WO2024038495A1 - Turbine housing, turbine, and supercharger - Google Patents

Turbine housing, turbine, and supercharger Download PDF

Info

Publication number
WO2024038495A1
WO2024038495A1 PCT/JP2022/030900 JP2022030900W WO2024038495A1 WO 2024038495 A1 WO2024038495 A1 WO 2024038495A1 JP 2022030900 W JP2022030900 W JP 2022030900W WO 2024038495 A1 WO2024038495 A1 WO 2024038495A1
Authority
WO
WIPO (PCT)
Prior art keywords
seat
scroll
valve body
channel
turbine housing
Prior art date
Application number
PCT/JP2022/030900
Other languages
French (fr)
Japanese (ja)
Inventor
幹 惠比寿
Original Assignee
三菱重工エンジン&ターボチャージャ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工エンジン&ターボチャージャ株式会社 filed Critical 三菱重工エンジン&ターボチャージャ株式会社
Priority to PCT/JP2022/030900 priority Critical patent/WO2024038495A1/en
Publication of WO2024038495A1 publication Critical patent/WO2024038495A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere

Definitions

  • the present disclosure relates to a turbine housing, a turbine including the turbine housing, and a supercharger.
  • a first branch passage branching from the first scroll passage, a second branch passage branching from the second scroll passage, and a first branch passage and a second branch passage join together.
  • a merging flow path is formed that communicates with an exhaust flow path through which exhaust gas that has passed through a turbine wheel flows (see Patent Document 1).
  • a communication port provided between the merging flow path and the exhaust flow path can be closed, and the communication port provided between the merging flow path and the first branch flow path and the second branch flow path can be closed.
  • a valve having valve bodies that can be separated from each other is disclosed.
  • At least one embodiment of the present disclosure provides a turbine housing with a simple structure, a seal between two branch channels in a merging channel, and a seal between the merging channel and the exhaust channel. It is an object of the present invention to provide a turbine housing, a turbine, and a supercharger that can be sealed at the same time.
  • a turbine housing includes: A turbine housing in which two scroll passages are formed, a scroll flow path forming section that forms the two scroll flow paths; A first branch passage branching from one of the two scroll passages, a second branch passage branching from the other one of the two scroll passages, and the first branch passage.
  • a connecting channel that forms a connecting channel that includes a branch channel and the second branch channel that merge together, and a merging channel that communicates via a communication port with an exhaust channel through which exhaust gas that has passed through the turbine wheel flows.
  • a connecting channel forming section that is a forming section and has a branch wall that separates the first branch channel and the second branch channel
  • a turbine housing body including; a head capable of separating the two branching channels by abutting against the branching wall in the merging channel;
  • a valve having at least a seat portion that extends outward in a radial direction of the valve body from the head portion and is capable of closing the communication port by abutting against a seat wall surface of the turbine housing.
  • a scroll connection valve including a body; The seat portion has a deformation margin for causing the head portion to contact the branch wall after the seat portion contacts the seat wall surface during the closing operation of the scroll connection valve.
  • a turbine according to at least one embodiment of the present disclosure includes: the turbine housing; a turbine wheel rotatably housed in the turbine housing.
  • a supercharger according to at least one embodiment of the present disclosure, A turbine driven by exhaust gas discharged from an engine, the turbine; A compressor is coaxially connected to the turbine and supplies compressed air to the engine as it rotates.
  • the structure of the turbine housing is simple, and the sealing between two branch channels in the merging channel and the sealing between the merging channel and the exhaust channel are performed simultaneously.
  • a turbine housing, a turbine, and a supercharger are provided.
  • FIG. 1 is a schematic diagram of an engine system including a supercharger according to an embodiment.
  • FIG. 2 is a schematic cross-sectional view along the axis of a scroll connection valve of a turbine housing according to an embodiment.
  • FIG. 2 is a schematic cross-sectional view of the turbine housing according to the first embodiment taken along the axis of the scroll connection valve when the scroll connection valve is in a fully closed state.
  • FIG. 2 is a schematic cross-sectional view of the turbine housing according to the first embodiment taken along the axis of the scroll connection valve when the scroll connection valve is in a fully open state.
  • FIG. 1 is a schematic diagram of an engine system including a supercharger according to an embodiment.
  • FIG. 2 is a schematic cross-sectional view along the axis of a scroll connection valve of a turbine housing according to an embodiment.
  • FIG. 2 is a schematic cross-sectional view of the turbine housing according to the first embodiment taken along the axis of the scroll connection valve when the scroll connection valve is in
  • FIG. 7 is a schematic cross-sectional view of a turbine housing according to a modification of the first embodiment, taken along the axis of the scroll connection valve when the scroll connection valve is in a fully open state.
  • FIG. 7 is a schematic cross-sectional view of a turbine housing according to a second embodiment taken along the axis of the scroll connection valve when the scroll connection valve is in a fully closed state.
  • FIG. 7 is a schematic cross-sectional view of a turbine housing according to a third embodiment taken along the axis of the scroll connection valve when the scroll connection valve is in a fully closed state.
  • FIG. 1 is a schematic diagram of an engine system 11 including a supercharger 10 according to an embodiment.
  • the turbine 1 according to the present disclosure can be installed, for example, in a supercharger (turbocharger) 10 for automobiles, ships, or industries (for example, for land power generation).
  • a turbine 1 mounted on a supercharger (turbocharger) 10 will be described as an example, but the turbine 1 according to the present disclosure is not limited to one mounted on the supercharger 10. . Further, it is not necessary to limit the working fluid of the turbine 1 to exhaust gas.
  • the turbine 1 of the present disclosure only needs to be capable of converting working fluid energy into mechanical power (for example, rotational force), and even if it is configured by the turbine 1 alone, it may be configured with mechanisms or devices other than the compressor 13. It may be configured in combination. Further, there is no need to limit the usage of the turbine 1.
  • the supercharger 10 is configured to be driven by the energy of exhaust gas discharged from an engine (internal combustion engine) 12 and compress fluid (for example, air). has been done.
  • the supercharger 10 includes a turbine 1 driven by exhaust gas discharged from an engine 12, and a compressor 13 coaxially connected to the turbine 1 and configured to supply compressed air to the engine 12 as it rotates.
  • the turbine 1 includes a turbine wheel 3 and a turbine housing 2 configured to rotatably accommodate the turbine wheel 3.
  • the compressor 13 includes an impeller 131 and a compressor housing 132 configured to rotatably accommodate the impeller 131.
  • the supercharger 10 includes a rotating shaft 14 to which the turbine wheel 3 is connected at one end and an impeller 131 at the other end, and the rotating shaft 14 is rotatably supported between the turbine wheel 3 and the impeller 131.
  • the bearing 15 further includes a bearing 15 configured to.
  • the supercharger 10 may further include a bearing housing 16 arranged between the turbine housing 2 and the compressor housing 132 and configured to accommodate the bearing 15.
  • the turbine 1 is configured to rotate the turbine wheel 3 using the energy of exhaust gas discharged from the engine 12. Since the impeller 131 is coaxially connected to the turbine wheel 3 via the rotating shaft 14, it is driven to rotate around the axis LA of the supercharger 10 (rotating shaft 14) in conjunction with the rotation of the turbine wheel 3.
  • the compressor 13 sucks air (supply air, gas) into the compressor housing 132 by driving the impeller 131 to rotate around the axis LA, compresses the air, and sends the compressed air to the engine 12. It is composed of Compressed air sent from the compressor 13 to the engine 12 is provided for combustion in the engine 12. Exhaust gas generated by combustion in the engine 12 is sent from the engine 12 to the turbine 1 to rotate the turbine wheel 3.
  • the impeller 131 is configured to guide air introduced along the axial direction of the impeller 131 (i.e., the direction in which the axis LA extends) to the outside in the radial direction of the impeller 131.
  • the impeller 131 does not include an annular member surrounding the outer periphery of the blades of the impeller 131.
  • the turbine wheel 3 is configured to guide exhaust gas introduced from the outside in the radial direction of the turbine wheel 3 along the axial direction of the turbine wheel 3 (that is, the direction in which the axis LA extends).
  • the turbine wheel 3 does not include an annular member surrounding the outer periphery of the blades of the turbine wheel 3.
  • FIG. 2 is a schematic cross-sectional view of the scroll connection valve 5 of the turbine housing 2 according to one embodiment, taken along the axis LB.
  • the turbine housing 2 according to some embodiments includes a turbine housing body 20 and a scroll connection valve 5 attached to the turbine housing body 20.
  • the turbine housing main body 20 includes a scroll passage forming part 21 that forms two scroll passages (a first scroll passage 41 and a second scroll passage 42), and a first branch passage. 44, a connection flow path forming part 22 that forms a connection flow path 43 including a second branch flow path 45 and a merging flow path 46.
  • the turbine housing main body 20 may further include an exhaust flow path forming part 23 that forms an exhaust flow path 47 through which exhaust gas that has passed through the turbine wheel 3 flows.
  • a first scroll passage 41, a second scroll passage 42, a connecting passage 43, and an exhaust passage 47 are formed inside the turbine housing body 20 .
  • the turbine housing body 20 is made of a metal material.
  • Each of the first scroll passage 41 and the second scroll passage 42 is a passage for introducing exhaust gas into the turbine wheel 3.
  • Each of the first scroll passage 41 and the second scroll passage 42 is a spiral passage extending along the circumferential direction around the axis LA on the outer peripheral side of the turbine wheel 3.
  • the first branch flow path 44 is a flow path that branches from one of the two scroll flow paths 41 and 42 (first scroll flow path 41).
  • the second branch channel 45 is a channel that branches from the other scroll channel (second scroll channel 42) of the two scroll channels 41 and 42.
  • the merging flow path 46 communicates via a communication port 48 with an exhaust flow path 47 through which exhaust gas that has passed through the turbine 1 (specifically, the turbine wheel 3) flows.
  • first branch flow path 44 has one end connected to the first scroll flow path 41 and the other end connected to the second branch flow path 45 and the exhaust flow path 47 at the merging flow path 46 .
  • the second branch channel 45 has one end connected to the second scroll channel 42 and the other end connected to the first branch channel 44 and the exhaust channel 47 at a merging channel 46 .
  • the first branch flow path 44 and the second branch flow path 45 communicate exhaust gas between the first scroll flow path 41 and the second scroll flow path 42 so that the exhaust gas can flow therebetween. At least a portion of the exhaust gas flowing through the second scroll passage 42 is communicated with an exhaust passage 47 having a lower pressure than the first scroll passage 41 and the second scroll passage 42 so as to be dischargeable.
  • the scroll connection valve 5 is configured to connect between two branch channels (first branch channel 44 and second branch channel 45) in the merging channel 46 when the scroll connection valve 5 is in a fully closed state (during closing operation). This is for simultaneously performing sealing and sealing between the merging flow path 46 and the exhaust flow path 47. Further, when the scroll connection valve 5 is in a fully open state (during opening operation), the scroll connection valve 5 is connected between the two branch channels (the first branch channel 44 and the second branch channel 45) in the merging channel 46. This is to release the seal between the merging flow path 46 and the exhaust flow path 47, and to enable exhaust gas to flow between these flow paths.
  • the scroll connection valve 5 includes a valve body 6 and a valve rod 7 for driving the valve body 6.
  • the direction in which the axis LB of the valve body 6 extends is referred to as the axial direction of the valve body 6,
  • the direction perpendicular to the axis LB is referred to as the radial direction of the valve body 6, and the circumferential direction around the axis LB is referred to as the circumferential direction of the valve body 6.
  • the side where the head 61 is provided in the axial direction of the valve body 6 is defined as the distal end side, and the side opposite to the distal end side is defined as the proximal end side.
  • the scroll connection valve 5 is configured such that the opening degree of the valve body 6 can be adjusted.
  • the scroll connection valve 5 further includes a rotation drive device including an actuator (not shown) for rotating the valve stem 7 around the valve shaft RC.
  • the scroll connection valve 5 rotates the valve stem 7 and the valve body 6 connected to the valve stem 7 around the valve shaft RC, so that the opening degree of the valve body 6 corresponds to the angular position of the valve stem 7 in the circumferential direction.
  • the opening can be adjusted.
  • the scroll connection valve 5 is configured to be able to adjust the opening degree of the valve body 6 to fully open, fully closed, or at least one intermediate degree between fully open and fully closed.
  • the scroll connection valve 5 may include an axial drive device including an actuator (not shown) for moving the valve stem 7 along the axial direction of the valve body 6 instead of the rotation drive device described above.
  • the scroll connection valve 5 changes the opening degree of the valve body 6 by moving the valve stem 7 and the valve body 6 connected to the valve stem 7 along the axial direction of the valve body 6. The opening degree may be adjusted to correspond to the axial position of the opening.
  • valve body 6 (6A) In the valve body 6 (6A) according to the comparative example, as shown in FIG. 2, a valve body shaft portion 60, a head portion 61, a collar portion 63, and an inclined portion 65 are integrally formed.
  • the valve body 6 (6A) is made of a metal material.
  • the head 61 is provided on the distal end side of the valve body 6 in the axial direction, and is formed into a disk shape extending along a direction intersecting (orthogonal to in the illustrated example) the axis LB of the valve body 6.
  • the connection channel forming section 22 described above has a branch wall 221 that separates the first branch channel 44 and the second branch channel 45.
  • the head 61 extends along a direction that intersects (orthogonally in the illustrated example) the axis LB of the valve body 6 and has a head end surface 611 that faces the branch wall 221 .
  • the head end surface 611 is the end surface of the head 61 on the distal end side in the axial direction.
  • the head 61 can divide the two branch channels 44 and 45 by bringing the head end surface 611 into contact with the branch wall 221 in the merging channel 46 .
  • the flange portion 63 is formed into an annular plate shape that extends further outward (outer circumference side) in the radial direction of the valve body 6 than the head portion 61 .
  • the flange portion 63 is provided closer to the proximal end of the valve body 6 in the axial direction than the head portion 61 .
  • the exhaust flow path forming section 23 described above has a sheet wall surface 231.
  • a communication port 48 is formed in the sheet wall surface 231 .
  • the flange portion 63 has an annular seat surface 631 that extends along a direction that intersects (orthogonally in the illustrated example) the axis LB of the valve body 6 and faces the seat wall surface 231 .
  • the annular seat surface 631 is an end surface of the flange portion 63 on the distal end side in the axial direction.
  • the flange portion 63 can close the communication port 48 by bringing the annular seat surface 631 into contact with the seat wall surface 231 .
  • being able to close the communication port 48 means that communication between the merging flow path 46 and the exhaust flow path 47 via the communication port 48 can be released.
  • valve body 6 (6A) according to the comparative example has a shape that makes it difficult to simultaneously bring the head 61 into contact with the branch wall 221 and bring the flange 63 into contact with the seat wall surface 231. ing. As shown in FIG. 2, when the flange portion 63 is brought into contact with the sheet wall surface 231, a gap G is generated between the head end surface 611 of the head portion 61 and the branch wall 221. On the other hand, when the head 61 is brought into contact with the branch wall 221, a gap is created between the seat surface 631 of the collar portion 63 and the seat wall surface 231.
  • the turbine housing 2 includes the above-described turbine housing main body 20, a scroll connection valve 5 including the valve body 6 (6B to 6E), and the above-described valve rod 7. Equipped with As shown in FIG. 3, FIG. 4, FIG. 6, and FIG. and a seat portion 62 extending toward the outer circumferential side.
  • the head 61 can divide the two branch channels 44 and 45 by abutting against the branch wall 221 in the merging channel 46 .
  • the seat portion 62 can close the communication port 48 by coming into contact with the seat wall surface 231 described above.
  • the seat portion 62 contacts the seat wall surface 231 during the closing operation of the scroll connection valve 5, and then the head portion 61 contacts the branch wall 221. It has a deformation allowance DA for bringing it into contact.
  • the scroll connection valve 5 uses a driving force that drives the valve body 6 to apply a pressing force to the seat portion 62 in contact with the seat wall surface 231 toward the distal end side in the axial direction of the valve body 6 . Due to this pressing force, at least a portion of the seat portion 62 is elastically deformed within the range of the deformation allowance DA.
  • the seat portion 62 has the deformation allowance DA.
  • the turbine housing 2 can simultaneously seal between the two branch channels 44 and 45 in the merging channel 46 and sealing between the merging channel 46 and the exhaust channel 47.
  • the structure of the turbine housing 2 can be simplified by making the seat portion 62 have a deformation allowance DA.
  • FIG. 3 is a schematic sectional view of the turbine housing 2 according to the first embodiment taken along the axis LB of the scroll connection valve 5 when the scroll connection valve 5 is in a fully closed state (during a closing operation).
  • FIG. 4 is a schematic cross-sectional view of the turbine housing 2 according to the first embodiment taken along the axis LB of the scroll connection valve 5 when the scroll connection valve 5 is in a fully open state (during an opening operation).
  • the seat portion 62 of the valve body 6B includes the flange portion 63 and an annular elastic seal member 64.
  • the valve body 6B has a valve body shaft portion 60, a head portion 61, a collar portion 63, and an inclined portion 65 that are integrally formed.
  • the valve body shaft portion 60, the head portion 61, the collar portion 63, the elastic seal member 64, and the inclined portion 65 are made of a metal material.
  • the valve body shaft portion 60 extends along the direction in which the axis LB of the valve body 6 extends, and an end (one end) on the distal end side in the axial direction of the valve body 6 is connected to the head 61.
  • the valve body shaft portion 60 is connected to the valve rod 7 at its proximal end (other end) in the axial direction of the valve body 6 .
  • the inclined portion 65 is formed in a cylindrical shape that extends from the outer peripheral edge of the head 61 and is inclined such that the distance from the axis LB increases as the distance from the head 61 increases in the direction in which the axis LB of the valve body 6 extends. There is. In the embodiment shown in FIGS. 3 and 4, one end of the inclined portion 65 is connected to the outer circumferential edge of the head portion 61, and the other end of the inclined portion 65 is connected to the inner circumferential end of the collar portion 63.
  • the elastic seal member 64 is disposed between the seat surface 631 of the flange portion 63 and the seat wall surface 231, and has the above deformation amount DA. That is, the elastic seal member 64 is configured to be able to contract along the axial direction of the valve body 6 by the above-mentioned pressing force.
  • the elastic seal member 64 is attached to the flange portion 63 by fitting such as riveting, welding, adhesion, or the like.
  • the elastic seal member 64 contacts the seat wall surface 231 when the scroll connection valve 5 is in a fully closed state (during a closing operation), and is in contact with the seat wall surface 231 when the scroll connection valve 5 is in a fully open state (during an opening operation). They are becoming separated.
  • the elastic seal member 64 has the above deformation allowance DA.
  • the elastic seal member 64 By elastically deforming the elastic seal member 64 during the closing operation of the scroll connection valve 5, it is possible to simultaneously bring the seat portion 62 into contact with the seat wall surface 231 and bring the head 61 into contact with the branch wall 221. can. Thereby, the turbine housing 2 can simultaneously seal between the two branch channels 44 and 45 in the merging channel 46 and sealing between the merging channel 46 and the exhaust channel 47.
  • the elastic seal member 64 described above includes an annular first plate portion 641 extending along the radial direction of the valve body 6 and an annular first plate portion 641 extending along the radial direction of the valve body 6. It includes a second plate part 642 and an annular connecting part 643 that connects the outer peripheral end of the first plate part 641 and the outer peripheral end of the second plate part 642.
  • the elastic seal member 64 has a C-shaped cross section.
  • the first plate portion 641 is in contact with the annular seat surface 631.
  • the second plate portion 642 is provided so as to be able to come into contact with and separate from the seat wall surface 231, and comes into contact with the seat wall surface 231 when the valve body 6 is in the fully closed position.
  • FIG. 5 is a schematic cross-sectional view of the turbine housing 2 according to a modification of the first embodiment, taken along the axis LB of the scroll connection valve 5 when the scroll connection valve 5 is in a fully open state (during an opening operation).
  • the elastic seal member 64 was attached to the seat surface 631 of the collar portion 63, but it may be attached to the seat wall surface 231.
  • the turbine housing 2 includes the above-described turbine housing main body 20, the scroll connection valve 5 including the valve body 6C and the above-described valve rod 7, and an annular elastic seal member. 64A.
  • the valve body 6C has the above-mentioned valve body shaft portion 60, head portion 61, collar portion 63, and inclined portion 65, similarly to the valve body 6A according to the comparative example.
  • the elastic seal member 64A is disposed between the seat surface 631 of the flange portion 63 and the seat wall surface 231, and has the above deformation amount DA. That is, the elastic seal member 64A is configured to be able to contract along the axial direction of the valve body 6 by the above-mentioned pressing force.
  • the elastic seal member 64A is made of a metal material.
  • the elastic seal member 64A is attached to the sheet wall surface 231 by fitting such as riveting, welding, adhesion, or the like. The elastic seal member 64A can close the communication port 48 by coming into contact with the seat surface 631.
  • the elastic seal member 64A contacts the seat surface 631 when the scroll connection valve 5 is in a fully closed state (during a closing operation), and is in contact with the seat surface 631 when the scroll connection valve 5 is in a fully open state (during an opening operation). They are becoming separated.
  • the elastic seal member 64A has the deformation allowance DA.
  • the turbine housing 2 can simultaneously seal between the two branch channels 44 and 45 in the merging channel 46 and sealing between the merging channel 46 and the exhaust channel 47.
  • the structure of the turbine housing 2 can be simplified by making the elastic seal member 64A have a deformation allowance DA.
  • the above-described elastic seal member 64A includes an annular first plate portion 641A extending in the radial direction of the valve body 6 and a first plate portion 641A extending in the radial direction of the valve body 6, as shown in FIG. It includes an annular second plate portion 642A extending along the second plate portion 642A, and an annular connecting portion 643A connecting the outer circumferential end of the first plate portion 641A and the outer circumferential end of the second plate portion 642A.
  • the elastic seal member 64A has a C-shaped cross section.
  • the first plate portion 641A is provided so as to be able to come into contact with and separate from the annular seat surface 631, and comes into contact with the annular seat surface 631 when the valve body 6 is in the fully closed position.
  • the second plate portion 642A is in contact with the sheet wall surface 231.
  • attaching the elastic seal member 64 to the seat surface 631 of the flange portion 63 is easier than attaching the elastic seal member 64A to the seat wall surface 231. Furthermore, when the elastic seal member 64 is attached to the seat surface 631 of the flange portion 63, the area in contact with the turbine housing body 20 can be reduced compared to when the elastic seal member 64A is attached to the seat wall surface 231. Since the amount of heat input from the elastic seal member can be reduced, thermal damage to the elastic seal member can be suppressed.
  • FIG. 6 is a schematic cross-sectional view of the turbine housing 2 according to the second embodiment, taken along the axis LB of the scroll connection valve 5 when the scroll connection valve 5 is in a fully closed state.
  • the valve body 6 (6D) includes the above-mentioned head 61, the above-mentioned inclined part 65, and a seat part 62, as shown in FIG.
  • the seat portion 62 includes a flange portion 66 that extends outward in the radial direction of the valve body 6 from the head portion 61 and has an annular seat surface 661 that faces the seat wall surface 231 .
  • the inner peripheral end of the flange portion 66 is connected to the inclined portion 65, and has the above-mentioned deformation amount DA. That is, the flange portion 66 can be elastically bent so that the outer peripheral end thereof is closer to the proximal end in the axial direction of the valve body 6 than the inner peripheral end thereof by the above-mentioned pressing force.
  • the flange portion 66 may have a connecting portion P1 between the flange portion 66 and the inclined portion 65 as a base point of elastic deformation, or may have a connecting portion P2 between the inclined portion 65 and the head portion 61 as a base point of elastic deformation.
  • the thickness T1 of the flange 66 may be made thinner than the thickness T2 of the head. Further, the thickness T1 of the flange portion 66 may be made thinner than the thickness of the inclined portion 65.
  • the flange portion 66 has the above deformation allowance DA.
  • the turbine housing 2 can simultaneously seal between the two branch channels 44 and 45 in the merging channel 46 and sealing between the merging channel 46 and the exhaust channel 47.
  • the above-mentioned flange portion 66 has an annular convex portion 662 that protrudes toward the sheet wall surface 231.
  • the annular convex portion 662 protrudes from the annular seat surface 631 toward the distal end side in the axial direction of the valve body 6 .
  • the annular convex portion 662 of the flange portion 66 is arranged on the outside in the radial direction of the valve body 6, the bending moment acting on the portion where the annular convex portion 662 and the seat wall surface 231 come into contact is increased. can.
  • the sealing performance between the annular convex portion 662 and the sheet wall surface 231 can be improved.
  • the annular convex portion 662 is preferably provided at a position away from the axis LB in order to increase the bending moment.
  • the annular convex portion 662 is formed on the outer peripheral edge of the seat surface 631 of the collar portion 66 .
  • FIG. 7 is a schematic cross-sectional view of the turbine housing 2 according to the third embodiment, taken along the axis LB of the scroll connection valve 5 when the scroll connection valve 5 is in a fully closed state.
  • the valve body 6 (6E), as shown in FIG. ,including.
  • the seat portion 62 includes an annular plate member 67 that extends outward from the head 61 in the radial direction of the valve body 6 and has an annular seat surface 671 that faces the seat wall surface 231 .
  • the annular plate member 67 is configured separately from the valve body shaft portion 60, the head portion 61, and the inclined portion 65.
  • the annular plate member 67 has an inner peripheral end attached to the valve body shaft portion 60 .
  • the valve body shaft portion 60 includes a step surface 601 that makes the proximal end smaller in diameter than the distal end, and a stepped surface 601 formed on at least a portion of the outer peripheral surface on the proximal end side of the step surface 601.
  • a threaded portion 602 is formed.
  • the annular plate member 67 By sandwiching the inner circumferential end 673 of the annular plate member 67 between the step surface 601 and the nut member 68 having a threaded portion 681 that is screwed into the threaded portion 602, the annular plate member 67 is attached to the valve body shaft portion 60. is fixed.
  • the annular plate member 67 includes the annular inner peripheral end 673, an annular outer peripheral end 675 having a seat surface 671, and an annular connecting plate portion 674 connecting the outer peripheral end 675 and the inner peripheral end 673.
  • the connecting plate portion 674 is bent toward the proximal end with respect to the inner circumferential end 673, and is bent toward the distal end with respect to the outer circumferential end 675.
  • the annular plate member 67 has a deformation allowance DA. That is, the annular plate member 67 can be bent at least at the outer peripheral end 675 toward the proximal end by elastic deformation by the above pressing force.
  • the annular plate member 67 may have a connecting portion P3 between the outer peripheral end 675 and the connecting plate portion 674 as a base point for elastic deformation.
  • the annular plate member 67 has the above deformation allowance DA.
  • the turbine housing 2 can simultaneously seal between the two branch channels 44 and 45 in the merging channel 46 and sealing between the merging channel 46 and the exhaust channel 47.
  • the annular plate member 67 by making the annular plate member 67 separate from the head 61, the inclined part 65, and the valve body shaft part 60, the annular plate member 67 can be connected to the head 61, the inclined part 65, and the valve body shaft part 60. Compared to the case where the annular plate member 67 is integral with the valve body shaft portion 60, it becomes easier to form the deformation allowance DA in the annular plate member 67, and the deformation starting point P3 of the annular plate member 67 is set in the radial direction of the valve body 6. Can be placed inside.
  • the annular plate member 67 described above has an annular curved portion 672 that curves so as to protrude toward the sheet wall surface 231.
  • an annular curved portion 672 is formed at the outer circumferential edge of outer circumferential end 675 .
  • the curved portion 672 has a convex shape that projects toward the distal end side in the axial direction of the valve body 6.
  • the annular curved portion 672 of the annular plate member 67 by arranging the annular curved portion 672 of the annular plate member 67 on the outside in the radial direction of the valve body 6, the bending that acts on the portion where the annular curved portion 672 and the seat wall surface 231 come into contact is caused.
  • the moment can be increased.
  • the sealing performance between the annular curved portion 672 and the sheet wall surface 231 can be improved.
  • the turbine 1 includes the above-mentioned turbine housing 2 and the above-mentioned turbine wheel 3.
  • a supercharger 10 according to some embodiments includes the turbine 1 described above and the compressor 13 described above, as shown in FIG.
  • the turbine housing 2 can simultaneously seal between the two branch channels 44 and 45 in the merging channel 46 and sealing between the merging channel 46 and the exhaust channel 47. becomes. Thereby, leakage loss of exhaust gas in the turbine 1 can be suppressed, so that the efficiency of the turbine 1 and the supercharger 10 can be improved.
  • expressions expressing shapes such as a square shape or a cylindrical shape do not only mean shapes such as a square shape or a cylindrical shape in a strict geometric sense, but also within the range where the same effect can be obtained. , shall also represent shapes including uneven parts, chamfered parts, etc.
  • the expressions "comprising,””including,” or “having" one component are not exclusive expressions that exclude the presence of other components.
  • turbine housing 2 of the present disclosure is applicable to a double scroll turbine or a twin scroll turbine.
  • a turbine housing (2) includes: A turbine housing (2) in which two scroll passages (41, 42) are formed, a scroll passage forming part (21) forming the two scroll passages (41, 42); A first branch channel (44) branching from one scroll channel (41) of the two scroll channels (41, 42), and a first branch channel (44) branching from one of the two scroll channels (41, 42); A second branch passage (45) branches from the scroll passage (42), and the first branch passage (44) and the second branch passage (45) merge, and the turbine wheel (3) A connection flow path forming part (22) forming a connection flow path (43) including an exhaust flow path (47) through which the passed exhaust gas flows and a merging flow path (46) communicating through a communication port (48).
  • a connecting flow path forming part (22) having a branch wall (221) that divides the first branch flow path (44) and the second branch flow path (45); a turbine housing body (20) including; a head (61) capable of separating the two branch channels (44, 45) by coming into contact with the branch wall (221) in the merging channel (46); A seat portion (62) extending toward the outer circumferential side of the head portion (61) and capable of closing the communication port (48) by abutting against the seat wall surface (231) of the turbine housing (2).
  • a valve body (6) having at least a seat portion (62); a scroll connection valve (5) including;
  • the seat portion (62) is configured to contact the branch wall (221) with the head portion after the seat portion (62) comes into contact with the seat wall surface (231) during the closing operation of the scroll connection valve (5). It has a deformation allowance (DA) for bringing (61) into contact.
  • DA deformation allowance
  • the seat portion (62) has a deformation allowance (DA).
  • DA deformation amount
  • the turbine housing (2) seals between the two branch channels (44, 45) in the merging channel (46) and seals between the merging channel (46) and the exhaust channel (47). It becomes possible to perform both stops at the same time.
  • leakage loss of exhaust gas in the turbine (1) can be reduced. Since this can be suppressed, the efficiency of the turbine (1) can be improved.
  • the turbine housing (2) can have a simple structure because the seat portion (62) has a deformation allowance (DA).
  • the seat portion (62) is A flange (63) having an annular seat surface (631) extending radially outward of the valve body (6) from the head (61) and facing the seat wall surface (231) with a gap therebetween. )and, An elastic seal member (64) having the deformation allowance (DA) attached to the flange (63), wherein the sheet surface (631) of the flange (63) and the sheet wall surface (231) an annular elastic seal member (64) disposed therebetween.
  • the elastic seal member (64) has the above deformation allowance (DA).
  • DA deformation allowance
  • the elastic seal member (64) is a first plate portion (641) extending along the radial direction of the valve body (6) and abutting the annular seat surface (631);
  • a second plate portion (642) extending along the radial direction of the valve body (6) is provided so as to be able to come into contact with and separate from the seat wall surface (231), and is provided so that the position of the valve body (6) is completely a second plate portion (642) that abuts the seat wall surface (231) when in the closed position;
  • a connecting portion (643) connecting the outer peripheral end of the first plate portion (641) and the outer peripheral end of the second plate portion (642) is included.
  • the elastic seal member (64) has the inner peripheral end of the first plate part (641) and the second plate part (642). ) A pressing force acts in the direction in which the inner peripheral end of the sheet spreads (separates), and this pressing force causes the elastic sealing member (64) to effectively seal between the seat surface (631) and the seat wall surface (231). sealed.
  • the valve body (6) is An inclined portion (61) that extends from the outer peripheral edge of the head (61) and slopes so that the distance from the axis increases as the distance from the head (61) increases in the direction in which the axis of the valve body (6) extends. 65) further comprising: The seat portion (62) extends outward in the radial direction of the valve body (6) from the head (61), and has an annular seat surface ( 661), the inner peripheral end of which is connected to the inclined portion (65); The flange (66) has the deformation allowance (DA).
  • the flange portion (66) has the above deformation allowance (DA).
  • the seat part (62) is brought into contact with the seat wall surface (231) and the head part is attached to the branch wall (221). (61) can be brought into contact at the same time.
  • the turbine housing (2) seals between the two branch channels (44, 45) in the merging channel (46) and seals between the merging channel (46) and the exhaust channel (47). It becomes possible to perform both stops at the same time.
  • the flange portion (66) has an annular convex portion (662) that protrudes toward the sheet wall surface (231).
  • the valve body (6) further includes a valve body shaft (60) that extends along the axial direction of the valve body (6) and has one end connected to the head (61),
  • the seat portion (62) extends outward in the radial direction of the valve body (6) from the head (62), and has an annular seat surface ( 671), the annular plate member (67) having an inner peripheral end attached to the valve body shaft (60),
  • the annular plate member (67) has the deformation allowance (DA).
  • the annular plate member (67) has the above deformation allowance (DA).
  • the seat portion (62) is brought into contact with the seat wall surface (231) and the head is brought into contact with the branch wall (221).
  • the turbine housing (2) seals between the two branch channels (44, 45) in the merging channel (46) and seals between the merging channel (46) and the exhaust channel (47). It becomes possible to perform both stops at the same time.
  • the annular plate member (67) is made separate from the head (62), the inclined portion (65), and the valve shaft portion (60). Forming a deformation allowance (DA) in the annular plate member (67) compared to the case where the annular plate member (67) is integral with the head (62), the inclined part (65), and the valve shaft part (60).
  • the starting point of deformation of the annular plate member (67) can be placed inside the valve body (6) in the radial direction. By arranging the deformation starting point of the annular plate member (67) inside the valve body (6) in the radial direction, it is possible to increase the bending moment that acts on the portion where the seat portion (62) and the seat wall surface (231) contact. . By increasing the bending moment, the sealing performance between the seat portion (62) and the seat wall surface (231) can be improved.
  • the annular plate member (67) has an annular curved portion (672) that curves to protrude toward the sheet wall surface (231).
  • the turbine housing (2) includes: A turbine housing (2) in which two scroll passages (41, 42) are formed, a scroll passage forming part (21) forming the two scroll passages (41, 42); A first branch channel (44) branching from one scroll channel (41) of the two scroll channels (41, 42), and a first branch channel (44) branching from one of the two scroll channels (41, 42); A second branch passage (45) branches from the scroll passage (42), and the first branch passage (44) and the second branch passage (45) merge, and the turbine wheel (3) A connection flow path forming part (22) forming a connection flow path (43) including an exhaust flow path (47) through which the passed exhaust gas flows and a merging flow path (46) communicating through a communication port (48).
  • a connecting flow path forming part (22) having a branch wall (221) that divides the first branch flow path (44) and the second branch flow path (45); a turbine housing body (20) including; a head (61) capable of separating the two branch channels (44, 45) by coming into contact with the branch wall (221) in the merging channel (46); a flange (63) having an annular seat surface (631) extending toward the outer periphery of the head (61) and facing the seat wall surface (231) of the turbine housing (2) with a gap therebetween; A valve body (6) having at least a scroll connection valve (5) comprising; An annular elastic seal member (64A) disposed between the seat surface (631) and the seat wall surface (231) and attached to the seat wall surface (231), the elastic seal member (64A) being in contact with the seat surface (631).
  • an elastic sealing member (64A) that can close the communication port (48) by contacting the elastic sealing member (64A);
  • the elastic seal member (64A) contacts the branch wall (221) after the elastic seal member (64A) contacts the seat surface (631) during the closing operation of the scroll connection valve (5). It has a deformation allowance (DA) for bringing the head (61) into contact.
  • the elastic seal member (64A) has a deformation allowance (DA).
  • DA deformation amount
  • the head (61) can be brought into contact with the branch wall (221).
  • the turbine housing (2) seals between the two branch channels (44, 45) in the merging channel (46) and seals between the merging channel (46) and the exhaust channel (47). It becomes possible to perform both stops at the same time.
  • leakage loss of exhaust gas in the turbine (1) can be reduced. Since this can be suppressed, the efficiency of the turbine (1) can be improved.
  • the structure of the turbine housing (2) can be simplified because the elastic seal member (64A) has a deformation allowance (DA).
  • the turbine (1) includes: The turbine housing (2) according to any one of 1) to 8) above; a turbine wheel (3) rotatably housed in the turbine housing.
  • the turbine housing (2) seals between the two branch channels (44, 45) in the merging channel (46) and the merging channel (46) and the exhaust channel (47). ) can be sealed at the same time. Thereby, leakage loss of exhaust gas in the turbine (1) can be suppressed, so that the efficiency of the turbine (1) can be improved.
  • a supercharger (10) according to at least one embodiment of the present disclosure, A turbine (1) driven by exhaust gas discharged from an engine (12), the turbine (1) described in 9) above; A compressor (13) is coaxially connected to the turbine (1) and supplies compressed air to the engine (12) as it rotates.
  • the turbine housing (2) seals between the two branch channels (44, 45) in the merging channel (46) and the merging channel (46) and the exhaust channel (47). ) can be sealed at the same time. Thereby, leakage loss of exhaust gas in the turbine (1) can be suppressed, so that the efficiency of the supercharger (10) can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Supercharger (AREA)

Abstract

The present invention provides a turbine housing comprising at least a scroll connection valve including a valve plug having at least a head portion and a seat portion, the head portion being capable of dividing two branching channels, each branching respectively from two scroll channels, by abutting a branching wall dividing the two branching channels individually in a common channel in which the two branching channels meet and which communicates, via a communicating port, with an exhaust channel in which exhaust gas that has passed through a turbine wheel flows, the seat portion extending peripherally outward past the head portion and being capable of closing off the communicating port by abutting a seat wall surface of the turbine housing, wherein the seat portion has a deformation allowance to allow the head portion to abut the branching wall after the seat portion abuts the seat wall surface during closing operation of the scroll connection valve.

Description

タービンハウジング、タービン及び過給機Turbine housing, turbine and supercharger
 本開示は、タービンハウジング、該タービンハウジングを備えるタービン及び過給機に関する。 The present disclosure relates to a turbine housing, a turbine including the turbine housing, and a supercharger.
 タービンハウジングには、第1スクロール流路から分岐する第1分岐流路と、第2スクロール流路から分岐する第2分岐流路と、第1分岐流路と第2分岐流路とが合流する合流流路であって、タービンホイールを通過した排ガスが流れる排気流路と連通する合流流路と、が形成されたものがある(特許文献1参照)。特許文献1に記載のタービンハウジングには、合流流路と排気流路との間に設けられる連通口を閉塞可能であり、且つ合流流路において第1分岐流路および前記第2分岐流路の夫々を分断可能な弁体を有するバルブが開示されている。 In the turbine housing, a first branch passage branching from the first scroll passage, a second branch passage branching from the second scroll passage, and a first branch passage and a second branch passage join together. There is one in which a merging flow path is formed that communicates with an exhaust flow path through which exhaust gas that has passed through a turbine wheel flows (see Patent Document 1). In the turbine housing described in Patent Document 1, a communication port provided between the merging flow path and the exhaust flow path can be closed, and the communication port provided between the merging flow path and the first branch flow path and the second branch flow path can be closed. A valve having valve bodies that can be separated from each other is disclosed.
特表2018-537615号公報Special table 2018-537615 publication
 合流流路における2つの分岐流路間の封止及び合流流路と排気流路との間の封止を同時に行おうとすると、タービンハウジングの構造が複雑になるという問題がある。また、タービンハウジングの構造を簡単なものにすると、合流流路における2つの分岐流路間の封止及び合流流路と排気流路との間の封止を同時に行うことが困難であるという問題がある。 If it is attempted to seal between the two branch channels in the merging channel and between the merging channel and the exhaust channel at the same time, there is a problem that the structure of the turbine housing becomes complicated. Additionally, if the structure of the turbine housing is made simple, it is difficult to seal between the two branch channels in the merging channel and between the merging channel and the exhaust channel at the same time. There is.
 上述の事情に鑑みて、本開示の少なくとも一実施形態は、タービンハウジングの構造が簡単であり、合流流路における2つの分岐流路間の封止及び合流流路と排気流路との間の封止を同時に行うことが可能なタービンハウジング、タービン及び過給機を提供することを目的とする。 In view of the above circumstances, at least one embodiment of the present disclosure provides a turbine housing with a simple structure, a seal between two branch channels in a merging channel, and a seal between the merging channel and the exhaust channel. It is an object of the present invention to provide a turbine housing, a turbine, and a supercharger that can be sealed at the same time.
 本開示の少なくとも一実施形態に係るタービンハウジングは、
 2つのスクロール流路が形成されたタービンハウジングであって、
 前記2つのスクロール流路を形成するスクロール流路形成部と、
 前記2つのスクロール流路のうちの一方のスクロール流路から分岐する第1分岐流路、前記2つのスクロール流路のうちの他方のスクロール流路から分岐する第2分岐流路、及び前記第1分岐流路と前記第2分岐流路とが合流するとともに、タービンホイールを通過した排ガスが流れる排気流路と連通口を介して連通する合流流路、を含む接続流路を形成する接続流路形成部であって、前記第1分岐流路と前記第2分岐流路とを分断する分岐壁を有する接続流路形成部と、
を含むタービンハウジング本体と、
 前記合流流路において前記分岐壁に当接することで、前記2つの分岐流路を分断可能な頭部と、
 前記頭部よりも前記弁体の径方向における外側に延在するシート部であって、前記タービンハウジングのシート壁面に当接することで、前記連通口を閉止可能なシート部と、を少なくとも有する弁体
を含むスクロールコネクションバルブと、を備え、
 前記シート部は、前記スクロールコネクションバルブの閉動作時において、前記シート部が前記シート壁面に当接した後に、前記分岐壁に前記頭部を当接させるための変形代を有する。
A turbine housing according to at least one embodiment of the present disclosure includes:
A turbine housing in which two scroll passages are formed,
a scroll flow path forming section that forms the two scroll flow paths;
A first branch passage branching from one of the two scroll passages, a second branch passage branching from the other one of the two scroll passages, and the first branch passage. A connecting channel that forms a connecting channel that includes a branch channel and the second branch channel that merge together, and a merging channel that communicates via a communication port with an exhaust channel through which exhaust gas that has passed through the turbine wheel flows. a connecting channel forming section that is a forming section and has a branch wall that separates the first branch channel and the second branch channel;
a turbine housing body including;
a head capable of separating the two branching channels by abutting against the branching wall in the merging channel;
A valve having at least a seat portion that extends outward in a radial direction of the valve body from the head portion and is capable of closing the communication port by abutting against a seat wall surface of the turbine housing. a scroll connection valve including a body;
The seat portion has a deformation margin for causing the head portion to contact the branch wall after the seat portion contacts the seat wall surface during the closing operation of the scroll connection valve.
 本開示の少なくとも一実施形態に係るタービンは、
 前記タービンハウジングと、
 前記タービンハウジングに回転可能に収容されるタービンホイールと、を含む。
A turbine according to at least one embodiment of the present disclosure includes:
the turbine housing;
a turbine wheel rotatably housed in the turbine housing.
 本開示の少なくとも一実施形態に係る過給機は、
 エンジンから排出された排ガスで駆動されるタービンであって、前記タービンと、
 前記タービンに同軸で連結し、回転とともに圧縮した空気を前記エンジンに供給するためのコンプレッサと、を備える。
A supercharger according to at least one embodiment of the present disclosure,
A turbine driven by exhaust gas discharged from an engine, the turbine;
A compressor is coaxially connected to the turbine and supplies compressed air to the engine as it rotates.
 本開示の少なくとも一実施形態によれば、タービンハウジングの構造が簡単であり、合流流路における2つの分岐流路間の封止及び合流流路と排気流路との間の封止を同時に行うことが可能なタービンハウジング、タービン及び過給機が提供される。 According to at least one embodiment of the present disclosure, the structure of the turbine housing is simple, and the sealing between two branch channels in the merging channel and the sealing between the merging channel and the exhaust channel are performed simultaneously. A turbine housing, a turbine, and a supercharger are provided.
一実施形態に係る過給機を備えるエンジンシステムの概略図である。1 is a schematic diagram of an engine system including a supercharger according to an embodiment. 一実施形態に係るタービンハウジングのスクロールコネクションバルブの軸線に沿った概略断面図である。FIG. 2 is a schematic cross-sectional view along the axis of a scroll connection valve of a turbine housing according to an embodiment. 第1の実施形態に係るタービンハウジングの、スクロールコネクションバルブが全閉状態におけるスクロールコネクションバルブの軸線に沿った概略断面図である。FIG. 2 is a schematic cross-sectional view of the turbine housing according to the first embodiment taken along the axis of the scroll connection valve when the scroll connection valve is in a fully closed state. 第1の実施形態に係るタービンハウジングの、スクロールコネクションバルブが全開状態におけるスクロールコネクションバルブの軸線に沿った概略断面図である。FIG. 2 is a schematic cross-sectional view of the turbine housing according to the first embodiment taken along the axis of the scroll connection valve when the scroll connection valve is in a fully open state. 第1の実施形態の変形例に係るタービンハウジングの、スクロールコネクションバルブが全開状態におけるスクロールコネクションバルブの軸線に沿った概略断面図である。FIG. 7 is a schematic cross-sectional view of a turbine housing according to a modification of the first embodiment, taken along the axis of the scroll connection valve when the scroll connection valve is in a fully open state. 第2の実施形態に係るタービンハウジングの、スクロールコネクションバルブが全閉状態におけるスクロールコネクションバルブの軸線に沿った概略断面図である。FIG. 7 is a schematic cross-sectional view of a turbine housing according to a second embodiment taken along the axis of the scroll connection valve when the scroll connection valve is in a fully closed state. 第3の実施形態に係るタービンハウジングの、スクロールコネクションバルブが全閉状態におけるスクロールコネクションバルブの軸線に沿った概略断面図である。FIG. 7 is a schematic cross-sectional view of a turbine housing according to a third embodiment taken along the axis of the scroll connection valve when the scroll connection valve is in a fully closed state.
 以下、添付図面を参照して本開示の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本開示の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。 Hereinafter, some embodiments of the present disclosure will be described with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, etc. of the components described as embodiments or shown in the drawings are not intended to limit the scope of the present disclosure, and are merely illustrative examples. do not have.
(過給機)
 図1は、一実施形態に係る過給機10を備えるエンジンシステム11の概略図である。本開示に係るタービン1は、例えば、自動車用、舶用又は産業用(例えば、陸上発電用)の過給機(ターボチャージャ)10などに搭載可能である。以下の各実施形態では、過給機(ターボチャージャ)10に搭載されるタービン1を例に挙げて説明するが、本開示に係るタービン1は、過給機10に搭載されるものに限定されない。また、タービン1の作動流体を排ガスに限定する必要はない。すなわち、本開示のタービン1は、作動流体エネルギを機械的動力(例えば、回転力)に変換することが可能であればよく、タービン1単体で構成しても、コンプレッサ13以外の機構や装置と複合して構成してもよい。また、タービン1の用途等を限定する必要もない。
(supercharger)
FIG. 1 is a schematic diagram of an engine system 11 including a supercharger 10 according to an embodiment. The turbine 1 according to the present disclosure can be installed, for example, in a supercharger (turbocharger) 10 for automobiles, ships, or industries (for example, for land power generation). In each embodiment below, a turbine 1 mounted on a supercharger (turbocharger) 10 will be described as an example, but the turbine 1 according to the present disclosure is not limited to one mounted on the supercharger 10. . Further, it is not necessary to limit the working fluid of the turbine 1 to exhaust gas. That is, the turbine 1 of the present disclosure only needs to be capable of converting working fluid energy into mechanical power (for example, rotational force), and even if it is configured by the turbine 1 alone, it may be configured with mechanisms or devices other than the compressor 13. It may be configured in combination. Further, there is no need to limit the usage of the turbine 1.
 幾つかの実施形態に係る過給機10は、図1に示されるように、エンジン(内燃機関)12から排出された排ガスのエネルギにより駆動し、流体(例えば、空気)を圧縮するように構成されている。過給機10は、エンジン12から排出された排ガスで駆動されるタービン1と、タービン1に同軸で連結し、回転とともに圧縮した空気をエンジン12に供給するためのコンプレッサ13と、を備える。 As shown in FIG. 1, the supercharger 10 according to some embodiments is configured to be driven by the energy of exhaust gas discharged from an engine (internal combustion engine) 12 and compress fluid (for example, air). has been done. The supercharger 10 includes a turbine 1 driven by exhaust gas discharged from an engine 12, and a compressor 13 coaxially connected to the turbine 1 and configured to supply compressed air to the engine 12 as it rotates.
 タービン1は、タービンホイール3と、タービンホイール3を回転可能に収容するように構成されたタービンハウジング2と、を備える。コンプレッサ13は、インペラ131と、インペラ131を回転可能に収容するように構成されたコンプレッサハウジング132と、を備える。過給機10は、タービンホイール3が一端側に連結され、他端側にインペラ131が連結される回転シャフト14と、タービンホイール3とインペラ131の間において回転シャフト14を回転可能に支持するように構成された軸受15と、をさらに備える。また、過給機10は、タービンハウジング2とコンプレッサハウジング132の間に配置され、軸受15を収容するように構成された軸受ハウジング16をさらに備えていてもよい。 The turbine 1 includes a turbine wheel 3 and a turbine housing 2 configured to rotatably accommodate the turbine wheel 3. The compressor 13 includes an impeller 131 and a compressor housing 132 configured to rotatably accommodate the impeller 131. The supercharger 10 includes a rotating shaft 14 to which the turbine wheel 3 is connected at one end and an impeller 131 at the other end, and the rotating shaft 14 is rotatably supported between the turbine wheel 3 and the impeller 131. The bearing 15 further includes a bearing 15 configured to. Further, the supercharger 10 may further include a bearing housing 16 arranged between the turbine housing 2 and the compressor housing 132 and configured to accommodate the bearing 15.
 タービン1は、エンジン12から排出された排ガスのエネルギによりタービンホイール3を回転させるように構成されている。インペラ131は、回転シャフト14を介してタービンホイール3と同軸上に連結されているため、タービンホイール3の回転に連動して過給機10(回転シャフト14)の軸線LA回りに回転駆動する。コンプレッサ13は、インペラ131を軸線LA回りに回転駆動させることにより、コンプレッサハウジング132の内部に空気(給気、気体)を吸入し、該空気を圧縮し、圧縮された空気をエンジン12に送るように構成されている。コンプレッサ13からエンジン12に送られた圧縮空気は、エンジン12における燃焼に供されるようになっている。エンジン12における燃焼により生じた排ガスは、エンジン12からタービン1に送られ、タービンホイール3を回転させるようになっている。 The turbine 1 is configured to rotate the turbine wheel 3 using the energy of exhaust gas discharged from the engine 12. Since the impeller 131 is coaxially connected to the turbine wheel 3 via the rotating shaft 14, it is driven to rotate around the axis LA of the supercharger 10 (rotating shaft 14) in conjunction with the rotation of the turbine wheel 3. The compressor 13 sucks air (supply air, gas) into the compressor housing 132 by driving the impeller 131 to rotate around the axis LA, compresses the air, and sends the compressed air to the engine 12. It is composed of Compressed air sent from the compressor 13 to the engine 12 is provided for combustion in the engine 12. Exhaust gas generated by combustion in the engine 12 is sent from the engine 12 to the turbine 1 to rotate the turbine wheel 3.
 図示される実施形態では、インペラ131は、インペラ131の軸方向(すなわち、軸線LAの延在方向)に沿って導入される空気をインペラ131の径方向における外側に導くように構成されている。インペラ131は、インペラ131の翼の外周を囲む環状部材を含まないようになっている。タービンホイール3は、タービンホイール3の径方向における外側から導入される排ガスをタービンホイール3の軸方向(すなわち、軸線LAの延在方向)に沿って導くように構成されている。タービンホイール3は、タービンホイール3の翼の外周を囲む環状部材を含まないようになっている。 In the illustrated embodiment, the impeller 131 is configured to guide air introduced along the axial direction of the impeller 131 (i.e., the direction in which the axis LA extends) to the outside in the radial direction of the impeller 131. The impeller 131 does not include an annular member surrounding the outer periphery of the blades of the impeller 131. The turbine wheel 3 is configured to guide exhaust gas introduced from the outside in the radial direction of the turbine wheel 3 along the axial direction of the turbine wheel 3 (that is, the direction in which the axis LA extends). The turbine wheel 3 does not include an annular member surrounding the outer periphery of the blades of the turbine wheel 3.
(タービンハウジング)
 図2は、一実施形態に係るタービンハウジング2のスクロールコネクションバルブ5の軸線LBに沿った概略断面図である。幾つかの実施形態に係るタービンハウジング2は、図2に示されるように、タービンハウジング本体20と、タービンハウジング本体20に装着されるスクロールコネクションバルブ5と、を備える。
(turbine housing)
FIG. 2 is a schematic cross-sectional view of the scroll connection valve 5 of the turbine housing 2 according to one embodiment, taken along the axis LB. As shown in FIG. 2, the turbine housing 2 according to some embodiments includes a turbine housing body 20 and a scroll connection valve 5 attached to the turbine housing body 20.
(タービンハウジング本体)
 タービンハウジング本体20は、図2に示されるように、2つのスクロール流路(第1スクロール流路41、第2スクロール流路42)を形成するスクロール流路形成部21と、第1分岐流路44、第2分岐流路45及び合流流路46を含む接続流路43を形成する接続流路形成部22と、を含む。タービンハウジング本体20は、タービンホイール3を通過した排ガスが流れる排気流路47を形成する排気流路形成部23をさらに含んでいてもよい。この場合には、タービンハウジング本体20の内部には、第1スクロール流路41、第2スクロール流路42、接続流路43及び排気流路47が形成されている。タービンハウジング本体20は、金属材料により構成されている。
(Turbine housing body)
As shown in FIG. 2, the turbine housing main body 20 includes a scroll passage forming part 21 that forms two scroll passages (a first scroll passage 41 and a second scroll passage 42), and a first branch passage. 44, a connection flow path forming part 22 that forms a connection flow path 43 including a second branch flow path 45 and a merging flow path 46. The turbine housing main body 20 may further include an exhaust flow path forming part 23 that forms an exhaust flow path 47 through which exhaust gas that has passed through the turbine wheel 3 flows. In this case, inside the turbine housing body 20, a first scroll passage 41, a second scroll passage 42, a connecting passage 43, and an exhaust passage 47 are formed. The turbine housing body 20 is made of a metal material.
 第1スクロール流路41及び第2スクロール流路42の各々は、タービンホイール3に排ガスを導入するための流路である。第1スクロール流路41及び第2スクロール流路42の各々は、タービンホイール3の外周側において軸線LA回りの周方向に沿って延在する渦状の流路からなる。 Each of the first scroll passage 41 and the second scroll passage 42 is a passage for introducing exhaust gas into the turbine wheel 3. Each of the first scroll passage 41 and the second scroll passage 42 is a spiral passage extending along the circumferential direction around the axis LA on the outer peripheral side of the turbine wheel 3.
 第1分岐流路44は、2つのスクロール流路41、42のうちの一方のスクロール流路(第1スクロール流路41)から分岐する流路である。第2分岐流路45は、2つのスクロール流路41、42のうちの他方のスクロール流路(第2スクロール流路42)から分岐する流路である。合流流路46において、第1分岐流路44と第2分岐流路45とが合流している。合流流路46は、タービン1(具体的にはタービンホイール3)を通過した排ガスが流れる排気流路47と連通口48を介して連通している。 The first branch flow path 44 is a flow path that branches from one of the two scroll flow paths 41 and 42 (first scroll flow path 41). The second branch channel 45 is a channel that branches from the other scroll channel (second scroll channel 42) of the two scroll channels 41 and 42. At the merging channel 46, the first branch channel 44 and the second branch channel 45 merge. The merging flow path 46 communicates via a communication port 48 with an exhaust flow path 47 through which exhaust gas that has passed through the turbine 1 (specifically, the turbine wheel 3) flows.
 換言すると、第1分岐流路44は、その一端が第1スクロール流路41に接続され、その他端が合流流路46において、第2分岐流路45及び排気流路47に接続されている。第2分岐流路45は、その一端が第2スクロール流路42に接続され、その他端が合流流路46において、第1分岐流路44及び排気流路47に接続されている。第1分岐流路44及び第2分岐流路45は、第1スクロール流路41と第2スクロール流路42との間で排ガスを流通可能に連通しているとともに、第1スクロール流路41や第2スクロール流路42を流れる排ガスの少なくとも一部を、第1スクロール流路41や第2スクロール流路42よりも低圧な排気流路47に排出可能に連通している。 In other words, the first branch flow path 44 has one end connected to the first scroll flow path 41 and the other end connected to the second branch flow path 45 and the exhaust flow path 47 at the merging flow path 46 . The second branch channel 45 has one end connected to the second scroll channel 42 and the other end connected to the first branch channel 44 and the exhaust channel 47 at a merging channel 46 . The first branch flow path 44 and the second branch flow path 45 communicate exhaust gas between the first scroll flow path 41 and the second scroll flow path 42 so that the exhaust gas can flow therebetween. At least a portion of the exhaust gas flowing through the second scroll passage 42 is communicated with an exhaust passage 47 having a lower pressure than the first scroll passage 41 and the second scroll passage 42 so as to be dischargeable.
(スクロールコネクションバルブ)
 スクロールコネクションバルブ5は、スクロールコネクションバルブ5が全閉状態(閉動作時)のときに、合流流路46における2つの分岐流路(第1分岐流路44及び第2分岐流路45)間の封止及び合流流路46と排気流路47との間の封止を同時に行うためのものである。また、スクロールコネクションバルブ5は、スクロールコネクションバルブ5が全開状態(開動作時)のときに、合流流路46における2つの分岐流路(第1分岐流路44及び第2分岐流路45)間の封止及び合流流路46と排気流路47との間の封止を解除し、これらの流路間の排ガスの流通を可能にするためのものである。
(Scroll connection valve)
The scroll connection valve 5 is configured to connect between two branch channels (first branch channel 44 and second branch channel 45) in the merging channel 46 when the scroll connection valve 5 is in a fully closed state (during closing operation). This is for simultaneously performing sealing and sealing between the merging flow path 46 and the exhaust flow path 47. Further, when the scroll connection valve 5 is in a fully open state (during opening operation), the scroll connection valve 5 is connected between the two branch channels (the first branch channel 44 and the second branch channel 45) in the merging channel 46. This is to release the seal between the merging flow path 46 and the exhaust flow path 47, and to enable exhaust gas to flow between these flow paths.
 スクロールコネクションバルブ5は、図2に示されるように、弁体6と、弁体6を駆動させるための弁棒7と、を含む。以下、弁体6の軸線LBが延在する方向を弁体6の軸方向とし、軸線LBに直交する方向を弁体6の径方向とし、軸線LB回りの周方向を弁体6の周方向とする。弁体6の軸方向において頭部61が設けられた側を先端側と定義し、先端側とは反対側を基端側と定義する。 As shown in FIG. 2, the scroll connection valve 5 includes a valve body 6 and a valve rod 7 for driving the valve body 6. Hereinafter, the direction in which the axis LB of the valve body 6 extends is referred to as the axial direction of the valve body 6, the direction perpendicular to the axis LB is referred to as the radial direction of the valve body 6, and the circumferential direction around the axis LB is referred to as the circumferential direction of the valve body 6. shall be. The side where the head 61 is provided in the axial direction of the valve body 6 is defined as the distal end side, and the side opposite to the distal end side is defined as the proximal end side.
 スクロールコネクションバルブ5は、弁体6の開度を調整可能に構成されている。具体的には、スクロールコネクションバルブ5は、弁棒7を弁軸RC回りに回転させるための不図示のアクチュエータを含む回転駆動装置をさらに含む。スクロールコネクションバルブ5は、弁棒7及び弁棒7に連結された弁体6を弁軸RC回りに回転させることで、弁体6の開度を弁棒7の周方向における角度位置に対応した開度に調整できるようになっている。スクロールコネクションバルブ5は、弁体6の開度を全開、全閉、全開と全閉との間の少なくとも1つの中間開度に調整可能に構成されている。 The scroll connection valve 5 is configured such that the opening degree of the valve body 6 can be adjusted. Specifically, the scroll connection valve 5 further includes a rotation drive device including an actuator (not shown) for rotating the valve stem 7 around the valve shaft RC. The scroll connection valve 5 rotates the valve stem 7 and the valve body 6 connected to the valve stem 7 around the valve shaft RC, so that the opening degree of the valve body 6 corresponds to the angular position of the valve stem 7 in the circumferential direction. The opening can be adjusted. The scroll connection valve 5 is configured to be able to adjust the opening degree of the valve body 6 to fully open, fully closed, or at least one intermediate degree between fully open and fully closed.
 なお、スクロールコネクションバルブ5は、上述した回転駆動装置の代わりに、弁棒7を弁体6の軸方向に沿って移動させるための不図示のアクチュエータを含む軸方向駆動装置を含んでいてもよい。この場合には、スクロールコネクションバルブ5は、弁棒7及び弁棒7に連結された弁体6を弁体6の軸方向に沿って移動させることで、弁体6の開度を弁体6の軸方向位置に対応した開度に調整できるようになっていてもよい。 Note that the scroll connection valve 5 may include an axial drive device including an actuator (not shown) for moving the valve stem 7 along the axial direction of the valve body 6 instead of the rotation drive device described above. . In this case, the scroll connection valve 5 changes the opening degree of the valve body 6 by moving the valve stem 7 and the valve body 6 connected to the valve stem 7 along the axial direction of the valve body 6. The opening degree may be adjusted to correspond to the axial position of the opening.
 比較例に係る弁体6(6A)は、図2に示されるように、弁体軸部60、頭部61、鍔部63及び傾斜部65が一体的に形成されている。弁体6(6A)は、金属材料により構成されている。 In the valve body 6 (6A) according to the comparative example, as shown in FIG. 2, a valve body shaft portion 60, a head portion 61, a collar portion 63, and an inclined portion 65 are integrally formed. The valve body 6 (6A) is made of a metal material.
 頭部61は、弁体6の軸方向の先端側に設けられ、弁体6の軸線LBに交差(図示例では、直交)する方向に沿って延在する円板状に形成されている。上述した接続流路形成部22は、第1分岐流路44と第2分岐流路45とを分断する分岐壁221を有する。頭部61は、弁体6の軸線LBに交差(図示例では、直交)する方向に沿って延在し、分岐壁221に対向する頭部端面611を有する。頭部端面611は、頭部61の軸方向の先端側の端面である。頭部61は、その頭部端面611が合流流路46において分岐壁221に当接することで、2つの分岐流路44、45を分断可能である。 The head 61 is provided on the distal end side of the valve body 6 in the axial direction, and is formed into a disk shape extending along a direction intersecting (orthogonal to in the illustrated example) the axis LB of the valve body 6. The connection channel forming section 22 described above has a branch wall 221 that separates the first branch channel 44 and the second branch channel 45. The head 61 extends along a direction that intersects (orthogonally in the illustrated example) the axis LB of the valve body 6 and has a head end surface 611 that faces the branch wall 221 . The head end surface 611 is the end surface of the head 61 on the distal end side in the axial direction. The head 61 can divide the two branch channels 44 and 45 by bringing the head end surface 611 into contact with the branch wall 221 in the merging channel 46 .
 鍔部63は、頭部61よりも弁体6の径方向における外側(外周側)に延在する円環板状に形成されている。鍔部63は、頭部61よりも弁体6の軸方向の基端側に設けられる。上述した排気流路形成部23は、シート壁面231を有する。シート壁面231には、連通口48が形成されている。鍔部63は、弁体6の軸線LBに交差(図示例では、直交)する方向に沿って延在し、シート壁面231に対向する環状のシート面631を有する。環状のシート面631は、鍔部63の軸方向の先端側の端面である。鍔部63は、その環状のシート面631がシート壁面231に当接することで、連通口48を閉止可能である。ここで、連通口48を閉止可能とは、連通口48を介した合流流路46と排気流路47との間の連通を解除可能であることを意味する。 The flange portion 63 is formed into an annular plate shape that extends further outward (outer circumference side) in the radial direction of the valve body 6 than the head portion 61 . The flange portion 63 is provided closer to the proximal end of the valve body 6 in the axial direction than the head portion 61 . The exhaust flow path forming section 23 described above has a sheet wall surface 231. A communication port 48 is formed in the sheet wall surface 231 . The flange portion 63 has an annular seat surface 631 that extends along a direction that intersects (orthogonally in the illustrated example) the axis LB of the valve body 6 and faces the seat wall surface 231 . The annular seat surface 631 is an end surface of the flange portion 63 on the distal end side in the axial direction. The flange portion 63 can close the communication port 48 by bringing the annular seat surface 631 into contact with the seat wall surface 231 . Here, being able to close the communication port 48 means that communication between the merging flow path 46 and the exhaust flow path 47 via the communication port 48 can be released.
 しかしながら、比較例に係る弁体6(6A)は、頭部61を分岐壁221に当接させることと、鍔部63をシート壁面231に当接させることを同時に行うことが困難な形状となっている。図2に示されるように、鍔部63をシート壁面231に当接させると、頭部61の頭部端面611と分岐壁221との間に隙間Gが生じることになる。一方、頭部61を分岐壁221に当接させると、鍔部63のシート面631とシート壁面231との間に隙間が生じることになる。 However, the valve body 6 (6A) according to the comparative example has a shape that makes it difficult to simultaneously bring the head 61 into contact with the branch wall 221 and bring the flange 63 into contact with the seat wall surface 231. ing. As shown in FIG. 2, when the flange portion 63 is brought into contact with the sheet wall surface 231, a gap G is generated between the head end surface 611 of the head portion 61 and the branch wall 221. On the other hand, when the head 61 is brought into contact with the branch wall 221, a gap is created between the seat surface 631 of the collar portion 63 and the seat wall surface 231.
(変形代)
 幾つかの実施形態に係るタービンハウジング2は、図3~7に示されるように、上述したタービンハウジング本体20と、弁体6(6B~6E)及び上述した弁棒7を含むスクロールコネクションバルブ5を備える。弁体6(6B、6D、6E)は、図3、図4、図6、図7に示されるように、上述した頭部61と、頭部61よりも弁体6の径方向における外側(外周側)に延在するシート部62と、を有する。頭部61は、合流流路46において分岐壁221に当接することで、2つの分岐流路44、45を分断可能である。シート部62は、上述したシート壁面231に当接することで、連通口48を閉止可能である。
(Deformation allowance)
As shown in FIGS. 3 to 7, the turbine housing 2 according to some embodiments includes the above-described turbine housing main body 20, a scroll connection valve 5 including the valve body 6 (6B to 6E), and the above-described valve rod 7. Equipped with As shown in FIG. 3, FIG. 4, FIG. 6, and FIG. and a seat portion 62 extending toward the outer circumferential side. The head 61 can divide the two branch channels 44 and 45 by abutting against the branch wall 221 in the merging channel 46 . The seat portion 62 can close the communication port 48 by coming into contact with the seat wall surface 231 described above.
 シート部62は、図3、図6、図7に示されるように、スクロールコネクションバルブ5の閉動作時において、シート部62がシート壁面231に当接した後に、分岐壁221に頭部61を当接させるための変形代DAを有する。スクロールコネクションバルブ5は、弁体6を駆動させる駆動力により、シート壁面231に当接したシート部62に弁体6の軸方向における先端側に向けて押し付ける押付力を作用させる。この押付力によりシート部62の少なくとも一部が変形代DAの範囲内において弾性変形するようになっている。 As shown in FIGS. 3, 6, and 7, the seat portion 62 contacts the seat wall surface 231 during the closing operation of the scroll connection valve 5, and then the head portion 61 contacts the branch wall 221. It has a deformation allowance DA for bringing it into contact. The scroll connection valve 5 uses a driving force that drives the valve body 6 to apply a pressing force to the seat portion 62 in contact with the seat wall surface 231 toward the distal end side in the axial direction of the valve body 6 . Due to this pressing force, at least a portion of the seat portion 62 is elastically deformed within the range of the deformation allowance DA.
 上記の構成によれば、シート部62が変形代DAを有する。この場合には、スクロールコネクションバルブ5の閉動作時において、シート部62がシート壁面231に当接した後に、シート部62の少なくとも一部を変形代DAの範囲内で変形させることで、分岐壁221に頭部61を当接させることができる。これにより、タービンハウジング2は、合流流路46における2つの分岐流路44、45間の封止及び合流流路46と排気流路47との間の封止を同時に行うことが可能となる。2つの分岐流路44、45間の封止及び合流流路46と排気流路47との間の封止を同時に行うことで、タービン1における排ガスの漏れ損失を抑制できるため、タービン1の効率向上が図れる。 According to the above configuration, the seat portion 62 has the deformation allowance DA. In this case, during the closing operation of the scroll connection valve 5, after the seat portion 62 comes into contact with the seat wall surface 231, at least a portion of the seat portion 62 is deformed within the range of deformation allowance DA, so that the branch wall The head 61 can be brought into contact with 221. Thereby, the turbine housing 2 can simultaneously seal between the two branch channels 44 and 45 in the merging channel 46 and sealing between the merging channel 46 and the exhaust channel 47. By simultaneously sealing between the two branch flow paths 44 and 45 and between the merging flow path 46 and the exhaust flow path 47, leakage loss of exhaust gas in the turbine 1 can be suppressed, thereby increasing the efficiency of the turbine 1. Improvements can be made.
 また、上記の構成によれば、タービンハウジング2は、シート部62が変形代DAを有する構造とすることで、その構造を簡単なものとすることができる。 Furthermore, according to the above configuration, the structure of the turbine housing 2 can be simplified by making the seat portion 62 have a deformation allowance DA.
(第1の実施形態)
 図3は、第1の実施形態に係るタービンハウジング2の、スクロールコネクションバルブ5が全閉状態(閉動作時)におけるスクロールコネクションバルブ5の軸線LBに沿った概略断面図である。図4は、第1の実施形態に係るタービンハウジング2の、スクロールコネクションバルブ5が全開状態(開動作時)におけるスクロールコネクションバルブ5の軸線LBに沿った概略断面図である。
(First embodiment)
FIG. 3 is a schematic sectional view of the turbine housing 2 according to the first embodiment taken along the axis LB of the scroll connection valve 5 when the scroll connection valve 5 is in a fully closed state (during a closing operation). FIG. 4 is a schematic cross-sectional view of the turbine housing 2 according to the first embodiment taken along the axis LB of the scroll connection valve 5 when the scroll connection valve 5 is in a fully open state (during an opening operation).
 幾つかの実施形態では、図3及び図4に示されるように、上述した弁体6Bのシート部62は、上述した鍔部63と、環状の弾性シール部材64と、を含む。図3及び図4に示される実施形態では、弁体6Bは、弁体軸部60、頭部61、鍔部63及び傾斜部65が一体的に形成されている。弁体軸部60、頭部61、鍔部63、弾性シール部材64及び傾斜部65は、金属材料により構成されている。 In some embodiments, as shown in FIGS. 3 and 4, the seat portion 62 of the valve body 6B includes the flange portion 63 and an annular elastic seal member 64. In the embodiment shown in FIGS. 3 and 4, the valve body 6B has a valve body shaft portion 60, a head portion 61, a collar portion 63, and an inclined portion 65 that are integrally formed. The valve body shaft portion 60, the head portion 61, the collar portion 63, the elastic seal member 64, and the inclined portion 65 are made of a metal material.
 弁体軸部60は、弁体6の軸線LBの延在方向に沿って延びて、その弁体6の軸方向の先端側の端部(一端)が頭部61に接続されている。弁体軸部60は、その弁体6の軸方向の基端側の端部(他端)が弁棒7に接続されている。 The valve body shaft portion 60 extends along the direction in which the axis LB of the valve body 6 extends, and an end (one end) on the distal end side in the axial direction of the valve body 6 is connected to the head 61. The valve body shaft portion 60 is connected to the valve rod 7 at its proximal end (other end) in the axial direction of the valve body 6 .
 傾斜部65は、頭部61の外周縁から延びて、弁体6の軸線LBの延在方向において頭部61から離れるにつれて軸線LBからの距離が長くなるように傾斜する筒状に形成されている。図3及び図4に示される実施形態では、傾斜部65の一端は、頭部61の外周縁に接続され、傾斜部65の他端は、鍔部63の内周端に接続されている。 The inclined portion 65 is formed in a cylindrical shape that extends from the outer peripheral edge of the head 61 and is inclined such that the distance from the axis LB increases as the distance from the head 61 increases in the direction in which the axis LB of the valve body 6 extends. There is. In the embodiment shown in FIGS. 3 and 4, one end of the inclined portion 65 is connected to the outer circumferential edge of the head portion 61, and the other end of the inclined portion 65 is connected to the inner circumferential end of the collar portion 63.
 弾性シール部材64は、鍔部63のシート面631とシート壁面231との間に配置され、上記変形代DAを有する。すなわち、弾性シール部材64は、上記押付力により弁体6の軸方向に沿って収縮可能に構成されている。弾性シール部材64は、リベット止めなどの嵌合や溶接、接着などにより鍔部63に取り付けられている。弾性シール部材64は、スクロールコネクションバルブ5が全閉状態(閉動作時)のときに、シート壁面231に当接し、スクロールコネクションバルブ5が全開状態(開動作時)のときに、シート壁面231から離隔するようになっている。 The elastic seal member 64 is disposed between the seat surface 631 of the flange portion 63 and the seat wall surface 231, and has the above deformation amount DA. That is, the elastic seal member 64 is configured to be able to contract along the axial direction of the valve body 6 by the above-mentioned pressing force. The elastic seal member 64 is attached to the flange portion 63 by fitting such as riveting, welding, adhesion, or the like. The elastic seal member 64 contacts the seat wall surface 231 when the scroll connection valve 5 is in a fully closed state (during a closing operation), and is in contact with the seat wall surface 231 when the scroll connection valve 5 is in a fully open state (during an opening operation). They are becoming separated.
 上記の構成によれば、弾性シール部材64は、上記変形代DAを有する。スクロールコネクションバルブ5の閉動作時において、弾性シール部材64を弾性変形させることで、シート部62をシート壁面231に当接させることと、分岐壁221に頭部61を当接させることを同時に実現できる。これにより、タービンハウジング2は、合流流路46における2つの分岐流路44、45間の封止及び合流流路46と排気流路47との間の封止を同時に行うことが可能となる。 According to the above configuration, the elastic seal member 64 has the above deformation allowance DA. By elastically deforming the elastic seal member 64 during the closing operation of the scroll connection valve 5, it is possible to simultaneously bring the seat portion 62 into contact with the seat wall surface 231 and bring the head 61 into contact with the branch wall 221. can. Thereby, the turbine housing 2 can simultaneously seal between the two branch channels 44 and 45 in the merging channel 46 and sealing between the merging channel 46 and the exhaust channel 47.
 幾つかの実施形態では、上述した弾性シール部材64は、弁体6の径方向に沿って延在する環状の第1板部641と、弁体6の径方向に沿って延在する環状の第2板部642と、第1板部641の外周端と第2板部642の外周端とを繋ぐ環状の接続部643と、を含む。図示される実施形態では、弾性シール部材64は、その横断面形状がC字状に形成されている。第1板部641は、環状のシート面631に当接している。第2板部642は、シート壁面231に接離可能に設けられ、弁体6の位置が全閉位置にある場合にシート壁面231に当接するようになっている。 In some embodiments, the elastic seal member 64 described above includes an annular first plate portion 641 extending along the radial direction of the valve body 6 and an annular first plate portion 641 extending along the radial direction of the valve body 6. It includes a second plate part 642 and an annular connecting part 643 that connects the outer peripheral end of the first plate part 641 and the outer peripheral end of the second plate part 642. In the illustrated embodiment, the elastic seal member 64 has a C-shaped cross section. The first plate portion 641 is in contact with the annular seat surface 631. The second plate portion 642 is provided so as to be able to come into contact with and separate from the seat wall surface 231, and comes into contact with the seat wall surface 231 when the valve body 6 is in the fully closed position.
 上記の構成によれば、合流流路46内の排ガスの圧力により、弾性シール部材64には、第1板部641の内周端部と第2板部642の内周端部とが広がる(離隔する)方向に押付力が作用し、この押付力によりシート面631とシート壁面231との間が弾性シール部材64により効果的に封止される。 According to the above configuration, due to the pressure of the exhaust gas in the merging channel 46, the inner peripheral end of the first plate part 641 and the inner peripheral end of the second plate part 642 spread in the elastic sealing member 64 ( A pressing force is applied in the direction (separating), and this pressing force effectively seals the space between the sheet surface 631 and the sheet wall surface 231 by the elastic sealing member 64.
(第1の実施形態の変形例)
 図5は、第1の実施形態の変形例に係るタービンハウジング2の、スクロールコネクションバルブ5が全開状態(開動作時)におけるスクロールコネクションバルブ5の軸線LBに沿った概略断面図である。上述した幾つかの実施形態では、弾性シール部材64は、鍔部63のシート面631に取り付けられていたが、シート壁面231に取り付けられていてもよい。幾つかの実施形態では、図5に示されるように、タービンハウジング2は、上述したタービンハウジング本体20と、弁体6C及び上述した弁棒7を含むスクロールコネクションバルブ5と、環状の弾性シール部材64Aと、を備える。弁体6Cは、比較例に係る弁体6Aと同様に、上述した弁体軸部60、頭部61、鍔部63及び傾斜部65を有する。
(Modified example of the first embodiment)
FIG. 5 is a schematic cross-sectional view of the turbine housing 2 according to a modification of the first embodiment, taken along the axis LB of the scroll connection valve 5 when the scroll connection valve 5 is in a fully open state (during an opening operation). In the several embodiments described above, the elastic seal member 64 was attached to the seat surface 631 of the collar portion 63, but it may be attached to the seat wall surface 231. In some embodiments, as shown in FIG. 5, the turbine housing 2 includes the above-described turbine housing main body 20, the scroll connection valve 5 including the valve body 6C and the above-described valve rod 7, and an annular elastic seal member. 64A. The valve body 6C has the above-mentioned valve body shaft portion 60, head portion 61, collar portion 63, and inclined portion 65, similarly to the valve body 6A according to the comparative example.
 弾性シール部材64Aは、鍔部63のシート面631とシート壁面231との間に配置され、上記変形代DAを有する。すなわち、弾性シール部材64Aは、上記押付力により弁体6の軸方向に沿って収縮可能に構成されている。弾性シール部材64Aは、金属材料により構成されている。弾性シール部材64Aは、リベット止めなどの嵌合や溶接、接着などによりシート壁面231に取り付けられている。弾性シール部材64Aは、シート面631に当接することで、連通口48を閉止可能である。 The elastic seal member 64A is disposed between the seat surface 631 of the flange portion 63 and the seat wall surface 231, and has the above deformation amount DA. That is, the elastic seal member 64A is configured to be able to contract along the axial direction of the valve body 6 by the above-mentioned pressing force. The elastic seal member 64A is made of a metal material. The elastic seal member 64A is attached to the sheet wall surface 231 by fitting such as riveting, welding, adhesion, or the like. The elastic seal member 64A can close the communication port 48 by coming into contact with the seat surface 631.
 弾性シール部材64Aは、スクロールコネクションバルブ5が全閉状態(閉動作時)のときに、シート面631に当接し、スクロールコネクションバルブ5が全開状態(開動作時)のときに、シート面631から離隔するようになっている。 The elastic seal member 64A contacts the seat surface 631 when the scroll connection valve 5 is in a fully closed state (during a closing operation), and is in contact with the seat surface 631 when the scroll connection valve 5 is in a fully open state (during an opening operation). They are becoming separated.
 上記の構成によれば、弾性シール部材64Aが変形代DAを有する。この場合には、スクロールコネクションバルブ5の閉動作時において、シート部62がシート壁面231に当接した後に、弾性シール部材64Aの少なくとも一部を変形代DAの範囲内で変形させることで、分岐壁221に頭部61を当接させることができる。これにより、タービンハウジング2は、合流流路46における2つの分岐流路44、45間の封止及び合流流路46と排気流路47との間の封止を同時に行うことが可能となる。2つの分岐流路44、45間の封止及び合流流路46と排気流路47との間の封止を同時に行うことで、タービン1における排ガスの漏れ損失を抑制できるため、タービン1の効率向上が図れる。 According to the above configuration, the elastic seal member 64A has the deformation allowance DA. In this case, during the closing operation of the scroll connection valve 5, after the seat portion 62 comes into contact with the seat wall surface 231, at least a portion of the elastic seal member 64A is deformed within the range of deformation DA, so that the branching The head 61 can be brought into contact with the wall 221. Thereby, the turbine housing 2 can simultaneously seal between the two branch channels 44 and 45 in the merging channel 46 and sealing between the merging channel 46 and the exhaust channel 47. By simultaneously sealing the two branch channels 44 and 45 and sealing the converging channel 46 and the exhaust channel 47, leakage loss of exhaust gas in the turbine 1 can be suppressed, thereby increasing the efficiency of the turbine 1. Improvements can be made.
 また、上記の構成によれば、タービンハウジング2は、弾性シール部材64Aが変形代DAを有する構造とすることで、その構造を簡単なものとすることができる。 Furthermore, according to the above configuration, the structure of the turbine housing 2 can be simplified by making the elastic seal member 64A have a deformation allowance DA.
 幾つかの実施形態では、上述した弾性シール部材64Aは、図5に示されるように、弁体6の径方向に沿って延在する環状の第1板部641Aと、弁体6の径方向に沿って延在する環状の第2板部642Aと、第1板部641Aの外周端と第2板部642Aの外周端とを繋ぐ環状の接続部643Aと、を含む。図示される実施形態では、弾性シール部材64Aは、その横断面形状がC字状に形成されている。第1板部641Aは、環状のシート面631に接離可能に設けられ、弁体6の位置が全閉位置にある場合に環状のシート面631に当接するようになっている。第2板部642Aは、シート壁面231に当接している。 In some embodiments, the above-described elastic seal member 64A includes an annular first plate portion 641A extending in the radial direction of the valve body 6 and a first plate portion 641A extending in the radial direction of the valve body 6, as shown in FIG. It includes an annular second plate portion 642A extending along the second plate portion 642A, and an annular connecting portion 643A connecting the outer circumferential end of the first plate portion 641A and the outer circumferential end of the second plate portion 642A. In the illustrated embodiment, the elastic seal member 64A has a C-shaped cross section. The first plate portion 641A is provided so as to be able to come into contact with and separate from the annular seat surface 631, and comes into contact with the annular seat surface 631 when the valve body 6 is in the fully closed position. The second plate portion 642A is in contact with the sheet wall surface 231.
 上記の構成によれば、合流流路46内の排ガスの圧力により、弾性シール部材64Aには、第1板部641Aの内周端部と第2板部642Aの内周端部とが広がる(離隔する)方向に押付力が作用し、この押付力によりシート面631とシート壁面231との間が弾性シール部材64Aにより効果的に封止される。 According to the above configuration, due to the pressure of the exhaust gas in the merging flow path 46, the inner peripheral end of the first plate portion 641A and the inner peripheral end of the second plate portion 642A spread in the elastic seal member 64A ( A pressing force acts in the direction (separating), and this pressing force effectively seals between the sheet surface 631 and the sheet wall surface 231 by the elastic sealing member 64A.
 なお、鍔部63のシート面631に弾性シール部材64を取り付ける方が、シート壁面231に弾性シール部材64Aを取り付ける場合に比べて、弾性シール部材の取り付けが容易である。また、鍔部63のシート面631に弾性シール部材64を取り付ける方が、シート壁面231に弾性シール部材64Aを取り付ける場合に比べて、タービンハウジング本体20に接触する面積を低減でき、タービンハウジング本体20からの入熱量を低減できるため、弾性シール部材の熱損傷を抑制できる。 Note that attaching the elastic seal member 64 to the seat surface 631 of the flange portion 63 is easier than attaching the elastic seal member 64A to the seat wall surface 231. Furthermore, when the elastic seal member 64 is attached to the seat surface 631 of the flange portion 63, the area in contact with the turbine housing body 20 can be reduced compared to when the elastic seal member 64A is attached to the seat wall surface 231. Since the amount of heat input from the elastic seal member can be reduced, thermal damage to the elastic seal member can be suppressed.
(第2の実施形態)
 図6は、第2の実施形態に係るタービンハウジング2の、スクロールコネクションバルブ5が全閉状態におけるスクロールコネクションバルブ5の軸線LBに沿った概略断面図である。幾つかの実施形態では、弁体6(6D)は、図6に示されるように、上述した頭部61と、上述した傾斜部65と、シート部62と、を含む。シート部62は、頭部61よりも弁体6の径方向における外側に延在し、シート壁面231に対向する環状のシート面661を有する鍔部66を含む。
(Second embodiment)
FIG. 6 is a schematic cross-sectional view of the turbine housing 2 according to the second embodiment, taken along the axis LB of the scroll connection valve 5 when the scroll connection valve 5 is in a fully closed state. In some embodiments, the valve body 6 (6D) includes the above-mentioned head 61, the above-mentioned inclined part 65, and a seat part 62, as shown in FIG. The seat portion 62 includes a flange portion 66 that extends outward in the radial direction of the valve body 6 from the head portion 61 and has an annular seat surface 661 that faces the seat wall surface 231 .
 鍔部66は、内周端が傾斜部65に接続され、上記変形代DAを有する。すなわち、鍔部66は、上記押付力により、外周端を内周端よりも弁体6の軸方向における基端側に弾性変形により折り曲げ可能になっている。鍔部66は、鍔部66と傾斜部65との接続部P1を弾性変形の基点としてもよいし、傾斜部65と頭部61との接続部P2を弾性変形の基点としてもよい。また、鍔部66の弾性変形を容易とするために、鍔部66の厚さT1を頭部の厚さT2よりも薄くしてもよい。また、鍔部66の厚さT1を傾斜部65の厚さよりも薄くしてもよい。 The inner peripheral end of the flange portion 66 is connected to the inclined portion 65, and has the above-mentioned deformation amount DA. That is, the flange portion 66 can be elastically bent so that the outer peripheral end thereof is closer to the proximal end in the axial direction of the valve body 6 than the inner peripheral end thereof by the above-mentioned pressing force. The flange portion 66 may have a connecting portion P1 between the flange portion 66 and the inclined portion 65 as a base point of elastic deformation, or may have a connecting portion P2 between the inclined portion 65 and the head portion 61 as a base point of elastic deformation. Furthermore, in order to facilitate elastic deformation of the flange 66, the thickness T1 of the flange 66 may be made thinner than the thickness T2 of the head. Further, the thickness T1 of the flange portion 66 may be made thinner than the thickness of the inclined portion 65.
 上記の構成によれば、鍔部66は、上記変形代DAを有する。スクロールコネクションバルブ5の閉動作時において、鍔部66を弾性変形させることで、シート部62をシート壁面231に当接させることと、分岐壁221に頭部61を当接させることを同時に実現できる。これにより、タービンハウジング2は、合流流路46おける2つの分岐流路44、45間の封止及び合流流路46と排気流路47との間の封止を同時に行うことが可能となる。 According to the above configuration, the flange portion 66 has the above deformation allowance DA. By elastically deforming the collar portion 66 during the closing operation of the scroll connection valve 5, it is possible to simultaneously bring the seat portion 62 into contact with the seat wall surface 231 and bring the head 61 into contact with the branch wall 221. . Thereby, the turbine housing 2 can simultaneously seal between the two branch channels 44 and 45 in the merging channel 46 and sealing between the merging channel 46 and the exhaust channel 47.
 幾つかの実施形態では、図6に示されるように、上述した鍔部66は、シート壁面231に向かって突出する環状凸部662を有する。環状凸部662は、環状のシート面631から弁体6の軸方向における先端側に突出している。 In some embodiments, as shown in FIG. 6, the above-mentioned flange portion 66 has an annular convex portion 662 that protrudes toward the sheet wall surface 231. The annular convex portion 662 protrudes from the annular seat surface 631 toward the distal end side in the axial direction of the valve body 6 .
 上記の構成によれば、鍔部66の環状凸部662を弁体6の径方向における外側に配置することで、環状凸部662とシート壁面231とが当接する部分に作用する曲げモーメントを増大できる。上記曲げモーメントを増大させることで、環状凸部662とシート壁面231との間のシール性を向上できる。なお、環状凸部662は、上記曲げモーメントを増大させるため、軸線LBから離れた位置に設けることが好ましい。図6に示される実施形態では、環状凸部662は、鍔部66のシート面631の外周縁に形成されている。 According to the above configuration, by arranging the annular convex portion 662 of the flange portion 66 on the outside in the radial direction of the valve body 6, the bending moment acting on the portion where the annular convex portion 662 and the seat wall surface 231 come into contact is increased. can. By increasing the bending moment, the sealing performance between the annular convex portion 662 and the sheet wall surface 231 can be improved. Note that the annular convex portion 662 is preferably provided at a position away from the axis LB in order to increase the bending moment. In the embodiment shown in FIG. 6 , the annular convex portion 662 is formed on the outer peripheral edge of the seat surface 631 of the collar portion 66 .
(第3の実施形態)
 図7は、第3の実施形態に係るタービンハウジング2の、スクロールコネクションバルブ5が全閉状態におけるスクロールコネクションバルブ5の軸線LBに沿った概略断面図である。幾つかの実施形態では、弁体6(6E)は、図7に示されるように、上述した弁体軸部60と、上述した頭部61と、上述した傾斜部65と、シート部62と、を含む。シート部62は、頭部61よりも弁体6の径方向における外側に延在し、シート壁面231に対向する環状のシート面671を有する環状板部材67を含む。
(Third embodiment)
FIG. 7 is a schematic cross-sectional view of the turbine housing 2 according to the third embodiment, taken along the axis LB of the scroll connection valve 5 when the scroll connection valve 5 is in a fully closed state. In some embodiments, the valve body 6 (6E), as shown in FIG. ,including. The seat portion 62 includes an annular plate member 67 that extends outward from the head 61 in the radial direction of the valve body 6 and has an annular seat surface 671 that faces the seat wall surface 231 .
 環状板部材67は、弁体軸部60、頭部61及び傾斜部65とは別体に構成されている。環状板部材67は、内周端が弁体軸部60に取り付けられている。図示される実施形態では、弁体軸部60には、基端側を先端側よりも小径にする段差面601と、段差面601よりも基端側の少なくとも一部の外周面に形成されたネジ部602と、が形成されている。環状板部材67の内周端673を段差面601と、ネジ部602に螺合するネジ部681を有するナット部材68と、の間に挟持することで、環状板部材67が弁体軸部60に固定されている。 The annular plate member 67 is configured separately from the valve body shaft portion 60, the head portion 61, and the inclined portion 65. The annular plate member 67 has an inner peripheral end attached to the valve body shaft portion 60 . In the illustrated embodiment, the valve body shaft portion 60 includes a step surface 601 that makes the proximal end smaller in diameter than the distal end, and a stepped surface 601 formed on at least a portion of the outer peripheral surface on the proximal end side of the step surface 601. A threaded portion 602 is formed. By sandwiching the inner circumferential end 673 of the annular plate member 67 between the step surface 601 and the nut member 68 having a threaded portion 681 that is screwed into the threaded portion 602, the annular plate member 67 is attached to the valve body shaft portion 60. is fixed.
 環状板部材67は、環状の上記内周端673と、シート面671を有する環状の外周端675と、外周端675及び内周端673とを繋ぐ環状の接続板部674と、を含む。接続板部674は、内周端673に対して基端側に向かって折り曲げられ、外周端675に対して先端側に折り曲げられている。 The annular plate member 67 includes the annular inner peripheral end 673, an annular outer peripheral end 675 having a seat surface 671, and an annular connecting plate portion 674 connecting the outer peripheral end 675 and the inner peripheral end 673. The connecting plate portion 674 is bent toward the proximal end with respect to the inner circumferential end 673, and is bent toward the distal end with respect to the outer circumferential end 675.
 環状板部材67は、変形代DAを有する。すなわち、環状板部材67は、上記押付力により、少なくとも外周端675を基端側に弾性変形により折り曲げ可能になっている。環状板部材67は、外周端675と接続板部674との接続部P3を弾性変形の基点としてもよい。 The annular plate member 67 has a deformation allowance DA. That is, the annular plate member 67 can be bent at least at the outer peripheral end 675 toward the proximal end by elastic deformation by the above pressing force. The annular plate member 67 may have a connecting portion P3 between the outer peripheral end 675 and the connecting plate portion 674 as a base point for elastic deformation.
 上記の構成によれば、環状板部材67は、上記変形代DAを有する。スクロールコネクションバルブ5の閉動作時において、環状板部材67を弾性変形させることで、シート部62をシート壁面231に当接させることと、分岐壁221に頭部61を当接させることを同時に実現できる。これにより、タービンハウジング2は、合流流路46における2つの分岐流路44、45間の封止及び合流流路46と排気流路47との間の封止を同時に行うことが可能となる。 According to the above configuration, the annular plate member 67 has the above deformation allowance DA. By elastically deforming the annular plate member 67 during the closing operation of the scroll connection valve 5, it is possible to simultaneously bring the seat portion 62 into contact with the seat wall surface 231 and bring the head 61 into contact with the branch wall 221. can. Thereby, the turbine housing 2 can simultaneously seal between the two branch channels 44 and 45 in the merging channel 46 and sealing between the merging channel 46 and the exhaust channel 47.
 また、上記の構成によれば、環状板部材67を頭部61、傾斜部65及び弁体軸部60に対して別体とすることで、環状板部材67が頭部61、傾斜部65及び弁体軸部60に対して一体である場合に比べて、環状板部材67に変形代DAを形成することが容易となるとともに、環状板部材67の変形起点P3を弁体6の径方向における内側に配置できる。環状板部材67の変形起点P3を弁体6の径方向における内側に配置することで、シート部62とシート壁面231とが当接する部分に作用する曲げモーメントを増大できる。上記曲げモーメントを増大させることで、シート部62とシート壁面231との間のシール性を向上できる。 Further, according to the above configuration, by making the annular plate member 67 separate from the head 61, the inclined part 65, and the valve body shaft part 60, the annular plate member 67 can be connected to the head 61, the inclined part 65, and the valve body shaft part 60. Compared to the case where the annular plate member 67 is integral with the valve body shaft portion 60, it becomes easier to form the deformation allowance DA in the annular plate member 67, and the deformation starting point P3 of the annular plate member 67 is set in the radial direction of the valve body 6. Can be placed inside. By arranging the deformation starting point P3 of the annular plate member 67 inside the valve body 6 in the radial direction, it is possible to increase the bending moment acting on the portion where the seat portion 62 and the seat wall surface 231 abut. By increasing the bending moment, the sealing performance between the seat portion 62 and the seat wall surface 231 can be improved.
 幾つかの実施形態では、図7に示されるように、上述した環状板部材67は、シート壁面231に向かって突出するように湾曲する環状の湾曲部672を有する。図示される実施形態では、環状の湾曲部672は、外周端675の外周縁に形成される。湾曲部672は、弁体6の軸方向における先端側に突出する凸形状を有する。 In some embodiments, as shown in FIG. 7, the annular plate member 67 described above has an annular curved portion 672 that curves so as to protrude toward the sheet wall surface 231. In the illustrated embodiment, an annular curved portion 672 is formed at the outer circumferential edge of outer circumferential end 675 . The curved portion 672 has a convex shape that projects toward the distal end side in the axial direction of the valve body 6.
 上記の構成によれば、環状板部材67の環状の湾曲部672を弁体6の径方向における外側に配置することで、環状の湾曲部672とシート壁面231とが当接する部分に作用する曲げモーメントを増大できる。上記曲げモーメントを増大させることで、環状の湾曲部672とシート壁面231との間のシール性を向上できる。 According to the above configuration, by arranging the annular curved portion 672 of the annular plate member 67 on the outside in the radial direction of the valve body 6, the bending that acts on the portion where the annular curved portion 672 and the seat wall surface 231 come into contact is caused. The moment can be increased. By increasing the bending moment, the sealing performance between the annular curved portion 672 and the sheet wall surface 231 can be improved.
 幾つかの実施形態に係るタービン1は、図2に示されるように、上述したタービンハウジング2と、上述したタービンホイール3と、を備える。幾つかの実施形態に係る過給機10は、図1に示されるように、上述したタービン1と、上述したコンプレッサ13と、を備える。これらの場合には、タービンハウジング2により、合流流路46における2つの分岐流路44、45間の封止及び合流流路46と排気流路47との間の封止を同時に行うことが可能となる。これにより、タービン1における排ガスの漏れ損失を抑制できるため、タービン1及び過給機10の効率向上が図れる。 As shown in FIG. 2, the turbine 1 according to some embodiments includes the above-mentioned turbine housing 2 and the above-mentioned turbine wheel 3. A supercharger 10 according to some embodiments includes the turbine 1 described above and the compressor 13 described above, as shown in FIG. In these cases, the turbine housing 2 can simultaneously seal between the two branch channels 44 and 45 in the merging channel 46 and sealing between the merging channel 46 and the exhaust channel 47. becomes. Thereby, leakage loss of exhaust gas in the turbine 1 can be suppressed, so that the efficiency of the turbine 1 and the supercharger 10 can be improved.
 本明細書において、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 また、本明細書において、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 また、本明細書において、一の構成要素を「備える」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
In this specification, expressions expressing relative or absolute arrangement such as "in a certain direction", "along a certain direction", "parallel", "perpendicular", "center", "concentric", or "coaxial" are used. shall not only strictly represent such an arrangement, but also represent a state in which they are relatively displaced with a tolerance or an angle or distance that allows the same function to be obtained.
For example, expressions such as "same,""equal," and "homogeneous" that indicate that things are in an equal state do not only mean that things are exactly equal, but also have tolerances or differences in the degree to which the same function can be obtained. It also represents the existing state.
In addition, in this specification, expressions expressing shapes such as a square shape or a cylindrical shape do not only mean shapes such as a square shape or a cylindrical shape in a strict geometric sense, but also within the range where the same effect can be obtained. , shall also represent shapes including uneven parts, chamfered parts, etc.
Furthermore, in this specification, the expressions "comprising,""including," or "having" one component are not exclusive expressions that exclude the presence of other components.
 本開示は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。なお、本開示のタービンハウジング2は、ダブルスクロールタービンやツインスクロールタービンに適用可能である。 The present disclosure is not limited to the embodiments described above, and also includes forms in which modifications are made to the embodiments described above, and forms in which these forms are appropriately combined. Note that the turbine housing 2 of the present disclosure is applicable to a double scroll turbine or a twin scroll turbine.
 上述した幾つかの実施形態に記載の内容は、例えば以下のように把握されるものである。 The contents described in the several embodiments described above can be understood, for example, as follows.
1)本開示の少なくとも一実施形態に係るタービンハウジング(2)は、
 2つのスクロール流路(41、42)が形成されたタービンハウジング(2)であって、
 前記2つのスクロール流路(41、42)を形成するスクロール流路形成部(21)と、
 前記2つのスクロール流路(41、42)のうちの一方のスクロール流路(41)から分岐する第1分岐流路(44)、前記2つのスクロール流路(41、42)のうちの他方のスクロール流路(42)から分岐する第2分岐流路(45)、及び前記第1分岐流路(44)と前記第2分岐流路(45)とが合流するとともに、タービンホイール(3)を通過した排ガスが流れる排気流路(47)と連通口(48)を介して連通する合流流路(46)、を含む接続流路(43)を形成する接続流路形成部(22)であって、前記第1分岐流路(44)と前記第2分岐流路(45)とを分断する分岐壁(221)を有する接続流路形成部(22)と、
を含むタービンハウジング本体(20)と、
 前記合流流路(46)において前記分岐壁(221)に当接することで、前記2つの分岐流路(44、45)を分断可能な頭部(61)と、
 前記頭部(61)よりも外周側に延在するシート部(62)であって、前記タービンハウジング(2)のシート壁面(231)に当接することで、前記連通口(48)を閉止可能なシート部(62)と、を少なくとも有する弁体(6)
を含むスクロールコネクションバルブ(5)と、を備え、
 前記シート部(62)は、前記スクロールコネクションバルブ(5)の閉動作時において、前記シート部(62)が前記シート壁面(231)に当接した後に、前記分岐壁(221)に前記頭部(61)を当接させるための変形代(DA)を有する。
1) A turbine housing (2) according to at least one embodiment of the present disclosure includes:
A turbine housing (2) in which two scroll passages (41, 42) are formed,
a scroll passage forming part (21) forming the two scroll passages (41, 42);
A first branch channel (44) branching from one scroll channel (41) of the two scroll channels (41, 42), and a first branch channel (44) branching from one of the two scroll channels (41, 42); A second branch passage (45) branches from the scroll passage (42), and the first branch passage (44) and the second branch passage (45) merge, and the turbine wheel (3) A connection flow path forming part (22) forming a connection flow path (43) including an exhaust flow path (47) through which the passed exhaust gas flows and a merging flow path (46) communicating through a communication port (48). a connecting flow path forming part (22) having a branch wall (221) that divides the first branch flow path (44) and the second branch flow path (45);
a turbine housing body (20) including;
a head (61) capable of separating the two branch channels (44, 45) by coming into contact with the branch wall (221) in the merging channel (46);
A seat portion (62) extending toward the outer circumferential side of the head portion (61) and capable of closing the communication port (48) by abutting against the seat wall surface (231) of the turbine housing (2). a valve body (6) having at least a seat portion (62);
a scroll connection valve (5) including;
The seat portion (62) is configured to contact the branch wall (221) with the head portion after the seat portion (62) comes into contact with the seat wall surface (231) during the closing operation of the scroll connection valve (5). It has a deformation allowance (DA) for bringing (61) into contact.
 上記1)の構成によれば、シート部(62)が変形代(DA)を有する。この場合には、スクロールコネクションバルブ(5)の閉動作時において、シート部(62)がシート壁面(231)に当接した後に、シート部(62)の少なくとも一部を変形代(DA)の範囲内で変形させることで、分岐壁(221)に頭部(61)を当接させることができる。これにより、タービンハウジング(2)は、合流流路(46)における2つの分岐流路(44、45)間の封止及び合流流路(46)と排気流路(47)との間の封止を同時に行うことが可能となる。2つの分岐流路(44、45)間の封止及び合流流路(46)と排気流路(47)との間の封止を同時に行うことで、タービン(1)における排ガスの漏れ損失を抑制できるため、タービン(1)の効率向上が図れる。 According to configuration 1) above, the seat portion (62) has a deformation allowance (DA). In this case, during the closing operation of the scroll connection valve (5), after the seat part (62) comes into contact with the seat wall surface (231), at least a part of the seat part (62) is moved by the deformation amount (DA). By deforming within this range, the head (61) can be brought into contact with the branch wall (221). Thereby, the turbine housing (2) seals between the two branch channels (44, 45) in the merging channel (46) and seals between the merging channel (46) and the exhaust channel (47). It becomes possible to perform both stops at the same time. By simultaneously sealing between the two branch flow paths (44, 45) and between the merging flow path (46) and the exhaust flow path (47), leakage loss of exhaust gas in the turbine (1) can be reduced. Since this can be suppressed, the efficiency of the turbine (1) can be improved.
 また、上記1)の構成によれば、タービンハウジング(2)は、シート部(62)が変形代(DA)を有する構造とすることで、その構造を簡単なものとすることができる。 Furthermore, according to configuration 1) above, the turbine housing (2) can have a simple structure because the seat portion (62) has a deformation allowance (DA).
2)幾つかの実施形態では、上記1)に記載のタービンハウジング(2)であって、
 前記シート部(62)は、
 前記頭部(61)よりも前記弁体(6)の径方向における外側に延在し、前記シート壁面(231)に隙間を介して対向する環状のシート面(631)を有する鍔部(63)と、
 前記鍔部(63)に取り付けられた前記変形代(DA)を有する弾性シール部材(64)であって、前記鍔部(63)の前記シート面(631)と前記シート壁面(231)との間に配置される環状の弾性シール部材(64)と、を含む。
2) In some embodiments, the turbine housing (2) described in 1) above,
The seat portion (62) is
A flange (63) having an annular seat surface (631) extending radially outward of the valve body (6) from the head (61) and facing the seat wall surface (231) with a gap therebetween. )and,
An elastic seal member (64) having the deformation allowance (DA) attached to the flange (63), wherein the sheet surface (631) of the flange (63) and the sheet wall surface (231) an annular elastic seal member (64) disposed therebetween.
 上記2)の構成によれば、弾性シール部材(64)は、上記変形代(DA)を有する。スクロールコネクションバルブ(5)の閉動作時において、弾性シール部材(64)を弾性変形させることで、シート部(62)をシート壁面(231)に当接させることと、分岐壁(221)に頭部(61)を当接させることを同時に実現できる。これにより、タービンハウジング(2)は、合流流路(46)における2つの分岐流路(44、45)間の封止及び合流流路(46)と排気流路(47)との間の封止を同時に行うことが可能となる。 According to configuration 2) above, the elastic seal member (64) has the above deformation allowance (DA). By elastically deforming the elastic seal member (64) during the closing operation of the scroll connection valve (5), the seat portion (62) is brought into contact with the seat wall surface (231) and the head is brought into contact with the branch wall (221). At the same time, it is possible to bring the portions (61) into contact with each other. Thereby, the turbine housing (2) seals between the two branch channels (44, 45) in the merging channel (46) and seals between the merging channel (46) and the exhaust channel (47). It becomes possible to perform both stops at the same time.
3)幾つかの実施形態では、上記2)に記載のタービンハウジング(2)であって、
 前記弾性シール部材(64)は、
 前記弁体(6)の径方向に沿って延在し、前記環状のシート面(631)に当接する第1板部(641)と、
 前記弁体(6)の径方向に沿って延在する第2板部(642)であって、前記シート壁面(231)に接離可能に設けられ、前記弁体(6)の位置が全閉位置にある場合に前記シート壁面(231)に当接する第2板部(642)と、
 前記第1板部(641)の外周端と前記第2板部(642)の外周端とを繋ぐ接続部(643)と、を含む。
3) In some embodiments, the turbine housing (2) described in 2) above,
The elastic seal member (64) is
a first plate portion (641) extending along the radial direction of the valve body (6) and abutting the annular seat surface (631);
A second plate portion (642) extending along the radial direction of the valve body (6) is provided so as to be able to come into contact with and separate from the seat wall surface (231), and is provided so that the position of the valve body (6) is completely a second plate portion (642) that abuts the seat wall surface (231) when in the closed position;
A connecting portion (643) connecting the outer peripheral end of the first plate portion (641) and the outer peripheral end of the second plate portion (642) is included.
 上記3)の構成によれば、合流流路(46)内の排ガスの圧力により、弾性シール部材(64)には、第1板部(641)の内周端部と第2板部(642)の内周端部とが広がる(離隔する)方向に押付力が作用し、この押付力によりシート面(631)とシート壁面(231)との間が弾性シール部材(64)により効果的に封止される。 According to configuration 3) above, due to the pressure of the exhaust gas in the merging flow path (46), the elastic seal member (64) has the inner peripheral end of the first plate part (641) and the second plate part (642). ) A pressing force acts in the direction in which the inner peripheral end of the sheet spreads (separates), and this pressing force causes the elastic sealing member (64) to effectively seal between the seat surface (631) and the seat wall surface (231). sealed.
4)幾つかの実施形態では、上記1)に記載のタービンハウジング(2)であって、
 前記弁体(6)は、
 前記頭部(61)の外周縁から延びて、前記弁体(6)の軸線の延在方向において前記頭部(61)から離れるにつれて前記軸線からの距離が長くなるように傾斜する傾斜部(65)をさらに有し、
 前記シート部(62)は、前記頭部(61)よりも前記弁体(6)の径方向における外側に延在し、前記シート壁面(231)に隙間を介して対向する環状のシート面(661)を有する鍔部(66)であって、内周端が前記傾斜部(65)に接続された鍔部(66)を含み、
 前記鍔部(66)は、前記変形代(DA)を有する。
4) In some embodiments, the turbine housing (2) described in 1) above,
The valve body (6) is
An inclined portion (61) that extends from the outer peripheral edge of the head (61) and slopes so that the distance from the axis increases as the distance from the head (61) increases in the direction in which the axis of the valve body (6) extends. 65) further comprising:
The seat portion (62) extends outward in the radial direction of the valve body (6) from the head (61), and has an annular seat surface ( 661), the inner peripheral end of which is connected to the inclined portion (65);
The flange (66) has the deformation allowance (DA).
 上記4)の構成によれば、鍔部(66)は、上記変形代(DA)を有する。スクロールコネクションバルブ(5)の閉動作時において、鍔部(66)を弾性変形させることで、シート部(62)をシート壁面(231)に当接させることと、分岐壁(221)に頭部(61)を当接させることを同時に実現できる。これにより、タービンハウジング(2)は、合流流路(46)における2つの分岐流路(44、45)間の封止及び合流流路(46)と排気流路(47)との間の封止を同時に行うことが可能となる。 According to configuration 4) above, the flange portion (66) has the above deformation allowance (DA). During the closing operation of the scroll connection valve (5), by elastically deforming the flange (66), the seat part (62) is brought into contact with the seat wall surface (231) and the head part is attached to the branch wall (221). (61) can be brought into contact at the same time. Thereby, the turbine housing (2) seals between the two branch channels (44, 45) in the merging channel (46) and seals between the merging channel (46) and the exhaust channel (47). It becomes possible to perform both stops at the same time.
5)幾つかの実施形態では、上記4)に記載のタービンハウジング(2)であって、
 前記鍔部(66)は、前記シート壁面(231)に向かって突出する環状凸部(662)を有する。
5) In some embodiments, the turbine housing (2) described in 4) above,
The flange portion (66) has an annular convex portion (662) that protrudes toward the sheet wall surface (231).
 上記5)の構成によれば、鍔部(66)の環状凸部(662)を弁体(6)の径方向における外側に配置することで、環状凸部(662)とシート壁面(231)とが当接する部分に作用する曲げモーメントを増大できる。上記曲げモーメントを増大させることで、環状凸部(662)とシート壁面(231)との間のシール性を向上できる。 According to configuration 5) above, by arranging the annular protrusion (662) of the flange (66) on the outside in the radial direction of the valve body (6), the annular protrusion (662) and the seat wall surface (231) It is possible to increase the bending moment that acts on the part where the two contact each other. By increasing the bending moment, the sealing performance between the annular convex portion (662) and the sheet wall surface (231) can be improved.
6)幾つかの実施形態では、上記1)に記載のタービンハウジング(2)であって、
 前記弁体(6)は、前記弁体(6)の軸線の延在方向に沿って延びて一端が前記頭部(61)に接続された弁体軸部(60)をさらに含み、
 前記シート部(62)は、前記頭部(62)よりも前記弁体(6)の径方向における外側に延在し、前記シート壁面(231)に隙間を介して対向する環状のシート面(671)を有する環状板部材(67)であって、内周端が前記弁体軸部(60)に取り付けられた環状板部材(67)を含み、
 前記環状板部材(67)は、前記変形代(DA)を有する。
6) In some embodiments, the turbine housing (2) described in 1) above,
The valve body (6) further includes a valve body shaft (60) that extends along the axial direction of the valve body (6) and has one end connected to the head (61),
The seat portion (62) extends outward in the radial direction of the valve body (6) from the head (62), and has an annular seat surface ( 671), the annular plate member (67) having an inner peripheral end attached to the valve body shaft (60),
The annular plate member (67) has the deformation allowance (DA).
 上記6)の構成によれば、環状板部材(67)は、上記変形代(DA)を有する。スクロールコネクションバルブ(5)の閉動作時において、環状板部材(67)を弾性変形させることで、シート部(62)をシート壁面(231)に当接させることと、分岐壁(221)に頭部(61)を当接させることを同時に実現できる。これにより、タービンハウジング(2)は、合流流路(46)における2つの分岐流路(44、45)間の封止及び合流流路(46)と排気流路(47)との間の封止を同時に行うことが可能となる。 According to configuration 6) above, the annular plate member (67) has the above deformation allowance (DA). During the closing operation of the scroll connection valve (5), by elastically deforming the annular plate member (67), the seat portion (62) is brought into contact with the seat wall surface (231) and the head is brought into contact with the branch wall (221). At the same time, it is possible to bring the portions (61) into contact with each other. Thereby, the turbine housing (2) seals between the two branch channels (44, 45) in the merging channel (46) and seals between the merging channel (46) and the exhaust channel (47). It becomes possible to perform both stops at the same time.
 また、上記6)の構成によれば、環状板部材(67)を頭部(62)、傾斜部(65)及び弁体軸部(60)に対して別体とすることで、環状板部材(67)が頭部(62)、傾斜部(65)及び弁体軸部(60)に対して一体である場合に比べて、環状板部材(67)に変形代(DA)を形成することが容易となるとともに、環状板部材(67)の変形起点を弁体(6)の径方向における内側に配置できる。環状板部材(67)の変形起点を弁体(6)の径方向における内側に配置することで、シート部(62)とシート壁面(231)とが当接する部分に作用する曲げモーメントを増大できる。上記曲げモーメントを増大させることで、シート部(62)とシート壁面(231)との間のシール性を向上できる。 Further, according to configuration 6), the annular plate member (67) is made separate from the head (62), the inclined portion (65), and the valve shaft portion (60). Forming a deformation allowance (DA) in the annular plate member (67) compared to the case where the annular plate member (67) is integral with the head (62), the inclined part (65), and the valve shaft part (60). In addition, the starting point of deformation of the annular plate member (67) can be placed inside the valve body (6) in the radial direction. By arranging the deformation starting point of the annular plate member (67) inside the valve body (6) in the radial direction, it is possible to increase the bending moment that acts on the portion where the seat portion (62) and the seat wall surface (231) contact. . By increasing the bending moment, the sealing performance between the seat portion (62) and the seat wall surface (231) can be improved.
7)幾つかの実施形態では、上記6)に記載のタービンハウジング(2)であって、
 前記環状板部材(67)は、前記シート壁面(231)に向かって突出するように湾曲する環状の湾曲部(672)を有する。
7) In some embodiments, the turbine housing (2) described in 6) above,
The annular plate member (67) has an annular curved portion (672) that curves to protrude toward the sheet wall surface (231).
 上記7)の構成によれば、環状板部材(67)の環状の湾曲部(672)を弁体(6)の径方向における外側に配置することで、環状の湾曲部(672)とシート壁面(231)とが当接する部分に作用する曲げモーメントを増大できる。上記曲げモーメントを増大させることで、環状の湾曲部(672)とシート壁面(231)との間のシール性を向上できる。 According to configuration 7) above, by arranging the annular curved portion (672) of the annular plate member (67) on the outside in the radial direction of the valve body (6), the annular curved portion (672) and the seat wall surface It is possible to increase the bending moment that acts on the part where (231) and (231) come into contact. By increasing the bending moment, the sealing performance between the annular curved portion (672) and the sheet wall surface (231) can be improved.
8)本開示の少なくとも一実施形態に係るタービンハウジング(2)は、
 2つのスクロール流路(41、42)が形成されたタービンハウジング(2)であって、
 前記2つのスクロール流路(41、42)を形成するスクロール流路形成部(21)と、
 前記2つのスクロール流路(41、42)のうちの一方のスクロール流路(41)から分岐する第1分岐流路(44)、前記2つのスクロール流路(41、42)のうちの他方のスクロール流路(42)から分岐する第2分岐流路(45)、及び前記第1分岐流路(44)と前記第2分岐流路(45)とが合流するとともに、タービンホイール(3)を通過した排ガスが流れる排気流路(47)と連通口(48)を介して連通する合流流路(46)、を含む接続流路(43)を形成する接続流路形成部(22)であって、前記第1分岐流路(44)と前記第2分岐流路(45)とを分断する分岐壁(221)を有する接続流路形成部(22)と、
を含むタービンハウジング本体(20)と、
 前記合流流路(46)において前記分岐壁(221)に当接することで、前記2つの分岐流路(44、45)を分断可能な頭部(61)と、
 前記頭部(61)よりも外周側に延在し、前記タービンハウジング(2)のシート壁面(231)に隙間を介して対向する環状のシート面(631)を有する鍔部(63)と、を少なくとも有する弁体(6)
を含むスクロールコネクションバルブ(5)と、
 前記シート面(631)と前記シート壁面(231)との間に配置され、前記シート壁面(231)に取り付けられた環状の弾性シール部材(64A)であって、前記シート面(631)に当接することで、前記連通口(48)を閉止可能な弾性シール部材(64A)と、を備え、
 前記弾性シール部材(64A)は、前記スクロールコネクションバルブ(5)の閉動作時において、前記弾性シール部材(64A)が前記シート面(631)に当接した後に、前記分岐壁(221)に前記頭部(61)を当接させるための変形代(DA)を有する。
8) The turbine housing (2) according to at least one embodiment of the present disclosure includes:
A turbine housing (2) in which two scroll passages (41, 42) are formed,
a scroll passage forming part (21) forming the two scroll passages (41, 42);
A first branch channel (44) branching from one scroll channel (41) of the two scroll channels (41, 42), and a first branch channel (44) branching from one of the two scroll channels (41, 42); A second branch passage (45) branches from the scroll passage (42), and the first branch passage (44) and the second branch passage (45) merge, and the turbine wheel (3) A connection flow path forming part (22) forming a connection flow path (43) including an exhaust flow path (47) through which the passed exhaust gas flows and a merging flow path (46) communicating through a communication port (48). a connecting flow path forming part (22) having a branch wall (221) that divides the first branch flow path (44) and the second branch flow path (45);
a turbine housing body (20) including;
a head (61) capable of separating the two branch channels (44, 45) by coming into contact with the branch wall (221) in the merging channel (46);
a flange (63) having an annular seat surface (631) extending toward the outer periphery of the head (61) and facing the seat wall surface (231) of the turbine housing (2) with a gap therebetween; A valve body (6) having at least
a scroll connection valve (5) comprising;
An annular elastic seal member (64A) disposed between the seat surface (631) and the seat wall surface (231) and attached to the seat wall surface (231), the elastic seal member (64A) being in contact with the seat surface (631). an elastic sealing member (64A) that can close the communication port (48) by contacting the elastic sealing member (64A);
The elastic seal member (64A) contacts the branch wall (221) after the elastic seal member (64A) contacts the seat surface (631) during the closing operation of the scroll connection valve (5). It has a deformation allowance (DA) for bringing the head (61) into contact.
 上記8)の構成によれば、弾性シール部材(64A)が変形代(DA)を有する。この場合には、スクロールコネクションバルブ(5)の閉動作時において、シート部(62)がシート壁面(231)に当接した後に、弾性シール部材(64A)の少なくとも一部を変形代(DA)の範囲内で変形させることで、分岐壁(221)に頭部(61)を当接させることができる。これにより、タービンハウジング(2)は、合流流路(46)における2つの分岐流路(44、45)間の封止及び合流流路(46)と排気流路(47)との間の封止を同時に行うことが可能となる。2つの分岐流路(44、45)間の封止及び合流流路(46)と排気流路(47)との間の封止を同時に行うことで、タービン(1)における排ガスの漏れ損失を抑制できるため、タービン(1)の効率向上が図れる。 According to configuration 8) above, the elastic seal member (64A) has a deformation allowance (DA). In this case, during the closing operation of the scroll connection valve (5), after the seat portion (62) comes into contact with the seat wall surface (231), at least a portion of the elastic seal member (64A) is deformed by the deformation amount (DA). By deforming within this range, the head (61) can be brought into contact with the branch wall (221). Thereby, the turbine housing (2) seals between the two branch channels (44, 45) in the merging channel (46) and seals between the merging channel (46) and the exhaust channel (47). It becomes possible to perform both stops at the same time. By simultaneously sealing between the two branch flow paths (44, 45) and between the merging flow path (46) and the exhaust flow path (47), leakage loss of exhaust gas in the turbine (1) can be reduced. Since this can be suppressed, the efficiency of the turbine (1) can be improved.
 また、上記8)の構成によれば、タービンハウジング(2)は、弾性シール部材(64A)が変形代(DA)を有する構造とすることで、その構造を簡単なものとすることができる。 Furthermore, according to configuration 8) above, the structure of the turbine housing (2) can be simplified because the elastic seal member (64A) has a deformation allowance (DA).
9)本開示の少なくとも一実施形態に係るタービン(1)は、
 上記1)~上記8)の何れかに記載のタービンハウジング(2)と、
 前記タービンハウジングに回転可能に収容されるタービンホイール(3)と、を含む。
9) The turbine (1) according to at least one embodiment of the present disclosure includes:
The turbine housing (2) according to any one of 1) to 8) above;
a turbine wheel (3) rotatably housed in the turbine housing.
 上記9)の構成によれば、タービンハウジング(2)により、合流流路(46)における2つの分岐流路(44、45)間の封止及び合流流路(46)と排気流路(47)との間の封止を同時に行うことが可能となる。これにより、タービン(1)における排ガスの漏れ損失を抑制できるため、タービン(1)の効率向上が図れる。 According to configuration 9) above, the turbine housing (2) seals between the two branch channels (44, 45) in the merging channel (46) and the merging channel (46) and the exhaust channel (47). ) can be sealed at the same time. Thereby, leakage loss of exhaust gas in the turbine (1) can be suppressed, so that the efficiency of the turbine (1) can be improved.
10)本開示の少なくとも一実施形態に係る過給機(10)は、
 エンジン(12)から排出された排ガスで駆動されるタービン(1)であって、上記9)に記載のタービン(1)と、
 前記タービン(1)に同軸で連結し、回転とともに圧縮した空気を前記エンジン(12)に供給するためのコンプレッサ(13)と、を備える。
10) A supercharger (10) according to at least one embodiment of the present disclosure,
A turbine (1) driven by exhaust gas discharged from an engine (12), the turbine (1) described in 9) above;
A compressor (13) is coaxially connected to the turbine (1) and supplies compressed air to the engine (12) as it rotates.
 上記10)の構成によれば、タービンハウジング(2)により、合流流路(46)における2つの分岐流路(44、45)間の封止及び合流流路(46)と排気流路(47)との間の封止を同時に行うことが可能となる。これにより、タービン(1)における排ガスの漏れ損失を抑制できるため、過給機(10)の効率向上が図れる。 According to configuration 10), the turbine housing (2) seals between the two branch channels (44, 45) in the merging channel (46) and the merging channel (46) and the exhaust channel (47). ) can be sealed at the same time. Thereby, leakage loss of exhaust gas in the turbine (1) can be suppressed, so that the efficiency of the supercharger (10) can be improved.
1     タービン
2     タービンハウジング
3     タービンホイール
5     スクロールコネクションバルブ
6     弁体
10    過給機
11    エンジンシステム
12    エンジン
13    コンプレッサ
14    回転シャフト
15    軸受
16    軸受ハウジング
20    タービンハウジング本体
21    スクロール流路形成部
22    接続流路形成部
23    排気流路形成部
41    第1スクロール流路
42    第2スクロール流路
43    接続流路
44    第1分岐流路
45    第2分岐流路
46    合流流路
47    排気流路
48    連通口
60    弁体軸部
61    頭部
62    シート部
63,66 鍔部
64,64A 弾性シール部材
65    傾斜部
67    環状板部材
68    ナット部材
131   インペラ
132   コンプレッサハウジング
1 Turbine 2 Turbine housing 3 Turbine wheel 5 Scroll connection valve 6 Valve body 10 Supercharger 11 Engine system 12 Engine 13 Compressor 14 Rotating shaft 15 Bearing 16 Bearing housing 20 Turbine housing body 21 Scroll passage forming part 22 Connection passage forming part 23 Exhaust flow path forming section 41 First scroll flow path 42 Second scroll flow path 43 Connection flow path 44 First branch flow path 45 Second branch flow path 46 Merging flow path 47 Exhaust flow path 48 Communication port 60 Valve body shaft portion 61 Head part 62 Seat part 63, 66 Flange part 64, 64A Elastic seal member 65 Inclined part 67 Annular plate member 68 Nut member 131 Impeller 132 Compressor housing

Claims (10)

  1.  2つのスクロール流路が形成されたタービンハウジングであって、
     前記2つのスクロール流路を形成するスクロール流路形成部と、
     前記2つのスクロール流路のうちの一方のスクロール流路から分岐する第1分岐流路、前記2つのスクロール流路のうちの他方のスクロール流路から分岐する第2分岐流路、及び前記第1分岐流路と前記第2分岐流路とが合流するとともに、タービンホイールを通過した排ガスが流れる排気流路と連通口を介して連通する合流流路、を含む接続流路を形成する接続流路形成部であって、前記第1分岐流路と前記第2分岐流路とを分断する分岐壁を有する接続流路形成部と、
    を含むタービンハウジング本体と、
     前記合流流路において前記分岐壁に当接することで、前記2つの分岐流路を分断可能な頭部と、
     前記頭部よりも外周側に延在するシート部であって、前記タービンハウジングのシート壁面に当接することで、前記連通口を閉止可能なシート部と、を少なくとも有する弁体
    を含むスクロールコネクションバルブと、を備え、
     前記シート部は、前記スクロールコネクションバルブの閉動作時において、前記シート部が前記シート壁面に当接した後に、前記分岐壁に前記頭部を当接させるための変形代を有する、
    タービンハウジング。
    A turbine housing in which two scroll passages are formed,
    a scroll flow path forming section that forms the two scroll flow paths;
    A first branch passage branching from one of the two scroll passages, a second branch passage branching from the other one of the two scroll passages, and the first branch passage. A connecting channel that forms a connecting channel that includes a branch channel and the second branch channel that merge together, and a merging channel that communicates via a communication port with an exhaust channel through which exhaust gas that has passed through the turbine wheel flows. a connecting channel forming section that is a forming section and has a branch wall that separates the first branch channel and the second branch channel;
    a turbine housing body including;
    a head capable of separating the two branching channels by abutting against the branching wall in the merging channel;
    A scroll connection valve including a valve body having at least a seat portion extending toward an outer circumferential side from the head portion and capable of closing the communication port by abutting against a seat wall surface of the turbine housing. and,
    The seat portion has a deformation allowance for causing the head portion to abut the branch wall after the seat portion abuts the seat wall surface during the closing operation of the scroll connection valve.
    turbine housing.
  2.  前記シート部は、
     前記頭部よりも前記弁体の径方向における外側に延在し、前記シート壁面に隙間を介して対向する環状のシート面を有する鍔部と、
     前記鍔部に取り付けられた前記変形代を有する弾性シール部材であって、前記鍔部の前記シート面と前記シート壁面との間に配置される環状の弾性シール部材と、を含む、
    請求項1に記載のタービンハウジング。
    The seat portion is
    a flange extending outward in the radial direction of the valve body from the head and having an annular seat surface facing the seat wall surface with a gap therebetween;
    an elastic sealing member having the deformation margin attached to the flange, the annular elastic sealing member being disposed between the sheet surface of the flange and the sheet wall surface;
    A turbine housing according to claim 1.
  3.  前記弾性シール部材は、
     前記弁体の径方向に沿って延在し、前記環状のシート面に当接する第1板部と、
     前記弁体の径方向に沿って延在する第2板部であって、前記シート壁面に接離可能に設けられ、前記弁体の位置が全閉位置にある場合に前記シート壁面に当接する第2板部と、
     前記第1板部の外周端と前記第2板部の外周端とを繋ぐ接続部と、を含む、
    請求項2に記載のタービンハウジング。
    The elastic seal member is
    a first plate portion extending along the radial direction of the valve body and abutting the annular seat surface;
    a second plate portion extending along the radial direction of the valve body, which is provided so as to be able to approach and separate from the seat wall surface, and comes into contact with the seat wall surface when the valve body is in a fully closed position; A second plate part,
    a connecting portion connecting an outer circumferential end of the first plate portion and an outer circumferential edge of the second plate portion;
    A turbine housing according to claim 2.
  4.  前記弁体は、
     前記頭部の外周縁から延びて、前記弁体の軸線の延在方向において前記頭部から離れるにつれて前記軸線からの距離が長くなるように傾斜する傾斜部をさらに有し、
     前記シート部は、前記頭部よりも前記弁体の径方向における外側に延在し、前記シート壁面に隙間を介して対向する環状のシート面を有する鍔部であって、内周端が前記傾斜部に接続された鍔部を含み、
     前記鍔部は、前記変形代を有する、
    請求項1に記載のタービンハウジング。
    The valve body is
    further comprising an inclined part extending from the outer peripheral edge of the head and inclined so that the distance from the axis increases as the distance from the head increases in the direction in which the axis of the valve body extends;
    The seat part is a flange part having an annular seat surface that extends outward in the radial direction of the valve body from the head part and faces the seat wall surface with a gap therebetween, and has an inner circumferential end facing the seat wall surface. including a flange connected to the inclined part;
    The flange portion has the deformation allowance,
    A turbine housing according to claim 1.
  5.  前記鍔部は、前記シート壁面に向かって突出する環状凸部を有する、
    請求項4に記載のタービンハウジング。
    The flange portion has an annular convex portion protruding toward the sheet wall surface.
    A turbine housing according to claim 4.
  6.  前記弁体は、前記弁体の軸線の延在方向に沿って延びて一端が前記頭部に接続された弁体軸部をさらに含み、
     前記シート部は、前記頭部よりも前記弁体の径方向における外側に延在し、前記シート壁面に隙間を介して対向する環状のシート面を有する環状板部材であって、内周端が前記弁体軸部に取り付けられた環状板部材を含み、
     前記環状板部材は、前記変形代を有する、
    請求項1に記載のタービンハウジング。
    The valve body further includes a valve body shaft portion that extends along an axial direction of the valve body and has one end connected to the head,
    The seat portion is an annular plate member having an annular seat surface that extends outward in the radial direction of the valve body from the head portion and faces the seat wall surface with a gap therebetween, and has an inner circumferential end. an annular plate member attached to the valve body shaft;
    The annular plate member has the deformation allowance,
    A turbine housing according to claim 1.
  7.  前記環状板部材は、前記シート壁面に向かって突出するように湾曲する環状の湾曲部を有する、
    請求項6に記載のタービンハウジング。
    The annular plate member has an annular curved portion that curves to protrude toward the sheet wall surface.
    A turbine housing according to claim 6.
  8.  2つのスクロール流路が形成されたタービンハウジングであって、
     前記2つのスクロール流路を形成するスクロール流路形成部と、
     前記2つのスクロール流路のうちの一方のスクロール流路から分岐する第1分岐流路、前記2つのスクロール流路のうちの他方のスクロール流路から分岐する第2分岐流路、及び前記第1分岐流路と前記第2分岐流路とが合流するとともに、タービンホイールを通過した排ガスが流れる排気流路と連通口を介して連通する合流流路、を含む接続流路を形成する接続流路形成部であって、前記第1分岐流路と前記第2分岐流路とを分断する分岐壁を有する接続流路形成部と、
    を含むタービンハウジング本体と、
     前記合流流路において前記分岐壁に当接することで、前記2つの分岐流路を分断可能な頭部と、
     前記頭部よりも外周側に延在し、前記タービンハウジングのシート壁面に隙間を介して対向する環状のシート面を有する鍔部と、を少なくとも有する弁体
    を含むスクロールコネクションバルブと、
     前記シート面と前記シート壁面との間に配置され、前記シート壁面に取り付けられた環状の弾性シール部材であって、前記シート面に当接することで、前記連通口を閉止可能な弾性シール部材と、を備え、
     前記弾性シール部材は、前記スクロールコネクションバルブの閉動作時において、前記弾性シール部材が前記シート面に当接した後に、前記分岐壁に前記頭部を当接させるための変形代を有する、
    タービンハウジング。
    A turbine housing in which two scroll passages are formed,
    a scroll flow path forming section that forms the two scroll flow paths;
    A first branch passage branching from one of the two scroll passages, a second branch passage branching from the other one of the two scroll passages, and the first branch passage. A connecting channel that forms a connecting channel that includes a branch channel and the second branch channel that merge together, and a merging channel that communicates via a communication port with an exhaust channel through which exhaust gas that has passed through the turbine wheel flows. a connecting channel forming section that is a forming section and has a branch wall that separates the first branch channel and the second branch channel;
    a turbine housing body including;
    a head capable of separating the two branching channels by abutting against the branching wall in the merging channel;
    a scroll connection valve including a valve body having at least a flange having an annular seat surface that extends outward from the head and faces a seat wall surface of the turbine housing with a gap therebetween;
    an annular elastic sealing member disposed between the sheet surface and the sheet wall surface and attached to the sheet wall surface, the elastic sealing member being capable of closing the communication port by coming into contact with the sheet surface; , comprising;
    The elastic seal member has a deformation margin for causing the head to contact the branch wall after the elastic seal member contacts the seat surface during the closing operation of the scroll connection valve.
    turbine housing.
  9.  請求項1~8の何れか1項に記載のタービンハウジングと、
     前記タービンハウジングに回転可能に収容されるタービンホイールと、を含む、
    タービン。
    The turbine housing according to any one of claims 1 to 8,
    a turbine wheel rotatably housed in the turbine housing;
    turbine.
  10.  エンジンから排出された排ガスで駆動されるタービンであって、請求項9に記載のタービンと、
     前記タービンに同軸で連結し、回転とともに圧縮した空気を前記エンジンに供給するためのコンプレッサと、を備える、
    過給機。
    A turbine driven by exhaust gas discharged from an engine, the turbine according to claim 9;
    a compressor coaxially connected to the turbine and configured to rotate and supply compressed air to the engine;
    Supercharger.
PCT/JP2022/030900 2022-08-15 2022-08-15 Turbine housing, turbine, and supercharger WO2024038495A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/030900 WO2024038495A1 (en) 2022-08-15 2022-08-15 Turbine housing, turbine, and supercharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/030900 WO2024038495A1 (en) 2022-08-15 2022-08-15 Turbine housing, turbine, and supercharger

Publications (1)

Publication Number Publication Date
WO2024038495A1 true WO2024038495A1 (en) 2024-02-22

Family

ID=89941500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/030900 WO2024038495A1 (en) 2022-08-15 2022-08-15 Turbine housing, turbine, and supercharger

Country Status (1)

Country Link
WO (1) WO2024038495A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107448279A (en) * 2016-05-30 2017-12-08 霍尼韦尔国际公司 Turbocharger wastegate poppet with flexible sheet metal piece containment member
JP2018537615A (en) * 2015-12-21 2018-12-20 アイ・エイチ・アイ チャージング システムズ インターナショナル ゲーエムベーハー Exhaust circulation part of exhaust turbine supercharger and method of operating exhaust turbine supercharger

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018537615A (en) * 2015-12-21 2018-12-20 アイ・エイチ・アイ チャージング システムズ インターナショナル ゲーエムベーハー Exhaust circulation part of exhaust turbine supercharger and method of operating exhaust turbine supercharger
CN107448279A (en) * 2016-05-30 2017-12-08 霍尼韦尔国际公司 Turbocharger wastegate poppet with flexible sheet metal piece containment member

Similar Documents

Publication Publication Date Title
CN109416056B (en) Compressor with variable compressor inlet
KR102075603B1 (en) Shaft sealing system for a turbocharger
JP3593082B2 (en) Shaft seal mechanism and turbine
JP5832090B2 (en) Turbocharger housing seal structure
WO2011074039A1 (en) Turbocharger
EP2180160B1 (en) Turbo charger
JP6476615B2 (en) Variable nozzle unit and variable capacity turbocharger
JP5966786B2 (en) Variable capacity turbocharger
US10309248B2 (en) Variable geometry system turbocharger
WO2017126038A1 (en) Stationary stator vane-type rotary machine and method for assembling stationary stator vane-type rotary machine
US9163589B2 (en) Valve seat and gasket for exhaust gas bypass for turbocharger
WO2011152454A1 (en) Stator vane-type turbocharger
KR20180011452A (en) Turbine wastegate
WO2019087231A1 (en) Turbocharger
KR20180011451A (en) Turbine wastegate
JP2010096110A (en) Turbocharger
KR20200067771A (en) Flap arrangement for a turbine of an exhaust-gas turbocharger
US10233828B2 (en) Variable nozzle unit and variable geometry system turbocharger
US11085543B2 (en) Butterfly valve including a valve body, shaft, groove portion and seal ring
JP2008106823A (en) Seal structure
WO2024038495A1 (en) Turbine housing, turbine, and supercharger
US20180058342A1 (en) Valve Assembly And Valve System Including Same
WO2017203962A1 (en) Supercharger
US20170167364A1 (en) Exhaust bypass valve of multi-stage turbocharger
JP7049370B2 (en) Drive device and link drive mechanism of valve device and turbocharger equipped with this drive device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22955669

Country of ref document: EP

Kind code of ref document: A1