WO2024038538A1 - Light source unit, illumination unit, exposure device, and exposure method - Google Patents

Light source unit, illumination unit, exposure device, and exposure method Download PDF

Info

Publication number
WO2024038538A1
WO2024038538A1 PCT/JP2022/031214 JP2022031214W WO2024038538A1 WO 2024038538 A1 WO2024038538 A1 WO 2024038538A1 JP 2022031214 W JP2022031214 W JP 2022031214W WO 2024038538 A1 WO2024038538 A1 WO 2024038538A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
source unit
light
optical system
unit according
Prior art date
Application number
PCT/JP2022/031214
Other languages
French (fr)
Japanese (ja)
Inventor
吉田亮平
鈴木智也
櫻井友紀也
犬童真成
岩永正也
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to PCT/JP2022/031214 priority Critical patent/WO2024038538A1/en
Publication of WO2024038538A1 publication Critical patent/WO2024038538A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor

Definitions

  • It relates to a light source unit, a lighting unit, an exposure device, and an exposure method.
  • liquid crystal display panels have been widely used as display elements for personal computers, televisions, etc.
  • a liquid crystal display panel is manufactured by forming a circuit pattern of thin film transistors on a plate (glass substrate) using a photolithography method.
  • an exposure device is used that projects and exposes an original pattern formed on a mask onto a photoresist layer on a plate via a projection optical system (for example, Patent Document 1). .
  • the light source unit includes a plurality of light source elements two-dimensionally arranged on the surface of a fixed object, each light source element of the plurality of light source elements protruding from the fixed object, a protrusion provided between each of the light source elements and at least one of the other adjacent light source elements, and an end of the protrusion is located at a higher position than a lower surface of each of the light source elements.
  • the illumination unit includes the light source unit and an illumination optical system that guides the light emitted from the light source unit to the irradiated object.
  • the illumination unit includes a plurality of the above-mentioned light source units and a combining optical element that combines the light emitted from the plurality of light source units, and the combined light emitted from the combining optical element.
  • an illumination optical system that guides the light to the irradiated object.
  • an exposure apparatus includes the illumination unit described above and a projection optical system that projects a pattern image of a mask illuminated by the illumination unit onto a photosensitive substrate.
  • an exposure method is an exposure method using the above-mentioned exposure apparatus, comprising illuminating a mask with the illumination unit and projecting a pattern image of the mask using the projection optical system. and projecting onto a photosensitive substrate.
  • configurations of the embodiments described below may be modified as appropriate, and at least a portion thereof may be replaced with other components.
  • the configuration elements whose arrangement is not particularly limited are not limited to the arrangement disclosed in the embodiments, but can be arranged at a position where the function can be achieved.
  • FIG. 1 is a schematic diagram showing the configuration of an exposure apparatus according to an embodiment.
  • FIG. 2 is a schematic diagram showing the configuration of the lighting unit.
  • FIG. 3(A) is a plan view schematically showing the configurations of the first and second light source arrays
  • FIG. 3(B) is a diagram schematically showing the internal configurations of the first and second light source units.
  • 4(A) is a plan view showing the substrate according to the embodiment
  • FIG. 4(B) is a sectional view taken along the line AA in FIG. 4(A).
  • 5(A) to 5(H) are diagrams showing a method of manufacturing the first light source array.
  • 6(A) is a plan view showing an example of a protrusion according to Modification 1, and FIG.
  • 6(B) is a sectional view taken along line AA in FIG. 6(A).
  • 7(A) is a plan view showing an example of a protrusion according to modification 2
  • FIG. 7(B) is a sectional view taken along the line AA in FIG. 7(A).
  • 8(A) is a plan view showing an example of a protrusion according to modification 3
  • FIG. 8(B) is a sectional view taken along the line AA in FIG. 8(A).
  • FIG. 1 is a diagram schematically showing the configuration of an exposure apparatus 10 according to an embodiment.
  • the exposure apparatus 10 drives the mask MSK and the glass substrate (hereinafter referred to as "substrate") P in the same direction and at the same speed with respect to the projection optical system PL, thereby transferring the pattern formed on the mask MSK onto the substrate P.
  • This is a scanning stepper (scanner) that transfers images onto the image.
  • the substrate P is a rectangular glass substrate used, for example, in a liquid crystal display device (flat panel display), and has at least one side length or diagonal length of 500 mm or more.
  • the direction in which the mask MSK and substrate P are driven during scanning exposure is the X-axis direction
  • the direction in the horizontal plane perpendicular to this is the Y-axis direction, which is orthogonal to the X-axis and the Y-axis.
  • the direction of rotation is defined as the Z-axis direction
  • the directions of rotation (tilt) around the X-axis, Y-axis, and Z-axis are defined as ⁇ x, ⁇ y, and ⁇ z directions, respectively.
  • the exposure apparatus 10 includes an illumination system IOP, a mask stage MST that holds a mask MSK, a projection optical system PL, a body 70 that supports these, a substrate stage PST that holds a substrate P, a control system for these, and the like.
  • the control system centrally controls each component of the exposure apparatus 10.
  • the body 70 includes a base (vibration isolator) 71, columns 72A, 72B, an optical surface plate 73, a support 74, and a slide guide 75.
  • the base (vibration isolation table) 71 is placed on the floor F, isolates vibrations from the floor F, and supports the columns 72A, 72B, etc.
  • Columns 72A and 72B each have a frame shape, and column 72A is arranged inside column 72B.
  • the optical surface plate 73 has a flat plate shape and is fixed to the ceiling of the column 72A.
  • the support body 74 is supported on the ceiling of the column 72B via a slide guide 75.
  • Slide guide 75 includes an air ball lifter and a positioning mechanism, and positions support body 74 (that is, mask stage MST, which will be described later) at an appropriate position in the X-axis direction with respect to optical surface plate 73.
  • the illumination system IOP is arranged above the body 70.
  • the illumination system IOP irradiates the mask MSK with illumination light IL.
  • the detailed configuration of the illumination system IOP will be described later.
  • Mask stage MST is supported by support body 74.
  • a mask MSK having a pattern surface (lower surface in FIG. 1) on which a circuit pattern is formed is fixed to the mask stage MST by, for example, vacuum suction (or electrostatic suction).
  • Mask stage MST is driven with a predetermined stroke in the scanning direction (X-axis direction) by a drive system including, for example, a linear motor, and is also slightly driven in the non-scanning direction (Y-axis direction and ⁇ z direction).
  • Positional information (including rotational information in the ⁇ z direction) of mask stage MST in the XY plane is measured by an interferometer system.
  • the interferometer system irradiates a length measurement beam onto a movable mirror (or mirror-finished reflective surface (not shown)) provided at the end of mask stage MST, and receives reflected light from the movable mirror. Measure the position of mask stage MST.
  • the measurement results are supplied to a control device (not shown), and the control device drives mask stage MST via a drive system according to the measurement results of the interferometer system.
  • Projection optical system PL is supported by optical surface plate 73 below mask stage MST (-Z side).
  • the projection optical system PL is configured similarly to the projection optical system disclosed in, for example, U.S. Pat. 7), and forms a rectangular image field whose longitudinal direction is the Y-axis direction.
  • four projection optical units 100 are arranged at predetermined intervals in the Y-axis direction, and the remaining three projection optical units 100 are spaced apart from the four projection optical units 100 on the +X side and at predetermined intervals in the Y-axis direction. It is located in As each of the plurality of projection optical units 100, for example, one that forms an erect normal image with a double-sided telecentric, equal-magnification system is used.
  • the plurality of projection areas of the projection optical units 100 arranged in a staggered manner are collectively referred to as an exposure area.
  • the illumination light IL When the illumination region on the mask MSK is illuminated by the illumination light IL from the illumination system IOP, the illumination light IL that has passed through the mask MSK illuminates the circuit pattern of the mask MSK in the illumination region through the projection optical system PL.
  • a projected image (partially erected image) is formed in an irradiation area (exposure area (conjugate to the illumination area)) on the substrate P arranged on the image plane side of the projection optical system PL.
  • a resist sensitizer
  • the mask stage MST and substrate stage PST are driven synchronously, that is, the mask MSK is driven in the scanning direction (X-axis direction) with respect to the illumination area (illumination light IL), and the substrate P is moved into the exposure area (illumination light IL). By driving in the same scanning direction, the substrate P is exposed and the pattern of the mask MSK is transferred onto the substrate P.
  • the substrate stage PST is arranged on a base (vibration isolation table) 71 below (-Z side) the projection optical system PL.
  • a substrate P is held on substrate stage PST via a substrate holder (not shown).
  • Position information in the XY plane of substrate stage PST (including rotation information (yawing amount (rotation amount ⁇ z in the ⁇ z direction), pitching amount (rotation amount ⁇ x in the ⁇ x direction), rolling amount (rotation amount ⁇ y in the ⁇ y direction)) is measured by an interferometer system.
  • the interferometer system irradiates a length measurement beam from an optical surface plate 73 onto a movable mirror (or a mirror-finished reflective surface (not shown)) provided at the end of the substrate stage PST, and collects the reflected light from the movable mirror. By receiving light, the position of substrate stage PST is measured.
  • the measurement results are supplied to a control device (not shown), and the control device drives substrate stage PST according to the measurement results of the interferometer system.
  • the exposure apparatus 10 performs alignment measurement (eg, EGA, etc.) prior to exposure, and uses the results to expose the substrate P according to the following procedure.
  • mask stage MST and substrate stage PST are synchronously driven in the X-axis direction.
  • the control device moves (steps) substrate stage PST to a position corresponding to the second shot area.
  • scanning exposure is performed for the second shot area.
  • the control device transfers the pattern of the mask MSK to all shot areas on the substrate P by repeating stepping between shot areas of the substrate P and scanning exposure for the shot areas.
  • the illumination system IOP includes a plurality of illumination units 90 corresponding to each of the plurality of projection optical units 100 included in the projection optical system PL.
  • FIG. 2 is a diagram schematically showing the configuration of the lighting unit 90.
  • the illumination unit 90 includes a first light source unit OPU1, a second light source unit OPU2, and an illumination optical system 80.
  • the first light source unit OPU1 includes a first light source array 20A and a first enlarging optical system 30A
  • the second light source unit OPU2 includes a second light source array 20B and a second enlarging optical system 30B.
  • FIG. 3(A) is a plan view schematically showing the configurations of the first light source array 20A and the second light source array 20B.
  • FIG. 3(B) is a diagram schematically showing the internal configurations of the first light source unit OPU1 and the second light source unit OPU2.
  • the first light source array 20A includes, for example, a plurality of (5 ⁇ 5 in FIG. 3A) LED (Light Emitting Diode) chips 23A arranged two-dimensionally on a substrate 21A. Be prepared. The number of LED chips 23A may be changed as necessary. The LED chips 23A are arranged at a pitch P1, and the pitch P1 is the distance between the centers of adjacent LED chips 23A.
  • LED Light Emitting Diode
  • Each of the plurality of LED chips 23A has a light emitting section 231A, and the peak wavelength of light emitted from the light emitting section 231A is within the range of 380 to 390 nm. That is, the light emitting section 231A is an ultraviolet LED (UV LED). More preferably, the peak wavelength of the light emitted from the light emitting section 231A is 385 nm.
  • the light emitting surface of the light emitting section 231A is square, and the length of one side thereof is a1.
  • the two directions in which the LED chips 23A are arranged are referred to as the X1 direction and the Y1 direction.
  • the X1 direction and the Y1 direction are orthogonal. Further, the direction perpendicular to the X1 direction and the Y1 direction is defined as the Z1 direction.
  • the Z1 direction is approximately parallel to the optical axis OA of light emitted by the light emitting section 231A.
  • the first enlarging optical system 30A is an enlarging optical system for forming an enlarged image of the light emitting portion 231A of each LED chip 23A on a predetermined plane PP.
  • the first enlarging optical system 30A includes a plurality of lens portions 31A arranged to correspond to the arrangement of the LED chips 23A.
  • Each of the lens sections 31A is a bilateral telecentric optical system that enlarges and projects the light emitting section 231A at a magnification M1 equal to or greater than (array pitch P1 of the LED chips 23A)/(length a1 of one side of the light emitting surface of the light emitting section 231A).
  • M1 magnification M1 equal to or greater than (array pitch P1 of the LED chips 23A)/(length a1 of one side of the light emitting surface of the light emitting section 231A).
  • FIG. 3(B) for clarity of the drawing, only four LED chips 23A (23B) lined up in a row
  • the second light source array 20B includes, for example, a plurality of (5 ⁇ 5 in FIG. 3A) LED chips 23B arranged two-dimensionally on a substrate 21B.
  • the number of LED chips 23B may be changed as necessary.
  • the LED chips 23B are arranged at a pitch P2, and the pitch P2 is the distance between the centers of adjacent LED chips 23B.
  • the arrangement pitch P1 of the LED chips 23A and the arrangement pitch P2 of the LED chips 23B may be the same or different.
  • Each of the plurality of LED chips 23B has a light emitting section 231B, and the peak wavelength of light emitted from the light emitting section 231B is within the range of 360 to 370 nm. That is, the light emitting section 231B is a UV LED. More preferably, the peak wavelength of the light emitted from the light emitting section 231B is 365 nm.
  • the light emitting surface of the light emitting section 231B is square, and the length of one side thereof is a2.
  • the second enlarging optical system 30B is an enlarging optical system for forming an enlarged image of the light emitting portion 231B of each LED chip 23B on a predetermined plane PP.
  • the second magnifying optical system 30B includes a plurality of lens sections 31B arranged so as to correspond to the arrangement of the LED chips 23B, as shown in FIG. 3(B).
  • Each of the lens sections 31B is a double-sided telecentric optical system that magnifies and projects the light emitting section 231B at a magnification M2 equal to or greater than (array pitch P2 of the LED chips 23B)/(length a2 of one side of the light emitting surface of the light emitting section 231B). .
  • each of the lens sections 31A and 31B includes four plano-convex lenses, but the invention is not limited to this.
  • the lens sections 31A and 31B include two biconvex lenses. Alternatively, it may include three biconvex lenses.
  • the lens portions 31A and 31B may include, for example, a plano-convex lens and a biconvex lens.
  • the fixed positions of the LED chips 23A, 23B may shift from the designed positions.
  • the positional deviation of the LED chips 23A and 23B causes a decrease in the illuminance of the light emitted from the first light source unit OPU1 and the second light source unit OPU2.
  • the substrates 21A, 21B according to this embodiment are provided with protrusions 211 made of a part of the substrates 21A, 21B to suppress the positional shift of the LED chips 23A, 23B during manufacturing.
  • 4(A) and 4(B) are diagrams for explaining the protruding portions 211 provided on the substrates 21A and 21B, and FIG. 4(A) is a plan view of the substrates 21A and 21B, and FIG. B) is a sectional view taken along line AA in FIG. 4(A). Note that since the structures of the protrusions 211 provided on the substrates 21A and 21B are the same, only the substrate 21A will be described here.
  • FIGS. 4(A) and 4(B) a part of the LED chip 23A is illustrated for explanation. Further, in FIG. 4(B), hatching of the LED chip 23A is omitted.
  • the protrusion 211 is provided between the plurality of LED chips 23A.
  • a cross-shaped protrusion 211 is provided adjacent to the corner of each LED chip 23A.
  • the end 211a of the protrusion 211 is located at a higher position than the lower surface (-Z1 side surface) of the LED chip 23A.
  • the height of the protrusion 211 may be such that the end 211a is located higher than the lower surface of the LED chip 23A and does not block the light emitted from the LED chip 23A.
  • the shape of the protrusion 211 may be any shape as long as the light emitted from the LED chip 23A does not enter the protrusion 211.
  • the protrusion 211 and the LED chip 23A may be in contact with each other, or there may be a gap between the protrusion 211 and the LED chip 23A.
  • the LED chips 23A are arranged in the area defined by the four adjacent protrusions 211 (the area surrounded by the four protrusions 211). Since the end 211a of the protrusion 211 is located at a higher position than the lower surface of the LED chip 23A, movement of the LED chip 23A placed in this area is restricted. Therefore, when the LED chip 23A is fixed to the substrate 21A, the positional shift of the LED chip 23A is suppressed. This suppresses a decrease in illuminance due to the positional shift of the LED chip 23A, and allows the first light source unit OPU1 to emit high-intensity light.
  • the illumination optical system 80 includes a first condensing optical system (first optical system) 81A that includes a first dichroic mirror DM1, and a second condensing optical system (second optical system). (optical system) 81B, a second dichroic mirror DM2, an imaging optical system 83, a fly's eye lens FEL, and a condenser optical system 84.
  • the first condensing optical system 81A forms a pupil of an enlarged image of the light emitting section 231A formed by the first enlarging optical system 30A. That is, the rear focal position of the first condensing optical system 81A is the position of the pupil.
  • the first condensing optical system 81A includes a first dichroic mirror DM1 in the middle of the optical path, and reflects at least a portion of the light having a peak wavelength of 385 nm. As a result, the light beam enters the second dichroic mirror DM2.
  • the first condensing optical system 81A may be configured without the first dichroic mirror DM1, and in that case, the arrangement of the first light source unit OPU1 and each lens of the first condensing optical system 81A may be changed. The arrangement may be appropriately adjusted so that the light beam is incident on the second dichroic mirror DM2. Further, the first condensing optical system 81A may be composed of one lens, or may be composed of a lens group including a plurality of lenses.
  • the second condensing optical system 81B forms a pupil of an enlarged image of the light emitting section 231B formed by the second enlarging optical system 30B. That is, the rear focal position of the second condensing optical system 81B is the position of the pupil.
  • the second condensing optical system 81B may be composed of one lens, or may be composed of a lens group including a plurality of lenses.
  • the second dichroic mirror DM2 transmits at least part of the light with a peak wavelength of 385 nm and reflects at least part of the light with a peak wavelength of 365 nm. Thereby, a composite image is formed in which the pupil image formed by the first condensing optical system 81A and the pupil image formed by the second condensing optical system 81B are superimposed.
  • the second dichroic mirror DM2 superimposes the pupil image formed by the first condensing optical system 81A and the pupil image formed by the second condensing optical system 81B to create a composite image. form. That is, the second dichroic mirror DM2 is arranged at a position that is the rear focal position of the first condensing optical system 81A and the rear focal position of the second condensing optical system 81B. Thereby, the second dichroic mirror DM2 is illuminated by Koehler illumination with the light emitted from the first light source unit OPU1 and the light emitted from the second light source unit OPU2.
  • the first condensing optical system 81A and the second condensing optical system 81B respectively attach the image of the first light source unit OPU1 and the second condensing optical system to the second dichroic mirror DM2. It may be configured to perform critical illumination to form an image of the light source unit OPU2.
  • the illumination unit 90 includes a detector DT10 for monitoring light with a peak wavelength of 385 nm, a detector DT20 for monitoring light with a peak wavelength of 365 nm, and a detector DT20 for monitoring light with a peak wavelength of 385 nm and light with a peak wavelength of 365 nm.
  • a detector DT30 is provided for the detection.
  • the detector DT10 detects the illuminance of the light with a peak wavelength of 385 nm reflected by the first dichroic mirror DM1.
  • the detector DT20 detects the illuminance of the light having a peak wavelength of 365 nm reflected by the second dichroic mirror DM2.
  • the detector DT30 detects the illuminance of the 385 nm light unintentionally reflected by the second dichroic mirror DM2 and the illuminance of the 365 nm light unintentionally transmitted by the second dichroic mirror DM2.
  • the detection results of the detectors DT10 to DT30 are output to a control device (not shown), and the control device outputs the LED chips 23A of the first light source unit OPU1 and the second light source unit OPU2, respectively, based on the detection results of the detectors DT10 to DT30. and controls the value of the current supplied to 23B.
  • the imaging optical system 83 is a double-sided telecentric optical system that projects the composite image synthesized by the second dichroic mirror DM2 at the same magnification onto the incident end of the fly's eye lens FEL. Note that the imaging optical system 83 may reduce and project the composite image synthesized by the second dichroic mirror DM2 onto the incident end of the fly's eye lens FEL.
  • the fly's eye lens FEL is constructed by densely arranging a large number of lens elements each having, for example, positive refractive power, vertically and horizontally so that their optical axes are parallel to the reference optical axis AX.
  • Each lens element constituting the fly's eye lens FEL has a rectangular cross section similar to the shape of the illumination field to be formed on the mask MSK (and thus the shape of the exposure area to be formed on the substrate P).
  • the light beam incident on the fly's eye lens FEL is wavefront-divided by a large number of lens elements, and one light source image is formed at or near the rear focal plane (output surface) of each lens element. That is, a substantial surface light source, ie, a secondary light source, consisting of a large number of light source images is formed at or near the rear focal plane (output surface) of the fly's eye lens FEL.
  • a light beam from a secondary light source formed at or near the rear focal plane (output surface) of the fly's eye lens FEL enters an aperture stop 85 arranged near it.
  • the rear focal plane (output surface) of the fly's eye lens FEL and the first light source array 20A and the second light source array 20B are optically conjugate.
  • the aperture stop 85 is arranged at a position that is optically approximately conjugate with the entrance pupil plane of the projection optical system PL, and has a variable aperture for defining the range that contributes to the illumination of the secondary light source.
  • the aperture stop 85 changes the aperture diameter of the variable aperture to determine the ⁇ value (the aperture of the secondary light source image on the pupil plane of the projection optical system relative to the aperture diameter of the pupil plane of the projection optical system), which determines the illumination condition. ratio) to the desired value.
  • the light from the secondary light source passes through the aperture diaphragm 85 and, after being condensed by the condenser optical system 84, illuminates the mask MSK in which a predetermined pattern is formed in a superimposed manner.
  • the wavelengths of the light emitted by the first light source unit OPU1 and the second light source unit OPU2 are not limited to those described above, and the first light source unit OPU1 and the second light source unit OPU2 may be The light source unit OPU1 and the second light source unit OPU2 may be configured.
  • the first light source unit OPU1 may emit light with a peak wavelength of 405 nm
  • the second light source unit OPU2 may emit light with a peak wavelength of 385 nm.
  • the first light source unit OPU1 may emit light with a peak wavelength of 395 nm
  • the second light source unit OPU2 may emit light with a peak wavelength of 385 nm.
  • the combination of the wavelength of the light emitted from the first light source unit OPU1 and the wavelength of the light emitted from the second light source unit OPU2 is not limited to these examples. Note that if the combination of the wavelength of the light emitted by the first light source unit OPU1 and the wavelength of the light emitted by the second light source unit OPU2 is a combination other than that of the first embodiment, dichroic dichroic may be used as appropriate depending on the wavelength used. It is preferable to change the material of the mirror.
  • FIGS. 5(A) to 5(H) are diagrams showing a method of manufacturing the first light source array 20A.
  • 5(B) is a sectional view taken along the line AA in FIG. 5(A)
  • FIG. 5(D) is a sectional view taken along the BB line in FIG. 5(C)
  • FIG. , and FIG. 5(H) is a sectional view taken along the line DD in FIG. 5(G).
  • the substrate 21A is, for example, a substrate made of metal such as copper (Cu).
  • posts 212 and protrusions 211 are formed by etching the substrate 21A.
  • the protrusion 211 is formed from a part of the substrate 21A, thereby increasing the strength of the protrusion 211.
  • Etching is performed, for example, using a resist patterned by a photolithography process as a mask.
  • an insulating layer 221 and a wiring layer 222 are sequentially formed on the substrate 21A.
  • cream solder 223 is applied to the upper surface of the post 212 and the wiring layer 222, and the LED chip 23A is placed in the area defined by the protrusion 211. Deploy. Thereafter, the LED chip 23A is fixed to the substrate 21A by reflow. At this time, since the movement of the LED chip 23A is restricted by the protrusion 211, displacement of the LED chip 23A is suppressed. Through the above processing, it is possible to obtain the first light source array 20A in which the positional shift of the LED chips 23A is suppressed. Note that, as shown in the figure, in this embodiment, each LED chip 23A is connected in series in the X1 direction.
  • the first light source unit OPU1 includes a plurality of LED chips 23A arranged two-dimensionally on the surface of the substrate 21A, and a plurality of LED chips protruding from the substrate 21A. 23A.
  • the end 211a of the protrusion 211 is located at a higher position than the lower surface of the LED chip 23A.
  • the substrate 21A is formed of a metal material.
  • the protrusion 211 can be easily formed by etching or the like.
  • the protrusion 211 is formed of a part of the substrate 21A. Thereby, the protrusion 211 has high strength.
  • the protrusion 211 was provided adjacent to the corner of the LED chip 23A, but the present invention is not limited to this.
  • the protrusion 211 may be provided between each LED chip 23A and at least one of the other LED chips 23A adjacent to the LED chip 23A.
  • FIG. 6(A) is a plan view showing an example of a protrusion 211A according to Modification 1
  • FIG. 6(B) is a cross-sectional view taken along line AA in FIG. 6(A).
  • the protruding portion 211A according to Modification Example 1 has a cylindrical shape.
  • the protrusion 211A is arranged in the X1 direction within one set. It is provided between adjacent LED chips 23A and between adjacent LED chips 23A in the Y1 direction.
  • the protruding parts 211A are not provided between adjacent sets in the X1 direction and the Y1 direction, the protruding parts 211A may be provided between adjacent sets.
  • the protrusion 211A and the LED chip 23A may be in contact with each other, or there may be a gap between the protrusion 211A and the LED chip 23A.
  • the substrate 21A has such a protrusion 211A
  • the displacement of the LED chip 23A can be suppressed. can do.
  • a mechanism for pressing the LED chip 23A against the protrusion 211A may be provided on the substrate 21A.
  • the LED chip 23A and the protrusion 211A contact each other at points, which improves the positioning accuracy of the LED chip 23A.
  • a cross-shaped protrusion 211 is arranged in the center, and a circle is formed between the LED chips 23A adjacent to each other in the X1 direction and between the LED chips 23A adjacent to each other in the Y1 direction.
  • a columnar protrusion 211A may be arranged.
  • FIG. 7(A) is a plan view showing an example of a protrusion 211B according to modification 2
  • FIG. 7(B) is a cross-sectional view taken along the line AA in FIG. 7(A).
  • wall-shaped protrusions 211B are placed between adjacent LED chips 23A in the X1 direction within one set indicated by two-dot chain lines. and between adjacent LED chips 23A in the Y1 direction. Also in this case, as in Modification 1, by pressing the LED chip 23A against the protrusion 211B and reflowing it, it is possible to suppress the displacement of the LED chip 23A.
  • the protrusion 211B and the LED chip 23A may be in contact with each other, or there may be a gap between the protrusion 211B and the LED chip 23A. Further, in the second modification, the protrusions 211B are not provided between adjacent sets in the X1 direction and the Y1 direction, but the protrusions 211B may be provided between adjacent sets.
  • the wall-shaped protrusion 211B may be provided adjacent to each side of the LED chip 23A. In this case, positional shift of the LED chip 23A can be suppressed by arranging the LED chip 23A in a region surrounded by the wall-shaped protrusion 211B.
  • the protrusions 211, 211A, and 211B are adjacent to, for example, a part of the side of the LED chip 23A, but the protrusion 211 is arranged so as to surround the entire circumference of the LED chip 23A. may be formed.
  • 8(A) is a plan view showing an example of a protrusion 211C according to modification 3
  • FIG. 8(B) is a sectional view taken along line AA in FIG. 8(A).
  • the protrusion 211C is realized by forming a recess 213 in the substrate 21A to accommodate the LED chip 23A. Thereby, the protrusion 211C surrounds the entire circumference of the LED chip 23A. By housing the LED chip 23A in the recess 213, displacement of the LED chip 23A can be suppressed.
  • the protrusions 211, 211A, and 211B may be members different from the substrate 21A (members separate from the substrate 21A) that come into contact with the substrate 21A. That is, the protrusions 211, 211A, and 211B may be formed by fixing (soldering or bonding) a member different from the substrate 21A to the substrate 21A.
  • the protrusions 211, 211A, and 211B may be made of the same material as the substrate 21A, or may be made of a different material.
  • the LED chips 23A are arranged on the substrate 21A, but the present invention is not limited to this.
  • the LED chips 23A may be arranged on a heat sink.
  • the heat sink include a microchannel heat sink having a flow path for passing a coolant therein, and a fin type heat sink.
  • the illumination unit 90 included the illumination optical system 80 including the first light source unit OPU1, the second light source unit OPU2, and the second dichroic mirror DM2.
  • the lighting unit 90 may include only one of the first light source unit OPU1 and the second light source unit OPU2.
  • the illumination optical system 80 can have any configuration as long as it can guide the light emitted from the first light source unit OPU1 or the second light source unit OPU2 to the mask MSK.
  • Exposure device 20A First light source array 20B Second light source array 21A, 21B Substrate 23A, 23B LED chips 31A, 31B Lens part 80 Illumination optical system 90 Illumination unit 100 Projection optical unit 211, 211A, 211B, 211C Projection part 211a End part 231A, 231B Light emitting part DM2 Second dichroic mirror MSK Mask OPU1 First light source unit OPU2 Second light source unit P Substrate

Abstract

This light source unit comprises: a plurality of light source elements that are two-dimensionally arranged on a surface of a fixation target; and protruding portions that protrude from the fixation target and that are each provided between one of the plurality of light source elements and at least one of the other light source elements adjacent to said one light source element. The ends of the protruding portions are located at a position higher than the lower surfaces of the light source elements. 

Description

光源ユニット、照明ユニット、露光装置、及び露光方法Light source unit, lighting unit, exposure device, and exposure method
 光源ユニット、照明ユニット、露光装置、及び露光方法に関する。 It relates to a light source unit, a lighting unit, an exposure device, and an exposure method.
 近年、パソコンやテレビ等の表示素子として、液晶表示パネルが多用されている。液晶表示パネルは、プレート(ガラス基板)上にフォトリソグラフィの手法で薄膜トランジスタの回路パターンを形成することによって製造される。このフォトリソグラフィ工程のための装置として、マスク上に形成された原画パターンを、投影光学系を介してプレート上のフォトレジスト層に投影露光する露光装置が用いられている(例えば、特許文献1)。 In recent years, liquid crystal display panels have been widely used as display elements for personal computers, televisions, etc. A liquid crystal display panel is manufactured by forming a circuit pattern of thin film transistors on a plate (glass substrate) using a photolithography method. As a device for this photolithography process, an exposure device is used that projects and exposes an original pattern formed on a mask onto a photoresist layer on a plate via a projection optical system (for example, Patent Document 1). .
 一般に、上述の露光装置を含む様々な光学装置に適用することのできる高輝度な面光源の実現が求められている。 In general, there is a need to realize a high-brightness surface light source that can be applied to various optical devices including the above-mentioned exposure apparatus.
特開2000-21712号公報Japanese Patent Application Publication No. 2000-21712
 第1の開示の態様によれば、光源ユニットは、固定対象物の表面上に2次元配列された複数の光源素子と、前記固定対象物から突出し、前記複数の光源素子の各光源素子と、前記各光源素子と隣り合う他の光源素子の少なくとも1つとの間に設けられた突出部と、を備え、前記突出部の端部は、前記各光源素子の下面よりも高い位置にある。 According to the first aspect of the disclosure, the light source unit includes a plurality of light source elements two-dimensionally arranged on the surface of a fixed object, each light source element of the plurality of light source elements protruding from the fixed object, a protrusion provided between each of the light source elements and at least one of the other adjacent light source elements, and an end of the protrusion is located at a higher position than a lower surface of each of the light source elements.
 第2の開示の態様によれば、照明ユニットは、上記光源ユニットと、前記光源ユニットから出射された光を被照射体に導く照明光学系と、を備える。 According to the second aspect of the disclosure, the illumination unit includes the light source unit and an illumination optical system that guides the light emitted from the light source unit to the irradiated object.
 第3の開示の態様によれば、照明ユニットは、複数の上記光源ユニットと、複数の前記光源ユニットから出射された光を合成する合成光学素子を含み、前記合成光学素子から出射された合成光を被照射体に導く照明光学系と、を備える。 According to a third aspect of the disclosure, the illumination unit includes a plurality of the above-mentioned light source units and a combining optical element that combines the light emitted from the plurality of light source units, and the combined light emitted from the combining optical element. an illumination optical system that guides the light to the irradiated object.
 第4の開示の態様によれば、露光装置は、上記照明ユニットと、前記照明ユニットにより照明されるマスクのパターン像を感光性基板上に投影する投影光学系と、を備える。 According to a fourth aspect of the disclosure, an exposure apparatus includes the illumination unit described above and a projection optical system that projects a pattern image of a mask illuminated by the illumination unit onto a photosensitive substrate.
 第5の開示の態様によれば、露光方法は、上記露光装置を用いた露光方法であって、前記照明ユニットによりマスクを照明することと、前記投影光学系を用いて前記マスクのパターン像を感光性基板へ投影することと、を含む。 According to a fifth aspect of the disclosure, an exposure method is an exposure method using the above-mentioned exposure apparatus, comprising illuminating a mask with the illumination unit and projecting a pattern image of the mask using the projection optical system. and projecting onto a photosensitive substrate.
 なお、後述の実施形態の構成を適宜改良しても良く、また、少なくとも一部を他の構成物に代替させても良い。更に、その配置について特に限定のない構成要件は、実施形態で開示した配置に限らず、その機能を達成できる位置に配置することができる。 Note that the configurations of the embodiments described below may be modified as appropriate, and at least a portion thereof may be replaced with other components. Further, the configuration elements whose arrangement is not particularly limited are not limited to the arrangement disclosed in the embodiments, but can be arranged at a position where the function can be achieved.
図1は、実施形態に係る露光装置の構成を示す概略図である。FIG. 1 is a schematic diagram showing the configuration of an exposure apparatus according to an embodiment. 図2は、照明ユニットの構成を示す概略図である。FIG. 2 is a schematic diagram showing the configuration of the lighting unit. 図3(A)は、第1及び第2光源アレイの構成を概略的に示す平面図であり、図3(B)は、第1及び第2光源ユニットの内部構成を概略的に示す図である。FIG. 3(A) is a plan view schematically showing the configurations of the first and second light source arrays, and FIG. 3(B) is a diagram schematically showing the internal configurations of the first and second light source units. be. 図4(A)は、実施形態に係る基板を示す平面図であり、図4(B)は、図4(A)のA-A線断面図である。4(A) is a plan view showing the substrate according to the embodiment, and FIG. 4(B) is a sectional view taken along the line AA in FIG. 4(A). 図5(A)~図5(H)は、第1光源アレイの製造方法を示す図である。5(A) to 5(H) are diagrams showing a method of manufacturing the first light source array. 図6(A)は、変形例1に係る突出部の一例を示す平面図であり、図6(B)は、図6(A)のA-A線断面図である。6(A) is a plan view showing an example of a protrusion according to Modification 1, and FIG. 6(B) is a sectional view taken along line AA in FIG. 6(A). 図7(A)は、変形例2に係る突出部の一例を示す平面図であり、図7(B)は、図7(A)のA-A線断面図である。7(A) is a plan view showing an example of a protrusion according to modification 2, and FIG. 7(B) is a sectional view taken along the line AA in FIG. 7(A). 図8(A)は、変形例3に係る突出部の一例を示す平面図であり、図8(B)は、図8(A)のA-A線断面図である。8(A) is a plan view showing an example of a protrusion according to modification 3, and FIG. 8(B) is a sectional view taken along the line AA in FIG. 8(A).
 一実施形態に係る露光装置10について、図1~図5(H)に基づいて説明する。 An exposure apparatus 10 according to one embodiment will be described based on FIGS. 1 to 5(H).
(露光装置の構成)
 まず、図1を用いて一実施形態に係る露光装置10の構成について説明する。図1は、一実施形態に係る露光装置10の構成を概略的に示す図である。
(Configuration of exposure device)
First, the configuration of an exposure apparatus 10 according to an embodiment will be described using FIG. 1. FIG. 1 is a diagram schematically showing the configuration of an exposure apparatus 10 according to an embodiment.
 露光装置10は、マスクMSKとガラス基板(以下、「基板」と呼ぶ)Pとを投影光学系PLに対して同一方向に同一速度で駆動することで、マスクMSKに形成されたパターンを基板P上に転写するスキャニング・ステッパ(スキャナ)である。基板Pは、例えば液晶表示装置(フラットパネルディスプレイ)に用いられる矩形のガラス基板であり、少なくとも一辺の長さ又は対角長が500mm以上である。 The exposure apparatus 10 drives the mask MSK and the glass substrate (hereinafter referred to as "substrate") P in the same direction and at the same speed with respect to the projection optical system PL, thereby transferring the pattern formed on the mask MSK onto the substrate P. This is a scanning stepper (scanner) that transfers images onto the image. The substrate P is a rectangular glass substrate used, for example, in a liquid crystal display device (flat panel display), and has at least one side length or diagonal length of 500 mm or more.
 以下においては、走査露光の際にマスクMSK及び基板Pが駆動される方向(走査方向)をX軸方向とし、これに直交する水平面内での方向をY軸方向、X軸及びY軸に直交する方向をZ軸方向、X軸、Y軸、及びZ軸回りの回転(傾斜)方向をそれぞれθx、θy、及びθz方向とする。 In the following, the direction in which the mask MSK and substrate P are driven during scanning exposure (scanning direction) is the X-axis direction, and the direction in the horizontal plane perpendicular to this is the Y-axis direction, which is orthogonal to the X-axis and the Y-axis. The direction of rotation is defined as the Z-axis direction, and the directions of rotation (tilt) around the X-axis, Y-axis, and Z-axis are defined as θx, θy, and θz directions, respectively.
 露光装置10は、照明系IOP、マスクMSKを保持するマスクステージMST、投影光学系PL、これらを支持するボディ70、基板Pを保持する基板ステージPST、及びこれらの制御系等を備える。制御系は、露光装置10の構成各部を統括制御する。 The exposure apparatus 10 includes an illumination system IOP, a mask stage MST that holds a mask MSK, a projection optical system PL, a body 70 that supports these, a substrate stage PST that holds a substrate P, a control system for these, and the like. The control system centrally controls each component of the exposure apparatus 10.
 ボディ70は、ベース(防振台)71、コラム72A,72B、光学定盤73、支持体74、及びスライドガイド75を備える。ベース(防振台)71は、床F上に配置され、床Fからの振動を除振してコラム72A,72B等を支持する。コラム72A,72Bはそれぞれ枠体形状を有し、コラム72Bの内側にコラム72Aが配置されている。光学定盤73は、平板形状を有し、コラム72Aの天井部に固定されている。支持体74は、コラム72Bの天井部にスライドガイド75を介して支持されている。スライドガイド75は、エアボールリフタと位置決め機構とを備え、支持体74(すなわち後述するマスクステージMST)を光学定盤73に対してX軸方向の適当な位置に位置決めする。 The body 70 includes a base (vibration isolator) 71, columns 72A, 72B, an optical surface plate 73, a support 74, and a slide guide 75. The base (vibration isolation table) 71 is placed on the floor F, isolates vibrations from the floor F, and supports the columns 72A, 72B, etc. Columns 72A and 72B each have a frame shape, and column 72A is arranged inside column 72B. The optical surface plate 73 has a flat plate shape and is fixed to the ceiling of the column 72A. The support body 74 is supported on the ceiling of the column 72B via a slide guide 75. Slide guide 75 includes an air ball lifter and a positioning mechanism, and positions support body 74 (that is, mask stage MST, which will be described later) at an appropriate position in the X-axis direction with respect to optical surface plate 73.
 照明系IOPは、ボディ70の上方に配置されている。照明系IOPは、照明光ILをマスクMSKに照射する。照明系IOPの詳細な構成については、後述する。 The illumination system IOP is arranged above the body 70. The illumination system IOP irradiates the mask MSK with illumination light IL. The detailed configuration of the illumination system IOP will be described later.
 マスクステージMSTは、支持体74に支持されている。マスクステージMSTには、回路パターンが形成されたパターン面(図1における下面)を有するマスクMSKが、例えば真空吸着(あるいは静電吸着)により固定されている。マスクステージMSTは、例えばリニアモーターを含む駆動系により走査方向(X軸方向)に所定のストロークで駆動されるとともに、非走査方向(Y軸方向及びθz方向)に微少駆動される。 Mask stage MST is supported by support body 74. A mask MSK having a pattern surface (lower surface in FIG. 1) on which a circuit pattern is formed is fixed to the mask stage MST by, for example, vacuum suction (or electrostatic suction). Mask stage MST is driven with a predetermined stroke in the scanning direction (X-axis direction) by a drive system including, for example, a linear motor, and is also slightly driven in the non-scanning direction (Y-axis direction and θz direction).
 マスクステージMSTのXY平面内の位置情報(θz方向の回転情報を含む)は、干渉計システムにより計測される。干渉計システムは、マスクステージMSTの端部に設けられた移動鏡(又は鏡面加工された反射面(不図示))に測長ビームを照射し、移動鏡からの反射光を受光することにより、マスクステージMSTの位置を計測する。その計測結果は制御装置(不図示)に供給され、制御装置は、干渉計システムの計測結果に従って、駆動系を介してマスクステージMSTを駆動する。 Positional information (including rotational information in the θz direction) of mask stage MST in the XY plane is measured by an interferometer system. The interferometer system irradiates a length measurement beam onto a movable mirror (or mirror-finished reflective surface (not shown)) provided at the end of mask stage MST, and receives reflected light from the movable mirror. Measure the position of mask stage MST. The measurement results are supplied to a control device (not shown), and the control device drives mask stage MST via a drive system according to the measurement results of the interferometer system.
 投影光学系PLは、マスクステージMSTの下方(-Z側)において、光学定盤73に支持されている。投影光学系PLは、例えば米国特許第5,729,331号明細書に開示された投影光学系と同様に構成され、マスクMSKのパターン像の投影領域が例えば千鳥状に配置された複数(例えば7)の投影光学ユニット100(マルチレンズ投影光学ユニット)を含み、Y軸方向を長手方向とする矩形形状のイメージフィールドを形成する。ここでは、4つの投影光学ユニット100がY軸方向に所定間隔で配置され、残りの3つの投影光学ユニット100が、4つの投影光学ユニット100から+X側に離間して、Y軸方向に所定間隔で配置されている。複数の投影光学ユニット100のそれぞれとして、例えば両側テレセントリックな等倍系で正立正像を形成するものが用いられる。なお、千鳥状に配置された投影光学ユニット100の複数の投影領域をまとめて露光領域と呼ぶ。 Projection optical system PL is supported by optical surface plate 73 below mask stage MST (-Z side). The projection optical system PL is configured similarly to the projection optical system disclosed in, for example, U.S. Pat. 7), and forms a rectangular image field whose longitudinal direction is the Y-axis direction. Here, four projection optical units 100 are arranged at predetermined intervals in the Y-axis direction, and the remaining three projection optical units 100 are spaced apart from the four projection optical units 100 on the +X side and at predetermined intervals in the Y-axis direction. It is located in As each of the plurality of projection optical units 100, for example, one that forms an erect normal image with a double-sided telecentric, equal-magnification system is used. Note that the plurality of projection areas of the projection optical units 100 arranged in a staggered manner are collectively referred to as an exposure area.
 照明系IOPからの照明光ILによってマスクMSK上の照明領域が照明されると、マスクMSKを透過した照明光ILにより、投影光学系PLを介して、その照明領域内のマスクMSKの回路パターンの投影像(部分正立像)が、投影光学系PLの像面側に配置される基板P上の照射領域(露光領域(照明領域に共役))に形成される。ここで、基板Pの表面にはレジスト(感応剤)が塗布されている。マスクステージMSTと基板ステージPSTとを同期駆動する、すなわちマスクMSKを照明領域(照明光IL)に対して走査方向(X軸方向)に駆動するとともに、基板Pを露光領域(照明光IL)に対して同じ走査方向に駆動することで、基板Pが露光されて基板P上にマスクMSKのパターンが転写される。 When the illumination region on the mask MSK is illuminated by the illumination light IL from the illumination system IOP, the illumination light IL that has passed through the mask MSK illuminates the circuit pattern of the mask MSK in the illumination region through the projection optical system PL. A projected image (partially erected image) is formed in an irradiation area (exposure area (conjugate to the illumination area)) on the substrate P arranged on the image plane side of the projection optical system PL. Here, a resist (sensitizer) is applied to the surface of the substrate P. The mask stage MST and substrate stage PST are driven synchronously, that is, the mask MSK is driven in the scanning direction (X-axis direction) with respect to the illumination area (illumination light IL), and the substrate P is moved into the exposure area (illumination light IL). By driving in the same scanning direction, the substrate P is exposed and the pattern of the mask MSK is transferred onto the substrate P.
 基板ステージPSTは、投影光学系PLの下方(-Z側)のベース(防振台)71上に配置されている。基板ステージPST上に、基板Pが、基板ホルダ(不図示)を介して保持されている。 The substrate stage PST is arranged on a base (vibration isolation table) 71 below (-Z side) the projection optical system PL. A substrate P is held on substrate stage PST via a substrate holder (not shown).
 基板ステージPSTのXY平面内の位置情報(回転情報(ヨーイング量(θz方向の回転量θz)、ピッチング量(θx方向の回転量θx)、ローリング量(θy方向の回転量θy))を含む)は、干渉計システムによって計測される。干渉計システムは、光学定盤73から基板ステージPSTの端部に設けられた移動鏡(又は鏡面加工された反射面(不図示))に測長ビームを照射し、移動鏡からの反射光を受光することにより、基板ステージPSTの位置を計測する。その計測結果は制御装置(不図示)に供給され、制御装置は、干渉計システムの計測結果に従って基板ステージPSTを駆動する。 Position information in the XY plane of substrate stage PST (including rotation information (yawing amount (rotation amount θz in the θz direction), pitching amount (rotation amount θx in the θx direction), rolling amount (rotation amount θy in the θy direction))) is measured by an interferometer system. The interferometer system irradiates a length measurement beam from an optical surface plate 73 onto a movable mirror (or a mirror-finished reflective surface (not shown)) provided at the end of the substrate stage PST, and collects the reflected light from the movable mirror. By receiving light, the position of substrate stage PST is measured. The measurement results are supplied to a control device (not shown), and the control device drives substrate stage PST according to the measurement results of the interferometer system.
 露光装置10では、露光に先立ってアライメント計測(例えば、EGA等)を行い、その結果を用いて、以下の手順で、基板Pを露光する。まず、制御装置の指示に従い、マスクステージMST及び基板ステージPSTをX軸方向に同期駆動する。これにより、基板P上の1つめのショット領域への走査露光を行う。1つめのショット領域に対する走査露光が終了すると、制御装置は、基板ステージPSTを2つめのショット領域に対応する位置へ移動(ステッピング)する。そして、2つめのショット領域に対する走査露光を行う。制御装置は、同様に、基板Pのショット領域間のステッピングとショット領域に対する走査露光とを繰り返して、基板P上の全てのショット領域にマスクMSKのパターンを転写する。 The exposure apparatus 10 performs alignment measurement (eg, EGA, etc.) prior to exposure, and uses the results to expose the substrate P according to the following procedure. First, according to instructions from a control device, mask stage MST and substrate stage PST are synchronously driven in the X-axis direction. As a result, the first shot area on the substrate P is scanned and exposed. When the scanning exposure for the first shot area is completed, the control device moves (steps) substrate stage PST to a position corresponding to the second shot area. Then, scanning exposure is performed for the second shot area. Similarly, the control device transfers the pattern of the mask MSK to all shot areas on the substrate P by repeating stepping between shot areas of the substrate P and scanning exposure for the shot areas.
(照明系IOPの構成)
 次に、本実施形態における照明系IOPの構成について説明する。照明系IOPは、投影光学系PLが備える複数の投影光学ユニット100それぞれに対応する複数の照明ユニット90を備える。図2は、照明ユニット90の構成を概略的に示す図である。
(Configuration of lighting system IOP)
Next, the configuration of the illumination system IOP in this embodiment will be explained. The illumination system IOP includes a plurality of illumination units 90 corresponding to each of the plurality of projection optical units 100 included in the projection optical system PL. FIG. 2 is a diagram schematically showing the configuration of the lighting unit 90.
 照明ユニット90は、第1光源ユニットOPU1と、第2光源ユニットOPU2と、照明光学系80と、を備える。 The illumination unit 90 includes a first light source unit OPU1, a second light source unit OPU2, and an illumination optical system 80.
(光源ユニットの構成)
 第1光源ユニットOPU1は、第1光源アレイ20Aと、第1拡大光学系30Aとを備え、第2光源ユニットOPU2は、第2光源アレイ20Bと、第2拡大光学系30Bとを備える。
(Configuration of light source unit)
The first light source unit OPU1 includes a first light source array 20A and a first enlarging optical system 30A, and the second light source unit OPU2 includes a second light source array 20B and a second enlarging optical system 30B.
 図3(A)は、第1光源アレイ20A及び第2光源アレイ20Bの構成を概略的に示す平面図である。また、図3(B)は、第1光源ユニットOPU1及び第2光源ユニットOPU2の内部構成を概略的に示す図である。 FIG. 3(A) is a plan view schematically showing the configurations of the first light source array 20A and the second light source array 20B. Moreover, FIG. 3(B) is a diagram schematically showing the internal configurations of the first light source unit OPU1 and the second light source unit OPU2.
 図3(A)に示すように、第1光源アレイ20Aは、例えば基板21A上に2次元配列された複数(図3(A)では、5×5)のLED(Light Emitting Diode)チップ23Aを備える。LEDチップ23Aの個数は必要に応じて適宜変更してもよい。LEDチップ23Aは、ピッチP1で配列されており、ピッチP1は、隣り合うLEDチップ23Aの中心間の距離である。 As shown in FIG. 3A, the first light source array 20A includes, for example, a plurality of (5×5 in FIG. 3A) LED (Light Emitting Diode) chips 23A arranged two-dimensionally on a substrate 21A. Be prepared. The number of LED chips 23A may be changed as necessary. The LED chips 23A are arranged at a pitch P1, and the pitch P1 is the distance between the centers of adjacent LED chips 23A.
 複数のLEDチップ23Aは各々、発光部231Aを有し、当該発光部231Aから出射する光のピーク波長は380~390nmの範囲内にある。すなわち、発光部231Aは、紫外線LED(UV LED)である。発光部231Aから出射する光のピーク波長は385nmであることがより好ましい。発光部231Aの発光面は正方形であり、その一辺の長さはa1である。なお、以後の説明において、LEDチップ23Aが配列された2方向を、X1方向及びY1方向とする。X1方向とY1方向とは直交している。また、X1方向及びY1方向に直交する方向をZ1方向とする。Z1方向は、発光部231Aが出射する光の光軸OAと略平行である。 Each of the plurality of LED chips 23A has a light emitting section 231A, and the peak wavelength of light emitted from the light emitting section 231A is within the range of 380 to 390 nm. That is, the light emitting section 231A is an ultraviolet LED (UV LED). More preferably, the peak wavelength of the light emitted from the light emitting section 231A is 385 nm. The light emitting surface of the light emitting section 231A is square, and the length of one side thereof is a1. In the following description, the two directions in which the LED chips 23A are arranged are referred to as the X1 direction and the Y1 direction. The X1 direction and the Y1 direction are orthogonal. Further, the direction perpendicular to the X1 direction and the Y1 direction is defined as the Z1 direction. The Z1 direction is approximately parallel to the optical axis OA of light emitted by the light emitting section 231A.
 第1拡大光学系30Aは、各LEDチップ23Aの発光部231Aの拡大像を所定面PPにそれぞれ形成するための拡大光学系である。図3(B)に示すように、第1拡大光学系30Aは、LEDチップ23Aの配列と対応するように配列された複数のレンズ部31Aを備える。レンズ部31Aは各々、発光部231Aを、(LEDチップ23Aの配列ピッチP1)/(発光部231Aの発光面の一辺の長さa1)以上の倍率M1で拡大投影する両側テレセントリックな光学系である。なお、図3(B)では、図面の明瞭化のために、Y1方向に沿って一列に並んだ4つのLEDチップ23A(23B)だけを示している。 The first enlarging optical system 30A is an enlarging optical system for forming an enlarged image of the light emitting portion 231A of each LED chip 23A on a predetermined plane PP. As shown in FIG. 3(B), the first enlarging optical system 30A includes a plurality of lens portions 31A arranged to correspond to the arrangement of the LED chips 23A. Each of the lens sections 31A is a bilateral telecentric optical system that enlarges and projects the light emitting section 231A at a magnification M1 equal to or greater than (array pitch P1 of the LED chips 23A)/(length a1 of one side of the light emitting surface of the light emitting section 231A). . In addition, in FIG. 3(B), for clarity of the drawing, only four LED chips 23A (23B) lined up in a row along the Y1 direction are shown.
 第2光源アレイ20Bは、例えば基板21B上に2次元配列された複数(図3(A)では、5×5)のLEDチップ23Bを備える。LEDチップ23Bの個数は必要に応じて適宜変更してもよい。LEDチップ23Bは、ピッチP2で配列されており、ピッチP2は、隣り合うLEDチップ23Bの中心間の距離である。LEDチップ23Aの配列ピッチP1と、LEDチップ23Bの配列ピッチP2とは、同一でもよいし、異なっていてもよい。 The second light source array 20B includes, for example, a plurality of (5×5 in FIG. 3A) LED chips 23B arranged two-dimensionally on a substrate 21B. The number of LED chips 23B may be changed as necessary. The LED chips 23B are arranged at a pitch P2, and the pitch P2 is the distance between the centers of adjacent LED chips 23B. The arrangement pitch P1 of the LED chips 23A and the arrangement pitch P2 of the LED chips 23B may be the same or different.
 複数のLEDチップ23Bは各々、発光部231Bを有し、当該発光部231Bから出射する光のピーク波長は360~370nmの範囲内にある。すなわち、発光部231Bは、UV LEDである。発光部231Bから出射する光のピーク波長は365nmであることがより好ましい。発光部231Bの発光面は正方形であり、その一辺の長さはa2である。 Each of the plurality of LED chips 23B has a light emitting section 231B, and the peak wavelength of light emitted from the light emitting section 231B is within the range of 360 to 370 nm. That is, the light emitting section 231B is a UV LED. More preferably, the peak wavelength of the light emitted from the light emitting section 231B is 365 nm. The light emitting surface of the light emitting section 231B is square, and the length of one side thereof is a2.
 第2拡大光学系30Bは、各LEDチップ23Bの発光部231Bの拡大像を所定面PPにそれぞれ形成するための拡大光学系である。第2拡大光学系30Bは、図3(B)に示すように、LEDチップ23Bの配列と対応するように配列された複数のレンズ部31Bを備える。レンズ部31Bは各々、発光部231Bを、(LEDチップ23Bの配列ピッチP2)/(発光部231Bの発光面の一辺の長さa2)以上の倍率M2で拡大投影する両側テレセントリックな光学系である。 The second enlarging optical system 30B is an enlarging optical system for forming an enlarged image of the light emitting portion 231B of each LED chip 23B on a predetermined plane PP. The second magnifying optical system 30B includes a plurality of lens sections 31B arranged so as to correspond to the arrangement of the LED chips 23B, as shown in FIG. 3(B). Each of the lens sections 31B is a double-sided telecentric optical system that magnifies and projects the light emitting section 231B at a magnification M2 equal to or greater than (array pitch P2 of the LED chips 23B)/(length a2 of one side of the light emitting surface of the light emitting section 231B). .
 本実施形態では、レンズ部31A,31Bはそれぞれ、4枚の平凸レンズを備えているが、これに限定されるものではなく、レンズ部31A,31Bは、例えば2枚の両凸レンズを備えていてもよいし、3枚の両凸レンズを備えていてもよい。また、レンズ部31A,31Bは、例えば、平凸レンズと両凸レンズとを備えていてもよい。 In this embodiment, each of the lens sections 31A and 31B includes four plano-convex lenses, but the invention is not limited to this. For example, the lens sections 31A and 31B include two biconvex lenses. Alternatively, it may include three biconvex lenses. Further, the lens portions 31A and 31B may include, for example, a plano-convex lens and a biconvex lens.
 ここで、第1光源アレイ20A及び第2光源アレイ20Bの製造過程において、各LEDチップ23A,23Bを基板21A,21B上に配列し固定するときに(より具体的には、クリームはんだのリフロー時)、LEDチップ23A,23Bの固定位置が設計位置からずれてしまう場合がある。LEDチップ23A,23Bの位置ずれは、第1光源ユニットOPU1及び第2光源ユニットOPU2から出射される光の照度低下を招く。 Here, in the manufacturing process of the first light source array 20A and the second light source array 20B, when arranging and fixing the LED chips 23A and 23B on the substrates 21A and 21B (more specifically, when reflowing cream solder ), the fixed positions of the LED chips 23A, 23B may shift from the designed positions. The positional deviation of the LED chips 23A and 23B causes a decrease in the illuminance of the light emitted from the first light source unit OPU1 and the second light source unit OPU2.
 そこで、本実施形態に係る基板21A,21Bには、製造時におけるLEDチップ23A,23Bの位置ずれを抑制する、基板21A,21Bの一部からなる突出部211が設けられている。図4(A)及び図4(B)は、基板21A,21Bに設けられた突出部211を説明するための図であり、図4(A)は基板21A,21Bの平面図、図4(B)は、図4(A)のA-A線断面図である。なお、基板21A,21Bに設けられた突出部211の構造は同一であるため、ここでは、基板21Aについて説明する。図4(A)及び図4(B)では、説明のため、LEDチップ23Aの一部を図示している。また、図4(B)において、LEDチップ23Aのハッチングを省略している。 Therefore, the substrates 21A, 21B according to this embodiment are provided with protrusions 211 made of a part of the substrates 21A, 21B to suppress the positional shift of the LED chips 23A, 23B during manufacturing. 4(A) and 4(B) are diagrams for explaining the protruding portions 211 provided on the substrates 21A and 21B, and FIG. 4(A) is a plan view of the substrates 21A and 21B, and FIG. B) is a sectional view taken along line AA in FIG. 4(A). Note that since the structures of the protrusions 211 provided on the substrates 21A and 21B are the same, only the substrate 21A will be described here. In FIGS. 4(A) and 4(B), a part of the LED chip 23A is illustrated for explanation. Further, in FIG. 4(B), hatching of the LED chip 23A is omitted.
 突出部211は、複数のLEDチップ23Aの間に設けられる。本実施形態では、図4(A)及び図4(B)に示すように、十字状の突出部211が各LEDチップ23Aの角部に隣接するように設けられている。図4(B)に示すように、突出部211の端部211aは、LEDチップ23Aの下面(-Z1側の面)よりも高い位置にある。突出部211の高さは、端部211aがLEDチップ23Aの下面より高い位置にあり、かつ、LEDチップ23Aから出射される光を遮らない高さであればよい。また、突出部211の形状は、LEDチップ23Aから出射された光が突出部211に入射しないような形状であればよい。突出部211とLEDチップ23Aとは接触していてもよいし、突出部211とLEDチップ23Aとの間に隙間があってもよい。 The protrusion 211 is provided between the plurality of LED chips 23A. In this embodiment, as shown in FIGS. 4A and 4B, a cross-shaped protrusion 211 is provided adjacent to the corner of each LED chip 23A. As shown in FIG. 4B, the end 211a of the protrusion 211 is located at a higher position than the lower surface (-Z1 side surface) of the LED chip 23A. The height of the protrusion 211 may be such that the end 211a is located higher than the lower surface of the LED chip 23A and does not block the light emitted from the LED chip 23A. Further, the shape of the protrusion 211 may be any shape as long as the light emitted from the LED chip 23A does not enter the protrusion 211. The protrusion 211 and the LED chip 23A may be in contact with each other, or there may be a gap between the protrusion 211 and the LED chip 23A.
 第1光源アレイ20Aの製造時、隣接する4つの突出部211によって規定される領域(4つの突出部211に囲まれた領域)にLEDチップ23Aを配置する。突出部211の端部211aは、LEDチップ23Aの下面よりも高い位置にあるため、当該領域に配置されたLEDチップ23Aの移動が規制される。このため、LEDチップ23Aを基板21Aに固定するときにLEDチップ23Aの位置ずれが抑制される。これにより、LEDチップ23Aの位置ずれに起因する照度低下が抑制され、第1光源ユニットOPU1は高輝度の光を出射することができる。 When manufacturing the first light source array 20A, the LED chips 23A are arranged in the area defined by the four adjacent protrusions 211 (the area surrounded by the four protrusions 211). Since the end 211a of the protrusion 211 is located at a higher position than the lower surface of the LED chip 23A, movement of the LED chip 23A placed in this area is restricted. Therefore, when the LED chip 23A is fixed to the substrate 21A, the positional shift of the LED chip 23A is suppressed. This suppresses a decrease in illuminance due to the positional shift of the LED chip 23A, and allows the first light source unit OPU1 to emit high-intensity light.
(照明光学系80の構成)
 図2に戻り、照明光学系80は、第1のダイクロイックミラーDM1を含んで構成される第1の集光光学系(第1の光学系)81Aと、第2の集光光学系(第2の光学系)81Bと、第2のダイクロイックミラーDM2と、結像光学系83と、フライアイレンズFELと、コンデンサー光学系84と、を備える。
(Configuration of illumination optical system 80)
Returning to FIG. 2, the illumination optical system 80 includes a first condensing optical system (first optical system) 81A that includes a first dichroic mirror DM1, and a second condensing optical system (second optical system). (optical system) 81B, a second dichroic mirror DM2, an imaging optical system 83, a fly's eye lens FEL, and a condenser optical system 84.
 第1の集光光学系81Aは、第1拡大光学系30Aによって形成される発光部231Aの拡大像の瞳を形成する。すなわち、第1の集光光学系81Aの後側焦点位置が瞳の位置となる。第1の集光光学系81Aは、光路の途中に第1のダイクロイックミラーDM1を有し、ピーク波長385nmの光の少なくとも一部を反射する。これにより、第2のダイクロイックミラーDM2に光束が入射する。なお、第1の集光光学系81Aは、第1のダイクロイックミラーDM1を備えない構成としてもよく、その場合は、第1光源ユニットOPU1の配置と第1の集光光学系81Aの各レンズの配置を適宜調整して第2のダイクロイックミラーDM2に光束が入射するように構成すればよい。また、第1の集光光学系81Aは、1枚のレンズで構成されていてもよいし、複数のレンズを含むレンズ群で構成されていてもよい。 The first condensing optical system 81A forms a pupil of an enlarged image of the light emitting section 231A formed by the first enlarging optical system 30A. That is, the rear focal position of the first condensing optical system 81A is the position of the pupil. The first condensing optical system 81A includes a first dichroic mirror DM1 in the middle of the optical path, and reflects at least a portion of the light having a peak wavelength of 385 nm. As a result, the light beam enters the second dichroic mirror DM2. Note that the first condensing optical system 81A may be configured without the first dichroic mirror DM1, and in that case, the arrangement of the first light source unit OPU1 and each lens of the first condensing optical system 81A may be changed. The arrangement may be appropriately adjusted so that the light beam is incident on the second dichroic mirror DM2. Further, the first condensing optical system 81A may be composed of one lens, or may be composed of a lens group including a plurality of lenses.
 第2の集光光学系81Bは、第2拡大光学系30Bによって形成される発光部231Bの拡大像の瞳を形成する。すなわち、第2の集光光学系81Bの後側焦点位置が瞳の位置となる。第2の集光光学系81Bは、1枚のレンズで構成されていてもよいし、複数枚のレンズを含むレンズ群で構成されていてもよい。 The second condensing optical system 81B forms a pupil of an enlarged image of the light emitting section 231B formed by the second enlarging optical system 30B. That is, the rear focal position of the second condensing optical system 81B is the position of the pupil. The second condensing optical system 81B may be composed of one lens, or may be composed of a lens group including a plurality of lenses.
 第2のダイクロイックミラーDM2は、ピーク波長385nmの光の少なくとも一部を透過し、ピーク波長365nmの光の少なくとも一部を反射する。これにより、第1の集光光学系81Aによって形成された瞳像と、第2の集光光学系81Bによって形成された瞳像とを重ね合わせた合成像が形成される。 The second dichroic mirror DM2 transmits at least part of the light with a peak wavelength of 385 nm and reflects at least part of the light with a peak wavelength of 365 nm. Thereby, a composite image is formed in which the pupil image formed by the first condensing optical system 81A and the pupil image formed by the second condensing optical system 81B are superimposed.
 本実施形態において、第2のダイクロイックミラーDM2は、第1の集光光学系81Aによって形成された瞳像と、第2の集光光学系81Bによって形成された瞳像とを重ね合わせて合成像を形成する。すなわち、第2のダイクロイックミラーDM2は、第1の集光光学系81Aの後側焦点位置であって、第2の集光光学系81Bの後側焦点位置である位置に配置される。これにより、第2のダイクロイックミラーDM2は、第1光源ユニットOPU1から出射した光と、第2光源ユニットOPU2から出射した光と、にケーラー照明される。ケーラー照明することにより、第1の集光光学系81Aによって形成された瞳像の光束の照度変化及び第2の集光光学系81Bによって形成された瞳像の光束の照度変化を小さくすることができる。なお、本実施形態の構成に限定されず、第1の集光光学系81Aと第2の集光光学系81Bとが、それぞれ第2のダイクロイックミラーDM2に第1光源ユニットOPU1の像と第2光源ユニットOPU2の像とを形成するクリティカル照明を行うように構成されてもよい。 In this embodiment, the second dichroic mirror DM2 superimposes the pupil image formed by the first condensing optical system 81A and the pupil image formed by the second condensing optical system 81B to create a composite image. form. That is, the second dichroic mirror DM2 is arranged at a position that is the rear focal position of the first condensing optical system 81A and the rear focal position of the second condensing optical system 81B. Thereby, the second dichroic mirror DM2 is illuminated by Koehler illumination with the light emitted from the first light source unit OPU1 and the light emitted from the second light source unit OPU2. By performing Koehler illumination, it is possible to reduce the change in illuminance of the light flux of the pupil image formed by the first condensing optical system 81A and the change in the illuminance of the light flux of the pupil image formed by the second condensing optical system 81B. can. Note that, without being limited to the configuration of the present embodiment, the first condensing optical system 81A and the second condensing optical system 81B respectively attach the image of the first light source unit OPU1 and the second condensing optical system to the second dichroic mirror DM2. It may be configured to perform critical illumination to form an image of the light source unit OPU2.
 照明ユニット90には、ピーク波長385nmの光をモニタリングするための検出器DT10と、ピーク波長365nmの光をモニタリングするための検出器DT20と、ピーク波長385nmの光とピーク波長365nmの光とをモニタリングするための検出器DT30とが設けられている。 The illumination unit 90 includes a detector DT10 for monitoring light with a peak wavelength of 385 nm, a detector DT20 for monitoring light with a peak wavelength of 365 nm, and a detector DT20 for monitoring light with a peak wavelength of 385 nm and light with a peak wavelength of 365 nm. A detector DT30 is provided for the detection.
 具体的には、検出器DT10は、第1のダイクロイックミラーDM1に反射されたピーク波長385nmの光の照度を検出する。検出器DT20は、第2のダイクロイックミラーDM2に反射されたピーク波長365nmの光の照度を検出する。検出器DT30は、第2のダイクロイックミラーDM2により意図せず反射された385nmの光の照度と、第2のダイクロイックミラーDM2が意図せず透過した365nmの光の照度と、を検出する。 Specifically, the detector DT10 detects the illuminance of the light with a peak wavelength of 385 nm reflected by the first dichroic mirror DM1. The detector DT20 detects the illuminance of the light having a peak wavelength of 365 nm reflected by the second dichroic mirror DM2. The detector DT30 detects the illuminance of the 385 nm light unintentionally reflected by the second dichroic mirror DM2 and the illuminance of the 365 nm light unintentionally transmitted by the second dichroic mirror DM2.
 検出器DT10~DT30の検出結果は不図示の制御装置に出力され、制御装置は検出器DT10~DT30の検出結果に基づいて、第1光源ユニットOPU1及び第2光源ユニットOPU2がそれぞれ備えるLEDチップ23A及び23Bに供給する電流の値等を制御する。 The detection results of the detectors DT10 to DT30 are output to a control device (not shown), and the control device outputs the LED chips 23A of the first light source unit OPU1 and the second light source unit OPU2, respectively, based on the detection results of the detectors DT10 to DT30. and controls the value of the current supplied to 23B.
 結像光学系83は、第2のダイクロイックミラーDM2が合成した合成像をフライアイレンズFELの入射端に等倍投影する両側テレセントリックな光学系である。なお、結像光学系83は、第2のダイクロイックミラーDM2が合成した合成像をフライアイレンズFELの入射端に縮小投影してもよい。 The imaging optical system 83 is a double-sided telecentric optical system that projects the composite image synthesized by the second dichroic mirror DM2 at the same magnification onto the incident end of the fly's eye lens FEL. Note that the imaging optical system 83 may reduce and project the composite image synthesized by the second dichroic mirror DM2 onto the incident end of the fly's eye lens FEL.
 フライアイレンズFELは、たとえば正の屈折力を有する多数のレンズエレメントをその光軸が基準光軸AXと平行になるように縦横に且つ稠密に配列することによって構成されている。フライアイレンズFELを構成する各レンズエレメントは、マスクMSK上において形成すべき照野の形状(ひいては基板P上において形成すべき露光領域の形状)と相似な矩形状の断面を有する。 The fly's eye lens FEL is constructed by densely arranging a large number of lens elements each having, for example, positive refractive power, vertically and horizontally so that their optical axes are parallel to the reference optical axis AX. Each lens element constituting the fly's eye lens FEL has a rectangular cross section similar to the shape of the illumination field to be formed on the mask MSK (and thus the shape of the exposure area to be formed on the substrate P).
 したがって、フライアイレンズFELに入射した光束は多数のレンズエレメントにより波面分割され、各レンズエレメントの後側焦点面(出射面)またはその近傍には1つの光源像がそれぞれ形成される。すなわち、フライアイレンズFELの後側焦点面(出射面)またはその近傍には、多数の光源像からなる実質的な面光源すなわち二次光源が形成される。フライアイレンズFELの後側焦点面(出射面)またはその近傍に形成された二次光源からの光束は、その近傍に配置された開口絞り85に入射する。なお、本実施形態においてフライアイレンズFELの後側焦点面(出射面)と、第1光源アレイ20A及び第2光源アレイ20Bとは、光学的に共役である。 Therefore, the light beam incident on the fly's eye lens FEL is wavefront-divided by a large number of lens elements, and one light source image is formed at or near the rear focal plane (output surface) of each lens element. That is, a substantial surface light source, ie, a secondary light source, consisting of a large number of light source images is formed at or near the rear focal plane (output surface) of the fly's eye lens FEL. A light beam from a secondary light source formed at or near the rear focal plane (output surface) of the fly's eye lens FEL enters an aperture stop 85 arranged near it. In this embodiment, the rear focal plane (output surface) of the fly's eye lens FEL and the first light source array 20A and the second light source array 20B are optically conjugate.
 開口絞り85は、投影光学系PLの入射瞳面と光学的にほぼ共役な位置に配置され、二次光源の照明に寄与する範囲を規定するための可変開口部を有する。そして、開口絞り85は、可変開口部の開口径を変化させることにより、照明条件を決定するσ値(投影光学系の瞳面の開口径に対するその瞳面上での二次光源像の口径の比)を所望の値に設定する。開口絞り85を介した二次光源からの光は、コンデンサー光学系84の集光作用を受けた後、所定のパターンが形成されたマスクMSKを重畳的に照明する。 The aperture stop 85 is arranged at a position that is optically approximately conjugate with the entrance pupil plane of the projection optical system PL, and has a variable aperture for defining the range that contributes to the illumination of the secondary light source. The aperture stop 85 changes the aperture diameter of the variable aperture to determine the σ value (the aperture of the secondary light source image on the pupil plane of the projection optical system relative to the aperture diameter of the pupil plane of the projection optical system), which determines the illumination condition. ratio) to the desired value. The light from the secondary light source passes through the aperture diaphragm 85 and, after being condensed by the condenser optical system 84, illuminates the mask MSK in which a predetermined pattern is formed in a superimposed manner.
 なお、第1光源ユニットOPU1及び第2光源ユニットOPU2が出射する光の波長は上述したものに限られず、360~440nmの範囲内にピーク波長を有する光を出射するLEDチップを適宜組み合わせて第1光源ユニットOPU1と第2光源ユニットOPU2とを構成してもよい。例えば、第1光源ユニットOPU1がピーク波長405nmの光を出射し、かつ、第2光源ユニットOPU2がピーク波長385nmの光を出射するように構成してもよい。また、第1光源ユニットOPU1がピーク波長395nmの光を出射し、かつ、第2光源ユニットOPU2がピーク波長385nmの光を出射するように構成してもよい。第1光源ユニットOPU1から出射する光の波長と第2光源ユニットOPU2が出射する光の波長の組み合わせは、これらの例示には限られない。なお、第1光源ユニットOPU1が出射する光の波長と第2光源ユニットOPU2が出射する光の波長の組み合わせを、本第1実施形態以外の組み合わせとする場合は、使用する波長に応じて適宜ダイクロイックミラーの材料を変更することが好ましい。 Note that the wavelengths of the light emitted by the first light source unit OPU1 and the second light source unit OPU2 are not limited to those described above, and the first light source unit OPU1 and the second light source unit OPU2 may be The light source unit OPU1 and the second light source unit OPU2 may be configured. For example, the first light source unit OPU1 may emit light with a peak wavelength of 405 nm, and the second light source unit OPU2 may emit light with a peak wavelength of 385 nm. Alternatively, the first light source unit OPU1 may emit light with a peak wavelength of 395 nm, and the second light source unit OPU2 may emit light with a peak wavelength of 385 nm. The combination of the wavelength of the light emitted from the first light source unit OPU1 and the wavelength of the light emitted from the second light source unit OPU2 is not limited to these examples. Note that if the combination of the wavelength of the light emitted by the first light source unit OPU1 and the wavelength of the light emitted by the second light source unit OPU2 is a combination other than that of the first embodiment, dichroic dichroic may be used as appropriate depending on the wavelength used. It is preferable to change the material of the mirror.
(光源アレイの製造方法)
 次に、第1光源アレイ20A及び第2光源アレイ20Bの製造方法について説明する。第1光源アレイ20A及び第2光源アレイ20Bの製造方法は同一であるため、ここでは第1光源アレイ20Aについて説明する。
(Method for manufacturing light source array)
Next, a method of manufacturing the first light source array 20A and the second light source array 20B will be described. Since the manufacturing method of the first light source array 20A and the second light source array 20B is the same, the first light source array 20A will be described here.
 図5(A)~図5(H)は、第1光源アレイ20Aの製造方法を示す図である。図5(B)は、図5(A)のA-A線断面図であり、図5(D)は、図5(C)のB-B線断面図であり、図5(F)は、図5(E)のC-C線断面図であり、図5(H)は、図5(G)のD-D線断面図である。 FIGS. 5(A) to 5(H) are diagrams showing a method of manufacturing the first light source array 20A. 5(B) is a sectional view taken along the line AA in FIG. 5(A), FIG. 5(D) is a sectional view taken along the BB line in FIG. 5(C), and FIG. , and FIG. 5(H) is a sectional view taken along the line DD in FIG. 5(G).
 まず、図5(A)及び図5(B)に示すように、基板21Aを準備する。基板21Aは、例えば銅(Cu)等の金属製の基板である。 First, as shown in FIGS. 5(A) and 5(B), a substrate 21A is prepared. The substrate 21A is, for example, a substrate made of metal such as copper (Cu).
 図5(C)及び図5(D)に示すように、基板21Aをエッチングすることによって、ポスト212及び突出部211を形成する。これにより、突出部211は、基板21Aの一部から形成されるので、突出部211の強度が高まる。エッチングは、例えば、フォトリソグラフィ工程によりパターン形成されたレジストをマスクとして行われる。 As shown in FIGS. 5(C) and 5(D), posts 212 and protrusions 211 are formed by etching the substrate 21A. As a result, the protrusion 211 is formed from a part of the substrate 21A, thereby increasing the strength of the protrusion 211. Etching is performed, for example, using a resist patterned by a photolithography process as a mask.
 次に、図5(E)及び図5(F)に示すように、基板21A上に、絶縁層221と、配線層222と、を順に形成する。次に、図5(G)及び図5(H)に示すように、ポスト212の上面および配線層222上に、クリームはんだ223を塗布し、LEDチップ23Aを突出部211で規定された領域に配置する。その後、リフローによってLEDチップ23Aを基板21Aに固定する。このとき、突出部211によりLEDチップ23Aの移動が制限されるので、LEDチップ23Aの位置ずれが抑制される。以上の処理により、LEDチップ23Aの位置ずれが抑制された第1光源アレイ20Aを得ることができる。なお、図示されるように、本実施形態においては、各LEDチップ23AはX1方向に直列に接続されることになる。 Next, as shown in FIGS. 5E and 5F, an insulating layer 221 and a wiring layer 222 are sequentially formed on the substrate 21A. Next, as shown in FIG. 5(G) and FIG. 5(H), cream solder 223 is applied to the upper surface of the post 212 and the wiring layer 222, and the LED chip 23A is placed in the area defined by the protrusion 211. Deploy. Thereafter, the LED chip 23A is fixed to the substrate 21A by reflow. At this time, since the movement of the LED chip 23A is restricted by the protrusion 211, displacement of the LED chip 23A is suppressed. Through the above processing, it is possible to obtain the first light source array 20A in which the positional shift of the LED chips 23A is suppressed. Note that, as shown in the figure, in this embodiment, each LED chip 23A is connected in series in the X1 direction.
 以上、詳細に説明したように、本実施形態によれば、第1光源ユニットOPU1は、基板21Aの表面上の2次元配列された複数のLEDチップ23Aと、基板21Aから突出し、複数のLEDチップ23Aの間に設けられた突出部211と、を備える。突出部211の端部211aは、LEDチップ23Aの下面よりも高い位置にある。これにより、LEDチップ23Aを基板21Aに固定するときに、突出部211がLEDチップ23Aの移動を制限しLEDチップ23Aの位置ずれが抑制されるので、第1光源ユニットOPU1の照度低下が抑制される。したがって、第1光源ユニットOPU1は、高輝度な面光源を実現できる。 As described above in detail, according to the present embodiment, the first light source unit OPU1 includes a plurality of LED chips 23A arranged two-dimensionally on the surface of the substrate 21A, and a plurality of LED chips protruding from the substrate 21A. 23A. The end 211a of the protrusion 211 is located at a higher position than the lower surface of the LED chip 23A. As a result, when the LED chip 23A is fixed to the substrate 21A, the protrusion 211 restricts the movement of the LED chip 23A, and the displacement of the LED chip 23A is suppressed, so that a decrease in the illuminance of the first light source unit OPU1 is suppressed. Ru. Therefore, the first light source unit OPU1 can realize a high-intensity surface light source.
 また、本実施形態によれば、基板21Aは、金属材料で形成されている。これにより、突出部211をエッチング等により容易に形成することができる。 Furthermore, according to this embodiment, the substrate 21A is formed of a metal material. Thereby, the protrusion 211 can be easily formed by etching or the like.
 また、本実施形態によれば、突出部211は、基板21Aの一部からなる。これにより、突出部211は高い強度を有する。 Furthermore, according to the present embodiment, the protrusion 211 is formed of a part of the substrate 21A. Thereby, the protrusion 211 has high strength.
(変形例1)
 上記実施形態では、LEDチップ23Aの角部に隣接して突出部211が設けられていたが、これに限られるものではない。突出部211は、各LEDチップ23Aと、当該LEDチップ23Aと隣り合う他のLEDチップ23Aの少なくとも1つと、の間に設けられていればよい。
(Modification 1)
In the above embodiment, the protrusion 211 was provided adjacent to the corner of the LED chip 23A, but the present invention is not limited to this. The protrusion 211 may be provided between each LED chip 23A and at least one of the other LED chips 23A adjacent to the LED chip 23A.
 図6(A)は、変形例1に係る突出部211Aの一例を示す平面図であり、図6(B)は、図6(A)のA-A線断面図である。図6(A)及び図6(B)に示すように、変形例1に係る突出部211Aは円柱状である。変形例1では、X1方向及びY1方向に2列×2列で配列されたLEDチップ23Aを1セット(二点鎖線で示す)とした場合に、突出部211Aは、1セット内において、X1方向に隣り合うLEDチップ23A同士の間と、Y1方向に隣り合うLEDチップ23A同士の間と、に設けられている。また、X1方向及びY1方向において隣り合うセットの間には、突出部211Aが設けられていないが、隣り合うセットの間に突出部211Aを設けてもよい。突出部211AとLEDチップ23Aとは接触していてもよいし、突出部211AとLEDチップ23Aとの間に隙間があってもよい。 FIG. 6(A) is a plan view showing an example of a protrusion 211A according to Modification 1, and FIG. 6(B) is a cross-sectional view taken along line AA in FIG. 6(A). As shown in FIGS. 6(A) and 6(B), the protruding portion 211A according to Modification Example 1 has a cylindrical shape. In modification example 1, when the LED chips 23A arranged in 2 rows x 2 rows in the X1 direction and the Y1 direction are set as one set (indicated by a two-dot chain line), the protrusion 211A is arranged in the X1 direction within one set. It is provided between adjacent LED chips 23A and between adjacent LED chips 23A in the Y1 direction. Further, although the protruding parts 211A are not provided between adjacent sets in the X1 direction and the Y1 direction, the protruding parts 211A may be provided between adjacent sets. The protrusion 211A and the LED chip 23A may be in contact with each other, or there may be a gap between the protrusion 211A and the LED chip 23A.
 基板21Aがこのような突出部211Aを有する場合、第1光源アレイ20Aの製造時、治具などによってLEDチップ23Aを突出部211Aに押しあててリフローすることで、LEDチップ23Aの位置ずれを抑制することができる。なお、基板21Aに、LEDチップ23Aを突出部211Aに押しあてる機構を設けてもよい。 When the substrate 21A has such a protrusion 211A, when manufacturing the first light source array 20A, by pressing the LED chip 23A against the protrusion 211A using a jig or the like and performing reflow, the displacement of the LED chip 23A can be suppressed. can do. Note that a mechanism for pressing the LED chip 23A against the protrusion 211A may be provided on the substrate 21A.
 変形例1のような円柱状の突出部211Aを用いる場合、LEDチップ23Aと突出部211Aとが点で接触するため、LEDチップ23Aの位置決め精度が向上する。 When using the cylindrical protrusion 211A as in Modification 1, the LED chip 23A and the protrusion 211A contact each other at points, which improves the positioning accuracy of the LED chip 23A.
 なお、例えば、1セット内において、中央部に十字状の突出部211を配置し、X1方向に隣り合うLEDチップ23A同士の間と、Y1方向に隣り合うLEDチップ23A同士の間と、に円柱状の突出部211Aを配置するようにしてもよい。 For example, in one set, a cross-shaped protrusion 211 is arranged in the center, and a circle is formed between the LED chips 23A adjacent to each other in the X1 direction and between the LED chips 23A adjacent to each other in the Y1 direction. A columnar protrusion 211A may be arranged.
(変形例2)
 図7(A)は、変形例2に係る突出部211Bの一例を示す平面図であり、図7(B)は、図7(A)のA-A線断面図である。図7(A)及び図7(B)に示すように、変形例2では、二点鎖線で示す1セット内において、壁状の突出部211Bを、X1方向に隣り合うLEDチップ23A同士の間と、Y1方向に隣り合うLEDチップ23A同士の間と、に設けている。この場合も、変形例1と同様に、LEDチップ23Aを突出部211Bに押しあててリフローすることで、LEDチップ23Aの位置ずれを抑制することができる。突出部211BとLEDチップ23Aとは接触していてもよいし、突出部211BとLEDチップ23Aとの間に隙間があってもよい。また、本変形例2においてX1方向及びY1方向において隣り合うセットの間には、突出部211Bが設けられていないが、隣り合うセットの間に突出部211Bを設けてもよい。
(Modification 2)
FIG. 7(A) is a plan view showing an example of a protrusion 211B according to modification 2, and FIG. 7(B) is a cross-sectional view taken along the line AA in FIG. 7(A). As shown in FIGS. 7(A) and 7(B), in Modification 2, wall-shaped protrusions 211B are placed between adjacent LED chips 23A in the X1 direction within one set indicated by two-dot chain lines. and between adjacent LED chips 23A in the Y1 direction. Also in this case, as in Modification 1, by pressing the LED chip 23A against the protrusion 211B and reflowing it, it is possible to suppress the displacement of the LED chip 23A. The protrusion 211B and the LED chip 23A may be in contact with each other, or there may be a gap between the protrusion 211B and the LED chip 23A. Further, in the second modification, the protrusions 211B are not provided between adjacent sets in the X1 direction and the Y1 direction, but the protrusions 211B may be provided between adjacent sets.
 なお、壁状の突出部211Bを、LEDチップ23Aの各辺に隣接するように設けてもよい。この場合、壁状の突出部211Bに囲まれた領域にLEDチップ23Aを配置することにより、LEDチップ23Aの位置ずれを抑制することができる。 Note that the wall-shaped protrusion 211B may be provided adjacent to each side of the LED chip 23A. In this case, positional shift of the LED chip 23A can be suppressed by arranging the LED chip 23A in a region surrounded by the wall-shaped protrusion 211B.
(変形例3)
 上記実施形態及び変形例1及び2では、突出部211,211A,211Bは、例えばLEDチップ23Aの辺の一部と隣接していたが、突出部211は、LEDチップ23Aの全周を取り囲むように形成されていてもよい。図8(A)は、変形例3に係る突出部211Cの一例を示す平面図であり、図8(B)は、図8(A)のA-A線断面図である。変形例3では、基板21Aに、LEDチップ23Aを収容する凹部213を形成することにより、突出部211Cを実現している。これにより、突出部211Cは、LEDチップ23Aの全周を取り囲む。LEDチップ23Aを凹部213に収容することで、LEDチップ23Aの位置ずれを抑制することができる。
(Modification 3)
In the above embodiment and modified examples 1 and 2, the protrusions 211, 211A, and 211B are adjacent to, for example, a part of the side of the LED chip 23A, but the protrusion 211 is arranged so as to surround the entire circumference of the LED chip 23A. may be formed. 8(A) is a plan view showing an example of a protrusion 211C according to modification 3, and FIG. 8(B) is a sectional view taken along line AA in FIG. 8(A). In modification 3, the protrusion 211C is realized by forming a recess 213 in the substrate 21A to accommodate the LED chip 23A. Thereby, the protrusion 211C surrounds the entire circumference of the LED chip 23A. By housing the LED chip 23A in the recess 213, displacement of the LED chip 23A can be suppressed.
 なお、上記実施形態及び変形例1~3では、突出部211,211A,211B,211Cが、基板21Aの一部からなる場合について説明したが、これに限られるものではない。例えば、実施形態及び変形例1及び2において、突出部211,211A,211Bは、基板21Aと接触する、基板21Aとは異なる部材(基板21Aと別体の部材)であってもよい。すなわち、基板21Aと異なる部材を基板21Aに固定(半田づけ、接着)することによって、突出部211,211A,211Bを形成してもよい。この場合、突出部211,211A,211Bは基板21Aと同一の材料から形成されていてもよいし、異なる材料から形成されていてもよい。 Note that in the above embodiment and modifications 1 to 3, the case where the protrusions 211, 211A, 211B, and 211C are formed as part of the substrate 21A has been described, but the present invention is not limited to this. For example, in the embodiment and modifications 1 and 2, the protrusions 211, 211A, and 211B may be members different from the substrate 21A (members separate from the substrate 21A) that come into contact with the substrate 21A. That is, the protrusions 211, 211A, and 211B may be formed by fixing (soldering or bonding) a member different from the substrate 21A to the substrate 21A. In this case, the protrusions 211, 211A, and 211B may be made of the same material as the substrate 21A, or may be made of a different material.
 また、上記実施形態及び変形例1~3において、基板21AにLEDチップ23Aを配列していたが、これに限られるものではない。LEDチップ23Aを、ヒートシンク上に配列してもよい。LEDチップ23Bについても同様である。ヒートシンクとしては、例えば、内部に冷媒を通す流路を有するマイクロチャネルヒートシンクや、フィンタイプのヒートシンクが挙げられる。LEDはLEDチップ23Aの温度が上昇すると光量が低下するが、LEDチップ23Aをヒートシンクに配列することにより、LEDチップ23Aの温度上昇を抑制することができる。 Furthermore, in the above embodiment and modifications 1 to 3, the LED chips 23A are arranged on the substrate 21A, but the present invention is not limited to this. The LED chips 23A may be arranged on a heat sink. The same applies to the LED chip 23B. Examples of the heat sink include a microchannel heat sink having a flow path for passing a coolant therein, and a fin type heat sink. Although the light intensity of the LED decreases as the temperature of the LED chip 23A increases, by arranging the LED chip 23A on a heat sink, the temperature increase of the LED chip 23A can be suppressed.
 また、上記実施形態及び変形例1~3では、照明ユニット90は、第1光源ユニットOPU1と、第2光源ユニットOPU2と、第2のダイクロイックミラーDM2を含む照明光学系80と、を備えていたがこれに限られるものではない。例えば、照明ユニット90は、第1光源ユニットOPU1と第2光源ユニットOPU2とのいずれか一方のみを有していてもよい。この場合、照明光学系80は、第1光源ユニットOPU1又は第2光源ユニットOPU2から出射された光をマスクMSKに導くことができれば、任意の構成を有することができる。 Furthermore, in the above embodiments and modifications 1 to 3, the illumination unit 90 included the illumination optical system 80 including the first light source unit OPU1, the second light source unit OPU2, and the second dichroic mirror DM2. However, it is not limited to this. For example, the lighting unit 90 may include only one of the first light source unit OPU1 and the second light source unit OPU2. In this case, the illumination optical system 80 can have any configuration as long as it can guide the light emitted from the first light source unit OPU1 or the second light source unit OPU2 to the mask MSK.
 上述した実施形態は本発明の好適な実施の例である。但し、これに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変形実施可能である。 The embodiments described above are examples of preferred implementations of the present invention. However, the present invention is not limited to this, and various modifications can be made without departing from the gist of the present invention.
10 露光装置
20A 第1光源アレイ
20B 第2光源アレイ
21A,21B 基板
23A,23B LEDチップ
31A,31B レンズ部
80 照明光学系
90 照明ユニット
100 投影光学ユニット
211,211A,211B,211C 突出部
211a 端部
231A,231B 発光部
DM2 第2のダイクロイックミラー
MSK マスク
OPU1 第1光源ユニット
OPU2 第2光源ユニット
P 基板
 
10 Exposure device 20A First light source array 20B Second light source array 21A, 21B Substrate 23A, 23B LED chips 31A, 31B Lens part 80 Illumination optical system 90 Illumination unit 100 Projection optical unit 211, 211A, 211B, 211C Projection part 211a End part 231A, 231B Light emitting part DM2 Second dichroic mirror MSK Mask OPU1 First light source unit OPU2 Second light source unit P Substrate

Claims (17)

  1.  固定対象物の表面上に2次元配列された複数の光源素子と、
     前記固定対象物から突出し、前記複数の光源素子の各光源素子と、前記各光源素子と隣り合う他の光源素子の少なくとも1つとの間に設けられた突出部と、
    を備え、
     前記突出部の端部は、前記各光源素子の下面よりも高い位置にある、
    光源ユニット。
    a plurality of light source elements arranged two-dimensionally on the surface of a fixed object;
    a protrusion protruding from the fixed object and provided between each light source element of the plurality of light source elements and at least one other light source element adjacent to each light source element;
    Equipped with
    The end of the protrusion is located at a higher position than the lower surface of each light source element.
    light source unit.
  2.  前記固定対象物は、基板又はヒートシンクである、
    請求項1に記載の光源ユニット。
    The fixed object is a substrate or a heat sink,
    The light source unit according to claim 1.
  3.  前記ヒートシンクは、内部に冷媒を通す流路を有する、
    請求項2に記載の光源ユニット。
    The heat sink has a flow path for passing a refrigerant therein.
    The light source unit according to claim 2.
  4.  前記固定対象物は金属材料で形成されている、
    請求項1から請求項3のいずれか一項に記載の光源ユニット。
    the fixed object is made of a metal material;
    The light source unit according to any one of claims 1 to 3.
  5.  前記突出部は、前記固定対象物の一部からなる、
    請求項1から請求項4のいずれか一項に記載の光源ユニット。
    The protruding portion is made of a part of the fixed object,
    The light source unit according to any one of claims 1 to 4.
  6.  前記突出部は、前記固定対象物と接触する、前記固定対象物と異なる部材からなる、
    請求項1から請求項4のいずれか一項に記載の光源ユニット。
    The protrusion is made of a member different from the fixed object and comes into contact with the fixed object.
    The light source unit according to any one of claims 1 to 4.
  7.  前記複数の光源素子から出射される光は、前記突出部に入射しない、
    請求項1から請求項6のいずれか一項に記載の光源ユニット。
    the light emitted from the plurality of light source elements does not enter the protrusion;
    The light source unit according to any one of claims 1 to 6.
  8.  前記複数の光源素子のうち、第1方向及び前記第1方向と交差する第2方向に2列×2列で配列された光源素子を1セットとした場合に、前記突出部は、前記1セット内において、前記第1方向に隣り合う光源素子同士の間と、前記第2方向に隣り合う光源素子同士の間と、に設けられる、
    請求項1から請求項7のいずれか一項に記載の光源ユニット。
    Among the plurality of light source elements, when one set includes light source elements arranged in 2 rows x 2 rows in a first direction and a second direction intersecting the first direction, the protruding portion is arranged in one set. provided between light source elements adjacent in the first direction and between light source elements adjacent in the second direction,
    The light source unit according to any one of claims 1 to 7.
  9.  前記第1方向及び前記第2方向の少なくとも一方において、隣り合う前記光源素子のセットの間には、前記突出部が設けられていない、
    請求項8に記載の光源ユニット。
    In at least one of the first direction and the second direction, the protrusion is not provided between adjacent sets of the light source elements;
    The light source unit according to claim 8.
  10.  前記複数の光源素子は各々、光を出射する発光部を備え、
     前記複数の光源素子の各々の前記発光部の拡大像を形成するレンズ部を2次元平面上に複数配列したレンズアレイを更に備える、
    請求項1から請求項9のいずれか一項に記載の光源ユニット。
    Each of the plurality of light source elements includes a light emitting part that emits light,
    further comprising a lens array in which a plurality of lens parts that form an enlarged image of the light emitting part of each of the plurality of light source elements are arranged on a two-dimensional plane;
    The light source unit according to any one of claims 1 to 9.
  11.  前記光源素子は、発光ダイオード素子である、
    請求項1から請求項10のいずれか一項に記載の光源ユニット。
    The light source element is a light emitting diode element,
    The light source unit according to any one of claims 1 to 10.
  12.  前記光源素子は、波長400nm以下の光を出射する、
    請求項1から請求項11のいずれか一項に記載の光源ユニット。
    The light source element emits light with a wavelength of 400 nm or less,
    The light source unit according to any one of claims 1 to 11.
  13.  請求項1から請求項12のいずれか一項に記載の光源ユニットと、
     前記光源ユニットから出射された光を被照射体に導く照明光学系と、
    を備える照明ユニット。
    The light source unit according to any one of claims 1 to 12,
    an illumination optical system that guides the light emitted from the light source unit to an irradiated object;
    A lighting unit with.
  14.  複数の請求項1から請求項12のいずれか一項に記載の光源ユニットと、
     複数の前記光源ユニットから出射された光を合成する合成光学素子を含み、前記合成光学素子から出射された合成光を被照射体に導く照明光学系と、
    を備える照明ユニット。
    A plurality of light source units according to any one of claims 1 to 12,
    an illumination optical system including a combining optical element that combines light emitted from the plurality of light source units, and guiding the combined light emitted from the combining optical element to an irradiated object;
    A lighting unit with.
  15.  請求項13又は請求項14に記載の照明ユニットと、
     前記照明ユニットにより照明されるマスクのパターン像を感光性基板上に投影する投影光学系と、
    を備える露光装置。
    The lighting unit according to claim 13 or 14,
    a projection optical system that projects a pattern image of the mask illuminated by the illumination unit onto a photosensitive substrate;
    An exposure apparatus comprising:
  16.  前記感光性基板は、少なくとも一辺の長さ又は対角長が500mm以上である、
    請求項15に記載の露光装置。
    The photosensitive substrate has at least one side length or diagonal length of 500 mm or more,
    The exposure apparatus according to claim 15.
  17.  請求項15または請求項16に記載の露光装置を用いた露光方法であって、
     前記照明ユニットによりマスクを照明することと、
     前記投影光学系を用いて前記マスクのパターン像を感光性基板へ投影することと、
    を含む露光方法。
     
    An exposure method using the exposure apparatus according to claim 15 or 16,
    Illuminating the mask with the lighting unit;
    Projecting the pattern image of the mask onto a photosensitive substrate using the projection optical system;
    Exposure methods including.
PCT/JP2022/031214 2022-08-18 2022-08-18 Light source unit, illumination unit, exposure device, and exposure method WO2024038538A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/031214 WO2024038538A1 (en) 2022-08-18 2022-08-18 Light source unit, illumination unit, exposure device, and exposure method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/031214 WO2024038538A1 (en) 2022-08-18 2022-08-18 Light source unit, illumination unit, exposure device, and exposure method

Publications (1)

Publication Number Publication Date
WO2024038538A1 true WO2024038538A1 (en) 2024-02-22

Family

ID=89941582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/031214 WO2024038538A1 (en) 2022-08-18 2022-08-18 Light source unit, illumination unit, exposure device, and exposure method

Country Status (1)

Country Link
WO (1) WO2024038538A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006332077A (en) * 2005-05-23 2006-12-07 Nikon Corp Light source unit, illumination optical device, exposure device and exposure method
WO2017170092A1 (en) * 2016-04-01 2017-10-05 シーシーエス株式会社 Light irradiation device
WO2021149743A1 (en) * 2020-01-24 2021-07-29 株式会社ブイ・テクノロジー Lens array, led lighting unit, exposure device, and exposure method
WO2021251090A1 (en) * 2020-06-08 2021-12-16 株式会社ブイ・テクノロジー Light source device for exposure, lighting device, exposure device, and exposure method
JP2022090891A (en) * 2020-12-08 2022-06-20 キヤノン株式会社 Light source apparatus, cooling method, and method for manufacturing goods

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006332077A (en) * 2005-05-23 2006-12-07 Nikon Corp Light source unit, illumination optical device, exposure device and exposure method
WO2017170092A1 (en) * 2016-04-01 2017-10-05 シーシーエス株式会社 Light irradiation device
WO2021149743A1 (en) * 2020-01-24 2021-07-29 株式会社ブイ・テクノロジー Lens array, led lighting unit, exposure device, and exposure method
WO2021251090A1 (en) * 2020-06-08 2021-12-16 株式会社ブイ・テクノロジー Light source device for exposure, lighting device, exposure device, and exposure method
JP2022090891A (en) * 2020-12-08 2022-06-20 キヤノン株式会社 Light source apparatus, cooling method, and method for manufacturing goods

Similar Documents

Publication Publication Date Title
JP4678493B2 (en) Light source unit, illumination optical apparatus, exposure apparatus, and exposure method
JP2946950B2 (en) Illumination apparatus and exposure apparatus using the same
JP5326259B2 (en) Illumination optical apparatus, exposure apparatus, and device manufacturing method
JP5500454B2 (en) Optical integrator, illumination optical apparatus, exposure apparatus, exposure method, and device manufacturing method
CN1797214A (en) Lithographic apparatus and device manufacturing method
US11255514B2 (en) Illumination apparatus having planar array of LEDs and movable pair of lens arrays for modifying light output
TW200941901A (en) Planar motor and stage using the same
JPH07230949A (en) Lighting device and projection exposing device
KR100846337B1 (en) Exposure method and exposure apparatus
JP2001257157A (en) Device and method for alignment and device and method for exposure
JPH11121358A (en) Illuminator and projecting aligner using it
JP2002050564A (en) Illuminating device, projection aligner and method for manufacturing device using the same
WO2024038538A1 (en) Light source unit, illumination unit, exposure device, and exposure method
JP4144059B2 (en) Scanning exposure equipment
JP2009031169A (en) Position detection apparatus, exposure apparatus, and manufacturing method for device
JP3507459B2 (en) Illumination apparatus, exposure apparatus, and device manufacturing method
WO2024038533A1 (en) Light source unit, illumination unit, exposure device, and exposure method
WO2024038535A1 (en) Lighting unit, exposure device, and exposure method
US20210096466A1 (en) Light source device, illuminating apparatus, exposing apparatus, and method for manufacturing article
TW202409743A (en) Light source unit, lighting unit, exposure device, and exposure method
KR20010077942A (en) Scanning type exposure apparatus, scanning exposure method, and mask
JP4110606B2 (en) Scanning exposure apparatus and exposure method
WO2024038537A1 (en) Light source unit, illumination unit, exposure device, and exposure method
WO2024089737A1 (en) Synthetic optical element, lighting unit, exposure device, and exposure method
JPH0945607A (en) Illumination device, aligner and manufacture of device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22955712

Country of ref document: EP

Kind code of ref document: A1