first voltage V1 and the second voltage V2 are DC voltages.
  • the secondary circuit 14 is electrically connected to, for example, a drive circuit that is controlled by a control device.
  • An example of a drive circuit is a switching circuit.
  • the secondary circuit 14 includes a receiving circuit 14R. A ground for the primary circuit 13 and a ground for the secondary circuit 14 are provided independently.
  • the transformer 115 is connected between the transmitting circuit 13T and the receiving circuit 14R.
  • Transformer 115 includes a primary coil 16 and a secondary coil 17.
  • the secondary coil 17 includes a first coil 17A and a second coil 17B.
  • the first coil 17A and the second coil 17B are electrically connected to each other. Thereby, the first coil 17A and the second coil 17B of the secondary coil 17 are connected in series to the receiving circuit 14R.
  • a control signal from, for example, a control device is input to the transmission circuit 13T of the primary side circuit 13 through the primary side terminal 11.
  • the control signal is received by the receiving circuit 14R of the secondary circuit 14 from the transmitting circuit 13T of the primary circuit 13 via the transformer 115.
  • the signal transmitted to the secondary circuit 14 is output from the secondary circuit 14 to the drive circuit through the secondary terminal 12.
  • the primary side circuit 13 and the secondary side circuit 14 are electrically insulated by the transformer 115. More specifically, while the transformer 115 restricts the transmission of DC voltage between the primary circuit 13 and the secondary circuit 14, it allows the transmission of pulse signals.
  • the state where the primary side circuit 13 and the secondary side circuit 14 are insulated refers to the state where the transmission of DC voltage is cut off between the primary side circuit 13 and the secondary side circuit 14. This means that transmission of pulse signals from the primary circuit 13 to the secondary circuit 14 is permitted. In this way, the secondary circuit 14 is configured to receive the signal from the primary circuit 13.
  • the dielectric strength voltage of the signal transmission device 110 is, for example, 2500 Vrms or more and 7500 Vrms or less.
  • the dielectric strength voltage of the signal transmission device 110 of the second embodiment is approximately 5700 Vrms.
  • the specific value of the dielectric strength voltage of the signal transmission device 110 is not limited to this and is arbitrary.
  • the signal transmission device 110 is a semiconductor device in which a plurality of semiconductor chips are packaged into one.
  • the package format of the signal transmission device 110 is, for example, SO type, and in the second embodiment is SOP. Note that the package format of the signal transmission device 110 can be changed arbitrarily.
  • the signal transmission device 110 includes a first chip 31, a second chip 32, and a transformer 140 as semiconductor chips.
  • the first chip 31 includes the primary side circuit 13 shown in FIG.
  • the second chip 32 includes the secondary side circuit 14 shown in FIG.
  • Transformer 140 includes transformer 115 (primary coil 16 and secondary coil 17) shown in FIG.
  • the signal transmission device 110 includes a first die pad 21 and a second die pad 22. Both the first die pad 21 and the second die pad 22 are formed into a flat plate shape. Both the first die pad 21 and the second die pad 22 are made of a conductive material.
  • each die pad 21, 22 is formed of a material containing Cu. Note that each die pad 21, 22 may be formed of other metal materials such as Al. Moreover, the material constituting each die pad 21, 22 is not limited to a conductive material.
  • each die pad 21, 22 may be made of ceramic such as alumina. That is, each die pad 21, 22 may be formed of a material having electrical insulation properties.
  • the first die pad 21 and the second die pad 22 are arranged side by side and spaced apart from each other.
  • the arrangement direction of the first die pad 21 and the second die pad 22 is defined as the x direction.
  • the direction orthogonal to the x direction is defined as the y direction. Note that in the following description, plan view means viewing from the z direction.
  • the first chip 31 and transformer 140 are mounted on the first die pad 21.
  • the first chip 31 and the transformer 140 are bonded to the first die pad 21 by bonding materials 25 and 26.
  • the bonding materials 25 and 26 are, for example, conductive bonding materials such as solder and Ag paste. Note that as the bonding materials 25 and 26, an insulating bonding material such as epoxy resin may be used.
  • the bonding material 25 of the first chip 31 and the bonding material 26 of the transformer 140 may be different types of bonding materials.
  • the second chip 32 is mounted on the second die pad 22.
  • the second chip 32 is bonded to the second die pad 22 by a bonding material 27.
  • the bonding material 27 is, for example, a conductive bonding material such as solder or Ag paste. Note that as the bonding material 27, an insulating bonding material such as epoxy resin may be used.
  • the signal transmission device 110 includes a plurality of primary leads 23 and a plurality of secondary leads 24.
  • FIG. 15 shows four primary leads 23A to 23D and four secondary leads 24A to 24D.
  • the primary leads 23A and 23D are connected to the first die pad 21.
  • the primary leads 23B and 23C are connected to the first chip 31 by primary wires W11A and W11B.
  • the primary leads 23B and 23C are used for supplying operating voltage to the first chip 31, inputting signals, and the like.
  • the primary lead 23B or the primary lead 23C is used as the primary terminal 11 shown in FIG.
  • the first chip 31 is connected to the first die pad 21 by a wire W12.
  • the number, shape, connection state, etc. of the primary leads 23 can be changed as appropriate.
  • Wires W11A, W11B, and W12 are bonding wires formed by a wire bonding device.
  • the wires W11A, W11B, and W12 are made of a conductor such as Au, Al, or Cu
  • the secondary leads 24A and 24D are connected to the second die pad 22.
  • the secondary leads 24B and 24C are connected to the second chip 32 by secondary wires W17A and W17B.
  • the secondary leads 24B and 24C are used for supplying operating voltage to the second chip 32, outputting signals, and the like.
  • the secondary lead 24B or the secondary lead 24C is used as the secondary terminal 12 shown in FIG. 14.
  • the second chip 32 is connected to the second die pad 22 by a wire W16.
  • the number, shape, connection state, etc. of the secondary leads 24 can be changed as appropriate.
  • Wires W16, W17A, and W17B are bonding wires formed by a wire bonding device.
  • the wires W16, W17A, and W17B are made of a conductor such as Au, Al, or Cu.
  • the first chip 31 is connected to the transformer 140 by wires W13A and W13B.
  • the transformer 140 is connected to the second chip 32 by wires W15A and W15B.
  • a wire W14 serving as a connecting member is connected to the transformer 140.
  • Wires W13A, W13B, W14, W15A, and W15B are bonding wires formed by a wire bonding device.
  • the wires W13A, W13B, W14, W15A, and W15B are made of a conductor such as Au, Al, or Cu.
  • the signal transmission device 110 further includes a sealing resin 28.
  • the sealing resin 28 seals a portion of each die pad 21, 22, each chip 31, 32, a transformer 140, and each lead 23, 24.
  • the sealing resin 28 is made of an electrically insulating material. A black epoxy resin is used as an example of such a material.
  • the sealing resin 28 is formed into a rectangular plate shape with the thickness direction in the z direction.
  • the transformer 140 is mounted on the first die pad 21. That is, both the transformer 140 and the first chip 31 are mounted on the first die pad 21.
  • the transformer 140 and the first chip 31 are spaced apart from each other in the x direction on the first die pad 21 . Therefore, it can be said that the first chip 31, the transformer 140, and the second chip 32 are arranged apart from each other in the x direction.
  • the first chip 31, the transformer 140, and the second chip 32 are arranged in this order. In other words, the transformer 140 is arranged between the first chip 31 and the second chip 32 in the x direction.
  • the distance between the first die pad 21 and the second die pad 22 in the x direction is larger than the distance between the first chip 31 and the transformer 140 in the x direction. Therefore, the distance between the first chip 31 and the transformer 140 is smaller than the distance between the transformer 140 and the second chip 32 in the x direction. In other words, the transformer 140 is placed closer to the first chip 31 than the second chip 32.
  • FIG. 16 is a schematic plan view of the transformer 140. 17 is a sectional view taken along the line F17-F17 in FIG. 16, and FIG. 18 is a sectional view taken along the line F18-F18 in FIG. In FIG. 16, the outer coil 60 and the inner coil 70 are shown in solid lines for easy understanding.
  • the transformer 140 is a transformer chip that includes an outer coil 60 and an inner coil 70.
  • the primary coil 16 shown in FIG. 14 includes an outer coil 60.
  • the secondary coil 17 shown in FIG. 14 includes an inner coil 70.
  • the secondary coil 17 includes a first coil 17A and a second coil 17B.
  • the inner coil 70 includes a first inner coil 71 that functions as the first coil 17A, and a second inner coil 72 that functions as the second coil 17B.
  • the transformer 140 includes a chip main surface 141 and a chip back surface 142 facing away from the chip main surface 141. Further, the transformer 140 includes four chip side surfaces 143, 144, 145, and 146 perpendicular to both the chip main surface 141 and the chip back surface 142.
  • the chip side surfaces 143 and 144 constitute both end surfaces of the transformer 140 in the x direction.
  • the chip side surfaces 145 and 146 constitute both end surfaces of the transformer 140 in the y direction.
  • the transformer 140 includes a substrate 51, a first insulator 52 disposed on the substrate 51, and a second insulator 53 disposed below the substrate 51.
  • the substrate 51 has a substrate upper surface 51S and a substrate lower surface 51R facing oppositely to each other in the z direction.
  • the substrate 51 is made of, for example, a semiconductor substrate.
  • the substrate 51 is a substrate made of a material containing Si. Examples of the Si substrate used for the substrate 51 include a semiconductor substrate made of a single-crystal intrinsic semiconductor material, a p-type semiconductor substrate containing acceptor-type impurities, and an n-type semiconductor substrate containing donor-type impurities.
  • the substrate 51 may be made of a wide bandgap semiconductor or a compound semiconductor as a semiconductor substrate. Furthermore, instead of the semiconductor substrate, the substrate 51 may be an insulating substrate made of a material containing glass.
  • a wide band gap semiconductor is a semiconductor substrate having a band gap of 2.0 eV or more.
  • the wide bandgap semiconductor may be SiC, GaN , Ga2O3 , etc.
  • the compound semiconductor may be a III-V compound semiconductor.
  • the compound semiconductor may include at least one of AlN, InN, GaN, and GaAs.
  • the first insulator 52 is formed on the substrate 51.
  • the first insulator 52 is in contact with the top surface 51S of the substrate 51.
  • the first insulator 52 includes a lower surface 52R in contact with the substrate 51 and an upper surface 52S on the opposite side of the lower surface 52R.
  • the upper surface 52S of the first insulator 52 constitutes a chip main surface 141 of the transformer 140.
  • the first insulator 52 of the second embodiment includes an uppermost insulating layer 52U and insulating layers 521 to 527 between the uppermost insulating layer 52U and the substrate 51.
  • the insulating layers 521 to 527, 52U are laminated in the z direction from the top surface 51S of the substrate 51. Therefore, it can be said that the z direction is the thickness direction of the first insulator 52. Further, the z direction can also be said to be the lamination direction of the plurality of insulating layers 521 to 527, 52U included in the first insulator 52.
  • the lowermost insulating layer 521 is in contact with the upper substrate surface 51S of the substrate 51.
  • the upper surface of the uppermost insulating layer 52U constitutes a chip main surface 141 of the transformer 140.
  • the uppermost insulating layer 52U of the plurality of insulating layers 521 to 527, 52U will be referred to as the second insulating layer 52U, and the insulating layers 521 to 527 excluding the second insulating layer 52U will be referred to as the first insulating layer. May be shown as 521-527.
  • the first insulating layers 521 to 527 are made of, for example, a material containing Si. As the material containing Si, SiO 2 , SiN, SiC, SiCN, etc. can be used. Note that at least one of the first insulating layers 521 to 527 may be made of a different material. Furthermore, at least one of the first insulating layers 521 to 527 may be formed by laminating a plurality of films.
  • the first insulating layers 521 to 527 may be composed of a thin film made of a material containing SiN, SiC, SiCN, etc., and an interlayer insulating film made of a material containing SiO 2 .
  • the second insulating layer 52U is made of, for example, a material containing resin having electrical insulation properties.
  • the second insulating layer 52U is formed of, for example, a passivation film including a nitride film and a resin film having electrical insulation properties.
  • the nitride film includes materials such as Si 3 N 4 , SiN, and SiCN, for example.
  • the resin film contains, for example, polyimide. Note that the second insulating layer 52U may be formed of a material containing Si, similar to the first insulating layers 521 to 527.
  • the second insulator 53 is formed under the substrate 51.
  • the second insulator 53 is in contact with the lower surface 51R of the substrate 51.
  • the second insulator 53 includes an upper surface 53S in contact with the substrate lower surface 51R of the substrate 51, and a lower surface 53R on the opposite side to the upper surface 53S.
  • the lower surface 53R of the second insulator 53 constitutes a chip back surface 142 of the transformer 140.
  • the second insulator 53 of the first embodiment includes a plurality of insulating layers 531 to 534.
  • the plurality of insulating layers 531 to 534 are stacked in the z direction from the bottom surface 51R of the substrate 51. Therefore, it can be said that the z direction is the thickness direction of the second insulator 53. Further, the z direction can also be said to be the lamination direction of the plurality of insulating layers 531 to 534 included in the second insulator 53.
  • the uppermost insulating layer 531 is in contact with the lower substrate surface 51R of the substrate 51.
  • the lower surface of the lowermost insulating layer 534 constitutes a chip back surface 142 of the transformer 140.
  • the second insulator 53 can be formed of the same material as the first insulator 52.
  • the insulating layers 531 to 534 of the second insulator 53 are made of, for example, a material containing Si.
  • the material containing Si, SiO 2 , SiN, SiC, SiCN, etc. can be used.
  • at least one of the insulating layers 531 to 534 may be made of a different material.
  • at least one of the insulating layers 531 to 534 may be formed by stacking a plurality of films.
  • the insulating layers 531 to 534 may be composed of a thin film formed of a material containing SiN, SiC, SiCN, etc., and an interlayer insulating film formed of a material containing SiO 2 .
  • the insulating layers 531 to 534 may be formed as one insulating layer without being distinguished from each other.
  • the second insulator 53 can also be formed of a different material from the first insulator 52.
  • the insulating layers 531 to 534 of the second insulator 53 may be formed of, for example, a material containing electrically insulating resin. As this material, for example, a material containing polyimide can be used.
  • transformer 140 includes an outer coil 60 and an inner coil 70. As shown in FIG. 17, outer coil 60 and inner coil 70 are embedded in first insulator 52.
  • the outer coil 60 includes a first outer coil 61 and a second outer coil 62.
  • the first outer coil 61 includes a first end 61A and a second end 61B opposite to the first end 61A.
  • the second outer coil 62 includes a first end 62A and a second end 62B opposite to the first end 62A.
  • the second end 61B of the first outer coil 61 and the second end 62B of the second outer coil 62 are electrically connected to each other.
  • the first outer coil 61 and the second outer coil 62 are each formed in a circular spiral shape in plan view.
  • the first outer coil 61 and the second outer coil 62 are connected to each other when a current flows from a first end of one of the first outer coil 61 and second outer coil 62 to a first end of the other outer coil. They are wound so that magnetic fluxes are generated in opposite directions.
  • the first outer coil 61 and the second outer coil 62 have a symmetrical shape, and are formed in a point symmetrical shape.
  • the first end 61A is arranged inside the spiral, and the second end 61B is arranged outside the spiral. That is, the first outer coil 61 is wound in a spiral shape with the first end 61A as the inner end and the second end 61B as the outer end.
  • the first end 62A is located inside the spiral, and the second end 62B is located outside the spiral.
  • the second outer coil 62 is wound in a spiral shape, with the first end 62A being the inner end and the second end 62B being the outer end.
  • the first outer coil 61 and the second outer coil 62 are electrically connected to each other at second ends 61B and 62B, which are the respective outer peripheral edge portions.
  • both the first outer coil 61 and the second outer coil 62 of the outer coil 60 have a first insulating layer 527 which is the uppermost layer among the plurality of first insulating layers 521 to 527. It is set in. That is, the outer coil 60 (first outer coil 61, second outer coil 62) is arranged closer to the upper surface 52S of the first insulator 52.
  • the outer coil 60 is formed of a material containing one or more appropriately selected from Ti, TiN, Au, Ag, Cu, Al, and W.
  • the outer coil 60 of the second embodiment is made of a material containing Al.
  • Inner coil 70 includes a first inner coil 71 and a second inner coil 72.
  • the first inner coil 71 includes a first end 71A and a second end 71B opposite to the first end 71A.
  • the second inner coil 72 includes a first end 72A and a second end 72B opposite to the first end 71A.
  • the first inner coil 71 is arranged inside the first outer coil 61.
  • the first inner coil 71 is arranged so as not to overlap the first outer coil 61 in plan view.
  • the second inner coil 72 is arranged inside the second outer coil 62.
  • the second inner coil 72 is arranged so as not to overlap the second outer coil 62 in plan view.
  • the first inner coil 71 and the second inner coil 72 are each formed in a circular spiral shape in plan view.
  • the first inner coil 71 and the second inner coil 72 have a symmetrical shape, and are formed in a point symmetrical shape.
  • the first inner coil 71 In the spiral-shaped first inner coil 71, the first end 71A is arranged inside the spiral, and the second end 71B is arranged outside the spiral. That is, the first inner coil 71 is wound in a spiral shape with the first end 71A as the inner end and the second end 71B as the outer end. Similarly, in the spiral second inner coil 72, the first end 72A is located inside the spiral, and the second end 72B is located outside the spiral. In other words, the second inner coil 72 is wound in a spiral shape with the first end 72A as the inner end and the second end 72B as the outer end. Note that the first inner coil 71 and the second inner coil 72 may have first ends 71A, 72A as outer circumferential ends, and second ends 71B, 72B as inner circumferential ends.
  • both the first inner coil 71 and the second inner coil 72 of the inner coil 70 are provided on the first insulating layer 527, which is the uppermost layer among the plurality of first insulating layers 521 to 527. ing. That is, the inner coil 70 (first inner coil 71, second inner coil 72) is arranged closer to the upper surface 52S of the first insulator 52.
  • the first inner coil 71 and the second inner coil 72 are formed of a material containing one or more appropriately selected from Ti, TiN, Au, Ag, Cu, Al, and W.
  • the inner coil 70 of the second embodiment is made of a material containing Al.
  • the transformer 140 includes a first wiring section 80 and a second wiring section 90.
  • the first wiring section 80 and the second wiring section 90 are electrically connected to the outer coil 60.
  • the first wiring portion 80 is electrically connected to the first end 61A of the first outer coil 61 of the outer coil 60.
  • the second wiring section 90 is electrically connected to the first end 62A of the second outer coil 62 of the outer coil 60.
  • the first wiring section 80 includes a connection wiring 81, vias 82 and 83, and a terminal section 84.
  • the first wiring section 80 is formed of a material containing one or more appropriately selected from Ti, TiN, Au, Ag, Cu, Al, and W.
  • the terminal portion 84 is arranged near the chip side surface 143.
  • the terminal portion 84 is arranged at the same position in the y direction as the first end 61A of the first outer coil 61 in plan view. Note that the arrangement position of the terminal portion 84 may be changed arbitrarily.
  • connection wiring 81 is arranged below the first outer coil 61.
  • the connection wiring 81 is provided in the first insulating layer 525 two layers below the first insulating layer 527 on which the first outer coil 61 is provided.
  • the connection wiring 81 is formed to extend from the first end 81A connected to the first outer coil 61 toward the chip side surface 143.
  • the connection wiring 81 extends from the first end 61A of the first outer coil 61 to the terminal portion 84 in plan view.
  • the first end 81A of the connection wiring 81 is electrically connected to the first end 61A of the first outer coil 61 via the via 82.
  • the second end 81B of the connection wiring 81 is electrically connected to the terminal portion 84 via the via 83.
  • the second wiring section 90 includes a connection wiring 91, vias 92 and 93, and a terminal section 94.
  • the second wiring section 90 is formed of a material containing one or more appropriately selected from Ti, TiN, Au, Ag, Cu, Al, and W.
  • the connection wiring 91, vias 92, 93, and terminal portion 94 of the second wiring portion 90 are arranged in the same manner as the connection wiring 81, vias 82, 83, and terminal portion 84 of the first wiring portion 80.
  • connection wiring 91 The first end 91A of the connection wiring 91 is electrically connected to the first end 62A of the second outer coil 62 through the via 92, and the second end 91B of the connection wiring 91 is electrically connected to the terminal portion 94 through the via 93. It is connected.
  • the second insulating layer 52U includes openings 52U1 and 52U2 that expose portions of the first wiring section 80 and the second wiring section 90, respectively.
  • the openings 52U1 and 52U2 are formed to expose the terminal parts 84 and 94 of the first wiring part 80 and the second wiring part 90.
  • Wires W13A and W13B are connected to the terminal portions 84 and 94 exposed through the openings 52U1 and 52U2.
  • the terminal portions 84 and 94 exposed through the openings 52U1 and 52U2 can be said to be connection pads for connecting the wires W13A and W13B.
  • wires W13A and W13B are connected to the first chip 31. Therefore, the terminal portions 84 and 94 exposed through the openings 52U1 and 52U2 can also be called connection pads that connect the transformer 140 to the first chip 31.
  • the second insulating layer 52U includes a plurality of openings 52U3, 52U4, 52U5, and 52U6 that expose a portion of the inner coil 70.
  • the opening 52U3 is formed to expose the first end 71A of the first inner coil 71.
  • the opening 52U4 is formed to expose the second end 71B of the first inner coil 71.
  • the opening 52U5 is formed to expose the first end 72A of the second inner coil 72.
  • the opening 52U6 is formed to expose the second end 72B of the second inner coil 72.
  • the wire W15A is connected to the second end 71B of the first inner coil 71 exposed through the opening 52U4.
  • the first end W14A of the wire W14 is connected to the first end 71A of the first inner coil 71 exposed by the opening 52U3, and the second end W14B of the wire W14 is connected to the second inner coil 72 exposed by the opening 52U5. is connected to the first end 72A of.
  • a wire W15B is connected to the second end 72B of the second inner coil 72 exposed through the opening 52U6.
  • first ends 71A, 72A exposed through the openings 52U3, 52U5 and the second ends 71B, 72B exposed through the openings 52U4, 52U6 are connection pads that connect the wires W14, W15A, W15B.
  • the outer coil 60 and the inner coil 70 are electrically insulated from each other and configured to be magnetically coupled.
  • the transformer 140 of the second embodiment is configured such that the outer coil 60 and the inner coil 70 can be magnetically coupled along a plane parallel to the top surface 51S of the substrate 51.
  • the first inner coil 71 of the inner coil 70 is arranged inside the first outer coil 61 of the outer coil 60. Therefore, a current flows in the first inner coil 71 in a direction that corresponds to the direction of the magnetic flux generated by the current flowing in the first outer coil 61.
  • the second inner coil 72 of the inner coil 70 is arranged inside the second outer coil 62 of the outer coil 60. Therefore, a current flows in the second inner coil 72 in a direction that corresponds to the direction of the magnetic flux generated by the current flowing in the second outer coil 62.
  • the wire W14 connects the first inner coil 71 and the second inner coil 72. Therefore, the wire W14 is connected so that the current flowing through the first inner coil 71 and the current flowing through the second inner coil 72 are taken out by the wires W15A and W15B.
  • the direction of the current is the same as the direction of the current generated in the second inner coil 72. connected like this.
  • a wire W15A is connected to the second end 71B of the first inner coil 71 exposed through the opening 52U4. Further, a wire W15B is connected to the second end 72B of the second inner coil 72 exposed through the opening 52U6. These wires W15A and W15B are connected to the second chip 32, as shown in FIG. Therefore, the second ends 71B and 72B exposed through the openings 52U4 and 52U6 can also be called connection pads that connect the transformer 140 to the second chip 32.
  • the outer coil 60 includes a first outer coil 61 and a second outer coil 62.
  • the first outer coil 61 and the second outer coil 62 are formed on the same first insulating layer 527 among the first insulating layers 521 to 527 stacked on the substrate 51. Therefore, the distance D61 from the substrate 51 to the first outer coil 61 is equal to the distance D62 from the substrate 51 to the second outer coil 62.
  • the inner coil 70 includes a first inner coil 71 and a second inner coil 72.
  • the first inner coil 71 and the second inner coil 72 are formed on the same first insulating layer 527 among the first insulating layers 521 to 527 stacked on the substrate 51. Therefore, the distance D71 from the substrate 51 to the first inner coil 71 is equal to the distance D72 from the substrate 51 to the second inner coil 72.
  • the first inner coil 71 and the second inner coil 72 are arranged at the same position as the first outer coil 61 and the second outer coil 62 in the z direction. Therefore, the distances D71 and D72 from the substrate 51 to the first inner coil 71 and the second inner coil 72 are equal to the distances D61 and D62 from the substrate 51 to the first outer coil 61 and the second outer coil 62.
  • connection wires 81 and 91 of the first wiring section 80 and the second wiring section 90 connected to the outer coil 60 are arranged on the first insulating layer 525 under the outer coil 60. Therefore, the distance D80 from the board 51 to the connection wiring 81 is the distance D61, D62 from the board 51 to the first outer coil 61 and the second outer coil 62, and the distance D62 is from the board 51 to the first inner coil 71 and the second inner coil 72. is smaller than the distances D71 and D72. Further, the distance D90 from the substrate 51 to the connection wiring 91 is smaller than the distances D61, D62, D71, and D72.
  • the distance D80 is the shortest distance between the first outer coil 61 and the first inner coil 71 to the substrate 51 in the z direction.
  • the distance D90 is the shortest distance between the second outer coil 62 and the second inner coil 72 to the substrate 51 in the z direction.
  • the distances D11 and D12 between the first outer coil 61 and the first inner coil 71 are equal to each other.
  • the distances D11 and D12 are the first shortest distances between the first outer coil 61 and the first inner coil 71.
  • the distances D21 and D22 between the second outer coil 62 and the second inner coil 72 are equal to each other.
  • the distances D21 and D22 are the second shortest distances between the second outer coil 62 and the second inner coil 72.
  • the distances D11 and D12 between the first outer coil 61 and the first inner coil 71 and the distances D21 and D22 between the second outer coil 62 and the second inner coil 72 are equal to each other.
  • each distance D11, D12, D21, D22, D80, and D90 from the substrate 51 affects the dielectric strength voltage of the transformer 140.
  • the outer coil 60 (primary coil 16) is electrically connected to the first chip 31 including the primary circuit 13. .
  • Both the first chip 31 and the transformer 140 are mounted on the first die pad 21. Therefore, the common voltage of the substrate 51 of the transformer 140 and the primary circuit 13 of the first chip 31 is the same.
  • the outer coil 60 (first outer coil 61 and second outer coil 62) of the transformer 140 is connected to the first chip 31. Therefore, the common voltage of the outer coil 60 (the first outer coil 61 and the second outer coil 62) is the same as the common voltage of the primary circuit 13 of the first chip 31.
  • the dielectric strength of the transformer 140 is determined by the shortest distance between the outer coil 60 and the inner coil 70 (first shortest distance, second shortest distance) and the shortest thickness between the outer coil 60 and the substrate 51. It is determined.
  • the shortest distance can be adjusted by the shapes of the outer coil 60 and the inner coil 70, that is, the layout design of the transformer 140. That is, the dielectric strength of the transformer 140 can be adjusted by designing the layout of the transformer 140. Therefore, the dielectric strength of the transformer 140 can be easily changed.
  • a comparative example transformer 40X shown in FIG. 6 will be used as a comparative example for the transformer 140 of the second embodiment.
  • the transformer 40X of the comparative example is mounted on the first die pad 21 shown in FIG. 15.
  • the primary coil 16X is arranged closer to the substrate 51 than the secondary coil 17X.
  • a parasitic capacitor C1X is generated between the primary coil 16X and the substrate 51.
  • This parasitic capacitor C1X has a capacitance value that corresponds to the distance D1X between the substrate 51 and the primary coil 16X and the opposing area of the primary coil 16X.
  • a parasitic capacitor C2X is generated between the primary coil 16X and the secondary coil 17X.
  • This parasitic capacitor C2X has a capacitance value that corresponds to the distance D2X between the primary coil 16X and the secondary coil 17X and the opposing area of the primary coil 16X and the secondary coil 17X.
  • the wiring resistance value can be reduced by widening the wiring width of the primary coil 16X and the secondary coil 17X.
  • the wiring width is increased, the opposing area between the substrate 51 and the primary coil 16X increases, and the capacitance value of the parasitic capacitor C1X increases.
  • the opposing area between the primary coil 16X and the secondary coil 17X increases, and the capacitance value of the parasitic capacitor C2X increases.
  • Increasing the wiring thickness of the primary coil 16X and the secondary coil 17X affects the thickness of the first insulator 52 in which the primary coil 16X and the secondary coil 17X are embedded, that is, the manufacturing process. , the distance between the substrate 51 and the primary coil 16X, and the distance between the primary coil 16X and the secondary coil 17X, that is, the dielectric strength of the transformer 140.
  • the distance between the substrate 51 and the primary coil 16X, and the distance between the primary coil 16X and the secondary coil 17X that is, the dielectric strength of the transformer 140.
  • it is necessary to thicken the first insulator 52 that is, increase the number of insulating layers constituting the first insulator 52, which affects the manufacturing process of the transformer 140.
  • the transformer 140 of the second embodiment includes an outer coil 60, and the outer coil 60 includes both a first outer coil 61 and a second outer coil 62.
  • the first outer coil 61 and the second outer coil 62 have second ends 61B and 62B electrically connected to each other.
  • the first outer coil 61 and the second outer coil 62 generate magnetic fluxes in opposite directions when current flows from the first end 61A of the first outer coil 61 to the first end 62A of the second outer coil 62. It is rolled up like this. For example, as shown in FIG. 19, an upward magnetic flux is generated in the first outer coil 61, and a downward magnetic flux is generated in the second outer coil 62.
  • the magnetic flux M1 generated by the outer coil 60 becomes a smaller loop than that of the comparative example transformer 40X. Therefore, the magnetic flux crossing the inner coil 70 is larger than that of the comparative example transformer 40X. Therefore, the efficiency of magnetic coupling between the outer coil 60 and the inner coil 70 can be improved. As a result, the transfer characteristics between the outer coil 60 and the inner coil 70 of the transformer 140 can be improved.
  • the magnetic flux M1 generated by the outer coil 60 forms a smaller loop than the transformer 40X of the comparative example.
  • the magnetic flux generated in this manner passes through the substrate 51 along the substrate upper surface 51S of the substrate 51. Therefore, compared to the transformer 40X of the comparative example, eddy currents are less likely to occur in the substrate 51. Therefore, in the transformer 140 of the second embodiment, loss with respect to the magnetic flux M1 can be reduced. In addition, the influence on the efficiency of magnetic coupling in the transformer 140 can be reduced. As a result, the transfer characteristics between the outer coil 60 and the inner coil 70 of the transformer 140 can be improved.
  • the wiring resistance values of the outer coil 60 and the inner coil 70 affect the amount of current flowing through the outer coil 60 and the inner coil 70, respectively, and the degree of magnetic coupling.
  • the wiring resistance value of the outer coil 60 is obtained by widening the wiring width of the outer coil 60 and decreasing the aspect ratio of the wiring thickness to the wiring width.
  • the wiring resistance value of the inner coil 70 can be obtained by widening the wiring width of the inner coil 70 and decreasing the aspect ratio of the wiring thickness to the wiring width.
  • the outer coil 60 and the inner coil 70 face each other in the x direction and the y direction. Therefore, even if the wiring width is increased, the facing area of the outer coil 60 and the inner coil 70 does not change. That is, the capacitance values of the parasitic capacitors C11, C12, C21, and C22 between the outer coil 60 and the inner coil 70 do not change. That is, compared to the transformer 40X of the comparative example, the wiring resistance value can be reduced without increasing the capacitance values of the parasitic capacitors C11, C12, C21, and C22 between the coils. As a result, current flows more easily in the outer coil 60 and inner coil 70 of the transformer 140, so that the amount of magnetic flux generated in the transformer 140 can be increased. In the transformer 140, it is possible to improve the efficiency of magnetic coupling between the outer coil 60 and the inner coil 70, and thus to improve the transfer characteristics.
  • the capacitance value of the parasitic capacitor C60 between the substrate 51 and the outer coil 60 depends on the distance from the substrate 51 to the outer coil 60, assuming that the wiring width is constant. As the distance increases, the capacitance value decreases.
  • the first insulator 52 has the same thickness as the transformer 40X of the comparative example, in the transformer 140 of the second embodiment, the distances D61 and D62 from the substrate 51 to the outer coil 60, and the distance from the substrate 51 to the inner coil 70. D71 and D72 are larger than the transformer 40X of the comparative example. Therefore, the capacitance values of parasitic capacitors C60 and C70 can be reduced. If the capacitance values of the parasitic capacitors C60 and C70 are the same as that of the transformer 40X of the comparative example, the first insulator 52 can be made thinner, that is, the transformer 140 can be made thinner.
  • the transformer 140 of the second embodiment provides the following effects.
  • the transformer 140 of the second embodiment includes an outer coil 60, and the outer coil 60 includes both a first outer coil 61 and a second outer coil 62.
  • the first outer coil 61 and the second outer coil 62 have second ends 61B and 62B electrically connected to each other.
  • the first outer coil 61 and the second outer coil 62 generate magnetic fluxes in opposite directions when current flows from the first end 61A of the first outer coil 61 to the first end 62A of the second outer coil 62. It is rolled up like this.
  • the magnetic flux M1 generated by the outer coil 60 becomes a smaller loop than that of the comparative example transformer 40X. Therefore, the magnetic flux crossing the inner coil 70 is larger than that of the comparative example transformer 40X. Therefore, the efficiency of magnetic coupling between the outer coil 60 and the inner coil 70 can be improved. As a result, the transfer characteristics between the outer coil 60 and the inner coil 70 of the transformer 140 can be improved.
  • the magnetic flux M1 generated by the outer coil 60 forms a smaller loop than the transformer 40X of the comparative example.
  • the magnetic flux generated in this manner passes through the substrate 51 along the substrate upper surface 51S of the substrate 51. Therefore, compared to the transformer 40X of the comparative example, eddy currents are less likely to occur in the substrate 51. Therefore, in the transformer 140 of the second embodiment, loss with respect to the magnetic flux M1 can be reduced. In addition, the influence on the efficiency of magnetic coupling in the transformer 140 can be reduced. As a result, the transfer characteristics between the outer coil 60 and the inner coil 70 of the transformer 140 can be improved.
  • the wiring resistance values of the outer coil 60 and the inner coil 70 affect the amount of current flowing through the outer coil 60 and the inner coil 70, respectively, and the degree of magnetic coupling.
  • the wiring resistance value of the outer coil 60 is obtained by widening the wiring width of the outer coil 60 and decreasing the aspect ratio of the wiring thickness to the wiring width.
  • the wiring resistance value of the inner coil 70 can be obtained by widening the wiring width of the inner coil 70 and decreasing the aspect ratio of the wiring thickness to the wiring width.
  • the outer coil 60 and the inner coil 70 face each other in the x direction and the y direction. Therefore, even if the wiring width is increased, the facing area of the outer coil 60 and the inner coil 70 does not change. That is, the capacitance values of the parasitic capacitors C11, C12, C21, and C22 between the outer coil 60 and the inner coil 70 do not change. That is, compared to the transformer 40X of the comparative example, the wiring resistance value can be reduced without increasing the capacitance values of the parasitic capacitors C11, C12, C21, and C22 between the coils. As a result, current flows more easily in the outer coil 60 and inner coil 70 of the transformer 140, so that the amount of magnetic flux generated in the transformer 140 can be increased. In the transformer 140, it is possible to improve the efficiency of magnetic coupling between the outer coil 60 and the inner coil 70, and thus to improve the transfer characteristics.
  • the capacitance value of the parasitic capacitor C60 between the substrate 51 and the outer coil 60 depends on the distance from the substrate 51 to the outer coil 60, assuming that the wiring width is constant. As the distance increases, the capacitance value decreases.
  • the first insulator 52 has the same thickness as the transformer 40X of the comparative example, in the transformer 140 of the second embodiment, the distances D61 and D62 from the substrate 51 to the outer coil 60, and the distance from the substrate 51 to the inner coil 70. D71 and D72 are larger than the transformer 40X of the comparative example. Therefore, the capacitance values of parasitic capacitors C60 and C70 can be reduced. If the capacitance values of the parasitic capacitors C60 and C70 are the same as that of the transformer 40X of the comparative example, the first insulator 52 can be made thinner, that is, the transformer 140 can be made thinner.
  • each distance D11, D12, D21, D22, D80, and D90 from the substrate 51 affects the dielectric strength voltage of the transformer 140.
  • the outer coil 60 (primary coil 16) is electrically connected to the first chip 31 including the primary circuit 13. .
  • Both the first chip 31 and the transformer 140 are mounted on the first die pad 21. Therefore, the common voltage of the substrate 51 of the transformer 140 and the primary circuit 13 of the first chip 31 is the same.
  • the outer coil 60 (first outer coil 61 and second outer coil 62) of the transformer 140 is connected to the first chip 31. Therefore, the common voltage of the outer coil 60 (the first outer coil 61 and the second outer coil 62) is the same as the common voltage of the primary circuit 13 of the first chip 31.
  • the dielectric strength of the transformer 140 is determined by the shortest distance between the outer coil 60 and the inner coil 70 (first shortest distance, second shortest distance) and the shortest thickness between the outer coil 60 and the substrate 51. It is determined.
  • the shortest distance can be adjusted by the shapes of the outer coil 60 and the inner coil 70, that is, the layout design of the transformer 140. That is, the dielectric strength of the transformer 140 can be adjusted by designing the layout of the transformer 140. Therefore, the dielectric strength of the transformer 140 can be easily changed.
  • the signal transmission device 110 including the transformer 140 of the second embodiment the signal of the primary side circuit 13 (transmission circuit 13T) is efficiently transmitted to the secondary side circuit 14 (reception circuit 14R). be able to.
  • the outer coil 60 includes a first outer coil 61 and a second outer coil 62 formed on two first insulating layers 527 and 529.
  • the first outer coils 61 of the first insulating layers 527 and 529 are connected in parallel by vias 65 .
  • the second outer coils 62 of the first insulating layers 527 and 529 are connected in parallel by vias 66 .
  • the number of first insulating layers forming the first outer coil 61 and the second outer coil 62 can be three or more.
  • the inner coil 70 includes a first inner coil 71 and a second inner coil 72 formed on two first insulating layers 527 and 529.
  • the first inner coil 71 and the second inner coil 72 of the first insulating layers 527 and 529 are connected in parallel by a via 75.
  • the number of first insulating layers forming the first inner coil 71 and the second inner coil 72 can be three or more.
  • the outer coil 60 includes a first outer coil 61, a second outer coil 62, a third outer coil 63 connected to the first outer coil 61, and a fourth outer coil 64 connected to the second outer coil 62.
  • the third outer coil 63 is arranged so as to overlap the first outer coil 61 when viewed from the z direction.
  • the third outer coil 63 includes coil portions 631 and 632 formed in the two first insulating layers 527 and 529, respectively.
  • the coil portions 631 and 632 are connected in series between the first end 61A of the first outer coil 61 and the first wiring portion 80.
  • the fourth outer coil 64 is arranged so as to overlap the second outer coil 62 when viewed from the z direction.
  • the fourth outer coil 64 includes coil portions 641 and 642 formed in the two first insulating layers 527 and 529, respectively.
  • the coil portions 641 and 642 are connected in series between the first end 62A of the second outer coil 62 and the second wiring portion 90.
  • the third outer coil 63 and the first outer coil 61 are connected in series between the first wiring section 80 and the second outer coil 62. Further, a second outer coil 62 and a fourth outer coil 64 are connected in series between the first outer coil 61 and the second wiring section 90. Therefore, the number of turns of the outer coil 60 disposed outside each of the first inner coil 71 and the second inner coil 72 can be increased. Thereby, the amount of magnetic flux generated by the outer coil 60 can be increased.
  • the third outer coils 63 (631, 632) formed on the two first insulating layers 527, 529 may be connected in parallel.
  • the fourth outer coils 64 (641, 642) formed on the two first insulating layers 527, 529 may be connected in parallel.
  • the first outer coil 61 and the second outer coil 62 may be formed in a plurality of first insulating layers and connected in parallel, as shown in FIG. 20.
  • the inner coil 70 (first inner coil 71 and second inner coil 72) is arranged in the first insulating layer 529.
  • the first insulating layer on which the inner coil 70 is placed can be arbitrarily changed.
  • the modified transformer 140C shown in FIG. 23 is different from the transformer 140B shown in FIG. It is arranged so as not to overlap with the coil portion 631 arranged on the first insulating layer 527 when viewed from the z direction.
  • the first outer coil 61 and the third outer coil 63 in this manner, the opposing area in the z direction is reduced, and the capacitance of the parasitic capacitor can be reduced.
  • the fourth outer coil 64 by arranging the coil portion 642 so as not to overlap the second outer coil 62 and the coil portion 641 in plan view, the opposing area in the z direction is reduced, and the parasitic capacitor is reduced. Capacity can be reduced.
  • the first insulating layer 526 is different from the first insulating layer 528 .
  • the inner coil 70 By arranging the inner coil 70 in this manner, the opposing area between the outer coil 60 and the inner coil 70 is reduced, and the capacitance of the parasitic capacitor can be reduced.
  • the first inner coil 71 and the second inner coil 72 of the inner coil 70 may be disposed in a first insulating layer different from the first insulating layer 528 in which the outer coil 60 is disposed, for example, in the first insulating layer 528. 527.
  • FIG. 25 is a circuit diagram schematically showing the configuration of the signal transmission device 110A as a modified example.
  • FIG. 26 is a schematic plan view of the signal transmission device 110A of FIG. 25.
  • the signal transmission device 110A of this modification differs from the signal transmission device 110 of the second embodiment in the configuration of the receiving circuit 14RA of the secondary circuit 14A.
  • the connection between the transformer 140 and the second chip 32A is different.
  • a wire W18A is connected to the first end 71A (see FIG. 16) of the first inner coil 71 exposed through the opening 52U3.
  • a wire W18B is connected to the first end 72A (see FIG. 16) of the second inner coil 72 exposed through the opening 52U5.
  • These wires W18A and W18B are connected to the second chip 32A. Therefore, the first ends 71A and 72A exposed through the openings 52U3 and 52U5 can also be called connection pads that connect the transformer 140 to the second chip 32A.
  • the transformer 140 includes second chips 32 having different configurations, such as the second chip 32 including the receiving circuit 14R shown in FIG. 14 and the second chip 32A including the receiving circuit 14RA shown in FIG.
  • the signal of the first chip 31 can be transmitted to 32A.
  • one type of transformer 140 can be used for two types of signal transmission devices 110 and 110A with different configurations.
  • outer coil 60 and the inner coil 70 in plan view can be arbitrarily changed.
  • the outer coil 60 and the inner coil 70 may be formed in a rectangular shape.
  • the outer coil 60 and the inner coil 70 may be formed into a rectangular shape with rounded corners. Further, the outer coil 60 and the inner coil 70 may be formed in an elliptical shape, as in a transformer 140G shown in FIG. 29.
  • the first outer coil 61 and the second outer coil 62 of the outer coil 60 may be provided on different insulating layers.
  • second outer coil 62 may be disposed on first insulating layer 526.
  • the second end 61B of the first outer coil 61 and the second end 62B of the second outer coil 62 are formed to overlap each other in plan view.
  • the second end 61B of the first outer coil 61 and the second end 62B of the second outer coil 62 are directly electrically connected.
  • the first inner coil 71 and the second inner coil 72 may be provided in different insulating layers.
  • the wires W13A and W13B may be configured to be directly connected to the outer coil 60 (first outer coil 61 and second outer coil 62).
  • the distance between the first end 61A of the first outer coil 61 of the outer coil 60 and the inner coil 70 (first inner coil 71) is greater than or equal to the distance required for the withstand voltage of the transformer 140.
  • the wire W13A can be connected to the first end 61A of the first outer coil 61.
  • the second outer coil 62 and the wire W13B are the wire W13B.
  • the term “on” includes both “on” and “above” unless the context clearly indicates otherwise.
  • the phrase “the first layer is formed on the second layer” refers to the fact that in some embodiments the first layer may be directly disposed on the second layer in contact with the second layer, but in other embodiments. It is contemplated that the first layer may be placed above the second layer without contacting the second layer. That is, the term “on” does not exclude structures in which other layers are formed between the first layer and the second layer.
  • the z direction used in this disclosure does not necessarily have to be the vertical direction, nor does it need to completely coincide with the vertical direction. Accordingly, various structures according to the present disclosure (e.g., the structure shown in FIG. 4) are different from each other in that "upper” and “lower” in the Z-axis direction described herein are “upper” and “lower” in the vertical direction. Not limited to one thing.
  • the x direction may be a vertical direction, or the y direction may be a vertical direction.
  • a substrate (51) having a substrate top surface (51S) and a substrate bottom surface (51R); a first insulator (52) in contact with the upper surface of the substrate (51S); a second insulator (53) in contact with the lower surface of the substrate (51R); an outer coil (60) and an inner coil (70) disposed within the first insulator (52); including;
  • the inner coil (70) is arranged inside the outer coil (60) when viewed from a direction perpendicular to the upper surface of the substrate (51S) so as not to overlap with the outer coil (60). Trance.
  • the first insulator (52) includes a lower surface (52R) in contact with the upper surface of the substrate (51S), and an upper surface (52S) opposite to the lower surface (52R), At least one of the outer coil (60) and the inner coil (70) is arranged closer to the upper surface (52S) of the first insulator (52) in the thickness direction of the first insulator (52). ing, The transformer described in Appendix 1.
  • the outer coil (60) and the inner coil (70) are located at the same position in the thickness direction of the first insulator (52) and are arranged on the same plane orthogonal to the thickness direction.
  • Appendix 12 The transformer according to any one of appendices 1 to 11, wherein the substrate (51) is electrically floating.
  • a plurality of the outer coils (60) are provided in the thickness direction of the first insulator (52), and the plurality of outer coils (60) are connected in parallel.
  • a plurality of the outer coils (60) are provided in the thickness direction of the first insulator (52), and the plurality of outer coils (60) are connected in series.
  • a plurality of the inner coils (70) are provided in the thickness direction of the first insulator (52), and the plurality of inner coils (70) are connected in parallel.
  • a plurality of the inner coils (70) are provided in the thickness direction of the first insulator (52), and the plurality of inner coils (70) are connected in series.
  • the outer coil (60) includes a first outer coil (61) and a second outer coil (62) each having a first end and a second end
  • the inner coil (70) includes a first inner coil (71) and a second inner coil (72) each having a first end and a second end
  • the first outer coil (61) and the second outer coil (62) are formed in a spiral shape when viewed from the thickness direction of the first insulator (52),
  • the first inner coil (71) is arranged inside the first outer coil (61) so as not to overlap with the first outer coil (61)
  • the second inner coil (72) is arranged inside the first outer coil (61) so as not to overlap with the first outer coil (61).
  • arranged inside the second outer coil (62) so as not to overlap with the second outer coil (62);
  • the transformer according to any one of Supplementary notes 1 to 12.
  • a second end of the first outer coil (61) and a second end of the second outer coil (62) are connected to each other, and the first outer coil (61) and the second outer coil (62) are connected to each other.
  • the directions are opposite to each other. It is wound so that a magnetic flux of The transformer described in Appendix 17.
  • the outer coil (60) includes a third outer coil (63) connected to a first end of the first outer coil (61) and a third outer coil (63) connected to a first end of the second outer coil (62). 4 outer coil (64).
  • the third outer coil (63) is arranged so as to overlap the first outer coil (61) when viewed from the thickness direction of the first insulator (52),
  • the fourth outer coil (64) is arranged to overlap the second outer coil (62) when viewed from the thickness direction of the first insulator (52).
  • a plurality of the third outer coils (63) and the fourth outer coils (64) are each provided in the thickness direction of the first insulator (52), and the plurality of third outer coils (63) are connected to each other.
  • the inner coil (70) includes a third inner coil connected to the second end of the first inner coil (71) and a fourth inner coil connected to the second end of the second inner coil (72).
  • the transformer according to any one of Supplementary Notes 17 to 21, comprising:
  • the third inner coil is arranged to overlap the first inner coil (71) when viewed from the thickness direction of the first insulator (52),
  • the fourth inner coil is arranged to overlap the second inner coil (72) when viewed from the thickness direction of the first insulator (52).
  • a plurality of the third inner coils and a plurality of the fourth inner coils are respectively provided in the thickness direction of the first insulator (52), the plurality of third inner coils are connected to each other, and the plurality of the fourth inner coils are connected to each other. are connected to each other, the transformer according to attachment 22 or attachment 23.
  • the transformer (40, 140) is a substrate (51) having a substrate top surface (51S) and a substrate bottom surface (51R); a first insulator (52) in contact with the upper surface of the substrate (51S); a second insulator (53) in contact with the lower surface of the substrate (51R); an outer coil (60) and an inner coil (70) disposed within the first insulator (52); including;
  • the inner coil (70) is a substrate (51) having a substrate top surface (51S) and a substrate bottom surface (51R); a first insulator (52) in contact with the upper surface of the substrate (51S); a second insulator (53) in contact with the lower surface of the substrate (51R); an outer coil (60) and an inner coil (70) disposed within the first insulator (52); including;
  • the inner coil (70) is

Abstract

This transformer includes: a substrate having a substrate upper surface and a substrate lower surface; a first insulator which is in contact with the substrate upper surface; a second insulator which is in contact with the substrate lower surface; and an outer coil and an inner coil which are disposed inside the first insulator. The inner coil is disposed inside the outer coil when viewed in a direction perpendicular to the substrate upper surface, and is disposed so as not to overlap the outer coil.

Description

トランスTrance
 本開示は、トランスに関するものである。 The present disclosure relates to a transformer.
 従来、トランスは、一次側回路と2次側回路とを絶縁するために用いられる。たとえば特許文献1は、1次側の第1コイルおよび2次側の第2コイルを有するトランスを備える絶縁型のゲートドライバとしての半導体集積回路を開示する。 Conventionally, a transformer is used to insulate a primary side circuit and a secondary side circuit. For example, Patent Document 1 discloses a semiconductor integrated circuit as an insulated gate driver including a transformer having a first coil on the primary side and a second coil on the secondary side.
特開2013-51547号公報Japanese Patent Application Publication No. 2013-51547
 上記のようなトランスについて、絶縁耐圧の向上が求められる場合がある。 There are cases in which transformers such as those described above are required to have improved dielectric strength.
 本開示の一態様であるトランスは、基板上面および基板下面を有する基板と、前記基板上面に接する第1絶縁体と、前記基板下面に接する第2絶縁体と、前記第1絶縁体内に配置された外側コイルおよび内側コイルと、を含み、前記内側コイルは、前記基板上面に垂直な方向から視て前記外側コイルの内側であって前記外側コイルと重ならないように配置されている。 A transformer according to an embodiment of the present disclosure includes a substrate having an upper surface and a lower surface of the substrate, a first insulator in contact with the upper surface of the substrate, a second insulator in contact with the lower surface of the substrate, and disposed within the first insulator. an outer coil and an inner coil, the inner coil being disposed inside the outer coil and not overlapping the outer coil when viewed from a direction perpendicular to the upper surface of the substrate.
 本開示の一態様であるトランスによれば、絶縁耐圧の向上を図ることができる。 According to the transformer that is one aspect of the present disclosure, it is possible to improve the dielectric strength.
図1は、第1実施形態のトランスを含む信号伝達装置の構成を模式的に示す回路図である。FIG. 1 is a circuit diagram schematically showing the configuration of a signal transmission device including a transformer according to the first embodiment. 図2は、図1の信号伝達装置を模式的に示す概略平面図である。2 is a schematic plan view schematically showing the signal transmission device of FIG. 1. FIG. 図3は、図2の信号伝達装置におけるトランスの概略平面図である。3 is a schematic plan view of a transformer in the signal transmission device of FIG. 2. FIG. 図4は、図3のF4-F4線断面図である。FIG. 4 is a cross-sectional view taken along line F4-F4 in FIG. 図5は、図3のF5-F5線断面図である。FIG. 5 is a sectional view taken along the line F5-F5 in FIG. 図6は、比較例のトランスの概略断面図である。FIG. 6 is a schematic cross-sectional view of a transformer of a comparative example. 図7は、変更例のトランスの概略断面図である。FIG. 7 is a schematic cross-sectional view of a modified example of the transformer. 図8は、変更例のトランスの概略断面図である。FIG. 8 is a schematic cross-sectional view of a modified example of the transformer. 図9は、図8の変更例のトランスにおける外側コイル導体配線を示す概略斜視図である。FIG. 9 is a schematic perspective view showing outer coil conductor wiring in a modified example of the transformer shown in FIG. 図10は、変更例のトランスの概略断面図である。FIG. 10 is a schematic cross-sectional view of a modified example of the transformer. 図11は、変更例のトランスの概略断面図である。FIG. 11 is a schematic cross-sectional view of a modified example of the transformer. 図12は、変更例の電力伝達装置の構成を模式的に示す回路図である。FIG. 12 is a circuit diagram schematically showing the configuration of a power transmission device according to a modification. 図13は、変更例の電力伝達装置の構成を模式的に示す回路図である。FIG. 13 is a circuit diagram schematically showing the configuration of a power transmission device according to a modified example. 図14は、第2実施形態のトランスを含む信号伝達装置の構成を模式的に示す回路図である。FIG. 14 is a circuit diagram schematically showing the configuration of a signal transmission device including a transformer according to the second embodiment. 図15は、図14の信号伝達装置を模式的に示す概略平面図である。FIG. 15 is a schematic plan view schematically showing the signal transmission device of FIG. 14. 図16は、図15の信号伝達装置におけるトランスの概略平面図である。FIG. 16 is a schematic plan view of a transformer in the signal transmission device of FIG. 15. 図17は、図16のF17-F17線断面図である。FIG. 17 is a sectional view taken along the line F17-F17 in FIG. 16. 図18は、図16のF18-F18線断面図である。FIG. 18 is a sectional view taken along the line F18-F18 in FIG. 16. 図19は、第2実施形態のトランスにおける動作説明図である。FIG. 19 is an explanatory diagram of the operation in the transformer of the second embodiment. 図20は、変更例のトランスの概略断面図である。FIG. 20 is a schematic cross-sectional view of a modified example of the transformer. 図21は、変更例のトランスの概略断面図である。FIG. 21 is a schematic cross-sectional view of a modified example of the transformer. 図22は、図21の変更例のトランスにおける外側コイル導体配線を示す概略斜視図である。FIG. 22 is a schematic perspective view showing the outer coil conductor wiring in the transformer according to the modified example of FIG. 21. FIG. 図23は、変更例のトランスの概略断面図である。FIG. 23 is a schematic cross-sectional view of a modified example of the transformer. 図24は、変更例のトランスの概略断面図である。FIG. 24 is a schematic cross-sectional view of a modified example of the transformer. 図25は、変更例の信号伝達装置の構成を模式的に示す回路図である。FIG. 25 is a circuit diagram schematically showing the configuration of a modified signal transmission device. 図26は、図25の信号伝達装置の概略平面図である。FIG. 26 is a schematic plan view of the signal transmission device of FIG. 25. 図27は、第2実施形態のトランスの変更例を模式的に示す概略平面図である。FIG. 27 is a schematic plan view schematically showing a modified example of the transformer of the second embodiment. 図28は、第2実施形態のトランスの変更例を模式的に示す概略平面図である。FIG. 28 is a schematic plan view schematically showing a modified example of the transformer of the second embodiment. 図29は、第2実施形態のトランスの変更例を模式的に示す概略平面図である。FIG. 29 is a schematic plan view schematically showing a modified example of the transformer of the second embodiment.
 以下、添付図面を参照して本開示の半導体装置のいくつかの実施形態を説明する。なお、説明を簡単かつ明確にするために、図面に示される構成要素は必ずしも一定の縮尺、比率で描かれていない。また、理解を容易にするために、断面図では、ハッチング線が省略されている場合がある。添付の図面は、本開示の実施形態を例示するに過ぎず、本開示を制限するものとみなされるべきではない。本開示における「第1」、「第2」、「第3」等の用語は、単に対象物を区別するために用いられており、対象物を順位づけするものではない。 Hereinafter, some embodiments of the semiconductor device of the present disclosure will be described with reference to the accompanying drawings. It should be noted that, in order to simplify and clarify the explanation, the components shown in the drawings are not necessarily drawn to a constant scale or proportion. Further, in order to facilitate understanding, hatching lines may be omitted in the cross-sectional views. The accompanying drawings are merely illustrative of embodiments of the disclosure and should not be considered as limiting the disclosure. Terms such as "first," "second," and "third" in this disclosure are used merely to distinguish between objects, and are not intended to rank the objects.
 以下の詳細な記載は、本開示の例示的な実施形態を具体化する装置、システム、および方法を含む。この詳細な記載は本来説明のためのものに過ぎず、本開示の実施形態またはこのような実施形態の適用および使用を限定することを意図しない。 The following detailed description includes devices, systems, and methods that embody example embodiments of the present disclosure. This detailed description is illustrative in nature and is not intended to limit the embodiments of the disclosure or the application and uses of such embodiments.
 本明細書において使用される「少なくとも1つ」という表現は、所望の選択肢の「1つ以上」を意味する。一例として、本明細書において使用される「少なくとも1つ」という表現は、選択肢の数が2つであれば「1つの選択肢のみ」または「2つの選択肢の双方」を意味する。他の例として、本明細書において使用される「少なくとも1つ」という表現は、選択肢の数が3つ以上であれば「1つの選択肢のみ」または「2つ以上の任意の選択肢の組み合わせ」を意味する。 The expression "at least one" as used herein means "one or more" of the desired options. As an example, the expression "at least one" as used herein means "only one option" or "both of the two options" if the number of options is two. As another example, the expression "at least one" as used herein means "only one option" or "any combination of two or more options" if there are three or more options. means.
 (第1実施形態)
 第1実施形態について、添付図面を参照して説明する。
 図1は、第1実施形態のトランスを含む信号伝達装置の構成を模式的に示す回路図である。図2は、図1の信号伝達装置を模式的に示す概略平面図である。第1実施形態は、トランス15を含む信号伝達装置10として構成されている。
(First embodiment)
A first embodiment will be described with reference to the accompanying drawings.
FIG. 1 is a circuit diagram schematically showing the configuration of a signal transmission device including a transformer according to the first embodiment. 2 is a schematic plan view schematically showing the signal transmission device of FIG. 1. FIG. The first embodiment is configured as a signal transmission device 10 including a transformer 15.
 (信号伝達装置の回路構成)
 図1に示されるように、信号伝達装置10は、1次側端子11と2次側端子12との間を電気的に絶縁しつつ、パルス信号を伝達する装置である。信号伝達装置10は、たとえばデジタルアイソレータである。信号伝達装置10は、1次側端子11に電気的に接続された1次側回路13と、2次側端子12に電気的に接続された2次側回路14と、1次側回路13と2次側回路14とを電気的に絶縁するトランス15と、を含む。
(Circuit configuration of signal transmission device)
As shown in FIG. 1, the signal transmission device 10 is a device that transmits a pulse signal while electrically insulating a primary terminal 11 and a secondary terminal 12. Signal transmission device 10 is, for example, a digital isolator. The signal transmission device 10 includes a primary circuit 13 electrically connected to a primary terminal 11, a secondary circuit 14 electrically connected to a secondary terminal 12, and a primary circuit 13. A transformer 15 that electrically insulates the secondary circuit 14 is included.
 1次側回路13は、第1電圧V1が印加されることによって動作するように構成された回路である。1次側回路13は、たとえば外部の制御装置(図示略)に電気的に接続されている。1次側回路13は、送信回路13Tを含む。2次側回路14は、第1電圧V1とは異なる第2電圧V2が印加されることによって動作するように構成された回路である。第2電圧V2は、たとえば第1電圧V1よりも高い。第1電圧V1および第2電圧V2は直流電圧である。2次側回路14は、たとえば制御装置の制御対象となる駆動回路に電気的に接続されている。駆動回路の一例は、スイッチング回路である。2次側回路14は、受信回路14Rを含む。1次側回路13のグランドと2次側回路14のグランドとのそれぞれが独立して設けられている。 The primary side circuit 13 is a circuit configured to operate when the first voltage V1 is applied. The primary circuit 13 is electrically connected to, for example, an external control device (not shown). The primary circuit 13 includes a transmitting circuit 13T. The secondary side circuit 14 is a circuit configured to operate when a second voltage V2 different from the first voltage V1 is applied. The second voltage V2 is higher than the first voltage V1, for example. The first voltage V1 and the second voltage V2 are DC voltages. The secondary circuit 14 is electrically connected to, for example, a drive circuit that is controlled by a control device. An example of a drive circuit is a switching circuit. The secondary circuit 14 includes a receiving circuit 14R. A ground for the primary circuit 13 and a ground for the secondary circuit 14 are provided independently.
 トランス15は、送信回路13Tと受信回路14Rとの間に接続されている。トランス15は、1次側コイル16と、2次側コイル17とを含む。1次側コイル16は送信回路13Tに接続され、2次側コイル17は受信回路14Rに接続されている。 The transformer 15 is connected between the transmitting circuit 13T and the receiving circuit 14R. The transformer 15 includes a primary coil 16 and a secondary coil 17. The primary coil 16 is connected to a transmitting circuit 13T, and the secondary coil 17 is connected to a receiving circuit 14R.
 1次側回路13の送信回路13Tには、たとえば制御装置からの制御信号が1次側端子11を通して入力される。制御信号は、1次側回路13の送信回路13Tからトランス15を経て、2次側回路14の受信回路14Rにより受信される。2次側回路14に伝達された信号は、2次側回路14から2次側端子12を通して駆動回路に出力される。 A control signal from, for example, a control device is input to the transmission circuit 13T of the primary side circuit 13 through the primary side terminal 11. The control signal is received by the receiving circuit 14R of the secondary circuit 14 from the transmitting circuit 13T of the primary circuit 13 via the transformer 15. The signal transmitted to the secondary circuit 14 is output from the secondary circuit 14 to the drive circuit through the secondary terminal 12.
 上述のとおり、信号伝達装置10は、トランス15によって1次側回路13と2次側回路14とが電気的に絶縁されている。より詳細には、トランス15によって1次側回路13と2次側回路14との間で直流電圧が伝達されることが規制されている一方、パルス信号の伝達は可能となっている。 As described above, in the signal transmission device 10, the primary side circuit 13 and the secondary side circuit 14 are electrically insulated by the transformer 15. More specifically, while the transformer 15 restricts the transmission of DC voltage between the primary circuit 13 and the secondary circuit 14, it allows the transmission of pulse signals.
 すなわち、1次側回路13と2次側回路14とが絶縁されている状態とは、1次側回路13と2次側回路14との間において、直流電圧の伝達が遮断されている状態を意味し、1次側回路13から2次側回路14へのパルス信号の伝達については許容している。このように、2次側回路14は、1次側回路13からの信号を受信するように構成されている。 In other words, the state where the primary side circuit 13 and the secondary side circuit 14 are insulated refers to the state where the transmission of DC voltage is cut off between the primary side circuit 13 and the secondary side circuit 14. This means that transmission of pulse signals from the primary circuit 13 to the secondary circuit 14 is permitted. In this way, the secondary circuit 14 is configured to receive the signal from the primary circuit 13.
 信号伝達装置10の絶縁耐圧は、たとえば2500Vrms以上7500Vrms以下である。第1実施形態の信号伝達装置10の絶縁耐圧は、5700Vrms程度である。ただし、信号伝達装置10の絶縁耐圧の具体的な数値はこれに限られず任意である。 The dielectric strength voltage of the signal transmission device 10 is, for example, 2500 Vrms or more and 7500 Vrms or less. The dielectric strength voltage of the signal transmission device 10 of the first embodiment is approximately 5700 Vrms. However, the specific numerical value of the dielectric strength voltage of the signal transmission device 10 is not limited to this and is arbitrary.
 (信号伝達装置の構成)
 図2に示されるように、信号伝達装置10は、複数の半導体チップが1パッケージ化された半導体装置である。図示していないが、信号伝達装置10のパッケージ形式はたとえばSO(Small Outline)系であり、第1実施形態ではSOP(Small Outline Package)である。なお、信号伝達装置10のパッケージ形式は任意に変更可能である。
(Configuration of signal transmission device)
As shown in FIG. 2, the signal transmission device 10 is a semiconductor device in which a plurality of semiconductor chips are packaged into one package. Although not shown, the package format of the signal transmission device 10 is, for example, an SO (Small Outline) system, and in the first embodiment is an SOP (Small Outline Package). Note that the package format of the signal transmission device 10 can be changed arbitrarily.
 信号伝達装置10は、半導体チップとして第1チップ31、第2チップ32、およびトランス40を含む。第1チップ31は、図1に示す1次側回路13を含む。第2チップ32は、図1に示す2次側回路14を含む。トランス40は、図1に示すトランス15(1次側コイル16および2次側コイル17)を含む。 The signal transmission device 10 includes a first chip 31, a second chip 32, and a transformer 40 as semiconductor chips. The first chip 31 includes the primary side circuit 13 shown in FIG. The second chip 32 includes the secondary side circuit 14 shown in FIG. The transformer 40 includes the transformer 15 (the primary coil 16 and the secondary coil 17) shown in FIG.
 信号伝達装置10は、1次側の第1ダイパッド21および2次側の第2ダイパッド22を含む。第1ダイパッド21および第2ダイパッド22の双方は、平板状に形成されている。第1ダイパッド21および第2ダイパッド22の双方は、導電性を有する材料によって形成されている。第1実施形態では、各ダイパッド21,22は、Cu(銅)を含む材料によって形成されている。なお、各ダイパッド21,22は、Al(アルミニウム)等の他の金属材料によって形成されていてもよい。また、各ダイパッド21,22を構成する材料は導電性を有する材料に限られない。たとえば、各ダイパッド21,22はアルミナ等のセラミックスによって形成されていてもよい。つまり、各ダイパッド21,22は、電気絶縁性を有する材料によって形成されていてもよい。 The signal transmission device 10 includes a first die pad 21 on the primary side and a second die pad 22 on the secondary side. Both the first die pad 21 and the second die pad 22 are formed into a flat plate shape. Both the first die pad 21 and the second die pad 22 are made of a conductive material. In the first embodiment, each die pad 21, 22 is formed of a material containing Cu (copper). Note that each die pad 21, 22 may be formed of other metal materials such as Al (aluminum). Moreover, the material constituting each die pad 21, 22 is not limited to a conductive material. For example, each die pad 21, 22 may be made of ceramic such as alumina. That is, each die pad 21, 22 may be formed of a material having electrical insulation properties.
 z方向から視て、第1ダイパッド21および第2ダイパッド22は、互いに離隔した状態で並んで配列されている。z方向から視て、第1ダイパッド21および第2ダイパッド22の配列方向をx方向とする。z方向から視て、x方向と直交する方向をy方向とする。なお、以降の説明において、平面視とは、z方向から視ることを意味する。 When viewed from the z direction, the first die pad 21 and the second die pad 22 are arranged side by side and spaced apart from each other. When viewed from the z direction, the arrangement direction of the first die pad 21 and the second die pad 22 is defined as the x direction. When viewed from the z direction, the direction orthogonal to the x direction is defined as the y direction. Note that in the following description, plan view means viewing from the z direction.
 第1チップ31およびトランス40は、第1ダイパッド21に搭載されている。第1チップ31およびトランス40は、接合材25,26によって第1ダイパッド21に接合されている。接合材25,26は、たとえば、はんだ、Ag(銀)ペースト等の導電性接合材である。なお、接合材25,26として、エポキシ樹脂等の絶縁性接合材が用いられてもよい。第1チップ31の接合材25の材料と、トランス40の接合材26の材料とが互いに異なっていてもよい。第2チップ32は、第2ダイパッド22に搭載されている。第2チップ32は、接合材27によって第2ダイパッド22に接合されている。接合材27は、たとえば、はんだ、Agペースト等の導電性接合材である。なお、接合材27として、エポキシ樹脂等の絶縁性接合材が用いられてもよい。 The first chip 31 and transformer 40 are mounted on the first die pad 21. The first chip 31 and the transformer 40 are bonded to the first die pad 21 by bonding materials 25 and 26. The bonding materials 25 and 26 are, for example, conductive bonding materials such as solder and Ag (silver) paste. Note that as the bonding materials 25 and 26, an insulating bonding material such as epoxy resin may be used. The material of the bonding material 25 of the first chip 31 and the material of the bonding material 26 of the transformer 40 may be different from each other. The second chip 32 is mounted on the second die pad 22. The second chip 32 is bonded to the second die pad 22 by a bonding material 27. The bonding material 27 is, for example, a conductive bonding material such as solder or Ag paste. Note that as the bonding material 27, an insulating bonding material such as epoxy resin may be used.
 信号伝達装置10は、複数の1次側リード23および複数の2次側リード24を含む。図2では、4個の1次側リード23A~23Dおよび2次側リード24A~24Dを示している。1次側リード23A,23Dは、第1ダイパッド21に接続されている。1次側リード23B,23Cは、1次側ワイヤW11A,W11Bにより第1チップ31に接続されている。1次側リード23B,23Cは、第1チップ31に対して動作電圧の供給、信号入力、等のために用いられる。1次側リード23Bまたは1次側リード23Cは、図1に示す1次側端子11として利用される。また、第1チップ31は、ワイヤW12により第1ダイパッド21に接続されている。1次側リード23の数、形状、接続状態、等は、適宜変更することができる。ワイヤW11A,W11B,W12は、ワイヤボンディング装置によって形成されたボンディングワイヤである。ワイヤW11A,W11B,W12は、たとえばAu(金),Al,Cu等の導体によって形成されている。 The signal transmission device 10 includes a plurality of primary leads 23 and a plurality of secondary leads 24. FIG. 2 shows four primary leads 23A to 23D and four secondary leads 24A to 24D. The primary leads 23A and 23D are connected to the first die pad 21. The primary leads 23B and 23C are connected to the first chip 31 by primary wires W11A and W11B. The primary leads 23B and 23C are used for supplying operating voltage to the first chip 31, inputting signals, and the like. The primary lead 23B or the primary lead 23C is used as the primary terminal 11 shown in FIG. Further, the first chip 31 is connected to the first die pad 21 by a wire W12. The number, shape, connection state, etc. of the primary leads 23 can be changed as appropriate. Wires W11A, W11B, and W12 are bonding wires formed by a wire bonding device. The wires W11A, W11B, and W12 are made of a conductor such as Au (gold), Al, or Cu.
 2次側リード24A,24Dは、第2ダイパッド22に接続されている。2次側リード24B,24Cは、2次側ワイヤW17A,W17Bにより第2チップ32に接続されている。2次側リード24B,24Cは、第2チップ32に対して動作電圧の供給、信号出力、等のために用いられる。2次側リード24Bまたは2次側リード24Cは、図1に示す2次側端子12として利用される。また、第2チップ32は、ワイヤW16により第2ダイパッド22に接続されている。2次側リード24の数、形状、接続状態、等は、適宜変更することができる。ワイヤW16,W17A,W17Bは、ワイヤボンディング装置によって形成されたボンディングワイヤである。ワイヤW16,W17A,W17Bは、たとえばAu,Al,Cu等の導体によって形成されている。 The secondary leads 24A and 24D are connected to the second die pad 22. The secondary leads 24B and 24C are connected to the second chip 32 by secondary wires W17A and W17B. The secondary leads 24B and 24C are used for supplying operating voltage to the second chip 32, outputting signals, and the like. The secondary lead 24B or the secondary lead 24C is used as the secondary terminal 12 shown in FIG. Further, the second chip 32 is connected to the second die pad 22 by a wire W16. The number, shape, connection state, etc. of the secondary leads 24 can be changed as appropriate. Wires W16, W17A, and W17B are bonding wires formed by a wire bonding device. The wires W16, W17A, and W17B are made of a conductor such as Au, Al, or Cu.
 第1チップ31は、ワイヤW13A,W13Bによりトランス40に接続されている。トランス40は、ワイヤW15A,W15Bにより第2チップ32に接続されている。ワイヤW13A,W13B,W15A,W15Bは、ワイヤボンディング装置によって形成されたボンディングワイヤである。ワイヤW13A,W13B,W15A,W15Bは、たとえばAu,Al,Cu等の導体によって形成されている。 The first chip 31 is connected to the transformer 40 by wires W13A and W13B. The transformer 40 is connected to the second chip 32 by wires W15A and W15B. Wires W13A, W13B, W15A, and W15B are bonding wires formed by a wire bonding device. The wires W13A, W13B, W15A, and W15B are made of a conductor such as Au, Al, or Cu.
 信号伝達装置10はさらに、封止樹脂28を含む。封止樹脂28は、各ダイパッド21,22、各チップ31,32、トランス40、各リード23,24の一部分を封止する。封止樹脂28は、電気絶縁性を有する材料によって形成されている。このような材料の一例として、黒色のエポキシ樹脂が用いられている。封止樹脂28は、z方向を厚さ方向とする矩形板状に形成されている。 The signal transmission device 10 further includes a sealing resin 28. The sealing resin 28 seals a portion of each die pad 21, 22, each chip 31, 32, a transformer 40, and each lead 23, 24. The sealing resin 28 is made of an electrically insulating material. A black epoxy resin is used as an example of such a material. The sealing resin 28 is formed into a rectangular plate shape with the thickness direction in the z direction.
 上述したように、第1実施形態では、トランス40は、第1ダイパッド21に実装されている。つまり、第1ダイパッド21には、トランス40および第1チップ31の双方が実装されている。トランス40および第1チップ31は、第1ダイパッド21においてx方向に互いに離隔して配列されている。このため、第1チップ31、トランス40、第2チップ32は、x方向において互いに離隔して配列されているといえる。第1実施形態では、第1チップ31、トランス40、第2チップ32は、この順番で配置されている。換言すると、トランス40は、x方向において第1チップ31と第2チップ32との間に配置されている。 As described above, in the first embodiment, the transformer 40 is mounted on the first die pad 21. That is, both the transformer 40 and the first chip 31 are mounted on the first die pad 21. The transformer 40 and the first chip 31 are spaced apart from each other in the x direction on the first die pad 21 . Therefore, it can be said that the first chip 31, the transformer 40, and the second chip 32 are arranged apart from each other in the x direction. In the first embodiment, the first chip 31, the transformer 40, and the second chip 32 are arranged in this order. In other words, the transformer 40 is arranged between the first chip 31 and the second chip 32 in the x direction.
 信号伝達装置10の絶縁耐圧を予め設定された絶縁耐圧とするため、第1ダイパッド21と第2ダイパッド22とを互いに離隔させる必要がある。第1実施形態では、平面視において、第1ダイパッド21と第2ダイパッド22とのx方向の間の距離は、第1チップ31とトランス40とのx方向の間の距離よりも大きい。このため、x方向において、第1チップ31とトランス40との間の距離は、トランス40と第2チップ32との間の距離よりも小さい。換言すると、トランス40は、第2チップ32よりも第1チップ31の近くに配置されている。 In order to set the dielectric strength voltage of the signal transmission device 10 to a preset dielectric strength voltage, it is necessary to separate the first die pad 21 and the second die pad 22 from each other. In the first embodiment, in plan view, the distance between the first die pad 21 and the second die pad 22 in the x direction is larger than the distance between the first chip 31 and the transformer 40 in the x direction. Therefore, the distance between the first chip 31 and the transformer 40 is smaller than the distance between the transformer 40 and the second chip 32 in the x direction. In other words, the transformer 40 is arranged closer to the first chip 31 than the second chip 32.
 (トランスの概略構成)
 図3から図5を参照して、第1実施形態のトランス40の内部構造の一例について説明する。
(Schematic configuration of transformer)
An example of the internal structure of the transformer 40 of the first embodiment will be described with reference to FIGS. 3 to 5.
 図3は、トランス40の概略平面図である。図4は、図3のF4-F4線断面図であり、図5は、図3のF5-F5線断面図である。図3では、外側コイル60および内側コイル70を解りやすくするため、実線で示されている。 FIG. 3 is a schematic plan view of the transformer 40. 4 is a sectional view taken along the line F4-F4 in FIG. 3, and FIG. 5 is a sectional view taken along the line F5-F5 in FIG. In FIG. 3, the outer coil 60 and the inner coil 70 are shown in solid lines for easy understanding.
 図3に示されるように、トランス40は、外側コイル60と、内側コイル70とを含むトランスチップである。図1に示す1次側コイル16は、外側コイル60を含む。図1に示す2次側コイル17は、内側コイル70を含む。 As shown in FIG. 3, the transformer 40 is a transformer chip that includes an outer coil 60 and an inner coil 70. The primary coil 16 shown in FIG. 1 includes an outer coil 60. The secondary coil 17 shown in FIG. 1 includes an inner coil 70.
 図3~図5に示されるように、トランス40は、チップ主面41と、チップ主面41とは反対側を向くチップ裏面42とを含む。さらに、トランス40は、チップ主面41およびチップ裏面42の双方と直交する4つのチップ側面43,44,45,46を含む。チップ側面43,44は、トランス40のy方向の両端面を構成する。チップ側面45,46は、トランス40のx方向の両端面を構成する。 As shown in FIGS. 3 to 5, the transformer 40 includes a chip main surface 41 and a chip back surface 42 facing opposite to the chip main surface 41. Furthermore, the transformer 40 includes four chip side surfaces 43, 44, 45, and 46 perpendicular to both the chip main surface 41 and the chip back surface 42. The chip side surfaces 43 and 44 constitute both end surfaces of the transformer 40 in the y direction. The chip side surfaces 45 and 46 constitute both end surfaces of the transformer 40 in the x direction.
 図4、図5に示されるように、トランス40は、基板51と、基板51の上に配置された第1絶縁体52と、基板51の下に配置された第2絶縁体53と、を含む。
 (基板)
 基板51は、z方向において互いに反対側を向く基板上面51Sおよび基板下面51Rを有している。基板51は、たとえば半導体基板、ガラス基板、等により構成されている。基板51は、第1実施形態ではSi(シリコン)を含む材料から形成された基板である。基板51に用いられるSi基板としては、単結晶の真性半導体材料から構成される半導体基板、アクセプタ型不純物を含むp型半導体基板、ドナー型不純物を含むn型半導体基板、等があげられる。
As shown in FIGS. 4 and 5, the transformer 40 includes a substrate 51, a first insulator 52 disposed on the substrate 51, and a second insulator 53 disposed below the substrate 51. include.
(substrate)
The substrate 51 has a substrate upper surface 51S and a substrate lower surface 51R facing oppositely to each other in the z direction. The substrate 51 is made of, for example, a semiconductor substrate, a glass substrate, or the like. In the first embodiment, the substrate 51 is a substrate formed from a material containing Si (silicon). Examples of the Si substrate used for the substrate 51 include a semiconductor substrate made of a single-crystal intrinsic semiconductor material, a p-type semiconductor substrate containing acceptor-type impurities, and an n-type semiconductor substrate containing donor-type impurities.
 なお、基板51は、半導体基板として、ワイドバンドギャップ半導体や化合物半導体が用いられてもよい。また、基板51は、半導体基板に代えて、ガラスを含む材料で形成された絶縁基板が用いられてもよい。ワイドバンドギャップ半導体は、2.0eV以上のバンドギャップを有する半導体基板である。ワイドバンドギャップ半導体は、SiC(炭化シリコン)、GaN(窒化ガリウム)、Ga(酸化ガリウム)、等であってもよい。化合物半導体は、III-V族化合物半導体であってもよい。化合物半導体は、AlN(窒化アルミニウム)、InN(窒化インジウム)、GaN、およびGaAs(ヒ化ガリウム)のうち少なくとも1つを含んでいてもよい。 Note that the substrate 51 may be made of a wide bandgap semiconductor or a compound semiconductor as a semiconductor substrate. Furthermore, instead of the semiconductor substrate, the substrate 51 may be an insulating substrate made of a material containing glass. A wide band gap semiconductor is a semiconductor substrate having a band gap of 2.0 eV or more. The wide bandgap semiconductor may be SiC (silicon carbide), GaN (gallium nitride), Ga 2 O 3 (gallium oxide), or the like. The compound semiconductor may be a III-V compound semiconductor. The compound semiconductor may include at least one of AlN (aluminum nitride), InN (indium nitride), GaN, and GaAs (gallium arsenide).
 (第1絶縁体)
 第1絶縁体52は、基板51の上に形成されている。第1絶縁体52は、基板51の基板上面51Sと接している。第1絶縁体52は、基板51と接する下面52Rと、下面52Rとは反対側の上面52Sとを含む。第1絶縁体52の上面52Sは、トランス40のチップ主面41を構成する。
(first insulator)
The first insulator 52 is formed on the substrate 51. The first insulator 52 is in contact with the top surface 51S of the substrate 51. The first insulator 52 includes a lower surface 52R in contact with the substrate 51 and an upper surface 52S on the opposite side of the lower surface 52R. The upper surface 52S of the first insulator 52 constitutes the chip main surface 41 of the transformer 40.
 第1実施形態の第1絶縁体52は、複数の絶縁層521~526,52Uを含む。複数の絶縁層521~526,52Uは、基板51の基板上面51Sから、z方向に積層されている。したがって、z方向は、第1絶縁体52の厚さ方向であるともいえる。また、z方向は、第1絶縁体52に含まれる複数の絶縁層521~526,52Uの積層方向であるともいえる。 The first insulator 52 of the first embodiment includes a plurality of insulating layers 521 to 526, 52U. The plurality of insulating layers 521 to 526, 52U are stacked in the z direction from the top surface 51S of the substrate 51. Therefore, it can be said that the z direction is the thickness direction of the first insulator 52. Further, the z direction can also be said to be the lamination direction of the plurality of insulating layers 521 to 526, 52U included in the first insulator 52.
 最下層の絶縁層521は、基板51の基板上面51Sと接する。最上層の絶縁層52Uの上面は、トランス40のチップ主面41を構成している。なお、以下の説明において、複数の絶縁層521~526,52Uのうちの最上層の絶縁層52Uを第2絶縁層52Uとし、第2絶縁層52Uを除く絶縁層521~526を第1絶縁層521~526として示す場合がある。 The lowermost insulating layer 521 is in contact with the upper substrate surface 51S of the substrate 51. The upper surface of the uppermost insulating layer 52U constitutes a chip main surface 41 of the transformer 40. In the following description, the uppermost insulating layer 52U among the plurality of insulating layers 521 to 526, 52U will be referred to as the second insulating layer 52U, and the insulating layers 521 to 526 other than the second insulating layer 52U will be referred to as the first insulating layer. May be shown as 521-526.
 第1絶縁層521~526は、たとえば、Siを含む材料により形成されている。Siを含む材料としては、SiO(酸化シリコン)、SiN(窒化シリコン)、SiC、SiCN(窒素添加炭化シリコン)等を用いることができる。なお、第1絶縁層521~526の少なくとも1つは、材料が異なっていてもよい。また、第1絶縁層521~526の少なくとも1つは、複数の膜を積層して形成されていてもよい。第1絶縁層521~526は、SiN、SiC、SiCN等を含む材料により形成された薄膜と、SiOを含む材料により形成された層間絶縁膜とにより構成され得る。第1絶縁層521~526は、それぞれが区別されることなく、1つの絶縁層として形成されていてもよい。 The first insulating layers 521 to 526 are made of, for example, a material containing Si. As the material containing Si, SiO 2 (silicon oxide), SiN (silicon nitride), SiC, SiCN (nitrogen-doped silicon carbide), etc. can be used. Note that at least one of the first insulating layers 521 to 526 may be made of a different material. Further, at least one of the first insulating layers 521 to 526 may be formed by stacking a plurality of films. The first insulating layers 521 to 526 may be composed of a thin film formed of a material containing SiN, SiC, SiCN, etc., and an interlayer insulating film formed of a material containing SiO 2 . The first insulating layers 521 to 526 may be formed as one insulating layer without being distinguished from each other.
 第2絶縁層52Uは、たとえば、電気絶縁性を有する樹脂を含む材料により形成されている。第2絶縁層52Uは、たとえば、窒化膜と、電気絶縁性を有する樹脂膜、とを含むパッシベーション膜で形成されている。窒化膜は、たとえば、Si、SiN、SiCN、等の材料を含む。樹脂膜は、たとえば、ポリイミド(PI)を含む。なお、第2絶縁層52Uは、第1絶縁層521~526と同様に、Siを含む材料により形成されていてもよい。 The second insulating layer 52U is made of, for example, a material containing resin having electrical insulation properties. The second insulating layer 52U is formed of, for example, a passivation film including a nitride film and a resin film having electrical insulation properties. The nitride film includes, for example, materials such as Si 3 N 4 , SiN, and SiCN. The resin film includes, for example, polyimide (PI). Note that the second insulating layer 52U may be formed of a material containing Si, similar to the first insulating layers 521 to 526.
 (第2絶縁体)
 第2絶縁体53は、基板51の下に形成されている。第2絶縁体53は、基板51の基板下面51Rと接している。第2絶縁体53は、基板51の基板下面51Rと接する上面53Sと、上面53Sとは反対側の下面53Rとを含む。第2絶縁体53の下面53Rは、トランス40のチップ裏面42を構成する。
(Second insulator)
The second insulator 53 is formed under the substrate 51. The second insulator 53 is in contact with the lower surface 51R of the substrate 51. The second insulator 53 includes an upper surface 53S in contact with the substrate lower surface 51R of the substrate 51, and a lower surface 53R on the opposite side to the upper surface 53S. The lower surface 53R of the second insulator 53 constitutes the back surface 42 of the chip of the transformer 40.
 第1実施形態の第2絶縁体53は、複数の絶縁層531~534を含む。複数の絶縁層531~534は、基板51の基板下面51Rから、z方向に積層されている。したがって、z方向は、第2絶縁体53の厚さ方向であるともいえる。また、z方向は、第2絶縁体53に含まれる複数の絶縁層531~534の積層方向であるともいえる。最上層の絶縁層531は、基板51の基板下面51Rと接する。最下層の絶縁層534の下面は、トランス40のチップ裏面42を構成している。 The second insulator 53 of the first embodiment includes a plurality of insulating layers 531 to 534. The plurality of insulating layers 531 to 534 are stacked in the z direction from the bottom surface 51R of the substrate 51. Therefore, it can be said that the z direction is the thickness direction of the second insulator 53. Further, the z direction can also be said to be the lamination direction of the plurality of insulating layers 531 to 534 included in the second insulator 53. The uppermost insulating layer 531 is in contact with the lower substrate surface 51R of the substrate 51. The lower surface of the lowermost insulating layer 534 constitutes the back surface 42 of the chip of the transformer 40 .
 第2絶縁体53は、第1絶縁体52と同じ材料により形成することができる。第1実施形態において、第2絶縁体53の絶縁層531~534は、たとえば、Siを含む材料により形成されている。Siを含む材料としては、SiO、SiN、SiC、SiCN等を用いることができる。なお、絶縁層531~534の少なくとも1つは、材料が異なっていてもよい。また、絶縁層531~534の少なくとも1つは、複数の膜を積層して形成されていてもよい。絶縁層531~534は、SiN、SiC、SiCN等を含む材料により形成された薄膜と、SiOを含む材料により形成された層間絶縁膜とにより構成され得る。絶縁層531~534は、それぞれが区別されることなく、1つの絶縁層として形成されていてもよい。 The second insulator 53 can be formed of the same material as the first insulator 52. In the first embodiment, the insulating layers 531 to 534 of the second insulator 53 are made of, for example, a material containing Si. As the material containing Si, SiO 2 , SiN, SiC, SiCN, etc. can be used. Note that at least one of the insulating layers 531 to 534 may be made of a different material. Furthermore, at least one of the insulating layers 531 to 534 may be formed by stacking a plurality of films. The insulating layers 531 to 534 may be composed of a thin film formed of a material containing SiN, SiC, SiCN, etc., and an interlayer insulating film formed of a material containing SiO 2 . The insulating layers 531 to 534 may be formed as one insulating layer without being distinguished from each other.
 また、第2絶縁体53は、第1絶縁体52と異なる材料により形成することもできる。第2絶縁体53の絶縁層531~534は、たとえば、電気絶縁性を有する樹脂を含む材料により形成され得る。この材料は、たとえば、ポリイミドを含む材料を用いることができる。 Further, the second insulator 53 can also be formed of a different material from the first insulator 52. The insulating layers 531 to 534 of the second insulator 53 may be formed of, for example, a material containing electrically insulating resin. As this material, for example, a material containing polyimide can be used.
 (外側コイルおよび内側コイル)
 図3~図5に示されるように、トランス40は、外側コイル60および内側コイル70を含む。図4に示されるように、外側コイル60および内側コイル70は、第1絶縁体52に埋め込まれている。
(outer coil and inner coil)
As shown in FIGS. 3-5, transformer 40 includes an outer coil 60 and an inner coil 70. As shown in FIGS. As shown in FIG. 4, outer coil 60 and inner coil 70 are embedded in first insulator 52. As shown in FIG.
 図3に示されるように、外側コイル60は、第1端60Aと、第1端60Aとは反対側の第2端60Bとを含む。外側コイル60は、平面視において、円形の渦巻状に形成されている。渦巻状の外側コイル60において、第1端60Aは渦巻きの内側に配置され、第2端60Bは渦巻きの外側に配置されている。つまり、外側コイル60は、第1端60Aを内周側端部とし、第2端60Bを外周側端部とする螺旋状に捲き回されている。 As shown in FIG. 3, the outer coil 60 includes a first end 60A and a second end 60B opposite to the first end 60A. The outer coil 60 is formed in a circular spiral shape when viewed from above. In the spiral outer coil 60, the first end 60A is located inside the spiral, and the second end 60B is located outside the spiral. In other words, the outer coil 60 is wound in a spiral shape, with the first end 60A being the inner end and the second end 60B being the outer end.
 図4、図5に示されるように、外側コイル60は、複数の第1絶縁層521~526のうちの最上層の第1絶縁層526に設けられている。つまり、外側コイル60は、第1絶縁体52の上面52S寄りに配置されている。外側コイル60は、Ti(チタン)、TiN(窒化チタン)、Au、Ag、Cu、Al、およびW(タングステン)のうち1つまたは複数が適宜選択されたものを含む材料により形成されている。第1実施形態の外側コイル60は、Alを含む材料によって形成されている。 As shown in FIGS. 4 and 5, the outer coil 60 is provided on the first insulating layer 526, which is the uppermost layer among the plurality of first insulating layers 521 to 526. That is, the outer coil 60 is disposed closer to the upper surface 52S of the first insulator 52. The outer coil 60 is formed of a material containing one or more appropriately selected from Ti (titanium), TiN (titanium nitride), Au, Ag, Cu, Al, and W (tungsten). The outer coil 60 of the first embodiment is made of a material containing Al.
 内側コイル70は、外側コイル60の内側に配置されている。内側コイル70は、平面視において、外側コイル60と重ならないように配置されている。
 内側コイル70は、第1端70Aと、第1端70Aとは反対側の第2端70Bとを含む。内側コイル70は、平面視において、円形の渦巻状に形成されている。渦巻状の内側コイル70において、第1端70Aは渦巻きの内側に配置され、第2端70Bは渦巻きの外側に配置されている。つまり、内側コイル70は、第1端70Aを内周側端部とし、第2端70Bを外周側端部とする螺旋状に捲き回されている。なお、内側コイル70は、第1端70Aを外周側端部とし、第2端70Bを内周側端部としてもよい。
Inner coil 70 is arranged inside outer coil 60. The inner coil 70 is arranged so as not to overlap the outer coil 60 in plan view.
The inner coil 70 includes a first end 70A and a second end 70B opposite to the first end 70A. The inner coil 70 is formed in a circular spiral shape when viewed from above. In the spiral inner coil 70, the first end 70A is arranged inside the spiral, and the second end 70B is arranged outside the spiral. In other words, the inner coil 70 is wound in a spiral shape with the first end 70A being the inner end and the second end 70B being the outer end. Note that the inner coil 70 may have the first end 70A as the outer end and the second end 70B as the inner end.
 図4に示されるように、内側コイル70は、複数の第1絶縁層521~526のうちの最上層の第1絶縁層526に設けられている。つまり、内側コイル70は、第1絶縁体52の上面52S寄りに配置されている。内側コイル70は、Ti、TiN、Au、Ag、Cu、Al、およびWのうち1つまたは複数が適宜選択されたものを含む材料により形成されている。第1実施形態の内側コイル70は、Alを含む材料によって形成されている。 As shown in FIG. 4, the inner coil 70 is provided in the first insulating layer 526, which is the uppermost layer among the plurality of first insulating layers 521 to 526. That is, the inner coil 70 is disposed closer to the upper surface 52S of the first insulator 52. The inner coil 70 is formed of a material containing one or more appropriately selected from Ti, TiN, Au, Ag, Cu, Al, and W. The inner coil 70 of the first embodiment is made of a material containing Al.
 (配線部)
 図3、図4に示されるように、トランス40は、配線部80を含む。配線部80は、外側コイル60に電気的に接続されている。配線部80は、外側コイル60の第1端60Aに電気的に接続されている。なお、図4では、配線部80は概略的に示されている。
(Wiring section)
As shown in FIGS. 3 and 4, the transformer 40 includes a wiring section 80. The wiring section 80 is electrically connected to the outer coil 60. The wiring portion 80 is electrically connected to the first end 60A of the outer coil 60. Note that in FIG. 4, the wiring section 80 is schematically shown.
 図3、図4に示されるように、配線部80は、接続配線81、ビア82,83、端子部84を含む。配線部80は、Ti、TiN、Au、Ag、Cu、Al、およびWのうち1つまたは複数が適宜選択されたものを含む材料により形成されている。 As shown in FIGS. 3 and 4, the wiring section 80 includes a connection wiring 81, vias 82 and 83, and a terminal section 84. The wiring portion 80 is formed of a material containing one or more appropriately selected from Ti, TiN, Au, Ag, Cu, Al, and W.
 端子部84は、チップ側面46の近くに配置されている。第1実施形態のトランス40において、端子部84は、平面視において、外側コイル60の第1端60Aとy方向の同じ位置に配置されている。なお、端子部84の配置位置は、任意に変更され得る。 The terminal portion 84 is arranged near the chip side surface 46. In the transformer 40 of the first embodiment, the terminal portion 84 is arranged at the same position in the y direction as the first end 60A of the outer coil 60 in plan view. Note that the arrangement position of the terminal portion 84 may be changed arbitrarily.
 図4に示されるように、接続配線81は、外側コイル60より下に配置されている。たとえば、接続配線81は、外側コイル60が設けられた第1絶縁層526より2つ下の第1絶縁層524に設けられる。なお、接続配線81が設けられる位置は、外側コイル60と接触しない範囲で適宜変更され得る。図3に示されるように、接続配線81は、外側コイル60に接続された第1端81Aから、チップ側面46に向けて延びるように形成されている。接続配線81は、平面視において、外側コイル60の第1端60Aから端子部84まで延びている。接続配線81の第1端81Aは、ビア82により、外側コイル60の第1端60Aに電気的に接続されている。接続配線81の第2端81Bは、ビア83により端子部84に電気的に接続されている。 As shown in FIG. 4, the connection wiring 81 is arranged below the outer coil 60. For example, the connection wiring 81 is provided in the first insulating layer 524 two layers below the first insulating layer 526 on which the outer coil 60 is provided. Note that the position where the connection wiring 81 is provided may be changed as appropriate within a range where it does not come into contact with the outer coil 60. As shown in FIG. 3, the connection wiring 81 is formed to extend from the first end 81A connected to the outer coil 60 toward the chip side surface 46. The connection wiring 81 extends from the first end 60A of the outer coil 60 to the terminal portion 84 in a plan view. A first end 81A of the connection wiring 81 is electrically connected to a first end 60A of the outer coil 60 via a via 82. The second end 81B of the connection wiring 81 is electrically connected to the terminal portion 84 via the via 83.
 (外側コイルおよび配線部に対するワイヤの接続)
 図3、図4に示されるように、第2絶縁層52Uは、外側コイル60の第2端60Bを露出する開口52U1と、配線部80の一部を露出する開口52U2と、を含む。開口52U1,52U2により露出される第2端60Bおよび端子部84には、ワイヤW13A、W13Bが接続される。つまり、開口52U1,52U2により露出される第2端60Bおよび端子部84は、ワイヤW13A,W13Bを接続する接続パッドであるといえる。図2に示されるように、ワイヤW13A,W13Bは、第1チップ31に接続される。したがって、開口52U1,52U2により露出される第2端60Bおよび端子部84は、トランス40を第1チップ31に接続する接続パッドということもできる。
(Wire connection to outer coil and wiring section)
As shown in FIGS. 3 and 4, the second insulating layer 52U includes an opening 52U1 that exposes the second end 60B of the outer coil 60 and an opening 52U2 that exposes a part of the wiring section 80. Wires W13A and W13B are connected to the second end 60B and the terminal portion 84 exposed through the openings 52U1 and 52U2. That is, it can be said that the second end 60B and the terminal portion 84 exposed through the openings 52U1 and 52U2 are connection pads that connect the wires W13A and W13B. As shown in FIG. 2, wires W13A and W13B are connected to the first chip 31. Therefore, the second end 60B and the terminal portion 84 exposed through the openings 52U1 and 52U2 can also be called connection pads that connect the transformer 40 to the first chip 31.
 (内側コイルに対するワイヤの接続)
 図3、図5に示されるように、第2絶縁層52Uは、内側コイル70の一部を露出する複数の開口52U3,52U4を含む。開口52U3は、内側コイル70の第1端70Aを露出するように形成されている。開口52U4は、内側コイル70の第2端70Bを露出するように形成されている。
(Wire connection to inner coil)
As shown in FIGS. 3 and 5, the second insulating layer 52U includes a plurality of openings 52U3 and 52U4 that expose a portion of the inner coil 70. The opening 52U3 is formed to expose the first end 70A of the inner coil 70. The opening 52U4 is formed to expose the second end 70B of the inner coil 70.
 開口52U3により露出される内側コイル70の第1端70Aには、ワイヤW15Aが接続される。開口52U4により露出される内側コイル70の第2端70Bには、ワイヤW15Bが接続される。つまり、開口52U3により露出される第1端70A、および開口52U4により露出される第2端70Bは、ワイヤW15A,W15Bを接続する接続パッドであるといえる。これらのワイヤW15A,W15Bは、図2に示すように、第2チップ32に接続される。したがって、開口52U3,52U4により露出される第1端70A,第2端70Bは、トランス40を第2チップ32に接続する接続パッドということもできる。 A wire W15A is connected to the first end 70A of the inner coil 70 exposed through the opening 52U3. A wire W15B is connected to the second end 70B of the inner coil 70 exposed through the opening 52U4. That is, it can be said that the first end 70A exposed through the opening 52U3 and the second end 70B exposed through the opening 52U4 are connection pads that connect the wires W15A and W15B. These wires W15A and W15B are connected to the second chip 32, as shown in FIG. Therefore, the first end 70A and the second end 70B exposed through the openings 52U3 and 52U4 can also be called connection pads that connect the transformer 40 to the second chip 32.
 外側コイル60と内側コイル70とは、互いに電気的に絶縁されており、かつ磁気結合可能に構成されている。第1実施形態のトランス40は、外側コイル60と内側コイル70とが、基板51の基板上面51Sと平行な平面に沿って磁気結合可能に構成されている。 The outer coil 60 and the inner coil 70 are electrically insulated from each other and configured to be magnetically coupled. The transformer 40 of the first embodiment is configured such that the outer coil 60 and the inner coil 70 can be magnetically coupled along a plane parallel to the upper surface 51S of the substrate 51.
 内側コイル70は、外側コイル60の内側に配置されている。したがって、内側コイル70には、外側コイル60に流れる電流により生じる磁束の向きに応じた向きの電流が流れる。 The inner coil 70 is arranged inside the outer coil 60. Therefore, a current flows in the inner coil 70 in a direction that corresponds to the direction of the magnetic flux generated by the current flowing in the outer coil 60.
 図4に示されるように、内側コイル70と外側コイル60は、z方向において同じ位置であって、第1絶縁体52の厚さ方向と直交する同一平面上に配置されている。したがって、基板51から内側コイル70までの距離D70は、基板51から外側コイル60までの距離D60と等しい。 As shown in FIG. 4, the inner coil 70 and the outer coil 60 are arranged at the same position in the z direction and on the same plane perpendicular to the thickness direction of the first insulator 52. Therefore, the distance D70 from the substrate 51 to the inner coil 70 is equal to the distance D60 from the substrate 51 to the outer coil 60.
 外側コイル60に接続された配線部80の接続配線81は、外側コイル60の下に配置されている。したがって、基板51から接続配線81までの距離D80は、基板51から外側コイル60までの距離D60、基板51から内側コイル70までの距離D70よりも小さい。このため、第1実施形態のトランス40において、基板51から接続配線81までの距離D80は、厚さ方向における外側コイル60および内側コイル70と基板51との間の第2最短距離となる。 The connection wiring 81 of the wiring section 80 connected to the outer coil 60 is arranged below the outer coil 60. Therefore, the distance D80 from the substrate 51 to the connection wiring 81 is smaller than the distance D60 from the substrate 51 to the outer coil 60 and the distance D70 from the substrate 51 to the inner coil 70. Therefore, in the transformer 40 of the first embodiment, the distance D80 from the substrate 51 to the connection wiring 81 is the second shortest distance between the outer coil 60 and the inner coil 70 and the substrate 51 in the thickness direction.
 外側コイル60と内側コイル70との間の距離D11,D12は、互いに等しい。距離D11,D12は、外側コイル60と内側コイル70との間の第1最短距離である。距離D11,D12は、たとえば10μm以上20μm以下とすることができる。 The distances D11 and D12 between the outer coil 60 and the inner coil 70 are equal to each other. The distances D11 and D12 are the first shortest distances between the outer coil 60 and the inner coil 70. The distances D11 and D12 can be, for example, 10 μm or more and 20 μm or less.
 図4に示されるように、z方向において、基板51から外側コイル60および内側コイル70までの距離を第1絶縁体52の厚さT52とする。またz方向において、上面53Sから下面53Rまでの距離を第2絶縁体53の厚さT53とする。第1実施形態のトランス40において、第1絶縁体52の厚さT52は、第2絶縁体53の厚さT53よりも厚い。第1絶縁体52の厚さT52と、第2絶縁体53の厚さT53は、トランス40における絶縁耐圧に応じて設定することができる。 As shown in FIG. 4, the distance from the substrate 51 to the outer coil 60 and the inner coil 70 in the z direction is the thickness T52 of the first insulator 52. Further, in the z direction, the distance from the upper surface 53S to the lower surface 53R is the thickness T53 of the second insulator 53. In the transformer 40 of the first embodiment, the thickness T52 of the first insulator 52 is thicker than the thickness T53 of the second insulator 53. The thickness T52 of the first insulator 52 and the thickness T53 of the second insulator 53 can be set according to the dielectric strength voltage of the transformer 40.
 第2最短距離D80と第2絶縁体53の厚さT53との合計値を第1最短距離D11,D12以上とするように、第1絶縁体52の厚さT52および第2絶縁体53の厚さT53と、外側コイル60と内側コイル70との間の距離D11,D12が設定され得る。第1絶縁体52の厚さT52、詳しくは第2チップ32に電気的に接続されるコイル(第1実施形態では内側コイル70)までの距離D70は、5μm以上10μm以下とすることができる。第2絶縁体53の厚さT53は、5μm以上10μm以下とすることができる。 The thickness T52 of the first insulator 52 and the thickness of the second insulator 53 are set such that the total value of the second shortest distance D80 and the thickness T53 of the second insulator 53 is equal to or greater than the first shortest distance D11, D12. The distance T53 and the distances D11 and D12 between the outer coil 60 and the inner coil 70 can be set. The thickness T52 of the first insulator 52, specifically the distance D70 to the coil (inner coil 70 in the first embodiment) electrically connected to the second chip 32, can be 5 μm or more and 10 μm or less. The thickness T53 of the second insulator 53 can be 5 μm or more and 10 μm or less.
 そして、第1最短距離D11,D21、第2最短距離D80、第2絶縁体53の厚さT53の関係により、トランス40の構成を適宜変更することができる。たとえば、第1絶縁体52の厚さT52と第2絶縁体53の厚さT53が等しくされてもよい。また、第2絶縁体53の厚さT53が、第1絶縁体52の厚さよりも厚くされてもよい。 The configuration of the transformer 40 can be changed as appropriate depending on the relationship among the first shortest distances D11 and D21, the second shortest distance D80, and the thickness T53 of the second insulator 53. For example, the thickness T52 of the first insulator 52 and the thickness T53 of the second insulator 53 may be made equal. Further, the thickness T53 of the second insulator 53 may be made thicker than the thickness of the first insulator 52.
 (作用)
 第1実施形態の信号伝達装置10におけるトランス40の作用を説明する。なお、比較例のトランス40Xについて、第1実施形態のトランス40と同様の構成部材については同じ符号を付す。
(effect)
The operation of the transformer 40 in the signal transmission device 10 of the first embodiment will be explained. In addition, regarding the transformer 40X of the comparative example, the same reference numerals are given to the same components as those of the transformer 40 of the first embodiment.
 図6は、比較例のトランス40Xの断面構造を示す。比較例のトランス40Xは、基板51の上の第1絶縁体52のみを含み、第2絶縁体53を含まない。比較例のトランス40Xは、1次側コイル16Xと2次側コイル17Xとが基板51上の第1絶縁体52の厚さ方向に重ねて配置されている。つまり、比較例のトランス40Xは、第1絶縁体52の厚さ方向において磁気結合可能に配置された1次側コイル16Xおよび2次側コイル17Xを含む。 FIG. 6 shows a cross-sectional structure of a transformer 40X of a comparative example. The transformer 40X of the comparative example includes only the first insulator 52 on the substrate 51 and does not include the second insulator 53. In the transformer 40X of the comparative example, the primary coil 16X and the secondary coil 17X are arranged in an overlapping manner in the thickness direction of the first insulator 52 on the substrate 51. In other words, the transformer 40X of the comparative example includes a primary coil 16X and a secondary coil 17X that are arranged to be magnetically coupled in the thickness direction of the first insulator 52.
 比較例のトランス40Xにおける絶縁耐圧は、1次側コイル16Xと2次側コイル17Xとの間の距離によって決まる。比較例のトランス40Xにおいて、絶縁耐圧を向上するために第1絶縁体52を厚くして、1次側コイル16Xと2次側コイル17Xとの間を広くする必要がある。しかしながら、比較例のトランス40Xでは、基板51の材料と第1絶縁体52の材料との違いによって基板51および第1絶縁体52の応力によって基板51および第1絶縁体52に反りが生じる。そして、第1絶縁体52を厚くするほど、基板51および第1絶縁体52に生じる反りは大きくなる。 The dielectric strength of the comparative example transformer 40X is determined by the distance between the primary coil 16X and the secondary coil 17X. In the transformer 40X of the comparative example, in order to improve the dielectric strength, it is necessary to thicken the first insulator 52 and widen the space between the primary coil 16X and the secondary coil 17X. However, in the transformer 40X of the comparative example, warpage occurs in the substrate 51 and the first insulator 52 due to the stress in the substrate 51 and the first insulator 52 due to the difference between the material of the substrate 51 and the material of the first insulator 52. The thicker the first insulator 52 is, the greater the warpage that occurs in the substrate 51 and the first insulator 52.
 第1実施形態のトランス40は、基板51の上に設けられた第1絶縁体52と、基板51の下に設けられた第2絶縁体53とを含む。第1絶縁体52は、基板51の基板上面51Sと接し、第2絶縁体53は、基板51の基板下面51Rと接する。したがって、基板51に対して、基板上面51Sに接する第1絶縁体52により生じる応力と、基板下面51Rに接する第2絶縁体53により生じる応力とが互いに相殺することによって、トランス40における応力を低減することができ、トランス40の反りを低減することができる。 The transformer 40 of the first embodiment includes a first insulator 52 provided on a substrate 51 and a second insulator 53 provided below the substrate 51. The first insulator 52 is in contact with the upper substrate surface 51S of the substrate 51, and the second insulator 53 is in contact with the lower substrate surface 51R of the substrate 51. Therefore, the stress generated by the first insulator 52 in contact with the substrate upper surface 51S and the stress generated by the second insulator 53 in contact with the substrate lower surface 51R cancel each other out with respect to the substrate 51, thereby reducing stress in the transformer 40. Therefore, warpage of the transformer 40 can be reduced.
 また、第1実施形態において、第1絶縁体52と第2絶縁体53は、同じ材料により形成されている。したがって、第1絶縁体52と第2絶縁体53とを異なる材料により形成する場合と比べ、トランス40における応力をより低減することができる。これにより、基板51の反り、つまりトランス40の反りをより低減することができる。 Furthermore, in the first embodiment, the first insulator 52 and the second insulator 53 are made of the same material. Therefore, stress in the transformer 40 can be further reduced compared to the case where the first insulator 52 and the second insulator 53 are made of different materials. Thereby, the warpage of the substrate 51, that is, the warpage of the transformer 40 can be further reduced.
 上述したように、第1実施形態のトランス40は、第2絶縁体53を含むことにより、第1絶縁体52により生じる応力を相殺することで、トランス40における応力を低減することができる。このため、第1絶縁体52および第2絶縁体53の厚さT52,T53を、比較例のトランス40Xよりも厚くすることができる。これにより、トランス40の絶縁耐圧をより向上することができる。 As described above, the transformer 40 of the first embodiment includes the second insulator 53, thereby canceling out the stress caused by the first insulator 52, thereby reducing the stress in the transformer 40. Therefore, the thicknesses T52 and T53 of the first insulator 52 and the second insulator 53 can be made thicker than the transformer 40X of the comparative example. Thereby, the dielectric strength voltage of the transformer 40 can be further improved.
 図2に示されるように、トランス40は、第1ダイパッド21に実装される。第1ダイパッド21の電位は、第1ダイパッド21に実装される第1チップ31のコモン電圧と等しい。第1実施形態のトランス40において、基板51は、第1絶縁体52と第2絶縁体53とに挟まれている。したがって、基板51は、電気的に第1チップ31および第2チップ32からフローティング電位となる。つまり、基板51は、電気的にフローティングである。 As shown in FIG. 2, the transformer 40 is mounted on the first die pad 21. The potential of the first die pad 21 is equal to the common voltage of the first chip 31 mounted on the first die pad 21. In the transformer 40 of the first embodiment, the substrate 51 is sandwiched between a first insulator 52 and a second insulator 53. Therefore, the substrate 51 is electrically at a floating potential from the first chip 31 and the second chip 32. In other words, the substrate 51 is electrically floating.
 図4に示されるように、外側コイル60と内側コイル70は、第1絶縁体52の上面よりに配置されている。トランス40では、外側コイル60と基板51との間、内側コイル70と基板51との間に、寄生キャパシタC11,C12が生じる。また、第1ダイパッド21および導電性の接合材26と基板51との間に、寄生キャパシタC53が生じる。 As shown in FIG. 4, the outer coil 60 and the inner coil 70 are arranged closer to the upper surface of the first insulator 52. In the transformer 40, parasitic capacitors C11 and C12 are generated between the outer coil 60 and the substrate 51 and between the inner coil 70 and the substrate 51. Further, a parasitic capacitor C53 is generated between the first die pad 21 and the conductive bonding material 26 and the substrate 51.
 図1、図2に示されるように、外側コイル60(図1に示される1次側コイル16)は、1次側回路13を含む第1チップ31に電気的に接続される。第1チップ31およびトランス40の双方は、第1ダイパッド21に搭載されている。したがって、トランス40の基板51は、第1チップ31の1次側回路13のコモン電圧が同じである。一方、内側コイル70(図1に示される2次側コイル17)は、2次側回路14を含む第2チップ32に電気的に接続される。したがって、内側コイル70は、2次側回路14のコモン電圧と同じとなる。 As shown in FIGS. 1 and 2, the outer coil 60 (the primary coil 16 shown in FIG. 1) is electrically connected to the first chip 31 including the primary circuit 13. Both the first chip 31 and the transformer 40 are mounted on the first die pad 21. Therefore, the common voltage of the substrate 51 of the transformer 40 and the primary circuit 13 of the first chip 31 is the same. On the other hand, the inner coil 70 (the secondary coil 17 shown in FIG. 1) is electrically connected to the second chip 32 including the secondary circuit 14. Therefore, the inner coil 70 has the same common voltage as the secondary circuit 14.
 図4に示されるように、トランス40では、基板51と第1ダイパッド21(接合材26)との間に寄生キャパシタC53が生じ、基板51と内側コイル70との間に寄生キャパシタC12が生じる。したがって、基板51の電位は、第1ダイパッド21のコモン電圧と、内側コイル70のコモン電圧とを寄生キャパシタC53,C12の容量値によって分圧した電圧となる。これらの寄生キャパシタC53,C12の容量値の合計値を、上記した比較例のトランス40Xにおいて、1次側コイル16Xと2次側コイル17Xとの間の寄生キャパシタC2Xの容量値より大きくすることにより、絶縁耐圧を向上することができる。たとえば、寄生キャパシタC53,C12の容量値の合計値を比較例のトランスにおける寄生キャパシタC2Xの容量値の2倍とすることにより、第1実施形態のトランス40における絶縁耐圧を、比較例のトランスの絶縁耐圧の2倍とすることができる。 As shown in FIG. 4, in the transformer 40, a parasitic capacitor C53 is generated between the substrate 51 and the first die pad 21 (bonding material 26), and a parasitic capacitor C12 is generated between the substrate 51 and the inner coil 70. Therefore, the potential of the substrate 51 is a voltage obtained by dividing the common voltage of the first die pad 21 and the common voltage of the inner coil 70 by the capacitance values of the parasitic capacitors C53 and C12. By making the total value of the capacitance values of these parasitic capacitors C53 and C12 larger than the capacitance value of the parasitic capacitor C2X between the primary coil 16X and the secondary coil 17X in the transformer 40X of the comparative example described above, , dielectric strength can be improved. For example, by setting the total value of the capacitance values of the parasitic capacitors C53 and C12 to twice the capacitance value of the parasitic capacitor C2X in the transformer of the comparative example, the dielectric strength voltage of the transformer 40 of the first embodiment can be increased from that of the transformer of the comparative example. It can be twice the dielectric strength voltage.
 第1実施形態のトランス40において、外側コイル60と内側コイル70は、第1絶縁体52の厚さ方向において同じ位置であって、厚さ方向と直交する同一平面上に配置されている。外側コイル60と内側コイル70との間における絶縁耐圧は、外側コイル60と内側コイル70との間の第1最短距離D11,D12により決まる。第1最短距離D11,D12は、外側コイル60と内側コイル70との形状、つまり、トランス40のレイアウト設計により調整できる。つまり、トランス40の外側コイル60と内側コイル70との間の絶縁耐圧は、トランス40のレイアウト設計により調整できる。このため、容易にトランス40の絶縁耐圧を変更することができる。 In the transformer 40 of the first embodiment, the outer coil 60 and the inner coil 70 are arranged at the same position in the thickness direction of the first insulator 52 and on the same plane perpendicular to the thickness direction. The dielectric strength between the outer coil 60 and the inner coil 70 is determined by the first shortest distances D11 and D12 between the outer coil 60 and the inner coil 70. The first shortest distances D11 and D12 can be adjusted by the shapes of the outer coil 60 and the inner coil 70, that is, the layout design of the transformer 40. That is, the dielectric strength between the outer coil 60 and the inner coil 70 of the transformer 40 can be adjusted by designing the layout of the transformer 40. Therefore, the dielectric strength voltage of the transformer 40 can be easily changed.
 外側コイル60および内側コイル70の配線抵抗値は、外側コイル60と内側コイル70とにそれぞれ流れる電流量、磁気結合度に影響する。外側コイル60の配線抵抗値は、外側コイル60の配線幅を広くして、配線幅に対する配線厚さのアスペクト比を小さくすることにより得られる。同様に、内側コイル70の配線抵抗値は、内側コイル70の配線幅を広くして配線幅に対する配線厚さのアスペクト比を小さくすることにより得られる。 The wiring resistance values of the outer coil 60 and the inner coil 70 affect the amount of current flowing through the outer coil 60 and the inner coil 70, respectively, and the degree of magnetic coupling. The wiring resistance value of the outer coil 60 is obtained by widening the wiring width of the outer coil 60 and decreasing the aspect ratio of the wiring thickness to the wiring width. Similarly, the wiring resistance value of the inner coil 70 can be obtained by widening the wiring width of the inner coil 70 and decreasing the aspect ratio of the wiring thickness to the wiring width.
 上記した比較例のトランス40Xでは、1次側コイル16Xと2次側コイル17Xとが第1絶縁体52の厚さ方向に配列されている。このため、第1絶縁体52の厚さ方向から視た1次側コイル16Xと2次側コイル17Xの配線幅を広くすると、1次側コイル16Xと2次側コイル17Xとの対向面積が増えるため、寄生キャパシタの容量値が増加することになる。 In the transformer 40X of the comparative example described above, the primary coil 16X and the secondary coil 17X are arranged in the thickness direction of the first insulator 52. Therefore, if the wiring width of the primary coil 16X and the secondary coil 17X is increased when viewed from the thickness direction of the first insulator 52, the opposing area of the primary coil 16X and the secondary coil 17X increases. Therefore, the capacitance value of the parasitic capacitor increases.
 第1実施形態のトランス40において、外側コイル60と内側コイル70は、x方向およびy方向において対向する。したがって、配線幅を大きくしても、外側コイル60と内側コイル70の対向面積は変化しない。つまり、外側コイル60と内側コイル70との間の寄生キャパシタC11,C12の容量値は変化しない。つまり、比較例のトランス40Xと比べ、コイル間の寄生キャパシタC11,C12の容量値を増加させることなく、配線抵抗値を低減することができる。これにより、この結果、トランス40の外側コイル60と内側コイル70において電流が流れやすくなるため、トランス40において発生する磁束の量を増加させることができる。そして、トランス40において、外側コイル60と内側コイル70との間における磁気結合の効率の向上、ひいては伝達特性を向上することができる。 In the transformer 40 of the first embodiment, the outer coil 60 and the inner coil 70 face each other in the x direction and the y direction. Therefore, even if the wiring width is increased, the facing area of the outer coil 60 and the inner coil 70 does not change. That is, the capacitance values of the parasitic capacitors C11 and C12 between the outer coil 60 and the inner coil 70 do not change. That is, compared to the transformer 40X of the comparative example, the wiring resistance value can be reduced without increasing the capacitance value of the parasitic capacitors C11 and C12 between the coils. As a result, current flows more easily in the outer coil 60 and inner coil 70 of the transformer 40, so that the amount of magnetic flux generated in the transformer 40 can be increased. In the transformer 40, it is possible to improve the efficiency of magnetic coupling between the outer coil 60 and the inner coil 70, and thus to improve the transfer characteristics.
 (効果)
 以上記述したように、第1実施形態のトランス40によれば、以下の効果を奏する。
 (1-1)第1実施形態のトランス40は、基板51の上に設けられた第1絶縁体52と、基板51の下に設けられた第2絶縁体53とを含む。第1絶縁体52は、基板51の基板上面51Sと接し、第2絶縁体53は、基板51の基板下面51Rと接する。したがって、基板51に対して、基板上面51Sに接する第1絶縁体52により生じる応力と、基板下面51Rに接する第2絶縁体53により生じる応力とが互いに相殺することによって、トランス40における応力を低減することができ、トランス40の反りを低減することができる。
(effect)
As described above, the transformer 40 of the first embodiment provides the following effects.
(1-1) The transformer 40 of the first embodiment includes a first insulator 52 provided on a substrate 51 and a second insulator 53 provided below the substrate 51. The first insulator 52 is in contact with the upper substrate surface 51S of the substrate 51, and the second insulator 53 is in contact with the lower substrate surface 51R of the substrate 51. Therefore, the stress generated by the first insulator 52 in contact with the substrate upper surface 51S and the stress generated by the second insulator 53 in contact with the substrate lower surface 51R cancel each other out with respect to the substrate 51, thereby reducing stress in the transformer 40. Therefore, warpage of the transformer 40 can be reduced.
 (1-2)第1実施形態において、第1絶縁体52と第2絶縁体53は、同じ材料により形成されている。したがって、第1絶縁体52と第2絶縁体53とを異なる材料により形成する場合と比べ、トランス40における応力をより低減することができる。これにより、基板51の反り、つまりトランス40の反りをより低減することができる。 (1-2) In the first embodiment, the first insulator 52 and the second insulator 53 are made of the same material. Therefore, stress in the transformer 40 can be further reduced compared to the case where the first insulator 52 and the second insulator 53 are made of different materials. Thereby, the warpage of the substrate 51, that is, the warpage of the transformer 40 can be further reduced.
 (1-3)第1実施形態のトランス40は、第2絶縁体53を含むことにより、第1絶縁体52により生じる応力を相殺することで、トランス40における応力を低減することができる。このため、第1絶縁体52および第2絶縁体53の厚さT52,T53を、比較例のトランス40Xよりも厚くすることができる。これにより、トランス40の絶縁耐圧をより向上することができる。 (1-3) The transformer 40 of the first embodiment includes the second insulator 53, thereby canceling out stress caused by the first insulator 52, thereby reducing stress in the transformer 40. Therefore, the thicknesses T52 and T53 of the first insulator 52 and the second insulator 53 can be made thicker than the transformer 40X of the comparative example. Thereby, the dielectric strength voltage of the transformer 40 can be further improved.
 (1-4)トランス40では、基板51と第1ダイパッド21(接合材26)との間に寄生キャパシタC53が生じ、基板51と内側コイル70との間に寄生キャパシタC12が生じる。したがって、基板51の電位は、第1ダイパッド21のコモン電圧と、内側コイル70のコモン電圧とを寄生キャパシタC53,C12の容量値によって分圧した電圧となる。これらの寄生キャパシタC53,C12の容量値の合計値を、上記した比較例のトランス40Xにおいて、1次側コイル16Xと2次側コイル17Xとの間の寄生キャパシタC2Xの容量値より大きくすることにより、絶縁耐圧を向上することができる。たとえば、寄生キャパシタC53,C12の容量値の合計値を比較例のトランスにおける寄生キャパシタの容量値の2倍とすることにより、第1実施形態のトランス40における絶縁耐圧を、比較例のトランス40Xの絶縁耐圧の2倍とすることができる。 (1-4) In the transformer 40, a parasitic capacitor C53 is generated between the substrate 51 and the first die pad 21 (bonding material 26), and a parasitic capacitor C12 is generated between the substrate 51 and the inner coil 70. Therefore, the potential of the substrate 51 is a voltage obtained by dividing the common voltage of the first die pad 21 and the common voltage of the inner coil 70 by the capacitance values of the parasitic capacitors C53 and C12. By making the total value of the capacitance values of these parasitic capacitors C53 and C12 larger than the capacitance value of the parasitic capacitor C2X between the primary coil 16X and the secondary coil 17X in the transformer 40X of the comparative example described above, , dielectric strength can be improved. For example, by setting the total value of the capacitance values of the parasitic capacitors C53 and C12 to twice the capacitance value of the parasitic capacitors in the transformer of the comparative example, the dielectric strength voltage of the transformer 40 of the first embodiment can be increased from that of the transformer 40X of the comparative example. It can be twice the dielectric strength voltage.
 (1-5)外側コイル60と内側コイル70は、第1絶縁体52の厚さ方向において同じ位置であって、厚さ方向と直交する同一平面上に配置されている。外側コイル60と内側コイル70との間における絶縁耐圧は、外側コイル60と内側コイル70との間の第1最短距離D11,D12により決まる。第1最短距離D11,D12は、外側コイル60と内側コイル70との形状、つまり、トランス40のレイアウト設計により調整できる。つまり、トランス40の外側コイル60と内側コイル70との間の絶縁耐圧は、トランス40のレイアウト設計により調整できる。このため、容易にトランス40の絶縁耐圧を変更することができる。 (1-5) The outer coil 60 and the inner coil 70 are arranged at the same position in the thickness direction of the first insulator 52 and on the same plane perpendicular to the thickness direction. The dielectric strength between the outer coil 60 and the inner coil 70 is determined by the first shortest distances D11 and D12 between the outer coil 60 and the inner coil 70. The first shortest distances D11 and D12 can be adjusted by the shapes of the outer coil 60 and the inner coil 70, that is, the layout design of the transformer 40. That is, the dielectric strength between the outer coil 60 and the inner coil 70 of the transformer 40 can be adjusted by designing the layout of the transformer 40. Therefore, the dielectric strength voltage of the transformer 40 can be easily changed.
 (1-6)外側コイル60および内側コイル70の配線抵抗値は、外側コイル60と内側コイル70とにそれぞれ流れる電流量、磁気結合度に影響する。外側コイル60の配線抵抗値は、外側コイル60の配線幅を広くして、配線幅に対する配線厚さのアスペクト比を小さくすることにより得られる。同様に、内側コイル70の配線抵抗値は、内側コイル70の配線幅を広くして配線幅に対する配線厚さのアスペクト比を小さくすることにより得られる。 (1-6) The wiring resistance values of the outer coil 60 and the inner coil 70 affect the amount of current flowing through the outer coil 60 and the inner coil 70, respectively, and the degree of magnetic coupling. The wiring resistance value of the outer coil 60 is obtained by widening the wiring width of the outer coil 60 and decreasing the aspect ratio of the wiring thickness to the wiring width. Similarly, the wiring resistance value of the inner coil 70 can be obtained by widening the wiring width of the inner coil 70 and decreasing the aspect ratio of the wiring thickness to the wiring width.
 第1実施形態のトランス40において、外側コイル60と内側コイル70は、x方向およびy方向において対向する。したがって、配線幅を大きくしても、外側コイル60と内側コイル70の対向面積は変化しない。つまり、外側コイル60と内側コイル70との間の寄生キャパシタC11,C12の容量値は変化しない。つまり、比較例のトランス40Xと比べ、コイル間の寄生キャパシタC11,C12の容量値を増加させることなく、配線抵抗値を低減することができる。これにより、この結果、トランス40の外側コイル60と内側コイル70において電流が流れやすくなるため、トランス40において発生する磁束の量を増加させることができる。そして、トランス40において、外側コイル60と内側コイル70との間における磁気結合の効率の向上、ひいては伝達特性を向上することができる。 In the transformer 40 of the first embodiment, the outer coil 60 and the inner coil 70 face each other in the x direction and the y direction. Therefore, even if the wiring width is increased, the facing area of the outer coil 60 and the inner coil 70 does not change. That is, the capacitance values of the parasitic capacitors C11 and C12 between the outer coil 60 and the inner coil 70 do not change. That is, compared to the transformer 40X of the comparative example, the wiring resistance value can be reduced without increasing the capacitance value of the parasitic capacitors C11 and C12 between the coils. As a result, current flows more easily in the outer coil 60 and inner coil 70 of the transformer 40, so that the amount of magnetic flux generated in the transformer 40 can be increased. In the transformer 40, it is possible to improve the efficiency of magnetic coupling between the outer coil 60 and the inner coil 70, and thus to improve the transfer characteristics.
 (第1実施形態の変更例)
 上記第1実施形態は例えば以下のように変更できる。上記第1実施形態と以下の各変更例は、技術的な矛盾が生じない限り、互いに組み合せることができる。なお、以下の変更例において、上記第1実施形態と共通する部分については、上記第1実施形態と同一の符号を付してその説明を省略する。
(Example of modification of the first embodiment)
The first embodiment described above can be modified as follows, for example. The first embodiment and each of the following modified examples can be combined with each other as long as no technical contradiction occurs. In addition, in the following modified examples, the same parts as in the first embodiment are given the same reference numerals as in the first embodiment, and the explanation thereof will be omitted.
 ・図7に示される変更例のトランス40Aは、2つの第1絶縁層527,529に形成された外側コイル60を含む。第1絶縁層527,529の外側コイル60は、ビア65によって並列に接続されている。第1絶縁層527,529に形成した外側コイル60を並列に接続することで、外側コイル60の配線抵抗値を低減することができる。なお、外側コイル60を形成する第1絶縁層の数は、3つ以上とすることができる。 - The modified transformer 40A shown in FIG. 7 includes an outer coil 60 formed on two first insulating layers 527 and 529. The outer coils 60 of the first insulating layers 527 and 529 are connected in parallel by vias 65. By connecting the outer coils 60 formed on the first insulating layers 527 and 529 in parallel, the wiring resistance value of the outer coils 60 can be reduced. Note that the number of first insulating layers forming the outer coil 60 can be three or more.
 また、トランス40Aは、2つの第1絶縁層527,529に形成された2つの内側コイル70を含む。第1絶縁層527,529の内側コイル70は、ビア75によって並列に接続されている。第1絶縁層527,529に形成した内側コイル70を並列に接続することで、内側コイル70の配線抵抗値を低減することができる。なお、内側コイル70を形成する第1絶縁層の数は、3つ以上とすることができる。 Further, the transformer 40A includes two inner coils 70 formed on the two first insulating layers 527 and 529. The inner coils 70 of the first insulating layers 527 and 529 are connected in parallel by vias 75 . By connecting the inner coils 70 formed on the first insulating layers 527 and 529 in parallel, the wiring resistance value of the inner coils 70 can be reduced. Note that the number of first insulating layers forming the inner coil 70 can be three or more.
 ・図8、図9に示される変更例のトランス40Bは、外側コイル60と、外側コイル60に接続された外側コイル63とを含む。外側コイル63は、z方向から視て外側コイル60と重なるように配置されている。外側コイル63は、2つの第1絶縁層527,529にそれぞれ形成されたコイル部分631,632を含む。コイル部分631,632は、ビア65によって、外側コイル60と、配線部80との間に直列に接続されている。 - The modified transformer 40B shown in FIGS. 8 and 9 includes an outer coil 60 and an outer coil 63 connected to the outer coil 60. The outer coil 63 is arranged so as to overlap the outer coil 60 when viewed from the z direction. The outer coil 63 includes coil portions 631 and 632 formed in two first insulating layers 527 and 529, respectively. The coil portions 631 and 632 are connected in series between the outer coil 60 and the wiring portion 80 by vias 65 .
 この変更例のトランス40Bは、配線部80と外側コイル60との間に、外側コイル63が接続されている。したがって、外側コイル60の巻数を多くすることができる。これにより、外側コイル60によって生じる磁束量を多くすることができる。 In the transformer 40B of this modification, an outer coil 63 is connected between the wiring section 80 and the outer coil 60. Therefore, the number of turns of the outer coil 60 can be increased. Thereby, the amount of magnetic flux generated by the outer coil 60 can be increased.
 なお、2つの第1絶縁層527,529に形成された外側コイル63(631,632)は、並列に接続されてもよい。また、外側コイル60は、図7に示されるように、複数の第1絶縁層に形成され、並列に接続されてもよい。このように外側コイル60および外側コイル63を並列に接続することにより、巻数を多くするとともに配線抵抗値の増加を抑制することができる。 Note that the outer coils 63 (631, 632) formed on the two first insulating layers 527, 529 may be connected in parallel. Further, the outer coil 60 may be formed in a plurality of first insulating layers and connected in parallel, as shown in FIG. 7 . By connecting the outer coil 60 and the outer coil 63 in parallel in this manner, it is possible to increase the number of turns and suppress an increase in the wiring resistance value.
 図8に示される変更例のトランス40Bでは、第1絶縁層529に内側コイル70が配置されている。内側コイル70が配置される第1絶縁層は任意に変更することができる。
 ・図10に示される変更例のトランス40Cは、図8に示されるトランス40Bに対して、第1絶縁層529に配置されたコイル部分632が、外側コイル60、第1絶縁層527に配置されたコイル部分631と、z方向から視て重ならないように配置されている。このように外側コイル60とコイル部分631,632とを配置することにより、z方向における対向面積が少なくなり、寄生キャパシタの容量を低減することができる。
In the modified transformer 40B shown in FIG. 8, the inner coil 70 is disposed on the first insulating layer 529. The first insulating layer on which the inner coil 70 is placed can be arbitrarily changed.
- The modified transformer 40C shown in FIG. 10 differs from the transformer 40B shown in FIG. The coil portion 631 is arranged so as not to overlap with the coil portion 631 when viewed from the z direction. By arranging the outer coil 60 and the coil portions 631, 632 in this manner, the opposing area in the z direction is reduced, and the capacitance of the parasitic capacitor can be reduced.
 ・図11に示される変更例のトランス40Dにおいて、内側コイル70は、外側コイル60が配置された第1絶縁層527と異なる第1絶縁層525に配置されている。このように内側コイル70が配置されることにより、外側コイル60と内側コイル70との間の対向面積が少なくなり、寄生キャパシタの容量を低減することができる。なお、内側コイル70は、外側コイル60が配置された第1絶縁層527と異なる第1絶縁層に配置されていればよく、たとえば第1絶縁層526に配置されていてもよい。 - In the modified transformer 40D shown in FIG. 11, the inner coil 70 is arranged in a first insulating layer 525 different from the first insulating layer 527 in which the outer coil 60 is arranged. By arranging the inner coil 70 in this manner, the opposing area between the outer coil 60 and the inner coil 70 is reduced, and the capacitance of the parasitic capacitor can be reduced. Note that the inner coil 70 only needs to be arranged in a first insulating layer different from the first insulating layer 527 in which the outer coil 60 is arranged, and may be arranged in the first insulating layer 526, for example.
 ・上記第1実施形態は、トランス40により信号を伝達する信号伝達装置に具体化した。これに対して、トランス40により電力を伝達する伝達装置(電力伝達装置)として構成されてもよい。 - The first embodiment described above is embodied in a signal transmission device that transmits signals using the transformer 40. On the other hand, the transformer 40 may be configured as a transmission device (power transmission device) that transmits power.
 図12は、変更例の電力伝達装置300の構成の一例を示す回路図である。この電力伝達装置300は、制御回路301、発振器302、トランス15(40)、ダイオード303,304,305,306、平滑用キャパシタ307を含む。制御回路301、発振器302、トランス15(40)、ダイオード303~306,および平滑用キャパシタ307は、第1実施形態の信号伝達装置10と同様に、封止樹脂28により封止される。 FIG. 12 is a circuit diagram illustrating an example of the configuration of a modified power transmission device 300. This power transmission device 300 includes a control circuit 301, an oscillator 302, a transformer 15 (40), diodes 303, 304, 305, 306, and a smoothing capacitor 307. Control circuit 301, oscillator 302, transformer 15 (40), diodes 303 to 306, and smoothing capacitor 307 are sealed with sealing resin 28, similar to signal transmission device 10 of the first embodiment.
 制御回路301は、直流電源311が接続される。発振器302は、制御回路301により制御され、交流信号を出力する。この交流信号は、トランス40により伝達される。負荷312には、ダイオード303~306および平滑用キャパシタ307による直流電圧が供給される。つまり、この電力伝達装置300は、直流電源311の電圧を、負荷312の動作電圧に変換する直流電圧変換回路(DC-DCコンバータ)として働く。 A DC power supply 311 is connected to the control circuit 301. Oscillator 302 is controlled by control circuit 301 and outputs an AC signal. This AC signal is transmitted by transformer 40. A DC voltage is supplied to the load 312 by diodes 303 to 306 and a smoothing capacitor 307. That is, this power transmission device 300 works as a DC voltage conversion circuit (DC-DC converter) that converts the voltage of the DC power supply 311 into the operating voltage of the load 312.
 図13は、変更例の電力伝達装置の構成の一例を示す回路図である。この電力伝達装置320は、制御回路301、発振器302、2つのトランス40、ダイオード304,306、平滑用キャパシタ307を含む。2つのトランス40の2次側コイル17の間の中性点が2次側端子322Bに電気的に接続されている。2次側端子322A,322Bには負荷312が接続される。この電力伝達装置320は、直流電源311の電圧を、負荷312の動作電圧に変換する直流電圧変換回路(DC-DCコンバータ)として働く。 FIG. 13 is a circuit diagram showing an example of the configuration of a power transmission device according to a modification. This power transmission device 320 includes a control circuit 301, an oscillator 302, two transformers 40, diodes 304 and 306, and a smoothing capacitor 307. A neutral point between the secondary coils 17 of the two transformers 40 is electrically connected to the secondary terminal 322B. A load 312 is connected to the secondary terminals 322A and 322B. This power transmission device 320 works as a direct current voltage conversion circuit (DC-DC converter) that converts the voltage of the direct current power supply 311 into the operating voltage of the load 312.
 ・平面視における外側コイル60および内側コイル70の形状は、任意に変更することができる。
 たとえば、外側コイル60および内側コイル70は、四角形状に形成されてもよい。また、外側コイル60および内側コイル70は、角部が円弧状に丸められた四角形状に形成されてもよい。また、外側コイル60および内側コイル70は、楕円形状に形成されてもよい。
- The shapes of the outer coil 60 and the inner coil 70 in plan view can be arbitrarily changed.
For example, the outer coil 60 and the inner coil 70 may be formed into a rectangular shape. Furthermore, the outer coil 60 and the inner coil 70 may be formed into a rectangular shape with rounded corners. Moreover, the outer coil 60 and the inner coil 70 may be formed in an elliptical shape.
 ・図3に示すトランス40において、ワイヤW13Bが、外側コイル60に直接接続される構成とすることもできる。たとえば、外側コイル60の第1端60Aと内側コイル70(内側コイル70)との間の距離が、トランス40の絶縁耐圧に必要な距離以上とする。これにより、ワイヤW13Bを外側コイル60の第1端60Aに接続することができる。 - In the transformer 40 shown in FIG. 3, the wire W13B can also be configured to be directly connected to the outer coil 60. For example, the distance between the first end 60A of the outer coil 60 and the inner coil 70 (inner coil 70) is greater than or equal to the distance required for the dielectric strength of the transformer 40. Thereby, the wire W13B can be connected to the first end 60A of the outer coil 60.
 ・第1実施形態における第1最短距離D11,D21、第2最短距離D80、第2絶縁体53の厚さT53の関係は一例であり、適宜変更することができる。
 (第2実施形態)
 第2実施形態について、添付図面を参照して説明する。なお、第2実施形態について、第1実施形態と同様の構成部材については同じ符号を付す。
- The relationship among the first shortest distances D11 and D21, the second shortest distance D80, and the thickness T53 of the second insulator 53 in the first embodiment is an example, and can be changed as appropriate.
(Second embodiment)
A second embodiment will be described with reference to the accompanying drawings. In addition, regarding the second embodiment, the same reference numerals are given to the same constituent members as in the first embodiment.
 図14は、第2実施形態のトランスを含む信号伝達装置の構成を模式的に示す回路図である。図15は、図14の信号伝達装置を模式的に示す概略平面図である。第2実施形態は、トランス115を含む信号伝達装置110として構成されている。 FIG. 14 is a circuit diagram schematically showing the configuration of a signal transmission device including a transformer according to the second embodiment. FIG. 15 is a schematic plan view schematically showing the signal transmission device of FIG. 14. The second embodiment is configured as a signal transmission device 110 including a transformer 115.
 (信号伝達装置の回路構成)
 図14に示されるように、信号伝達装置110は、1次側端子11と2次側端子12との間を電気的に絶縁しつつ、パルス信号を伝達する装置である。信号伝達装置110は、たとえばデジタルアイソレータである。信号伝達装置110は、1次側端子11に電気的に接続された1次側回路13と、2次側端子12に電気的に接続された2次側回路14と、1次側回路13と2次側回路14とを電気的に絶縁するトランス115と、を含む。
(Circuit configuration of signal transmission device)
As shown in FIG. 14, the signal transmission device 110 is a device that transmits a pulse signal while electrically insulating between the primary terminal 11 and the secondary terminal 12. Signal transmission device 110 is, for example, a digital isolator. The signal transmission device 110 includes a primary circuit 13 electrically connected to the primary terminal 11, a secondary circuit 14 electrically connected to the secondary terminal 12, and the primary circuit 13. A transformer 115 that electrically isolates the secondary circuit 14 is included.
 1次側回路13は、第1電圧V1が印加されることによって動作するように構成された回路である。1次側回路13は、たとえば外部の制御装置(図示略)に電気的に接続されている。1次側回路13は、送信回路13Tを含む。2次側回路14は、第1電圧V1とは異なる第2電圧V2が印加されることによって動作するように構成された回路である。第2電圧V2は、たとえば第1電圧V1よりも高い。第1電圧V1および第2電圧V2は直流電圧である。2次側回路14は、たとえば制御装置の制御対象となる駆動回路に電気的に接続されている。駆動回路の一例は、スイッチング回路である。2次側回路14は、受信回路14Rを含む。1次側回路13のグランドと2次側回路14のグランドとのそれぞれが独立して設けられている。 The primary side circuit 13 is a circuit configured to operate when the first voltage V1 is applied. The primary circuit 13 is electrically connected to, for example, an external control device (not shown). The primary circuit 13 includes a transmitting circuit 13T. The secondary side circuit 14 is a circuit configured to operate when a second voltage V2 different from the first voltage V1 is applied. The second voltage V2 is higher than the first voltage V1, for example. The first voltage V1 and the second voltage V2 are DC voltages. The secondary circuit 14 is electrically connected to, for example, a drive circuit that is controlled by a control device. An example of a drive circuit is a switching circuit. The secondary circuit 14 includes a receiving circuit 14R. A ground for the primary circuit 13 and a ground for the secondary circuit 14 are provided independently.
 トランス115は、送信回路13Tと受信回路14Rとの間に接続されている。トランス115は、1次側コイル16と、2次側コイル17とを含む。第2実施形態において、2次側コイル17は、第1コイル17Aと第2コイル17Bとを含む。第1コイル17Aと第2コイル17Bは、互いに電気的に接続されている。これにより、2次側コイル17の第1コイル17Aおよび第2コイル17Bは、受信回路14Rに対して直列に接続されている。 The transformer 115 is connected between the transmitting circuit 13T and the receiving circuit 14R. Transformer 115 includes a primary coil 16 and a secondary coil 17. In the second embodiment, the secondary coil 17 includes a first coil 17A and a second coil 17B. The first coil 17A and the second coil 17B are electrically connected to each other. Thereby, the first coil 17A and the second coil 17B of the secondary coil 17 are connected in series to the receiving circuit 14R.
 1次側回路13の送信回路13Tには、たとえば制御装置からの制御信号が1次側端子11を通して入力される。制御信号は、1次側回路13の送信回路13Tからトランス115を経て、2次側回路14の受信回路14Rにより受信される。2次側回路14に伝達された信号は、2次側回路14から2次側端子12を通して駆動回路に出力される。 A control signal from, for example, a control device is input to the transmission circuit 13T of the primary side circuit 13 through the primary side terminal 11. The control signal is received by the receiving circuit 14R of the secondary circuit 14 from the transmitting circuit 13T of the primary circuit 13 via the transformer 115. The signal transmitted to the secondary circuit 14 is output from the secondary circuit 14 to the drive circuit through the secondary terminal 12.
 上述のとおり、信号伝達装置110は、トランス115によって1次側回路13と2次側回路14とが電気的に絶縁されている。より詳細には、トランス115によって1次側回路13と2次側回路14との間で直流電圧が伝達されることが規制されている一方、パルス信号の伝達は可能となっている。 As described above, in the signal transmission device 110, the primary side circuit 13 and the secondary side circuit 14 are electrically insulated by the transformer 115. More specifically, while the transformer 115 restricts the transmission of DC voltage between the primary circuit 13 and the secondary circuit 14, it allows the transmission of pulse signals.
 すなわち、1次側回路13と2次側回路14とが絶縁されている状態とは、1次側回路13と2次側回路14との間において、直流電圧の伝達が遮断されている状態を意味し、1次側回路13から2次側回路14へのパルス信号の伝達については許容している。このように、2次側回路14は、1次側回路13からの信号を受信するように構成されている。 In other words, the state where the primary side circuit 13 and the secondary side circuit 14 are insulated refers to the state where the transmission of DC voltage is cut off between the primary side circuit 13 and the secondary side circuit 14. This means that transmission of pulse signals from the primary circuit 13 to the secondary circuit 14 is permitted. In this way, the secondary circuit 14 is configured to receive the signal from the primary circuit 13.
 信号伝達装置110の絶縁耐圧は、たとえば2500Vrms以上7500Vrms以下である。第2実施形態の信号伝達装置110の絶縁耐圧は、5700Vrms程度である。ただし、信号伝達装置110の絶縁耐圧の具体的な数値はこれに限られず任意である。 The dielectric strength voltage of the signal transmission device 110 is, for example, 2500 Vrms or more and 7500 Vrms or less. The dielectric strength voltage of the signal transmission device 110 of the second embodiment is approximately 5700 Vrms. However, the specific value of the dielectric strength voltage of the signal transmission device 110 is not limited to this and is arbitrary.
 (信号伝達装置の構成)
 図15に示されるように、信号伝達装置110は、複数の半導体チップが1パッケージ化された半導体装置である。図示していないが、信号伝達装置110のパッケージ形式はたとえばSO系であり、第2実施形態ではSOPである。なお、信号伝達装置110のパッケージ形式は任意に変更可能である。
(Configuration of signal transmission device)
As shown in FIG. 15, the signal transmission device 110 is a semiconductor device in which a plurality of semiconductor chips are packaged into one. Although not shown, the package format of the signal transmission device 110 is, for example, SO type, and in the second embodiment is SOP. Note that the package format of the signal transmission device 110 can be changed arbitrarily.
 信号伝達装置110は、半導体チップとして第1チップ31、第2チップ32、およびトランス140を含む。第1チップ31は、図14に示す1次側回路13を含む。第2チップ32は、図14に示す2次側回路14を含む。トランス140は、図14に示すトランス115(1次側コイル16および2次側コイル17)を含む。 The signal transmission device 110 includes a first chip 31, a second chip 32, and a transformer 140 as semiconductor chips. The first chip 31 includes the primary side circuit 13 shown in FIG. The second chip 32 includes the secondary side circuit 14 shown in FIG. Transformer 140 includes transformer 115 (primary coil 16 and secondary coil 17) shown in FIG.
 信号伝達装置110は、第1ダイパッド21および第2ダイパッド22を含む。第1ダイパッド21および第2ダイパッド22の双方は、平板状に形成されている。第1ダイパッド21および第2ダイパッド22の双方は、導電性を有する材料によって形成されている。第2実施形態では、各ダイパッド21,22は、Cuを含む材料によって形成されている。なお、各ダイパッド21,22は、Al等の他の金属材料によって形成されていてもよい。また、各ダイパッド21,22を構成する材料は導電性を有する材料に限られない。たとえば、各ダイパッド21,22はアルミナ等のセラミックスによって形成されていてもよい。つまり、各ダイパッド21,22は、電気絶縁性を有する材料によって形成されていてもよい。 The signal transmission device 110 includes a first die pad 21 and a second die pad 22. Both the first die pad 21 and the second die pad 22 are formed into a flat plate shape. Both the first die pad 21 and the second die pad 22 are made of a conductive material. In the second embodiment, each die pad 21, 22 is formed of a material containing Cu. Note that each die pad 21, 22 may be formed of other metal materials such as Al. Moreover, the material constituting each die pad 21, 22 is not limited to a conductive material. For example, each die pad 21, 22 may be made of ceramic such as alumina. That is, each die pad 21, 22 may be formed of a material having electrical insulation properties.
 z方向から視て、第1ダイパッド21および第2ダイパッド22は、互いに離隔した状態で並んで配列されている。z方向から視て、第1ダイパッド21および第2ダイパッド22の配列方向をx方向とする。z方向から視て、x方向と直交する方向をy方向とする。なお、以降の説明において、平面視とは、z方向から視ることを意味する。 When viewed from the z direction, the first die pad 21 and the second die pad 22 are arranged side by side and spaced apart from each other. When viewed from the z direction, the arrangement direction of the first die pad 21 and the second die pad 22 is defined as the x direction. When viewed from the z direction, the direction orthogonal to the x direction is defined as the y direction. Note that in the following description, plan view means viewing from the z direction.
 第1チップ31およびトランス140は、第1ダイパッド21に搭載されている。第1チップ31およびトランス140は、接合材25,26によって第1ダイパッド21に接合されている。接合材25,26は、たとえば、はんだ、Agペースト等の導電性接合材である。なお、接合材25,26として、エポキシ樹脂等の絶縁性接合材が用いられてもよい。第1チップ31の接合材25と、トランス140の接合材26とが異なる種類の接合材が用いられてもよい。第2チップ32は、第2ダイパッド22に搭載されている。第2チップ32は、接合材27によって第2ダイパッド22に接合されている。接合材27は、たとえば、はんだ、Agペースト等の導電性接合材である。なお、接合材27として、エポキシ樹脂等の絶縁性接合材が用いられてもよい。 The first chip 31 and transformer 140 are mounted on the first die pad 21. The first chip 31 and the transformer 140 are bonded to the first die pad 21 by bonding materials 25 and 26. The bonding materials 25 and 26 are, for example, conductive bonding materials such as solder and Ag paste. Note that as the bonding materials 25 and 26, an insulating bonding material such as epoxy resin may be used. The bonding material 25 of the first chip 31 and the bonding material 26 of the transformer 140 may be different types of bonding materials. The second chip 32 is mounted on the second die pad 22. The second chip 32 is bonded to the second die pad 22 by a bonding material 27. The bonding material 27 is, for example, a conductive bonding material such as solder or Ag paste. Note that as the bonding material 27, an insulating bonding material such as epoxy resin may be used.
 信号伝達装置110は、複数の1次側リード23および複数の2次側リード24を含む。図15では、4個の1次側リード23A~23Dおよび2次側リード24A~24Dを示している。1次側リード23A,23Dは、第1ダイパッド21に接続されている。1次側リード23B,23Cは、1次側ワイヤW11A,W11Bにより第1チップ31に接続されている。1次側リード23B,23Cは、第1チップ31に対して動作電圧の供給、信号入力、等のために用いられる。1次側リード23Bまたは1次側リード23Cは、図14に示す1次側端子11として利用される。また、第1チップ31は、ワイヤW12により第1ダイパッド21に接続されている。1次側リード23の数、形状、接続状態、等は、適宜変更することができる。ワイヤW11A,W11B,W12は、ワイヤボンディング装置によって形成されたボンディングワイヤである。ワイヤW11A,W11B,W12は、たとえばAu,Al,Cu等の導体によって形成されている。 The signal transmission device 110 includes a plurality of primary leads 23 and a plurality of secondary leads 24. FIG. 15 shows four primary leads 23A to 23D and four secondary leads 24A to 24D. The primary leads 23A and 23D are connected to the first die pad 21. The primary leads 23B and 23C are connected to the first chip 31 by primary wires W11A and W11B. The primary leads 23B and 23C are used for supplying operating voltage to the first chip 31, inputting signals, and the like. The primary lead 23B or the primary lead 23C is used as the primary terminal 11 shown in FIG. Further, the first chip 31 is connected to the first die pad 21 by a wire W12. The number, shape, connection state, etc. of the primary leads 23 can be changed as appropriate. Wires W11A, W11B, and W12 are bonding wires formed by a wire bonding device. The wires W11A, W11B, and W12 are made of a conductor such as Au, Al, or Cu.
 2次側リード24A,24Dは、第2ダイパッド22に接続されている。2次側リード24B,24Cは、2次側ワイヤW17A,W17Bにより第2チップ32に接続されている。2次側リード24B,24Cは、第2チップ32に対して動作電圧の供給、信号出力、等のために用いられる。2次側リード24Bまたは2次側リード24Cは、図14に示す2次側端子12として利用される。また、第2チップ32は、ワイヤW16により第2ダイパッド22に接続されている。2次側リード24の数、形状、接続状態、等は、適宜変更することができる。ワイヤW16,W17A,W17Bは、ワイヤボンディング装置によって形成されたボンディングワイヤである。ワイヤW16,W17A,W17Bは、たとえばAu,Al,Cu等の導体によって形成されている。 The secondary leads 24A and 24D are connected to the second die pad 22. The secondary leads 24B and 24C are connected to the second chip 32 by secondary wires W17A and W17B. The secondary leads 24B and 24C are used for supplying operating voltage to the second chip 32, outputting signals, and the like. The secondary lead 24B or the secondary lead 24C is used as the secondary terminal 12 shown in FIG. 14. Further, the second chip 32 is connected to the second die pad 22 by a wire W16. The number, shape, connection state, etc. of the secondary leads 24 can be changed as appropriate. Wires W16, W17A, and W17B are bonding wires formed by a wire bonding device. The wires W16, W17A, and W17B are made of a conductor such as Au, Al, or Cu.
 第1チップ31は、ワイヤW13A,W13Bによりトランス140に接続されている。トランス140は、ワイヤW15A,W15Bにより第2チップ32に接続されている。トランス140には、接続部材としてのワイヤW14が接続されている。ワイヤW13A,W13B,W14,W15A,W15Bは、ワイヤボンディング装置によって形成されたボンディングワイヤである。ワイヤW13A,W13B,W14,W15A,W15Bは、たとえばAu,Al,Cu等の導体によって形成されている。 The first chip 31 is connected to the transformer 140 by wires W13A and W13B. The transformer 140 is connected to the second chip 32 by wires W15A and W15B. A wire W14 serving as a connecting member is connected to the transformer 140. Wires W13A, W13B, W14, W15A, and W15B are bonding wires formed by a wire bonding device. The wires W13A, W13B, W14, W15A, and W15B are made of a conductor such as Au, Al, or Cu.
 信号伝達装置110はさらに、封止樹脂28を含む。封止樹脂28は、各ダイパッド21,22、各チップ31,32、トランス140、各リード23,24の一部分を封止する。封止樹脂28は、電気絶縁性を有する材料によって形成されている。このような材料の一例として、黒色のエポキシ樹脂が用いられている。封止樹脂28は、z方向を厚さ方向とする矩形板状に形成されている。 The signal transmission device 110 further includes a sealing resin 28. The sealing resin 28 seals a portion of each die pad 21, 22, each chip 31, 32, a transformer 140, and each lead 23, 24. The sealing resin 28 is made of an electrically insulating material. A black epoxy resin is used as an example of such a material. The sealing resin 28 is formed into a rectangular plate shape with the thickness direction in the z direction.
 上述したように、第2実施形態では、トランス140は、第1ダイパッド21に実装されている。つまり、第1ダイパッド21には、トランス140および第1チップ31の双方が実装されている。トランス140および第1チップ31は、第1ダイパッド21においてx方向に互いに離隔して配列されている。このため、第1チップ31、トランス140、第2チップ32は、x方向において互いに離隔して配列されているといえる。第2実施形態では、第1チップ31、トランス140、第2チップ32は、この順番で配置されている。換言すると、トランス140は、x方向において第1チップ31と第2チップ32との間に配置されている。 As described above, in the second embodiment, the transformer 140 is mounted on the first die pad 21. That is, both the transformer 140 and the first chip 31 are mounted on the first die pad 21. The transformer 140 and the first chip 31 are spaced apart from each other in the x direction on the first die pad 21 . Therefore, it can be said that the first chip 31, the transformer 140, and the second chip 32 are arranged apart from each other in the x direction. In the second embodiment, the first chip 31, the transformer 140, and the second chip 32 are arranged in this order. In other words, the transformer 140 is arranged between the first chip 31 and the second chip 32 in the x direction.
 信号伝達装置110の絶縁耐圧を予め設定された絶縁耐圧とするため、第1ダイパッド21と第2ダイパッド22とを互いに離隔させる必要がある。第2実施形態では、平面視において、第1ダイパッド21と第2ダイパッド22とのx方向の間の距離は、第1チップ31とトランス140とのx方向の間の距離よりも大きい。このため、x方向において、第1チップ31とトランス140との間の距離は、トランス140と第2チップ32との間の距離よりも小さい。換言すると、トランス140は、第2チップ32よりも第1チップ31の近くに配置されている。 In order to set the dielectric strength voltage of the signal transmission device 110 to a preset dielectric strength voltage, it is necessary to separate the first die pad 21 and the second die pad 22 from each other. In the second embodiment, in plan view, the distance between the first die pad 21 and the second die pad 22 in the x direction is larger than the distance between the first chip 31 and the transformer 140 in the x direction. Therefore, the distance between the first chip 31 and the transformer 140 is smaller than the distance between the transformer 140 and the second chip 32 in the x direction. In other words, the transformer 140 is placed closer to the first chip 31 than the second chip 32.
 (トランスの概略構成)
 図16から図18を参照して、第2実施形態のトランス140の内部構造の一例について説明する。
(Schematic configuration of transformer)
An example of the internal structure of the transformer 140 of the second embodiment will be described with reference to FIGS. 16 to 18.
 図16は、トランス140の概略平面図である。図17は、図16のF17-F17線断面図であり、図18は、図16のF18-F18線断面図である。図16では、外側コイル60および内側コイル70を解りやすくするため、実線で示されている。 FIG. 16 is a schematic plan view of the transformer 140. 17 is a sectional view taken along the line F17-F17 in FIG. 16, and FIG. 18 is a sectional view taken along the line F18-F18 in FIG. In FIG. 16, the outer coil 60 and the inner coil 70 are shown in solid lines for easy understanding.
 図16に示されるように、トランス140は、外側コイル60と、内側コイル70とを含むトランスチップである。図14に示される1次側コイル16は、外側コイル60を含む。図14に示される2次側コイル17は、内側コイル70を含む。図14に示されるように、2次側コイル17は、第1コイル17Aと第2コイル17Bとを含む。内側コイル70は、第1コイル17Aとして機能する第1内側コイル71と、第2コイル17Bとして機能する第2内側コイル72と、を含む。 As shown in FIG. 16, the transformer 140 is a transformer chip that includes an outer coil 60 and an inner coil 70. The primary coil 16 shown in FIG. 14 includes an outer coil 60. The secondary coil 17 shown in FIG. 14 includes an inner coil 70. As shown in FIG. 14, the secondary coil 17 includes a first coil 17A and a second coil 17B. The inner coil 70 includes a first inner coil 71 that functions as the first coil 17A, and a second inner coil 72 that functions as the second coil 17B.
 図16~図18に示されるように、トランス140は、チップ主面141と、チップ主面141とは反対側を向くチップ裏面142とを含む。さらに、トランス140は、チップ主面141およびチップ裏面142の双方と直交する4つのチップ側面143,144,145,146を含む。チップ側面143,144は、トランス140のx方向の両端面を構成する。チップ側面145,146は、トランス140のy方向の両端面を構成する。 As shown in FIGS. 16 to 18, the transformer 140 includes a chip main surface 141 and a chip back surface 142 facing away from the chip main surface 141. Further, the transformer 140 includes four chip side surfaces 143, 144, 145, and 146 perpendicular to both the chip main surface 141 and the chip back surface 142. The chip side surfaces 143 and 144 constitute both end surfaces of the transformer 140 in the x direction. The chip side surfaces 145 and 146 constitute both end surfaces of the transformer 140 in the y direction.
 図17、図18に示されるように、トランス140は、基板51と、基板51の上に配置された第1絶縁体52と、基板51の下に配置された第2絶縁体53と、を含む。
 (基板)
 基板51は、z方向において互いに反対側を向く基板上面51Sおよび基板下面51Rを有している。基板51は、たとえば半導体基板、により構成されている。基板51は、第2実施形態ではSiを含む材料から形成された基板である。基板51に用いられるSi基板としては、単結晶の真性半導体材料から構成される半導体基板、アクセプタ型不純物を含むp型半導体基板、ドナー型不純物を含むn型半導体基板、等があげられる。
As shown in FIGS. 17 and 18, the transformer 140 includes a substrate 51, a first insulator 52 disposed on the substrate 51, and a second insulator 53 disposed below the substrate 51. include.
(substrate)
The substrate 51 has a substrate upper surface 51S and a substrate lower surface 51R facing oppositely to each other in the z direction. The substrate 51 is made of, for example, a semiconductor substrate. In the second embodiment, the substrate 51 is a substrate made of a material containing Si. Examples of the Si substrate used for the substrate 51 include a semiconductor substrate made of a single-crystal intrinsic semiconductor material, a p-type semiconductor substrate containing acceptor-type impurities, and an n-type semiconductor substrate containing donor-type impurities.
 なお、基板51は、半導体基板として、ワイドバンドギャップ半導体や化合物半導体が用いられてもよい。また、基板51は、半導体基板に代えて、ガラスを含む材料で形成された絶縁基板が用いられてもよい。ワイドバンドギャップ半導体は、2.0eV以上のバンドギャップを有する半導体基板である。ワイドバンドギャップ半導体は、SiC、GaN、Ga、等であってもよい。化合物半導体は、III-V族化合物半導体であってもよい。化合物半導体は、AlN、InN、GaN、およびGaAsのうち少なくとも1つを含んでいてもよい。 Note that the substrate 51 may be made of a wide bandgap semiconductor or a compound semiconductor as a semiconductor substrate. Furthermore, instead of the semiconductor substrate, the substrate 51 may be an insulating substrate made of a material containing glass. A wide band gap semiconductor is a semiconductor substrate having a band gap of 2.0 eV or more. The wide bandgap semiconductor may be SiC, GaN , Ga2O3 , etc. The compound semiconductor may be a III-V compound semiconductor. The compound semiconductor may include at least one of AlN, InN, GaN, and GaAs.
 (第1絶縁体)
 第1絶縁体52は、基板51の上に形成されている。第1絶縁体52は、基板51の基板上面51Sと接している。第1絶縁体52は、基板51と接する下面52Rと、下面52Rとは反対側の上面52Sとを含む。第1絶縁体52の上面52Sは、トランス140のチップ主面141を構成する。
(first insulator)
The first insulator 52 is formed on the substrate 51. The first insulator 52 is in contact with the top surface 51S of the substrate 51. The first insulator 52 includes a lower surface 52R in contact with the substrate 51 and an upper surface 52S on the opposite side of the lower surface 52R. The upper surface 52S of the first insulator 52 constitutes a chip main surface 141 of the transformer 140.
 第2実施形態の第1絶縁体52は、最上層の絶縁層52Uと、最上層の絶縁層52Uと基板51との間の絶縁層521~527を含む。絶縁層521~527,52Uは、基板51の基板上面51Sから、z方向に積層されている。したがって、z方向は、第1絶縁体52の厚さ方向であるともいえる。また、z方向は、第1絶縁体52に含まれる複数の絶縁層521~527,52Uの積層方向であるともいえる。 The first insulator 52 of the second embodiment includes an uppermost insulating layer 52U and insulating layers 521 to 527 between the uppermost insulating layer 52U and the substrate 51. The insulating layers 521 to 527, 52U are laminated in the z direction from the top surface 51S of the substrate 51. Therefore, it can be said that the z direction is the thickness direction of the first insulator 52. Further, the z direction can also be said to be the lamination direction of the plurality of insulating layers 521 to 527, 52U included in the first insulator 52.
 最下層の絶縁層521は、基板51の基板上面51Sと接する。最上層の絶縁層52Uの上面は、トランス140のチップ主面141を構成している。なお、以下の説明において、複数の絶縁層521~527,52Uのうちの最上層の絶縁層52Uを第2絶縁層52Uとし、第2絶縁層52Uを除く絶縁層521~527を第1絶縁層521~527として示す場合がある。 The lowermost insulating layer 521 is in contact with the upper substrate surface 51S of the substrate 51. The upper surface of the uppermost insulating layer 52U constitutes a chip main surface 141 of the transformer 140. In the following description, the uppermost insulating layer 52U of the plurality of insulating layers 521 to 527, 52U will be referred to as the second insulating layer 52U, and the insulating layers 521 to 527 excluding the second insulating layer 52U will be referred to as the first insulating layer. May be shown as 521-527.
 第1絶縁層521~527は、たとえば、Siを含む材料により形成されている。Siを含む材料としては、SiO、SiN、SiC、SiCN等を用いることができる。なお、第1絶縁層521~527の少なくとも1つは、材料が異なっていてもよい。また、第1絶縁層521~527の少なくとも1つは、複数の膜を積層して形成されていてもよい。第1絶縁層521~527は、SiN、SiC、SiCN等を含む材料により形成された薄膜と、SiOを含む材料により形成された層間絶縁膜とにより構成され得る。 The first insulating layers 521 to 527 are made of, for example, a material containing Si. As the material containing Si, SiO 2 , SiN, SiC, SiCN, etc. can be used. Note that at least one of the first insulating layers 521 to 527 may be made of a different material. Furthermore, at least one of the first insulating layers 521 to 527 may be formed by laminating a plurality of films. The first insulating layers 521 to 527 may be composed of a thin film made of a material containing SiN, SiC, SiCN, etc., and an interlayer insulating film made of a material containing SiO 2 .
 第2絶縁層52Uは、たとえば、電気絶縁性を有する樹脂を含む材料により形成されている。第2絶縁層52Uは、たとえば、窒化膜と、電気絶縁性を有する樹脂膜と、を含むパッシベーション膜で形成されている。窒化膜は、たとえば、Si、SiN、SiCN、等の材料を含む。樹脂膜は、たとえば、ポリイミドを含む。なお、第2絶縁層52Uは、第1絶縁層521~527と同様に、Siを含む材料により形成されていてもよい。 The second insulating layer 52U is made of, for example, a material containing resin having electrical insulation properties. The second insulating layer 52U is formed of, for example, a passivation film including a nitride film and a resin film having electrical insulation properties. The nitride film includes materials such as Si 3 N 4 , SiN, and SiCN, for example. The resin film contains, for example, polyimide. Note that the second insulating layer 52U may be formed of a material containing Si, similar to the first insulating layers 521 to 527.
 (第2絶縁体)
 第2絶縁体53は、基板51の下に形成されている。第2絶縁体53は、基板51の基板下面51Rと接している。第2絶縁体53は、基板51の基板下面51Rと接する上面53Sと、上面53Sとは反対側の下面53Rとを含む。第2絶縁体53の下面53Rは、トランス140のチップ裏面142を構成する。
(Second insulator)
The second insulator 53 is formed under the substrate 51. The second insulator 53 is in contact with the lower surface 51R of the substrate 51. The second insulator 53 includes an upper surface 53S in contact with the substrate lower surface 51R of the substrate 51, and a lower surface 53R on the opposite side to the upper surface 53S. The lower surface 53R of the second insulator 53 constitutes a chip back surface 142 of the transformer 140.
 第1実施形態の第2絶縁体53は、複数の絶縁層531~534を含む。複数の絶縁層531~534は、基板51の基板下面51Rから、z方向に積層されている。したがって、z方向は、第2絶縁体53の厚さ方向であるともいえる。また、z方向は、第2絶縁体53に含まれる複数の絶縁層531~534の積層方向であるともいえる。最上層の絶縁層531は、基板51の基板下面51Rと接する。最下層の絶縁層534の下面は、トランス140のチップ裏面142を構成している。 The second insulator 53 of the first embodiment includes a plurality of insulating layers 531 to 534. The plurality of insulating layers 531 to 534 are stacked in the z direction from the bottom surface 51R of the substrate 51. Therefore, it can be said that the z direction is the thickness direction of the second insulator 53. Further, the z direction can also be said to be the lamination direction of the plurality of insulating layers 531 to 534 included in the second insulator 53. The uppermost insulating layer 531 is in contact with the lower substrate surface 51R of the substrate 51. The lower surface of the lowermost insulating layer 534 constitutes a chip back surface 142 of the transformer 140.
 第2絶縁体53は、第1絶縁体52と同じ材料により形成することができる。第1実施形態において、第2絶縁体53の絶縁層531~534は、たとえば、Siを含む材料により形成されている。Siを含む材料としては、SiO、SiN、SiC、SiCN等を用いることができる。なお、絶縁層531~534の少なくとも1つは、材料が異なっていてもよい。また、絶縁層531~534の少なくとも1つは、複数の膜を積層して形成されていてもよい。絶縁層531~534は、SiN、SiC、SiCN等を含む材料により形成された薄膜と、SiOを含む材料により形成された層間絶縁膜とにより構成され得る。絶縁層531~534は、それぞれが区別されることなく、1つの絶縁層として形成されていてもよい。 The second insulator 53 can be formed of the same material as the first insulator 52. In the first embodiment, the insulating layers 531 to 534 of the second insulator 53 are made of, for example, a material containing Si. As the material containing Si, SiO 2 , SiN, SiC, SiCN, etc. can be used. Note that at least one of the insulating layers 531 to 534 may be made of a different material. Furthermore, at least one of the insulating layers 531 to 534 may be formed by stacking a plurality of films. The insulating layers 531 to 534 may be composed of a thin film formed of a material containing SiN, SiC, SiCN, etc., and an interlayer insulating film formed of a material containing SiO 2 . The insulating layers 531 to 534 may be formed as one insulating layer without being distinguished from each other.
 また、第2絶縁体53は、第1絶縁体52と異なる材料により形成することもできる。第2絶縁体53の絶縁層531~534は、たとえば、電気絶縁性を有する樹脂を含む材料により形成され得る。この材料は、たとえば、ポリイミドを含む材料を用いることができる。 Further, the second insulator 53 can also be formed of a different material from the first insulator 52. The insulating layers 531 to 534 of the second insulator 53 may be formed of, for example, a material containing electrically insulating resin. As this material, for example, a material containing polyimide can be used.
 (外側コイルおよび内側コイル)
 図16~図18に示されるように、トランス140は、外側コイル60および内側コイル70を含む。図17に示されるように、外側コイル60および内側コイル70は、第1絶縁体52に埋め込まれている。
(outer coil and inner coil)
As shown in FIGS. 16-18, transformer 140 includes an outer coil 60 and an inner coil 70. As shown in FIG. 17, outer coil 60 and inner coil 70 are embedded in first insulator 52.
 (外側コイル)
 図16に示されるように、外側コイル60は、第1外側コイル61および第2外側コイル62を含む。第1外側コイル61は、第1端61Aと、第1端61Aとは反対側の第2端61Bとを含む。第2外側コイル62は、第1端62Aと、第1端62Aとは反対側の第2端62Bとを含む。第1外側コイル61の第2端61Bと第2外側コイル62の第2端62Bは、互いに電気的に接続されている。
(outer coil)
As shown in FIG. 16, the outer coil 60 includes a first outer coil 61 and a second outer coil 62. The first outer coil 61 includes a first end 61A and a second end 61B opposite to the first end 61A. The second outer coil 62 includes a first end 62A and a second end 62B opposite to the first end 62A. The second end 61B of the first outer coil 61 and the second end 62B of the second outer coil 62 are electrically connected to each other.
 第1外側コイル61および第2外側コイル62はそれぞれ、平面視において、円形の渦巻状に形成されている。第1外側コイル61および第2外側コイル62は、第1外側コイル61および第2外側コイル62のうち一方の外側コイルの第1端から他方の外側コイルの第1端に電流が流れた場合に互いに逆向きの磁束が生じるように捲かれている。第2実施形態のトランス140において、第1外側コイル61と第2外側コイル62は、対称形状であり、点対称形状に形成されている。 The first outer coil 61 and the second outer coil 62 are each formed in a circular spiral shape in plan view. The first outer coil 61 and the second outer coil 62 are connected to each other when a current flows from a first end of one of the first outer coil 61 and second outer coil 62 to a first end of the other outer coil. They are wound so that magnetic fluxes are generated in opposite directions. In the transformer 140 of the second embodiment, the first outer coil 61 and the second outer coil 62 have a symmetrical shape, and are formed in a point symmetrical shape.
 渦巻状の第1外側コイル61において、第1端61Aは渦巻きの内側に配置され、第2端61Bは渦巻きの外側に配置されている。つまり、第1外側コイル61は、第1端61Aを内周側端部とし、第2端61Bを外周側端部とする螺旋状に捲き回されている。同様に、渦巻状の第2外側コイル62において、第1端62Aは渦巻きの内側に配置され、第2端62Bは渦巻きの外側に配置されている。つまり、第2外側コイル62は、第1端62Aを内周側端部とし、第2端62Bを外周側端部とする螺旋状に捲き回されている。そして、第1外側コイル61と第2外側コイル62は、それぞれの外周縁端部とする第2端61B,62Bが互いに電気的に接続されている。 In the spiral-shaped first outer coil 61, the first end 61A is arranged inside the spiral, and the second end 61B is arranged outside the spiral. That is, the first outer coil 61 is wound in a spiral shape with the first end 61A as the inner end and the second end 61B as the outer end. Similarly, in the spiral second outer coil 62, the first end 62A is located inside the spiral, and the second end 62B is located outside the spiral. In other words, the second outer coil 62 is wound in a spiral shape, with the first end 62A being the inner end and the second end 62B being the outer end. The first outer coil 61 and the second outer coil 62 are electrically connected to each other at second ends 61B and 62B, which are the respective outer peripheral edge portions.
 図17、図18に示されるように、外側コイル60の第1外側コイル61および第2外側コイル62の双方は、複数の第1絶縁層521~527のうちの最上層の第1絶縁層527に設けられている。つまり、外側コイル60(第1外側コイル61、第2外側コイル62)は、第1絶縁体52の上面52S寄りに配置されている。外側コイル60は、Ti、TiN、Au、Ag、Cu、Al、およびWのうち1つまたは複数が適宜選択されたものを含む材料により形成されている。第2実施形態の外側コイル60は、Alを含む材料によって形成されている。 As shown in FIGS. 17 and 18, both the first outer coil 61 and the second outer coil 62 of the outer coil 60 have a first insulating layer 527 which is the uppermost layer among the plurality of first insulating layers 521 to 527. It is set in. That is, the outer coil 60 (first outer coil 61, second outer coil 62) is arranged closer to the upper surface 52S of the first insulator 52. The outer coil 60 is formed of a material containing one or more appropriately selected from Ti, TiN, Au, Ag, Cu, Al, and W. The outer coil 60 of the second embodiment is made of a material containing Al.
 (内側コイル)
 内側コイル70は、第1内側コイル71および第2内側コイル72を含む。第1内側コイル71は、第1端71Aと、第1端71Aとは反対側の第2端71Bとを含む。第2内側コイル72は、第1端72Aと、第1端71Aとは反対側の第2端72Bとを含む。第1内側コイル71は、第1外側コイル61の内側に配置されている。第1内側コイル71は、平面視において、第1外側コイル61と重ならないように配置されている。第2内側コイル72は、第2外側コイル62の内側に配置されている。第2内側コイル72は、平面視において、第2外側コイル62と重ならないように配置されている。
(inner coil)
Inner coil 70 includes a first inner coil 71 and a second inner coil 72. The first inner coil 71 includes a first end 71A and a second end 71B opposite to the first end 71A. The second inner coil 72 includes a first end 72A and a second end 72B opposite to the first end 71A. The first inner coil 71 is arranged inside the first outer coil 61. The first inner coil 71 is arranged so as not to overlap the first outer coil 61 in plan view. The second inner coil 72 is arranged inside the second outer coil 62. The second inner coil 72 is arranged so as not to overlap the second outer coil 62 in plan view.
 第1内側コイル71および第2内側コイル72はそれぞれ、平面視において、円形の渦巻状に形成されている。第2実施形態のトランス140において、第1内側コイル71と第2内側コイル72は、対称形状であり、点対称形状に形成されている。 The first inner coil 71 and the second inner coil 72 are each formed in a circular spiral shape in plan view. In the transformer 140 of the second embodiment, the first inner coil 71 and the second inner coil 72 have a symmetrical shape, and are formed in a point symmetrical shape.
 渦巻状の第1内側コイル71において、第1端71Aは渦巻きの内側に配置され、第2端71Bは渦巻きの外側に配置されている。つまり、第1内側コイル71は、第1端71Aを内周側端部とし、第2端71Bを外周側端部とする螺旋状に捲き回されている。同様に、渦巻状の第2内側コイル72において、第1端72Aは渦巻きの内側に配置され、第2端72Bは渦巻きの外側に配置されている。つまり、第2内側コイル72は、第1端72Aを内周側端部とし、第2端72Bを外周側端部とする螺旋状に捲き回されている。なお、第1内側コイル71および第2内側コイル72は、第1端71A,72Aを外周側端部とし、第2端71B、72Bを内周側端部としてもよい。 In the spiral-shaped first inner coil 71, the first end 71A is arranged inside the spiral, and the second end 71B is arranged outside the spiral. That is, the first inner coil 71 is wound in a spiral shape with the first end 71A as the inner end and the second end 71B as the outer end. Similarly, in the spiral second inner coil 72, the first end 72A is located inside the spiral, and the second end 72B is located outside the spiral. In other words, the second inner coil 72 is wound in a spiral shape with the first end 72A as the inner end and the second end 72B as the outer end. Note that the first inner coil 71 and the second inner coil 72 may have first ends 71A, 72A as outer circumferential ends, and second ends 71B, 72B as inner circumferential ends.
 図17に示されるように、内側コイル70の第1内側コイル71および第2内側コイル72の双方は、複数の第1絶縁層521~527のうちの最上層の第1絶縁層527に設けられている。つまり、内側コイル70(第1内側コイル71、第2内側コイル72)は、第1絶縁体52の上面52S寄りに配置されている。第1内側コイル71および第2内側コイル72は、Ti、TiN、Au、Ag、Cu、Al、およびWのうち1つまたは複数が適宜選択されたものを含む材料により形成されている。第2実施形態の内側コイル70は、Alを含む材料によって形成されている。 As shown in FIG. 17, both the first inner coil 71 and the second inner coil 72 of the inner coil 70 are provided on the first insulating layer 527, which is the uppermost layer among the plurality of first insulating layers 521 to 527. ing. That is, the inner coil 70 (first inner coil 71, second inner coil 72) is arranged closer to the upper surface 52S of the first insulator 52. The first inner coil 71 and the second inner coil 72 are formed of a material containing one or more appropriately selected from Ti, TiN, Au, Ag, Cu, Al, and W. The inner coil 70 of the second embodiment is made of a material containing Al.
 (配線部)
 図16、図18に示されるように、トランス140は、第1配線部80および第2配線部90を含む。第1配線部80および第2配線部90は、外側コイル60に電気的に接続されている。第1配線部80は、外側コイル60の第1外側コイル61の第1端61Aに電気的に接続されている。第2配線部90は、外側コイル60の第2外側コイル62の第1端62Aに電気的に接続されている。
(Wiring section)
As shown in FIGS. 16 and 18, the transformer 140 includes a first wiring section 80 and a second wiring section 90. The first wiring section 80 and the second wiring section 90 are electrically connected to the outer coil 60. The first wiring portion 80 is electrically connected to the first end 61A of the first outer coil 61 of the outer coil 60. The second wiring section 90 is electrically connected to the first end 62A of the second outer coil 62 of the outer coil 60.
 図16、図18に示されるように、第1配線部80は、接続配線81、ビア82,83、端子部84を含む。第1配線部80は、Ti、TiN、Au、Ag、Cu、Al、およびWのうち1つまたは複数が適宜選択されたものを含む材料により形成されている。 As shown in FIGS. 16 and 18, the first wiring section 80 includes a connection wiring 81, vias 82 and 83, and a terminal section 84. The first wiring section 80 is formed of a material containing one or more appropriately selected from Ti, TiN, Au, Ag, Cu, Al, and W.
 端子部84は、チップ側面143の近くに配置されている。第2実施形態のトランス140において、端子部84は、平面視において、第1外側コイル61の第1端61Aとy方向の同じ位置に配置されている。なお、端子部84の配置位置は、任意に変更され得る。 The terminal portion 84 is arranged near the chip side surface 143. In the transformer 140 of the second embodiment, the terminal portion 84 is arranged at the same position in the y direction as the first end 61A of the first outer coil 61 in plan view. Note that the arrangement position of the terminal portion 84 may be changed arbitrarily.
 図18に示されるように、接続配線81は、第1外側コイル61より下に配置されている。第2実施形態において、接続配線81は、第1外側コイル61が設けられた第1絶縁層527より2つ下の第1絶縁層525に設けられている。接続配線81は、第1外側コイル61に接続された第1端81Aから、チップ側面143に向けて延びるように形成されている。接続配線81は、平面視において、第1外側コイル61の第1端61Aから端子部84まで延びている。接続配線81の第1端81Aは、ビア82により、第1外側コイル61の第1端61Aに電気的に接続されている。接続配線81の第2端81Bは、ビア83により端子部84に電気的に接続されている。 As shown in FIG. 18, the connection wiring 81 is arranged below the first outer coil 61. In the second embodiment, the connection wiring 81 is provided in the first insulating layer 525 two layers below the first insulating layer 527 on which the first outer coil 61 is provided. The connection wiring 81 is formed to extend from the first end 81A connected to the first outer coil 61 toward the chip side surface 143. The connection wiring 81 extends from the first end 61A of the first outer coil 61 to the terminal portion 84 in plan view. The first end 81A of the connection wiring 81 is electrically connected to the first end 61A of the first outer coil 61 via the via 82. The second end 81B of the connection wiring 81 is electrically connected to the terminal portion 84 via the via 83.
 図16に示されるように、第2配線部90は、接続配線91、ビア92,93、端子部94を含む。第2配線部90は、Ti、TiN、Au、Ag、Cu、Al、およびWのうち1つまたは複数が適宜選択されたものを含む材料により形成されている。第2配線部90の接続配線91、ビア92,93、および端子部94は、第1配線部80の接続配線81、ビア82,83、および端子部84と同様に配置されている。接続配線91の第1端91Aは、ビア92により第2外側コイル62の第1端62Aに電気的に接続され、接続配線91の第2端91Bは、ビア93により端子部94に電気的に接続されている。 As shown in FIG. 16, the second wiring section 90 includes a connection wiring 91, vias 92 and 93, and a terminal section 94. The second wiring section 90 is formed of a material containing one or more appropriately selected from Ti, TiN, Au, Ag, Cu, Al, and W. The connection wiring 91, vias 92, 93, and terminal portion 94 of the second wiring portion 90 are arranged in the same manner as the connection wiring 81, vias 82, 83, and terminal portion 84 of the first wiring portion 80. The first end 91A of the connection wiring 91 is electrically connected to the first end 62A of the second outer coil 62 through the via 92, and the second end 91B of the connection wiring 91 is electrically connected to the terminal portion 94 through the via 93. It is connected.
 (外側コイルおよび配線部に対するワイヤの接続)
 図16、図18に示されるように、第2絶縁層52Uは、第1配線部80および第2配線部90それぞれの一部を露出する開口52U1,52U2を含む。開口52U1,52U2は、第1配線部80および第2配線部90の端子部84,94を露出するように形成されている。開口52U1,52U2により露出される端子部84,94には、ワイヤW13A、W13Bが接続される。つまり、開口52U1,52U2により露出される端子部84,94は、ワイヤW13A,W13Bを接続する接続パッドであるといえる。図15に示されるように、ワイヤW13A,W13Bは、第1チップ31に接続される。したがって、開口52U1,52U2により露出される端子部84,94は、トランス140を第1チップ31に接続する接続パッドということもできる。
(Wire connection to outer coil and wiring section)
As shown in FIGS. 16 and 18, the second insulating layer 52U includes openings 52U1 and 52U2 that expose portions of the first wiring section 80 and the second wiring section 90, respectively. The openings 52U1 and 52U2 are formed to expose the terminal parts 84 and 94 of the first wiring part 80 and the second wiring part 90. Wires W13A and W13B are connected to the terminal portions 84 and 94 exposed through the openings 52U1 and 52U2. In other words, the terminal portions 84 and 94 exposed through the openings 52U1 and 52U2 can be said to be connection pads for connecting the wires W13A and W13B. As shown in FIG. 15, wires W13A and W13B are connected to the first chip 31. Therefore, the terminal portions 84 and 94 exposed through the openings 52U1 and 52U2 can also be called connection pads that connect the transformer 140 to the first chip 31.
 (内側コイルに対するワイヤの接続)
 図17に示されるように、第2絶縁層52Uは、内側コイル70の一部を露出する複数の開口52U3,52U4,52U5,52U6を含む。開口52U3は、第1内側コイル71の第1端71Aを露出するように形成されている。開口52U4は、第1内側コイル71の第2端71Bを露出するように形成されている。開口52U5は、第2内側コイル72の第1端72Aを露出するように形成されている。開口52U6は、第2内側コイル72の第2端72Bを露出するように形成されている。
(Wire connection to inner coil)
As shown in FIG. 17, the second insulating layer 52U includes a plurality of openings 52U3, 52U4, 52U5, and 52U6 that expose a portion of the inner coil 70. The opening 52U3 is formed to expose the first end 71A of the first inner coil 71. The opening 52U4 is formed to expose the second end 71B of the first inner coil 71. The opening 52U5 is formed to expose the first end 72A of the second inner coil 72. The opening 52U6 is formed to expose the second end 72B of the second inner coil 72.
 第2実施形態のトランス140において、開口52U4により露出される第1内側コイル71の第2端71Bには、ワイヤW15Aが接続される。開口52U3により露出される第1内側コイル71の第1端71Aには、ワイヤW14の第1端W14Aが接続され、ワイヤW14の第2端W14Bは、開口52U5により露出される第2内側コイル72の第1端72Aに接続される。開口52U6により露出される第2内側コイル72の第2端72Bには、ワイヤW15Bが接続される。つまり、開口52U3,52U5により露出される第1端71A,72A、および開口52U4,52U6により露出される第2端71B,72Bは、ワイヤW14,W15A,W15Bを接続する接続パッドであるといえる。 In the transformer 140 of the second embodiment, the wire W15A is connected to the second end 71B of the first inner coil 71 exposed through the opening 52U4. The first end W14A of the wire W14 is connected to the first end 71A of the first inner coil 71 exposed by the opening 52U3, and the second end W14B of the wire W14 is connected to the second inner coil 72 exposed by the opening 52U5. is connected to the first end 72A of. A wire W15B is connected to the second end 72B of the second inner coil 72 exposed through the opening 52U6. That is, it can be said that the first ends 71A, 72A exposed through the openings 52U3, 52U5 and the second ends 71B, 72B exposed through the openings 52U4, 52U6 are connection pads that connect the wires W14, W15A, W15B.
 外側コイル60と内側コイル70とは、互いに電気的に絶縁されており、かつ磁気結合可能に構成されている。第2実施形態のトランス140は、外側コイル60と内側コイル70とが、基板51の基板上面51Sと平行な平面に沿って磁気結合可能に構成されている。 The outer coil 60 and the inner coil 70 are electrically insulated from each other and configured to be magnetically coupled. The transformer 140 of the second embodiment is configured such that the outer coil 60 and the inner coil 70 can be magnetically coupled along a plane parallel to the top surface 51S of the substrate 51.
 内側コイル70の第1内側コイル71は、外側コイル60の第1外側コイル61の内側に配置されている。したがって、第1内側コイル71には、第1外側コイル61に流れる電流により生じる磁束の向きに応じた向きの電流が流れる。同様に内側コイル70の第2内側コイル72は、外側コイル60の第2外側コイル62の内側に配置されている。したがって、第2内側コイル72には、第2外側コイル62に流れる電流により生じる磁束の向きに応じた向きの電流が流れる。 The first inner coil 71 of the inner coil 70 is arranged inside the first outer coil 61 of the outer coil 60. Therefore, a current flows in the first inner coil 71 in a direction that corresponds to the direction of the magnetic flux generated by the current flowing in the first outer coil 61. Similarly, the second inner coil 72 of the inner coil 70 is arranged inside the second outer coil 62 of the outer coil 60. Therefore, a current flows in the second inner coil 72 in a direction that corresponds to the direction of the magnetic flux generated by the current flowing in the second outer coil 62.
 ワイヤW14は、第1内側コイル71と第2内側コイル72とを接続する。したがって、ワイヤW14は、第1内側コイル71に流れる電流と第2内側コイル72に流れる電流とを、ワイヤW15A,W15Bによって取り出すように接続される。一例では、ワイヤW14は、第1内側コイル71に生じる電流が、ワイヤW14を通して第2内側コイル72に流れる場合、その電流の向きと、第2内側コイル72に生じる電流の向きとが同じとなるように接続される。 The wire W14 connects the first inner coil 71 and the second inner coil 72. Therefore, the wire W14 is connected so that the current flowing through the first inner coil 71 and the current flowing through the second inner coil 72 are taken out by the wires W15A and W15B. In one example, when the current generated in the first inner coil 71 flows through the wire W14 to the second inner coil 72, the direction of the current is the same as the direction of the current generated in the second inner coil 72. connected like this.
 開口52U4により露出される第1内側コイル71の第2端71Bには、ワイヤW15Aが接続される。また、開口52U6により露出される第2内側コイル72の第2端72Bには、ワイヤW15Bが接続される。これらのワイヤW15A,W15Bは、図15に示すように、第2チップ32に接続される。したがって、開口52U4,52U6により露出される第2端71B,72Bは、トランス140を第2チップ32に接続する接続パッドということもできる。 A wire W15A is connected to the second end 71B of the first inner coil 71 exposed through the opening 52U4. Further, a wire W15B is connected to the second end 72B of the second inner coil 72 exposed through the opening 52U6. These wires W15A and W15B are connected to the second chip 32, as shown in FIG. Therefore, the second ends 71B and 72B exposed through the openings 52U4 and 52U6 can also be called connection pads that connect the transformer 140 to the second chip 32.
 図17に示されるように、外側コイル60は、第1外側コイル61と第2外側コイル62とを含む。第1外側コイル61と第2外側コイル62は、基板51の上に積層された第1絶縁層521~527のうちの同じ第1絶縁層527に形成されている。したがって、基板51から第1外側コイル61までの距離D61は、基板51から第2外側コイル62までの距離D62と等しい。 As shown in FIG. 17, the outer coil 60 includes a first outer coil 61 and a second outer coil 62. The first outer coil 61 and the second outer coil 62 are formed on the same first insulating layer 527 among the first insulating layers 521 to 527 stacked on the substrate 51. Therefore, the distance D61 from the substrate 51 to the first outer coil 61 is equal to the distance D62 from the substrate 51 to the second outer coil 62.
 内側コイル70は、第1内側コイル71と第2内側コイル72とを含む。第1内側コイル71と第2内側コイル72は、基板51の上に積層された第1絶縁層521~527のうちの同じ第1絶縁層527に形成されている。したがって、基板51から第1内側コイル71までの距離D71は、基板51から第2内側コイル72までの距離D72と等しい。 The inner coil 70 includes a first inner coil 71 and a second inner coil 72. The first inner coil 71 and the second inner coil 72 are formed on the same first insulating layer 527 among the first insulating layers 521 to 527 stacked on the substrate 51. Therefore, the distance D71 from the substrate 51 to the first inner coil 71 is equal to the distance D72 from the substrate 51 to the second inner coil 72.
 そして、第1内側コイル71および第2内側コイル72は、第1外側コイル61および第2外側コイル62とz方向において同じ位置に配置されている。したがって、基板51から第1内側コイル71および第2内側コイル72までの距離D71,D72は、基板51から第1外側コイル61および第2外側コイル62までの距離D61,D62と等しい。 The first inner coil 71 and the second inner coil 72 are arranged at the same position as the first outer coil 61 and the second outer coil 62 in the z direction. Therefore, the distances D71 and D72 from the substrate 51 to the first inner coil 71 and the second inner coil 72 are equal to the distances D61 and D62 from the substrate 51 to the first outer coil 61 and the second outer coil 62.
 外側コイル60に接続された第1配線部80および第2配線部90の接続配線81,91は、外側コイル60の下の第1絶縁層525に配置されている。したがって、基板51から接続配線81までの距離D80は、基板51から第1外側コイル61および第2外側コイル62までの距離D61,D62、基板51から第1内側コイル71および第2内側コイル72までの距離D71,D72よりも小さい。また、基板51から接続配線91までの距離D90は、距離D61,D62,D71,D72よりも小さい。距離D80は、z方向における第1外側コイル61および第1内側コイル71のうち基板51までの最短距離である。距離D90は、z方向における第2外側コイル62および第2内側コイル72のうち基板51までの最短距離である。 Connection wires 81 and 91 of the first wiring section 80 and the second wiring section 90 connected to the outer coil 60 are arranged on the first insulating layer 525 under the outer coil 60. Therefore, the distance D80 from the board 51 to the connection wiring 81 is the distance D61, D62 from the board 51 to the first outer coil 61 and the second outer coil 62, and the distance D62 is from the board 51 to the first inner coil 71 and the second inner coil 72. is smaller than the distances D71 and D72. Further, the distance D90 from the substrate 51 to the connection wiring 91 is smaller than the distances D61, D62, D71, and D72. The distance D80 is the shortest distance between the first outer coil 61 and the first inner coil 71 to the substrate 51 in the z direction. The distance D90 is the shortest distance between the second outer coil 62 and the second inner coil 72 to the substrate 51 in the z direction.
 第1外側コイル61と第1内側コイル71との間の距離D11,D12は、互いに等しい。距離D11,D12は、第1外側コイル61と第1内側コイル71との間の第1最短距離である。第2外側コイル62と第2内側コイル72との間の距離D21,D22は、互いに等しい。距離D21,D22は、第2外側コイル62と第2内側コイル72との間の第2最短距離である。そして、第1外側コイル61と第1内側コイル71との間の距離D11,D12と、第2外側コイル62と第2内側コイル72との間の距離D21,D22は、互いに等しい。 The distances D11 and D12 between the first outer coil 61 and the first inner coil 71 are equal to each other. The distances D11 and D12 are the first shortest distances between the first outer coil 61 and the first inner coil 71. The distances D21 and D22 between the second outer coil 62 and the second inner coil 72 are equal to each other. The distances D21 and D22 are the second shortest distances between the second outer coil 62 and the second inner coil 72. The distances D11 and D12 between the first outer coil 61 and the first inner coil 71 and the distances D21 and D22 between the second outer coil 62 and the second inner coil 72 are equal to each other.
 (作用)
 第2実施形態の信号伝達装置110におけるトランス140の作用を説明する。
 基板51からの各距離D11,D12,D21,D22,D80,D90は、トランス140の絶縁耐圧に影響する。なお、第2実施形態において、図14、図15に示されるように、外側コイル60(1次側コイル16)は、1次側回路13を含む第1チップ31に電気的に接続されている。第1チップ31およびトランス140の双方は、第1ダイパッド21に搭載されている。したがって、トランス140の基板51は、第1チップ31の1次側回路13のコモン電圧が同じである。
(effect)
The operation of the transformer 140 in the signal transmission device 110 of the second embodiment will be explained.
Each distance D11, D12, D21, D22, D80, and D90 from the substrate 51 affects the dielectric strength voltage of the transformer 140. In the second embodiment, as shown in FIGS. 14 and 15, the outer coil 60 (primary coil 16) is electrically connected to the first chip 31 including the primary circuit 13. . Both the first chip 31 and the transformer 140 are mounted on the first die pad 21. Therefore, the common voltage of the substrate 51 of the transformer 140 and the primary circuit 13 of the first chip 31 is the same.
 そして、トランス140の外側コイル60(第1外側コイル61および第2外側コイル62)は、第1チップ31に接続されている。したがって、外側コイル60(第1外側コイル61および第2外側コイル62)のコモン電圧は、第1チップ31の1次側回路13のコモン電圧と同じである。この場合、トランス140の絶縁耐圧は、外側コイル60と内側コイル70との間の最短距離(第1最短距離、第2最短距離)と、外側コイル60と基板51との間の最短厚さとにより決定される。最短距離は、外側コイル60と内側コイル70との形状、つまり、トランス140のレイアウト設計により調整できる。つまり、トランス140の絶縁耐圧は、トランス140のレイアウト設計により調整できる。このため、容易にトランス140の絶縁耐圧を変更することができる。 The outer coil 60 (first outer coil 61 and second outer coil 62) of the transformer 140 is connected to the first chip 31. Therefore, the common voltage of the outer coil 60 (the first outer coil 61 and the second outer coil 62) is the same as the common voltage of the primary circuit 13 of the first chip 31. In this case, the dielectric strength of the transformer 140 is determined by the shortest distance between the outer coil 60 and the inner coil 70 (first shortest distance, second shortest distance) and the shortest thickness between the outer coil 60 and the substrate 51. It is determined. The shortest distance can be adjusted by the shapes of the outer coil 60 and the inner coil 70, that is, the layout design of the transformer 140. That is, the dielectric strength of the transformer 140 can be adjusted by designing the layout of the transformer 140. Therefore, the dielectric strength of the transformer 140 can be easily changed.
 ここで、第2実施形態のトランス140に対する比較例として、図6に示す比較例のトランス40Xを用いて説明する。
 比較例のトランス40Xは、図15に示す第1ダイパッド21に搭載される。この場合、1次側コイル16Xは、2次側コイル17Xに対して基板51の近くに配置される。この比較例のトランス40Xでは、1次側コイル16Xと基板51との間に寄生キャパシタC1Xが生じる。この寄生キャパシタC1Xは、基板51と1次側コイル16Xとの間の距離D1Xと、1次側コイル16Xの対向面積に応じた容量値となる。また、比較例のトランス40Xは、1次側コイル16Xと2次側コイル17Xとの間に寄生キャパシタC2Xが生じる。この寄生キャパシタC2Xは、1次側コイル16Xと2次側コイル17Xとの間の距離D2Xと、1次側コイル16Xと2次側コイル17Xの対向面積に応じた容量値となる。
Here, as a comparative example for the transformer 140 of the second embodiment, a comparative example transformer 40X shown in FIG. 6 will be used.
The transformer 40X of the comparative example is mounted on the first die pad 21 shown in FIG. 15. In this case, the primary coil 16X is arranged closer to the substrate 51 than the secondary coil 17X. In the transformer 40X of this comparative example, a parasitic capacitor C1X is generated between the primary coil 16X and the substrate 51. This parasitic capacitor C1X has a capacitance value that corresponds to the distance D1X between the substrate 51 and the primary coil 16X and the opposing area of the primary coil 16X. Further, in the comparative example transformer 40X, a parasitic capacitor C2X is generated between the primary coil 16X and the secondary coil 17X. This parasitic capacitor C2X has a capacitance value that corresponds to the distance D2X between the primary coil 16X and the secondary coil 17X and the opposing area of the primary coil 16X and the secondary coil 17X.
 そして、1次側コイル16Xに電流が流れることにより、磁束M1Xが発生する。この磁束M1Xは、1次側コイル16Xの周辺に広がりやすい。このため、1次側コイル16Xと2次側コイル17Xの間において磁気結合させると、磁束M1Xは、基板51を厚さ方向に貫通するように生じる。その結果、基板51に渦電流I1Xが生じる。このような渦電流I1Xは、磁束M1Xに対する損失となる。このような損失は、磁気結合の効率に影響する。 Then, when a current flows through the primary coil 16X, a magnetic flux M1X is generated. This magnetic flux M1X tends to spread around the primary coil 16X. Therefore, when the primary coil 16X and the secondary coil 17X are magnetically coupled, the magnetic flux M1X is generated so as to penetrate the substrate 51 in the thickness direction. As a result, an eddy current I1X is generated in the substrate 51. Such an eddy current I1X causes a loss to the magnetic flux M1X. Such losses affect the efficiency of magnetic coupling.
 1次側コイル16Xと2次側コイル17Xとの間の磁気結合を向上する(磁束量を多くする)ために、1次側コイル16Xおよび2次側コイル17Xの配線抵抗値を低減することが考えられる。たとえば、1次側コイル16Xおよび2次側コイル17Xの配線幅を広くすることにより、配線抵抗値を低減することができる。しかしながら、配線幅を広くすると、基板51と1次側コイル16Xとの間の対向面積が大きくなり、寄生キャパシタC1Xの容量値が増加する。同様に、1次側コイル16Xと2次側コイル17Xとの間の対向面積が大きくなり、寄生キャパシタC2Xの容量値が増加する。1次側コイル16Xおよび2次側コイル17Xの配線厚さを大きくすることは、1次側コイル16Xと2次側コイル17Xを埋め込む第1絶縁体52の厚さ、つまり製造プロセスに影響するとともに、基板51と1次側コイル16X、1次側コイル16Xと2次側コイル17Xとの間の距離、つまりトランス140の絶縁耐圧に影響する。一定値以上の絶縁耐圧を得るためには、第1絶縁体52を厚くする、つまり第1絶縁体52を構成する絶縁層の層数を増やす必要があり、トランス140の製造プロセスに影響する。 In order to improve the magnetic coupling between the primary coil 16X and the secondary coil 17X (increase the amount of magnetic flux), it is possible to reduce the wiring resistance values of the primary coil 16X and the secondary coil 17X. Conceivable. For example, the wiring resistance value can be reduced by widening the wiring width of the primary coil 16X and the secondary coil 17X. However, when the wiring width is increased, the opposing area between the substrate 51 and the primary coil 16X increases, and the capacitance value of the parasitic capacitor C1X increases. Similarly, the opposing area between the primary coil 16X and the secondary coil 17X increases, and the capacitance value of the parasitic capacitor C2X increases. Increasing the wiring thickness of the primary coil 16X and the secondary coil 17X affects the thickness of the first insulator 52 in which the primary coil 16X and the secondary coil 17X are embedded, that is, the manufacturing process. , the distance between the substrate 51 and the primary coil 16X, and the distance between the primary coil 16X and the secondary coil 17X, that is, the dielectric strength of the transformer 140. In order to obtain a dielectric strength voltage higher than a certain value, it is necessary to thicken the first insulator 52, that is, increase the number of insulating layers constituting the first insulator 52, which affects the manufacturing process of the transformer 140.
 図16、図19に示されるように、第2実施形態のトランス140は、外側コイル60を含み、外側コイル60は、第1外側コイル61および第2外側コイル62の双方を含む。第1外側コイル61と第2外側コイル62は、それぞれの第2端61B,62Bが互いに電気的に接続されている。第1外側コイル61および第2外側コイル62は、第1外側コイル61の第1端61Aから第2外側コイル62の第1端62Aに向けて電流が流れた場合に互いに逆向きの磁束が生じるように捲かれている。たとえば、図19に示されるように、第1外側コイル61では、上向きの磁束が生じ、第2外側コイル62では、下向きの磁束が生じる。これにより、外側コイル60によって生じる磁束M1は、比較例のトランス40Xと比べて、小さいループとなる。このため、内側コイル70を交差する磁束は、比較例のトランス40Xと比べて多くなる。したがって、外側コイル60と内側コイル70との間の磁気結合の効率を向上することができる。この結果、トランス140の外側コイル60と内側コイル70との間における伝達特性を向上することができる。 As shown in FIGS. 16 and 19, the transformer 140 of the second embodiment includes an outer coil 60, and the outer coil 60 includes both a first outer coil 61 and a second outer coil 62. The first outer coil 61 and the second outer coil 62 have second ends 61B and 62B electrically connected to each other. The first outer coil 61 and the second outer coil 62 generate magnetic fluxes in opposite directions when current flows from the first end 61A of the first outer coil 61 to the first end 62A of the second outer coil 62. It is rolled up like this. For example, as shown in FIG. 19, an upward magnetic flux is generated in the first outer coil 61, and a downward magnetic flux is generated in the second outer coil 62. Thereby, the magnetic flux M1 generated by the outer coil 60 becomes a smaller loop than that of the comparative example transformer 40X. Therefore, the magnetic flux crossing the inner coil 70 is larger than that of the comparative example transformer 40X. Therefore, the efficiency of magnetic coupling between the outer coil 60 and the inner coil 70 can be improved. As a result, the transfer characteristics between the outer coil 60 and the inner coil 70 of the transformer 140 can be improved.
 図19に示されるように、外側コイル60によって生じる磁束M1は、比較例のトランス40Xと比べて、小さいループとなる。このように生じる磁束は、基板51の基板上面51Sに沿って基板51を通過する。したがって、比較例のトランス40Xと比べ、基板51において渦電流が生じ難い。このため、第2実施形態のトランス140では、磁束M1に対する損失を低減することができる。そして、トランス140における磁気結合の効率に対する影響を低減することができる。この結果、トランス140の外側コイル60と内側コイル70との間における伝達特性を向上することができる。 As shown in FIG. 19, the magnetic flux M1 generated by the outer coil 60 forms a smaller loop than the transformer 40X of the comparative example. The magnetic flux generated in this manner passes through the substrate 51 along the substrate upper surface 51S of the substrate 51. Therefore, compared to the transformer 40X of the comparative example, eddy currents are less likely to occur in the substrate 51. Therefore, in the transformer 140 of the second embodiment, loss with respect to the magnetic flux M1 can be reduced. In addition, the influence on the efficiency of magnetic coupling in the transformer 140 can be reduced. As a result, the transfer characteristics between the outer coil 60 and the inner coil 70 of the transformer 140 can be improved.
 外側コイル60および内側コイル70の配線抵抗値は、外側コイル60と内側コイル70とにそれぞれ流れる電流量、磁気結合度に影響する。外側コイル60の配線抵抗値は、外側コイル60の配線幅を広くして、配線幅に対する配線厚さのアスペクト比を小さくすることにより得られる。同様に、内側コイル70の配線抵抗値は、内側コイル70の配線幅を広くして配線幅に対する配線厚さのアスペクト比を小さくすることにより得られる。 The wiring resistance values of the outer coil 60 and the inner coil 70 affect the amount of current flowing through the outer coil 60 and the inner coil 70, respectively, and the degree of magnetic coupling. The wiring resistance value of the outer coil 60 is obtained by widening the wiring width of the outer coil 60 and decreasing the aspect ratio of the wiring thickness to the wiring width. Similarly, the wiring resistance value of the inner coil 70 can be obtained by widening the wiring width of the inner coil 70 and decreasing the aspect ratio of the wiring thickness to the wiring width.
 外側コイル60と内側コイル70は、x方向およびy方向において対向する。したがって、配線幅を大きくしても、外側コイル60と内側コイル70の対向面積は変化しない。つまり、外側コイル60と内側コイル70との間の寄生キャパシタC11,C12,C21,C22の容量値は変化しない。つまり、比較例のトランス40Xと比べ、コイル間の寄生キャパシタC11,C12,C21,C22の容量値を増加させることなく、配線抵抗値を低減することができる。これにより、この結果、トランス140の外側コイル60と内側コイル70において電流が流れやすくなるため、トランス140において発生する磁束の量を増加させることができる。そして、トランス140において、外側コイル60と内側コイル70との間における磁気結合の効率の向上、ひいては伝達特性を向上することができる。 The outer coil 60 and the inner coil 70 face each other in the x direction and the y direction. Therefore, even if the wiring width is increased, the facing area of the outer coil 60 and the inner coil 70 does not change. That is, the capacitance values of the parasitic capacitors C11, C12, C21, and C22 between the outer coil 60 and the inner coil 70 do not change. That is, compared to the transformer 40X of the comparative example, the wiring resistance value can be reduced without increasing the capacitance values of the parasitic capacitors C11, C12, C21, and C22 between the coils. As a result, current flows more easily in the outer coil 60 and inner coil 70 of the transformer 140, so that the amount of magnetic flux generated in the transformer 140 can be increased. In the transformer 140, it is possible to improve the efficiency of magnetic coupling between the outer coil 60 and the inner coil 70, and thus to improve the transfer characteristics.
 基板51と外側コイル60との間の寄生キャパシタC60の容量値は、配線幅を一定とすれば、基板51から外側コイル60までの距離に依存する。距離を大きくすると、容量値は低減する。比較例のトランス40Xと同じ厚さの第1絶縁体52とした場合、第2実施形態のトランス140では、基板51から外側コイル60までの距離D61,D62、基板51から内側コイル70までの距離D71,D72は、比較例のトランス40Xよりも大きくなる。したがって、寄生キャパシタC60,C70の容量値を低減することができる。寄生キャパシタC60,C70の容量値を比較例のトランス40Xと同じとすると、第1絶縁体52を薄くすることができる、つまりトランス140を薄くすることができる。 The capacitance value of the parasitic capacitor C60 between the substrate 51 and the outer coil 60 depends on the distance from the substrate 51 to the outer coil 60, assuming that the wiring width is constant. As the distance increases, the capacitance value decreases. When the first insulator 52 has the same thickness as the transformer 40X of the comparative example, in the transformer 140 of the second embodiment, the distances D61 and D62 from the substrate 51 to the outer coil 60, and the distance from the substrate 51 to the inner coil 70. D71 and D72 are larger than the transformer 40X of the comparative example. Therefore, the capacitance values of parasitic capacitors C60 and C70 can be reduced. If the capacitance values of the parasitic capacitors C60 and C70 are the same as that of the transformer 40X of the comparative example, the first insulator 52 can be made thinner, that is, the transformer 140 can be made thinner.
 (効果)
 以上記述したように、第2実施形態のトランス140によれば、以下の効果を奏する。
 (2-1)第1実施形態のトランス40における効果(1-1)~(1-4)と同様の効果を奏する。
(effect)
As described above, the transformer 140 of the second embodiment provides the following effects.
(2-1) Effects similar to effects (1-1) to (1-4) in the transformer 40 of the first embodiment are achieved.
 (2-2)第2実施形態のトランス140は、外側コイル60を含み、外側コイル60は、第1外側コイル61および第2外側コイル62の双方を含む。第1外側コイル61と第2外側コイル62は、それぞれの第2端61B,62Bが互いに電気的に接続されている。第1外側コイル61および第2外側コイル62は、第1外側コイル61の第1端61Aから第2外側コイル62の第1端62Aに向けて電流が流れた場合に互いに逆向きの磁束が生じるように捲かれている。これにより、外側コイル60によって生じる磁束M1は、比較例のトランス40Xと比べて、小さいループとなる。このため、内側コイル70を交差する磁束は、比較例のトランス40Xと比べて多くなる。したがって、外側コイル60と内側コイル70との間の磁気結合の効率を向上することができる。この結果、トランス140の外側コイル60と内側コイル70との間における伝達特性を向上することができる。 (2-2) The transformer 140 of the second embodiment includes an outer coil 60, and the outer coil 60 includes both a first outer coil 61 and a second outer coil 62. The first outer coil 61 and the second outer coil 62 have second ends 61B and 62B electrically connected to each other. The first outer coil 61 and the second outer coil 62 generate magnetic fluxes in opposite directions when current flows from the first end 61A of the first outer coil 61 to the first end 62A of the second outer coil 62. It is rolled up like this. Thereby, the magnetic flux M1 generated by the outer coil 60 becomes a smaller loop than that of the comparative example transformer 40X. Therefore, the magnetic flux crossing the inner coil 70 is larger than that of the comparative example transformer 40X. Therefore, the efficiency of magnetic coupling between the outer coil 60 and the inner coil 70 can be improved. As a result, the transfer characteristics between the outer coil 60 and the inner coil 70 of the transformer 140 can be improved.
 (2-3)外側コイル60によって生じる磁束M1は、比較例のトランス40Xと比べて、小さいループとなる。このように生じる磁束は、基板51の基板上面51Sに沿って基板51を通過する。したがって、比較例のトランス40Xと比べ、基板51において渦電流が生じ難い。このため、第2実施形態のトランス140では、磁束M1に対する損失を低減することができる。そして、トランス140における磁気結合の効率に対する影響を低減することができる。この結果、トランス140の外側コイル60と内側コイル70との間における伝達特性を向上することができる。 (2-3) The magnetic flux M1 generated by the outer coil 60 forms a smaller loop than the transformer 40X of the comparative example. The magnetic flux generated in this manner passes through the substrate 51 along the substrate upper surface 51S of the substrate 51. Therefore, compared to the transformer 40X of the comparative example, eddy currents are less likely to occur in the substrate 51. Therefore, in the transformer 140 of the second embodiment, loss with respect to the magnetic flux M1 can be reduced. In addition, the influence on the efficiency of magnetic coupling in the transformer 140 can be reduced. As a result, the transfer characteristics between the outer coil 60 and the inner coil 70 of the transformer 140 can be improved.
 (2-4)外側コイル60および内側コイル70の配線抵抗値は、外側コイル60と内側コイル70とにそれぞれ流れる電流量、磁気結合度に影響する。外側コイル60の配線抵抗値は、外側コイル60の配線幅を広くして、配線幅に対する配線厚さのアスペクト比を小さくすることにより得られる。同様に、内側コイル70の配線抵抗値は、内側コイル70の配線幅を広くして配線幅に対する配線厚さのアスペクト比を小さくすることにより得られる。 (2-4) The wiring resistance values of the outer coil 60 and the inner coil 70 affect the amount of current flowing through the outer coil 60 and the inner coil 70, respectively, and the degree of magnetic coupling. The wiring resistance value of the outer coil 60 is obtained by widening the wiring width of the outer coil 60 and decreasing the aspect ratio of the wiring thickness to the wiring width. Similarly, the wiring resistance value of the inner coil 70 can be obtained by widening the wiring width of the inner coil 70 and decreasing the aspect ratio of the wiring thickness to the wiring width.
 (2-5)外側コイル60と内側コイル70は、x方向およびy方向において対向する。したがって、配線幅を大きくしても、外側コイル60と内側コイル70の対向面積は変化しない。つまり、外側コイル60と内側コイル70との間の寄生キャパシタC11,C12,C21,C22の容量値は変化しない。つまり、比較例のトランス40Xと比べ、コイル間の寄生キャパシタC11,C12,C21,C22の容量値を増加させることなく、配線抵抗値を低減することができる。これにより、この結果、トランス140の外側コイル60と内側コイル70において電流が流れやすくなるため、トランス140において発生する磁束の量を増加させることができる。そして、トランス140において、外側コイル60と内側コイル70との間における磁気結合の効率の向上、ひいては伝達特性を向上することができる。 (2-5) The outer coil 60 and the inner coil 70 face each other in the x direction and the y direction. Therefore, even if the wiring width is increased, the facing area of the outer coil 60 and the inner coil 70 does not change. That is, the capacitance values of the parasitic capacitors C11, C12, C21, and C22 between the outer coil 60 and the inner coil 70 do not change. That is, compared to the transformer 40X of the comparative example, the wiring resistance value can be reduced without increasing the capacitance values of the parasitic capacitors C11, C12, C21, and C22 between the coils. As a result, current flows more easily in the outer coil 60 and inner coil 70 of the transformer 140, so that the amount of magnetic flux generated in the transformer 140 can be increased. In the transformer 140, it is possible to improve the efficiency of magnetic coupling between the outer coil 60 and the inner coil 70, and thus to improve the transfer characteristics.
 (2-6)基板51と外側コイル60との間の寄生キャパシタC60の容量値は、配線幅を一定とすれば、基板51から外側コイル60までの距離に依存する。距離を大きくすると、容量値は低減する。比較例のトランス40Xと同じ厚さの第1絶縁体52とした場合、第2実施形態のトランス140では、基板51から外側コイル60までの距離D61,D62、基板51から内側コイル70までの距離D71,D72は、比較例のトランス40Xよりも大きくなる。したがって、寄生キャパシタC60,C70の容量値を低減することができる。寄生キャパシタC60,C70の容量値を比較例のトランス40Xと同じとすると、第1絶縁体52を薄くすることができる、つまりトランス140を薄くすることができる。 (2-6) The capacitance value of the parasitic capacitor C60 between the substrate 51 and the outer coil 60 depends on the distance from the substrate 51 to the outer coil 60, assuming that the wiring width is constant. As the distance increases, the capacitance value decreases. When the first insulator 52 has the same thickness as the transformer 40X of the comparative example, in the transformer 140 of the second embodiment, the distances D61 and D62 from the substrate 51 to the outer coil 60, and the distance from the substrate 51 to the inner coil 70. D71 and D72 are larger than the transformer 40X of the comparative example. Therefore, the capacitance values of parasitic capacitors C60 and C70 can be reduced. If the capacitance values of the parasitic capacitors C60 and C70 are the same as that of the transformer 40X of the comparative example, the first insulator 52 can be made thinner, that is, the transformer 140 can be made thinner.
 (2-7)基板51からの各距離D11,D12,D21,D22,D80,D90は、トランス140の絶縁耐圧に影響する。なお、第2実施形態において、図14、図15に示されるように、外側コイル60(1次側コイル16)は、1次側回路13を含む第1チップ31に電気的に接続されている。第1チップ31およびトランス140の双方は、第1ダイパッド21に搭載されている。したがって、トランス140の基板51は、第1チップ31の1次側回路13のコモン電圧が同じである。 (2-7) Each distance D11, D12, D21, D22, D80, and D90 from the substrate 51 affects the dielectric strength voltage of the transformer 140. In the second embodiment, as shown in FIGS. 14 and 15, the outer coil 60 (primary coil 16) is electrically connected to the first chip 31 including the primary circuit 13. . Both the first chip 31 and the transformer 140 are mounted on the first die pad 21. Therefore, the common voltage of the substrate 51 of the transformer 140 and the primary circuit 13 of the first chip 31 is the same.
 そして、トランス140の外側コイル60(第1外側コイル61および第2外側コイル62)は、第1チップ31に接続されている。したがって、外側コイル60(第1外側コイル61および第2外側コイル62)のコモン電圧は、第1チップ31の1次側回路13のコモン電圧と同じである。この場合、トランス140の絶縁耐圧は、外側コイル60と内側コイル70との間の最短距離(第1最短距離、第2最短距離)と、外側コイル60と基板51との間の最短厚さとにより決定される。最短距離は、外側コイル60と内側コイル70との形状、つまり、トランス140のレイアウト設計により調整できる。つまり、トランス140の絶縁耐圧は、トランス140のレイアウト設計により調整できる。このため、容易にトランス140の絶縁耐圧を変更することができる。 The outer coil 60 (first outer coil 61 and second outer coil 62) of the transformer 140 is connected to the first chip 31. Therefore, the common voltage of the outer coil 60 (the first outer coil 61 and the second outer coil 62) is the same as the common voltage of the primary circuit 13 of the first chip 31. In this case, the dielectric strength of the transformer 140 is determined by the shortest distance between the outer coil 60 and the inner coil 70 (first shortest distance, second shortest distance) and the shortest thickness between the outer coil 60 and the substrate 51. It is determined. The shortest distance can be adjusted by the shapes of the outer coil 60 and the inner coil 70, that is, the layout design of the transformer 140. That is, the dielectric strength of the transformer 140 can be adjusted by designing the layout of the transformer 140. Therefore, the dielectric strength of the transformer 140 can be easily changed.
 (2-8)第2実施形態のトランス140を含む信号伝達装置110では、1次側回路13(送信回路13T)の信号を2次側回路14(受信回路14R)に対して効率良く伝達することができる。 (2-8) In the signal transmission device 110 including the transformer 140 of the second embodiment, the signal of the primary side circuit 13 (transmission circuit 13T) is efficiently transmitted to the secondary side circuit 14 (reception circuit 14R). be able to.
 (第2実施形態の変更例)
 上記第2実施形態は例えば以下のように変更できる。上記第2実施形態と以下の各変更例は、技術的な矛盾が生じない限り、互いに組み合せることができる。なお、以下の変更例において、上記第2実施形態と共通する部分については、上記第2実施形態と同一の符号を付してその説明を省略する。
(Example of modification of second embodiment)
The second embodiment described above can be modified as follows, for example. The second embodiment and each of the following modified examples can be combined with each other as long as no technical contradiction occurs. In addition, in the following modified example, the same parts as in the second embodiment are given the same reference numerals as in the second embodiment, and the explanation thereof will be omitted.
 ・図20に示される変更例のトランス140Aにおいて、外側コイル60は、2つの第1絶縁層527,529に形成された第1外側コイル61および第2外側コイル62を含む。第1絶縁層527,529の第1外側コイル61は、ビア65によって並列に接続されている。第1絶縁層527,529の第2外側コイル62は、ビア66によって並列に接続されている。なお、第1外側コイル61および第2外側コイル62を形成する第1絶縁層の数は、3つ以上とすることができる。第1絶縁層527,529に形成した第1外側コイル61および第2外側コイル62を並列に接続することで、外側コイル60の配線抵抗値を低減することができる。 - In the modified transformer 140A shown in FIG. 20, the outer coil 60 includes a first outer coil 61 and a second outer coil 62 formed on two first insulating layers 527 and 529. The first outer coils 61 of the first insulating layers 527 and 529 are connected in parallel by vias 65 . The second outer coils 62 of the first insulating layers 527 and 529 are connected in parallel by vias 66 . Note that the number of first insulating layers forming the first outer coil 61 and the second outer coil 62 can be three or more. By connecting the first outer coil 61 and the second outer coil 62 formed in the first insulating layers 527 and 529 in parallel, the wiring resistance value of the outer coil 60 can be reduced.
 内側コイル70は、2つの第1絶縁層527,529に形成された第1内側コイル71および第2内側コイル72を含む。第1絶縁層527,529の第1内側コイル71および第2内側コイル72は、ビア75によって並列に接続されている。なお、第1内側コイル71および第2内側コイル72を形成する第1絶縁層の数は、3つ以上とすることができる。第1絶縁層527,529に形成した第1内側コイル71および第2内側コイル72を並列に接続することで、内側コイル70の配線抵抗値を低減することができる。 The inner coil 70 includes a first inner coil 71 and a second inner coil 72 formed on two first insulating layers 527 and 529. The first inner coil 71 and the second inner coil 72 of the first insulating layers 527 and 529 are connected in parallel by a via 75. Note that the number of first insulating layers forming the first inner coil 71 and the second inner coil 72 can be three or more. By connecting the first inner coil 71 and the second inner coil 72 formed in the first insulating layers 527 and 529 in parallel, the wiring resistance value of the inner coil 70 can be reduced.
 ・図21、図22に示される変更例のトランス140Bにおいて、外側コイル60は、第1外側コイル61および第2外側コイル62と、第1外側コイル61に接続された第3外側コイル63と、第2外側コイル62に接続された第4外側コイル64とを含む。 - In the modified transformer 140B shown in FIGS. 21 and 22, the outer coil 60 includes a first outer coil 61, a second outer coil 62, a third outer coil 63 connected to the first outer coil 61, and a fourth outer coil 64 connected to the second outer coil 62.
 第3外側コイル63は、z方向から視て第1外側コイル61と重なるように配置されている。第3外側コイル63は、2つの第1絶縁層527,529にそれぞれ形成されたコイル部分631,632を含む。コイル部分631,632は、第1外側コイル61の第1端61Aと、第1配線部80との間に直列に接続されている。 The third outer coil 63 is arranged so as to overlap the first outer coil 61 when viewed from the z direction. The third outer coil 63 includes coil portions 631 and 632 formed in the two first insulating layers 527 and 529, respectively. The coil portions 631 and 632 are connected in series between the first end 61A of the first outer coil 61 and the first wiring portion 80.
 第4外側コイル64は、z方向から視て第2外側コイル62と重なるように配置されている。第4外側コイル64は、2つの第1絶縁層527,529にそれぞれ形成されたコイル部分641,642を含む。コイル部分641,642は、第2外側コイル62の第1端62Aと、第2配線部90との間に直列に接続されている。 The fourth outer coil 64 is arranged so as to overlap the second outer coil 62 when viewed from the z direction. The fourth outer coil 64 includes coil portions 641 and 642 formed in the two first insulating layers 527 and 529, respectively. The coil portions 641 and 642 are connected in series between the first end 62A of the second outer coil 62 and the second wiring portion 90.
 この変更例のトランス140Bは、第1配線部80と第2外側コイル62との間に、第3外側コイル63と第1外側コイル61とが直列に接続されている。また、第1外側コイル61と第2配線部90との間に、第2外側コイル62と第4外側コイル64とが直列に接続されている。したがって、第1内側コイル71および第2内側コイル72のそれぞれの外側に配置される外側コイル60の巻数を多くすることができる。これにより、外側コイル60によって生じる磁束量を多くすることができる。 In the transformer 140B of this modification, the third outer coil 63 and the first outer coil 61 are connected in series between the first wiring section 80 and the second outer coil 62. Further, a second outer coil 62 and a fourth outer coil 64 are connected in series between the first outer coil 61 and the second wiring section 90. Therefore, the number of turns of the outer coil 60 disposed outside each of the first inner coil 71 and the second inner coil 72 can be increased. Thereby, the amount of magnetic flux generated by the outer coil 60 can be increased.
 なお、2つの第1絶縁層527,529に形成された第3外側コイル63(631,632)は、並列に接続されてもよい。同様に、2つの第1絶縁層527,529に形成された第4外側コイル64(641,642)は、並列に接続されてもよい。また、第1外側コイル61および第2外側コイル62は、図20に示されるように、複数の第1絶縁層に形成され、並列に接続されてもよい。このように第3外側コイル63および第4外側コイル64を並列に接続することにより、外側コイル60の巻数を多くするとともに配線抵抗値の増加を抑制することができる。 Note that the third outer coils 63 (631, 632) formed on the two first insulating layers 527, 529 may be connected in parallel. Similarly, the fourth outer coils 64 (641, 642) formed on the two first insulating layers 527, 529 may be connected in parallel. Further, the first outer coil 61 and the second outer coil 62 may be formed in a plurality of first insulating layers and connected in parallel, as shown in FIG. 20. By connecting the third outer coil 63 and the fourth outer coil 64 in parallel in this way, it is possible to increase the number of turns of the outer coil 60 and to suppress an increase in the wiring resistance value.
 図21に示される変更例のトランス140Bでは、第1絶縁層529に内側コイル70(第1内側コイル71および第2内側コイル72)が配置されている。内側コイル70が配置される第1絶縁層は任意に変更することができる。 In the modified transformer 140B shown in FIG. 21, the inner coil 70 (first inner coil 71 and second inner coil 72) is arranged in the first insulating layer 529. The first insulating layer on which the inner coil 70 is placed can be arbitrarily changed.
 ・図23に示される変更例のトランス140Cは、図21に示されるトランス140Bに対して、第1絶縁層529に配置されたコイル部分632が、第1外側コイル61、第2外側コイル62、第1絶縁層527に配置されたコイル部分631と、z方向から視て重ならないように配置されている。このように第1外側コイル61と第3外側コイル63とを配置することにより、z方向における対向面積が少なくなり、寄生キャパシタの容量を低減することができる。同様に、第4外側コイル64において、コイル部分642を第2外側コイル62とコイル部分641に対して平面視において重ならないように配置することにより、z方向における対向面積が少なくなり、寄生キャパシタの容量を低減することができる。 - The modified transformer 140C shown in FIG. 23 is different from the transformer 140B shown in FIG. It is arranged so as not to overlap with the coil portion 631 arranged on the first insulating layer 527 when viewed from the z direction. By arranging the first outer coil 61 and the third outer coil 63 in this manner, the opposing area in the z direction is reduced, and the capacitance of the parasitic capacitor can be reduced. Similarly, in the fourth outer coil 64, by arranging the coil portion 642 so as not to overlap the second outer coil 62 and the coil portion 641 in plan view, the opposing area in the z direction is reduced, and the parasitic capacitor is reduced. Capacity can be reduced.
 ・図24に示される変更例のトランス140Dにおいて、内側コイル70の第1内側コイル71および第2内側コイル72は、外側コイル60の第1外側コイル61および第2外側コイル62が配置された第1絶縁層528と異なる第1絶縁層526に配置されている。このように内側コイル70が配置されることにより、外側コイル60と内側コイル70との間の対向面積が少なくなり、寄生キャパシタの容量を低減することができる。なお、内側コイル70の第1内側コイル71および第2内側コイル72は、外側コイル60が配置された第1絶縁層528と異なる第1絶縁層に配置されていればよく、たとえば第1絶縁層527に配置されていてもよい。 - In the transformer 140D of the modified example shown in FIG. The first insulating layer 526 is different from the first insulating layer 528 . By arranging the inner coil 70 in this manner, the opposing area between the outer coil 60 and the inner coil 70 is reduced, and the capacitance of the parasitic capacitor can be reduced. Note that the first inner coil 71 and the second inner coil 72 of the inner coil 70 may be disposed in a first insulating layer different from the first insulating layer 528 in which the outer coil 60 is disposed, for example, in the first insulating layer 528. 527.
 ・図25は、変更例の信号伝達装置110Aの構成を模式的に示す回路図である。図26は、図25の信号伝達装置110Aの概略平面図である。
 この変更例の信号伝達装置110Aは、第2実施形態の信号伝達装置110と比べ、2次側回路14Aの受信回路14RAの構成が異なる。その受信回路14RAに対応して、図26に示されるように、トランス140と第2チップ32Aとの間の接続が異なる。
- FIG. 25 is a circuit diagram schematically showing the configuration of the signal transmission device 110A as a modified example. FIG. 26 is a schematic plan view of the signal transmission device 110A of FIG. 25.
The signal transmission device 110A of this modification differs from the signal transmission device 110 of the second embodiment in the configuration of the receiving circuit 14RA of the secondary circuit 14A. Corresponding to the receiving circuit 14RA, as shown in FIG. 26, the connection between the transformer 140 and the second chip 32A is different.
 この変更例において、開口52U3により露出される第1内側コイル71の第1端71A(図16参照)には、ワイヤW18Aが接続される。また、開口52U5により露出される第2内側コイル72の第1端72A(図16参照)には、ワイヤW18Bが接続される。これらのワイヤW18A,W18Bは、第2チップ32Aに接続される。したがって、開口52U3,52U5により露出される第1端71A,72Aは、トランス140を第2チップ32Aに接続する接続パッドということもできる。 In this modification, a wire W18A is connected to the first end 71A (see FIG. 16) of the first inner coil 71 exposed through the opening 52U3. Further, a wire W18B is connected to the first end 72A (see FIG. 16) of the second inner coil 72 exposed through the opening 52U5. These wires W18A and W18B are connected to the second chip 32A. Therefore, the first ends 71A and 72A exposed through the openings 52U3 and 52U5 can also be called connection pads that connect the transformer 140 to the second chip 32A.
 このように、トランス140は、図14に示される受信回路14Rを含む第2チップ32と、図25に示される受信回路14RAを含む第2チップ32Aのように、構成が異なる第2チップ32,32Aに対して第1チップ31の信号を伝達することができる。つまり、構成が異なる2種類の信号伝達装置110,110Aに対して、1種類のトランス140を用いることができる。 In this way, the transformer 140 includes second chips 32 having different configurations, such as the second chip 32 including the receiving circuit 14R shown in FIG. 14 and the second chip 32A including the receiving circuit 14RA shown in FIG. The signal of the first chip 31 can be transmitted to 32A. In other words, one type of transformer 140 can be used for two types of signal transmission devices 110 and 110A with different configurations.
 ・平面視における外側コイル60および内側コイル70の形状は、任意に変更することができる。
 たとえば、図27に示されるトランス140Eのように、外側コイル60および内側コイル70は、四角形状に形成されてもよい。
- The shapes of the outer coil 60 and the inner coil 70 in plan view can be arbitrarily changed.
For example, as in a transformer 140E shown in FIG. 27, the outer coil 60 and the inner coil 70 may be formed in a rectangular shape.
 また、図28に示されるトランス140Fのように、外側コイル60および内側コイル70は、角部が円弧状に丸められた四角形状に形成されてもよい。
 また、図29に示されるトランス140Gのように、外側コイル60および内側コイル70は、楕円形状に形成されてもよい。
Further, as in a transformer 140F shown in FIG. 28, the outer coil 60 and the inner coil 70 may be formed into a rectangular shape with rounded corners.
Further, the outer coil 60 and the inner coil 70 may be formed in an elliptical shape, as in a transformer 140G shown in FIG. 29.
 ・外側コイル60の第1外側コイル61と第2外側コイル62とが異なる絶縁層に設けられてもよい。たとえば、図17において、第2外側コイル62は、第1絶縁層526に配置され得る。この場合、第1外側コイル61の第2端61Bと第2外側コイル62の第2端62Bとは、平面視において互いに重なり合うように形成される。そして、第1外側コイル61の第2端61Bと第2外側コイル62の第2端62Bとは、直接的に電気的に接続される。 - The first outer coil 61 and the second outer coil 62 of the outer coil 60 may be provided on different insulating layers. For example, in FIG. 17, second outer coil 62 may be disposed on first insulating layer 526. In this case, the second end 61B of the first outer coil 61 and the second end 62B of the second outer coil 62 are formed to overlap each other in plan view. The second end 61B of the first outer coil 61 and the second end 62B of the second outer coil 62 are directly electrically connected.
 ・内側コイル70において、第1内側コイル71と第2内側コイル72とが互いに異なる絶縁層に設けられてもよい。
 ・図15に示すトランス140において、ワイヤW13A,W13Bが、外側コイル60(第1外側コイル61および第2外側コイル62)に直接接続される構成とすることもできる。たとえば、外側コイル60の第1外側コイル61の第1端61Aと内側コイル70(第1内側コイル71)との間の距離が、トランス140の絶縁耐圧に必要な距離以上とする。これにより、ワイヤW13Aを第1外側コイル61の第1端61Aに接続することができる。第2外側コイル62とワイヤW13Bについても同様である。
- In the inner coil 70, the first inner coil 71 and the second inner coil 72 may be provided in different insulating layers.
- In the transformer 140 shown in FIG. 15, the wires W13A and W13B may be configured to be directly connected to the outer coil 60 (first outer coil 61 and second outer coil 62). For example, the distance between the first end 61A of the first outer coil 61 of the outer coil 60 and the inner coil 70 (first inner coil 71) is greater than or equal to the distance required for the withstand voltage of the transformer 140. Thereby, the wire W13A can be connected to the first end 61A of the first outer coil 61. The same applies to the second outer coil 62 and the wire W13B.
 本開示で使用される「~上に」という用語は、文脈によって明らかにそうでないことが示されない限り、「~上に」と「~の上方に」との双方の意味を含む。したがって、「第1層が第2層上に形成される」という表現は、或る実施形態では第1層が第2層に接触して第2層上に直接配置され得るが、他の実施形態では第1層が第2層に接触することなく第2層の上方に配置され得ることが意図される。すなわち、「~上に」という用語は、第1層と第2層との間に他の層が形成される構造を排除しない。 As used in this disclosure, the term "on" includes both "on" and "above" unless the context clearly indicates otherwise. Thus, the phrase "the first layer is formed on the second layer" refers to the fact that in some embodiments the first layer may be directly disposed on the second layer in contact with the second layer, but in other embodiments. It is contemplated that the first layer may be placed above the second layer without contacting the second layer. That is, the term "on" does not exclude structures in which other layers are formed between the first layer and the second layer.
 本開示で使用されるz方向は必ずしも鉛直方向である必要はなく、鉛直方向に完全に一致している必要もない。したがって、本開示による種々の構造(たとえば、図4に示される構造)は、本明細書で説明されるZ軸方向の「上」および「下」が鉛直方向の「上」および「下」であることに限定されない。たとえば、x方向が鉛直方向であってもよく、またはy方向が鉛直方向であってもよい。 The z direction used in this disclosure does not necessarily have to be the vertical direction, nor does it need to completely coincide with the vertical direction. Accordingly, various structures according to the present disclosure (e.g., the structure shown in FIG. 4) are different from each other in that "upper" and "lower" in the Z-axis direction described herein are "upper" and "lower" in the vertical direction. Not limited to one thing. For example, the x direction may be a vertical direction, or the y direction may be a vertical direction.
 (付記)
 本開示から把握できる技術的思想を以下に記載する。なお、限定する意図ではなく理解の補助のために、付記に記載される構成要素には、実施形態中の対応する構成要素の参照符号が付されている。参照符号は、理解の補助のために例として示すものであり、各付記に記載された構成要素は、参照符号で示される構成要素に限定されるべきではない。
(Additional note)
The technical ideas that can be understood from this disclosure are described below. Note that, not for the purpose of limitation but for the purpose of aiding understanding, the reference numerals of the corresponding components in the embodiments are attached to the components described in the supplementary notes. Reference numerals are shown by way of example to aid understanding, and the components described in each appendix should not be limited to the components indicated by the reference numerals.
 (付記1)
 基板上面(51S)および基板下面(51R)を有する基板(51)と、
 前記基板上面(51S)に接する第1絶縁体(52)と、
 前記基板下面(51R)に接する第2絶縁体(53)と、
 前記第1絶縁体(52)内に配置された外側コイル(60)および内側コイル(70)と、
 を含み、
 前記内側コイル(70)は、前記基板上面(51S)に垂直な方向から視て前記外側コイル(60)の内側であって前記外側コイル(60)と重ならないように配置されている、
 トランス。
(Additional note 1)
a substrate (51) having a substrate top surface (51S) and a substrate bottom surface (51R);
a first insulator (52) in contact with the upper surface of the substrate (51S);
a second insulator (53) in contact with the lower surface of the substrate (51R);
an outer coil (60) and an inner coil (70) disposed within the first insulator (52);
including;
The inner coil (70) is arranged inside the outer coil (60) when viewed from a direction perpendicular to the upper surface of the substrate (51S) so as not to overlap with the outer coil (60).
Trance.
 (付記2)
 前記第1絶縁体(52)は、前記基板上面(51S)と接する下面(52R)と、前記下面(52R)とは反対側の上面(52S)とを含み、
 前記外側コイル(60)および前記内側コイル(70)の少なくとも一方は、前記第1絶縁体(52)の厚さ方向において、前記第1絶縁体(52)の前記上面(52S)寄りに配置されている、
 付記1に記載のトランス。
(Additional note 2)
The first insulator (52) includes a lower surface (52R) in contact with the upper surface of the substrate (51S), and an upper surface (52S) opposite to the lower surface (52R),
At least one of the outer coil (60) and the inner coil (70) is arranged closer to the upper surface (52S) of the first insulator (52) in the thickness direction of the first insulator (52). ing,
The transformer described in Appendix 1.
 (付記3)
 前記外側コイル(60)と前記内側コイル(70)は前記第1絶縁体(52)の厚さ方向において同じ位置であって、前記厚さ方向と直交する同一平面上に配置されている、
 付記1または付記2に記載のトランス。
(Additional note 3)
The outer coil (60) and the inner coil (70) are located at the same position in the thickness direction of the first insulator (52) and are arranged on the same plane orthogonal to the thickness direction.
The transformer according to Supplementary Note 1 or Supplementary Note 2.
 (付記4)
 前記第2絶縁体(53)は、前記第1絶縁体(52)と同じ材料によって形成されている、付記1から付記3のいずれか一つに記載のトランス。
(Additional note 4)
The transformer according to any one of Supplementary Notes 1 to 3, wherein the second insulator (53) is formed of the same material as the first insulator (52).
 (付記5)
 前記第1絶縁体(52)および前記第2絶縁体(53)はSiを含む材料により形成されている、付記1から付記4のいずれか一つに記載のトランス。
(Appendix 5)
The transformer according to any one of appendices 1 to 4, wherein the first insulator (52) and the second insulator (53) are formed of a material containing Si.
 (付記6)
 前記第1絶縁体(52)は複数の絶縁層(521~526,52U)により構成され、前記第2絶縁体(53)は1つの絶縁層により構成されている、付記1から付記5のいずれか一つに記載のトランス。
(Appendix 6)
Any of Supplementary notes 1 to 5, wherein the first insulator (52) is composed of a plurality of insulating layers (521 to 526, 52U), and the second insulator (53) is composed of one insulating layer. The transformer mentioned in one of the above.
 (付記7)
 前記第1絶縁体(52)は1つの絶縁層により構成され、前記第2絶縁体(53)は複数の絶縁層により構成されている、付記1から付記5のいずれか一つに記載のトランス。
(Appendix 7)
The transformer according to any one of appendices 1 to 5, wherein the first insulator (52) is composed of one insulating layer, and the second insulator (53) is composed of a plurality of insulating layers. .
 (付記8)
 前記第1絶縁体(52)および前記第2絶縁体(53)の双方は、1つの絶縁層、または複数の絶縁層により構成されている、付記1から付記5のいずれか一つに記載のトランス。
(Appendix 8)
The first insulator (52) and the second insulator (53) both include one insulating layer or a plurality of insulating layers, according to any one of Supplementary Notes 1 to 5. Trance.
 (付記9)
 前記第1絶縁体(52)の厚さは、前記第2絶縁体(53)の厚さと等しい、付記1から付記8のいずれか一つに記載のトランス。
(Appendix 9)
The transformer according to any one of appendices 1 to 8, wherein the first insulator (52) has a thickness equal to the second insulator (53).
 (付記10)
 前記第2絶縁体(53)の厚さは、前記第1絶縁体(52)の厚さよりも厚い、付記1から付記8のいずれか一つに記載のトランス。
(Appendix 10)
The transformer according to any one of Supplementary Notes 1 to 8, wherein the second insulator (53) is thicker than the first insulator (52).
 (付記11)
 前記第1絶縁体(52)の厚さは、前記第2絶縁体(53)の厚さよりも厚い、付記1から付記8のいずれか一つに記載のトランス。
(Appendix 11)
The transformer according to any one of Supplementary Notes 1 to 8, wherein the first insulator (52) is thicker than the second insulator (53).
 (付記12)
 前記基板(51)は、電気的にフローティングである、付記1から付記11のいずれか一つに記載のトランス。
(Appendix 12)
The transformer according to any one of appendices 1 to 11, wherein the substrate (51) is electrically floating.
 (付記13)
 前記外側コイル(60)は、前記第1絶縁体(52)の厚さ方向に複数設けられており、前記複数の外側コイル(60)は並列に接続されている、付記1から付記12のいずれか一つに記載のトランス。
(Appendix 13)
A plurality of the outer coils (60) are provided in the thickness direction of the first insulator (52), and the plurality of outer coils (60) are connected in parallel. The transformer mentioned in one of the above.
 (付記14)
 前記外側コイル(60)は、前記第1絶縁体(52)の厚さ方向に複数設けられており、前記複数の外側コイル(60)は直列に接続されている、付記1から付記12のいずれか一つに記載のトランス。
(Appendix 14)
A plurality of the outer coils (60) are provided in the thickness direction of the first insulator (52), and the plurality of outer coils (60) are connected in series. The transformer mentioned in one of the above.
 (付記15)
 前記内側コイル(70)は、前記第1絶縁体(52)の厚さ方向に複数設けられており、前記複数の内側コイル(70)は並列に接続されている、付記1から付記14のいずれか一つに記載のトランス。
(Appendix 15)
A plurality of the inner coils (70) are provided in the thickness direction of the first insulator (52), and the plurality of inner coils (70) are connected in parallel. The transformer mentioned in one of the above.
 (付記16)
 前記内側コイル(70)は、前記第1絶縁体(52)の厚さ方向に複数設けられており、前記複数の内側コイル(70)は直列に接続されている、付記1から付記14のいずれか一つに記載のトランス。
(Appendix 16)
A plurality of the inner coils (70) are provided in the thickness direction of the first insulator (52), and the plurality of inner coils (70) are connected in series. The transformer mentioned in one of the above.
 (付記17)
 前記外側コイル(60)は、第1端と第2端をそれぞれ有する第1外側コイル(61)および第2外側コイル(62)を含み、
 前記内側コイル(70)は、第1端と第2端をそれぞれ有する第1内側コイル(71)および第2内側コイル(72)を含み、
 前記第1外側コイル(61)および前記第2外側コイル(62)は、前記第1絶縁体(52)の厚さ方向から視て渦巻状に形成されており、
 平面視において、前記第1内側コイル(71)は前記第1外側コイル(61)の内側に前記第1外側コイル(61)と重ならないように配置され、前記第2内側コイル(72)は前記第2外側コイル(62)の内側に前記第2外側コイル(62)と重ならないように配置されている、
 付記1から付記12のいずれか一つに記載のトランス。
(Appendix 17)
The outer coil (60) includes a first outer coil (61) and a second outer coil (62) each having a first end and a second end,
The inner coil (70) includes a first inner coil (71) and a second inner coil (72) each having a first end and a second end,
The first outer coil (61) and the second outer coil (62) are formed in a spiral shape when viewed from the thickness direction of the first insulator (52),
In plan view, the first inner coil (71) is arranged inside the first outer coil (61) so as not to overlap with the first outer coil (61), and the second inner coil (72) is arranged inside the first outer coil (61) so as not to overlap with the first outer coil (61). arranged inside the second outer coil (62) so as not to overlap with the second outer coil (62);
The transformer according to any one of Supplementary notes 1 to 12.
 (付記18)
 前記第1外側コイル(61)の第2端および前記第2外側コイル(62)の第2端は互いに接続されており、前記第1外側コイル(61)および前記第2外側コイル(62)は、前記第1外側コイル(61)または前記第2外側コイル(62)の第1端から前記第1外側コイル(61)および前記第2外側コイル(62)に電流が流れた場合に互いに逆向きの磁束が生じるように捲かれている、
 付記17に記載のトランス。
(Appendix 18)
A second end of the first outer coil (61) and a second end of the second outer coil (62) are connected to each other, and the first outer coil (61) and the second outer coil (62) are connected to each other. , when current flows from the first end of the first outer coil (61) or the second outer coil (62) to the first outer coil (61) and the second outer coil (62), the directions are opposite to each other. It is wound so that a magnetic flux of
The transformer described in Appendix 17.
 (付記19)
 前記外側コイル(60)は、前記第1外側コイル(61)の第1端に接続された第3外側コイル(63)と、前記第2外側コイル(62)の第1端に接続された第4外側コイル(64)と、を含む、付記17または付記18に記載のトランス。
(Appendix 19)
The outer coil (60) includes a third outer coil (63) connected to a first end of the first outer coil (61) and a third outer coil (63) connected to a first end of the second outer coil (62). 4 outer coil (64).
 (付記20)
 前記第3外側コイル(63)は、前記第1絶縁体(52)の厚さ方向から視て前記第1外側コイル(61)と重なるように配置され、
 前記第4外側コイル(64)は、前記第1絶縁体(52)の厚さ方向から視て前記第2外側コイル(62)と重なるように配置されている、
 付記19に記載のトランス。
(Additional note 20)
The third outer coil (63) is arranged so as to overlap the first outer coil (61) when viewed from the thickness direction of the first insulator (52),
The fourth outer coil (64) is arranged to overlap the second outer coil (62) when viewed from the thickness direction of the first insulator (52).
The transformer described in Appendix 19.
 (付記21)
 前記第3外側コイル(63)および前記第4外側コイル(64)はそれぞれ、前記第1絶縁体(52)の厚さ方向に複数設けられ、複数の前記第3外側コイル(63)は互いに接続され、複数の前記第4外側コイル(64)は互いに接続されている、付記19または付記20に記載のトランス。
(Additional note 21)
A plurality of the third outer coils (63) and the fourth outer coils (64) are each provided in the thickness direction of the first insulator (52), and the plurality of third outer coils (63) are connected to each other. The transformer according to attachment 19 or attachment 20, wherein the plurality of fourth outer coils (64) are connected to each other.
 (付記22)
 前記内側コイル(70)は、前記第1内側コイル(71)の第2端に接続された第3内側コイルと、前記第2内側コイル(72)の第2端に接続された第4内側コイルと、を含む、付記17から付記21のいずれか一つに記載のトランス。
(Additional note 22)
The inner coil (70) includes a third inner coil connected to the second end of the first inner coil (71) and a fourth inner coil connected to the second end of the second inner coil (72). The transformer according to any one of Supplementary Notes 17 to 21, comprising:
 (付記23)
 前記第3内側コイルは、前記第1絶縁体(52)の厚さ方向から視て前記第1内側コイル(71)と重なるように配置され、
 前記第4内側コイルは、前記第1絶縁体(52)の厚さ方向から視て前記第2内側コイル(72)と重なるように配置されている、
 付記22に記載のトランス。
(Additional note 23)
The third inner coil is arranged to overlap the first inner coil (71) when viewed from the thickness direction of the first insulator (52),
The fourth inner coil is arranged to overlap the second inner coil (72) when viewed from the thickness direction of the first insulator (52).
The transformer described in Appendix 22.
 (付記24)
 前記第3内側コイルおよび前記第4内側コイルはそれぞれ、前記第1絶縁体(52)の厚さ方向に複数設けられ、複数の前記第3内側コイルは互いに接続され、複数の前記第4内側コイルは互いに接続されている、付記22または付記23に記載のトランス。
(Additional note 24)
A plurality of the third inner coils and a plurality of the fourth inner coils are respectively provided in the thickness direction of the first insulator (52), the plurality of third inner coils are connected to each other, and the plurality of the fourth inner coils are connected to each other. are connected to each other, the transformer according to attachment 22 or attachment 23.
 (付記25)
 第1ダイパッド(21)と、
 前記第1ダイパッド(21)と離隔して配置された第2ダイパッド(22)と、
 前記第1ダイパッド(21)に実装され、第1回路(13)を含む第1チップ(31)と、
 前記第2ダイパッド(22)に実装され、第2回路(14)を含む第2チップ(32)と、
 前記第1ダイパッド(21)または前記第2ダイパッド(22)に接合材(26)により搭載され、前記第1回路(13)と前記第2回路(14)との間に接続され、前記第1回路(13)と前記第2回路(14)とを電気的に絶縁するトランス(40,140)と、
 を含み、
 前記トランス(40,140)は、
 基板上面(51S)および基板下面(51R)を有する基板(51)と、
 前記基板上面(51S)に接する第1絶縁体(52)と、
 前記基板下面(51R)に接する第2絶縁体(53)と、
 前記第1絶縁体(52)内に配置された外側コイル(60)および内側コイル(70)と、
 を含み、
 前記内側コイル(70)は、前記基板上面(51S)に垂直な方向から視て前記外側コイル(60)の内側であって前記外側コイル(60)と重ならないように配置されている、
 半導体装置。
(Additional note 25)
a first die pad (21);
a second die pad (22) spaced apart from the first die pad (21);
a first chip (31) mounted on the first die pad (21) and including a first circuit (13);
a second chip (32) mounted on the second die pad (22) and including a second circuit (14);
Mounted on the first die pad (21) or the second die pad (22) with a bonding material (26), connected between the first circuit (13) and the second circuit (14), a transformer (40, 140) that electrically insulates the circuit (13) and the second circuit (14);
including;
The transformer (40, 140) is
a substrate (51) having a substrate top surface (51S) and a substrate bottom surface (51R);
a first insulator (52) in contact with the upper surface of the substrate (51S);
a second insulator (53) in contact with the lower surface of the substrate (51R);
an outer coil (60) and an inner coil (70) disposed within the first insulator (52);
including;
The inner coil (70) is arranged inside the outer coil (60) when viewed from a direction perpendicular to the upper surface of the substrate (51S) so as not to overlap with the outer coil (60).
Semiconductor equipment.
 (付記26)
 前記接合材(26)は、導電性を有する、付記25に記載の半導体装置。
 以上の説明は単に例示である。本開示の技術を説明する目的のために列挙された構成要素および方法(製造プロセス)以外に、より多くの考えられる組み合わせおよび置換が可能であることを当業者は認識し得る。本開示は、特許請求の範囲を含む本開示の範囲内に含まれるすべての代替、変形、および変更を包含することが意図される。
(Additional note 26)
The semiconductor device according to attachment 25, wherein the bonding material (26) has conductivity.
The above description is merely illustrative. Those skilled in the art will recognize that many more possible combinations and permutations are possible beyond those listed for the purpose of describing the techniques of the present disclosure. This disclosure is intended to cover all alternatives, variations, and modifications falling within the scope of this disclosure, including the claims.
 10 信号伝達装置
 11 1次側端子
 12 2次側端子
 13 1次側回路
 13T 送信回路
 14 2次側回路
 14A 2次側回路
 14R,14RA 受信回路
 15 トランス
 16 1次側コイル
 17 2次側コイル
 17A 第1コイル
 17B 第2コイル
 21 第1ダイパッド
 22 第2ダイパッド
 23,23A~23D 1次側リード
 24,24A~24D 2次側リード
 25~27 接合材
 28 封止樹脂
 31 第1チップ
 32,32A 第2チップ
 40,40A~40D トランス
 41 チップ主面
 42 チップ裏面
 43~46 チップ側面
 51 基板
 51R 基板下面
 51S 基板上面
 52 第1絶縁体
 52R 下面
 52S 上面
 521~529 絶縁層(第1絶縁層)
 52U 絶縁層(第2絶縁層)
 52U1~52U6 開口
 53 第2絶縁体
 53R 下面
 53S 上面
 531~534 絶縁層
 60 外側コイル
 60A 第1端
 60B 第2端
 61 第1外側コイル
 61A 第1端
 61B 第2端
 62 第2外側コイル
 62A 第1端
 62B 第2端
 63 第3外側コイル(外側コイル)
 631,632 コイル部分
 64 第4外側コイル
 641,642 コイル部分
 65,66 ビア
 70 内側コイル
 70A 第1端
 70B 第2端
 71 第1内側コイル
 71A 第1端
 71B 第2端
 72 第2内側コイル
 72A 第1端
 72B 第2端
 75 ビア
 80 第1配線部(配線部)
 81 接続配線
 81A 第1端
 81B 第2端
 82,83 ビア
 84 端子部
 90 第2配線部
 91 接続配線
 91A 第1端
 91B 第2端
 92,93 ビア
 94 端子部
 110,110A 信号伝達装置
 115 トランス
 140,140A~140G トランス
 141 チップ主面
 142 チップ裏面
 143~146 チップ側面
 300 電力伝達装置
 301 制御回路
 302 発振器
 303~306 ダイオード
 307 平滑用キャパシタ
 311 直流電源
 312 負荷
 320 電力伝達装置
 322A,322B 2次側端子
 C11,C12 寄生キャパシタ
 C21,C22 寄生キャパシタ
 C53,C60,C70 寄生キャパシタ
 D11,D12 距離
 D21,D22 距離
 D60~D62 距離
 D70~D72 距離
 D80,D90 距離
 I1X 渦電流
 M1 磁束
 T52,T53 厚さ
 V1 第1電圧
 V2 第2電圧
 W11A,W11B,W12 ワイヤ
 W13A、W13B ワイヤ
 W14
 W15A,W15B ワイヤ
 W16,W17A,W17B ワイヤ
 W18A,W18B ワイヤ
10 Signal transmission device 11 Primary side terminal 12 Secondary side terminal 13 Primary side circuit 13T Transmission circuit 14 Secondary side circuit 14A Secondary side circuit 14R, 14RA Receiving circuit 15 Transformer 16 Primary side coil 17 Secondary side coil 17A First coil 17B Second coil 21 First die pad 22 Second die pad 23, 23A to 23D Primary side lead 24, 24A to 24D Secondary side lead 25 to 27 Bonding material 28 Sealing resin 31 First chip 32, 32A 2 chips 40, 40A to 40D Transformer 41 Chip main surface 42 Chip back surface 43 to 46 Chip side surface 51 Substrate 51R Substrate bottom surface 51S Substrate top surface 52 First insulator 52R Bottom surface 52S Top surface 521 to 529 Insulating layer (first insulating layer)
52U insulating layer (second insulating layer)
52U1 to 52U6 Opening 53 Second insulator 53R Bottom surface 53S Top surface 531 to 534 Insulating layer 60 Outer coil 60A First end 60B Second end 61 First outer coil 61A First end 61B Second end 62 Second outer coil 62A First End 62B Second end 63 Third outer coil (outer coil)
631,632 Coil portion 64 Fourth outer coil 641,642 Coil portion 65,66 Via 70 Inner coil 70A First end 70B Second end 71 First inner coil 71A First end 71B Second end 72 Second inner coil 72A No. 1st end 72B 2nd end 75 Via 80 1st wiring part (wiring part)
81 Connection wiring 81A First end 81B Second end 82, 83 Via 84 Terminal part 90 Second wiring part 91 Connection wiring 91A First end 91B Second end 92, 93 Via 94 Terminal part 110, 110A Signal transmission device 115 Transformer 140 , 140A to 140G Transformer 141 Chip main surface 142 Chip back surface 143 to 146 Chip side surface 300 Power transmission device 301 Control circuit 302 Oscillator 303 to 306 Diode 307 Smoothing capacitor 311 DC power supply 312 Load 320 Power transmission device 322A, 322B Secondary side terminal C11, C12 Parasitic capacitor C21, C22 Parasitic capacitor C53, C60, C70 Parasitic capacitor D11, D12 Distance D21, D22 Distance D60 to D62 Distance D70 to D72 Distance D80, D90 Distance I1X Eddy current M1 Magnetic flux T52, T53 Thickness V1 No. 1 Voltage V2 Second voltage W11A, W11B, W12 Wire W13A, W13B Wire W14
W15A, W15B wire W16, W17A, W17B wire W18A, W18B wire

Claims (18)

  1.  基板上面および基板下面を有する基板と、
     前記基板上面に接する第1絶縁体と、
     前記基板下面に接する第2絶縁体と、
     前記第1絶縁体内に配置された外側コイルおよび内側コイルと、
     を含み、
     前記内側コイルは、前記基板上面に垂直な方向から視て前記外側コイルの内側であって前記外側コイルと重ならないように配置されている、
     トランス。
    a substrate having a top surface and a bottom surface;
    a first insulator in contact with the upper surface of the substrate;
    a second insulator in contact with the lower surface of the substrate;
    an outer coil and an inner coil disposed within the first insulator;
    including;
    The inner coil is disposed inside the outer coil when viewed from a direction perpendicular to the top surface of the substrate and is arranged so as not to overlap the outer coil.
    Trance.
  2.  前記第1絶縁体は、前記基板上面と接する下面と、前記下面とは反対側の上面とを含み、
     前記外側コイルおよび前記内側コイルの少なくとも一方は、前記第1絶縁体の厚さ方向において、前記第1絶縁体の前記上面寄りに配置されている、
     請求項1に記載のトランス。
    The first insulator includes a lower surface in contact with the upper surface of the substrate, and an upper surface opposite to the lower surface,
    At least one of the outer coil and the inner coil is disposed closer to the upper surface of the first insulator in the thickness direction of the first insulator.
    The transformer according to claim 1.
  3.  前記外側コイルと前記内側コイルは前記第1絶縁体の厚さ方向において同じ位置であって、前記厚さ方向と直交する同一平面上に配置されている、
     請求項1または請求項2に記載のトランス。
    The outer coil and the inner coil are located at the same position in the thickness direction of the first insulator and are arranged on the same plane orthogonal to the thickness direction,
    The transformer according to claim 1 or 2.
  4.  前記第2絶縁体は、前記第1絶縁体と同じ材料によって形成されている、請求項1~3のいずれか一項に記載のトランス。 The transformer according to any one of claims 1 to 3, wherein the second insulator is made of the same material as the first insulator.
  5.  前記第1絶縁体および前記第2絶縁体はSiを含む材料により形成されている、請求項1~4のいずれか一項に記載のトランス。 The transformer according to any one of claims 1 to 4, wherein the first insulator and the second insulator are formed of a material containing Si.
  6.  前記第1絶縁体は複数の絶縁層により構成され、前記第2絶縁体は1つの絶縁層により構成されている、請求項1~5のいずれか一項に記載のトランス。 The transformer according to any one of claims 1 to 5, wherein the first insulator is composed of a plurality of insulating layers, and the second insulator is composed of one insulating layer.
  7.  前記第1絶縁体は1つの絶縁層により構成され、前記第2絶縁体は複数の絶縁層により構成されている、請求項1~5のいずれか一項に記載のトランス。 The transformer according to any one of claims 1 to 5, wherein the first insulator is composed of one insulating layer, and the second insulator is composed of a plurality of insulating layers.
  8.  前記第1絶縁体および前記第2絶縁体の双方は、1つの絶縁層、または複数の絶縁層により構成されている、請求項1~5のいずれか一項に記載のトランス。 The transformer according to any one of claims 1 to 5, wherein both the first insulator and the second insulator are composed of one insulating layer or a plurality of insulating layers.
  9.  前記第1絶縁体の厚さは、前記第2絶縁体の厚さと等しい、請求項1~8のいずれか一項に記載のトランス。 The transformer according to any one of claims 1 to 8, wherein the thickness of the first insulator is equal to the thickness of the second insulator.
  10.  前記第2絶縁体の厚さは、前記第1絶縁体の厚さよりも厚い、請求項1~8のいずれか一項に記載のトランス。 The transformer according to any one of claims 1 to 8, wherein the second insulator is thicker than the first insulator.
  11.  前記第1絶縁体の厚さは、前記第2絶縁体の厚さよりも厚い、請求項1~8のいずれか一項に記載のトランス。 The transformer according to any one of claims 1 to 8, wherein the first insulator is thicker than the second insulator.
  12.  前記基板は、電気的にフローティングである、請求項1~11のいずれか一項に記載のトランス。 The transformer according to any one of claims 1 to 11, wherein the substrate is electrically floating.
  13.  前記外側コイルは、前記第1絶縁体の厚さ方向に複数設けられており、前記複数の外側コイルは並列に接続されている、請求項1~12のいずれか一項に記載のトランス。 The transformer according to any one of claims 1 to 12, wherein a plurality of the outer coils are provided in the thickness direction of the first insulator, and the plurality of outer coils are connected in parallel.
  14.  前記外側コイルは、前記第1絶縁体の厚さ方向に複数設けられており、前記複数の外側コイルは直列に接続されている、請求項1~12のいずれか一項に記載のトランス。 The transformer according to any one of claims 1 to 12, wherein a plurality of the outer coils are provided in the thickness direction of the first insulator, and the plurality of outer coils are connected in series.
  15.  前記内側コイルは、前記第1絶縁体の厚さ方向に複数設けられており、前記複数の内側コイルは並列に接続されている、請求項1~14のいずれか一項に記載のトランス。 The transformer according to any one of claims 1 to 14, wherein a plurality of the inner coils are provided in the thickness direction of the first insulator, and the plurality of inner coils are connected in parallel.
  16.  前記内側コイルは、前記第1絶縁体の厚さ方向に複数設けられており、前記複数の内側コイルは直列に接続されている、請求項1~14のいずれか一項に記載のトランス。 The transformer according to any one of claims 1 to 14, wherein a plurality of the inner coils are provided in the thickness direction of the first insulator, and the plurality of inner coils are connected in series.
  17.  前記外側コイルは、第1端と第2端をそれぞれ有する第1外側コイルおよび第2外側コイルを含み、
     前記内側コイルは、第1端と第2端をそれぞれ有する第1内側コイルおよび第2内側コイルを含み、
     前記第1外側コイルおよび前記第2外側コイルは、前記第1絶縁体の厚さ方向から視て渦巻状に形成されており、
     平面視において、前記第1内側コイルは前記第1外側コイルの内側に前記第1外側コイルと重ならないように配置され、前記第2内側コイルは前記第2外側コイルの内側に前記第2外側コイルと重ならないように配置されている、
     請求項1~12のいずれか一項に記載のトランス。
    The outer coil includes a first outer coil and a second outer coil each having a first end and a second end,
    The inner coil includes a first inner coil and a second inner coil each having a first end and a second end,
    The first outer coil and the second outer coil are formed in a spiral shape when viewed from the thickness direction of the first insulator,
    In plan view, the first inner coil is arranged inside the first outer coil so as not to overlap with the first outer coil, and the second inner coil is arranged inside the second outer coil so as not to overlap with the first outer coil. are arranged so as not to overlap with
    A transformer according to any one of claims 1 to 12.
  18.  前記第1外側コイルの第2端および前記第2外側コイルの第2端は互いに接続されており、前記第1外側コイルおよび前記第2外側コイルは、前記第1外側コイルまたは前記第2外側コイルの第1端から前記第1外側コイルおよび前記第2外側コイルに電流が流れた場合に互いに逆向きの磁束が生じるように捲かれている、
     請求項17に記載のトランス。
    A second end of the first outer coil and a second end of the second outer coil are connected to each other, and the first outer coil and the second outer coil are connected to the first outer coil or the second outer coil. is wound so that magnetic fluxes in opposite directions are generated when a current flows from the first end to the first outer coil and the second outer coil,
    The transformer according to claim 17.
PCT/JP2023/027328 2022-08-15 2023-07-26 Transformer WO2024038743A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-129272 2022-08-15
JP2022129272 2022-08-15

Publications (1)

Publication Number Publication Date
WO2024038743A1 true WO2024038743A1 (en) 2024-02-22

Family

ID=89941510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/027328 WO2024038743A1 (en) 2022-08-15 2023-07-26 Transformer

Country Status (1)

Country Link
WO (1) WO2024038743A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011159953A (en) * 2010-01-05 2011-08-18 Fujitsu Ltd Electronic circuit and electronic device
US20130278372A1 (en) * 2012-04-20 2013-10-24 Infineon Technologies Austria Ag Semiconductor Component with Coreless Transformer
JP2014022484A (en) * 2012-07-17 2014-02-03 Nippon Telegr & Teleph Corp <Ntt> Solenoid inductor
WO2014097425A1 (en) * 2012-12-19 2014-06-26 ルネサスエレクトロニクス株式会社 Semiconductor device
JP2014522561A (en) * 2012-05-29 2014-09-04 富士電機株式会社 Isolator and method of manufacturing isolator
JP2020205342A (en) * 2019-06-17 2020-12-24 ローム株式会社 Chip component
US20200402698A1 (en) * 2019-06-24 2020-12-24 Nxp B.V. High Current Integrated Circuit-Based Transformer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011159953A (en) * 2010-01-05 2011-08-18 Fujitsu Ltd Electronic circuit and electronic device
US20130278372A1 (en) * 2012-04-20 2013-10-24 Infineon Technologies Austria Ag Semiconductor Component with Coreless Transformer
JP2014522561A (en) * 2012-05-29 2014-09-04 富士電機株式会社 Isolator and method of manufacturing isolator
JP2014022484A (en) * 2012-07-17 2014-02-03 Nippon Telegr & Teleph Corp <Ntt> Solenoid inductor
WO2014097425A1 (en) * 2012-12-19 2014-06-26 ルネサスエレクトロニクス株式会社 Semiconductor device
JP2020205342A (en) * 2019-06-17 2020-12-24 ローム株式会社 Chip component
US20200402698A1 (en) * 2019-06-24 2020-12-24 Nxp B.V. High Current Integrated Circuit-Based Transformer

Similar Documents

Publication Publication Date Title
US8592944B2 (en) Semiconductor electronic device with an integrated device with an integrated galvanic isolator element and related assembly process
US9431379B2 (en) Signal transmission arrangement
TWI385778B (en) Semiconductor power device having a stacked discrete inductor structure
US9001524B1 (en) Switch-mode power conversion IC package with wrap-around magnetic structure
WO2011145219A1 (en) Power semiconductor module
US20100052839A1 (en) Transformers and Methods of Manufacture Thereof
CN110603635B (en) Semiconductor device with backside coil for wireless signal and power coupling
JP2019009158A (en) Semiconductor device
EP3832862B1 (en) Power conversion device
US10283454B2 (en) Power semiconductor module
US10530354B2 (en) Insulated gate semiconductor device and method for manufacturing insulated gate semiconductor device
WO2024038743A1 (en) Transformer
US10893610B2 (en) Switching device driving unit
WO2024038742A1 (en) Transformer
JP2007081146A (en) Semiconductor device with inductor
WO2022234848A1 (en) Signal transmission device and insulated module
JP6503264B2 (en) Semiconductor device
US20230387041A1 (en) Semiconductor device and semiconductor module
WO2023176662A1 (en) Insulating chip and signal transmission device
WO2024043105A1 (en) Transformer chip and signal transmission device
WO2023032611A1 (en) Signal transmitting device and insulating chip
WO2023032612A1 (en) Signal transmission device and insulation chip
WO2023171391A1 (en) Insulated chip and signal transmitting device
CN220829956U (en) Electromagnetic coupler and power conversion circuit
US20230309228A1 (en) Isolator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23854779

Country of ref document: EP

Kind code of ref document: A1