WO2024038493A1 - Gain equalizer - Google Patents

Gain equalizer Download PDF

Info

Publication number
WO2024038493A1
WO2024038493A1 PCT/JP2022/030895 JP2022030895W WO2024038493A1 WO 2024038493 A1 WO2024038493 A1 WO 2024038493A1 JP 2022030895 W JP2022030895 W JP 2022030895W WO 2024038493 A1 WO2024038493 A1 WO 2024038493A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
waveguide
output
input
gain equalizer
Prior art date
Application number
PCT/JP2022/030895
Other languages
French (fr)
Japanese (ja)
Inventor
祥江 森本
賢哉 鈴木
慶太 山口
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/030895 priority Critical patent/WO2024038493A1/en
Publication of WO2024038493A1 publication Critical patent/WO2024038493A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 

Definitions

  • the present invention relates to a gain equalizer configured with an optical waveguide.
  • Optical communication networks are rapidly developing against the backdrop of the explosive increase in data communications, typified by the Internet.
  • WDM optical wavelength division multiplexing
  • Wavelength multiplexing/demultiplexing elements, optical amplifiers, etc. play important roles in realizing WDM technology.
  • OSNR optical signal-to-noise ratio
  • Signal-to-Noise Ratio For example, a gain equalizer disclosed in Non-Patent Document 1 has been proposed for flattening the gain spectrum.
  • PLC Planar Lightwave Circuit
  • Optical circuits using silica-based glass waveguides use the same material as optical fibers used in optical communications, so they have the characteristic of being able to realize low-loss optical waveguides. Furthermore, since the waveguide is formed on a flat substrate, it is easy to combine various functional elements, and complex optical circuits can be manufactured with good reproducibility. Wavelength multiplexing/demultiplexing elements, optical switches, and the like manufactured using these technologies are essential components in constructing optical networks.
  • Non-Patent Document 1 has a configuration in which Mach-Zehnder interferometers are connected in multiple stages, so it has a drawback of high loss. This is based on the essential cause that in each Mach-Zehnder interferometer, optical signals are discarded to unconnected output ports.
  • Non-Patent Document 2 discloses a gain equalizer having a configuration called a lattice circuit.
  • a gain equalizer using a lattice type optical circuit is composed of N-1 arm waveguides each consisting of N directional couplers and two waveguides sandwiched between them. Furthermore, by applying heat to either one of the arm waveguides, the phase of light propagating through the waveguides is controlled by a phase shifter that utilizes a change in refractive index due to the thermo-optic effect. By adjusting the phase difference between the optical signals propagating through the two waveguides that make up the arm waveguide of the directional coupler in the front stage, the interference state in the directional coupler in the rear stage can be adjusted, and the interference state of the propagating light can be adjusted. Controls the transmission spectrum for wavelength.
  • a phase shifter is controlled using a thermo-optic effect in arm waveguides of a plurality of directional couplers, and a wavelength spectrum that is finally output is controlled.
  • the i-th arm of an (N-1) stage lattice type optical circuit configured by N-1 arm waveguides consisting of N directional couplers and two waveguides sandwiched between them.
  • the phase difference ⁇ i occurring between the upper arm waveguide and the lower arm waveguide is expressed by equation (1).
  • is the wavelength of light
  • n eff is the effective refractive index of the optical waveguide
  • ⁇ L i is the difference in length between the upper arm waveguide and the lower arm waveguide in the i-th arm waveguide
  • ⁇ i is i
  • This is the phase difference added between the arm waveguides by controlling the phase shifter in the second arm waveguide.
  • phase shifters include thermo-optic phase shifters that utilize heat generated by a heater and thermo-optic effects.
  • the heat generated is controlled by the amount of current applied to the heater, and the accompanying refractive index change and phase modulation amount are controlled. The larger the phase difference to be added, the larger the amount of drive current required.
  • FIG. 1 shows an example of a gain equalization spectrum in a conventional lattice type optical circuit.
  • the horizontal axis represents the wavelength of light, and the vertical axis represents the light intensity transmittance of the gain equalizer.
  • the wavelength range required for the gain equalizer is assumed to be ⁇ 1 (1525 to 1570 nm in FIG. 1).
  • the minimum transmittance of the light intensity within ⁇ 1 is Loss max ( ⁇ 9 dB in FIG. 1), and the maximum transmittance is Loss min ( ⁇ 0.34 dB in FIG. 1).
  • the difference between Loss max and Loss min will be referred to as an attenuation range (Att. Range).
  • the desired spectral shape only needs to be maintained within ⁇ 1 , and the spectral shape in other wavelength ranges does not matter.
  • the gain equalizer operates as a tilt equalizer.
  • the slope (dB/nm) of the spectrum shape is controlled by adjusting the amount of phase shift in each arm waveguide.
  • Att. Range is expressed by [inclination of spectrum shape ⁇ 1 ].
  • ⁇ i is the difference in length ⁇ L i between the upper arm waveguide and the lower arm waveguide in the arm waveguide, and the phase difference ⁇ i (hereinafter referred to as phase modulation amount ⁇ ) added between the arm waveguides by control of the phase shifter. i ).
  • ⁇ L i is fixed by the optical circuit design and determines the gain equalization spectrum in the initial state in the absence of modulation in the phase shifter.
  • the gain equalization spectrum is changed from the initial state.
  • it is necessary to greatly change the amount of phase modulation ⁇ i and the maximum value of the required amount of phase modulation also increases.
  • the amount of phase modulation is controlled by the current applied to the heater, so the larger the amount of phase modulation to be applied, the larger the amount of drive current is required. Therefore, in order to change the Att. Range over a wide range, it is necessary to apply a large drive current to each heater, which increases power consumption.
  • a gain equalizer using a lattice type optical circuit by increasing the number of stages (N-1) of the lattice type optical circuit, it is possible to realize a more complex and highly flexible gain equalization spectrum. .
  • N-1 the number of stages
  • the number of phase shifters loaded on each arm waveguide also increases, and the number of phase shifters to which drive current is applied increases, leading to a further increase in power consumption.
  • the conventional gain equalizer using a lattice type optical circuit has a problem in that the gain equalization spectrum cannot be controlled with a high degree of freedom within a limited power consumption.
  • An object of the present invention is to provide a gain equalizer using a lattice type optical circuit that can realize a gain equalization spectrum with a high degree of freedom with less power consumption.
  • one embodiment of the present invention is an optical waveguide circuit formed on a substrate, comprising N input waveguides (N is an integer of 3 or more), 2 inputs, 2 An output optical combining/distributing circuit, N-1 arm waveguides consisting of two waveguides connecting between the optical combining/distributing circuits, and an output waveguide, and at least one waveguide of the arm waveguides.
  • the optical waveguide circuit is characterized by comprising: an optical waveguide circuit including a phase shifter loaded in the output waveguide; and an optical folding section that outputs the light input from the output waveguide to the output waveguide again.
  • FIG. 1 is a diagram showing an example of a gain equalization spectrum in a conventional lattice type optical circuit.
  • FIG. 2 is a diagram showing the configuration of a gain equalizer according to the first embodiment of the present invention
  • FIG. 3 is a diagram showing the configuration of a gain equalizer according to a second embodiment of the present invention
  • FIG. 4 is a diagram showing the configuration of a gain equalizer according to a third embodiment of the present invention.
  • FIG. 2 shows the configuration of a gain equalizer according to the first embodiment of the present invention.
  • the gain equalizer 10 includes a lattice optical circuit 11, an input/output separation mechanism 12, and an optical folding section 13.
  • the lattice type optical circuit 11 and the optical folding section 13 are constructed of PLC, and the circuit configuration is shown as seen from the top of the optical waveguide circuit formed on the substrate.
  • the lattice optical circuit 11 includes an input waveguide 111, a plurality of optical directional couplers 113-1 to 113-N and arm waveguides 114-1 to 114-(N-1), and an output waveguide 112.
  • N is an integer of 3 or more.
  • the optical directional couplers 113-1 to 113-N may be any optical circuit elements as long as they are optical multiplexing/dividing circuits with two inputs and two outputs.
  • the arm waveguides 114-1 to 114-(N-1) are composed of two waveguides that connect two optical directional couplers, and at least one of the waveguides is provided with a phase shifter. 115-1 to 115-(N-1) are loaded.
  • the optical signal input from the input waveguide 111 passes through the optical directional couplers 113-1 to 113-N and the arm waveguides 114-1 to 114-(N-1) in order, and then exits from the output waveguide 112. Output.
  • the optical folding section 13 may be integrated with the lattice optical circuit 11, or may be externally connected via an optical fiber or the like.
  • a reflecting mirror may be attached to the output end face of the output waveguide 112 of the lattice type optical circuit 11 to serve as a light return portion.
  • a configuration may be adopted in which a reflecting mirror is installed at the end of the optical waveguide connected to the input/output port 131 of the optical folding section 13. As long as the light input from the input/output port 131 of the light return unit 13 is output from the input/output port 131 again, the structure of the light return unit 13 does not matter.
  • the optical folding unit 13 of the first embodiment includes an optical directional coupler 132, which is a 2-input and 2-output optical multiplexing/distributing circuit, and a loop waveguide 133 that connects two output ports of the optical directional coupler 132. It is configured.
  • the light input from the input/output port 131 is separated into 50% intensities by the optical directional coupler 132.
  • the separated lights travel in opposite directions in the loop waveguide 133, interfere again in the optical directional coupler 132, and light with 100% optical intensity is output from the input/output port 131.
  • the input/output separation mechanism 12 may be integrated with the lattice optical circuit 11, or may be externally connected via an optical fiber or the like.
  • the input/output separation mechanism 12 has ports 121 to 123. Input light from port 121 is output from port 122, and input light from port 122 is output from port 123.
  • Examples of the input/output separation mechanism 12 include a 3 dB coupler, a wavelength-independent coupler, etc. when integrated with the lattice type optical circuit 11, and an optical circulator etc. when connected externally.
  • phase shifter At least one of the arm waveguides 114-1 to 114-(N-1) is loaded with phase shifters 115-1 to 115-(N-1), respectively.
  • the phase shifters 115-1 to 115-(N-1) have a function of controlling the phase of the optical signal passing through them.
  • the principle of the phase shifter does not matter as long as it can control the phase of the optical signal that has passed through it, but for example, a thermo-optic phase shifter that utilizes heat generated by a heater and thermo-optic effect may be mentioned.
  • the heat generated is controlled by the amount of current applied to the heater, and the accompanying refractive index change and phase modulation amount are controlled. The larger the amount of phase modulation to be applied, the larger the amount of drive current required.
  • the optical signal input to the lattice optical circuit 11 is subjected to gain equalization according to the gain equalization spectrum determined by the amount of phase modulation in the phase shifters 115-1 to 115-(N-1), and then It is output from the output waveguide 112.
  • the propagation direction of the output light from the output waveguide 112 is reversed by the optical folding section 13, and the light is again input to the lattice type optical circuit 11 via the output waveguide 112.
  • the optical signal propagates within the lattice optical circuit 11 in the opposite direction to the direction in which it passes through the lattice optical circuit for the first time, and is output from the input waveguide 111.
  • Output light from the lattice optical circuit 11 is input to the input/output separation mechanism 12 via a port 122 and output from a port 123.
  • the input optical signal passes through the lattice optical circuit 11 twice, in the forward direction and in the reverse direction. In other words, it performs a reciprocating motion.
  • the lattice type optical circuit 11 Based on the principle of backward propagation of light, there are two cases: when an optical signal is input to the lattice type optical circuit 11 from the input waveguide 111 and output from the output waveguide 112, and when the optical signal is input to the lattice type optical circuit 11 from the output waveguide 112.
  • the transmission spectrum is the same when inputting from the waveguide 112 and outputting from the input waveguide 111. Therefore, when the lattice-type optical circuit 11 of the first embodiment is operated in a reciprocating manner, it is possible to obtain the same gain equalization effect as when one lattice-type optical circuit is transmitted twice.
  • the gain equalizer 10 of the first embodiment since the lattice type optical circuit 11 is reciprocated, when the amount of phase modulation in each phase shifter 115-1 to 115-(N-1) is fixed, the conventional Compared to the case of one-way operation, the Att. Range of the gain equalization spectrum obtained is doubled. In other words, when a desired gain equalization spectrum exists, the gain equalizer 10 of the first embodiment has a lattice type optical circuit whose Att. Range is half that of a conventional one-way operation gain equalizer. That's fine. For example, when it is desired to operate the gain equalizer 10 of the first embodiment in the Att.
  • the lattice type optical circuit 11 alone has an Att. Range of 0 to 4 dB. It would be good if we could achieve this. In this way, the required Att. Range in the lattice optical circuit 11 can be narrowed, so the range of the necessary phase modulation amount can also be narrowed, and the amount of driving current for the phase shifter can be reduced. That is, power consumption can be reduced.
  • the optical circuit is designed so that the gain equalization spectrum in the initial state (when no modulation is performed) has a waveform with a slope of 0.
  • the gain equalizer 10 outputs a lattice-type optical spectrum.
  • the required power consumption can be reduced by approximately 25% compared to a gain equalizer in which a conventional lattice type optical circuit is operated only one way.
  • FIG. 3 shows the configuration of a gain equalizer according to a second embodiment of the present invention.
  • the gain equalizer 10 of the first embodiment includes one each of a lattice type optical circuit 11, an input/output separation mechanism 12, and an optical folding section 13.
  • the number of lattice-type optical circuits is not limited to this, and a plurality of lattice-type optical circuits may be included.
  • the gain equalizer 20 includes a plurality of lattice-type optical circuits 11, 21, and 31 connected in cascade to each other.
  • the output port 123 of the first input/output separation mechanism 12 is connected to the input port 221 of the second input/output separation mechanism 22.
  • the second lattice optical circuit 21 can be reciprocated.
  • the output port 223 of the second input/output separation mechanism 22 is connected to the input port 321 of the third input/output separation mechanism 32.
  • the third lattice optical circuit 31 can be reciprocated.
  • FIG. 4 shows the configuration of a gain equalizer according to a third embodiment of the present invention.
  • the gain equalizer 40 includes a lattice optical circuit 11, an input/output separation mechanism 12, and an optical folding section 13.
  • the lattice type optical circuit 11 and the optical folding section 13 are constructed of PLC, and the circuit configuration is shown as seen from the top of the optical waveguide circuit formed on the substrate.
  • the difference from the first embodiment is that a polarization rotation mechanism 134 is installed at the center of the loop waveguide 133 of the optical folding section 13.
  • the polarization rotation mechanism 134 is an element that rotates the polarization direction of light propagating through the loop waveguide 133 by 90°.
  • the polarization rotation mechanism 134 there is a wavelength plate, for example, and a half-wave plate that shifts the phase difference between the main axis and the slow axis by ⁇ is particularly effective.
  • the half-wave plate By installing the half-wave plate at an angle of 45° with respect to the substrate surface of the loop waveguide 133, the polarization direction of the light propagating through the loop waveguide 133 is rotated by 90°. . In this way, the optical folding section 13 can convert the TE mode and TM mode of the optical waveguide into each other.
  • the gain equalizer 40 of the third embodiment when the lattice optical circuit 11 is reciprocated, the light that was in the TE mode on the outward path undergoes polarization rotation in the optical folding section 13, and becomes the TM mode on the return path. Transmits through a lattice optical circuit. Therefore, by reciprocating the lattice-type optical circuit 11, polarization-dependent characteristics are eliminated, and a gain equalizer with small polarization-dependent loss (PDL) can be realized as a whole.
  • PDL polarization-dependent loss
  • a gain equalization spectrum with a high degree of freedom can be realized with less power consumption in a gain equalizer using a lattice type optical circuit.

Abstract

Provided is a gain equalizer that realizes a gain equalization spectrum having a high degree of freedom with lower power consumption. This gain equalizer is provided with: an optical waveguide circuit that is formed on a substrate and constituted from an input waveguide, N (where N is an integer of 3 or greater) two-input/two-output optical multiplexing/demultiplexing circuits, N-1 arm waveguides comprising two waveguides connecting between the optical multiplexing/demultiplexing circuits, and an output waveguide, the optical waveguide circuit including a phase shifter loaded on at least one waveguide of the arm waveguides; and a light returning part that re-outputs light inputted from the output waveguide to the output waveguide.

Description

利得等化器gain equalizer
 本発明は、光導波路により構成される利得等化器に関する。 The present invention relates to a gain equalizer configured with an optical waveguide.
 インターネットを代表とするデータ通信の爆発的な増加を背景に、光通信ネットワークが急速に発展している。なかでも、1本の光ファイバ心線に多くの波長信号を伝送できる光波長多重通信(WDM:Wavelength Division Multiplexing)技術は、光通信の大容量化を実現する手段として重要視されている。WDM技術の実現には、波長合分波素子、光増幅器などが重要な役割を果たす。特に100km以上の長距離の伝送にWDM技術を適用するには、光増幅器を伝送ファイバ中に一定間隔で配置する必要があり、その利得スペクトルの波長依存性は、光信号対雑音比(OSNR:Optical Signal-to―Noise Ratio)に大きく影響する。利得スペクトルの平坦化のために、例えば、非特許文献1に開示されている利得等化器が提案されている。 Optical communication networks are rapidly developing against the backdrop of the explosive increase in data communications, typified by the Internet. Among these, optical wavelength division multiplexing (WDM) technology, which allows multiple wavelength signals to be transmitted through a single optical fiber, is considered important as a means of realizing large-capacity optical communications. Wavelength multiplexing/demultiplexing elements, optical amplifiers, etc. play important roles in realizing WDM technology. In particular, in order to apply WDM technology to long-distance transmission over 100 km, it is necessary to arrange optical amplifiers at regular intervals in the transmission fiber, and the wavelength dependence of the gain spectrum is determined by the optical signal-to-noise ratio (OSNR). Signal-to-Noise Ratio). For example, a gain equalizer disclosed in Non-Patent Document 1 has been proposed for flattening the gain spectrum.
 ところで、光通信ネットワークで必要とされる各種の光機能回路を実現する手段にはいくつかの手法がある。例えば、PLC(Planar Lightwave Circuit)と呼ばれる、シリコン基板上に石英系材料からなる光導波路を形成する方法が、多機能性、量産性と低価格性を兼ね備えた方法として広く利用されている。 By the way, there are several methods for realizing various optical functional circuits required in optical communication networks. For example, a method called PLC (Planar Lightwave Circuit) in which an optical waveguide made of a quartz-based material is formed on a silicon substrate is widely used as a method that is multifunctional, mass-producible, and low-cost.
 石英系ガラス導波路を用いた光回路は、光通信で利用される光ファイバと同じ材料を用いているため、低損失の光導波路を実現できるという特徴を有している。また、平面基板上に導波路を形成するため、さまざまな機能要素を組み合わせることが容易であり、複雑な光回路を再現性良く作製できる特徴を有する。これらの技術を利用して作製された、波長合分波素子、光スイッチなどは、光ネットワークを構築する上ではなくてはならない構成要素である。 Optical circuits using silica-based glass waveguides use the same material as optical fibers used in optical communications, so they have the characteristic of being able to realize low-loss optical waveguides. Furthermore, since the waveguide is formed on a flat substrate, it is easy to combine various functional elements, and complex optical circuits can be manufactured with good reproducibility. Wavelength multiplexing/demultiplexing elements, optical switches, and the like manufactured using these technologies are essential components in constructing optical networks.
 非特許文献1に開示された利得等化器は、マッハツェンダ干渉計を多段に接続した構成であるために、損失が大きいという欠点を有する。これは、各段のマッハツェンダ干渉計において、接続されていない出力ポートに光信号が捨てられてしまうという本質的な原因に基づいている。一方、非特許文献2には、ラティス回路と呼ばれる構成の利得等化器が開示されている。 The gain equalizer disclosed in Non-Patent Document 1 has a configuration in which Mach-Zehnder interferometers are connected in multiple stages, so it has a drawback of high loss. This is based on the essential cause that in each Mach-Zehnder interferometer, optical signals are discarded to unconnected output ports. On the other hand, Non-Patent Document 2 discloses a gain equalizer having a configuration called a lattice circuit.
 ラティス型光回路による利得等化器は、N個の方向性結合器とそれらに挟まれた2本の導波路からなるN-1個のアーム導波路により構成される。また、アーム導波路のいずれか一方の導波路に熱を加えることにより、熱光学効果による屈折率変化を利用した位相シフタにより、導波路を伝搬する光の位相を制御する。前段の方向性結合器のアーム導波路を構成する2本の導波路を伝搬する光信号の位相差を調整することにより、後段の方向性結合器における干渉状態を調整して、伝搬する光の波長に対する透過スペクトルを制御する。 A gain equalizer using a lattice type optical circuit is composed of N-1 arm waveguides each consisting of N directional couplers and two waveguides sandwiched between them. Furthermore, by applying heat to either one of the arm waveguides, the phase of light propagating through the waveguides is controlled by a phase shifter that utilizes a change in refractive index due to the thermo-optic effect. By adjusting the phase difference between the optical signals propagating through the two waveguides that make up the arm waveguide of the directional coupler in the front stage, the interference state in the directional coupler in the rear stage can be adjusted, and the interference state of the propagating light can be adjusted. Controls the transmission spectrum for wavelength.
 ラティス型光回路による利得等化器では、複数の方向性結合器のアーム導波路において、熱光学効果を利用して位相シフタを制御し、最終的に出力される波長スペクトルを制御する。N個の方向性結合器とそれらに挟まれた2本の導波路からなるN-1個のアーム導波路により構成される、(N-1)段ラティス型光回路の、i個目のアーム導波路において、上側アーム導波路と下側アーム導波路の間に生じる位相差Θは、(1)式で表される。 In a gain equalizer using a lattice type optical circuit, a phase shifter is controlled using a thermo-optic effect in arm waveguides of a plurality of directional couplers, and a wavelength spectrum that is finally output is controlled. The i-th arm of an (N-1) stage lattice type optical circuit configured by N-1 arm waveguides consisting of N directional couplers and two waveguides sandwiched between them. In the waveguide, the phase difference Θ i occurring between the upper arm waveguide and the lower arm waveguide is expressed by equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
ここで、λは光の波長、neffは光導波路の実効屈折率、ΔLはi個目のアーム導波路における上側アーム導波路と下側アーム導波路の長さの差、φはi個目のアーム導波路において位相シフタの制御によってアーム導波路間に加えられる位相差である。ラティス型光回路によって利得等化器を構成するには、各アーム導波路間に加えられる位相差φを適切に制御することによって、所望の利得等化スペクトルを得る。 Here, λ is the wavelength of light, n eff is the effective refractive index of the optical waveguide, ΔL i is the difference in length between the upper arm waveguide and the lower arm waveguide in the i-th arm waveguide, and φ i is i This is the phase difference added between the arm waveguides by controlling the phase shifter in the second arm waveguide. To configure a gain equalizer using a lattice type optical circuit, a desired gain equalization spectrum is obtained by appropriately controlling the phase difference φ i added between each arm waveguide.
 位相シフタとしては、たとえば、ヒータで発生する熱と熱光学効果を利用した熱光学位相シフタが挙げられる。熱光学位相シフタの場合、ヒータに加える電流量によって発生する熱を制御し、それに伴う屈折率変化および位相変調量を制御する。加えたい位相差が大きければ大きいほど、大きな駆動電流量が必要となる。 Examples of phase shifters include thermo-optic phase shifters that utilize heat generated by a heater and thermo-optic effects. In the case of a thermo-optic phase shifter, the heat generated is controlled by the amount of current applied to the heater, and the accompanying refractive index change and phase modulation amount are controlled. The larger the phase difference to be added, the larger the amount of drive current required.
 図1に、従来のラティス型光回路における利得等化スペクトル例を示す。横軸は光の波長、縦軸は利得等化器の光強度透過率を表している。利得等化器に必要とされる波長範囲をΔλ(図1においては1525~1570nm)とする。Δλ内での光強度の最小透過率をLossmax(図1においては-9dB)、最大透過率をLossmin(図1においては-0.34dB)とする。LossmaxとLossminの差を、アテニュエーションレンジ(Att. Range)と呼ぶこととする。所望のスペクトル形状は、Δλ内でのみ維持されていればよく、それ以外の波長範囲におけるスペクトル形状は問わない。図1に示すスペクトル形状のほかに、例えば、Δλ内で透過率が波長に対して線形に変化するようなスペクトルを実現すれば、その利得等化器はチルトイコライザとして動作する。この場合も、各アーム導波路における位相シフト量を調整することにより、スペクトル形状の傾き(dB/nm)を制御する。チルトイコライザの場合、Att. Rangeは、[スペクトル形状の傾き×Δλ]により表される。 FIG. 1 shows an example of a gain equalization spectrum in a conventional lattice type optical circuit. The horizontal axis represents the wavelength of light, and the vertical axis represents the light intensity transmittance of the gain equalizer. The wavelength range required for the gain equalizer is assumed to be Δλ 1 (1525 to 1570 nm in FIG. 1). The minimum transmittance of the light intensity within Δλ 1 is Loss max (−9 dB in FIG. 1), and the maximum transmittance is Loss min (−0.34 dB in FIG. 1). The difference between Loss max and Loss min will be referred to as an attenuation range (Att. Range). The desired spectral shape only needs to be maintained within Δλ 1 , and the spectral shape in other wavelength ranges does not matter. In addition to the spectral shape shown in FIG. 1, for example, if a spectrum in which the transmittance changes linearly with respect to wavelength within Δλ 1 is realized, the gain equalizer operates as a tilt equalizer. In this case as well, the slope (dB/nm) of the spectrum shape is controlled by adjusting the amount of phase shift in each arm waveguide. In the case of a tilt equalizer, Att. Range is expressed by [inclination of spectrum shape×Δλ 1 ].
 ラティス型光回路による利得等化器において、利得等化スペクトル形状を、自由度高く制御するためには、実現可能なAtt. Rangeの範囲が広いほうが望ましい。ラティス型光回路による利得等化器において、利得等化スペクトルおよびAtt. Rangeを決定するのは、(1)式で表されるΘである。Θは、アーム導波路における上側アーム導波路と下側アーム導波路の長さの差ΔLと、位相シフタの制御によってアーム導波路間に加えられる位相差φ(以下、位相変調量φという)によって決定される。 In a gain equalizer using a lattice type optical circuit, in order to control the gain equalization spectrum shape with a high degree of freedom, it is desirable that the range of the achievable Att. Range be wide. In a gain equalizer using a lattice type optical circuit, it is Θ i expressed by equation (1) that determines the gain equalization spectrum and Att. Range. Θ i is the difference in length ΔL i between the upper arm waveguide and the lower arm waveguide in the arm waveguide, and the phase difference φ i (hereinafter referred to as phase modulation amount φ) added between the arm waveguides by control of the phase shifter. i ).
 ΔLは光回路設計によって固定され、位相シフタにおける変調が無い場合の、初期状態での利得等化スペクトルを決定づける。初期状態のラティス型光回路に対し、位相変調量φを加えることにより、利得等化スペクトルを初期状態から変化させる。広い範囲でAtt. Rangeを変化させるためには、位相変調量φiを大きく変化させる必要があり、必要な位相変調量の最大値も大きくなる。位相シフタとして熱光学位相シフタを用いる場合、ヒータに加える電流によって位相変調量を制御するため、加えたい位相変調量が大きくなるほど、大きな駆動電流量が必要となる。従って、広い範囲でAtt. Rangeを変化させるためには、各ヒータに対して大きな駆動電流を与える必要があり、消費電力が増大してしまう。 ΔL i is fixed by the optical circuit design and determines the gain equalization spectrum in the initial state in the absence of modulation in the phase shifter. By adding the phase modulation amount φ i to the lattice optical circuit in the initial state, the gain equalization spectrum is changed from the initial state. In order to change the Att. Range over a wide range, it is necessary to greatly change the amount of phase modulation φi, and the maximum value of the required amount of phase modulation also increases. When using a thermo-optic phase shifter as a phase shifter, the amount of phase modulation is controlled by the current applied to the heater, so the larger the amount of phase modulation to be applied, the larger the amount of drive current is required. Therefore, in order to change the Att. Range over a wide range, it is necessary to apply a large drive current to each heater, which increases power consumption.
 また、ラティス型光回路による利得等化器においては、ラティス型光回路の段数(N―1)を多くすることにより、より複雑で自由度の高い利得等化スペクトルを実現することが可能となる。しかし、段数が増えると、各アーム導波路に装荷する位相シフタの数も増え、駆動電流を加える位相シフタの数が増えるため、消費電力のさらなる増大につながってしまう。このように、従来のラティス型光回路による利得等化器では、限られた消費電力内では、利得等化スペクトルを自由度高く制御することができないという問題があった。 In addition, in a gain equalizer using a lattice type optical circuit, by increasing the number of stages (N-1) of the lattice type optical circuit, it is possible to realize a more complex and highly flexible gain equalization spectrum. . However, as the number of stages increases, the number of phase shifters loaded on each arm waveguide also increases, and the number of phase shifters to which drive current is applied increases, leading to a further increase in power consumption. As described above, the conventional gain equalizer using a lattice type optical circuit has a problem in that the gain equalization spectrum cannot be controlled with a high degree of freedom within a limited power consumption.
 本発明の目的は、より少ない消費電力で自由度の高い利得等化スペクトルを実現することができるラティス型光回路による利得等化器を提供することにある。 An object of the present invention is to provide a gain equalizer using a lattice type optical circuit that can realize a gain equalization spectrum with a high degree of freedom with less power consumption.
 本発明は、このような目的を達成するために、一実施態様は、基板上に形成された光導波路回路であって、入力導波路、N個(Nは3以上の整数)の2入力2出力の光合分流回路、前記光合分流回路の間を接続する2本の導波路からなるN-1個のアーム導波路、および出力導波路とから構成され、前記アーム導波路の少なくとも一方の導波路に装荷された位相シフタを含む光導波路回路と、前記出力導波路から入力された光を、再び前記出力導波路へ出力する光折返し部とを備えたことを特徴とする。 In order to achieve such an object, one embodiment of the present invention is an optical waveguide circuit formed on a substrate, comprising N input waveguides (N is an integer of 3 or more), 2 inputs, 2 An output optical combining/distributing circuit, N-1 arm waveguides consisting of two waveguides connecting between the optical combining/distributing circuits, and an output waveguide, and at least one waveguide of the arm waveguides. The optical waveguide circuit is characterized by comprising: an optical waveguide circuit including a phase shifter loaded in the output waveguide; and an optical folding section that outputs the light input from the output waveguide to the output waveguide again.
図1は、従来のラティス型光回路における利得等化スペクトル例を示す図、FIG. 1 is a diagram showing an example of a gain equalization spectrum in a conventional lattice type optical circuit. 図2は、本発明の第1の実施形態にかかる利得等化器の構成を示す図、FIG. 2 is a diagram showing the configuration of a gain equalizer according to the first embodiment of the present invention, 図3は、本発明の第2の実施形態にかかる利得等化器の構成を示す図、FIG. 3 is a diagram showing the configuration of a gain equalizer according to a second embodiment of the present invention, 図4は、本発明の第3の実施形態にかかる利得等化器の構成を示す図である。FIG. 4 is a diagram showing the configuration of a gain equalizer according to a third embodiment of the present invention.
 以下、図面を参照しながら本発明の実施形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
  [第1の実施形態]
  (構成)
 図2に、本発明の第1の実施形態にかかる利得等化器の構成を示す。利得等化器10は、ラティス型光回路11、入出力分離機構12、光折返し部13から構成される。ラティス型光回路11および光折返し部13は、PLCで構成され、基板上に形成された光導波路回路の構成を上面から透視した回路構成を示している。
[First embodiment]
(composition)
FIG. 2 shows the configuration of a gain equalizer according to the first embodiment of the present invention. The gain equalizer 10 includes a lattice optical circuit 11, an input/output separation mechanism 12, and an optical folding section 13. The lattice type optical circuit 11 and the optical folding section 13 are constructed of PLC, and the circuit configuration is shown as seen from the top of the optical waveguide circuit formed on the substrate.
 ラティス型光回路11は、入力導波路111と、複数の光方向性結合器113-1~113-Nおよびアーム導波路114-1~114-(N-1)と、出力導波路112とから構成される(Nは3以上の整数)。光方向性結合器113-1~113-Nは、2入力2出力の光合分流回路であれば、どのような光回路素子であってもよい。アーム導波路114-1~114-(N-1)は、2つの光方向性結合器の間を接続する2本の導波路から構成されており、そのうち少なくとも一方の導波路には、位相シフタ115-1~115-(N-1)が装荷される。入力導波路111から入力された光信号は、光方向性結合器113-1~113-N、アーム導波路114-1~114-(N-1)を順番に通過し、出力導波路112から出力される。 The lattice optical circuit 11 includes an input waveguide 111, a plurality of optical directional couplers 113-1 to 113-N and arm waveguides 114-1 to 114-(N-1), and an output waveguide 112. (N is an integer of 3 or more). The optical directional couplers 113-1 to 113-N may be any optical circuit elements as long as they are optical multiplexing/dividing circuits with two inputs and two outputs. The arm waveguides 114-1 to 114-(N-1) are composed of two waveguides that connect two optical directional couplers, and at least one of the waveguides is provided with a phase shifter. 115-1 to 115-(N-1) are loaded. The optical signal input from the input waveguide 111 passes through the optical directional couplers 113-1 to 113-N and the arm waveguides 114-1 to 114-(N-1) in order, and then exits from the output waveguide 112. Output.
 光折返し部13は、ラティス型光回路11と一体化していてもよいし、光ファイバ等を介して外部接続された構成としてもよい。ラティス型光回路11の出力導波路112の出力端面に反射ミラーを貼り付け、光折返し部としてもよい。また、光折返し部13の入出力ポート131に接続された光導波路の終端に、反射ミラーを設置した構成としてもよい。光折返し部13の入出力ポート131から入力された光が、再び入出力ポート131から出力されれば、光折返し部13の構造は問わない。 The optical folding section 13 may be integrated with the lattice optical circuit 11, or may be externally connected via an optical fiber or the like. A reflecting mirror may be attached to the output end face of the output waveguide 112 of the lattice type optical circuit 11 to serve as a light return portion. Furthermore, a configuration may be adopted in which a reflecting mirror is installed at the end of the optical waveguide connected to the input/output port 131 of the optical folding section 13. As long as the light input from the input/output port 131 of the light return unit 13 is output from the input/output port 131 again, the structure of the light return unit 13 does not matter.
 第1の実施形態の光折返し部13は、2入力2出力の光合分流回路である光方向性結合器132と、光方向性結合器132の2つの出力ポート同士を接続するループ導波路133により構成されている。入出力ポート131から入力された光は、光方向性結合器132において強度50%ずつに分離される。分離された光は、ループ導波路133において互いに逆方向に進行し、再び光方向性結合器132において干渉し、100%の光強度の光が、入出力ポート131から出力される。 The optical folding unit 13 of the first embodiment includes an optical directional coupler 132, which is a 2-input and 2-output optical multiplexing/distributing circuit, and a loop waveguide 133 that connects two output ports of the optical directional coupler 132. It is configured. The light input from the input/output port 131 is separated into 50% intensities by the optical directional coupler 132. The separated lights travel in opposite directions in the loop waveguide 133, interfere again in the optical directional coupler 132, and light with 100% optical intensity is output from the input/output port 131.
 入出力分離機構12は、ラティス型光回路11と一体化していてもよいし、光ファイバ等を介して外部接続されてもよい。入出力分離機構12には、ポート121~123が存在する。ポート121からの入力光はポート122より出力され、ポート122からの入力光はポート123より出力される。入出力分離機構12の例として、ラティス型光回路11と一体化している場合は、3dBカプラ、波長無依存カプラ等があり、外部接続される場合は、光サーキュレータ等がある。 The input/output separation mechanism 12 may be integrated with the lattice optical circuit 11, or may be externally connected via an optical fiber or the like. The input/output separation mechanism 12 has ports 121 to 123. Input light from port 121 is output from port 122, and input light from port 122 is output from port 123. Examples of the input/output separation mechanism 12 include a 3 dB coupler, a wavelength-independent coupler, etc. when integrated with the lattice type optical circuit 11, and an optical circulator etc. when connected externally.
  (位相シフタ)
 アーム導波路114-1~114-(N-1)の少なくとも一方の導波路には、それぞれ位相シフタ115-1~115-(N-1)が装荷される。位相シフタ115-1~115-(N-1)は、そこを通過した光信号の位相を制御する機能を有する。位相シフタとしては、通過した光信号の位相を制御できれば原理は問わないが、例えば、ヒータで発生する熱と熱光学効果を利用した熱光学位相シフタが挙げられる。熱光学位相シフタの場合、ヒータに加える電流量によって発生する熱を制御し、それに伴う屈折率変化および位相変調量を制御する。加えたい位相変調量が大きいほど、大きな駆動電流量が必要となる。
(phase shifter)
At least one of the arm waveguides 114-1 to 114-(N-1) is loaded with phase shifters 115-1 to 115-(N-1), respectively. The phase shifters 115-1 to 115-(N-1) have a function of controlling the phase of the optical signal passing through them. The principle of the phase shifter does not matter as long as it can control the phase of the optical signal that has passed through it, but for example, a thermo-optic phase shifter that utilizes heat generated by a heater and thermo-optic effect may be mentioned. In the case of a thermo-optic phase shifter, the heat generated is controlled by the amount of current applied to the heater, and the accompanying refractive index change and phase modulation amount are controlled. The larger the amount of phase modulation to be applied, the larger the amount of drive current required.
  (動作原理)
 以上の構成により、第1の実施形態にかかる利得等化器の動作を説明する。利得等化器10のポート121に光信号を入力すると、入出力分離機構12に入力され、ポート122から出力される。ポート122から出力された光は、入力導波路111を介してラティス型光回路11に入力される。
(Operating principle)
With the above configuration, the operation of the gain equalizer according to the first embodiment will be explained. When an optical signal is input to port 121 of gain equalizer 10, it is input to input/output separation mechanism 12 and output from port 122. The light output from the port 122 is input to the lattice optical circuit 11 via the input waveguide 111.
 ラティス型光回路11に入力された光信号は、位相シフタ115-1~115-(N-1)における位相変調量によって決定される利得等化スペクトルに応じた利得等化を受けたのちに、出力導波路112から出力される。出力導波路112からの出力光は、光折返し部13によって伝搬方向が逆向きに変換され、再び出力導波路112を介してラティス型光回路11に入力される。 The optical signal input to the lattice optical circuit 11 is subjected to gain equalization according to the gain equalization spectrum determined by the amount of phase modulation in the phase shifters 115-1 to 115-(N-1), and then It is output from the output waveguide 112. The propagation direction of the output light from the output waveguide 112 is reversed by the optical folding section 13, and the light is again input to the lattice type optical circuit 11 via the output waveguide 112.
 光信号は、ラティス型光回路11内を、1度目のラティス型光回路の通過時とは逆方向に伝搬し、入力導波路111から出力される。ラティス型光回路11からの出力光は、ポート122を介して入出力分離機構12に入力され、ポート123から出力される。 The optical signal propagates within the lattice optical circuit 11 in the opposite direction to the direction in which it passes through the lattice optical circuit for the first time, and is output from the input waveguide 111. Output light from the lattice optical circuit 11 is input to the input/output separation mechanism 12 via a port 122 and output from a port 123.
 第1の実施形態の利得等化器10では、入力された光信号はラティス型光回路11を順方向と逆方向とで2度通過する。すなわち、往復動作をする。光の逆進の原理により、ラティス型光回路11に対して光信号を入力導波路111から入力して出力導波路112から出力する場合と、ラティス型光回路11に対して光信号を出力導波路112から入力して入力導波路111から出力する場合とで、透過スペクトルは同一となる。従って、第1の実施形態のラティス型光回路11を往復動作させた場合、1つのラティス型光回路を2回透過させる場合と同じ利得等化の効果を得ることができる。 In the gain equalizer 10 of the first embodiment, the input optical signal passes through the lattice optical circuit 11 twice, in the forward direction and in the reverse direction. In other words, it performs a reciprocating motion. Based on the principle of backward propagation of light, there are two cases: when an optical signal is input to the lattice type optical circuit 11 from the input waveguide 111 and output from the output waveguide 112, and when the optical signal is input to the lattice type optical circuit 11 from the output waveguide 112. The transmission spectrum is the same when inputting from the waveguide 112 and outputting from the input waveguide 111. Therefore, when the lattice-type optical circuit 11 of the first embodiment is operated in a reciprocating manner, it is possible to obtain the same gain equalization effect as when one lattice-type optical circuit is transmitted twice.
  (往復動作による低消費電力化)
 第1の実施形態の利得等化器10では、ラティス型光回路11を往復動作させることから、各位相シフタ115-1~115-(N-1)における位相変調量を固定した場合、従来の片道動作の場合と比較して、得られる利得等化スペクトルのAtt. Rangeが2倍になる。換言すれば、所望の利得等化スペクトルが存在するとき、第1の実施形態の利得等化器10は、従来の片道動作による利得等化器に比べ、ラティス型光回路のAtt. Rangeが半分でよい。例えば、第1の実施形態の利得等化器10を、0~8dBのAtt. Rangeの範囲で動作させたい場合には、ラティス型光回路11単体としては、0~4dBの範囲のAtt. Rangeを実現できればよい。このように、ラティス型光回路11で必要なAtt. Rangeの範囲を狭めることができるため、必要な位相変調量の範囲も狭まり、位相シフタの駆動電流量を低減することができる。すなわち、消費電力を低減することができる。
(Low power consumption due to reciprocating operation)
In the gain equalizer 10 of the first embodiment, since the lattice type optical circuit 11 is reciprocated, when the amount of phase modulation in each phase shifter 115-1 to 115-(N-1) is fixed, the conventional Compared to the case of one-way operation, the Att. Range of the gain equalization spectrum obtained is doubled. In other words, when a desired gain equalization spectrum exists, the gain equalizer 10 of the first embodiment has a lattice type optical circuit whose Att. Range is half that of a conventional one-way operation gain equalizer. That's fine. For example, when it is desired to operate the gain equalizer 10 of the first embodiment in the Att. Range of 0 to 8 dB, the lattice type optical circuit 11 alone has an Att. Range of 0 to 4 dB. It would be good if we could achieve this. In this way, the required Att. Range in the lattice optical circuit 11 can be narrowed, so the range of the necessary phase modulation amount can also be narrowed, and the amount of driving current for the phase shifter can be reduced. That is, power consumption can be reduced.
 一例として、N=6のラティス型光回路によってチルトイコライザを構成する場合を考える。このチルトイコライザでは、初期状態(無変調時)の利得等化スペクトルが傾き0の波形となるように、光回路を設計している。スペクトル波形の傾きが0.2dB/nm(光通信波長帯のC帯でAtt. Range=8dBに相当)である利得等化スペクトルを出力したいとき、利得等化器10によれば、ラティス型光回路11単体の動作としては、スペクトル波形の傾きが0.1dB/nm(C帯でAtt. Range=4dBに相当)である利得等化器として動作すればよい。このとき、従来のラティス型光回路を片道動作させただけの利得等化器と比べ、必要な消費電力をおよそ25%削減することができる。 As an example, consider a case where a tilt equalizer is configured by a lattice type optical circuit with N=6. In this tilt equalizer, the optical circuit is designed so that the gain equalization spectrum in the initial state (when no modulation is performed) has a waveform with a slope of 0. When it is desired to output a gain equalized spectrum whose spectral waveform slope is 0.2 dB/nm (equivalent to Att. Range = 8 dB in the C band of the optical communication wavelength band), the gain equalizer 10 outputs a lattice-type optical spectrum. The circuit 11 alone may operate as a gain equalizer with a spectrum waveform slope of 0.1 dB/nm (corresponding to Att. Range=4 dB in the C band). At this time, the required power consumption can be reduced by approximately 25% compared to a gain equalizer in which a conventional lattice type optical circuit is operated only one way.
  [第2の実施形態]
 図3に、本発明の第2の実施形態にかかる利得等化器の構成を示す。第1の実施形態の利得等化器10は、ラティス型光回路11、入出力分離機構12、光折返し部13をそれぞれ1つずつ有している。ラティス型光回路の数はこれに限られず、複数のラティス型光回路が含まれても良い。
[Second embodiment]
FIG. 3 shows the configuration of a gain equalizer according to a second embodiment of the present invention. The gain equalizer 10 of the first embodiment includes one each of a lattice type optical circuit 11, an input/output separation mechanism 12, and an optical folding section 13. The number of lattice-type optical circuits is not limited to this, and a plurality of lattice-type optical circuits may be included.
 図3に示すように、利得等化器20は、複数のラティス型光回路11,21,31が互いに縦続接続されている。第1の入出力分離機構12の出力ポート123が、第2の入出力分離機構22の入力ポート221に接続されている。第1のラティス型光回路11を往復動作させた後に、第2のラティス型光回路21を往復動作させることができる。さらに、第2の入出力分離機構22の出力ポート223が、第3の入出力分離機構32の入力ポート321に接続されている。第2のラティス型光回路21を往復動作させた後に、第3のラティス型光回路31を往復動作させることができる。3つのラティス型光回路11,21,31により利得等化器20を構成した場合、利得等化器全体の利得等化スペクトルは、ラティス型光回路の数が1つである場合に比べ、さらに大きなAtt. Rangeを実現することができる。 As shown in FIG. 3, the gain equalizer 20 includes a plurality of lattice-type optical circuits 11, 21, and 31 connected in cascade to each other. The output port 123 of the first input/output separation mechanism 12 is connected to the input port 221 of the second input/output separation mechanism 22. After the first lattice optical circuit 11 is reciprocated, the second lattice optical circuit 21 can be reciprocated. Furthermore, the output port 223 of the second input/output separation mechanism 22 is connected to the input port 321 of the third input/output separation mechanism 32. After the second lattice optical circuit 21 is reciprocated, the third lattice optical circuit 31 can be reciprocated. When the gain equalizer 20 is configured by three lattice optical circuits 11, 21, and 31, the gain equalization spectrum of the entire gain equalizer is further A large Att. Range can be achieved.
  [第3の実施形態]
 図4に、本発明の第3の実施形態にかかる利得等化器の構成を示す。利得等化器40は、ラティス型光回路11、入出力分離機構12、光折返し部13から構成される。ラティス型光回路11および光折返し部13は、PLCで構成され、基板上に形成された光導波路回路の構成を上面から透視した回路構成を示している。第1の実施形態との相違は、光折返し部13のループ導波路133の中央に、偏波回転機構134が設置されていることである。
[Third embodiment]
FIG. 4 shows the configuration of a gain equalizer according to a third embodiment of the present invention. The gain equalizer 40 includes a lattice optical circuit 11, an input/output separation mechanism 12, and an optical folding section 13. The lattice type optical circuit 11 and the optical folding section 13 are constructed of PLC, and the circuit configuration is shown as seen from the top of the optical waveguide circuit formed on the substrate. The difference from the first embodiment is that a polarization rotation mechanism 134 is installed at the center of the loop waveguide 133 of the optical folding section 13.
 偏波回転機構134は、ループ導波路133を伝搬する光の偏波方向を90°回転させる素子である。偏波回転機構134として、例えば波長板があり、特に主軸と遅軸の位相差をπずらす1/2波長板が有力である。1/2波長板を、その主軸が、ループ導波路133の基板面に対して45°となるよう傾けて設置することにより、ループ導波路133を伝搬する光の偏波方向が90°回転する。このように、光折返し部13において、光導波路のTEモードとTMモードを互いに変換することができる。 The polarization rotation mechanism 134 is an element that rotates the polarization direction of light propagating through the loop waveguide 133 by 90°. As the polarization rotation mechanism 134, there is a wavelength plate, for example, and a half-wave plate that shifts the phase difference between the main axis and the slow axis by π is particularly effective. By installing the half-wave plate at an angle of 45° with respect to the substrate surface of the loop waveguide 133, the polarization direction of the light propagating through the loop waveguide 133 is rotated by 90°. . In this way, the optical folding section 13 can convert the TE mode and TM mode of the optical waveguide into each other.
 第3の実施形態の利得等化器40において、ラティス型光回路11を往復動作させると、往路ではTEモードであった光は、光折返し部13において偏波回転を受け、復路ではTMモードとしてラティス型光回路を透過する。従って、ラティス型光回路11を往復動作することにより偏波依存特性が解消され、全体として、偏波依存損失(PDL)の小さな利得等化器を実現することができる。 In the gain equalizer 40 of the third embodiment, when the lattice optical circuit 11 is reciprocated, the light that was in the TE mode on the outward path undergoes polarization rotation in the optical folding section 13, and becomes the TM mode on the return path. Transmits through a lattice optical circuit. Therefore, by reciprocating the lattice-type optical circuit 11, polarization-dependent characteristics are eliminated, and a gain equalizer with small polarization-dependent loss (PDL) can be realized as a whole.
 以上述べたように、本実施形態によれば、ラティス型光回路による利得等化器において、より少ない消費電力で自由度の高い利得等化スペクトルを実現することができる。 As described above, according to the present embodiment, a gain equalization spectrum with a high degree of freedom can be realized with less power consumption in a gain equalizer using a lattice type optical circuit.

Claims (7)

  1.  基板上に形成された光導波路回路であって、
       入力導波路、N個(Nは3以上の整数)の2入力2出力の光合分流回路、前記光合分流回路の間を接続する2本の導波路からなるN-1個のアーム導波路、および出力導波路とから構成され、
       前記アーム導波路の少なくとも一方の導波路に装荷された位相シフタを含む光導波路回路と、
     前記出力導波路から入力された光を、再び前記出力導波路へ出力する光折返し部と
     を備えたことを特徴とする利得等化器。
    An optical waveguide circuit formed on a substrate,
    an input waveguide, N (N is an integer of 3 or more) two-input, two-output optical multiplexing/distributing circuits, N-1 arm waveguides each consisting of two waveguides connecting the optical multiplexing/distributing circuits; It consists of an output waveguide,
    an optical waveguide circuit including a phase shifter loaded in at least one waveguide of the arm waveguide;
    A gain equalizer comprising: an optical folding section that outputs the light input from the output waveguide to the output waveguide again.
  2.  前記光折返し部は、前記出力導波路の出力端面に設置された反射ミラーであることを特徴とする請求項1に記載の利得等化器。 The gain equalizer according to claim 1, wherein the optical folding section is a reflection mirror installed at the output end face of the output waveguide.
  3.  前記光折返し部は、前記出力導波路に接続された光導波路と、前記光導波路の終端に設置された反射ミラーであることを特徴とする請求項1に記載の利得等化器。 The gain equalizer according to claim 1, wherein the optical folding section is an optical waveguide connected to the output waveguide and a reflection mirror installed at the end of the optical waveguide.
  4.  前記光折返し部は、前記出力導波路に接続された2入力2出力の第2の光合分流回路と、前記第2の光合分流回路の2つの出力ポートを接続するループ導波路とを含むことを特徴とする請求項1に記載の利得等化器。 The optical folding section includes a 2-input 2-output second optical multiplexing/distributing circuit connected to the output waveguide, and a loop waveguide connecting two output ports of the second optical multiplexing/distributing circuit. A gain equalizer according to claim 1.
  5.  前記入力導波路に接続され、光サーキュレータからなる入出力分離機構をさらに備えたことを特徴とする請求項1、2または3に記載の利得等化器。 4. The gain equalizer according to claim 1, further comprising an input/output separation mechanism connected to the input waveguide and comprising an optical circulator.
  6.  前記光導波路回路は、シリコン基板上に形成された石英系材料からなることを特徴とする請求項1、2または3に記載の利得等化器。 The gain equalizer according to claim 1, 2 or 3, wherein the optical waveguide circuit is made of a quartz-based material formed on a silicon substrate.
  7.  前記位相シフタは、熱光学効果を利用することを特徴とする請求項1、2または3に記載の利得等化器。 The gain equalizer according to claim 1, 2 or 3, wherein the phase shifter utilizes a thermo-optic effect.
PCT/JP2022/030895 2022-08-15 2022-08-15 Gain equalizer WO2024038493A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/030895 WO2024038493A1 (en) 2022-08-15 2022-08-15 Gain equalizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/030895 WO2024038493A1 (en) 2022-08-15 2022-08-15 Gain equalizer

Publications (1)

Publication Number Publication Date
WO2024038493A1 true WO2024038493A1 (en) 2024-02-22

Family

ID=89941542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/030895 WO2024038493A1 (en) 2022-08-15 2022-08-15 Gain equalizer

Country Status (1)

Country Link
WO (1) WO2024038493A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07281215A (en) * 1993-06-21 1995-10-27 Nippon Telegr & Teleph Corp <Ntt> Optical signal processor and its control method and designing method and its production
JP2004302091A (en) * 2003-03-31 2004-10-28 Fujikura Ltd Programmable light signal processor and method for controlling programmable light signal processor
US20050111848A1 (en) * 2003-10-22 2005-05-26 Infinera Coporation Chromatic dispersion compensator (CDC) in a photonic integrated circuit (PIC) chip and method of operation
JP2007328202A (en) * 2006-06-08 2007-12-20 Nippon Telegr & Teleph Corp <Ntt> Wavelength dispersion compensation circuit
JP2008268899A (en) * 2007-03-28 2008-11-06 Furukawa Electric Co Ltd:The Plc type variable dispersion compensator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07281215A (en) * 1993-06-21 1995-10-27 Nippon Telegr & Teleph Corp <Ntt> Optical signal processor and its control method and designing method and its production
JP2004302091A (en) * 2003-03-31 2004-10-28 Fujikura Ltd Programmable light signal processor and method for controlling programmable light signal processor
US20050111848A1 (en) * 2003-10-22 2005-05-26 Infinera Coporation Chromatic dispersion compensator (CDC) in a photonic integrated circuit (PIC) chip and method of operation
JP2007328202A (en) * 2006-06-08 2007-12-20 Nippon Telegr & Teleph Corp <Ntt> Wavelength dispersion compensation circuit
JP2008268899A (en) * 2007-03-28 2008-11-06 Furukawa Electric Co Ltd:The Plc type variable dispersion compensator

Similar Documents

Publication Publication Date Title
US7590312B2 (en) Interferometer optical switch and variable optical attenuator
Jinguji et al. Two-port optical wavelength circuits composed of cascaded Mach-Zehnder interferometers with point-symmetrical configurations
US8032027B2 (en) Wide free-spectral-range, widely tunable and hitless-switchable optical channel add-drop filters
US11714238B2 (en) Wavelength division multiplexing filter for multiplexing or demultiplexing using cascaded frequency shaping
US7428355B2 (en) Wavelength selective and level adjusting optical device
JP2002538494A (en) Light modulator
JP2022516194A (en) Polarization-independent photonic device with multi-mode component
US11002913B2 (en) Optical dispersion compensator on silicon
CN112596282A (en) Broadband adjustable splitting ratio polarization rotation beam splitter based on SOI
JPH07140496A (en) Optical switch of wavelength selection
US7006716B2 (en) Method and apparatus for switching and modulating an optical signal with enhanced sensitivity
US6892021B2 (en) Dynamic gain equalization arrangement for optical signals
US6571031B1 (en) Device for multiplexing/demultiplexing and method therewith
WO2024038493A1 (en) Gain equalizer
JP2018186414A (en) Optical transmission and reception circuit
JP5137619B2 (en) PLC type variable dispersion compensator
WO2024038494A1 (en) Gain equalizer
CN112904479B (en) Optical switch based on reverse Fano coupling micro-ring
CN108627919B (en) Polarization insensitive silicon-based optical switch
Zhang et al. Optical spectral shaping based on reconfigurable integrated microring resonator-coupled Fabry–Perot cavity
WO2022259431A1 (en) Variable wavelength filter and method for controlling same
WO2022254727A1 (en) Optical delay circuit and variable wavelength light source
JP2004286830A (en) Waveguide type variable optical attenuator
Rasras et al. Integrated scalable continuously tunable variable optical delay lines
JP2023021851A (en) Optical unitary converter and optical transfer system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22955667

Country of ref document: EP

Kind code of ref document: A1