WO2024037198A1 - 一种家庭网络的路由方法、接入设备及介质 - Google Patents

一种家庭网络的路由方法、接入设备及介质 Download PDF

Info

Publication number
WO2024037198A1
WO2024037198A1 PCT/CN2023/103089 CN2023103089W WO2024037198A1 WO 2024037198 A1 WO2024037198 A1 WO 2024037198A1 CN 2023103089 W CN2023103089 W CN 2023103089W WO 2024037198 A1 WO2024037198 A1 WO 2024037198A1
Authority
WO
WIPO (PCT)
Prior art keywords
access device
user equipment
iana
address
ipv6
Prior art date
Application number
PCT/CN2023/103089
Other languages
English (en)
French (fr)
Inventor
程俊
刘海星
喻磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024037198A1 publication Critical patent/WO2024037198A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • H04L41/0813Configuration setting characterised by the conditions triggering a change of settings
    • H04L41/0816Configuration setting characterised by the conditions triggering a change of settings the condition being an adaptation, e.g. in response to network events
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/08Protocols for interworking; Protocol conversion

Definitions

  • the present application relates to the field of communication technology, and in particular to a routing method, access device and medium for a home network.
  • IPv6 Internet Protocol version 6
  • IPv6 network if home users want to expand a layer of network in the IPv6 network, that is, if the network edge device is connected to a routing device, and the routing device does not support the distribution of network address prefixes, it will cause access for users connected to the routing device.
  • the terminal device cannot obtain an IPv6 address, and thus cannot perform IPv6 communication.
  • Embodiments of the present application provide a routing method, access device, and medium for a home network to enable IPv6 communication in a home network even when the user device cannot obtain a global IPv6 address.
  • embodiments of the present application provide a routing method for a home network, which is applied to an access device using an IPv6 network.
  • the method includes: requesting the upper-level access device for the identity association IANA and prefix authorization of the non-temporary address. Associate the IAPD address prefix; receive the IANA assigned by the superior access device to the access device; when determining that the conversion conditions are met, create a route conversion policy for the user equipment connected to the access device, and the route conversion policy is
  • the user equipment connected to the access device uses the IANA of the access device to communicate with the upper-level access device; wherein the conversion condition includes that the access device does not receive the message sent by the upper-level access device.
  • the number of mask digits of the IAPD address prefix or the IAPD address prefix sent by the upper-level access device received by the access device is M; M is the maximum number of mask digits of the prefix in the IPv6 network address.
  • a route conversion policy is created so that the lower-level access device can use the current Access the device's IANA for IPv6 communication.
  • the method further includes: when it is determined that the conversion condition is met, allocating a unique local address ULA to the user equipment, and sending the ULA to the user equipment; the route conversion policy includes the The pre-IANA address translation relationship between the ULA and the access device.
  • the user equipment is a terminal equipment.
  • the access device when the access device cannot obtain the prefix from the upper-level access device or the obtained prefix does not meet the requirements for allocating addresses to the lower-level access device, it only needs to allocate ULA to the terminal device, so that there is no need to obtain the prefix, so that The terminal device can send and receive packets based on ULA, and the access device forwards packets for the terminal device based on the address translation relationship, so that the terminal device can realize IPv6 communication without the terminal device being aware of it.
  • the method further includes: the access device receiving an IPv6 message sent by the user equipment, the IPv6 message carrying the ULA; and the access device converting the ULA according to the route
  • the policy converts the ULA carried in the IPv6 message into the IANA of the access device, and sends the converted IPv6 message to the upper-level access device.
  • sending the ULA to the user equipment includes:
  • the upper-level access device is a network edge device, and the access device is a routing device, or the upper-level access device is a broadband remote access server BRAS, and the access device is Network edge devices.
  • the user equipment may be a routing device or a terminal device.
  • the access device and the BRAS are connected through a bridge.
  • embodiments of the present application provide a home network routing method, which is applied to access devices of home networks using IPv6.
  • the method includes: requesting the identity association IANA and prefix authorization of the non-temporary address from the upper access device. associate the IAPD address prefix with the identity; receive the IANA assigned by the superior access device to the access device; when it is determined that the transparent transmission conditions are met, create a transparent transmission policy for the user equipment connected to the access device.
  • the transmission strategy is that the access device transparently transmits IPv6 messages between the user equipment and the upper-level access device; wherein the transparent transmission condition includes that the access device does not receive the IPv6 message sent by the upper-level access device.
  • the number of mask digits of the IAPD address prefix or the IAPD address prefix sent by the access device received by the upper-level access device is M; M is the maximum number of mask digits of the prefix in the IPv6 network address.
  • a transparent transmission policy is created so that the lower-level access device can be regarded as It is a subordinate device of the upper-level access device. Therefore, the lower-level access device can directly communicate with the upper-level access device.
  • There is no need to change any settings on the upper-level access equipment and BRAS and there is no need to increase the allocation capability of BARS, that is, no operational updates are required. And there is no perception on the user device side.
  • the method further includes: receiving a request message from the user equipment to obtain IANA, and transparently transmitting the request message to the upper-level access device according to the transparent transmission policy; receiving The upper-level access device assigns the IANA to the user equipment, and sends the IANA of the user equipment to the user equipment.
  • a transparent transmission policy is created so that the lower-level access device can be regarded as It is a subordinate device of the upper-level access device.
  • the lower-level access device of the current access device can obtain IANA from the upper-level access device of the current access device to implement IPv6 communication.
  • the upper-level access device is a network edge device, and the access device is a routing device.
  • the upper-level access device is a broadband remote access server BRAS, and the access device is a network edge device.
  • the access device and the BRAS are connected through a bridge.
  • embodiments of the present application provide an access device, the access device adopts an IPv6 network, and the access device includes:
  • the sending module is used to request the identity-associated IANA of the non-temporary address and the identity-associated IAPD address prefix of the prefix authorization from the upper-level access device;
  • a receiving module configured to receive the IANA assigned by the superior access device to the access device
  • a processing module configured to create a route conversion policy for the user equipment connected to the access device when it is determined that the conversion condition is met, and the route conversion policy is used for the user equipment connected to the access device to use the access
  • the device's IANA communicates with the upper-level access device
  • the conversion condition includes that the access device does not receive the IAPD address prefix sent by the upper-level access device or the access device receives the mask number of the IAPD address prefix sent by the upper-level access device.
  • M is the maximum number of mask bits in the prefix in the IPv6 network address.
  • the processing module is also used to:
  • the sending module is also configured to send the ULA to the user equipment
  • the route translation policy includes the pre-IANA address translation relationship between the ULA and the access device.
  • the receiving module is also configured to receive an IPv6 message sent by the user equipment, where the IPv6 message carries the ULA;
  • the processing module is also configured to convert the ULA carried in the IPv6 message into the IANA of the access device according to the route conversion policy;
  • the sending module is also configured to send the converted IPv6 message to the upper-level access device.
  • the sending module is specifically used to:
  • the upper-level access device is a network edge device, and the access device is a routing device, or the upper-level access device is a broadband remote access server BRAS, and the access device is Network edge devices.
  • the access device and the BRAS are connected through a bridge.
  • embodiments of the present application provide an access device, the access device adopts an IPv6 network, and the access device includes:
  • the sending module is used to request the identity-associated IANA of the non-temporary address and the identity-associated IAPD address prefix of the prefix authorization from the upper-level access device;
  • a receiving module configured to receive the IANA assigned by the superior access device to the access device
  • a processing module configured to create a transparent transmission policy for the user equipment connected to the access device when it is determined that the transparent transmission condition is met.
  • the transparent transmission policy is for the access device to transparently transmit the user equipment and the upper layer. IPv6 messages between access devices;
  • the transparent transmission condition includes that the access device does not receive the IAPD address prefix sent by the upper-level access device.
  • the number of mask digits of the IAPD address prefix sent by the access device received by the upper-level access device is M; M is the maximum number of mask digits of the prefix in the IPv6 network address.
  • the receiving module is also used to receive a request message for the user equipment to obtain IANA;
  • the sending module is also configured to transparently transmit the request message to the upper-level access device according to the transparent transmission policy
  • the receiving module is also configured to receive the IANA allocated by the superior access device to the user equipment;
  • the sending module is also used to send the IANA of the user equipment to the user equipment.
  • the upper-level access device is a network edge device, and the access device is a routing device, or the upper-level access device is a broadband remote access server BRAS, and the access device is Network edge devices.
  • the access device and the BRAS are connected through a bridge.
  • embodiments of the present application further provide an access device, including: a processor and a memory; the memory stores a computer program; and the processor is configured to execute the computer program stored in the memory, so that the The access device performs the method in any possible design of the above first aspect, or performs the method in any possible design of the above second aspect.
  • embodiments of the present application provide an access device, including: a processor and an interface circuit; the interface circuit is used to receive code instructions and transmit them to the processor; the processor is used to run the The code instructions are to execute the method in any possible design of the above first aspect, or to execute the method in any possible design of the above second aspect.
  • embodiments of the present application provide a computer-readable storage medium that stores computer program instructions. When the instructions are executed, the method in any possible design in the above-mentioned first aspect is realized, or the method is implemented. The method in any possible design of the above second aspect is implemented.
  • embodiments of the present application provide a computer program product, including computer program code.
  • the processor can execute any of the possible designs in the first aspect. method, or perform the method in any possible design of the second aspect above.
  • Figure 1 is a schematic diagram of a possible communication scenario architecture in an embodiment of the present application
  • Figure 2 is a schematic diagram of another possible communication scenario architecture in the embodiment of the present application.
  • Figure 3 is a schematic flowchart of a routing method for a home network in an embodiment of the present application
  • Figure 4 is a schematic flowchart of a routing method for a home network in the first possible manner according to the embodiment of the present application;
  • FIG. 5 is a schematic flowchart of another home network routing method in the first possible manner according to the embodiment of the present application.
  • FIG. 6 is a schematic flowchart of another home network routing method in an embodiment of the present application.
  • Figure 7 is a schematic flowchart of a routing method for a home network in the second possible manner according to the embodiment of the present application.
  • FIG. 8 is a schematic flowchart of another home network routing method in the second possible manner according to the embodiment of the present application.
  • Figure 9 is a schematic structural diagram of an access device provided by an embodiment of the present application.
  • Figure 10 is a schematic structural diagram of another access device provided by an embodiment of the present application.
  • the prefix is the number of bits in the address that has a fixed value or the number of bits that represents the network identification.
  • the prefix of IPv6 can be written as: address/prefix length.
  • An IPv6 address consists of a 64-bit prefix and a 64-bit network interface ID.
  • the 64-bit prefix can include a 48-bit site prefix and a 16-bit subnet ID.
  • a router prefix can be expressed as 21DA:D3::/48.
  • a subnet prefix can be composed of a 48-bit site prefix and a 16-bit subnet ID. For example, it can be expressed as 21DA:D3:0:2F3B::/64.
  • GUA Global unicast address
  • ULA Unique local address
  • FC00::/7 Unique local address
  • IANA Identity Association for Non-temporary Address
  • IAPD Identity Association for Perfix Delegation
  • IANA and IAPD are addresses of IPv6 networks.
  • IANA is usually used as the network-side address of network edge devices to connect to the external network.
  • IAPD can be used by network edge devices to provide user-side addresses for user-side devices.
  • the network edge device can assign an IPv6 network address to the routing device or terminal device connected to the network edge device, thereby performing IPv6 network communication.
  • Figure 1 is a schematic diagram of a possible communication scenario architecture provided by an embodiment of the present application.
  • the network edge device of the home network connects the user device to the external network through the broadband remote access server (BRAS). That is, the network edge device connects to the user equipment.
  • User equipment may include routing equipment of a home network and may also include terminal equipment.
  • Network edge devices can be, for example, optical network termination (ONT), optical network unit (ONU) or access point (AP), etc. ONT can also be called optical cat.
  • Figure 1 takes the two-level routing cascade networking scenario of a home network as an example.
  • the network edge device can also be called a home gateway device.
  • the network edge device is an ONT as an example.
  • the routing device can be a router or a switch.
  • Network edge devices can also be connected to terminal devices, and routing devices can be connected to terminal devices.
  • the terminal device can be a smartphone, a personal computer (PC) or a tablet, a printer, a smart speaker, etc.
  • the broadband remote access server is an access gateway for broadband network applications. It is a bridge between the backbone networks of the broadband access network, providing basic access means and management functions of the broadband access network. It is located at the edge of the network and provides wide With access services, it can realize the aggregation and forwarding of multiple services and can meet the requirements of different users for transmission capacity and bandwidth utilization. Therefore, it is the core equipment for broadband user access.
  • the broadband remote access server mainly completes two functions: First, the network carrying function: responsible for the PPPoE (Point-to-PointPotocol Over Ethernet, a method of transmitting PPP sessions over Ethernet) connections of end users and the function of aggregating user traffic .
  • the second is the control implementation function: it cooperates with the authentication system, billing system, customer management system and service policy control system to realize the authentication, billing and management functions of user access.
  • Figure 2 is a schematic diagram of another possible communication scenario architecture provided by an embodiment of the present application.
  • the network edge device of the home network is connected to the BRAS through a bridge.
  • Figure 2 uses a bridge connection as an example.
  • the network bridge can use ONU, and of course other network bridge equipment can also be used, which is not specifically limited in this application.
  • the network edge device of the home network can use ONT or AP and other devices.
  • the ONT obtains the WAN interface address (IANA) from the BRAS, for example, 2001::1.
  • the ONT does not request the authorization prefix, such as IAPD, from the BRAS.
  • the routing device connected to the ONT cannot request the prefix, so the terminal device connected to the routing device cannot be assigned a GUA address, making the terminal device unable to access the external network.
  • the ONT obtains the WAN interface address (IANA) from the BRAS, for example, 2001::1.
  • the ONT requests the authorization prefix (IAPD) from the BRAS, such as 2002::/64.
  • IAPD authorization prefix
  • the routing device connected to the ONT cannot request the prefix, so the terminal device connected to the routing device cannot be assigned a GUA address, making the terminal device unable to access the external network.
  • the address obtained by the routing device is 2001::1/128, and the authorized prefix is 2001::1/64.
  • the 64-bit authorization prefix obtained by the routing device is the same as the 64-bit prefix in the obtained address, so that the prefix address of the terminal device is the same as the prefix of the routing device, causing the terminal device to be unable to access the external network.
  • embodiments of the present application provide a routing method and device for a home network to avoid the situation where the terminal device cannot access the external network through the IPv6 network.
  • the embodiments of this application exemplarily provide two possible home network routing methods.
  • the first possible way is to use the route conversion method when there is a problem with prefix allocation.
  • the terminal device connected to the routing device uses the address (GUA) of the routing device to communicate with the external network.
  • GUI address
  • the transparent transmission method when there is a problem with prefix allocation, the transparent transmission method is adopted, and the routing device transparently transmits the communication packets between the downstream terminal device and the upstream network device of the routing device.
  • FIG. 3 is a schematic flowchart of a home network routing method provided by an embodiment of the present application. This method can be implemented by the routing device of the home network.
  • the routing device can be deployed in the access device.
  • the access device may be a routing device connected to a terminal device, or may be a network edge device connected to a routing device.
  • the access device requests the IANA and IAPD address prefix from the upper-level access device.
  • the upper-level access device can be a network edge device, and the access device can be a routing device, as shown in Figure 1.
  • Superior access The device is BRAS, and the access device can be a network edge device, as shown in Figure 2.
  • the access device may request the IANA and IAPD address prefix from the upper-level access device through the WAN interface.
  • the WAN interface can be an x digital subscriber line (xDSL) interface, a passive optical network (PON) interface or an Ethernet interface.
  • xDSL x digital subscriber line
  • PON passive optical network
  • the access device receives the IANA assigned to the access device by the superior access device.
  • the route conversion policy is used for the user equipment connected to the access device to use the IANA of the access device. Communicate with the superior access device.
  • the conversion condition includes not receiving the IAPD address prefix sent by the upper-level access device or receiving the IAPD address prefix sent by the upper-level access device.
  • the connected user equipment may be a terminal device or a routing device.
  • the access device is a routing device
  • the connected user equipment can be a terminal device.
  • the access device if the access device receives the IAPD address prefix sent by the upper-level access device and the IPAD address prefix is less than M, it indicates that the IAPD address prefix is available, and the access device can allocate the IAPD address prefix to the downstream user equipment based on the IAPD address prefix.
  • IPv6 address this IPv6 address serves as the GUA of the connected user equipment. Therefore, the user equipment can use the GUA to access the external network.
  • the access device may allocate a ULA to the user equipment. For example, the access device generates an M-bit ULA prefix, such as fd00::64. Then the ULA is allocated to the connected user equipment based on the generated M-bit ULA prefix. and sends the assigned ULA to the user equipment. For example, there is an address translation relationship between the ULA of the user equipment and the IANA of the access equipment. It can be understood that the route translation policy may include the address translation relationship between the ULA and the IANA of the access device.
  • the access device when the access device sends the ULA to the user equipment, it can use a router advertisement (RA) message, and the RA message carries the ULA assigned to the user equipment.
  • RA router advertisement
  • DHCP dynamic host configuration protocol
  • the access device when user equipment accesses the network through the point to point over ethernet (PPPOE) protocol, it can obtain an IPv6 address through the access device. For example, when the access device allocates a ULA to the user equipment, it notifies the user equipment of the ULA.
  • PPOE point to point over ethernet
  • the access device When user equipment accesses the network, it can use the ULA obtained from the access device to send IPv6 packets, that is, the source IP address of the IPv6 packet is the ULA obtained from the access device.
  • the access device receives an IPv6 message from the user device, for the IPv6 message whose source IP address is ULA, the access device converts the source IP address of the IPv6 message into the IANA of the access device (i.e., the IANA of the access device). GUA), and then the access device sends the converted IPv6 packet to the upper-level access device.
  • the access device can use network address translation (NAT) technology, such as NAT66 technology, to translate the source IP address of the IPv6 packet.
  • NAT network address translation
  • the access device is a routing device
  • the upper-level access device is an ONT
  • the user equipment connected to the routing device is a terminal device.
  • the routing device requests the IAPD address prefix and IANA from the ONT.
  • IPv6 address information includes IANA and may also include IAPD address prefix.
  • the ONT obtains the IANA and IAPD address prefixes from the BRAS, and the mask number of the IAPD address prefix obtained by the ONT from the BRAS is less than 64, then the ONT can allocate the IAPD address prefix and IANA to the routing device based on the IAPD address prefix. . In this case, the ONT can send the IANA and IAPD address prefixes to the routing device. In one case, the mask number of the IAPD address prefix sent by the ONT to the routing device is 64 bits. In another situation, the mask number of the IAPD address prefix sent by the ONT to the routing device is less than 64 bits.
  • the ONT obtains the IANA and IAPD address prefixes from the BRAS, and the mask number of the IAPD address prefix obtained by the ONT from the BRAS is equal to 64, then the ONT can no longer allocate the IAPD address prefix to the routing device. In this case, the ONT sends IANA to the routing device, but does not send the IAPD address prefix to the routing device.
  • the ONT receives IANA, which is the GUA of the ONT.
  • the ONT sends IANA to the routing device.
  • the routing device determines whether it has received the IAPD address prefix sent by the ONT. If not, execute 404. If yes, execute 406.
  • the routing device generates a 64-bit ULA prefix, and allocates ULA to the connected terminal device based on the 64-bit ULA prefix. Execute 405.
  • the routing device sends a ULA to the downstream terminal device. Execute 408.
  • the routing device determines that the mask digits of the received IAPD address prefix are less than 64, and the IPAD prefix is available.
  • the routing device allocates the IAPD prefix to the downstream terminal device, and allocates IANA to the terminal device as the GUA of the terminal device. Execute 410.
  • the terminal device receives the ULA, which serves as the GUA of the terminal device on the terminal device.
  • the terminal device accesses the external network and sends an IPv6 message to the routing device.
  • This IPv6 packet carries ULA, that is, the IPv6 source IP address is the ULA assigned by the routing device. Execute 409.
  • the routing device After receiving the IPv6 message, the routing device converts the IPv6 source IP address into the GUA of the routing device (that is, the IANA of the routing device), and sends the IPv6 message to the ONT.
  • the terminal device After the terminal device receives the IANA, the IANA serves as the GUA of the terminal device.
  • the terminal device accesses the external network and sends IPv6 messages to the routing device.
  • This IPv6 message carries IANA, that is, the source IP address of IPv6 is the IANA assigned by the routing device. Execute 411.
  • the routing device After receiving the IPv6 message, the routing device sends the IPv6 message to the ONT.
  • the ONT obtains the WAN interface address (IANA) from the BRAS, but the ONT does not request an authorization prefix, such as IAPD, from the BRAS.
  • the ONT can allocate ULA to the routing device and generate a route conversion policy.
  • the route translation policy may include the address translation relationship between the ULA of the routing device and the IANA of the ONT.
  • the ONT will send the ULA assigned by the routing device to the routing device.
  • the routing device uses the ULA assigned by the ONT as the GUA of the routing device.
  • the routing device cannot obtain the IAPD from the ONT, thus The INAN cannot be assigned to the downstream terminal equipment.
  • the routing device can allocate a ULA to the terminal device, and the routing device can also generate a route conversion policy.
  • the route translation policy generated by the routing device may include an address translation relationship between the ULA of the terminal device and the ULA of the routing device.
  • the routing device sends the ULA of the terminal device to the terminal device. Therefore, the terminal device can send an IPv6 message to the routing device based on the ULA assigned by the routing device.
  • the IPv6 message carries the ULA of the terminal device, that is, the source IP address is the ULA of the terminal device.
  • the routing device converts the ULA of the terminal device in the IPv6 packet into the ULA of the routing device according to the route conversion policy.
  • the routing device sends the IPv6 packet carrying the ULA of the routing device to the ONT.
  • the ONT converts the ULA of the routing device in the IPv6 packet into the IANA of the ONT. Then send the IANA IPv6 message carrying the ONT to the BRAS.
  • ONT requests IAPD address prefix and IANA from BRAS.
  • the BRAS does not allocate IAPD address prefixes to ONTs.
  • ONT receives the IANA sent by BRAS.
  • the ONT determines that it has not received the IAPD address prefix sent by the ONT.
  • the ONT generates a 64-bit ULA prefix, and allocates ULA to the connected terminal device based on the 64-bit ULA prefix.
  • the ONT sends ULA to the downstream terminal device.
  • the terminal device receives the ULA, which serves as the GUA of the terminal device on the terminal device.
  • the terminal device accesses the external network and sends an IPv6 message to the ONT.
  • This IPv6 packet carries ULA, that is, the IPv6 source IP address is the ULA assigned by the ONT.
  • the ONT After receiving the IPv6 message, the ONT converts the IPv6 source IP address to the ONT's GUA (that is, the ONT's IANA), and sends the IPv6 message to the BRAS.
  • the ONT's GUA that is, the ONT's IANA
  • FIG. 6 is a schematic flowchart of another home network routing method provided by an embodiment of the present application. This method can be implemented by the routing device of the home network.
  • the routing device can be deployed in the access device.
  • the access device may be a routing device connected to a terminal device, or may be a network edge device connected to a routing device.
  • the access device receives the IANA assigned by the upper-level access device to the access device.
  • the transparent transmission policy is for the access device to transparently transmit the user equipment and the upper-level access device. IPv6 messages between them.
  • the transparent transmission condition includes that the access device does not receive the IAPD address prefix sent by the upper-level access device or the access device receives the mask number of the IAPD address prefix sent by the upper-level access device. is M; M is the maximum number of mask bits in the prefix in the IPv6 network address.
  • the access device can directly transparently transmit the IPv6 packets of the upper-level access device to the user equipment connected to the access device.
  • the IPv6 packets of the user equipment connected to the access device can also be directly transparently transmitted to the upper-level access device of the access device.
  • the user equipment connected to the access device can directly request an IPv6 address from the upper-level access device of the access device.
  • the access device can obtain an IPv6 address (i.e., from the superior access device of the access device). IANA).
  • the user equipment accesses the network through the point to point over ethernet (PPPOE), it sends a request message for obtaining IANA to the access device, and the access device transmits the request according to the transparent transmission policy.
  • the message is transparently transmitted to the upper-level access device.
  • the upper-level access device can allocate IANA to the user equipment and send the IANA allocated to the user equipment to the user equipment.
  • the access device When user equipment accesses the network, it can use the IANA obtained from the access device to send IPv6 messages, that is, the source IP address of the IPv6 message is the IANA obtained from the access device.
  • the access device receives the IPv6 message from the user device, it sends the IPv6 message to the upper-level access device.
  • the access device when the access device cannot allocate IANA to the user equipment connected to it, it is set to transparent transmission mode. It can be considered that the user equipment is a device connected to the upper-level access device, and the user equipment is connected to the upper-level access device from the upper-level access device. Get IANA.
  • the access device if the access device receives the IAPD address prefix sent by the upper-level access device and the IPAD address prefix is less than M, it indicates that the IAPD address prefix is available, and the access device can allocate the IAPD address prefix to the downstream user equipment based on the IAPD address prefix.
  • IPv6 address this IPv6 address serves as the GUA of the connected user equipment. Therefore, the user equipment can use the GUA to access the external network.
  • the access device is a routing device
  • the upper-level access device is an ONT
  • the user equipment connected to the routing device is a terminal device.
  • the routing device requests the IAPD address prefix and IANA from the ONT.
  • IPv6 address information includes IANA and may also include IAPD address prefix.
  • the ONT obtains the IANA and IAPD address prefixes from the BRAS, and the mask number of the IAPD address prefix obtained by the ONT from the BRAS is less than 64, then the ONT can allocate the IAPD address prefix and IANA to the routing device based on the IAPD address prefix. . In this case, the ONT can send the IANA and IAPD address prefixes to the routing device. In one case, the mask number of the IAPD address prefix sent by the ONT to the routing device is 64 bits. In another situation, the mask number of the IAPD address prefix sent by the ONT to the routing device is less than 64 bits.
  • the ONT obtains the IANA and IAPD address prefixes from the BRAS, and the mask number of the IAPD address prefix obtained by the ONT from the BRAS is equal to 64, then the ONT can no longer allocate the IAPD address prefix to the routing device. In this case, the ONT sends IANA to the routing device, but does not send the IAPD address prefix to the routing device.
  • the ONT receives IANA, which is the GUA of the ONT.
  • the ONT sends IANA to the routing device.
  • the routing device determines whether it has received the IAPD address prefix sent by the ONT. If not, execute 704. If yes, execute 705.
  • the routing device generates an IPv6 transparent transmission policy.
  • the transparent transmission policy is for the routing device to transparently transmit IPv6 messages between the downstream terminal device and the upstream network device. Execute 707.
  • the routing device determines that the mask number of the received IAPD address prefix is less than 64, and the IPAD prefix is available. The routing device allocates the IAPD prefix to the downstream terminal device, and allocates IANA to the terminal device as the GUA of the terminal device.
  • the terminal device accesses the network through PPPOE, it sends a request message for obtaining IANA to the routing device. Execute 708.
  • the routing device transparently transmits the request message to the ONT.
  • the ONT obtains the IANA and IAPD address prefixes from the BRAS, and the mask number of the IAPD address prefix obtained by the ONT from the BRAS is less than 64, then the ONT can allocate the IAPD address prefix and IANA to the terminal device based on the IAPD address prefix. . In this case, the ONT can send IANA to the end device.
  • the ONT can no longer allocate the IAPD address prefix to the downstream routing device.
  • Other downstream end devices cannot be assigned IANA.
  • the ONT can also create a transparent transmission policy for devices other than routing devices that access the network. In this case, the ONT transparently transmits the terminal device request message to the BRAS. Thus the end device can obtain IANA from the BRAS.
  • the ONT obtains the IANA and IAPD address prefixes from the BRAS, and the ONT cannot obtain the IAPD address prefix from the BRAS, so the ONT can no longer allocate IAPD address prefixes to downstream routing devices, nor can it assign IAPD address prefixes to other downstream routing devices.
  • the connected end device is assigned IANA.
  • the ONT can also create a transparent transmission policy.
  • the ONT transparently transmits the request message of the connected device to the BRAS.
  • both terminal equipment and routing equipment can obtain IANA from BRAS.
  • both the ONT and the routing device adopt a transparent transmission strategy to forward all IPv6 packets of the connected devices. For example, for downlink IPv6 packets, transparently transmitted objects can be distinguished based on the identifier of the device.
  • ONT requests IAPD address prefix and IANA from BRAS.
  • the BRAS does not allocate IAPD address prefixes to ONTs.
  • ONT receives the IANA sent by BRAS.
  • the ONT determines that it has not received the IAPD address prefix sent by the ONT.
  • the ONT generates a transparent transmission policy.
  • the terminal device accesses the network through PPPOE, it sends a request message for obtaining IANA to the ONT.
  • the ONT transparently transmits the request message to the BRAS.
  • the ONT receives the IANA assigned by the BRAS to the terminal device, and transparently transmits the IANA assigned to the terminal device to the terminal device.
  • the embodiment of the present application also provides an access device, as shown in Figure 9 As shown, the access device includes: a sending module 901, a receiving module 902 and a processing module 903.
  • the sending module 901 is used to request the identity-associated IANA of the non-temporary address and the identity-associated IAPD address prefix of the prefix authorization from the upper-level access device;
  • the receiving module 902 is configured to receive the IANA assigned by the superior access device to the access device;
  • the processing module 903 is configured to create a route conversion policy for the user equipment connected to the access device when it is determined that the conversion condition is met.
  • the route conversion policy is used for the user equipment connected to the access device to use the access device.
  • the IANA of the access device communicates with the upper-level access device;
  • the conversion condition includes that the access device does not receive the IAPD address prefix sent by the upper-level access device or the access device receives the mask number of the IAPD address prefix sent by the upper-level access device.
  • M is the maximum number of mask bits in the prefix in the IPv6 network address.
  • processing module 903 is also used to:
  • the sending module 901 is also configured to send the ULA to the user equipment
  • the route translation policy includes the pre-IANA address translation relationship between the ULA and the access device.
  • the receiving module 902 is also configured to receive an IPv6 message sent by the user equipment, where the IPv6 message carries the ULA;
  • the processing module 903 is also configured to convert the ULA carried in the IPv6 message into the IANA of the access device according to the route conversion policy;
  • the sending module 901 is also configured to send the converted IPv6 message to the upper-level access device.
  • the sending module 901 is specifically used to:
  • the upper-level access device is a network edge device, and the access device is a routing device, or the upper-level access device is a broadband remote access server BRAS, and the access device is Network edge devices.
  • the access device and the BRAS are connected through a bridge.
  • the sending module 901 is used to request the identity-associated IANA of the non-temporary address and the identity-associated IAPD address prefix of the prefix authorization from the upper-level access device;
  • the receiving module 902 is configured to receive the IANA assigned by the superior access device to the access device;
  • the processing module 903 is configured to create a transparent transmission policy for the user equipment connected to the access device when it is determined that the transparent transmission condition is met.
  • the transparent transmission policy is for the access device to transparently transmit the user equipment and the IPv6 messages between upper-level access devices;
  • the transparent transmission condition includes that the access device does not receive the IAPD address prefix sent by the upper-level access device or the access device receives the mask number of the IAPD address prefix sent by the upper-level access device. is M; M is the maximum number of mask bits in the prefix in the IPv6 network address.
  • the receiving module 902 is also used to receive a request message for the user equipment to obtain IANA;
  • the sending module 901 is also configured to transparently transmit the request message to the upper-level access device according to the transparent transmission policy
  • the receiving module 902 is also configured to receive the IANA assigned by the superior access device to the user equipment;
  • the sending module 901 is also used to send the IANA of the user equipment to the user equipment.
  • the upper-level access device is a network edge device, and the access device is a routing device, or the upper-level access device is a broadband remote access server BRAS, and the access device is Network edge devices.
  • the access device when the upper-level access device is the BRAS, the access device and the BRAS Connect via bridge.
  • each functional unit in each embodiment of the present application It can be integrated in a processing unit, or it can exist physically alone, or two or more units can be integrated in one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.
  • Integrated units may be stored in a computer-readable storage medium if they are implemented in the form of software functional units and sold or used as independent products.
  • the technical solution of the present application is essentially or contributes to the existing technology, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to cause a computer device (which can be a personal computer, a server, or a network device, etc.) or a processor to execute all or part of the steps of the methods of various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program code. .
  • an embodiment of the present application also provides a schematic structural diagram of an access device.
  • the access device may be used to implement the ONT or routing device method described in the above embodiment. Please refer to the description in the above method embodiment.
  • the access device includes one or more processors 1001.
  • the access device includes one or more processors 1001, and the one or more processors 1001 can implement the method introduced in the method embodiment shown above.
  • the access device may include a transceiver unit to implement input (reception) and output (transmission) of signals.
  • the transceiver unit can be a communication interface, transceiver, radio frequency chip, etc.
  • the processor 1001 can also implement other functions.
  • the processor 1001 may be a general-purpose processor or a special-purpose processor, or the like. Alternatively, in one design, the processor 1001 can execute instructions to cause the access device to perform the method described in the above method embodiment.
  • the instructions can be stored in whole or in part in the processor, such as instruction 1003, or in the memory 1002 coupled with the processor, such as instructions 1004. Instructions 1003 and 1004 can also be used together to cause the access device to perform the above method. Methods described in the Examples.
  • the access device may also include a circuit, and the circuit may implement the functions introduced in the foregoing method embodiments.
  • the access device may include one or more memories 1002, on which instructions 1004 are stored, and the instructions may be executed on the processor, causing the access device to execute the method described in the above method embodiment.
  • data can also be stored in the memory.
  • the optional processor may also store instructions and/or data.
  • one or more memories 1002 may store the corresponding relationships described in the above embodiments, or related parameters or tables involved in the above embodiments.
  • the processor and memory can be set up separately or integrated together.
  • the access device may also include a transceiver 1005.
  • the processor 1001 can be called a processing unit and controls the access device.
  • the transceiver 1005 may be called a transceiver, a transceiver circuit, a transceiver unit, etc., and is used to implement the transceiver function of the access device.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capabilities.
  • each step of the above method embodiment can be completed through an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (digital signal processor) processor (DSP), application specific integrated circuit (ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically erasable programmable memory Read memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate SDRAM double data rate SDRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • Embodiments of the present application also provide a computer-readable storage medium on which a computer program is stored.
  • the computer program When executed by a computer, it implements the voice service processing method of any of the method embodiments applied to the access device.
  • Embodiments of the present application also provide a computer program product, which, when executed by a computer, implements the routing method for a home network in any of the above method embodiments applied to an access device.
  • One embodiment of the present application provides a computer-readable medium for storing a computer program.
  • the computer program includes instructions for executing the method steps in the method embodiments corresponding to the routing device or ONT in Figures 3-8.
  • the disclosed systems, access devices and methods can be implemented in other ways.
  • the access device embodiments described above are merely illustrative, for example,
  • the division of blocks is only a logical function division. In actual implementation, there may be other division methods. For example, multiple modules or components may be combined or integrated into another system, or some features may be ignored or not executed.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be indirect coupling or communication connection through some interfaces, access devices or modules, or may be electrical, mechanical or other forms of connection.
  • Modules described as separate components may or may not be physically separated, and components shown as modules may or may not be physical modules, that is, they may be located in one place, or they may be distributed to multiple network modules. Some or all of the modules can be selected according to actual needs to achieve the purpose of the embodiments of the present application.
  • each functional module in each embodiment of the present application can be integrated into one processing module, or each module can exist physically alone, or two or more modules can be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or software function modules.
  • Computer-readable storage media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. Storage media can be any available media that can be accessed by the computer. Taking this as an example but not limited to: computer-readable storage media may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage media or other magnetic storage devices, or can be used to carry or store instructions or data structures.
  • any other medium in the form of the desired program code and capable of being accessed by a computer also.
  • Any connection is suitable for a computer-readable storage medium.
  • the Software is transmitted from a website, server, or other remote source using coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave
  • coaxial cable , fiber optic cable, twisted pair, DSL or wireless technologies such as infrared, wireless and microwave are included in the fixation of the respective media.
  • disk (Disk) and disc (disc) include compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk and Blu-ray disc, where disks usually copy data magnetically, and discs usually copy data magnetically.
  • CD compact disc
  • DVD digital versatile disc
  • floppy disk and Blu-ray disc, where disks usually copy data magnetically, and discs usually copy data magnetically.
  • a laser is used to optically copy the data.

Abstract

一种家庭网络的路由方法、接入设备及介质,涉及通信技术领域,用于在家庭网络中在无法获取到全局IPv6的地址(IANA)的情况下也能实现IPv6通信。在接入设备无法从上级接入设备获取到前缀或者获取到的前缀不符合为下级接入设备分配地址的需求时,创建路由转换策略或者透传策略。路由转换策略使得下级接入设备能够使用当前接入设备的IANA进行IPv6通信。透传策略使得下级接入设备可以看作是上级接入设备的下挂设备。从而下级接入设备可以直接与上级接入设备进行通信获取IANA。对上级接入设备以及BRAS无需更改任何设置,也不需要增加BARS的分配能力,即不需要运营上更新部署,并且用户设备侧并无感知。

Description

一种家庭网络的路由方法、接入设备及介质
本申请要求于2022年8月19日提交中国国家知识产权局、申请号为202211001549.3、申请名称为“一种家庭网络的路由方法、接入设备及介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,特别涉及一种家庭网络的路由方法、接入设备及介质。
背景技术
由于网络边缘设备,比如光猫的摆放位置限制和家庭中各房间网路分配不均,家庭用户通常会再部署路由设备,比如路由器或者接入点(access point,AP)来实现网络的拓展,增加家庭内网络的覆盖率。目前光猫和路由器均支持互联网协议第6版(internet protocol version 6,IPv6),用户使用的终端设备也逐渐向IPv6过渡。
但是家庭用户如果想在IPv6网络中扩展一层网络,即在网络边缘设备再下接路由设备,路由设备不支持网络地址前缀的分发的情况下,会导致连接到所述路由设备的用户接入终端设备无法获得IPv6地址,进而无法进行IPv6通信。
发明内容
本申请实施例提供一种家庭网络的路由方法、接入设备及介质,用于在家庭网络中在无法用户设备获取到全局的IPv6的地址的情况下也能实现IPv6通信。
第一方面,本申请实施例提供一种家庭网络的路由方法,应用于采用IPv6网络的接入设备,所述方法包括:向上级接入设备请求非临时地址的身份关联IANA以及前缀授权的身份关联IAPD地址前缀;接收到上级接入设备为所述接入设备分配的IANA;在确定满足转换条件时,为所述接入设备下接的用户设备创建路由转换策略,所述路由转换策略用于所述接入设备下接的用户设备使用所述接入设备的IANA与所述上级接入设备通信;其中,所述转换条件包括所述接入设备未接收所述上级接入设备发送的IAPD地址前缀或者所述接入设备接收到所述上级接入设备发送的IAPD地址前缀的掩码位数为M;M为IPv6网络地址中前缀的最大掩码位数。
本申请实施例中,在接入设备无法从上级接入设备获取到前缀或者获取到的前缀不符合为下级接入设备分配地址的需求时,创建路由转换策略,使得下级接入设备能够使用当前接入设备的IANA进行IPv6通信。对上级接入设备以及BRAS无需更改任何设置,也不需要增加BARS的分配能力,即不需要运营上更新部署。并且用户设备侧并无感知。
在一种可能的设计中,所述方法还包括:在确定满足转换条件时,为所述用户设备分配唯一本地地址ULA,并向所述用户设备发送所述ULA;所述路由转换策略包括所述ULA与所述接入设备的IANA之前的地址转换关系。
示例性地,用户设备为终端设备。
通过上述设计,在接入设备无法从上级接入设备获取到前缀或者获取到的前缀不符合为下级接入设备分配地址的需求时,仅需为终端设备分配ULA,从而无需获取到前缀,使得终端设备可以基于ULA收发报文,接入设备基于地址转换关系来为终端设备转发报文,使得终端设备实现IPv6通信,终端设备并无感知。
在一种可能的设计中,所述方法还包括:所述接入设备接收所述用户设备发送的IPv6报文,所述IPv6报文携带所述ULA;所述接入设备根据所述路由转换策略将所述IPv6报文中携带的ULA转换为所述接入设备的IANA,并向所述上级接入设备发送转换后的所述IPv6报文。
在一种可能的设计中,向所述用户设备发送所述ULA,包括:
向所述用户设备发送路由器通告RA报文,所述RA报文携带所述ULA;或者,
向所述用户设备发送动态主机配置协议DHCP报文,所述DHCP报文携带所述ULA。
在一种可能的设计中,所述上级接入设备为网络边缘设备,所述接入设备为路由设备,或者,所述上级接入设备为宽带远程接入服务器BRAS,所述接入设备为网络边缘设备。
示例性地,用户设备可以为路由设备或者终端设备。
在一种可能的设计中,所述上级接入设备为所述BRAS时,所述接入设备与所述BRAS通过桥接方式连接。
第二方面,本申请实施例提供一种家庭网络的路由方法,应用于采用IPv6的家庭网络的接入设备,所述方法包括:向上级接入设备请求非临时地址的身份关联IANA以及前缀授权的身份关联IAPD地址前缀;接收到上级接入设备为所述接入设备分配的IANA;在确定满足透传条件时,为所述接入设备下接的用户设备创建透传策略,所述透传策略为所述接入设备透传所述用户设备与所述上级接入设备之间IPv6报文;其中,所述透传条件包括所述接入设备未接收所述上级接入设备发送的IAPD地址前缀或者所述接入设备接收到所述上级接入设备发送的IAPD地址前缀的掩码位数为M;M为IPv6网络地址中前缀的最大掩码位数。
本申请实施例中,在接入设备无法从上级接入设备获取到前缀或者获取到的前缀不符合为下级接入设备分配地址的需求时,创建透传策略,使得下级接入设备可以看作是上级接入设备的下挂设备。从而下级接入设备可以直接与上级接入设备进行通信。对上级接入设备以及BRAS无需更改任何设置,也不需要增加BARS的分配能力,即不需要运营上更新部署。并且用户设备侧并无感知。
在一种可能的设计中,所述方法还包括:接收所述用户设备获取IANA的请求报文,将根据所述透传策略将所述请求报文透传给所述上级接入设备;接收所述上级接入设备为所述用户设备分配的IANA,并将所述用户设备的IANA发送给所述用户设备。
本申请实施例中,在接入设备无法从上级接入设备获取到前缀或者获取到的前缀不符合为下级接入设备分配地址的需求时,创建透传策略,使得下级接入设备可以看作是上级接入设备的下挂设备,当前接入设备的下级接入设备可以从当前接入设备的上级接入设备获取IANA,以实现IPv6通信。
在一种可能的设计中,所述上级接入设备为网络边缘设备,所述接入设备为路由设备, 或者,所述上级接入设备为宽带远程接入服务器BRAS,所述接入设备为网络边缘设备。
在一种可能的设计中,所述上级接入设备为所述BRAS时,所述接入设备与所述BRAS通过桥接方式连接。
第三方面,本申请实施例提供一种接入设备,所述接入设备采用IPv6网络,所述接入设备包括:
发送模块,用于向上级接入设备请求非临时地址的身份关联IANA以及前缀授权的身份关联IAPD地址前缀;
接收模块,用于接收到上级接入设备为所述接入设备分配的IANA;
处理模块,用于在确定满足转换条件时,为所述接入设备下接的用户设备创建路由转换策略,所述路由转换策略用于所述接入设备下接的用户设备使用所述接入设备的IANA与所述上级接入设备通信;
其中,所述转换条件包括所述接入设备未接收所述上级接入设备发送的IAPD地址前缀或者所述接入设备接收到所述上级接入设备发送的IAPD地址前缀的掩码位数为M;M为IPv6网络地址中前缀的最大掩码位数。
在一种可能的设计中,所述处理模块,还用于:
在确定满足转换条件时,为所述用户设备分配唯一本地地址ULA;
所述发送模块,还用于向所述用户设备发送所述ULA;
所述路由转换策略包括所述ULA与所述接入设备的IANA之前的地址转换关系。
在一种可能的设计中,所述接收模块,还用于接收所述用户设备发送的IPv6报文,所述IPv6报文携带所述ULA;
所述处理模块,还用于根据所述路由转换策略将所述IPv6报文中携带的ULA转换为所述接入设备的IANA;
所述发送模块,还用于向所述上级接入设备发送转换后的所述IPv6报文。
在一种可能的设计中,所述发送模块,具体用于:
向所述用户设备发送路由器通告RA报文,所述RA报文携带所述ULA;或者,
向所述用户设备发送动态主机配置协议DHCP报文,所述DHCP报文携带所述ULA。
在一种可能的设计中,所述上级接入设备为网络边缘设备,所述接入设备为路由设备,或者,所述上级接入设备为宽带远程接入服务器BRAS,所述接入设备为网络边缘设备。
在一种可能的设计中,所述上级接入设备为所述BRAS时,所述接入设备与所述BRAS通过桥接方式连接。
第四方面,本申请实施例提供一种接入设备,所述接入设备采用IPv6网络,所述接入设备包括:
发送模块,用于向上级接入设备请求非临时地址的身份关联IANA以及前缀授权的身份关联IAPD地址前缀;
接收模块,用于接收到上级接入设备为所述接入设备分配的IANA;
处理模块,用于在确定满足透传条件时,为所述接入设备下接的用户设备创建透传策略,所述透传策略为所述接入设备透传所述用户设备与所述上级接入设备之间IPv6报文;
其中,所述透传条件包括所述接入设备未接收所述上级接入设备发送的IAPD地址前缀 或者所述接入设备接收到所述上级接入设备发送的IAPD地址前缀的掩码位数为M;M为IPv6网络地址中前缀的最大掩码位数。
在一种可能的设计中,所述接收模块,还用于接收所述用户设备获取IANA的请求报文;
所述发送模块,还用于根据所述透传策略将所述请求报文透传给所述上级接入设备;
所述接收模块,还用于接收所述上级接入设备为所述用户设备分配的IANA;
所述发送模块,还用于将所述用户设备的IANA发送给所述用户设备。
在一种可能的设计中,所述上级接入设备为网络边缘设备,所述接入设备为路由设备,或者,所述上级接入设备为宽带远程接入服务器BRAS,所述接入设备为网络边缘设备。
在一种可能的设计中,所述上级接入设备为所述BRAS时,所述接入设备与所述BRAS通过桥接方式连接。
第五方面,本申请实施例还提供一种接入设备,包括:处理器和存储器;所述存储器存储计算机程序;所述处理器,用于执行所述存储器中存储的计算机程序,以使得所述接入设备执行上述第一方面任一可能的设计中的方法,或者执行上述第二方面任一可能的设计中的方法。
第六方面,本申请实施例又提供一种接入设备,包括:处理器和接口电路;所述接口电路,用于接收代码指令并传输至所述处理器;所述处理器用于运行所述代码指令以执行上述第一方面任一可能的设计中的方法,或者执行上述第二方面任一可能的设计中的方法。
第七方面,本申请实施例提供一种计算机可读存储介质,存储有计算机程序指令,当所述指令被执行时,使得上述第一方面中任一可能的设计中的方法被实现,或者使得上述第二方面中任一可能的设计中的方法被实现。
第八方面,本申请实施例提供一种计算机程序产品,包括计算机程序代码,当计算机程序代码被接入设备或者处理器运行时,使得处理器可以执行上述第一方面中任一可能的设计中的方法,或者执行上述第二方面中任一可能的设计中的方法。
其中,本申请在上述各方面提供的实现的基础上,还可以进行进一步组合以提供更多实现。上述第三方面至第八方面的有益效果请具体参阅上述第一方面或者第二方面中各可能的设计的有益效果,在此不再赘述。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍。
图1为本申请实施例中的一种可能的通信场景架构示意图;
图2为本申请实施例中的另一种可能的通信场景架构示意图;
图3为本申请实施例中的一种家庭网络的路由方法流程示意图;
图4为本申请实施例的第一种可能的方式中的一种家庭网络的路由方法流程示意图;
图5为本申请实施例的第一种可能的方式中的另一种家庭网络的路由方法流程示意图;
图6为本申请实施例中的另一种家庭网络的路由方法流程示意图;
图7为本申请实施例的第二种可能的方式中的一种家庭网络的路由方法流程示意图;
图8为本申请实施例的第二种可能的方式中的另一种家庭网络的路由方法流程示意图;
图9为本申请实施例提供的一种接入设备的结构示意图;
图10为本申请实施例提供的另一种接入设备的结构示意图。
具体实施方式
如下先对本申请实施例涉及的技术术语进行解释说明。
(1)前缀是地址中具有固定值的位数部分或表示网络标识的位数部分。IPv6的前缀可书写为:地址/前缀长度。IPv6地址由64位前缀和64位网络接口ID组成。64位前缀可以包括48位的站点前缀和16位的子网ID。例如,站点为路由器时,一个路由器前缀可以表示为21DA:D3::/48。一个子网前缀可以由48位的站点前缀和16位的子网ID组成,比如可以表示为21DA:D3:0:2F3B::/64。
(2)全球单播地址(global unicast address,GUA),可以表示公网地址。一般的,GUA地址,前3bit固定为001,因此GUA地址范围为2000::——3FFF:FFFF:FFFF:FFFF:FFFF:FFFF。
(3)唯一本地地址(unique local address,ULA),可以表示私网地址。ULA地址的前7位为固定格式。一般的,前7位的固定格式为:FC00::/7。ULA地址只在网络内部使用。
(4)非临时地址的身份关联(Identity Association for Non-temporary Address,IANA)和前缀授权的身份关联(Identity Association for Perfix Delegation,IAPD)。IANA与IAPD均属于IPv6网络的地址。IANA通常作为网络边缘设备的网络侧地址,用于连接外网。IAPD可以用于网络边缘设备为用户侧设备提供用户侧地址。通常网络边缘设备在获得IAPD地址前缀后,可以给接入该网络边缘设备的路由设备或者终端设备分配IPv6网络地址,由此进行IPv6网络通信。
如下结合具体实施例对本申请实施例提供的方案进行说明。本申请应用于至少两级接入设备的场景中。
图1为本申请实施例提供的一种可能的通信场景架构示意图。参见图1所示,家庭网络的网络边缘设备通过宽带远端接入服务器(broadband remote access server,BRAS)将用户设备接入到外部网络中。即网络边缘设备下接用户设备。用户设备可以包括家庭网络的路由设备,还可以包括终端设备。网络边缘设备,比如可以是光网络终端(optical network termination,ONT),或者光网络单元(optical network unit,ONU)或者接入点(access point,AP)等。ONT也可以称为光猫。图1中以家庭网络的两级路由级联组网的场景为例,网络边缘设备也可以称为家庭网关设备。图1中以网络边缘设备为ONT为例。路由设备可以是路由器或者交换机等。网络边缘设备还可以下接终端设备,路由设备可以下接终端设备。例如终端设备可以是智能手机、个人计算机(person computer,PC)或者平板电脑、打印机、智能音箱等等。
宽带远端接入服务器是一种面向宽带网络应用的接入网关。它是宽带接入网的骨干网之间的桥梁,提供基本的接入手段和宽带接入网的管理功能。它位于网络的边缘,提供宽 带接入服务、实现多种业务的汇聚与转发,能满足不同用户对传输容量和带宽利用率的要求,因此是宽带用户接入的核心设备。宽带远端接入服务器主要完成两方面功能:一是网络承载功能:负责终端用户的PPPoE(Point-to-PointPotocol Over Ethernet,是一种以太网上传送PPP会话的方式)连接、汇聚用户的流量功能。二是控制实现功能:与认证系统、计费系统和客户管理系统及服务策略控制系统相配合实现用户接入的认证、计费和管理功能。
图2为本申请实施例提供的另一种可能的通信场景架构示意图。图2中,家庭网络的网络边缘设备与BRAS通过桥接方式连接。图2以通过网桥连接为例。网桥可以采用ONU,当然也可以采用其它的网桥设备,本申请对此不作具体限定。该场景中,家庭网络的网络边缘设备可以采用ONT或者AP等设备。
目前针对以上两种通信场景均存在IPv6网络部署不均的情况,针对图1所示的场景存在以下几种情况:
情况1,ONT从BRAS获取到的WAN接口的地址(IANA),比如为2001::1。但是ONT并未从BRAS请求到授权前缀,比如IAPD。在该情况下,ONT下接的路由设备也请求不到前缀,从而无法为路由设备下接的终端设备分配GUA地址,使得终端设备无法接入外部网络。
情况2,ONT从BRAS获取到的WAN接口的地址(IANA),比如为2001::1。ONT从BRAS请求到授权前缀(IAPD),比如为2002::/64。该情况下,ONT下接的路由设备请求不到前缀,从而无法为路由设备下接的终端设备分配GUA地址,使得终端设备无法接入外部网络。
情况3,路由设备获取到的地址为2001::1/128,授权前缀为2001::1/64。路由设备获取到的64位的授权前缀与获取到的地址中64位前缀相同,使得终端设备的前缀地址与路由设备前缀相同,导致终端设备无法接入到外部网络。
针对图2所示的场景,存在如下情况4:桥接的连接方式中,BRAS仅分配地址,但并不分配前缀,从而导致ONT下接的终端设备无法获取到GUA地址,使得终端设备无法接入外部网络。
基于以上的情况,本申请实施例提供一种家庭网络的路由方法及装置,避免出现终端设备无法通过IPv6网络接入外部网络的情况。
本申请实施例示例性地提供两种可能的家庭网络的路由方法。
第一种可能的方式,在前缀分配出现问题的情况下,采用路由转换方式,路由设备下接的终端设备使用路由设备的地址(GUA)与外部网络通信。
第二种可能的方式中,在前缀分配出现问题的情况下,采用透传方式,路由设备对下接的终端设备与路由设备的上游网络设备之间的通信报文进行透传。
如下先对第一种可能的方式进行描述。
参见图3所示,为本申请实施例提供的一种家庭网络的路由方法流程示意图。该方法可以由家庭网络的路由装置来实现。该路由装置可以部署于接入设备中。该接入设备可以是下接终端设备的路由设备,也可以是下接路由设备的网络边缘设备中。
301,接入设备向上级接入设备请求IANA以及IAPD地址前缀。
上级接入设备可以是网络边缘设备,接入设备可以是路由设备,比如图1。上级接入 设备为BRAS,接入设备可以是网络边缘设备,比如图2。
示例性地,接入设备可以通过WAN接口向上级接入设备请求IANA以及IAPD地址前缀。
WAN接口可以x数字用户线(x digital subscriber line,xDSL)接口、无源光网络(passive optical network,PON)接口或以太网接口。
302,接入设备接收到上级接入设备为所述接入设备分配的IANA。
303,在确定满足转换条件时,为所述接入设备下接的用户设备创建路由转换策略,所述路由转换策略用于所述接入设备下接的用户设备使用所述接入设备的IANA与所述上级接入设备通信。
其中,所述转换条件包括未接收所述上级接入设备发送的IAPD地址前缀或者接收到所述上级接入设备发送的IAPD地址前缀的掩码位数为M;M为IPv6网络地址中前缀的最大掩码位数。例如M=64。
示例性地,接入设备为网络边缘设备时,下接的用户设备可以为终端设备,还可以是路由设备。接入设备为路由设备时,下接的用户设备可以为终端设备。
一些实施例中,接入设备若接收到上级接入设备发送的IAPD地址前缀且该IPAD地址前缀小于M,表明IAPD地址前缀可用,接入设备可以基于该IAPD地址前缀为下接的用户设备分配IPv6地址,该IPv6地址作为下接的用户设备的GUA。从而用户设备可以采用该GUA接入外部网络。
在一些实施例中,接入设备在确定满足转换条件时,可以为用户设备分配ULA,比如接入设备生成M位的ULA前缀,例如fd00::64。然后基于生成的M位的ULA前缀为下接的用户设备分配ULA。并将分配的ULA发送给用户设备。示例性地,用户设备的ULA与接入设备的IANA之间存在地址转换关系。可以理解的是,路由转换策略可以包括该ULA与接入设备的IANA之间的地址转换关系。
一种方式中,接入设备在向用户设备发送ULA时,可以通过路由器通告(router advertisement,RA)报文,RA报文携带为用户设备分配的ULA。另一种方式中,接入设备在向用户设备发送ULA时,可以通过动态主机配置协议(dynamic host configuration protocol,DHCP)报文,所述DHCP报文携带所述ULA。
一些场景中,用户设备在通过以太网上的点到点协议(point to point over ethernet,PPPOE)接入网络时,可以通过接入设备获取到IPv6地址。例如,接入设备为用户设备分配ULA时,将该ULA通知给用户设备。
用户设备在访问网络时,可以使用从接入设备获取的ULA发送IPv6报文,即IPv6报文的源IP地址为从接入设备获取的ULA。接入设备在收到来自用户设备的IPv6报文时,对于源IP地址为ULA的IPv6报文,接入设备将IPv6报文的源IP地址转换为接入设备的IANA(即接入设备的GUA),然后接入设备再将转换后的IPv6报文向上级接入设备发送。
示例性地,接入设备可以采用网络地址转换(network address translation,NAT)技术,比如NAT66技术,对IPv6报文的源IP地址进行转换。
如下结合图1所示的架构,对第一种可能的方式进行描述,参见图4所示。图4中以接入设备为路由设备,上级接入设备为ONT,路由设备下接的用户设备为终端设备为例。
401,路由设备向ONT请求IAPD地址前缀和IANA。
示例性地,路由设备在通过PPPOE接入外部网络时,可以向ONT请求IPv6地址信息。IPv6地址信息包括IANA,还可以包括IAPD地址前缀。
一种示例中,ONT从BRAS获取到IANA和IAPD地址前缀,并且ONT从BRAS获取的IAPD地址前缀的掩码位数小于64,则ONT可以基于该IAPD地址前缀为路由设备分配IAPD地址前缀和IANA。在该情况下,ONT可以向路由设备发送IANA以及IAPD地址前缀。一种情形中,ONT向路由设备发送的IAPD地址前缀的掩码位数为64位。另一种情形中,ONT向路由设备发送的IAPD地址前缀的掩码位数小于64位。
另一种示例中,ONT从BRAS获取到IANA和IAPD地址前缀,并且ONT从BRAS获取的IAPD地址前缀的掩码位数等于64,则ONT无法再为路由设备分配IAPD地址前缀。在该情况下,ONT向路由设备发送IANA,但未向路由设备发送IAPD地址前缀。
需要说明的是,ONT接收到IANA,即作为ONT的GUA。
402,ONT向路由设备发送IANA。
403,路由设备确定是否接收到ONT发送的IAPD地址前缀。若否,执行404。若是,执行406。
404,路由设备生成64位的ULA前缀,基于该64位的ULA前缀为下接的终端设备分配ULA。执行405。
405,路由设备向下接的终端设备发送ULA。执行408。
406,确定接收到的IAPD地址前缀的掩码位数是否小于64,若否,执行404。若是,执行407。
407,路由设备确定接收到的IAPD地址前缀的掩码位数小于64,则IPAD前缀可用,则路由设备为下接的终端设备分配IAPD前缀,并为终端设备分配IANA,作为终端设备的GUA。执行410。
408,终端设备接收到ULA,该ULA在终端设备上作为终端设备的GUA,终端设备访问外部网络,向路由设备发送IPv6报文。该IPv6报文携带ULA,即IPv6的源IP地址为路由设备分配的ULA。执行409。
409,路由设备接收到IPv6报文后,将IPv6的源IP地址转换为路由设备的GUA(即路由设备的IANA),并向ONT发送该IPv6报文。
410,向终端设备发送IANA。
411,终端设备接收到IANA后,该IANA在终端设备上作为终端设备的GUA,终端设备访问外部网络,向路由设备发送IPv6报文。该IPv6报文携IANA,即IPv6的源IP地址为路由设备分配的IANA。执行411。
412,路由设备接收到IPv6报文后,向ONT发送该IPv6报文。
在一种可能的场景中,ONT从BRAS获取到的WAN接口的地址(IANA),但是ONT并未从BRAS请求到授权前缀,比如IAPD。在该情况下,ONT可以为路由设备分配ULA,并生成路由转换策略。路由转换策略可以包括路由设备的ULA与ONT的IANA之间的地址转换关系。ONT将为路由设备分配的ULA发送路由设备,路由设备接收到ONT分配的ULA后,将该ONT分配的ULA作为路由设备的GUA。路由设备无法从ONT获取到IAPD,从而 无法为下接的终端设备的分配INAN。在该情况下,路由设备可以为终端设备分配ULA,路由设备也可以生成路由转换策略。路由设备生成的路由转换策略可以包括终端设备的ULA与路由设备的ULA之间的地址转换关系。路由设备将终端设备的ULA发送给终端设备。从而终端设备可以基于路由设备分配的ULA向路由设备发送IPv6报文,该IPv6报文中携带终端设备的ULA,即源IP地址为终端设备的ULA。路由设备根据路由转换策略将IPv6报文中的终端设备的ULA转换为路由设备的ULA。路由设备将携带路由设备的ULA的IPv6报文发送给ONT。ONT接收到携带路由设备的ULA的IPv6报文后,将IPv6报文中的路由设备的ULA转换为ONT的IANA。然后将携带ONT的IANA的IPv6报文发送给BRAS。
如下结合图2所示的架构,对第一种可能的方式进行描述,参见图5所示。
501,ONT向BRAS请求IAPD地址前缀和IANA。
该架构下,BRAS并不会为ONT分配IAPD地址前缀。
502,ONT接收BRAS发送的IANA。
503,ONT确定未接收到ONT发送的IAPD地址前缀。
504,ONT生成64位的ULA前缀,基于该64位的ULA前缀为下接的终端设备分配ULA。
505,ONT向下接的终端设备发送ULA。
506,终端设备接收到ULA,该ULA在终端设备上作为终端设备的GUA,终端设备访问外部网络,向ONT发送IPv6报文。该IPv6报文携带ULA,即IPv6的源IP地址为ONT分配的ULA。
507,ONT接收到IPv6报文后,将IPv6的源IP地址转换为ONT的GUA(即ONT的IANA),并向BRAS发送该IPv6报文。
如下先对第二种可能的方式进行描述。
参见图6所示,为本申请实施例提供的另一种家庭网络的路由方法流程示意图。该方法可以由家庭网络的路由装置来实现。该路由装置可以部署于接入设备中。该接入设备可以是下接终端设备的路由设备,也可以是下接路由设备的网络边缘设备中。
601,参见301,此处不再赘述。
602,接入设备接收到上级接入设备为所述接入设备分配的IANA。
603,在确定满足透传条件时,为所述接入设备下接的用户设备创建透传策略,所述透传策略为所述接入设备透传所述用户设备与所述上级接入设备之间IPv6报文。
其中,所述透传条件包括所述接入设备未接收所述上级接入设备发送的IAPD地址前缀或者所述接入设备接收到所述上级接入设备发送的IAPD地址前缀的掩码位数为M;M为IPv6网络地址中前缀的最大掩码位数。
在该第二种可能的方式中,接入设备可以将上级接入设备的IPv6报文直接透传给接入设备的下挂的用户设备。接入设备的下挂用户设备的IPv6报文也可直接透传给接入设备的上级接入设备。在这种情况下,接入设备的下接用户设备可直接从接入设备的上级接入设备请求IPv6地址。
一些场景中,用户设备在通过以太网上的点到点协议(point to point over ethernet,PPPOE)接入网络时,可以通过接入设备从接入设备的上级接入设备获取到IPv6地址(即 IANA)。
比如,用户设备通过以太网上的点到点协议(point to point over ethernet,PPPOE)接入网络时,向接入设备发送用于获取IANA的请求报文,接入设备根据透传策略将该请求报文透传给上级接入设备。上级接入设备可以为该用户设备分配IANA,并将为用户设备分配的IANA发送给用户设备。
用户设备在访问网络时,可以使用从接入设备获取的IANA发送IPv6报文,即IPv6报文的源IP地址为从接入设备获取的IANA。接入设备在收到来自用户设备的IPv6报文时,将IPv6报文向上级接入设备发送。
该第二可能的方式中,在接入设备无法为下接的用户设备分配IANA的情况下,设置为透传模式,可以认为用户设备作为上级接入设备下接的设备,从上级接入设备获取IANA。
一些实施例中,接入设备若接收到上级接入设备发送的IAPD地址前缀且该IPAD地址前缀小于M,表明IAPD地址前缀可用,接入设备可以基于该IAPD地址前缀为下接的用户设备分配IPv6地址,该IPv6地址作为下接的用户设备的GUA。从而用户设备可以采用该GUA接入外部网络。
如下结合图1所示的架构,对第二种可能的方式进行描述,参见图7所示。图7中以接入设备为路由设备,上级接入设备为ONT,路由设备下接的用户设备为终端设备为例。
701,路由设备向ONT请求IAPD地址前缀和IANA。
示例性地,路由设备在通过PPPOE接入外部网络时,可以向ONT请求IPv6地址信息。IPv6地址信息包括IANA,还可以包括IAPD地址前缀。
一种示例中,ONT从BRAS获取到IANA和IAPD地址前缀,并且ONT从BRAS获取的IAPD地址前缀的掩码位数小于64,则ONT可以基于该IAPD地址前缀为路由设备分配IAPD地址前缀和IANA。在该情况下,ONT可以向路由设备发送IANA以及IAPD地址前缀。一种情形中,ONT向路由设备发送的IAPD地址前缀的掩码位数为64位。另一种情形中,ONT向路由设备发送的IAPD地址前缀的掩码位数小于64位。
另一种示例中,ONT从BRAS获取到IANA和IAPD地址前缀,并且ONT从BRAS获取的IAPD地址前缀的掩码位数等于64,则ONT无法再为路由设备分配IAPD地址前缀。在该情况下,ONT向路由设备发送IANA,但未向路由设备发送IAPD地址前缀。
需要说明的是,ONT接收到IANA,即作为ONT的GUA。
702,ONT向路由设备发送IANA。
703,路由设备确定是否接收到ONT发送的IAPD地址前缀。若否,执行704。若是,执行705。
704,路由设备生成IPv6的透传策略,透传策略为路由设备透传下接的终端设备与上游网络设备之间IPv6报文。执行707。
705,确定接收到的IAPD地址前缀的掩码位数是否小于64,若否,执行704。若否,执行706。
706,路由设备确定接收到的IAPD地址前缀的掩码位数小于64,则IPAD前缀可用,则路由设备为下接的终端设备分配IAPD前缀,并为终端设备分配IANA,作为终端设备的GUA。
707,终端设备通过PPPOE接入网络时,向路由设备发送用于获取IANA的请求报文。执行708。
708,路由设备将该请求报文透传给ONT。
一种示例中,ONT从BRAS获取到IANA和IAPD地址前缀,并且ONT从BRAS获取的IAPD地址前缀的掩码位数小于64,则ONT可以基于该IAPD地址前缀为终端设备分配IAPD地址前缀和IANA。在该情况下,ONT可以向终端设备发送IANA。
在一些实施例中,ONT从BRAS获取到IANA和IAPD地址前缀,并且ONT从BRAS获取的IAPD地址前缀的掩码位数等于64,则ONT无法再为下接的路由设备分配IAPD地址前缀后,无法为其它的下接的终端设备分配IANA。在该情况下,ONT也可以针对除路由设备以外的其它的接入网络的设备创建透传策略。在该情况下,ONT将该终端设备请求报文透传给BRAS。从而终端设备可以从BRAS获取IANA。
在另一些实施例中,ONT从BRAS获取到IANA和IAPD地址前缀,并且ONT从BRAS无法获取到IAPD地址前缀,则ONT无法再为下接的路由设备分配IAPD地址前缀,也无法为其它的下接的终端设备分配IANA。在该情况下,ONT也可以创建透传策略。在该情况下,ONT将下接的设备的请求报文透传给BRAS。从而终端设备和路由设备均可以从BRAS获取IANA。在该情况下,ONT和路由设备均采用透传策略的方式,对下接的设备的IPv6报文均转发。示例性地,针对下行IPv6报文,可以基于设备的标识来区分透传的对象。
如下结合图2所示的架构,对第一种可能的方式进行描述,参见图8所示。
801,ONT向BRAS请求IAPD地址前缀和IANA。
该架构下,BRAS并不会为ONT分配IAPD地址前缀。
802,ONT接收BRAS发送的IANA。
803,ONT确定未接收到ONT发送的IAPD地址前缀。
804,ONT生成透传策略。
805,终端设备通过PPPOE接入网络时,向ONT发送用于获取IANA的请求报文。
806,ONT将该请求报文透传给BRAS。
807,ONT接收BRAS为终端设备分配的IANA,并将该为终端设备分配的IANA透传给终端设备。
以上结合图3至图8详细说明了本申请实施例的家庭网络的路由方法,基于与上述家庭网络的路由方法的同一技术构思,本申请实施例还提供一种接入设备,如图9所示,接入设备包括:发送模块901,接收模块902以及处理模块903。
一种可能的场景中:
发送模块901,用于向上级接入设备请求非临时地址的身份关联IANA以及前缀授权的身份关联IAPD地址前缀;
接收模块902,用于接收到上级接入设备为所述接入设备分配的IANA;
处理模块903,用于在确定满足转换条件时,为所述接入设备下接的用户设备创建路由转换策略,所述路由转换策略用于所述接入设备下接的用户设备使用所述接入设备的IANA与所述上级接入设备通信;
其中,所述转换条件包括所述接入设备未接收所述上级接入设备发送的IAPD地址前缀或者所述接入设备接收到所述上级接入设备发送的IAPD地址前缀的掩码位数为M;M为IPv6网络地址中前缀的最大掩码位数。
在一种可能的设计中,所述处理模块903,还用于:
在确定满足转换条件时,为所述用户设备分配唯一本地地址ULA;
所述发送模块901,还用于向所述用户设备发送所述ULA;
所述路由转换策略包括所述ULA与所述接入设备的IANA之前的地址转换关系。
在一种可能的设计中,所述接收模块902,还用于接收所述用户设备发送的IPv6报文,所述IPv6报文携带所述ULA;
所述处理模块903,还用于根据所述路由转换策略将所述IPv6报文中携带的ULA转换为所述接入设备的IANA;
所述发送模块901,还用于向所述上级接入设备发送转换后的所述IPv6报文。
在一种可能的设计中,所述发送模块901,具体用于:
向所述用户设备发送路由器通告RA报文,所述RA报文携带所述ULA;或者,
向所述用户设备发送动态主机配置协议DHCP报文,所述DHCP报文携带所述ULA。
在一种可能的设计中,所述上级接入设备为网络边缘设备,所述接入设备为路由设备,或者,所述上级接入设备为宽带远程接入服务器BRAS,所述接入设备为网络边缘设备。
在一种可能的设计中,所述上级接入设备为所述BRAS时,所述接入设备与所述BRAS通过桥接方式连接。
另一种可能的场景中:
发送模块901,用于向上级接入设备请求非临时地址的身份关联IANA以及前缀授权的身份关联IAPD地址前缀;
接收模块902,用于接收到上级接入设备为所述接入设备分配的IANA;
处理模块903,用于在确定满足透传条件时,为所述接入设备下接的用户设备创建透传策略,所述透传策略为所述接入设备透传所述用户设备与所述上级接入设备之间IPv6报文;
其中,所述透传条件包括所述接入设备未接收所述上级接入设备发送的IAPD地址前缀或者所述接入设备接收到所述上级接入设备发送的IAPD地址前缀的掩码位数为M;M为IPv6网络地址中前缀的最大掩码位数。
在一种可能的设计中,所述接收模块902,还用于接收所述用户设备获取IANA的请求报文;
所述发送模块901,还用于根据所述透传策略将所述请求报文透传给所述上级接入设备;
所述接收模块902,还用于接收所述上级接入设备为所述用户设备分配的IANA;
所述发送模块901,还用于将所述用户设备的IANA发送给所述用户设备。
在一种可能的设计中,所述上级接入设备为网络边缘设备,所述接入设备为路由设备,或者,所述上级接入设备为宽带远程接入服务器BRAS,所述接入设备为网络边缘设备。
在一种可能的设计中,所述上级接入设备为所述BRAS时,所述接入设备与所述BRAS 通过桥接方式连接。
需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
基于与上述语音业务的处理方法相同的构思,如图10所示,本申请实施例还提供一种接入设备的结构示意图。接入设备可用于实现上述实施例中描述的ONT或者路由设备的方法,可以参见上述方法实施例中的说明。
接入设备包括一个或多个处理器1001。接入设备包括一个或多个处理器1001,一个或多个处理器1001可实现上述所示的方法实施例中介绍的方法。接入设备可以包括收发单元,用以实现信号的输入(接收)和输出(发送)。例如,收发单元可以为通信接口、收发器,射频芯片等。可选的,处理器1001除了实现上述所示的实施例的方法,还可以实现其他功能。处理器1001可以是通用处理器或者专用处理器等。可选的,一种设计中,处理器1001可以执行指令,使得接入设备执行上述方法实施例中描述的方法。指令可以全部或部分存储在处理器内,如指令1003,也可以全部或部分存储在与处理器耦合的存储器1002中,如指令1004,也可以通过指令1003和1004共同使得接入设备执行上述方法实施例中描述的方法。
在又一种可能的设计中,接入设备也可以包括电路,电路可以实现前述方法实施例中介绍到的功能。
在又一种可能的设计中接入设备中可以包括一个或多个存储器1002,其上存有指令1004,指令可在处理器上被运行,使得接入设备执行上述方法实施例中描述的方法。可选的,存储器中还可以存储有数据。可选的处理器中也可以存储指令和/或数据。例如,一个或多个存储器1002可以存储上述实施例中所描述的对应关系,或者上述实施例中所涉及的相关的参数或表格等。处理器和存储器可以单独设置,也可以集成在一起。
在又一种可能的设计中,接入设备还可以包括收发器1005。处理器1001可以称为处理单元,对接入设备进行控制。收发器1005可以称为收发机、收发电路、或者收发单元等,用于实现接入设备的收发功能。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal  processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被计算机执行时实现上述应用于接入设备的任一方法实施例的语音业务的处理方法。
本申请实施例还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述应用于接入设备的任一方法实施例的家庭网络的路由方法。
本领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的通信系统的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本申请的一个实施例提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行图3-图8中路由设备或者ONT对应的方法实施例中的方法步骤的指令。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、接入设备和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、接入设备和方法,可以通过其它的方式实现。例如,以上所描述的接入设备实施例仅仅是示意性的,例如,模 块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、接入设备或模块的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以是两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请可以用硬件实现,或固件实现,或它们的组合方式来实现。当使用软件实现时,可以将上述功能存储在计算机可读存储介质中或作为计算机可读存储介质上的一个或多个指令或代码进行传输。计算机可读存储介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读存储介质可以包括RAM、ROM、EEPROM、CD-ROM或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。此外。任何连接可以适当的成为计算机可读存储介质。例如,如果软件是使用同轴电缆、光纤光缆、双绞线、数字用户线(DSL)或者诸如红外线、无线电和微波之类的无线技术从网站、服务器或者其他远程源传输的,那么同轴电缆、光纤光缆、双绞线、DSL或者诸如红外线、无线和微波之类的无线技术包括在所属介质的定影中。如本申请所使用的,盘(Disk)和碟(disc)包括压缩光碟(CD)、激光碟、光碟、数字通用光碟(DVD)、软盘和蓝光光碟,其中盘通常磁性的复制数据,而碟则用激光来光学的复制数据。上面的组合也应当包括在计算机可读存储介质的保护范围之内。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (22)

  1. 一种家庭网络的路由方法,其特征在于,应用于采用IPv6网络的接入设备,所述方法包括:
    向上级接入设备请求非临时地址的身份关联IANA以及前缀授权的身份关联IAPD地址前缀;
    接收到上级接入设备为所述接入设备分配的IANA;
    在确定满足转换条件时,为所述接入设备下接的用户设备创建路由转换策略,所述路由转换策略用于所述接入设备下接的用户设备使用所述接入设备的IANA与所述上级接入设备通信;
    其中,所述转换条件包括所述接入设备未接收所述上级接入设备发送的IAPD地址前缀或者所述接入设备接收到所述上级接入设备发送的IAPD地址前缀的掩码位数为M;M为IPv6网络地址中前缀的最大掩码位数。
  2. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    在确定满足转换条件时,为所述用户设备分配唯一本地地址ULA,并向所述用户设备发送所述ULA;
    所述路由转换策略包括所述ULA与所述接入设备的IANA之前的地址转换关系。
  3. 如权利要求2所述的方法,其特征在于,所述方法还包括:
    所述接入设备接收所述用户设备发送的IPv6报文,所述IPv6报文携带所述ULA;
    所述接入设备根据所述路由转换策略将所述IPv6报文中携带的ULA转换为所述接入设备的IANA,并向所述上级接入设备发送转换后的所述IPv6报文。
  4. 如权利要求2或3所述的方法,其特征在于,向所述用户设备发送所述ULA,包括:
    向所述用户设备发送路由器通告RA报文,所述RA报文携带所述ULA;或者,
    向所述用户设备发送动态主机配置协议DHCP报文,所述DHCP报文携带所述ULA。
  5. 如权利要求1-4任一项所述的方法,其特征在于,所述上级接入设备为网络边缘设备,所述接入设备为路由设备,或者,所述上级接入设备为宽带远程接入服务器BRAS,所述接入设备为网络边缘设备。
  6. 如权利要求5所述的方法,其特征在于,所述上级接入设备为所述BRAS时,所述接入设备与所述BRAS通过桥接方式连接。
  7. 一种家庭网络的路由方法,其特征在于,应用于采用IPv6的家庭网络的接入设备,所述方法包括:
    向上级接入设备请求非临时地址的身份关联IANA以及前缀授权的身份关联IAPD地址前缀;
    接收到上级接入设备为所述接入设备分配的IANA;
    在确定满足透传条件时,为所述接入设备下接的用户设备创建透传策略,所述透传策略为所述接入设备透传所述用户设备与所述上级接入设备之间IPv6报文;
    其中,所述透传条件包括所述接入设备未接收所述上级接入设备发送的IAPD地址前缀或者所述接入设备接收到所述上级接入设备发送的IAPD地址前缀的掩码位数为M;M为 IPv6网络地址中前缀的最大掩码位数。
  8. 如权利要求7所述的方法,其特征在于,所述方法还包括:
    接收所述用户设备获取IANA的请求报文,将根据所述透传策略将所述请求报文透传给所述上级接入设备;
    接收所述上级接入设备为所述用户设备分配的IANA,并将所述用户设备的IANA发送给所述用户设备。
  9. 如权利要求7或8所述的方法,其特征在于,所述上级接入设备为网络边缘设备,所述接入设备为路由设备,或者,所述上级接入设备为宽带远程接入服务器BRAS,所述接入设备为网络边缘设备。
  10. 如权利要求9所述的方法,其特征在于,所述上级接入设备为所述BRAS时,所述接入设备与所述BRAS通过桥接方式连接。
  11. 一种接入设备,其特征在于,所述接入设备采用IPv6网络,所述接入设备包括:
    发送模块,用于向上级接入设备请求非临时地址的身份关联IANA以及前缀授权的身份关联IAPD地址前缀;
    接收模块,用于接收到上级接入设备为所述接入设备分配的IANA;
    处理模块,用于在确定满足转换条件时,为所述接入设备下接的用户设备创建路由转换策略,所述路由转换策略用于所述接入设备下接的用户设备使用所述接入设备的IANA与所述上级接入设备通信;
    其中,所述转换条件包括所述接入设备未接收所述上级接入设备发送的IAPD地址前缀或者所述接入设备接收到所述上级接入设备发送的IAPD地址前缀的掩码位数为M;M为IPv6网络地址中前缀的最大掩码位数。
  12. 如权利要求11所述的接入设备,其特征在于,所述处理模块,还用于:
    在确定满足转换条件时,为所述用户设备分配唯一本地地址ULA;
    所述发送模块,还用于向所述用户设备发送所述ULA;
    所述路由转换策略包括所述ULA与所述接入设备的IANA之前的地址转换关系。
  13. 如权利要求12所述的接入设备,其特征在于,所述接收模块,还用于接收所述用户设备发送的IPv6报文,所述IPv6报文携带所述ULA;
    所述处理模块,还用于根据所述路由转换策略将所述IPv6报文中携带的ULA转换为所述接入设备的IANA;
    所述发送模块,还用于向所述上级接入设备发送转换后的所述IPv6报文。
  14. 如权利要求12或13所述的接入设备,其特征在于,所述发送模块,具体用于:
    向所述用户设备发送路由器通告RA报文,所述RA报文携带所述ULA;或者,
    向所述用户设备发送动态主机配置协议DHCP报文,所述DHCP报文携带所述ULA。
  15. 如权利要求11-14任一项所述的接入设备,其特征在于,所述上级接入设备为网络边缘设备,所述接入设备为路由设备,或者,所述上级接入设备为宽带远程接入服务器BRAS,所述接入设备为网络边缘设备。
  16. 如权利要求15所述的接入设备,其特征在于,所述上级接入设备为所述BRAS时,所述接入设备与所述BRAS通过桥接方式连接。
  17. 一种接入设备,其特征在于,所述接入设备采用IPv6,所述接入设备包括:
    发送模块,用于向上级接入设备请求非临时地址的身份关联IANA以及前缀授权的身份关联IAPD地址前缀;
    接收模块,用于接收到上级接入设备为所述接入设备分配的IANA;
    处理模块,用于在确定满足透传条件时,为所述接入设备下接的用户设备创建透传策略,所述透传策略为所述接入设备透传所述用户设备与所述上级接入设备之间IPv6报文;
    其中,所述透传条件包括所述接入设备未接收所述上级接入设备发送的IAPD地址前缀或者所述接入设备接收到所述上级接入设备发送的IAPD地址前缀的掩码位数为M;M为IPv6网络地址中前缀的最大掩码位数。
  18. 如权利要求17所述的接入设备,其特征在于,所述接收模块,还用于接收所述用户设备获取IANA的请求报文;
    所述发送模块,还用于根据所述透传策略将所述请求报文透传给所述上级接入设备;
    所述接收模块,还用于接收所述上级接入设备为所述用户设备分配的IANA;
    所述发送模块,还用于将所述用户设备的IANA发送给所述用户设备。
  19. 如权利要求17或18所述的接入设备,其特征在于,所述上级接入设备为网络边缘设备,所述接入设备为路由设备,或者,所述上级接入设备为宽带远程接入服务器BRAS,所述接入设备为网络边缘设备。
  20. 如权利要求19所述的接入设备,其特征在于,所述上级接入设备为所述BRAS时,所述接入设备与所述BRAS通过桥接方式连接。
  21. 一种接入设备,其特征在于,包括:处理器和存储器;所述存储器存储计算机程序;所述处理器,用于执行所述存储器中存储的计算机程序,使如权利要求1至10中任一项所述的方法被执行。
  22. 一种计算机可读存储介质,其特征在于,存储有指令,当所述指令被处理器执行时,使如权利要求1至10中任一项所述的方法被执行。
PCT/CN2023/103089 2022-08-19 2023-06-28 一种家庭网络的路由方法、接入设备及介质 WO2024037198A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211001549.3A CN117640368A (zh) 2022-08-19 2022-08-19 一种家庭网络的路由方法、接入设备及介质
CN202211001549.3 2022-08-19

Publications (1)

Publication Number Publication Date
WO2024037198A1 true WO2024037198A1 (zh) 2024-02-22

Family

ID=89940587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/103089 WO2024037198A1 (zh) 2022-08-19 2023-06-28 一种家庭网络的路由方法、接入设备及介质

Country Status (2)

Country Link
CN (1) CN117640368A (zh)
WO (1) WO2024037198A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8681695B1 (en) * 2009-10-14 2014-03-25 Juniper Networks, Inc. Single address prefix allocation within computer networks
CN106576120A (zh) * 2015-05-29 2017-04-19 华为技术有限公司 互联网协议地址分配方法及路由器
KR20180055093A (ko) * 2016-11-16 2018-05-25 주식회사 케이티 차세대 주소 할당 정보 동기화 시스템 및 그 방법
CN111586197A (zh) * 2020-04-23 2020-08-25 中国信息通信研究院 一种地址前缀的再次分发方法和装置
CN113938427A (zh) * 2020-07-08 2022-01-14 中国电信股份有限公司 通信方法及系统、路由节点
CN114765600A (zh) * 2020-12-31 2022-07-19 华为技术有限公司 一种IPv6地址的配置方法及路由设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8681695B1 (en) * 2009-10-14 2014-03-25 Juniper Networks, Inc. Single address prefix allocation within computer networks
CN106576120A (zh) * 2015-05-29 2017-04-19 华为技术有限公司 互联网协议地址分配方法及路由器
KR20180055093A (ko) * 2016-11-16 2018-05-25 주식회사 케이티 차세대 주소 할당 정보 동기화 시스템 및 그 방법
CN111586197A (zh) * 2020-04-23 2020-08-25 中国信息通信研究院 一种地址前缀的再次分发方法和装置
CN113938427A (zh) * 2020-07-08 2022-01-14 中国电信股份有限公司 通信方法及系统、路由节点
CN114765600A (zh) * 2020-12-31 2022-07-19 华为技术有限公司 一种IPv6地址的配置方法及路由设备

Also Published As

Publication number Publication date
CN117640368A (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
US8539055B2 (en) Device abstraction in autonomous wireless local area networks
CN102882699B (zh) 边缘节点的分配方法和装置及边缘节点控制器
CA2396753C (en) Address acquisition
CN101019387B (zh) 网络用户优先级分配系统
US8681695B1 (en) Single address prefix allocation within computer networks
CN102340546B (zh) IPv6地址分配方法及系统
TWI388165B (zh) 無線通訊系統、其封包交換的繞送方法、使用該繞送方法的室內基地台
WO2011032481A1 (zh) 通信方法、通信过程中的数据报文转发方法及通信节点
US20150163656A1 (en) Wireless local area network system based on an access point (ap) supporting wireless terminal roaming
WO2021027858A1 (zh) Rlc信道确定方法和装置
TWI491231B (zh) 網型網路之代理機制
WO2017166936A1 (zh) 一种实现地址管理的方法、装置、aaa服务器及sdn控制器
US20130089092A1 (en) Method for preventing address conflict, and access node
WO2012109849A1 (zh) Mac地址分配方法和设备
KR101786620B1 (ko) 소프트웨어 정의 네트워크에서 서브넷을 지원하는 방법, 장치 및 컴퓨터 프로그램
WO2014056412A1 (zh) 一种报文发送的方法、路由器桥及系统
WO2012088882A1 (zh) 一种数据传输方法、系统及接入网关
JP5241957B2 (ja) 加入者装置をIPv6対応のアグリゲーションネットワークに接続するための方法および装置
JP2018509120A (ja) インターネットプロトコルアドレス割り当て方法及びルータ
WO2011144138A1 (zh) 实现路由聚合的方法、装置和系统
EP2477372B1 (en) Method and system for obtaining terminal identifier
WO2024037198A1 (zh) 一种家庭网络的路由方法、接入设备及介质
KR20030058267A (ko) 중간 dhcp 서버를 이용한 중앙집중관리방식의 아이피자동할당 방법
KR102175807B1 (ko) 이종망 통합주소관리를 위한 동적 주소 할당 장치 및 방법
WO2022160982A1 (zh) 一种IPv6地址的配置方法及路由设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23854103

Country of ref document: EP

Kind code of ref document: A1