WO2021027858A1 - Rlc信道确定方法和装置 - Google Patents

Rlc信道确定方法和装置 Download PDF

Info

Publication number
WO2021027858A1
WO2021027858A1 PCT/CN2020/108745 CN2020108745W WO2021027858A1 WO 2021027858 A1 WO2021027858 A1 WO 2021027858A1 CN 2020108745 W CN2020108745 W CN 2020108745W WO 2021027858 A1 WO2021027858 A1 WO 2021027858A1
Authority
WO
WIPO (PCT)
Prior art keywords
iab
node
data packet
type
message
Prior art date
Application number
PCT/CN2020/108745
Other languages
English (en)
French (fr)
Inventor
朱元萍
戴明增
曹振臻
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021027858A1 publication Critical patent/WO2021027858A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/50Address allocation
    • H04L61/5007Internet protocol [IP] addresses
    • H04L61/5014Internet protocol [IP] addresses using dynamic host configuration protocol [DHCP] or bootstrap protocol [BOOTP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/50Address allocation
    • H04L61/5076Update or notification mechanisms, e.g. DynDNS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2101/00Indexing scheme associated with group H04L61/00
    • H04L2101/60Types of network addresses
    • H04L2101/618Details of network addresses
    • H04L2101/659Internet protocol version 6 [IPv6] addresses

Definitions

  • This application relates to the field of communications, and in particular to a method and device for determining a radio link control (RLC) channel.
  • RLC radio link control
  • the 5th generation (5G) communication uses high-frequency carrier waves for wireless communication.
  • high-frequency carriers due to poor propagation characteristics of high-frequency carriers, severe attenuation due to obstruction, and limited coverage, a large number of densely deployed base stations are required.
  • base stations In order to provide network coverage to remote areas, base stations must also be deployed in remote areas. If the above-mentioned base station is provided with optical fiber backhaul, the cost is high and the construction is difficult.
  • IAB integrated access and backhaul
  • the IAB network includes terminal equipment, IAB nodes and IAB donor nodes, and the link from the terminal equipment to the IAB donor node through the IAB node is a backhaul link.
  • the IAB node and the IAB host node establish the F1 interface between the distributed unit (DU) similar to the base station and the centralized unit (CU), and the network layer between the IAB node and the IAB host node
  • the data packets of the user plane or control plane of the F1 interface are still transmitted based on the Internet protocol (IP) protocol, but the RLC channel transmission between the IAB node and the IAB host node (specifically, the IAB host DU) has not been implemented yet Information related to obtaining IP addresses.
  • IP Internet protocol
  • the embodiments of the present application provide a method and device for determining an RLC channel, which are used to determine which RLC channel is used between an IAB node and an IAB host node (specifically, an IAB host DU) to transmit messages related to an IP address.
  • a method for determining an RLC channel including: a first access backhaul integrated IAB node receives first indication information from an IAB host node, the first indication information is used to indicate the first IAB node and the first IAB The first radio link control RLC channel between the parent nodes of the nodes that carries the first type of data packet, where the first type of data packet includes the first type of message, and the first type of message is used to request an Internet Protocol IP address; the first IAB The node determines the first RLC channel according to the first indication information.
  • the IAB host node configures the RLC channel of the first IAB node for the first IAB node to send a message requesting an IP address to the IAB host node through the RLC channel, thereby realizing the determination of the IAB node Which RLC channel is used to transmit messages related to the IP address with the IAB host node (specifically, the IAB host DU).
  • the first indication information includes the identity of the first RLC channel.
  • the first RLC channel can be determined according to the identity of the first RLC channel.
  • the first indication information further includes first condition information or type information of the first type of message; wherein, the first condition information includes one item of the IP quintuple of the first type of data packet or Multiple respective first values or first value ranges, the IP 5-tuple includes source IP address, destination IP address, source port number, destination port number, and transport layer protocol type.
  • the type information includes one of the following or Various: Dynamic Host Configuration Protocol DHCP messages, router solicitation RS messages, router announcement RA messages, IP broadcast messages and IP multicast messages.
  • the method further includes: the first IAB node generates a first data packet; the first IAB node determines according to the first indication information that the first RLC channel includes: when the IP quintuple of the first data packet One or more items in the IP quintuple corresponding to the first value or the first value range of one or more items in the IP quintuple of the first type data packet is determined to carry the first data packet through the first RLC channel Or, when the message type of the first message included in the first data packet is one of the type information, it is determined to carry the first data packet through the first RLC channel.
  • the first RLC channel that carries the first data packet may be determined according to the first condition information or the type information of the first type of message.
  • the first indication information further includes a target value of a preset field of the first type of data packet.
  • the method further includes: the first IAB node generates a first data packet; when one or more of the IP quintuples of the first data packet satisfy the IP of the first type of data packet The first value or first value range of one or more items in the quintuple, or when the type of the message included in the first data packet is one of the type information, the The preset field is set to the target value; when the value of the preset field of the first data packet is the target value, it is determined to carry the first data packet through the first RLC channel.
  • the preset field is a differentiated services code point DSCP or a flow label.
  • the first data packet further includes the identity of the first IAB node.
  • the identifier of the first IAB node may indicate the intermediate IAB node and the IAB host node: the first data packet comes from the first data packet.
  • the identifier of the first IAB node is carried in one or more of the following fields of the first data packet: the client hardware address field, the DHCP unique identifier, and the BAP address of the BAP layer of the adaptation protocol. Field.
  • the method further includes: the first IAB node receives second indication information from the IAB host node, the second indication information indicating that the target node of the first type of data packet on the wireless backhaul link is the IAB host node .
  • the second indication information further includes the identifier of the IAB host node.
  • the first type data packet includes the identifier of the IAB host node
  • the second indication information further includes second condition information or type information of the first type message
  • the second condition information is the first type data
  • the type information includes one or more of the following: DHCP message, RS message, RA message, IP broadcast message And IP multicast messages. It is convenient for the intermediate IAB node to learn that the target node of the first type data packet on the wireless backhaul link is the IAB host node, so that the intermediate IAB node forwards the first type data packet to the IAB host node.
  • the method further includes: the first IAB node generates a second data packet; when one or more of the IP quintuples of the second data packet satisfy the IP of the first type of data packet When the second value or second value range of one or more items in the quintuple, or when the type of the message included in the second data packet is one of the type information, the second data packet includes The identifier of the IAB host node.
  • the method further includes: the first IAB node receives a second type of data packet, where the second type of data packet includes a second type of message, and the second type of message is used to indicate allocation to the first IAB The IP address of the node.
  • a method for determining an RLC channel includes: accessing a backhaul integrated IAB host node to determine first indication information, where the first indication information is used to indicate the difference between the first IAB node and the parent node of the first IAB node
  • the radio link control RLC channel that carries the first type of data packet between the first type of data packet includes the first type of message, and the first type of message is used by the first IAB node to request an Internet Protocol IP address; the IAB host node sends The IAB node sends the first indication information.
  • the IAB host node configures the RLC channel of the first IAB node for the first IAB node to send a message requesting an IP address to the IAB host node through the RLC channel, thereby realizing the determination of the IAB node Which RLC channel is used to transmit messages related to the IP address with the IAB host node (specifically, the IAB host DU).
  • the first indication information includes the identity of the first RLC channel.
  • the first RLC channel can be determined according to the identity of the first RLC channel.
  • the first indication information further includes first condition information or type information of the first type of message; wherein, the first condition information includes one item of the IP quintuple of the first type of data packet or Multiple respective first values or first value ranges, the IP 5-tuple includes source IP address, destination IP address, source port number, destination port number, and transport layer protocol type.
  • the type information includes one of the following or Various: Dynamic Host Configuration Protocol DHCP messages, router solicitation RS messages, router announcement RA messages, IP broadcast messages and IP multicast messages.
  • the first RLC channel that carries the first data packet may be determined according to the first condition information or the type information of the first type of message.
  • the first indication information further includes a target value of a preset field in the first type of data packet.
  • the preset field is a differentiated services code point DSCP or a flow label.
  • the method further includes: the IAB host node receives the first type of data packet from the first IAB node; the IAB host node obtains the IP address assigned to the first IAB node; The node sends a second type of data packet, where the second type of data packet includes a second type of message, and the second type of message is used to indicate the IP address assigned to the first IAB node.
  • the method further includes: the IAB host node determining the mapping relationship between the IP address and the identifier of the first IAB node.
  • the IAB host node determines the mapping relationship between the IP address and the identifier of the first IAB node.
  • the method further includes: the IAB host node sends second indication information to the first IAB node, the second indication information indicating that the target node of the first type of data packet on the wireless backhaul link is the IAB host node.
  • the second indication information further includes the identifier of the IAB host node.
  • the second indication information further includes second condition information or type information of the first type of message, and the second condition information is one or more of the IP quintuple of the first type of data packet
  • the respective second value or second value range, type information includes one or more of the following: DHCP message, RS message, RA message, IP broadcast message, and IP multicast message. It is convenient for the intermediate IAB node to learn that the target node of the first type data packet on the wireless backhaul link is the IAB host node, so that the intermediate IAB node forwards the first type data packet to the IAB host node.
  • a method for determining a radio link control RLC channel including: access and backhaul integrated IAB donor distributed unit DU receives third indication information from the IAB donor centralized unit CU, and the third indication information is used for Indicate the second RLC channel between the IAB host DU and the child IAB node of the IAB host DU that carries the second type of data packet, where the second type of data packet includes a second type of message, and the second type of message is used to indicate the allocation to the first Internet Protocol IP address of the IAB node, the first IAB node is a child node of the IAB host DU or the first IAB node is connected to the IAB host DU through one or more intermediate IAB nodes; the IAB host DU determines the second RLC according to the third indication information channel.
  • the IAB host CU configures the RLC channel of the IAB host DU, and is used for the IAB host DU to send a message indicating the IP address to the child node of the IAB host DU (for example, the IAB node) through the RLC channel, In this way, it is possible to determine which RLC channel is used between the IAB node and the IAB host node (specifically, the IAB host DU) to transmit messages related to the IP address.
  • the third indication information includes the identity of the second RLC channel.
  • the second RLC channel can be determined according to the identity of the second RLC channel.
  • the third indication information further includes third condition information or type information of the second type of message, where the third condition information includes one item in the IP quintuple of the second type of data packet or Multiple respective third values or third value ranges.
  • the IP 5-tuple includes source IP address, destination IP address, source port number, destination port number, and transport layer protocol type.
  • the type information includes one of the following or Various: Dynamic Host Configuration Protocol DHCP messages, router solicitation RS messages, router announcement RA messages, IP broadcast messages and IP multicast messages.
  • the third indication information further includes the target value of the preset field of the second type of data packet.
  • the method further includes: the IAB host DU generates a second data packet; when one or more of the IP quintuples of the second data packet correspondingly satisfy the IP five of the second type data packet The third value or third value range of one or more items in the tuple, or, when the type of the message included in the second data packet is one of the type information, the pre-defined value of the second data packet Set the field to the target value; when the value of the preset field of the second data packet is the target value, the second data packet is carried through the second RLC channel.
  • the second RLC channel carrying the second data packet may be determined according to the third condition information or the type information of the third type message.
  • the preset field is a differentiated services code point DSCP or a flow label.
  • the method further includes: the IAB host DU receives a first type of data packet from a child node of the IAB host DU, where the first type of data packet includes a first message, and the first message is used for the first
  • the IAB node requests an IP address; the IAB host DU obtains the IP address allocated for the first IAB node; the IAB host DU sends the second type of data packet through the second RLC channel.
  • the method further includes: the IAB host DU determines the mapping relationship between the IP address and the identifier of the first IAB node. When next time the IAB host DU obtains a data packet whose destination IP address is the above-mentioned IP address, it knows that it should be forwarded to the first IAB node.
  • a method for determining a radio link control RLC channel includes: accessing the backhaul integrated IAB donor centralized unit CU to determine third indication information, and the third indication information is used to indicate the IAB donor distributed unit DU
  • a second RLC channel that carries a second type of data packet with the child IAB node connected to the IAB host DU, where the second type of data packet includes a second type of message, and the second type of message is used to indicate allocation to the first IAB node
  • the first IAB node is a child node of the IAB host DU or the first IAB node is connected to the IAB host DU through one or more intermediate IAB nodes; the IAB host CU sends third indication information to the IAB host DU.
  • the IAB host CU configures the RLC channel of the IAB host DU, and is used for the IAB host DU to send a message indicating the IP address to the child node of the IAB host DU (for example, the IAB node) through the RLC channel, In this way, it is possible to determine which RLC channel is used between the IAB node and the IAB host node (specifically, the IAB host DU) to transmit messages related to the IP address.
  • the third indication information includes the identity of the second RLC channel.
  • the second RLC channel can be determined according to the identity of the second RLC channel.
  • the third indication information further includes third condition information or type information of the second type of message, where the third condition information includes one item in the IP quintuple of the second type of data packet or Multiple respective third values or third value ranges.
  • the IP 5-tuple includes source IP address, destination IP address, source port number, destination port number, and transport layer protocol type.
  • the type information includes one of the following or Various: Dynamic Host Configuration Protocol DHCP messages, router solicitation RS messages, router announcement RA messages, IP broadcast messages and IP multicast messages.
  • the second RLC channel carrying the second data packet may be determined according to the third condition information or the type information of the third type message.
  • the third indication information further includes the target value of the preset field of the second type of data packet; where the preset field is a differentiated services code point DSCP or a flow label.
  • a communication device including: a processing module and a transceiving module; the processing module and the transceiving module are configured to execute the method as described in the first aspect and any one of them.
  • a communication device including: a processing module and a transceiving module; the processing module and the transceiving module are configured to execute the method according to the second aspect and any one of the methods.
  • a communication device including: a processing module and a transceiving module; the processing module and the transceiving module are configured to perform the method according to the third aspect and any one of the methods.
  • a communication device including: a processing module and a transceiving module; the processing module and the transceiving module are configured to perform the method according to the fourth aspect and any one of the methods.
  • a communication device in a ninth aspect, includes a processor, a memory, and a transceiver.
  • the processor is coupled to the memory.
  • the processor executes a computer program or instruction in the memory, such as the first The method described in the aspect and any one thereof is executed.
  • a communication device in a tenth aspect, includes a processor, a memory, and a transceiver.
  • the processor is coupled to the memory.
  • the processor executes a computer program or instruction in the memory, such as the second The method described in the aspect and any one thereof is executed.
  • a communication device in an eleventh aspect, includes a processor, a memory, and a transceiver.
  • the processor is coupled with the memory.
  • the processor executes a computer program or instruction in the memory, such as The methods described in the three aspects and any one of them are executed.
  • a communication device in a twelfth aspect, includes a processor, a memory, and a transceiver, the processor is coupled to the memory, and when the processor executes a computer program or instruction in the memory, such as The methods described in the four aspects and any one of them are executed.
  • a chip including: a processor and an interface, used to call and run a computer program stored in the memory from a memory, and execute the method according to the first aspect and any one of them, Or, execute the method according to the second aspect and any one thereof, or execute the method according to the third aspect or any one thereof, or execute the method according to the fourth aspect and any one thereof .
  • a computer-readable storage medium stores instructions.
  • the computer or the processor executes the first aspect and its The method of any one of the methods described in the second aspect and any one of the methods, or the method of the third aspect and any one of them, or the method of the fourth aspect and The method of any one of them.
  • a computer program product containing instructions, when the instructions are executed on a computer or a processor, the computer or the processor executes the method according to the first aspect or any one of them, or, Perform the method according to the second aspect and any one of the methods, or perform the method according to the third aspect and any one of the methods, or perform the method according to the fourth aspect and any one of the methods.
  • a communication system which includes the communication device according to the fifth aspect and the communication device according to the sixth aspect, or includes the communication device according to the seventh aspect and the communication device according to the eighth aspect
  • the communication device may include the communication device described in the ninth aspect and the communication device described in the tenth aspect, or may include the communication device described in the eleventh aspect and the communication device described in the twelfth aspect Communication device.
  • FIG. 1 is a schematic diagram of the architecture of an IAB network provided by an embodiment of this application.
  • FIG. 2 is a schematic diagram of the architecture of a communication system provided by an embodiment of this application.
  • FIG. 3 is a schematic structural diagram of a network device provided by an embodiment of this application.
  • 4A is a schematic diagram of an interaction requesting an IP address in an IPv4-based DHCP protocol provided by an embodiment of this application;
  • 4B is a schematic diagram of an interaction requesting an IP address in an IPv6-based DHCPv6 protocol provided by an embodiment of the application;
  • 4C is a schematic diagram of the interaction of requesting an IP address in an IPv6-based stateless address configuration method according to an embodiment of the application;
  • FIG. 5 is a first schematic flowchart of a method for determining an RLC channel provided by an embodiment of the application
  • FIG. 6 is a second schematic flowchart of a method for determining an RLC channel provided by an embodiment of this application.
  • FIG. 7 is a third schematic flowchart of a method for determining an RLC channel provided by an embodiment of this application.
  • FIG. 8 is a fourth schematic flowchart of a method for determining an RLC channel provided by an embodiment of this application.
  • FIG. 9 is a fifth schematic flowchart of a method for determining an RLC channel provided by an embodiment of this application.
  • FIG. 10 is a sixth flowchart of a method for determining an RLC channel provided by an embodiment of the application.
  • FIG. 11 is a seventh flowchart of a method for determining an RLC channel provided by an embodiment of this application.
  • FIG. 12 is an eighth flowchart of a method for determining an RLC channel provided by an embodiment of this application.
  • FIG. 13 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 15 is a schematic structural diagram of yet another communication device provided by an embodiment of this application.
  • FIG. 16 is a schematic structural diagram of still another communication device provided by an embodiment of this application.
  • the embodiments of this application rely on the 5G network scenario in the wireless communication network. It should be noted that the solutions in the embodiments of this application can also be applied to other wireless communication networks, and the corresponding names can also be used in other wireless communication networks. Replace the name of the corresponding function.
  • the wireless network device may be a base station.
  • the base station can be used to communicate with one or more terminal devices, or it can be used to communicate with one or more base stations with partial terminal device functions.
  • Communication such as communication between a macro base station and a micro base station, such as an access point
  • a base station can also be called an access point, a node, a Node B, an evolved node B (eNB) or some other network entity, and may include Some or all of the functions of the above network entities.
  • the base station can communicate with terminal equipment through the air interface. This communication can be done through one or more sectors.
  • the base station can be used as a router between the terminal device and the rest of the access network by converting the received air interface frame into internet protocol (IP) packets, where the access network includes an IP network.
  • IP internet protocol
  • the base station can also coordinate the management of air interface attributes, and can also be the gateway between the wired network and the wireless network.
  • the communication system provided by the embodiment of the present application includes: a first IAB node 21 and an IAB host node 23.
  • the second IAB node 22 may also be included.
  • the first IAB node 21 may be directly connected to the IAB host node 23, or the first IAB node 21 may be connected to the second IAB node 22, and the second IAB node 22 may be connected to the IAB host node 23.
  • the first IAB node 21, the second IAB node 22, and the IAB host node 23 are connected by a wireless link.
  • this application does not limit the number of second IAB nodes 22, that is, the first IAB node 21 may communicate with the IAB host node 23 through multiple second IAB nodes 22.
  • the first IAB node sends a data packet to at least one second IAB node, and the second IAB node forwards the data packet to the IAB host node through other second IAB nodes.
  • the IAB host node sends a data packet to at least one second IAB node, and the second IAB node forwards the data packet to the first IAB node through other second IAB nodes.
  • an intermediate IAB node (second IAB node) between the first IAB node and the IAB host node is taken as an example for description, but it is not intended to be limited thereto.
  • the first IAB node 21 or the second IAB node 22 may also be called a relay node (relay node, RN), which can provide wireless access services for terminal equipment, and the service data of the terminal equipment is transmitted by the IAB node through the wireless backhaul link To the IAB host node.
  • relay node relay node, RN
  • the first IAB node 21 or the second IAB node 22 may include a mobile terminal (MT) part and a distributed unit (DU) part.
  • MT mobile terminal
  • DU distributed unit
  • the first IAB node 21 or the second IAB node 22 faces its parent node, it can act as a terminal device, that is, as an MT; when the first IAB node 21 or the second IAB node 22 faces its child node (child node When it may be another IAB node or a common terminal device), it can act as a network device, that is, it can act as a DU of a base station.
  • MT mobile terminal
  • DU distributed unit
  • the IAB donor node 23 may also be referred to as a donor base station (donor gNodeB, DgNB).
  • the IAB donor node 23 may be an access network element with a complete base station function, or may include an IAB donor distributed unit (DU).
  • DU distributed unit
  • the IAB host DU 231 and the IAB host CU 232 may be connected through a wired link.
  • the IAB host node 23 is connected to a core network (for example, connected to a 5G core network, 5GC) network element serving the terminal device, and provides a wireless backhaul function for the IAB node.
  • the IAB host CU 232 may also have a separate control plane (CP) and user plane (UP).
  • CP control plane
  • UP user plane
  • the IAB host CU 232 may also include one CU-CP and at least one CU. -UP.
  • the second IAB node 22 serves as a neighboring node that provides backhaul services to the first IAB node 21, so the second IAB node 22 is regarded as the parent node of the first IAB node 21, and the An IAB node 21 is regarded as a child node of the second IAB node 22. If the first IAB node 21 is directly connected to the IAB host node 23, the IAB host node 23 is the parent node of the first IAB node 21, and the first IAB node 21 is the child node of the IAB host node 23.
  • the structures of the first IAB node 21, the second IAB node 22, and the IAB host node 23 are described below.
  • the first IAB node 21, the second IAB node 22, and the IAB host node 23 described above may be collectively referred to as network devices.
  • the network device 30 includes a processor 301, a memory 302, and a transceiver 303.
  • the transceiver 303 includes a transmitter 3031, a receiver 3032, and an antenna 3033.
  • the transmitter 3031 may be used to transmit data information through the antenna 3033, and the receiver 3032 may be used to receive data information through the antenna 3033.
  • the first IAB node 21 may send data to the second IAB node 22 through its transmitter, and the first IAB node 21 may receive data from the second IAB node 22 through its receiver.
  • the memory 302 can be used to store software programs and data.
  • the processor 301 executes various functions and data processing of the network device 30 by running software programs and/or data stored in the memory 302.
  • the memory 302 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system, an application program required by at least one function, and the like; the data storage area may store data created according to the use of the network device 30 and the like.
  • the memory 302 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 301 is the control center of the network device 30. It uses various interfaces and lines to connect the various parts of the entire mobile phone, and executes the network device by running or executing the software program stored in the memory 302 and calling the data stored in the memory 302 30 various functions and processing data.
  • the processor 301 may include one or more processing units; the processor 301 may also be a system on chip (SOC), and the SOC may integrate application processors, baseband processors, and digital signal processors ( digit signal processor, DSP), etc.
  • the application processor mainly deals with operating systems and application programs; the baseband processor mainly deals with wireless communication; and the DSP is mainly used to quickly realize various digital signal processing algorithms. It can be understood that the aforementioned baseband processor may not be integrated into the processor 301.
  • the processor 301 in this application may execute the RLC channel determination method involved in this document.
  • the IAB host DU 231 can be used as a node for managing IP address allocation, for example, as a DHCP server; or
  • the communication system may also include a DHCP server 24.
  • the IAB host DU 231 serves as a DHCP relay or DHCP agent, and the IAB host DU 231 and the DHCP server 24 are connected through a wired link.
  • the first IAB node 21 After the first IAB node 21 accesses the network through the cell served by the second IAB node 22, the first IAB node 21 needs to obtain an IP address for its DU part.
  • the first IAB node 21 can act as a DHCP client and request an IP address from the DHCP server 24 through the DHCP protocol. If the first IAB node 21 uses the DHCP protocol to obtain an IP address, it needs to be connected in advance between two wireless backhaul links (that is, between the first IAB node 21 and the second IAB node 22, and the second IAB node 22 and the IAB host DU 231) perform necessary configuration so that the first IAB node 21 can successfully exchange DHCP messages with the DHCP server through the second IAB node 22 and the IAB host DU 231.
  • FIG. 4A it is a schematic diagram of the interaction of requesting an IP address in the IPv4-based DHCP protocol.
  • the entire interaction process includes S401-S404:
  • the DHCP client sends a DHCP Discover (DHCP Discover) message to the DHCP server.
  • DHCP Discover DHCP Discover
  • the DHCP client When the DHCP client starts, it will automatically configure its own IP address to 0.0.0.0. Since 0.0.0.0 cannot be used for normal communication, the client must obtain a legal address through the DHCP server. Since the client does not know the IP address of the DHCP server, it uses the address of 0.0.0.0 as the source IP address, port UDP68 as the source port, 255.255.255.255 as the destination IP address, and port UDP67 as the destination port to broadcast DHCP discovery Message to request an IP address.
  • the DHCP server sends a DHCP pre-allocation (DHCP Offer) message to the DHCP client.
  • DHCP Offer DHCP pre-allocation
  • the DHCP server When the DHCP server receives the DHCP discovery message sent by the client, it searches the IP address pool to see if there is a legal IP address assigned to the client. Because the DHCP client does not have an IP address yet, the DHCP server uses its own IP address as the source IP address, UDP67 port as the source port, 255.255.255.255 as the destination IP address, and UDP68 port as the destination port to broadcast DHCP pre-allocation information .
  • the DHCP pre-allocation message includes: the MAC address of the DHCP client, the IP address assigned by the DHCP server, the subnet mask, the default gateway (route), the lease period, and the IP address of the DHCP server.
  • the DHCP client sends a DHCP Request (DHCP Request) message to the DHCP server.
  • DHCP Request DHCP Request
  • the DHCP client may receive multiple DHCP pre-allocation messages.
  • the DHCP client selects the assigned IP address from the first DHCP pre-allocation message received, and the DHCP lease takes effect.
  • the DHCP client still uses the 0.0.0.0 address as the source IP address, the UDP68 port as the source port, the 255.255.255.255 as the destination IP address, and the UDP67 port as the destination port to broadcast DHCP request messages.
  • the DHCP request message includes the service identifier (for example, IP address) of the server corresponding to the IP address selected by the DHCP client.
  • the DHCP server sends a DHCP Ack (DHCP Ack) message to the DHCP client.
  • DHCP Ack DHCP Ack
  • the DHCP server After receiving the DHCP request message, the DHCP server still uses its own IP address as the source IP address, UDP67 port as the source port, 255.255.255.255 as the destination IP address, and UDP68 port as the destination port to broadcast the DHCP confirmation message.
  • the DHCP confirmation message includes a valid lease of the IP address and other possible configuration information.
  • the DHCP client When the DHCP client receives the DHCP confirmation message, it configures the assigned IP address and completes the interactive process of requesting an IP address.
  • FIG. 4B it is a schematic diagram of the interaction of requesting an IP address in a stateful address configuration method in the IPv6-based DHCPv6 protocol.
  • the entire interactive process includes S411-S414:
  • the DHCP client sends a DHCPv6 Solicit (DHCPv6 Solicit) message to the DHCP server.
  • DHCPv6 Solicit DHCPv6 Solicit
  • the DHCP client uses link-local addresses as the source IP address when sending the DHCPv6 solicitation message.
  • the IPv6 protocol stipulates that each IPv6 interface has a local link address, using the FE80::/10 address block, which is similar to the 169.254.0.0/16 network segment in IPv4.
  • a local link will be automatically configured Address, so the client uses the local link address to communicate with the DHCP server to obtain a legal address.
  • the client Since the client does not know the IP address of the DHCP server, it uses a multicast address (for example, FF02::1:2 for all servers and relay nodes in the broadcast domain, or FF05::1:3 for all servers in the broadcast domain ) As the destination IP address to send a DHCPv6 solicitation message to request an IP address.
  • a multicast address for example, FF02::1:2 for all servers and relay nodes in the broadcast domain, or FF05::1:3 for all servers in the broadcast domain
  • the DHCP client uses UDP port 546 as the source port and UDP port 547 as the destination port.
  • the DHCPv6 solicitation message may carry a rapid commit option, which indicates that the DHCP client needs the DHCP server to be able to quickly allocate an address (or prefix) and network configuration parameters for it.
  • the DHCP server sends a DHCPv6 notification (DHCPv6 Advertise) message to the DHCP client.
  • DHCPv6 Advertise DHCPv6 Advertise
  • the DHCP server When the DHCP server receives the DHCPv6 solicitation message sent by the client, it selects an unallocated IPv6 address (or prefix) from the IPv6 address (or prefix) pool and assigns it to the DHCP client, and sends a DHCP notification message to the DHCP client.
  • the DHCP server uses its own link-local address as the source IP address and the DHCP client's link-local address as the destination IP address.
  • the DHCP server uses UDP port 547 as the source port and UDP port 546 as the destination port when sending DHCPv6 notification messages.
  • the DHCP server can directly perform step S414 without performing steps S412 and S413.
  • the DHCP client sends a DHCPv6 request (DHCPv6 Request) message to the DHCP server.
  • DHCPv6 Request DHCPv6 Request
  • the DHCP client receives the DHCPv6 notification message from multiple DHCP servers, it will select one of the DHCP servers according to the configured policy (such as the order of message reception, server priority, etc.), and send a DHCPv6 request to the DHCP server Message, requesting the DHCP server to confirm its assigned IPv6 address (or prefix) and network configuration parameters.
  • the configured policy such as the order of message reception, server priority, etc.
  • a DHCP client When a DHCP client sends a DHCPv6 request message, it can still use its own link-local address as the source IP address and a multicast address (for example, FF02::1:2 for all servers and relay nodes in the broadcast domain, or for FF05::1:3) of all servers in the broadcast domain is used as the destination IP address, UDP port 546 is used as the source port, and UDP port 547 is used as the destination port.
  • a multicast address for example, FF02::1:2 for all servers and relay nodes in the broadcast domain, or for FF05::1:3
  • UDP port 546 is used as the source port
  • UDP port 547 is used as the destination port.
  • the DHCP client sends a DHCPv6 request message to the DHCP server in unicast mode, and the DHCP client uses its own local link address As the source IP address, use the link-local address of the DHCP server as the destination IP address, UDP port 546 as the source port, and UDP port 547 as the destination port.
  • the DHCP server sends a DHCPv6 Reply (DHCPv6 Reply) message to the DHCP client.
  • the DHCP server sends a DHCPv6 reply message to the DHCP client to confirm that the IPv6 address (or prefix) and network configuration parameters are allocated to the DHCP client for use.
  • the DHCP server uses its local link address as the source IP address, the DHCP client's local link address as the destination IP address, UDP port 547 as the source port, and UDP port 546 as the Destination port.
  • FIG. 4C it is a schematic diagram of the interaction of obtaining an IP address based on the IPv6 stateless address configuration method.
  • the entire interaction process includes S421-S422:
  • the device that needs to obtain the IP address sends a router solicitation (router solicitation, RS) message to the IPv6 router.
  • RS router solicitation
  • the device that needs to obtain an IP address sends a router solicitation message to obtain the network prefix information and other parameters of the local network.
  • the device When sending the message, the device’s local link address is used as the source IP address, and the multicast address (such as the multicast of all routers) Address FF02::2) as the destination IP address.
  • the IPv6 router sends a router advertisement (router advertisement, RA) message to the device that needs to obtain an IP address.
  • RA router advertisement
  • the router announcement message carries an IPv6 address prefix, which is used for devices that need to obtain an IP address to generate a global IPv6 address.
  • the router uses the router's IPv6 address (such as the router's local link address) as the source IP address when sending router advertisement messages, and can use the multicast address (such as the multicast address of all nodes on the local link FF02::1) as the destination IP address , Or use the local link address of the device sending the router solicitation message as the destination IP address.
  • the IAB host DU can act as an IPv6 router and send router announcement messages to the IAB node.
  • the embodiment of the application implements the IP address interaction between the IAB node and the IAB host node (IAB host DU) based on the above-mentioned DHCP protocol or DHCPv6 protocol or IPv6 stateless address configuration method.
  • IAB host DU the data packet sent by the IAB host node
  • IAB host DU the RLC channel through which the IAB host node (IAB host DU) carries the data packet sent to the IAB node is determined to complete the above interaction.
  • the embodiment of the present application provides a method for determining an RLC channel.
  • the IAB host CU 232 of the IAB donor node 23 configures the uplink wireless backhaul link of the first IAB node 21, so that the first IAB node 21 determines the first IAB node 21.
  • An RLC channel is used to carry the first type of data packet between the first IAB node and the parent node of the first IAB node.
  • the first IAB node 21 accesses the network through the cell served by the second IAB node 22, the first IAB node 21 sends a DHCP message or router request message requesting an IP address to the IAB host DU 231 through the first RLC channel.
  • the first IAB node 21 directly sends the aforementioned DHCP message or router request message to the IAB host DU 231 through the first RLC channel; if the first If there is an intermediate IAB node between the IAB node and the IAB host DU 231, the first IAB node 21 sends the DHCP message or router request message to the intermediate IAB node through the first RLC channel, and then the intermediate IAB node forwards it to the IAB host DU 231 .
  • the IAB host DU 231 of the IAB host node 23 acts as a DHCP server or DHCP agent or an IPv6 router in stateless address configuration, and allocates an IP address or prefix (that is, an IPv6 address prefix) to the first IAB node 21; or, the IAB host node 23
  • the IAB host DU 231 acts as a DHCP relay to obtain the IP address or prefix assigned to the first IAB node 21 from the DHCP server.
  • the IAB donor CU 232 of the IAB donor node 23 configures the downlink wireless backhaul link for the IAB donor DU 231, so that the IAB donor DU 231 determines the second RLC channel, and the second RLC channel is used between the IAB donor DU and the IAB donor DU
  • the second type data packets are carried between the child IAB nodes.
  • the IAB host DU 231 sends a DHCP message or router advertisement message indicating an IP address to the first IAB node 21 through the second RLC channel.
  • the first IAB node 21 can obtain the IP address assigned to it by the DHCP server.
  • the IAB host DU 231 directly sends the aforementioned DHCP message or router advertisement message to the first IAB node 21 through the second RLC channel; if the first There is an intermediate IAB node between the IAB node and the IAB host DU 231, then the IAB host DU 231 sends the above DHCP message or router advertisement message to the intermediate IAB node through the second RLC channel, and the intermediate IAB node forwards it to the first IAB node 21 .
  • the DHCP message used to request an IP address can be one or more of the following: DHCP Discover message, DHCP Request message, DHCPv6 Solicit message, DHCPv6 request ( DHCPv6 Request) message.
  • the DHCP message used to request an IP address can also be a DHCP message sent by other DHCP clients to the DHCP server, such as a DHCP Release message, a DHCPv6 Release message, a DHCP notification (DHCP Inform) message, and a DHCP decline.
  • DHCPv6 Decline message
  • DHCPv6 Decline message DHCPv6 Decline message
  • DHCPv6 Confirm message DHCPv6 Update (DHCPv6 Renew) message
  • DHCPv6 Rebind DHCPv6 Rebind
  • the DHCP message used to indicate the IP address may include one or more of the following: DHCP Ack (DHCP Ack) message, DHCP Pre-allocation (DHCP Offer) message, DHCPv6 Notification (DHCPv6 Advertise) message, DHCPv6 Reply (DHCPv6 Reply) news.
  • the DHCP message used to request an IP address may also be a DHCP message sent by another DHCP server to a DHCP client, such as a DHCP NAK message, a DHCPv6 reconfigure message, etc., which are not limited in this application.
  • the IAB host node that performs the above configuration function on the first IAB node is the IAB host node; if the IAB host node is in the form of separated CU and DU, then The first IAB node and the IAB host DU perform the above configuration function is the IAB host section CU; if the IAB host CU is in the CP and UP form, the first IAB node and the IAB host DU perform the above configuration function is the IAB host CU -CP.
  • the radio bearer (RB) on the terminal side corresponds to an upper protocol layer (for example, PDCP layer) part and a lower protocol layer (for example, RLC layer and MAC layer) part.
  • the channel between the RLC layer and the upper protocol layer (for example, the PDCP layer, the BAP layer, depending on the upper protocol layer of the RLC layer) can be called an RLC channel.
  • the channel between the RLC layer and the lower protocol layer (for example, the MAC layer) may be called a logical channel, and the logical channel may also be called a MAC logical channel.
  • the RLC layer entity and the MAC logical channel can be collectively referred to as RLC bearer.
  • the involved RLC channel is the RLC channel of the IAB node on the wireless backhaul link, because the RLC channel of the IAB node on the wireless backhaul link and the RLC layer entity, RLC bearer, and logical channel (
  • the logical channel, LCH for short) has a one-to-one correspondence. Therefore, the RLC channel in the embodiments of this application can also be replaced with a backhaul RLC channel (backhaul RLC channel), a backhaul RLC bearer (backhaul RLC bearer), and a backhaul bearer (backhaul bearer). ), logical channels, etc., which are not limited in this application.
  • the first RLC channel refers to the uplink RLC channel, that is, the RLC channel from the first IAB node to the IAB donor node.
  • the second RLC channel refers to the downlink RLC channel, that is, the RLC channel from the IAB donor node to the first IAB node. If there is no intermediate IAB node between the first IAB node and the IAB donor node, and the same RLC channel can be used for both uplink transmission and downlink transmission, the first RLC channel and the second RLC channel can be the same RLC channel.
  • the method for determining the RLC channel includes:
  • the IAB host node determines first indication information for the first IAB node.
  • this step may be performed by the IAB host node, the IAB host CU of the IAB host node, or the IAB host CU-CP of the IAB host node.
  • the first indication information is used to indicate the first radio link control (radio link control, RLC) channel between the first IAB node and the parent node of the first IAB node that carries the first type of data packet.
  • RLC radio link control
  • the parent node of the first IAB node may be the second IAB node.
  • the parent node of the first IAB node may be the IAB host node or the IAB host DU.
  • the first type of data packet refers to a certain type of data packet
  • the first indication information can indicate the characteristics of this type of data packet, so that after the first IAB node generates the data packet, it can determine whether the generated data packet satisfies the first If the characteristics of the type data packet are met, the generated data packet is carried through the first RLC channel.
  • the first type of data packet may include a first type of message, and the first type of message is used for the first IAB node to request an IP address.
  • the first type of data packet may be an IP data packet, and the first type of message as the payload part of the IP data packet may be a self-defined IP address request message, or may be a DHCP discovery message or a DHCP request in the DHCP protocol.
  • the message alternatively, may be a DHCPv6 Solicit message or a DHCPv6 Request (DHCPv6 Request) message in the DHCPv6 protocol.
  • the first type of data packet may be a BAP data packet
  • the first type of message as the payload part of the BAP data packet may be an IP broadcast message or an IP multicast message.
  • the IP broadcast message or IP multicast message may be used to request IP address. It should be noted that the IP broadcast message or the IP multicast message can also be used for other purposes, which is not limited in this application.
  • the first RLC channel may be dedicated to carrying data packets of the first type, and may also be used to carry data packets of other types, which is not limited in this application.
  • the first indication information may include an identifier of the first RLC channel, which is used to uniquely identify the first RLC channel on the link between the first IAB node and its parent node.
  • the first indication information may further include a first mapping rule.
  • the data packet to be sent meets the first mapping rule, the data packet to be sent is mapped to the first RLC channel.
  • the first RLC channel is not dedicated to transmitting the first type of data packet, it can also be used to transmit other types of messages.
  • the data to be sent meets the first mapping rule
  • the packet is mapped to the first RLC channel.
  • the first mapping rule will be described in detail in the following steps.
  • the IAB host node sends first indication information to the first IAB node.
  • this step may be performed by the IAB host node, the IAB host CU of the IAB host node, or the IAB host CU-CP of the IAB host node.
  • the first IAB node receives the first indication information from the IAB host node.
  • the first indication information may be carried in a radio resource control (radio resource control, RRC) message (for example, the RRC message sent by the IAB donor node to the MT part of the first IAB node).
  • RRC radio resource control
  • the first IAB node determines the first RLC channel according to the first indication information.
  • the first IAB node may determine the first RLC channel according to the identity of the first RLC channel.
  • the first indication information may further include the following first mapping rule:
  • the first indication information may further include first condition information or type information of the first type of message.
  • the type information of the first type of message may include one or more of the following: DHCP messages, RS messages, RA messages, IP broadcast messages, and IP multicast messages.
  • the first condition information may include the respective first value or first value range of one or more of the IP quintuples of the first type of data packet.
  • the IP quintuple includes the source IP address, the destination IP address, and the source IP address. Port number, destination port number, and transport layer protocol type.
  • the first IAB node After the first IAB node generates the first data packet (the first data packet may refer to the data packet to be sent by the first IAB node to the parent node of the first IAB node, hereinafter referred to as the data packet to be sent), when the first data packet When the message type of the included message is one of the type information of the first type of message, the first IAB node may determine according to the identifier of the first RLC channel to carry the first data packet through the first RLC information; or, when the first data When one or more of the IP quintuple of the packet corresponds to the first value or the first value range of one or more of the IP quintuple of the first type of data packet, the first IAB The node may determine to carry the first data packet through the first RLC channel according to the identity of the first RLC channel.
  • the first mapping rule can be To: map the data packet whose destination IP address is the broadcast address to the designated first RLC channel for transmission; alternatively, the destination IP address is the IP broadcast address, and the transport layer protocol type is user datagram protocol (UDP) , The data packet with the source port number of 68 and the destination port number of 67 is mapped to the designated first RLC channel for transmission.
  • the destination IP address is a multicast address
  • the first mapping rule may be to map the data packet whose destination IP address is the multicast address to Transmit on the designated first RLC channel; or, the destination IP address is a multicast address, the transport layer protocol is user datagram protocol, the source port number is 546, the destination port number is 547, and the data packet is mapped to the designated first Transmission on an RLC channel.
  • the destination IP address can be a multicast address or the router's local link address
  • the first mapping rule can be: the destination IP address
  • the data packet that is the multicast address or the local link address of the router is mapped to the designated first RLC channel for transmission.
  • the first indication information may include the first target value of the preset field of the first type of data packet. Further, the first indication information may also include a mapping relationship between the first target value and the identifier of the first RLC channel, or the mapping relationship between the first target value and the identifier of the first RLC channel is carried in another message .
  • the preset field may be a differentiated services code point (DSCP) and/or a flow label (included in the IPv6 IP header).
  • the first IAB node After the first IAB node generates the first data packet (the first data packet may refer to the data packet to be sent by the first IAB node to the parent node of the first IAB node, hereinafter referred to as the data packet to be sent), when the first data packet
  • the message type of the message contained in the first type of message is one of the type information of the first type of message, or when one or more of the IP quintuples of the first data packet correspondingly satisfy the IP five of the first type of data packet
  • the first IAB node may also set the value of the preset field in the first data packet as the first target value; Or, when the value of the preset field in the first data packet is the first target value, the first IAB node may determine, according to the identity of the first RLC channel, to carry the first data packet through the first RLC channel.
  • the first target value is not limited to the target value of one of the DSCP or the flow label, and the first target value may also include the target value of the DSCP and the target value of the flow label.
  • the first data packet may also include the identifier of the first IAB node.
  • the identifier of the first IAB node may be carried in one or more of the following fields: the client hardware address field when the payload part of the first data packet is a DHCP message, and the first type data packet contains The payload part is the DHCP unique identifier (DUID) of the DHCPv6 message and the BAP address field of the BAP layer of the first type of data packet.
  • DUID DHCP unique identifier
  • the above configuration content is not limited to being carried in one configuration message, and can be carried in multiple configuration messages separately.
  • the first indication information, the first condition information, or the type information of the first type of message may be carried in one or more configuration messages; the first indication information, the first target value, the first target value and the first RLC channel
  • the mapping relationship between the identifiers may be carried in one or more configuration messages.
  • the IAB host node configures the RLC channel of the first IAB node for the first IAB node to send a message requesting an IP address to the IAB host node through the RLC channel, thereby realizing the determination of the IAB node Which RLC channel is used to transmit messages related to the IP address with the IAB host node (specifically, the IAB host DU).
  • the RLC channel determination method may further include:
  • the IAB host node sends second indication information to the first IAB node.
  • this step may be performed by the IAB host node, the IAB host CU of the IAB host node, or the IAB host CU-CP of the IAB host node.
  • the first IAB node receives the second indication information from the IAB host node.
  • the second indication information is used to indicate that the target node of the first type of data packet on the wireless backhaul link is the IAB host node.
  • the second indication information may include the identifier of the IAB host node.
  • the identifier of the IAB host node may be the identifier of the IAB host node at the backhaul adaptation protocol (BAP) layer, the identifier of the gNB-DU of the IAB host node, and the identifier of the cell served by the IAB host node ( New air interface cell identity (NR cell identity, NCI) or new air interface cell global identity (NR cell global identity, NCGI)), etc.
  • BAP backhaul adaptation protocol
  • NCI new air interface cell identity
  • NCGI new air interface cell global identity
  • the second indication information may also include second condition information or type information of the first type of message, and the second condition information is one or more of the second type of the IP quintuple of the first type of data packet. Value or second value range.
  • the type information of the first type of message may include one or more of the following: DHCP message, router request RS message, router advertisement RA message, IP broadcast message, and IP multicast message. For the related description of the type information of the first type of message, see the previous steps, which will not be repeated here.
  • the second condition information may be the same or different from the first condition information.
  • the first type of message is a DHCP message
  • the first condition information in the first indication information and the second condition information in the second indication information are both for the value of the same field
  • the first condition information The first value of and the second value of the second condition information may be the same. If the first condition information in the first indication information and the second condition information in the second indication information are both for the value range of the same field, the first value range of the first condition information is the same as the second condition information of the second condition information.
  • the value range can be different, for example, one value range is larger than the other.
  • the second data packet may refer to the data packet to be sent by the first IAB node to the parent node of the first IAB node, hereinafter referred to as the data packet to be sent
  • the first type data packet may include the identifier of the IAB host node.
  • the function of including the identifier of the IAB host node in the first type of data packet is to facilitate the intermediate IAB node (for example, the second IAB node) to know that the target node of the first type of data packet on the wireless backhaul link is the IAB host node, so that the intermediate IAB node Forward the first type data packet to the IAB host node.
  • the intermediate IAB node for example, the second IAB node
  • the second indication information may also include the identifier of the next hop node of the first type of data packet, and the identifier of the next hop node may be the identifier of the parent node of the first IAB node (for example, the second IAB node)
  • the BAP identity of the parent node of the first IAB node the cell identity served by the parent node of the first IAB node
  • the IAB DU identity of the parent node of the first IAB node and the parent node of the first IAB node for the first IAB node
  • cell group cell group
  • an embodiment of the present application provides a method for determining an RLC channel, and the method includes:
  • the IAB host CU determines third indication information.
  • this step may be performed by the IAB host CU of the IAB host node or the IAB host CU-CP of the IAB host node.
  • the third indication information is used to indicate the second RLC channel carrying the second type of data packet between the IAB donor DU and the child IAB node of the IAB donor DU.
  • the child IAB node of the IAB host DU may be the second IAB node.
  • the child IAB node of the IAB host DU may be the first IAB node.
  • the second type of data packet refers to a certain type of data packet
  • the third indication information can indicate the characteristics of this type of data packet, so that after the IAB host DU obtains the data packet, it can determine whether the obtained data packet meets the second type. If the characteristics of the data packet are met, the acquired data packet is carried through the second RLC channel.
  • the second type data packet may include a second type message, and the second type message is used to indicate the IP address assigned to the first IAB node.
  • the first IAB node is a child node of the IAB host DU or the first IAB node is connected to the IAB host DU through one or more intermediate IAB nodes.
  • the second type of data packet may be an IP data packet, and the second type of message as the payload part of the IP data packet may be a self-defined IP address indication message, or may be a DHCP pre-allocation message in the DHCP protocol or DHCP Confirmation message, or DHCPv6 notification message or DHCPv6 reply message in the DHCPv6 protocol.
  • the second type of data packet may be a BAP data packet
  • the second type of message as the payload part of the BAP data packet may be an IP broadcast message or an IP multicast message.
  • the IP broadcast message or IP multicast message may be used to indicate IP address. It should be noted that the IP broadcast message or the IP multicast message can also be used for other purposes, which is not limited in this application.
  • the second RLC channel can be dedicated to carrying data packets of the second type, and can also be used to carry data packets of other types, which is not limited in this application.
  • the third indication information includes the identifier of the second RLC channel, and is used to uniquely identify the second RLC channel.
  • the third indication information may further include a second mapping rule in addition to the identifier of the second RLC channel.
  • the data packet to be sent meets the second mapping rule, the data packet to be sent is mapped to the second RLC channel.
  • the second RLC channel is not dedicated to transmitting the second type of data packet, it can also be used to transmit other types of messages.
  • the data to be sent meets the second mapping rule
  • the data to be sent The packet is mapped to the second RLC channel.
  • the second mapping rule will be described in detail in the following steps.
  • the IAB host CU sends third indication information to the IAB host DU.
  • this step may be performed by the IAB host CU of the IAB host node or the IAB host CU-CP of the IAB host node.
  • the IAB host DU receives the third indication information from the IAB host CU.
  • the third indication information may be carried in an F1 application protocol (F1 application protocol, F1AP) message.
  • F1 application protocol F1 application protocol, F1AP
  • the IAB donor DU determines the second RLC channel according to the third indication information.
  • the IAB donor DU may determine the second RLC channel according to the identity of the second RLC channel.
  • the third indication information may further include the following second mapping rule:
  • the third indication information may further include third condition information or type information of the second type of message.
  • the type information of the second type of message may include one or more of the following: DHCP message, RS message, RA message, IP broadcast message, and IP multicast message.
  • the third condition information may include the respective third value or third value range of one or more of the IP quintuples of the second type data packet.
  • the IP quintuple includes the source IP address, the destination IP address, and the source IP address. Port number, destination port number, and transport layer protocol type.
  • the second data packet may refer to the data packet to be sent by the IAB host DU to the child nodes of the IAB host DU, hereinafter referred to as the data packet to be sent
  • the second data packet contains
  • the message type of the message is one of the type information of the second type of message.
  • the IAB host DU may determine according to the identifier of the second RLC channel to carry the second data packet through the second RLC information; or, when the second data packet is When one or more items correspondingly satisfy the third value or third value range of one or more items in the IP quintuple of the second type data packet, the IAB host DU can be based on the identifier of the second RLC channel It is determined that the second data packet is carried by the second RLC information.
  • the destination IP address is the IP broadcast address (an IPv4 address 255.255.255.255 with each bit being 1)
  • the second mapping rule It can be: the data packet whose destination IP address is the broadcast address is mapped to the designated second RLC channel for transmission; or, the destination IP address is the IP broadcast address, and the transport layer protocol type is user datagram protocol (UDP) ), a data packet with a source port number of 67 and a destination port number of 68 is mapped to the designated second RLC channel for transmission.
  • UDP user datagram protocol
  • the destination IP address is the client local link address
  • the second mapping rule may be: the destination IP address is the multicast address
  • the data packet is mapped to the designated second RLC channel for transmission; or, the destination IP address is the client local link address, the transport layer protocol type is user datagram protocol, the source port number is 547, and the destination port number is 546. Packet, mapped to the designated second RLC channel for transmission.
  • the destination IP address may be the local link address or the IP multicast address of the device requesting the IP address
  • the second mapping rule may be: The data packet whose destination IP address is the multicast address or the local link address of the device is mapped to the designated second RLC channel for transmission.
  • the third indication information may further include the second target value of the preset field of the second type of data packet.
  • the third indication information may further include a mapping relationship between the second target value and the identifier of the second RLC channel, or the mapping relationship between the second target value and the identifier of the second RLC channel is carried in another message.
  • the preset field may be a differentiated services code point (DSCP) and/or a flow label (included in the IPv6 IP header).
  • the second data packet may refer to the data packet to be sent by the IAB host DU to the child node of the IAB host DU, hereinafter referred to as the data packet to be sent
  • the second data packet contains
  • the message type of the message is one of the type information of the second type message, or when one or more of the IP quintuples of the second data packet correspond to the IP quintuple of the second type data packet
  • the IAB donor DU may determine, according to the identifier of the second RLC channel, to carry the second data packet through the second RLC channel.
  • the second target value is not limited to the target value of one of the DSCP or the flow label, and the second target value may also include the target value of the DSCP and the target value of the flow label.
  • the above configuration content is not limited to being carried in one configuration message, and can be carried in multiple configuration messages separately.
  • the third indication information, the third condition information, or the type information of the second type message may be carried in one or more configuration messages; the third indication information, the second target value, the second target value and the second RLC channel
  • the mapping relationship between the identifiers may be carried in one or more configuration messages.
  • the IAB host CU configures the RLC channel of the IAB host DU, and is used for the IAB host DU to send a message indicating the IP address to the child node of the IAB host DU (for example, the IAB node) through the RLC channel, In this way, it is possible to determine which RLC channel is used between the IAB node and the IAB host node (specifically, the IAB host DU) to transmit messages related to the IP address.
  • the RLC channel determination method may further include:
  • the IAB host CU sends fourth indication information to the IAB host DU.
  • this step may be performed by the IAB host CU of the IAB host node or the IAB host CU-CP of the IAB host node.
  • the IAB host DU receives the fourth indication information from the IAB host CU.
  • the fourth indication information is used to indicate that the target node of the second type of data packet on the wireless backhaul link is the first IAB node.
  • the fourth indication information may include the identity of the first IAB node.
  • the identifier of the first IAB node may be the identifier of the first IAB node at the BAP layer.
  • the fourth indication information may include the identifier of the next hop node on the wireless backhaul link from the IAB donor DU to the first IAB node.
  • the fourth indication information may include other identifiers for identifying the first IAB node.
  • the identifier may include: an identifier assigned by the parent node of the first IAB node to the first IAB node (for example, the first IAB node) The cell radio network temporary identifier (C-RNTI) of the node in the cell of the parent node and the identity of the parent node of the first IAB node (for example, the BAP identity of the parent node of the first IAB node, the first The IAB DU identity of the parent node of the IAB node, the identity of the cell served by the first IAB node by the parent node of the first IAB node, etc.).
  • C-RNTI cell radio network temporary identifier
  • the IAB host DU can learn the identity of the first IAB node, and add the identity of the first IAB node to the data packet sent to the first IAB node, so that other IAB nodes in the middle can forward the data packet to the first IAB node. IAB node.
  • the method for determining the RLC channel may further include:
  • the first IAB node sends a first type data packet to the IAB donor node through the first RLC channel.
  • the IAB host node receives the first type data packet from the child node of the IAB host node.
  • the first IAB node can be directly connected to the IAB host node, that is, as a child node of the IAB host node; or, it can also be connected to the IAB host node (IAB host DU) through one or more intermediate IAB nodes, The child node of the IAB host node may forward the first type data packet sent by the first IAB node.
  • the first IAB node sends the first type data packet to the IAB host DU of the IAB host node through the first RLC channel, and accordingly, the IAB host DU of the IAB host node Receive the first type data packet from the child IAB node of the IAB host DU.
  • the first IAB node if the first IAB node is a child node of the IAB host node, the first IAB node directly sends the first type of data packet to the IAB host node through the first RLC channel, and accordingly, the IAB host node passes the second The RLC channel receives data packets of the first type.
  • the first IAB node sends the first type of data packet to the IAB host node through the first RLC channel, and needs to first send the first type data packet to the IAB host node through the first RLC channel
  • the child node of sends the first type data packet, which is then forwarded to the IAB host node by the child node of the IAB host node.
  • the IAB host node obtains the IP address allocated for the first IAB node.
  • the IAB host DU of the IAB host node obtains the IP address allocated for the IAB node connected to the IAB host DU.
  • the IAB home node can act as a DHCP server or DHCP agent, the IAB home node assigns an IP address to the first IAB node. If the IAB host node serves as a DHCP relay, the IAB host node obtains the IP address assigned to the first IAB node from the DHCP server.
  • the IAB host node determines the mapping relationship between the IP address and the identifier of the IAB node connected to the IAB host DU.
  • the IAB host DU determines the mapping relationship between the IP address and the identifier of the IAB node connected to the IAB host DU.
  • the IAB host node or IAB host DU subsequently receives a data packet whose destination IP address is the IP address of the IAB node connected to the IAB host DU, it can determine that the data packet should be sent to the IAB node connected to the IAB host DU.
  • the IAB host node sends the second type data packet to the first IAB node through the second RLC channel.
  • the IAB host DU of the IAB host node sends the second type data packet to the first IAB node through the second RLC channel.
  • the first IAB node receives the second type data packet from the IAB host node.
  • the second type of data packet includes a second type of message, and the second type of message is used to indicate the IP address assigned to the first IAB node.
  • the IAB host node directly sends the second type data packet to the IAB node through the second RLC channel, and correspondingly, the IAB node uses the second RLC channel Receive the second type data packet. If there is at least one intermediate IAB node between the first IAB node and the IAB host node, the IAB host node sends the second type data packet to the first IAB node through the second RLC channel, and needs to first send the second type data packet to the IAB host node through the second RLC channel The child node of sends the second type data packet, which is then forwarded to the first IAB node by the child node of the IAB host node.
  • the first IAB node is used to determine the first RLC channel.
  • the IAB host DU determines the second RLC channel
  • the first IAB node and the IAB host DU obtain IP through the IP address allocation process in the DHCP protocol.
  • the address is taken as an example to further explain the above implementation:
  • the first IAB node sends an uplink data packet including a DHCP discovery message to the IAB donor DU through the first RLC channel.
  • the identifier of the IAB host DU can be added as a target node for uplink transmission on the wireless backhaul link.
  • the first IAB node will select a suitable first RLC channel for the DHCP discovery message, and then send an uplink data packet including the DHCP discovery message to the parent node through the first RLC channel.
  • the parent node of the first IAB node may be the IAB host DU, or the parent node of the first IAB node is another IAB node, the parent node of the first IAB node will continue to forward the uplink data containing the DHCP discovery message to the IAB host DU package.
  • the first IAB node may be included in the uplink data packet (for example, in the DHCP discovery message, or in the The header of the BAP layer of the uplink data packet carries the identity of the first IAB node.
  • the identity of the first IAB node may be, for example, the BAP layer identity of the first IAB node, or it may also be the C- of the first IAB node.
  • RNTI and the identity of the parent node of the first IAB node (such as the second IAB node in FIG. 2) (for example, the cell identity of the second IAB node, the DU identity of the second IAB node, the BAP layer identity of the second IAB node, etc.).
  • the first IAB node may not only carry the BAP layer identifier of the first IAB node in the BAP layer header of the uplink data packet, but also carry the remaining type identifiers of the first IAB node in the DHCP discovery message .
  • the ID of the first IAB node may be carried in the "Client Hardware Address" field, for which the length of this field is greater than the ID of the first IAB node ( For example, in the case where the identity of the first IAB node is the BAP layer identity), some bits in this field can be specified as the identity of the first IAB node, and the remaining bits are padding bits, which can be filled with all 0s.
  • the identifier of the first IAB node may also be a virtual hardware identifier of the first IAB node, and the virtual hardware identifier may be pre-configured in the first IAB node (for example, pre-configured in the first IAB node at the factory), Either the IAB host CU/IAB host CU-CP is pre-configured to the first IAB node through the RRC message, or the first IAB node obtains it from the operation, administration, and maintenance (OAM) server of the first IAB node
  • OAM operation, administration, and maintenance
  • the virtual hardware identifier can be used with other types of wireless networks or wired networks (such as IEEE 802 series networks: Ethernet, wireless LAN, wireless personal area network, etc.) in media access control (media access control address, MAC)
  • the address length is the same, for example, the length of the "Client Hardware Address" field in the DHCP message is the same.
  • the first IAB node triggers the sending of the DHCP discovery message, there may be several possible situations: it may be after the BAP layer of the MT part of the first IAB node is configured, or between the first IAB node and the parent node After the RLC channel is configured, or determined by the specific implementation of the first IAB node, it is not limited in this application.
  • intermediate IAB nodes can perform data packets containing DHCP messages (including uplink Data packet and downlink data packet) to determine the next hop node for routing.
  • the intermediate IAB node may determine the RLC channel for forwarding the data packet according to the RLC channel for receiving the data packet and the configured mapping rule, and does not need to perceive that the forwarded data packet carries a DHCP message.
  • the IAB host DU obtains the IP address allocated for the first IAB node.
  • the IAB host DU After the IAB host DU receives the DHCP discovery message sent by the first IAB node, if the IAB host DU can act as a DHCP server or DHCP agent, it processes the DHCP discovery message of the first IAB node by itself, and assigns an IP address to the first IAB node . If the IAB host DU acts as a DHCP relay, the IAB host DU can forward the DHCP discovery message to the DHCP server, and obtain the IP address allocated for the first IAB node from the DHCP server. When forwarding the DHCP discovery message to the DHCP server, the IAB host DU can be used as an ordinary router, DHCP relay or DHCP proxy, which is not limited in this application.
  • the IAB donor DU sends a downlink data packet containing a DHCP pre-allocation message to the first IAB node through the second RLC channel.
  • the DHCP pre-allocation message includes the IP address that the DHCP server prepares to allocate to the first IAB node.
  • the DHCP pre-allocation message may be generated by the DHCP server and forwarded to the first IAB node by the IAB host DU, or may be generated when the IAB host DU acts as a DHCP server or DHCP proxy.
  • the IAB host DU can view the identification of the first IAB node contained in the DHCP pre-allocation message (for example, the first IAB node contained in the "client hardware address" field). IAB node identity), and then select the next hop node, and after adding the BAP layer identity of the first IAB node to the BAP layer header, send a downlink data packet containing a DHCP pre-allocation message to the RLC entity, which is used to send downlink The RLC layer entity corresponding to the RLC channel of the DHCP message.
  • the IAB donor DU can directly send the downlink data packet to the first IAB node through the second RLC channel, or first send it to the next hop node (for example, the second IAB node) through the second RLC channel, and then forward it to the first IAB node by the second IAB node.
  • An IAB node After the downlink data packet is processed by the RLC layer, the MAC layer, and the physical (physical, PHY) layer, it is sent to the first IAB node.
  • the IAB donor DU can directly send the downlink data packet to the first IAB node through the second RLC channel, or first send it to the next hop node (for example, the second IAB node) through the second RLC channel, and then forward it to the first IAB node by the second IAB node.
  • An IAB node An IAB node.
  • the IAB host DU may record the correspondence between the identifier of the first IAB node (for example, the BAP layer identifier) and the IP address allocated to the first IAB node in the DHCP pre-allocation message.
  • the IAB host DU may record the correspondence between the identifier of the first IAB node (for example, the BAP layer identifier) and the IP address allocated to the first IAB node in the DHCP pre-allocation message.
  • the IAB host DU may record the correspondence between the identifier of the first IAB node (for example, the BAP layer identifier) and the IP address allocated to the first IAB node in the DHCP pre-allocation message.
  • the IAB host DU may record the correspondence between the identifier of the first IAB node (for example, the BAP layer identifier) and the IP address allocated to the first IAB node in the DHCP pre-allocation message.
  • the IAB host DU may record the correspondence between the identifier of the first
  • the first IAB node sends an uplink data packet including a DHCP request message to the IAB donor DU through the first RLC channel.
  • the first IAB node may add the identifier of the IAB donor DU to the header of the BAP layer of the uplink data packet as a target node for uplink transmission on the wireless backhaul link.
  • the uplink data packet may also include the identity of the first IAB node.
  • first RLC channel in step S1004 may be the same or different from the first RLC channel in step S1001.
  • the IAB donor DU sends a data packet containing a DHCP confirmation message to the first IAB node through the second RLC channel.
  • the DHCP confirmation message includes confirming the IP address assigned to the first IAB node.
  • the IAB host DU After the IAB host DU receives the DHCP request message sent by the first IAB node, if the IAB host DU can act as a DHCP server or DHCP proxy, it processes the DHCP request message of the first IAB node by itself. If the IAB host DU acts as a DHCP relay, the IAB host DU can forward the DHCP request message to the DHCP server. When forwarding the DHCP request message to the DHCP server, the IAB host DU can be used as an ordinary router, DHCP relay or DHCP proxy, which is not limited in this application.
  • the DHCP confirmation message may be generated by the DHCP server and forwarded by the IAB host DU to the first IAB node, or may be generated when the IAB host DU is acting as a DHCP server or DHCP proxy.
  • the IAB host DU can view the identification of the first IAB node contained in the DHCP confirmation message (for example, the first IAB contained in the "client hardware address" field). Node ID), then select the next hop node, and after adding the BAP layer ID of the first IAB node to the BAP layer header, send a downlink data packet containing a DHCP confirmation message to the RLC entity, which is used to send downlink DHCP messages The RLC layer entity corresponding to the RLC channel. After the downlink data packet is processed by the RLC layer, the MAC layer, and the PHY layer, it is sent to the first IAB node.
  • the IAB donor DU can directly send the downlink data packet to the first IAB node through the second RLC channel, or first send it to the next hop node (for example, the second IAB node) through the second RLC channel, and then forward it to the first IAB node by the second IAB node.
  • An IAB node An IAB node.
  • the IAB host DU may record the correspondence between the identifier of the first IAB node (for example, the BAP layer identifier) and the IP address allocated to the first IAB node in the DHCP confirmation message.
  • the IAB host DU subsequently receives a data packet whose destination IP address is the IP address of the first IAB node, it can determine that the data packet should be sent to the first IAB node, and the IAB host DU can add the first IAB node to the data packet.
  • the data packet is sent to the next hop node on the path between the IAB host DU and the first IAB node.
  • the first IAB node can obtain the IP address assigned by the DHCP server, and can configure the obtained IP address to the DU part of the first IAB node, and then can use the IP address for data transmission, for example, with the IAB host CU (Or IAB host CU-CP) between transport network layer (transport network layer, TNL) coupling (association) or stream control transport protocol (stream control transport protocol, SCTP) coupling, and IAB host CU (or IAB host) F1 connection establishment process between CU-CP), F1 interface user plane data transmission between IAB host CU (or IAB host CU-UP), and F1 between IAB host CU (or IAB host CU-CP) Interface control plane data transmission, connection and communication with OAM server, etc.
  • the IAB host CU Or IAB host CU-CP
  • TNL transport network layer
  • SCTP stream control transport protocol
  • the second RLC channel in step S1005 may be the same or different from the second RLC channel in step S1003.
  • the first IAB node determines the first RLC channel.
  • the IAB host DU determines the second RLC channel
  • the first IAB node and the IAB host DU obtain IP through the IP address allocation process in the DHCPv6 protocol.
  • the address is taken as an example to further explain the above implementation:
  • the first IAB node sends an uplink data packet including a DHCPv6 solicitation message to the IAB donor DU through the first RLC channel.
  • the identifier of the IAB host DU can be added as a target node for uplink transmission on the wireless backhaul link.
  • the first IAB node will select an appropriate first RLC channel for the DHCPv6 solicitation message, and then send an uplink data packet including the DHCPv6 solicitation message to the parent node through the first RLC channel.
  • the parent node of the first IAB node may be the IAB host DU, or the parent node of the first IAB node is other IAB nodes, the parent node of the first IAB node will continue to forward the uplink data containing the DHCPv6 solicitation message to the IAB host DU package.
  • the first IAB node may be included in the uplink data packet (for example, in the DHCPv6 solicitation message, or in the The header of the BAP layer of the uplink data packet carries the identity of the first IAB node.
  • the identity of the first IAB node may be, for example, the BAP layer identity of the first IAB node, or it may also be the C- of the first IAB node.
  • RNTI and the identity of the parent node of the first IAB node (such as the second IAB node in FIG. 2) (for example, the cell identity of the second IAB node, the DU identity of the second IAB node, the BAP layer identity of the second IAB node, etc.).
  • the first IAB node may not only carry the BAP layer identifier of the first IAB node in the BAP layer header of the uplink data packet, but also carry the remaining type identifiers of the first IAB node in the DHCPv6 solicitation message .
  • the identification of the first IAB node may be carried in the "client DUID" field, which is longer than the identification of the first IAB node (for example, In the case where the identifier of the first IAB node is the BAP layer identifier), some bits in this field can be specified as the identifier of the first IAB node, and the remaining bits are padding bits, which can be filled with all 0s.
  • the identifier of the first IAB node may also be a virtual hardware identifier of the first IAB node, and the virtual hardware identifier may be pre-configured in the first IAB node (for example, pre-configured in the first IAB node at the factory), Either the IAB host CU/IAB host CU-CP is pre-configured to the first IAB node through the RRC message, or the first IAB node obtains the configuration from the OAM server of the first IAB node, and the virtual hardware identifier can be combined with other types
  • the length of the MAC address in the wireless network or wired network (such as IEEE 802 series network: Ethernet, wireless local area network, wireless personal area network, etc.) is the same, for example, the length of the "client DUID" field in the DHCPv6 solicitation message.
  • the first IAB node triggers the sending of the DHCPv6 solicitation message
  • the first IAB node may be after the BAP layer of the MT part of the first IAB node is configured, or between the first IAB node and the parent node After the RLC channel is configured, or determined by the specific implementation of the first IAB node, it is not limited in this application.
  • intermediate IAB nodes can pair the data packet containing the DHCP message ( Including uplink data packets and downlink data packets) to determine the next hop node for routing selection.
  • the intermediate IAB node may determine the RLC channel for forwarding the data packet according to the RLC channel for receiving the data packet and the configured mapping rule, and does not need to perceive that the forwarded data packet carries a DHCP message.
  • the IAB host DU may record the data packet containing the DHCPv6 solicitation message sent by the first IAB node.
  • the IAB host DU when the IAB host DU subsequently receives a data packet whose destination IP address is the local link address of the first IAB node (for example, a DHCPv6 notification message sent in unicast form, or a DHCPv6 reply message sent in unicast form), It can be determined that the data packet should be sent to the first IAB node.
  • the IAB host DU can add the identifier of the first IAB node to the data packet (for example, add the BAP layer identifier of the first IAB node to the BAP layer header of the data packet), and then The next hop node on the path between the IAB host DU and the first IAB node sends the data packet.
  • the IAB host DU obtains the IP address allocated for the first IAB node.
  • the IAB host DU After the IAB host DU receives the DHCPv6 solicitation message sent by the first IAB node, if the IAB host DU can act as a DHCP server or DHCP proxy, it processes the DHCPv6 solicitation message of the first IAB node by itself, and assigns an IP address to the first IAB node Or prefix (ie IPv6 address prefix). If the IAB host DU acts as a DHCP relay, the IAB host DU may forward the DHCPv6 solicitation message to the DHCP server, and obtain the IP address allocated for the first IAB node from the DHCP server. When forwarding the DHCPv6 solicitation message to the DHCP server, the IAB host DU can be used as an ordinary router, DHCP relay or DHCP proxy, which is not limited in this application.
  • the IAB donor DU sends a downlink data packet containing a DHCPv6 notification message to the first IAB node through the second RLC channel.
  • the DHCPv6 notification message includes the IP address or prefix (that is, the IPv6 address prefix) that the DHCP server prepares to allocate to the first IAB node.
  • the DHCPv6 notification message may be generated by the DHCP server and forwarded to the first IAB node by the IAB host DU, or may be generated when the IAB host DU is acting as a DHCP server or DHCP proxy.
  • the IAB host DU receives the DHCPv6 notification message in a unicast form, and the destination IP address contained in it is the local link address of the first IAB node, the IAB host DU can follow the previously recorded local link of the first IAB node
  • the correspondence relationship between the address and the BAP layer identifier determines the identifier of the first IAB node (specifically the BAP layer identifier); or, if the IAB host DU is acting as a DHCP relay, DHCP proxy, or DHCP server, the IAB host DU can view the DHCPv6 notification
  • the identity of the first IAB node contained in the message for example, the identity of the first IAB node contained in the "client DUID" field).
  • the IAB host DU selects the next hop node according to the identity of the first IAB node, and after adding the BAP layer identity of the first IAB node to the BAP layer header, it sends a downlink data packet containing a DHCPv6 notification message to the RLC entity.
  • the RLC entity is used for The RLC layer entity corresponding to the RLC channel that sends the downlink DHCP message.
  • the downlink data packet is processed by the RLC layer, the MAC layer, and the physical (physical, PHY) layer, it is sent to the first IAB node.
  • the IAB donor DU can directly send the downlink data packet to the first IAB node through the second RLC channel, or first send it to the next hop node (for example, the second IAB node) through the second RLC channel, and then forward it to the first IAB node by the second IAB node.
  • An IAB node An IAB node.
  • the IAB host DU may record the correspondence between the identifier of the first IAB node (for example, the BAP layer identifier) and the IP address assigned to the first IAB node in the DHCPv6 notification message.
  • the IAB host DU subsequently receives a data packet whose destination IP address is the IP address of the first IAB node, it can determine that the data packet should be sent to the first IAB node, and the IAB host DU can add the first IAB node to the data packet.
  • the data packet is sent to the next hop node on the path between the IAB host DU and the first IAB node.
  • the first IAB node sends an uplink data packet including a DHCPv6 request message to the IAB donor DU through the first RLC channel.
  • the first IAB node may add the identifier of the IAB donor DU to the header of the BAP layer of the uplink data packet as a target node for uplink transmission on the wireless backhaul link.
  • the uplink data packet may also include the identity of the first IAB node.
  • first RLC channel in step S1104 may be the same or different from the first RLC channel in step S1101.
  • the IAB donor DU sends a downlink data packet containing a DHCPv6 reply message to the first IAB node through the second RLC channel.
  • the DHCPv6 reply message includes the IP address or prefix (that is, the IPv6 address prefix) assigned to the first IAB node.
  • the IAB host DU After the IAB host DU receives the DHCPv6 request message sent by the first IAB node, if the IAB host DU can act as a DHCP server or DHCP proxy, it processes the DHCPv6 request message of the first IAB node by itself. If the IAB host DU acts as a DHCP relay, the IAB host DU can forward the DHCPv6 request message to the DHCP server. When forwarding the DHCPv6 request message to the DHCP server, the IAB host DU can be used as an ordinary router, DHCP relay or DHCP proxy, which is not limited in this application.
  • the DHCPv6 reply message may be generated by the DHCP server and forwarded to the first IAB node by the IAB host DU, or may be generated when the IAB host DU acts as a DHCP server or a DHCP proxy.
  • the IAB host DU can follow the previously recorded local link of the first IAB node
  • the identity of the first IAB node contained in the message for example, the identity of the first IAB node contained in the "client DUID" field).
  • the IAB donor DU can directly send the downlink data packet to the first IAB node through the second RLC channel, or first send it to the next hop node (for example, the second IAB node) through the second RLC channel, and then forward it to the first IAB node by the second IAB node.
  • the IAB host DU may record the correspondence between the identifier of the first IAB node (for example, the BAP layer identifier) and the IP address assigned to the first IAB node in the DHCPv6 reply message.
  • the IAB host DU subsequently receives a data packet whose destination IP address is the IP address of the first IAB node, it can determine that the data packet should be sent to the first IAB node, and the IAB host DU can add the first IAB node to the data packet.
  • the data packet is sent to the next hop node on the path between the IAB host DU and the first IAB node.
  • the IAB node uses its own interface address as a suffix to generate an IPv6 address together.
  • the first IAB node obtains an IP address, can configure the obtained IP address to the DU part of the first IAB node, and then can use the IP address for data transmission, for example, with the IAB host CU (or IAB host CU -CP) between the transport network layer (transport network layer, TNL) coupling (association) or stream control transport protocol (stream control transport protocol, SCTP) coupling, and the IAB host CU (or IAB host CU-CP) F1 connection establishment process between F1, F1 interface user plane data transmission with IAB host CU (or IAB host CU-UP), F1 interface control plane data transmission with IAB host CU (or IAB host CU-CP) , Connection and communication with OAM server, etc.
  • the IAB host CU or IAB host CU -CP
  • TNL transport network layer
  • SCTP stream control transport protocol
  • the first IAB node can report the IP address to the IAB host CU (or CU-CP), and then the IAB host CU (or CU-CP) can use the An F1 connection is established between the IP address and the IAB node.
  • the IAB host CU (or CU-CP) can also configure the corresponding relationship between the IP address and the BAP layer identifier of the first IAB node to the IAB host DU to facilitate subsequent IAB host DUs
  • receive a data packet whose destination IP address is the IP address of the first IAB node specifically, the DU part of the first IAB node
  • the link is correctly routed and forwarded to the first IAB node.
  • the second RLC channel in step S1105 may be the same or different from the second RLC channel in step S1103.
  • the following uses the first IAB node to determine the first RLC channel. After the IAB host DU determines the second RLC channel, the first IAB node and the IAB host DU obtain the IP through the IPv6-based stateless address configuration method.
  • the address is taken as an example to further explain the above implementation:
  • the first IAB node sends an uplink data packet including a router request message to the IAB donor DU through the first RLC channel.
  • the identifier of the IAB host DU can be added as the target node of the wireless backhaul link transmission.
  • the first IAB node will select a suitable first RLC channel for the router request message, and then send an uplink data packet including the router request message to the parent node through the first RLC channel.
  • the parent node of the first IAB node may be the IAB host DU, or the parent node of the first IAB node is another IAB node, then the parent node of the first IAB node will continue to forward the data packet containing the router request message to the IAB host DU .
  • the first IAB node may be in the uplink data packet (for example, in the BAP layer header of the data packet, Or in the IP layer header, or in the router solicitation message) carry the identity of the first IAB node, the identity of the first IAB node may be, for example, the BAP layer identity of the first IAB node, or it may also be the first IAB node C-RNTI and the identity of the parent node of the first IAB node (such as the second IAB node in Figure 2) (for example, the cell identity of the second IAB node, the DU identity of the second IAB node, and the BAP layer identity of the second IAB node Wait).
  • the identity of the first IAB node may be, for example, the BAP layer identity of the first IAB node, or it may also be the first IAB node C-RNTI and the identity of the parent node of the first IAB node (such as the second IAB node in Figure 2) (for example, the cell identity of the second IAB node,
  • the first IAB node may not only carry the BAP layer identifier of the first IAB node in the BAP layer header of the uplink data packet, but also in the router request message or IP header (for example, in the IP header)
  • the source IP address of the first IAB node adopts the local link address of the first IAB node) to carry the remaining type identifiers of the first IAB node.
  • the length of the field is greater than the identifier of the first IAB node (for example, the identifier of the first IAB node is the BAP layer identifier)
  • the identifier of the first IAB node is the BAP layer identifier
  • the identifier of the first IAB node may also be a virtual hardware identifier of the first IAB node, and the virtual hardware identifier may be pre-configured in the first IAB node (for example, pre-configured in the first IAB node at the factory), Either the IAB host CU/IAB host CU-CP is pre-configured to the first IAB node through the RRC message, or the first IAB node obtains the configuration from the OAM server of the first IAB node, and the virtual hardware identifier can be combined with other types
  • the length of the MAC address in the wireless network or wired network (such as IEEE 802 series network: Ethernet, wireless LAN, wireless personal area network, etc.) is the same.
  • the first IAB node triggers the sending of the router solicitation message
  • the first IAB node may be after the BAP layer of the MT part of the first IAB node is configured, or between the first IAB node and the parent node After the RLC channel is configured, or determined by the specific implementation of the first IAB node, it is not limited in this application.
  • intermediate IAB nodes can respond to the data packet containing the router request message according to the information in the BAP layer header. (Including uplink data packet and downlink data packet) Route selection to determine next hop node.
  • the intermediate IAB node can determine the RLC channel for forwarding the data packet according to the RLC channel that receives the data packet and the configured mapping rule, and does not need to perceive that the forwarded data packet carries a router request message.
  • the IAB host DU may record after receiving the data packet containing the router request message sent by the first IAB node
  • the correspondence between the source IP address used by the first IAB node to send the router request message and the BAP layer identifier of the first IAB node that is, the correspondence between the local link address of the first IAB node and its BAP layer identifier.
  • the IAB host DU when the IAB host DU subsequently sends a data packet whose destination IP address is the local link address of the first IAB node (for example, a router advertisement message sent in a unicast form), it can determine that the data packet should be sent to the first IAB node.
  • the IAB host DU can add the identifier of the first IAB node to the data packet (for example, add the BAP layer identifier of the first IAB node in the BAP layer header of the data packet), and then send it to the path between the IAB host DU and the first IAB node The next hop node sends the data packet.
  • the IAB donor DU sends a downlink data packet containing a router advertisement message to the first IAB node through the second RLC channel.
  • the router advertisement message carries the IPv6 address prefix.
  • the IAB home DU After the IAB home DU receives the router solicitation message sent by the first IAB node, if the IAB home DU can act as a router that sends the router advertisement message, it generates the router advertisement message by itself and sends it to the first IAB node. Alternatively, the IAB host DU can forward router announcement messages to routers in the form of IP unicast or IP multicast, and other routers in the network generate router announcement messages, and forward them to the first IAB node through the IAB host DU, which is not limited in this application .
  • the IAB host DU can be based on the previously recorded first The corresponding relationship between the local link address of the IAB node and the BAP layer identifier, determine the identifier of the first IAB node (specifically the BAP layer identifier), then select the next hop node, and add the BAP layer of the first IAB node to the BAP layer header After the identification, the downlink data packet containing the router advertisement message is sent to the RLC entity, and the RLC entity is the RLC layer entity corresponding to the RLC channel used to send the router advertisement message.
  • the IAB donor DU can directly send the downlink data packet to the first IAB node through the second RLC channel, or first send it to the next hop node (for example, the second IAB node) through the second RLC channel, and then forward it to the first IAB node by the second IAB node.
  • An IAB node An IAB node.
  • the router announcement message carries the IPv6 address prefix, and the IAB node uses its own interface address (interface ID) as the suffix to generate an IPv6 address together.
  • the first IAB node obtains an IP address, can configure the obtained IP address to the DU part of the first IAB node, and then can use the IP address for data transmission, for example, with the IAB host CU (or IAB host CU -CP) between the transport network layer (transport network layer, TNL) coupling (association) or stream control transport protocol (stream control transport protocol, SCTP) coupling, and the IAB host CU (or IAB host CU-CP) F1 connection establishment process between F1, F1 interface user plane data transmission with IAB host CU (or IAB host CU-UP), F1 interface control plane data transmission with IAB host CU (or IAB host CU-CP) , Connection and communication with OAM server, etc.
  • the IAB host CU or IAB host CU -CP
  • TNL transport network layer
  • SCTP stream control transport protocol
  • the first IAB node can report the IP address to the IAB host CU (or CU-CP), and then the IAB host CU (or CU-CP) can use the IP An F1 connection is established between the address and the IAB node.
  • the IAB host CU (or CU-CP) can also configure the corresponding relationship between the IP address and the BAP layer identifier of the first IAB node to the IAB host DU for subsequent IAB host DU reception
  • a data packet whose destination IP address is the IP address of the first IAB node (specifically, it may be the DU part of the first IAB node)
  • the path is correctly routed and forwarded to the first IAB node.
  • the second RLC channel in step S1202 may be the same or different from the first RLC channel in step S1201.
  • the methods and/or steps implemented by the IAB node can also be implemented by components (such as chips or circuits) that can be used in the IAB node, and the methods and/or steps implemented by the IAB host node , Can also be implemented by components that can be used in the IAB host node.
  • an embodiment of the present application also provides a communication device, which is used to implement the foregoing various methods.
  • the communication device may be the IAB node in the foregoing method embodiment, or a device including the foregoing IAB node, or a chip or functional module in the IAB node; or, the communication device may be the IAB host node in the foregoing method embodiment, Either the device containing the aforementioned IAB host node, or the chip or functional module in the IAB host node; or, the communication device can be the IAB host DU in the foregoing method embodiment, or the device containing the aforementioned IAB host DU, or the IAB The chip or functional module in the host DU; or, the communication device may be the IAB host CU in the foregoing method embodiment, or the device containing the foregoing IAB host CU, or the chip or functional module in the IAB host CU
  • the communication device includes hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiments of the present application may divide the communication device into functional modules according to the foregoing method embodiments.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 13 shows a schematic structural diagram of a communication device 130.
  • the communication device 130 includes a processing module 1301 and a transceiver module 1302.
  • the processing module 1301 is used to perform data processing to implement the processing function of the first IAB node in the foregoing method embodiment, for example, perform step S503 in FIG. 5 and step S503 in FIG. 6.
  • the transceiver module 1302 is configured to receive first indication information from the IAB host node, where the first indication information is used to indicate the first type of data packet that carries the first type of data packet between the first IAB node and the parent node of the first IAB node.
  • the radio link control RLC channel wherein the first type data packet includes a first type message, and the first type message is used to request an Internet Protocol IP address; the processing module 1301 is used to determine the first RLC channel according to the first indication information.
  • the first indication information includes the identity of the first RLC channel.
  • the first indication information further includes first condition information or type information of the first type of message; wherein, the first condition information includes one item of the IP quintuple of the first type of data packet or Multiple respective first values or first value ranges, the IP 5-tuple includes source IP address, destination IP address, source port number, destination port number, and transport layer protocol type.
  • the type information includes one of the following or Various: Dynamic Host Configuration Protocol DHCP messages, router solicitation RS messages, router announcement RA messages, IP broadcast messages and IP multicast messages.
  • the processing module 1301 is also used to generate the first data packet; when one or more of the IP quintuples of the first data packet meet the IP quintuple of the first type of data packet correspondingly
  • the first value or first value range of one or more items in the group is determined to carry the first data packet through the first RLC channel; or, when the message type of the first message included in the first data packet is type When one of the information, it is determined to carry the first data packet through the first RLC channel.
  • the first indication information further includes a target value of a preset field of the first type of data packet.
  • the processing module 1301 is also used to generate the first data packet; when one or more of the IP quintuples of the first data packet meet the IP quintuple of the first type of data packet correspondingly The first value or the first value range of one or more items in the group, or, when the type of the message included in the first data packet is one of the type information, the first data packet is preset The field is set to the target value; when the value of the preset field of the first data packet is the target value, it is determined to carry the first data packet through the first RLC channel.
  • the preset field is a differentiated services code point DSCP or a flow label.
  • the first data packet further includes the identity of the first IAB node.
  • the identifier of the first IAB node is carried in one or more of the following fields of the first data packet: the client hardware address field, the DHCP unique identifier, and the BAP address of the BAP layer of the adaptation protocol. Field.
  • the transceiver module 1302 is further configured to receive second indication information from the IAB host node, the second indication information indicating that the target node of the first type of data packet on the wireless backhaul link is the IAB host node.
  • the second indication information further includes the identifier of the IAB host node.
  • the first type data packet includes the identifier of the IAB host node
  • the second indication information further includes second condition information or type information of the first type message
  • the second condition information is the first type data
  • the type information includes one or more of the following: DHCP message, RS message, RA message, IP broadcast message And IP multicast messages. It is convenient for the intermediate IAB node to learn that the target node of the first type data packet on the wireless backhaul link is the IAB host node, so that the intermediate IAB node forwards the first type data packet to the IAB host node.
  • the processing module 1301 is also used to generate a second data packet; when one or more of the IP quintuples of the second data packet correspondingly satisfy the IP quintuple of the first type of data packet When one or more items in the group have their respective second value or second value range, or when the type of the message included in the second data packet is one of the type information, the second data packet includes the IAB host The ID of the node.
  • the transceiver module 1302 is further configured to receive a second type of data packet, where the second type of data packet includes a second type of message, and the second type of message is used to indicate the data allocated to the first IAB node IP address.
  • the communication device 130 is presented in the form of dividing various functional modules in an integrated manner.
  • the "module” here can refer to a specific ASIC, circuit, processor and memory that executes one or more software or firmware programs, integrated logic circuit, and/or other devices that can provide the above-mentioned functions.
  • the communication device 130 may take the form of the network device 30 shown in FIG. 3.
  • the processor 301 in the network device 30 shown in FIG. 3 may invoke the computer execution instructions stored in the memory 302 to make the network device 30 execute the RLC channel determination method in the foregoing method embodiment.
  • the function/implementation process of the processing module 1301 and the transceiver module 1302 in FIG. 13 can be implemented by the processor 301 in the network device 30 shown in FIG. 3 calling a computer execution instruction stored in the memory 302.
  • the function/implementation process of the processing module 1301 in FIG. 13 can be implemented by the processor 301 in the network device 30 shown in FIG. 3 calling a computer execution instruction stored in the memory 302, and the function of the transceiver module 1302 in FIG. /The implementation process can be implemented by the transceiver 303 in the network device 30 shown in FIG. 3.
  • the communication device 130 provided in this embodiment can perform the above-mentioned RLC channel determination method, the technical effects that can be obtained can refer to the above-mentioned method embodiment, which will not be repeated here.
  • FIG. 14 shows a schematic structural diagram of a communication device 140.
  • the communication device 140 includes a processing module 1401 and a transceiver module 1402.
  • the transceiver module 1402 which may also be referred to as a transceiver unit, includes a transmitting unit and/or a receiving unit, for example, a transceiver circuit, transceiver, transceiver, or communication interface, used to implement the transmission and/or transmission of the IAB host node in the foregoing method embodiment Or receiving function.
  • step S502 in FIG. 5, steps S502 and S601 in FIG. 6, and steps S901 and S903 in FIG. 9 are executed.
  • the processing module 1401 is used to perform data processing to implement the processing function of the IAB host node in the foregoing method embodiment, for example, perform step S501 in FIG. 5, step S501 in FIG. 6, and step S902 in FIG.
  • the processing module 1401 is configured to determine first indication information, where the first indication information is used to indicate the radio link control RLC channel between the first IAB node and the parent node of the first IAB node that carries the first type of data packet , Wherein the first type of data packet includes a first type of message, and the first type of message is used for the first IAB node to request an Internet Protocol IP address; the transceiver module 1402 is used for sending the first indication information to the first IAB node.
  • the first indication information includes the identity of the first RLC channel.
  • the first indication information further includes first condition information or type information of the first type of message; wherein, the first condition information includes one item of the IP quintuple of the first type of data packet or Multiple respective first values or first value ranges, the IP 5-tuple includes source IP address, destination IP address, source port number, destination port number, and transport layer protocol type.
  • the type information includes one of the following or Various: Dynamic Host Configuration Protocol DHCP messages, router solicitation RS messages, router announcement RA messages, IP broadcast messages and IP multicast messages.
  • the first indication information further includes a target value of a preset field in the first type of data packet.
  • the preset field is a differentiated services code point DSCP or a flow label.
  • the transceiver module 1402 is also used to receive the first type of data packet from the first IAB node; the processing module 1401 is also used to obtain the IP address allocated for the first IAB node; the transceiver module 1402, It is also used to send a second type of data packet to the first IAB node, where the second type of data packet includes a second type of message, and the second type of message is used to indicate the IP address assigned to the first IAB node.
  • the processing module 1401 is further configured to determine the mapping relationship between the IP address and the identifier of the first IAB node.
  • the transceiver module 1402 is further configured to send second indication information to the first IAB node, the second indication information indicating that the target node of the first type of data packet on the wireless backhaul link is the IAB host node .
  • the second indication information further includes the identifier of the IAB host node.
  • the second indication information further includes second condition information or type information of the first type of message, and the second condition information is one or more of the IP quintuple of the first type of data packet
  • the respective second value or second value range, type information includes one or more of the following: DHCP message, RS message, RA message, IP broadcast message, and IP multicast message. It is convenient for the intermediate IAB node to learn that the target node of the first type data packet on the wireless backhaul link is the IAB host node, so that the intermediate IAB node forwards the first type data packet to the IAB host node.
  • the communication device 140 is presented in the form of dividing various functional modules in an integrated manner.
  • the "module” here can refer to a specific ASIC, circuit, processor and memory that executes one or more software or firmware programs, integrated logic circuit, and/or other devices that can provide the above-mentioned functions.
  • the communication device 140 may take the form of the network device 30 shown in FIG. 3.
  • the processor 301 in the network device 30 shown in FIG. 3 may invoke the computer execution instructions stored in the memory 302 to make the network device 30 execute the RLC channel determination method in the foregoing method embodiment.
  • the functions/implementation process of the processing module 1401 and the transceiver module 1402 in FIG. 14 may be implemented by the processor 301 in the network device 30 shown in FIG. 3 calling the computer execution instructions stored in the memory 302.
  • the function/implementation process of the processing module 1401 in FIG. 14 can be implemented by the processor 301 in the network device 30 shown in FIG. 3 calling the computer execution instructions stored in the memory 302, and the function of the transceiver module 1402 in FIG. /The implementation process can be implemented by the transceiver 303 in the network device 30 shown in FIG. 3.
  • the communication device 140 provided in this embodiment can perform the above-mentioned RLC channel determination method, the technical effects that can be obtained can refer to the above-mentioned method embodiment, and will not be repeated here.
  • FIG. 15 shows a schematic structural diagram of a communication device 150.
  • the communication device 150 includes a processing module 1501 and a transceiver module 1502.
  • the transceiver module 1502 which may also be referred to as a transceiver unit, includes a transmitting unit and/or a receiving unit, for example, a transceiver circuit, transceiver, transceiver, or communication interface, used to implement the transmission and/or transmission of the IAB host DU in the foregoing method embodiment. Or receiving function.
  • the processing module 1501 is used to perform data processing to implement the processing function of the IAB host DU in the above method embodiment, for example, perform step S703 in FIG. 7, step S703 in FIG. 8, step S1002 in FIG. Step S1102 in 11.
  • the transceiver module 1502 is configured to receive third indication information from the IAB host centralized unit CU, the third indication information is used to indicate that the second type of data packet is carried between the IAB host DU and the child IAB node of the IAB host DU
  • the second RLC channel wherein the second type of data packet includes a second type of message, the second type of message is used to indicate the Internet Protocol IP address assigned to the first IAB node, the first IAB node is the child node or the first IAB host DU
  • An IAB node is connected to the IAB host DU through one or more intermediate IAB nodes.
  • the processing module 1501 is used for the IAB donor DU to determine the second RLC channel according to the third indication information.
  • the third indication information includes the identity of the second RLC channel.
  • the third indication information further includes third condition information or type information of the second type of message, where the third condition information includes one item in the IP quintuple of the second type of data packet or Multiple respective third values or third value ranges.
  • the IP 5-tuple includes source IP address, destination IP address, source port number, destination port number, and transport layer protocol type.
  • the type information includes one of the following or Various: Dynamic Host Configuration Protocol DHCP messages, router solicitation RS messages, router announcement RA messages, IP broadcast messages and IP multicast messages.
  • the third indication information further includes the target value of the preset field of the second type of data packet.
  • the processing module 1501 is further configured to: generate a second data packet.
  • the preset field of the second data packet is set to the target value.
  • the second data packet is carried through the second RLC channel.
  • the preset field is a differentiated services code point DSCP or a flow label.
  • the transceiver module 1502 is further used for the IAB host DU to receive a first type of data packet from a child node of the IAB host DU, where the first type of data packet includes a first message, and the first message is used for The first IAB node requests an IP address.
  • the processing module 1501 is also used to obtain the IP address allocated for the first IAB node.
  • the transceiver module 1502 is also used to send the second type data packet through the second RLC channel.
  • the processing module 1501 is further used for the IAB host DU to determine the mapping relationship between the IP address and the identity of the first IAB node.
  • the communication device 150 is presented in the form of dividing various functional modules in an integrated manner.
  • the "module” here can refer to a specific ASIC, circuit, processor and memory that executes one or more software or firmware programs, integrated logic circuit, and/or other devices that can provide the above-mentioned functions.
  • the communication device 150 may take the form of the network device 30 shown in FIG. 3.
  • the processor 301 in the network device 30 shown in FIG. 3 may invoke the computer execution instructions stored in the memory 302 to make the network device 30 execute the RLC channel determination method in the foregoing method embodiment.
  • the function/implementation process of the processing module 1501 and the transceiver module 1502 in FIG. 15 can be implemented by the processor 301 in the network device 30 shown in FIG. 3 calling a computer execution instruction stored in the memory 302.
  • the function/implementation process of the processing module 1501 in FIG. 15 can be implemented by the processor 301 in the network device 30 shown in FIG. 3 calling a computer execution instruction stored in the memory 302, and the function of the transceiver module 1502 in FIG. 15 /The implementation process can be implemented by the transceiver 303 in the network device 30 shown in FIG. 3.
  • the communication device 150 provided in this embodiment can perform the above-mentioned RLC channel determination method, the technical effects that can be obtained can refer to the above-mentioned method embodiment, and will not be repeated here.
  • FIG. 16 shows a schematic structural diagram of a communication device 160.
  • the communication device 160 includes a processing module 1601 and a transceiver module 1602.
  • the transceiver module 1602 which may also be referred to as a transceiver unit, includes a transmitting unit and/or a receiving unit, for example, a transceiver circuit, transceiver, transceiver, or communication interface, used to implement the transmission and/or transmission of the IAB host DU in the foregoing method embodiment Or receiving function.
  • step S702 in FIG. 7 and step S702 in FIG. 8 are executed.
  • the processing module 1601 is used to perform data processing to implement the processing function of the IAB host CU in the foregoing method embodiment, for example, perform step S701 in FIG. 7 and step S701 in FIG. 8.
  • the processing module 1601 is used to determine the third indication information, the third indication information is used to indicate the second RLC carrying the second type of data packet between the IAB host distributed unit DU and the child IAB node connected to the IAB host DU Channel, wherein the second type of data packet includes a second type of message, the second type of message is used to indicate the Internet Protocol IP address assigned to the first IAB node, the first IAB node is a child node of the IAB host DU or the first IAB node Connect to the IAB host DU through one or more intermediate IAB nodes.
  • the transceiver module 1602 is configured to send third indication information to the IAB host DU.
  • the third indication information includes the identity of the second RLC channel.
  • the third indication information further includes third condition information or type information of the second type message, or, where the third condition information includes one item in the IP quintuple of the second type data packet Or multiple respective third values or third value ranges, the IP 5-tuple includes source IP address, destination IP address, source port number, destination port number, and transport layer protocol type.
  • the type information includes one of the following Or multiple: dynamic host configuration protocol DHCP messages, router solicitation RS messages, router announcement RA messages, IP broadcast messages and IP multicast messages.
  • the third indication information further includes the target value of the preset field of the second type of data packet; where the preset field is a differentiated services code point DSCP or a flow label.
  • the communication device 160 is presented in the form of dividing various functional modules in an integrated manner.
  • the "module” here can refer to a specific ASIC, circuit, processor and memory that executes one or more software or firmware programs, integrated logic circuit, and/or other devices that can provide the above-mentioned functions.
  • the communication device 160 may take the form of the network device 30 shown in FIG. 3.
  • the processor 301 in the network device 30 shown in FIG. 3 may invoke the computer execution instructions stored in the memory 302 to make the network device 30 execute the RLC channel determination method in the foregoing method embodiment.
  • the functions/implementation process of the processing module 1601 and the transceiver module 1602 in FIG. 16 may be implemented by the processor 301 in the network device 30 shown in FIG. 3 calling the computer execution instructions stored in the memory 302.
  • the function/implementation process of the processing module 1601 in FIG. 16 can be implemented by the processor 301 in the network device 30 shown in FIG. 3 calling the computer execution instructions stored in the memory 302, and the function of the transceiver module 1602 in FIG. /The implementation process can be implemented by the transceiver 303 in the network device 30 shown in FIG. 3.
  • the communication device 160 provided in this embodiment can perform the above-mentioned RLC channel determination method, the technical effects that can be obtained can refer to the above-mentioned method embodiment, which will not be repeated here.
  • the embodiment of the present application also provides a communication device.
  • the communication device includes a processor, a memory, and a transceiver.
  • the processor is coupled with the memory.
  • the processor executes the computer program or instruction in the memory, A method for determining the RLC channel corresponding to an IAB node, IAB host node, IAB host DU, or IAB host CU is executed.
  • the embodiment of the present application also provides a chip, including: a processor and an interface, used to call from the memory and run the computer program stored in the memory, and execute the first IAB node, IAB host node, A method for determining the RLC channel corresponding to the IAB host DU or IAB host CU.
  • the embodiment of the present application also provides a computer-readable storage medium that stores instructions in the computer-readable storage medium.
  • the computer or the processor executes the A method for determining the RLC channel corresponding to the first IAB node, IAB host node, IAB host DU, or IAB host CU.
  • the embodiment of the present application also provides a computer program product containing instructions.
  • the instructions run on a computer or a processor, the computer or the processor executes the first IAB node, IAB host node, and IAB host in Figures 5-12.
  • An embodiment of the present application provides a chip system, which includes a processor, configured for a communication device to perform the determination of the RLC channel corresponding to the first IAB node, IAB host node, IAB host DU, or IAB host CU in Figure 5-12 method.
  • the chip system further includes a memory for storing necessary program instructions and data for the terminal device.
  • the chip system may include chips, integrated circuits, or chips and other discrete devices, which are not specifically limited in the embodiment of the present application.
  • the communication device, chip, computer storage medium, computer program product, or chip system provided in the present application are all used to implement the RLC channel determination method described above. Therefore, the beneficial effects that can be achieved can be referred to the above The beneficial effects in the implementation manner of, will not be repeated here.
  • the processor involved in the embodiment of the present application may be a chip.
  • it can be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), a system on chip (SoC), or a central processing unit.
  • the central processor unit (CPU) can also be a network processor (NP), a digital signal processing circuit (digital signal processor, DSP), or a microcontroller (microcontroller unit, MCU) , It can also be a programmable logic device (PLD) or other integrated chips.
  • NP network processor
  • DSP digital signal processor
  • MCU microcontroller unit
  • PLD programmable logic device
  • the memory involved in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electronic Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • serial link DRAM SLDRAM
  • direct rambus RAM direct rambus RAM
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, rather than corresponding to the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection between devices or units through some interfaces, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the computer may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • a software program it may be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or may include one or more data storage devices such as servers and data centers that can be integrated with the medium.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种RLC信道确定方法和装置,涉及通信领域,用于确定IAB节点与IAB宿主节点(具体可以是IAB宿主DU)之间通过哪个RLC信道传输用于获取IP地址相关的消息。RLC信道确定方法,包括:第一接入回传一体化IAB节点从IAB宿主节点接收第一指示信息,所述第一指示信息用于指示所述第一IAB节点和所述第一IAB节点的父节点之间承载第一类型数据包的第一无线链路控制RLC信道,其中,所述第一类型数据包包括第一类型消息,所述第一类型消息用于请求互联网协议IP地址;所述第一IAB节点根据所述第一指示信息确定所述第一RLC信道。

Description

RLC信道确定方法和装置
本申请要求于2019年8月15日提交国家知识产权局、申请号为201910755860.9、申请名称为“RLC信道确定方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种无线链路控制(radio link control,RLC)信道确定方法和装置。
背景技术
第五代(5th generation,5G)通信采用高频载波进行无线通信。一方面,由于高频载波传播特性较差,受遮挡衰减严重,覆盖范围不广,故而需要大量密集部署基站。另一方面,为了向偏远地区提供网络覆盖,也要向偏远地区部署基站。如果为上述基站提供光纤回传,则成本很高并且施工难度大。
为此,提出了接入回传一体化(integrated access and backhaul,IAB)技术,即接入链路(access Link)和回传链路(backhaul link)均采用无线传输,从而避免通过部署光纤来回传数据。
如图1所示,IAB网络包括终端设备、IAB节点(node)和IAB宿主(donor)节点(node),从终端设备经过IAB节点至IAB宿主节点之间的链路为回传链路。IAB节点与IAB宿主节点之间,建立类似于基站的分布式单元(distributed unit,DU)与集中式单元(centralized unit,CU)之间的F1接口,IAB节点与IAB宿主节点之间的网络层仍然基于互联网协议(internet protocol,IP)协议传输F1接口的用户面或控制面的数据包,但是目前尚未实现IAB节点与IAB宿主节点(具体可以是IAB宿主DU)之间通过哪个RLC信道传输用于获取IP地址相关的消息。
发明内容
本申请实施例提供一种RLC信道确定方法和装置,用于确定IAB节点与IAB宿主节点(具体可以是IAB宿主DU)之间通过哪个RLC信道传输用于获取IP地址相关的消息。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供了一种RLC信道确定方法,包括:第一接入回传一体化IAB节点从IAB宿主节点接收第一指示信息,第一指示信息用于指示第一IAB节点和第一IAB节点的父节点之间承载第一类型数据包的第一无线链路控制RLC信道,其中,第一类型数据包包括第一类型消息,第一类型消息用于请求互联网协议IP地址;第一IAB节点根据第一指示信息确定第一RLC信道。
本申请实施例提供的RLC信道确定方法,IAB宿主节点配置第一IAB节点的RLC信道,用于第一IAB节点通过该RLC信道向IAB宿主节点发送请求IP地址的消息,从而实现了确定IAB节点与IAB宿主节点(具体可以是IAB宿主DU)之间通过哪个RLC信道传输用于获取IP地址相关的消息。
在一种可能的实施方式中,第一指示信息包括第一RLC信道的标识。根据第一RLC信道的标识可以确定第一RLC信道。
在一种可能的实施方式中,第一指示信息还包括第一条件信息或者第一类型消息的类型信息;其中,第一条件信息包括第一类型数据包的IP五元组中的一项或者多项各自的第一取值或者第一取值范围,IP五元组包括源IP地址、目的IP地址、源端口号、目的端口号和传输层协议类型,类型信息包括如下中的一种或多种:动态主机配置协议DHCP消息、路由器请求RS消息、路由器公告RA消息、IP广播消息和IP组播消息。
在一种可能的实施方式中,该方法还包括:第一IAB节点生成第一数据包;第一IAB节点根据第一指示信息确定第一RLC信道包括:当第一数据包的IP五元组中的一项或者多项相应满足第一类型数据包的IP五元组中的一项或者多项各自的第一取值或者第一取值范围,确定通过第一RLC信道承载第一数据包;或者,当第一数据包包括的第一消息的消息类型为类型信息中的一种时,确定通过第一RLC信道承载第一数据包。对于第一RLC信道非专用于承载第一类型数据包时,根据上述第一条件信息或者第一类型消息的类型信息可以确定承载第一数据包的第一RLC信道。
在一种可能的实施方式中,第一指示信息还包括第一类型数据包的预设字段的目标值。
在一种可能的实施方式中,该方法还包括:第一IAB节点生成第一数据包;当第一数据包的IP五元组中的一项或者多项相应满足第一类型数据包的IP五元组中的一项或者多项各自的第一取值或者第一取值范围,或者,当第一数据包包括的消息的类型为类型信息中的一种时,将第一数据包的预设字段设置为目标值;当第一数据包的预设字段的值为目标值时,确定通过第一RLC信道承载第一数据包。
在一种可能的实施方式中,预设字段为差分服务代码点DSCP或流标签。
在一种可能的实施方式中,第一数据包中还包括第一IAB节点的标识。第一IAB节点的标识可以指示中间IAB节点以及IAB宿主节点:第一数据包来自于第一数据包。
在一种可能的实施方式中,第一IAB节点的标识携带在以下第一数据包的一个或者多个字段中:客户端硬件地址字段、DHCP唯一标识、回传适配协议BAP层的BAP地址字段。
在一种可能的实施方式中,方法还包括:第一IAB节点从IAB宿主节点接收第二指示信息,第二指示信息指示第一类型数据包在无线回传链路的目标节点为IAB宿主节点。
在一种可能的实施方式中,第二指示信息还包括IAB宿主节点的标识。
在一种可能的实施方式中,第一类型数据包中包括IAB宿主节点的标识,第二指示信息还包括第二条件信息或者第一类型消息的类型信息,第二条件信息为第一类型数据包的IP五元组中的一项或者多项各自的第二取值或者第二取值范围,类型信息包括如下中的一种或多种:DHCP消息、RS消息、RA消息、IP广播消息和IP组播消息。便于中间IAB节点获知第一类型数据包在无线回传链路的目标节点为IAB宿主节点,以便中间IAB节点向IAB宿主节点转发第一类型数据包。
在一种可能的实施方式中,该方法还包括:第一IAB节点生成第二数据包;当第 二数据包的IP五元组中的一项或者多项相应满足第一类型数据包的IP五元组中的一项或者多项各自的第二取值或者第二取值范围时,或者,当第二数据包包括的消息的类型为类型信息中的一种时,第二数据包包括IAB宿主节点的标识。
在一种可能的实施方式中,该方法还包括:第一IAB节点接收第二类型数据包,其中,第二类型数据包包括第二类型消息,第二类型消息用于指示分配给第一IAB节点的IP地址。
第二方面,提供了一种RLC信道确定方法,包括:接入回传一体化IAB宿主节点确定第一指示信息,第一指示信息用于指示第一IAB节点和第一IAB节点的父节点之间承载第一类型数据包的无线链路控制RLC信道,其中,第一类型数据包包括第一类型消息,第一类型消息用于第一IAB节点请求互联网协议IP地址;IAB宿主节点向第一IAB节点发送第一指示信息。
本申请实施例提供的RLC信道确定方法,IAB宿主节点配置第一IAB节点的RLC信道,用于第一IAB节点通过该RLC信道向IAB宿主节点发送请求IP地址的消息,从而实现了确定IAB节点与IAB宿主节点(具体可以是IAB宿主DU)之间通过哪个RLC信道传输用于获取IP地址相关的消息。
在一种可能的实施方式中,第一指示信息包括第一RLC信道的标识。根据第一RLC信道的标识可以确定第一RLC信道。
在一种可能的实施方式中,第一指示信息还包括第一条件信息或者第一类型消息的类型信息;其中,第一条件信息包括第一类型数据包的IP五元组中的一项或者多项各自的第一取值或者第一取值范围,IP五元组包括源IP地址、目的IP地址、源端口号、目的端口号和传输层协议类型,类型信息包括如下中的一种或多种:动态主机配置协议DHCP消息、路由器请求RS消息、路由器公告RA消息、IP广播消息和IP组播消息。对于第一RLC信道非专用于承载第一类型数据包时,根据上述第一条件信息或者第一类型消息的类型信息可以确定承载第一数据包的第一RLC信道。
在一种可能的实施方式中,第一指示信息还包括第一类型数据包中的预设字段的目标值。
在一种可能的实施方式中,预设字段为差分服务代码点DSCP或流标签。
在一种可能的实施方式中,该方法还包括:IAB宿主节点从第一IAB节点接收第一类型数据包;IAB宿主节点获取为第一IAB节点分配的IP地址;IAB宿主节点向第一IAB节点发送第二类型数据包,其中,第二类型数据包包括第二类型消息,第二类型消息用于指示分配给第一IAB节点的IP地址。
在一种可能的实施方式中,该方法还包括:IAB宿主节点确定IP地址与第一IAB节点的标识之间的映射关系。当下次IAB宿主节点获取目的IP地址为上述IP地址的数据包时,知道应该转发给第一IAB节点。
在一种可能的实施方式中,该方法还包括:IAB宿主节点向第一IAB节点发送第二指示信息,第二指示信息指示第一类型数据包在无线回传链路的目标节点为IAB宿主节点。
在一种可能的实施方式中,第二指示信息还包括IAB宿主节点的标识。
在一种可能的实施方式中,第二指示信息还包括第二条件信息或者第一类型消息 的类型信息,第二条件信息为第一类型数据包的IP五元组中的一项或者多项各自的第二取值或者第二取值范围,类型信息包括如下中的一种或多种:DHCP消息、RS消息、RA消息、IP广播消息和IP组播消息。便于中间IAB节点获知第一类型数据包在无线回传链路的目标节点为IAB宿主节点,以便中间IAB节点向IAB宿主节点转发第一类型数据包。
第三方面,提供了一种无线链路控制RLC信道确定方法,包括:接入回传一体化IAB宿主分布式单元DU从IAB宿主集中式单元CU接收第三指示信息,第三指示信息用于指示IAB宿主DU与IAB宿主DU的子IAB节点之间承载第二类型数据包的第二RLC信道,其中,第二类型数据包包括第二类型消息,第二类型消息用于指示分配给第一IAB节点的互联网协议IP地址,第一IAB节点为IAB宿主DU的子节点或者第一IAB节点经过一个或者多个中间IAB节点连接至IAB宿主DU;IAB宿主DU根据第三指示信息确定第二RLC信道。
本申请实施例提供的RLC信道确定方法,IAB宿主CU配置IAB宿主DU的RLC信道,用于IAB宿主DU通过该RLC信道向IAB宿主DU的子节点(例如IAB节点)发送指示IP地址的消息,从而实现了确定IAB节点与IAB宿主节点(具体可以是IAB宿主DU)之间通过哪个RLC信道传输用于获取IP地址相关的消息。
在一种可能的实施方式中,第三指示信息包括第二RLC信道的标识。根据第二RLC信道的标识可以确定第二RLC信道。
在一种可能的实施方式中,第三指示信息还包括第三条件信息或者第二类型消息的类型信息,其中,第三条件信息包括第二类型数据包的IP五元组中的一项或者多项各自的第三取值或者第三取值范围,IP五元组包括源IP地址、目的IP地址、源端口号、目的端口号和传输层协议类型,类型信息包括如下中的一种或多种:动态主机配置协议DHCP消息、路由器请求RS消息、路由器公告RA消息、IP广播消息和IP组播消息。
在一种可能的实施方式中,第三指示信息还包括第二类型数据包的预设字段的目标值。
在一种可能的实施方式中,该方法还包括:IAB宿主DU生成第二数据包;当第二数据包的IP五元组中的一项或者多项相应满足第二类型数据包的IP五元组中的一项或者多项各自的第三取值或者第三取值范围,或者,当第二数据包包括的消息的类型为类型信息中的一种时,将第二数据包的预设字段设置为目标值;当第二数据包的预设字段的值为目标值时,通过第二RLC信道承载第二数据包。对于第二RLC信道非专用于承载第二类型数据包时,根据上述第三条件信息或者第三类型消息的类型信息可以确定承载第二数据包的第二RLC信道。
在一种可能的实施方式中,预设字段为差分服务代码点DSCP或流标签。
在一种可能的实施方式中,该方法还包括:IAB宿主DU从IAB宿主DU的子节点接收第一类型数据包,其中,第一类型数据包包括第一消息,第一消息用于第一IAB节点请求IP地址;IAB宿主DU获取为第一IAB节点分配的IP地址;IAB宿主DU通过第二RLC信道发送第二类型数据包。
在一种可能的实施方式中,该方法还包括:IAB宿主DU确定IP地址与第一IAB 节点的标识之间的映射关系。当下次IAB宿主DU获取目的IP地址为上述IP地址的数据包时,知道应该转发给第一IAB节点。
第四方面,提供了一种无线链路控制RLC信道确定方法,包括:接入回传一体化IAB宿主集中式单元CU确定第三指示信息,第三指示信息用于指示IAB宿主分布式单元DU与连接到IAB宿主DU的子IAB节点之间承载第二类型数据包的第二RLC信道,其中,第二类型数据包包括第二类型消息,第二类型消息用于指示分配给第一IAB节点的互联网协议IP地址,第一IAB节点为IAB宿主DU的子节点或者第一IAB节点经过一个或者多个中间IAB节点连接至IAB宿主DU;IAB宿主CU向IAB宿主DU发送第三指示信息。
本申请实施例提供的RLC信道确定方法,IAB宿主CU配置IAB宿主DU的RLC信道,用于IAB宿主DU通过该RLC信道向IAB宿主DU的子节点(例如IAB节点)发送指示IP地址的消息,从而实现了确定IAB节点与IAB宿主节点(具体可以是IAB宿主DU)之间通过哪个RLC信道传输用于获取IP地址相关的消息。
在一种可能的实施方式中,第三指示信息包括第二RLC信道的标识。根据第二RLC信道的标识可以确定第二RLC信道。
在一种可能的实施方式中,第三指示信息还包括第三条件信息或者第二类型消息的类型信息,其中,第三条件信息包括第二类型数据包的IP五元组中的一项或者多项各自的第三取值或者第三取值范围,IP五元组包括源IP地址、目的IP地址、源端口号、目的端口号和传输层协议类型,类型信息包括如下中的一种或多种:动态主机配置协议DHCP消息、路由器请求RS消息、路由器公告RA消息、IP广播消息和IP组播消息。对于第二RLC信道非专用于承载第二类型数据包时,根据上述第三条件信息或者第三类型消息的类型信息可以确定承载第二数据包的第二RLC信道。
在一种可能的实施方式中,第三指示信息还包括第二类型数据包的预设字段的目标值;其中,预设字段为差分服务代码点DSCP或流标签。
第五方面,提供了一种通信装置,包括:处理模块和收发模块;处理模块和收发模块用于执行如第一方面及其任一项所述的方法。
第六方面,提供了一种通信装置,包括:处理模块和收发模块;处理模块和收发模块用于执行如第二方面及其任一项所述的方法。
第七方面,提供了一种通信装置,包括:处理模块和收发模块;处理模块和收发模块用于执行如第三方面及其任一项所述的方法。
第八方面,提供了一种通信装置,包括:处理模块和收发模块;处理模块和收发模块用于执行如第四方面及其任一项所述的方法。
第九方面,提供了一种通信装置,所述通信装置包括处理器、存储器和收发器,所述处理器与存储器耦合,当所述处理器执行存储器中的计算机程序或指令时,如第一方面及其任一项所述的方法被执行。
第十方面,提供了一种通信装置,所述通信装置包括处理器、存储器和收发器,所述处理器与存储器耦合,当所述处理器执行存储器中的计算机程序或指令时,如第二方面及其任一项所述的方法被执行。
第十一方面,提供了一种通信装置,所述通信装置包括处理器、存储器和收发器, 所述处理器与存储器耦合,当所述处理器执行存储器中的计算机程序或指令时,如第三方面及其任一项所述的方法被执行。
第十二方面,提供了一种通信装置,所述通信装置包括处理器、存储器和收发器,所述处理器与存储器耦合,当所述处理器执行存储器中的计算机程序或指令时,如第四方面及其任一项所述的方法被执行。
第十三方面,提供了一种芯片,包括:处理器和接口,用于从存储器中调用并运行所述存储器中存储的计算机程序,执行如第一方面及其任一项所述的方法,或者,执行如第二方面及其任一项所述的方法,或者,执行如第三方面及其任一项所述的方法,或者,执行如第四方面及其任一项所述的方法。
第十四方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在计算机或处理器上运行时,使得计算机或处理器执行如第一方面及其任一项所述的方法,或者,执行如第二方面及其任一项所述的方法,或者,执行如第三方面及其任一项所述的方法,或者,执行如第四方面及其任一项所述的方法。
第十五方面,提供了一种包含指令的计算机程序产品,当该指令在计算机或处理器上运行时,使得计算机或处理器执行如第一方面及其任一项所述的方法,或者,执行如第二方面及其任一项所述的方法,或者,执行如第三方面及其任一项所述的方法,或者,执行如第四方面及其任一项所述的方法。
第十六方面,提供了一种通信系统,包括如第五方面所述的通信装置和如第六方面所述的通信装置,或者,包括如第七方面所述的通信装置和如第八方面所述的通信装置,或者,包括如第九方面所述的通信装置和如第十方面所述的通信装置,或者,包括如第十一方面所述的通信装置和如第十二方面所述的通信装置。
第五方面至第十六方面的技术效果可以参照第一方面至第四方面的各种可能实施方式所述内容。
附图说明
图1为本申请实施例提供的一种IAB网络的架构示意图;
图2为本申请实施例提供的一种通信系统的架构示意图;
图3为本申请实施例提供的一种网络设备的结构示意图;
图4A为本申请实施例提供的一种基于IPv4的DHCP协议中请求IP地址的交互示意图;
图4B为本申请实施例提供的一种基于IPv6的DHCPv6协议中请求IP地址的交互示意图;
图4C为本申请实施例提供的一种基于IPv6的无状态地址配置方式请求IP地址的交互示意图;
图5为本申请实施例提供的一种RLC信道确定方法的流程示意图一;
图6为本申请实施例提供的一种RLC信道确定方法的流程示意图二;
图7为本申请实施例提供的一种RLC信道确定方法的流程示意图三;
图8为本申请实施例提供的一种RLC信道确定方法的流程示意图四;
图9为本申请实施例提供的一种RLC信道确定方法的流程示意图五;
图10为本申请实施例提供的一种RLC信道确定方法的流程示意图六;
图11为本申请实施例提供的一种RLC信道确定方法的流程示意图七;
图12为本申请实施例提供的一种RLC信道确定方法的流程示意图八;
图13为本申请实施例提供的一种通信装置的结构示意图;
图14为本申请实施例提供的另一种通信装置的结构示意图;
图15为本申请实施例提供的又一种通信装置的结构示意图;
图16为本申请实施例提供的再一种通信装置的结构示意图。
具体实施方式
本申请将围绕可包括多个设备、组件、模块等的系统来呈现各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例依托无线通信网络中5G网络的场景进行说明,应当指出的是,本申请实施例中的方案还可以应用于其他无线通信网络中,相应的名称也可以用其他无线通信网络中的对应功能的名称进行替代。
本申请结合无线网络设备来描述各个方面,该无线网络设备可以为基站,基站可以用于与一个或多个终端设备进行通信,也可以用于与一个或多个具有部分终端设备功能的基站进行通信(比如宏基站与微基站,如接入点,之间的通信);基站还可以称为接入点、节点、节点B、演进节点B(eNB)或某种其它网络实体,并且可以包括以上网络实体的功能中的一些或所有功能。基站可以通过空中接口与终端设备进行通信。该通信可以通过一个或多个扇区来进行。基站可以通过将所接收的空中接口帧转换成互联网协议(internet protocol,IP)分组,来用作终端设备和接入网络的其余部分之间的路由器,其中所述接入网络包括IP网络。基站还可以对空中接口属性的管理进行协调,并且还可以是有线网络和无线网络之间的网关。
如图2所示,本申请实施例提供的通信系统包括:第一IAB节点21和IAB宿主节点23。可选的,还可以包括第二IAB节点22。
第一IAB节点21可以与IAB宿主节点23直连,或者,第一IAB节点21可以与第二IAB节点22连接,第二IAB节点22与IAB宿主节点23连接。第一IAB节点21、第二IAB节点22和IAB宿主节点23之间通过无线链路连接。需要说明的是,本申请不限定第二IAB节点22的个数,即第一IAB节点21可以通过多个第二IAB节点22与IAB宿主节点23通信。例如,第一IAB节点向至少一个第二IAB节点发送数据包,该第二IAB节点再通过其他第二IAB节点将该数据包转发给IAB宿主节点。或者,IAB宿主节点向至少一个第二IAB节点发送数据包,该第二IAB节点再通过其他第二IAB节点将该数据包转发给第一IAB节点。
另外,本申请实施例中,以第一IAB节点与IAB宿主节点之间有一个中间IAB节点(第二IAB节点)为例进行说明,但并不意在限于此。
第一IAB节点21或第二IAB节点22也可以称为中继节点(relay node,RN),可以为终端设备提供无线接入服务,终端设备的业务数据由IAB节点通过无线回传链路传输至IAB宿主节点。
第一IAB节点21或第二IAB节点22可以包括移动终端(mobile termination,MT)部分和分布式单元(distributed unit,DU)部分。例如,当第一IAB节点21或第二IAB节点22面向其父节点时,可以作为终端设备,即作为MT的角色;当第一IAB节点21或第二IAB节点22面向其子节点(子节点可能是另一IAB节点或者普通终端设备)时,可以作为网络设备,即作为基站的DU的角色。
IAB宿主节点23也可以称为宿主基站(donor gNodeB,DgNB),IAB宿主节点23可以是一个具有完整基站功能的接入网网元,还可以是包括IAB宿主分布式单元(distributed unit,DU)231和IAB宿主集中式单元(centralized unit,CU)232的接入网网元。IAB宿主DU 231和IAB宿主CU 232之间可以通过有线链路连接。IAB宿主节点23连接到为终端设备服务的核心网(例如连接到5G核心网,5GC)网元,并为IAB节点提供无线回传功能。需要说明的是,IAB宿主CU 232还可能是控制面(control plane,CP)和用户面(user plane,UP)分离的形态,例如,IAB宿主CU 232还可以包括一个CU-CP和至少一个CU-UP。
在本申请实施例中,第二IAB节点22作为向第一IAB节点21提供回传服务的相邻节点,因此将第二IAB节点22视为第一IAB节点21父节点,相应地,将第一IAB节点21视为第二IAB节点22的子节点。如果第一IAB节点21与IAB宿主节点23直连,则IAB宿主节点23为第一IAB节点21的父节点,第一IAB节点21作为IAB宿主节点23的子节点。
下面对第一IAB节点21、第二IAB节点22和IAB宿主节点23的结构进行说明。
前文所述的第一IAB节点21、第二IAB节点22和IAB宿主节点23可以统称为网络设备。
如图3所示,网络设备30包括处理器301、存储器302和收发器303。收发器303包括发射机3031、接收机3032和天线3033。
发射机3031可以用于通过天线3033发送数据信息,接收机3032可以用于通过天线3033接收数据信息。例如,第一IAB节点21可以通过其发射机向第二IAB节点22发送数据,第一IAB节点21可以通过其接收机从第二IAB节点22接收数据。
存储器302可用于存储软件程序及数据。处理器301通过运行存储在存储器302的软件程序和/或数据,从而执行网络设备30的各种功能以及数据处理。存储器302可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序等;存储数据区可存储根据网络设备30的使用所创建的数据等。此外,存储器302可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器301是网络设备30的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在存储器302内的软件程序,以及调用存储在存储器302内的数据,执行网络设备30的各种功能和处理数据。在一些实施例中,处理器301可以包括一个或多个处理单元;处理器301还可以为片上系统(system on chip,SOC), SOC可以集成应用处理器、基带处理器、数字信号处理器(digit signal processor,DSP)等。其中,应用处理器主要处理操作系统和应用程序等;基带处理器主要处理无线通信;DSP主要用于快速地实现各种数字信号处理算法。可以理解的是,上述基带处理器也可以不集成到处理器301中。本申请中处理器301可以执行本文涉及的RLC信道确定方法。
在本申请实施例中,若采用动态主机配置协议(dynamic host configuration protocol,DHCP)为IAB节点分配IP地址,则IAB宿主DU 231可以作为管理IP地址分配的节点,例如作为DHCP服务器;或者,该通信系统还可以包括DHCP服务器24,IAB宿主DU 231作为DHCP中继或DHCP代理,IAB宿主DU 231和DHCP服务器24之间通过有线链路连接。
在第一IAB节点21通过第二IAB节点22服务的小区接入到网络后,第一IAB节点21需要为其DU部分获取IP地址。第一IAB节点21可以作为DHCP客户端,通过DHCP协议向DHCP服务器24请求IP地址。若第一IAB节点21采用DHCP协议获取IP地址,则需要预先在两段无线回传链路(即第一IAB节点21和第二IAB节点22之间,以及第二IAB节点22和IAB宿主DU 231之间)进行必要的配置,以便第一IAB节点21可以经过第二IAB节点22和IAB宿主DU 231,与DHCP服务器之间顺利交互DHCP消息。
如图4A所示,为基于IPv4的DHCP协议中请求IP地址的交互示意图。整个交互过程包括S401-S404:
S401、DHCP客户端向DHCP服务器发送DHCP发现(DHCP Discover)消息。
当DHCP客户端启动时,会自动将自己的IP地址配置成0.0.0.0,由于使用0.0.0.0不能进行正常通信,所以客户端就必须通过DHCP服务器来获取一个合法的地址。由于客户端不知道DHCP服务器的IP地址,所以它使用0.0.0.0的地址作为源IP地址,使用UDP68端口作为源端口,使用255.255.255.255作为目的IP地址,使用UDP67端口作为目的端口来广播DHCP发现消息,以请求IP地址。
S402、DHCP服务器向DHCP客户端发送DHCP预分配(DHCP Offer)消息。
当DHCP服务器接收到客户端发送的DHCP发现消息时,在IP地址池中查找是否有合法的IP地址分配给客户端。因为DHCP客户端还没有IP地址,所以DHCP服务器使用自己的IP地址作为源IP地址,使用UDP67端口作为源端口,使用255.255.255.255作为目的IP地址,使用UDP68端口作为目的端口来广播DHCP预分配信息。DHCP预分配消息中包括:DHCP客户端的MAC地址、DHCP服务器分配的IP地址、子网掩码、默认网关(路由)、租约期限、DHCP服务器的IP地址。
S403、DHCP客户端向DHCP服务器发送DHCP请求(DHCP Request)消息。
在一个网络中可能有多个DHCP服务器,DHCP客户端可能接收到多个DHCP预分配消息。DHCP客户端从接收到的第一个DHCP预分配消息中选择分配的IP地址,DHCP租约生效。DHCP客户端仍然使用0.0.0.0的地址作为源IP地址,使用UDP68端口作为源端口,使用255.255.255.255作为目的IP地址,使用UDP67端口作为目的端口来广播DHCP请求消息。DHCP请求消息包括该DHCP客户端选择IP地址对应的服务器的服务标识符(例如IP地址)。
S404、DHCP服务器向DHCP客户端发送DHCP确认(DHCP Ack)消息。
DHCP服务器接收到DHCP请求消息后,仍然使用自己的IP地址作为源IP地址,使用UDP67端口作为源端口,使用255.255.255.255作为目的IP地址,使用UDP68端口作为目的端口来广播DHCP确认消息。DHCP确认消息包括IP地址的有效租约和其他可能配置的信息。当DHCP客户端接收到DHCP确认消息时,配置分配的IP地址,完成请求IP地址的交互流程。
如图4B所示,为基于IPv6的DHCPv6协议中有状态地址配置方式请求IP地址的交互示意图。整个交互过程包括S411-S414:
S411、DHCP客户端向DHCP服务器发送DHCPv6征求(DHCPv6 Solicit)消息。
DHCP客户端发送DHCPv6征求消息时采用的是本地链路地址(link-local addresses)作为源IP地址。IPv6协议中规定,每个IPv6接口有本地链路地址,使用FE80::/10地址块,类似于IPv4中的169.254.0.0/16网段,DHCP客户端启用时,会自动配置一个本地链路地址,所以客户端利用本地链路地址与DHCP服务器通信来获取一个合法的地址。由于客户端不知道DHCP服务器的IP地址,所以使用组播地址(例如用于广播域内所有服务器和中继节点的FF02::1:2,或者用于广播域内所有服务器的FF05::1:3)作为目的IP地址,来发送DHCPv6征求消息,以请求IP地址。DHCP客户端发送DHCPv6征求消息时使用UDP端口546作为源端口,使用UDP端口547作为目的端口。
可选的,在DHCPv6征求消息中,可以携带快速提交(rapid commit)选项,表示DHCP客户端需要DHCP服务器能够快速为其分配地址(或前缀)和网络配置参数。
S412、DHCP服务器向DHCP客户端发送DHCPv6通知(DHCPv6 Advertise)消息。
当DHCP服务器接收到客户端发送的DHCPv6征求消息时,从IPv6地址(或前缀)池中挑选一个尚未分配的IPv6地址(或前缀)分配给DHCP客户端,向该DHCP客户端发送DHCP通知消息,以通知DHCP客户端可以为其分配的IPv6地址(或前缀)和网络配置参数,DHCP服务器使用自己的本地链路地址作为源IP地址,使用DHCP客户端的本地链路地址作为目的IP地址。DHCP服务器发送DHCPv6通知消息时使用UDP端口547作为源端口,使用UDP端口546作为目的端口。
可选的,若DHCP服务器支持两步交互,且在接收到的DHCPv6征求消息中携带有快速提交(rapid commit)选项,则DHCP服务器可直接执行步骤S414,无需执行步骤S412和S413。
S413、DHCP客户端向DHCP服务器发送DHCPv6请求(DHCPv6 Request)消息。
如果DHCP客户端接收到多个DHCP服务器回复的DHCPv6通知消息,则根据配置的策略(例如消息接收的先后顺序、服务器优先级等),选择其中一台DHCP服务器,并向该DHCP服务器发送DHCPv6请求消息,请求DHCP服务器确认为其分配的IPv6地址(或前缀)和网络配置参数。
DHCP客户端发送DHCPv6请求消息时,仍然可以使用自己的本地链路地址作为源IP地址,使用组播地址(例如用于广播域内所有服务器和中继节点的FF02::1:2,或者用于广播域内所有服务器的FF05::1:3)作为目的IP地址,使用UDP端口546作为 源端口,使用UDP端口547作为目的端口。
或者,若DHCPv6通知消息中携带有服务器单播(server unicast)选项,DHCP客户端也支持,则DHCP客户端以单播方式向DHCP服务器发送DHCPv6请求消息,DHCP客户端使用自己的本地链路地址作为源IP地址,使用DHCP服务器的本地链路地址作为目的IP地址,使用UDP端口546作为源端口,使用UDP端口547作为目的端口。
S414、DHCP服务器向DHCP客户端发送DHCPv6回复(DHCPv6 Reply)消息。
DHCP服务器向DHCP客户端发送DHCPv6回复消息,确认将IPv6地址(或前缀)和网络配置参数分配给DHCP客户端使用。DHCP服务器向DHCP客户端发送DHCPv6回复消息时,使用自己的本地链路地址作为源IP地址,使用DHCP客户端的本地链路地址作为目的IP地址,使用UDP端口547作为源端口,使用UDP端口546作为目的端口。
如图4C所示,为基于IPv6的无状态地址配置方式获取IP地址的交互示意图。整个交互过程包括S421-S422:
S421、需要获取IP地址的设备向IPv6路由器发送路由器请求(router solicitation,RS)消息。
需要获取IP地址的设备发送路由器请求消息目的在于获取本地网络的网络前缀信息和其他参数,发送该消息时使用设备的本地链路地址作为源IP地址,使用组播地址(例如所有路由器的组播地址FF02::2)作为目的IP地址。
S422、IPv6路由器向需要获取IP地址的设备发送路由器公告(router advertisement,RA)消息。
路由器公告消息中携带有IPv6地址前缀,用于需要获取IP地址的设备生成全局IPv6地址。路由器发送路由器公告消息时使用路由器的IPv6地址(例如路由器的本地链路地址)作为源IP地址,可以使用组播地址(例如本地链路所有节点的组播地址FF02::1)作为目的IP地址,或者使用发送路由器请求消息的设备的本地链路地址作为目的IP地址。
若IAB节点作为需要获取IP地址的设备,采用无状态地址配置方式时,IAB宿主DU可以作为IPv6路由器,向IAB节点发送路由器公告消息。
如前文所述,目前尚未实现IAB节点与IAB宿主节点(IAB宿主DU)之间通过哪个RLC信道传输IP地址相关的消息。本申请实施例基于上述DHCP协议或DHCPv6协议或IPv6的无状态地址配置方式来实现IAB节点与IAB宿主节点(IAB宿主DU)之间IP地址的交互,首先需要确定IAB节点通过哪个RLC信道承载向IAB宿主节点(IAB宿主DU)发送的数据包,并确定IAB宿主节点(IAB宿主DU)通过哪个RLC信道承载向IAB节点发送的数据包,以此完成上述交互。
具体的,本申请实施例提供了一种RLC信道确定方法,由IAB宿主节点23的IAB宿主CU 232对第一IAB节点21进行上行无线回传链路的配置,使得第一IAB节点21确定第一RLC信道,第一RLC信道用于在第一IAB节点和第一IAB节点的父节点之间承载第一类型数据包。在第一IAB节点21通过第二IAB节点22服务的小区接入到网络后,第一IAB节点21通过该第一RLC信道向IAB宿主DU 231发送请求IP地 址的DHCP消息或路由器请求消息。具体的,如果第一IAB节点21与IAB宿主DU 231之间无中间IAB节点,则第一IAB节点21直接通过第一RLC信道向IAB宿主DU 231发送上述DHCP消息或路由器请求消息;如果第一IAB节点与IAB宿主DU 231之间有中间IAB节点,则第一IAB节点21通过该第一RLC信道向中间IAB节点发送上述DHCP消息或路由器请求消息,再由中间IAB节点转发给IAB宿主DU 231。
IAB宿主节点23的IAB宿主DU 231作为DHCP服务器或者DHCP代理或者无状态地址配置中的IPv6路由器,为第一IAB节点21分配IP地址或前缀(即IPv6地址前缀);或者,IAB宿主节点23的IAB宿主DU 231作为DHCP中继从DHCP服务器获取为第一IAB节点21分配的IP地址或前缀。由IAB宿主节点23的IAB宿主CU 232对IAB宿主DU 231进行下行无线回传链路的配置,使得IAB宿主DU 231确定第二RLC信道,第二RLC信道用于在IAB宿主DU与IAB宿主DU的子IAB节点之间承载第二类型数据包。IAB宿主DU 231通过该第二RLC信道向第一IAB节点21发送指示IP地址的DHCP消息或路由器公告消息。从而使得第一IAB节点21能够获取DHCP服务器为其分配的IP地址。具体的,如果第一IAB节点21与IAB宿主DU 231之间无中间IAB节点,则IAB宿主DU 231直接通过第二RLC信道向第一IAB节点21发送上述DHCP消息或路由器公告消息;如果第一IAB节点与IAB宿主DU 231之间有中间IAB节点,则IAB宿主DU 231通过该第二RLC信道向中间IAB节点发送上述DHCP消息或路由器公告消息,再由中间IAB节点转发给第一IAB节点21。
本申请中,用于请求IP地址的DHCP消息可以是以下中的一种或多种:DHCP发现(DHCP Discover)消息、DHCP请求(DHCP Request)消息、DHCPv6征求(DHCPv6 Solicit)消息、DHCPv6请求(DHCPv6 Request)消息。用于请求IP地址的DHCP消息还可以是其他DHCP客户端向DHCP服务器发送的DHCP消息,例如DHCP释放(DHCP Release)消息、DHCPv6释放(DHCPv6 Release)消息、DHCP通知(DHCP Inform)消息、DHCP谢绝(DHCP Decline)消息、DHCPv6谢绝(DHCPv6 Decline)消息、DHCPv6确认(DHCPv6 Confirm)消息、DHCPv6更新(DHCPv6 Renew)消息、DHCPv6再绑定(DHCPv6 Rebind)消息等,本申请不予限定。
用于指示IP地址的DHCP消息可以包括以下中的一种或多种:DHCP确认(DHCP Ack)消息、DHCP预分配(DHCP Offer)消息、DHCPv6通知(DHCPv6 Advertise)消息,DHCPv6回复(DHCPv6 Reply)消息。用于请求IP地址的DHCP消息还可以是其他DHCP服务器向DHCP客户端发送的DHCP消息,例如DHCP非确认(DHCP NAK)消息、DHCPv6再配置(DHCPv6 Reconfigure)消息等,本申请不予限定。
需要说明的是,本申请实施例中,如果IAB宿主节点不是CU和DU分离形态,则对第一IAB节点执行上述配置功能的是IAB宿主节点;如果IAB宿主节点是CU和DU分离形态,则对第一IAB节点和IAB宿主DU执行上述配置功能的是IAB宿主节CU;如果IAB宿主CU是CP和UP分离形态,则对第一IAB节点和IAB宿主DU执行上述配置功能的是IAB宿主CU-CP。
目前,终端侧的无线承载(radio bearer,RB)对应有上层协议层(例如PDCP层)部分和下层协议层(例如,RLC层和MAC层)部分。对IAB节点,RLC层和上层协议层(例如,PDCP层、BAP层,具体视RLC层的上层协议层而定)之间的信道可以 称为RLC信道。RLC层和下层协议层(例如,MAC层)之间的信道可以称为逻辑信道,逻辑信道也可以称为MAC逻辑信道。RLC层实体和MAC逻辑信道可以统称为RLC承载。
本申请实施例中,涉及的RLC信道为IAB节点在无线回传链路的RLC信道,因为IAB节点在无线回传链路的RLC信道与RLC层实体、RLC承载(RLC bearer)、逻辑信道(logical channel,简称LCH)均一一对应,因此本申请实施例中的RLC信道也可以替换为回传RLC信道(backhaul RLC channel)、回传RLC承载(backhaul RLC bearer)、回传承载(backhaul bearer)、逻辑信道等,本申请不作限定。
本申请实施例中,以第一RLC信道指代上行RLC信道,即从第一IAB节点向IAB宿主节点方向的RLC信道。第二RLC信道指代下行RLC信道,即从IAB宿主节点向第一IAB节点方向的RLC信道。如果第一IAB节点与IAB宿主节点之间不存在中间IAB节点,并且同一RLC信道既可以用作上行传输又可以用作下行传输,则第一RLC信道和第二RLC信道可以为同一RLC信道。
如图5所示,该RLC信道确定方法包括:
S501、IAB宿主节点确定针对第一IAB节点的第一指示信息。
具体的,该步骤可以由IAB宿主节点、IAB宿主节点的IAB宿主CU或IAB宿主节点的IAB宿主CU-CP来执行。
第一指示信息用于指示第一IAB节点和第一IAB节点的父节点之间承载第一类型数据包的第一无线链路控制(radio link control,RLC)信道。在本申请实施例中,第一IAB节点的父节点可以为第二IAB节点。当第一IAB节点与IAB宿主节点直连(可以理解为不经过其他中间IAB节点)时,第一IAB节点的父节点可以为IAB宿主节点或者IAB宿主DU。
可以理解,第一类型数据包是指某一类型的数据包,第一指示信息可以指示该类型数据包的特征,从而第一IAB节点生成数据包后,可以判断生成的数据包是否满足第一类型数据包的特征,如果满足,则通过第一RLC信道承载该生成的数据包。
第一类型数据包可以包括第一类型消息,第一类型消息用于第一IAB节点请求IP地址。示例性的,第一类型数据包可以为IP数据包,第一类型消息作为IP数据包的载荷部分,可以为自定义的IP地址请求消息,或者,可以为DHCP协议中DHCP发现消息、DHCP请求消息,或者,可以为DHCPv6协议中的DHCPv6征求(DHCPv6 Solicit)消息、DHCPv6请求(DHCPv6 Request)消息。或者,第一类型数据包可以为BAP数据包,第一类型消息作为BAP数据包的载荷部分,可以为IP广播消息或IP组播消息,该IP广播消息或IP组播消息可以用于请求IP地址。需要说明的是IP广播消息或IP组播消息还可以用于其他目的,本申请不作限定。
该第一RLC信道可以专用于承载第一类型数据包,也可以用于承载其他类型的数据包,本申请不作限定。
第一指示信息可以包括第一RLC信道的标识,用于在第一IAB节点和其父节点链路上唯一标识第一RLC信道。可选的,第一指示信息除了包括第一RLC信道的标识以外,还可以进一步包括第一映射规则。当待发送的数据包满足该第一映射规则时,将该待发送的数据包映射至该第一RLC信道。示例性的,如果该第一RLC信道并非 专用于传输第一类型数据包,还可以用于传输其他类型的消息,当待发送的数据包满足该第一映射规则时,将该待发送的数据包映射至该第一RLC信道。在后面步骤中会详细描述该第一映射规则。
S502、IAB宿主节点向第一IAB节点发送第一指示信息。
具体的,该步骤可以由IAB宿主节点、IAB宿主节点的IAB宿主CU或IAB宿主节点的IAB宿主CU-CP来执行。
相应地,第一IAB节点从IAB宿主节点接收第一指示信息。
第一指示信息可以在无线资源控制(radio resource control,RRC)消息(例如IAB宿主节点发送给第一IAB节点的MT部分的RRC消息)中携带。
S503、第一IAB节点根据第一指示信息确定第一RLC信道。
当该第一RLC信道专用于传输第一类型数据包时,第一IAB节点可以根据第一RLC信道的标识确定第一RLC信道。
可选的,第一指示信息还可以包括以下第一映射规则:
可选的,在一种可能的实施方式中,第一指示信息还可以包括第一条件信息或者第一类型消息的类型信息。第一类型消息的类型信息可以包括如下中的一种或多种:DHCP消息、RS消息、RA消息、IP广播消息和IP组播消息等。第一条件信息可以包括第一类型数据包的IP五元组中的一项或者多项各自的第一取值或者第一取值范围,IP五元组包括源IP地址、目的IP地址、源端口号、目的端口号和传输层协议类型。
在第一IAB节点生成第一数据包(第一数据包可以指第一IAB节点待向第一IAB节点的父节点发送的数据包,下文简称待发送的数据包)之后,当第一数据包包括的消息的消息类型为第一类型消息的类型信息中的一种时,第一IAB节点可以根据第一RLC信道的标识确定通过第一RLC信息承载第一数据包;或者,当第一数据包的IP五元组中的一项或者多项相应满足第一类型数据包的IP五元组中的一项或者多项各自的第一取值或者第一取值范围时,则第一IAB节点可以根据第一RLC信道的标识确定通过第一RLC信道承载第一数据包。
示例性的,以基于IPv4的DHCP协议为例,对于DHCP发现消息和DHCP请求消息,目的IP地址为IP广播地址(每个比特都为1的IPv4地址255.255.255.255),则第一映射规则可以为:将目的IP地址为广播地址的数据包映射到指定的第一RLC信道上传输;或者,将目的IP地址为IP广播地址,传输层协议类型为用户数据报协议(user datagram protocol,UDP),源端口号为68,目标端口号为67的数据包,映射到指定的第一RLC信道上传输。
示例性的,以基于IPv6的DHCPv6协议为例,对于DHCPv6征求消息和DHCPv6请求消息,目的IP地址为组播地址,则第一映射规则可以为将目的IP地址为组播地址的数据包映射到指定的第一RLC信道上传输;或者,将目的IP地址为组播地址,传输层协议类型为用户数据报协议,源端口号为546,目标端口号为547的数据包,映射到指定的第一RLC信道上传输。
示例性的,以基于IPv6的无状态地址配置方式为例,对于路由器请求RS消息,目的IP地址可以为组播地址或者路由器的本地链路地址,则第一映射规则可以为:将目的IP地址为组播地址或路由器的本地链路地址的数据包映射到指定的第一RLC信 道上传输。
可选的,在另一种可能的实施方式中,第一指示信息可以包括第一类型数据包的预设字段的第一目标值。进一步的,第一指示信息还可以包括第一目标值与第一RLC信道的标识之间的映射关系,或者,在其他消息中携带第一目标值与第一RLC信道的标识之间的映射关系。预设字段可以为差分服务代码点(differentiated services code point,DSCP)和/或流标签(flow label,包含在IPv6的IP报头中)。
在第一IAB节点生成第一数据包(第一数据包可以指第一IAB节点待向第一IAB节点的父节点发送的数据包,下文简称待发送的数据包)之后,当第一数据包中包含的消息的消息类型为第一类型消息的类型信息中的一种时,或者,当第一数据包的IP五元组中的一项或者多项相应满足第一类型数据包的IP五元组中的一项或者多项各自的第一取值或者第一取值范围时,则第一IAB节点还可以将第一数据包中的预设字段的值设定为第一目标值;或者,当第一数据包中的预设字段的值为第一目标值时,第一IAB节点可以根据第一RLC信道的标识确定通过第一RLC信道承载第一数据包。
需要说明的是,第一目标值不限于DSCP或流标签中的一者的目标值,第一目标值还可以包括DSCP的目标值以及流标签的目标值。
可选的,第一数据包中还可以包括第一IAB节点的标识。其中,第一IAB节点的标识可以携带在以下一个或者多个字段中:第一数据包所包含载荷部分为DHCP消息时的客户端硬件地址(client hardware address)字段、第一类型数据包所包含载荷部分为DHCPv6消息时的DHCP唯一标识(DHCP unique identifier,DUID)、第一类型数据包的BAP层的BAP地址字段。
另外,上述配置内容不限于在一条配置消息中携带,可以在多条配置消息中分别携带。例如,第一指示信息、第一条件信息或者第一类型消息的类型信息可以在一条或多条配置消息中携带;第一指示信息、第一目标值、第一目标值与第一RLC信道的标识之间的映射关系可以在一条或多条配置消息中携带。
本申请实施例提供的RLC信道确定方法,IAB宿主节点配置第一IAB节点的RLC信道,用于第一IAB节点通过该RLC信道向IAB宿主节点发送请求IP地址的消息,从而实现了确定IAB节点与IAB宿主节点(具体可以是IAB宿主DU)之间通过哪个RLC信道传输用于获取IP地址相关的消息。
可选的,在图5的基础上,如图6所示,该RLC信道确定方法还可以包括:
S601、IAB宿主节点向第一IAB节点发送第二指示信息。
具体的,该步骤可以由IAB宿主节点、IAB宿主节点的IAB宿主CU或IAB宿主节点的IAB宿主CU-CP来执行。
相应地,第一IAB节点从IAB宿主节点接收第二指示信息。其中,第二指示信息用于指示第一类型数据包在无线回传链路的目标节点为IAB宿主节点。
可选的,第二指示信息可以包括IAB宿主节点的标识。示例性的,IAB宿主节点的标识可以是IAB宿主节点在回传适配协议(backhaul adaptation protocol,BAP)层的标识、IAB宿主节点的gNB-DU的标识、IAB宿主节点服务的小区的标识(新空口小区标识(NR cell identity,NCI)或新空口小区全局标识(NR cell global identity,NCGI))等。
可选的,第二指示信息还可以包括第二条件信息或者第一类型消息的类型信息,第二条件信息为第一类型数据包的IP五元组中的一项或者多项各自的第二取值或者第二取值范围。第一类型消息的类型信息可以包括如下中的一种或多种:DHCP消息、路由器请求RS消息、路由器公告RA消息、IP广播消息和IP组播消息。关于第一类型消息的类型信息的相关描述见前面步骤,在此不再重复。
需要说明的是,第二条件信息可以与第一条件信息相同或不同。示例性的,对于第一类型消息为DHCP消息来说,如果第一指示信息中的第一条件信息和第二指示信息的第二条件信息均是针对同一字段的取值,则第一条件信息的第一取值与第二条件信息的第二取值可以相同。如果第一指示信息中的第一条件信息和第二指示信息的第二条件信息均是针对同一字段的取值范围,则第一条件信息的第一取值范围与第二条件信息的第二取值范围可以不同,例如其中一个取值范围大于另一个。
在第一IAB节点生成第二数据包(第二数据包可以指第一IAB节点待向第一IAB节点的父节点发送的数据包,下文简称待发送的数据包)之后,当第二数据包中包括的消息的消息类型为第一类型消息的类型信息中的一种时,或者,当第二数据包的IP五元组中的一项或者多项相应满足第一类型数据包的IP五元组中的一项或者多项各自的第二取值或者第二取值范围时,则第一类型数据包中可以包括IAB宿主节点的标识。第一类型数据包中包括IAB宿主节点的标识的作用是便于中间IAB节点(例如第二IAB节点)获知第一类型数据包在无线回传链路的目标节点为IAB宿主节点,以便中间IAB节点向IAB宿主节点转发第一类型数据包。
可选的,第二指示信息还可以包括第一类型数据包的下一跳节点的标识,该下一跳节点的标识,可以为第一IAB节点的父节点(例如第二IAB node)的标识,例如,第一IAB节点的父节点的BAP标识、第一IAB节点的父节点服务的小区标识、第一IAB节点的父节点的IAB DU标识、第一IAB节点的父节点对于第一IAB节点而言的小区组(cell group)标识等。
如图7所示,本申请实施例提供了一种RLC信道确定方法,该方法包括:
S701、IAB宿主CU确定第三指示信息。
具体的,该步骤可以由IAB宿主节点的IAB宿主CU或IAB宿主节点的IAB宿主CU-CP来执行。
第三指示信息用于指示IAB宿主DU与IAB宿主DU的子IAB节点之间承载第二类型数据包的第二RLC信道。在本申请实施例中,IAB宿主DU的子IAB节点可以为第二IAB节点。当第一IAB节点与IAB宿主节点直连(可以理解为不经过其他中间IAB节点)时,IAB宿主DU的子IAB节点可以为第一IAB节点。
可以理解,第二类型数据包是指某一类型的数据包,第三指示信息可以指示该类型数据包的特征,从而IAB宿主DU获取数据包后,可以判断获取的数据包是否满足第二类型数据包的特征,如果满足,则通过第二RLC信道承载该获取的数据包。
第二类型数据包可以包括第二类型消息,第二类型消息用于指示分配给第一IAB节点的IP地址。第一IAB节点为IAB宿主DU的子节点或者第一IAB节点经过一个或者多个中间IAB节点连接至IAB宿主DU。示例性的,第二类型数据包可以为IP数据包,第二类型消息作为IP数据包的载荷部分,可以为自定义的IP地址指示消息, 或者,可以为DHCP协议中DHCP预分配消息或DHCP确认消息,或DHCPv6协议中的DHCPv6通知消息或DHCPv6回复消息。或者,第二类型数据包可以为BAP数据包,第二类型消息作为BAP数据包的载荷部分,可以为IP广播消息或IP组播消息,该IP广播消息或IP组播消息可以用于指示IP地址。需要说明的是IP广播消息或IP组播消息还可以用于其他目的,本申请不作限定。
该第二RLC信道可以专用于承载第二类型数据包,也可以用于承载其他类型的数据包,本申请不作限定。
第三指示信息包括第二RLC信道的标识,用于唯一标识第二RLC信道。可选的,第三指示信息除了包括第二RLC信道的标识以外,还可以进一步包括第二映射规则。当待发送的数据包满足该第二映射规则时,将该待发送的数据包映射至该第二RLC信道。示例性的,如果该第二RLC信道并非专用于传输第二类型数据包,还可以用于传输其他类型的消息,当待发送的数据包满足该第二映射规则时,将该待发送的数据包映射至该第二RLC信道。在后面步骤中会详细描述该第二映射规则。
S702、IAB宿主CU向IAB宿主DU发送第三指示信息。
具体的,该步骤可以由IAB宿主节点的IAB宿主CU或IAB宿主节点的IAB宿主CU-CP来执行。
相应地,IAB宿主DU从IAB宿主CU接收第三指示信息。
第三指示信息可以在F1应用协议(F1 application protocol,F1AP)消息中携带。
S703、IAB宿主DU根据第三指示信息确定第二RLC信道。
当该第二RLC信道专用于传输第二类型数据包时,IAB宿主DU可以根据第二RLC信道的标识确定第二RLC信道。
可选的,第三指示信息还可以包括以下第二映射规则:
可选的,在一种可能的实施方式中,第三指示信息还可以包括第三条件信息或者第二类型消息的类型信息。第二类型消息的类型信息可以包括如下中的一种或多种:DHCP消息、RS消息、RA消息、IP广播消息和IP组播消息。第三条件信息可以包括第二类型数据包的IP五元组中的一项或者多项各自的第三取值或者第三取值范围,IP五元组包括源IP地址、目的IP地址、源端口号、目的端口号和传输层协议类型。
在IAB宿主DU生成第二数据包(第二数据包可以指IAB宿主DU待向IAB宿主DU的子节点发送的数据包,下文简称待发送的数据包)之后,当第二数据包中包含的消息的消息类型为第二类型消息的类型信息中的一种,IAB宿主DU可以根据第二RLC信道的标识确定通过第二RLC信息承载第二数据包;或者,当第二数据包的中的一项或者多项相应满足第二类型数据包的IP五元组中的一项或者多项各自的第三取值或者第三取值范围时,则IAB宿主DU可以根据第二RLC信道的标识确定通过第二RLC信息承载第二数据包。
示例性的,以基于IPv4的DHCP协议为例,对于DHCP确认消息和DHCP预分配消息,目的IP地址为IP广播地址(每个比特都为1的IPv4地址255.255.255.255),则第二映射规则可以为:将目的IP地址为广播地址的数据包映射到指定的第二RLC信道上传输;或者,将目的IP地址为IP广播地址,传输层协议类型为用户数据报协议(user datagram protocol,UDP),源端口号为67,目标端口号为68的数据包,映 射到指定的第二RLC信道上传输。
示例性的,以基于IPv6的DHCPv6协议为例,对于DHCPv6通知消息和DHCPv6回复消息,目的IP地址为客户端本地链路地址,则第二映射规则可以为:将目的IP地址为组播地址的数据包映射到指定的第二RLC信道上传输;或者,将目的IP地址为客户端本地链路地址,传输层协议类型为用户数据报协议,源端口号为547,目标端口号为546的数据包,映射到指定的第二RLC信道上传输。
示例性的,以基于IPv6的无状态地址配置方式为例,对于路由器公告RA消息,目的IP地址可以为请求IP地址设备的本地链路地址或者IP组播地址,则第二映射规则可以为:将目的IP地址为组播地址或设备的本地链路地址的数据包映射到指定的第二RLC信道上传输。
可选的,在另一种可能的实施方式中,第三指示信息还可以包括第二类型数据包的预设字段的第二目标值。第三指示信息还可以包括第二目标值与第二RLC信道的标识之间的映射关系,或者,在其他消息中携带第二目标值与第二RLC信道的标识之间的映射关系。预设字段可以为差分服务代码点(differentiated services code point,DSCP)和/或流标签(flow label,包含在IPv6的IP报头中)。
在在IAB宿主DU生成第二数据包(第二数据包可以指IAB宿主DU待向IAB宿主DU的子节点发送的数据包,下文简称待发送的数据包)之后,当第二数据包中包含的消息的消息类型为第二类型消息的类型信息中的一种时,或者,当第二数据包的IP五元组中的一项或者多项相应满足第二类型数据包的IP五元组中的一项或者多项各自的第三取值或者第三取值范围时,则IAB宿主DU还可以将第二数据包中的预设字段的值设定为第二目标值;或者,当第二数据包中的预设字段的值为第二目标值时,IAB宿主DU可以根据第二RLC信道的标识确定通过第二RLC信道承载第二数据包。
需要说明的是,第二目标值不限于DSCP或流标签中的一者的目标值,第二目标值还可以包括DSCP的目标值以及流标签的目标值。
另外,上述配置内容不限于在一条配置消息中携带,可以在多条配置消息中分别携带。例如,第三指示信息、第三条件信息或者第二类型消息的类型信息可以在一条或多条配置消息中携带;第三指示信息、第二目标值、第二目标值与第二RLC信道的标识之间的映射关系可以在一条或多条配置消息中携带。
本申请实施例提供的RLC信道确定方法,IAB宿主CU配置IAB宿主DU的RLC信道,用于IAB宿主DU通过该RLC信道向IAB宿主DU的子节点(例如IAB节点)发送指示IP地址的消息,从而实现了确定IAB节点与IAB宿主节点(具体可以是IAB宿主DU)之间通过哪个RLC信道传输用于获取IP地址相关的消息。
可选的,在图7的基础上,如图8所示,该RLC信道确定方法还可以包括:
S801、IAB宿主CU向IAB宿主DU发送第四指示信息。
具体的,该步骤可以由IAB宿主节点的IAB宿主CU或IAB宿主节点的IAB宿主CU-CP来执行。
相应地,IAB宿主DU从IAB宿主CU接收第四指示信息。其中,第四指示信息用于指示第二类型数据包在无线回传链路的目标节点为第一IAB节点。
可选的,第四指示信息可以包括第一IAB节点的标识。示例性的,第一IAB节点 的标识可以是第一IAB节点在BAP层的标识。
可选的,第四指示信息可以包括IAB宿主DU至第一IAB节点的无线回传链路上下一跳节点的标识。
可选的,第四指示信息可以包括其他用于识别第一IAB节点的标识,示例性的,该标识可以包括:第一IAB节点的父节点为第一IAB节点分配的标识(例如第一IAB节点在父节点小区中的小区无线网络临时标识(cell radio network temporary identifier,C-RNTI))以及第一IAB节点的父节点的标识(例如,第一IAB节点的父节点的BAP标识、第一IAB节点的父节点的IAB DU标识、第一IAB节点的父节点为第一IAB节点服务的小区标识等)。通过以上方式,可以使得IAB宿主DU获知第一IAB节点的标识,在发送给第一IAB节点的数据包中添加第一IAB节点的标识,以便于中间的其他IAB节点将数据包转发至第一IAB节点。
可选的,在图5-图8的基础上,如图9所示,该RLC信道确定方法还可以包括:
S901、第一IAB节点通过第一RLC信道向IAB宿主节点发送第一类型数据包。
相应地,IAB宿主节点从IAB宿主节点的子节点接收第一类型数据包。需要说明的是,第一IAB节点可以直接连接到IAB宿主节点,即作为IAB宿主节点的子节点;或者,也可以是通过一个或者多个中间IAB节点连接到IAB宿主节点(IAB宿主DU),IAB宿主节点的子节点可以转发由第一IAB节点发送的第一类型数据包。
具体的,在IAB宿主节点为CU-DU分离的形态时,第一IAB节点通过第一RLC信道向IAB宿主节点的IAB宿主DU发送第一类型数据包,相应地,IAB宿主节点的IAB宿主DU从IAB宿主DU的子IAB节点接收第一类型数据包。
需要说明的是,若第一IAB节点为IAB宿主节点的子节点,则第一IAB节点直接通过第一RLC信道向该IAB宿主节点发送第一类型数据包,相应的,IAB宿主节点通过第二RLC信道接收第一类型数据包。若第一IAB节点与IAB宿主节点之间有至少一个中间IAB节点,则第一IAB节点通过第一RLC信道向IAB宿主节点发送第一类型数据包,需先通过第一RLC信道向IAB宿主节点的子节点发送第一类型数据包,再由IAB宿主节点的子节点转发给IAB宿主节点。
S902、IAB宿主节点获取为第一IAB节点分配的IP地址。
具体的,在IAB宿主节点为CU-DU分离的形态时,IAB宿主节点的IAB宿主DU获取为连接到IAB宿主DU的IAB节点分配的IP地址。
如果IAB宿主节点可以作为DHCP服务器或DHCP代理,则IAB宿主节点为第一IAB节点分配IP地址。如果IAB宿主节点作为DHCP中继,则IAB宿主节点从DHCP服务器获取为第一IAB节点分配的IP地址。
可选的,IAB宿主节点确定IP地址与连接到IAB宿主DU的IAB节点的标识之间的映射关系。具体的,IAB宿主DU确定IP地址与连接到IAB宿主DU的IAB节点的标识之间的映射关系。IAB宿主节点(或IAB宿主DU)在后续收到目的IP地址为连接到IAB宿主DU的IAB节点的IP地址的数据包时,可以确定数据包应该发送给连接到IAB宿主DU的IAB节点。
S903、IAB宿主节点通过第二RLC信道向第一IAB节点发送第二类型数据包。
具体的,在IAB宿主节点为CU-DU分离的形态时,IAB宿主节点的IAB宿主DU 通过第二RLC信道向第一IAB节点发送第二类型数据包。
相应地,第一IAB节点从IAB宿主节点接收第二类型数据包。其中,第二类型数据包包括第二类型消息,第二类型消息用于指示分配给第一IAB节点的IP地址。
需要说明的是,若第一IAB节点为IAB宿主节点的子节点,则IAB宿主节点直接通过第二RLC信道向该IAB节点发送第二类型数据包,相应的,该IAB节点通过第二RLC信道接收第二类型数据包。若第一IAB节点与IAB宿主节点之间有至少一个中间IAB节点,则IAB宿主节点通过第二RLC信道向第一IAB节点发送第二类型数据包,需先通过第二RLC信道向IAB宿主节点的子节点发送第二类型数据包,再由IAB宿主节点的子节点转发给第一IAB节点。
如图10所示,下面以第一IAB节点确定第一RLC信道,IAB宿主DU确定第二RLC信道以后,第一IAB节点与IAB宿主DU之间通过DHCP协议中的IP地址分配流程来获取IP地址为例,对上述实施方式进一步进行说明:
S1001、第一IAB节点通过第一RLC信道向IAB宿主DU发送包括DHCP发现消息的上行数据包。
在该上行数据包的BAP层的报头中,可以添加IAB宿主DU的标识,作为无线回传链路上行传输的目标节点。
基于前面介绍的对第一IAB节点的配置,第一IAB节点会为DHCP发现消息选择合适的第一RLC信道,然后通过该第一RLC信道向父节点发送包括DHCP发现消息的上行数据包。第一IAB节点的父节点可以为IAB宿主DU,或者,第一IAB节点的父节点为其他IAB节点,则第一IAB节点的父节点将继续向IAB宿主DU转发包含该DHCP发现消息的上行数据包。
可选的,在一种可能的实施方式中,为了使得IAB宿主DU获知请求IP地址的IAB节点是哪一个,第一IAB节点可以在上行数据包中(例如在DHCP发现消息中,或者,在该上行数据包的BAP层的报头中)携带第一IAB节点的标识,该第一IAB节点的标识可以是例如第一IAB节点的BAP层标识,或者,还可以是第一IAB节点的C-RNTI以及第一IAB节点的父节点(如图2中第二IAB节点)的标识(例如第二IAB节点的小区标识、第二IAB节点的DU标识、第二IAB节点的BAP层标识等)。
在另一种可能的实施方式中,第一IAB节点可以既在上行数据包的BAP层报头中携带第一IAB节点的BAP层标识,也在DHCP发现消息中携带第一IAB节点的其余类型标识。进一步可选的,如果在DHCP发现消息内包含第一IAB节点的标识,则该第一IAB节点的标识可以携带在“客户端硬件地址”字段,对于该字段长度大于第一IAB节点的标识(例如第一IAB节点的标识为BAP层标识)的情况,则可以规定该字段中某些比特为第一IAB节点的标识,剩余的比特位为填充位,可以被填充为全0。或者,第一IAB节点的标识还可以是第一IAB节点的虚拟硬件标识,该虚拟硬件标识可以是预配置在第一IAB节点中的(例如在出厂时预配置在第一IAB节点中),或者由IAB宿主CU/IAB宿主CU-CP通过RRC消息预先配置给第一IAB节点的,或者第一IAB节点从第一IAB节点的运营管理维护(operation,administration,and maintenance,OAM)服务器处获取后配置的,该虚拟硬件标识可以与其他类型的无线网络或有线网络(如IEEE 802系列网络:以太网、无线局域网、无线个域网等)中的 媒体访问控制(media access control address,MAC)地址长度相同,例如与DHCP消息中的“客户端硬件地址”字段长度一致。
对于第一IAB节点如何触发发送DHCP发现消息,可以有以下几种可能的情况:可以是在第一IAB节点的MT部分的BAP层配置好后,或者,在第一IAB节点与父节点之间的RLC信道配置好后,或者,由第一IAB节点具体实现来确定,本申请中不予限定。
需说明,如果在第一IAB节点和IAB宿主DU之间有中间IAB节点(例如第二IAB节点)时,这些中间IAB节点可以根据BAP层报头中的信息对包含DHCP消息的数据包(包括上行数据包和下行数据包)进行路由选择确定下一跳节点。中间IAB节点可以根据接收该数据包的RLC信道和配置的映射规则进行确定转发该数据包的RLC信道,无需感知转发的数据包中携带的是DHCP消息。
S1002、IAB宿主DU获取为第一IAB节点分配的IP地址。
IAB宿主DU在接收到第一IAB节点发送的DHCP发现消息之后,如果IAB宿主DU可以作为DHCP服务器或DHCP代理,则它自己处理第一IAB节点的DHCP发现消息,为第一IAB节点分配IP地址。如果IAB宿主DU作为DHCP中继,则IAB宿主DU可以向DHCP服务器转发该DHCP发现消息,从DHCP服务器获取为第一IAB节点分配的IP地址。在向DHCP服务器转发DHCP发现消息时,IAB宿主DU可以作为普通的路由器、DHCP中继或者DHCP代理,本申请中不予限定。
S1003、IAB宿主DU通过第二RLC信道向第一IAB节点发送包含DHCP预分配消息的下行数据包。
DHCP预分配消息中包括DHCP服务器准备分配给第一IAB节点的IP地址。DHCP预分配消息可以是由DHCP服务器生成后由IAB宿主DU转发给第一IAB节点的,也可以是IAB宿主DU作为DHCP服务器或者DHCP代理时生成的。
如果IAB宿主DU是作为DHCP中继、DHCP代理或DHCP服务器,则IAB宿主DU可以查看DHCP预分配消息中包含的第一IAB节点的标识(例如在“客户端硬件地址”字段所包含的第一IAB节点的标识),然后选择下一跳节点,并在BAP层报头添加第一IAB节点的BAP层标识后向RLC实体发送包含DHCP预分配消息的下行数据包,该RLC实体为用于发送下行DHCP消息的RLC信道对应的RLC层实体。下行数据包经过RLC层、MAC层、物理(physical,PHY)层处理后,再向第一IAB节点发送。IAB宿主DU可以直接通过第二RLC信道向第一IAB节点发送下行数据包,或者先通过第二RLC信道发送给下一跳节点(例如第二IAB节点),然后由第二IAB节点转发给第一IAB节点。
可选的,IAB宿主DU可以记录第一IAB节点的标识(例如BAP层标识)以及DHCP预分配消息中分配给第一IAB节点的IP地址之间的对应关系。这样,IAB宿主DU在后续收到目的IP地址为第一IAB节点的IP地址的数据包时,可以确定数据包应该发送给第一IAB节点,IAB宿主DU可以在数据包中添加第一IAB节点的标识(例如在数据包的BAP层头中添加第一IAB节点的BAP层标识)后,向IAB宿主DU与第一IAB节点之间路径上的下一跳节点发送该数据包。
S1004、第一IAB节点通过第一RLC信道向IAB宿主DU发送包括DHCP请求消 息的上行数据包。
第一IAB节点可以在该上行数据包的BAP层的报头中添加IAB宿主DU的标识,作为无线回传链路上行传输的目标节点。
与步骤S1001类似的,该上行数据包中还可以包括第一IAB节点的标识。
需要说明的是,步骤S1004中的第一RLC信道可以与步骤S1001中的第一RLC信道相同或不同。
S1005、IAB宿主DU通过第二RLC信道向第一IAB节点发送包含DHCP确认消息的数据包。
DHCP确认消息中包括确认分配给第一IAB节点的IP地址。
IAB宿主DU在接收到第一IAB节点发送的DHCP请求消息后,如果IAB宿主DU可以作为DHCP服务器或DHCP代理,则它自己处理第一IAB节点的DHCP请求消息。如果IAB宿主DU作为DHCP中继,则IAB宿主DU可以向DHCP服务器转发该DHCP请求消息。在向DHCP服务器转发DHCP请求消息时,IAB宿主DU可以作为普通的路由器、DHCP中继或者DHCP代理,本申请中不予限定。
该DHCP确认消息可以是由DHCP服务器生成后由IAB宿主DU转发给第一IAB节点的,也可以是IAB宿主DU作为DHCP服务器或者DHCP代理时生成的。
如果IAB宿主DU是作为DHCP中继、DHCP代理或DHCP服务器,则IAB宿主DU可以查看DHCP确认消息中包含的第一IAB节点的标识(例如在“客户端硬件地址”字段所包含的第一IAB节点的标识),然后选择下一跳节点,并在BAP层报头添加第一IAB节点的BAP层标识后向RLC实体发送包含DHCP确认消息的下行数据包,该RLC实体为用于发送下行DHCP消息的RLC信道对应的RLC层实体。该下行数据包经过RLC层、MAC层、PHY层处理后,再向第一IAB节点发送。IAB宿主DU可以直接通过第二RLC信道向第一IAB节点发送下行数据包,或者先通过第二RLC信道发送给下一跳节点(例如第二IAB节点),然后由第二IAB节点转发给第一IAB节点。
可选的,IAB宿主DU可以记录第一IAB节点的标识(例如BAP层标识)以及DHCP确认消息中分配给第一IAB节点的IP地址之间的对应关系。这样,IAB宿主DU在后续收到目的IP地址为第一IAB节点的IP地址的数据包时,可以确定数据包应该发送给第一IAB节点,IAB宿主DU可以在数据包中添加第一IAB节点的标识(例如在数据包的BAP层头中添加第一IAB节点的BAP层标识)后,向IAB宿主DU与第一IAB节点之间路径上的下一跳节点发送该数据包。
经过上述步骤,第一IAB节点可以获取DHCP服务器分配的IP地址,可将该获取的IP地址配置给第一IAB节点的DU部分,然后可以利用该IP地址进行数据传输,例如,与IAB宿主CU(或者IAB宿主CU-CP)之间的传输网络层(transport network layer,TNL)偶联(association)或者流控传输协议(stream control transport protocol,SCTP)偶联,与IAB宿主CU(或者IAB宿主CU-CP)之间的F1连接建立过程,与IAB宿主CU(或者IAB宿主CU-UP)之间的F1接口用户面数据传输,与IAB宿主CU(或者IAB宿主CU-CP)之间的F1接口控制面数据传输,与OAM服务器之间的连接和通信等。
需要说明的是,步骤S1005中的第二RLC信道可以与步骤S1003中的第二RLC信道相同或不同。
如图11所示,下面以第一IAB节点确定第一RLC信道,IAB宿主DU确定第二RLC信道以后,第一IAB节点与IAB宿主DU之间通过DHCPv6协议中的IP地址分配流程来获取IP地址为例,对上述实施方式进一步进行说明:
S1101、第一IAB节点通过第一RLC信道向IAB宿主DU发送包括DHCPv6征求消息的上行数据包。
在该上行数据包的BAP层的报头中,可以添加IAB宿主DU的标识,作为无线回传链路上行传输的目标节点。
基于前面介绍的对第一IAB节点的配置,第一IAB节点会为DHCPv6征求消息选择合适的第一RLC信道,然后通过该第一RLC信道向父节点发送包括DHCPv6征求消息的上行数据包。第一IAB节点的父节点可以为IAB宿主DU,或者,第一IAB节点的父节点为其他IAB节点,则第一IAB节点的父节点将继续向IAB宿主DU转发包含该DHCPv6征求消息的上行数据包。
可选的,在一种可能的实施方式中,为了使得IAB宿主DU获知请求IP地址的IAB节点是哪一个,第一IAB节点可以在上行数据包中(例如在DHCPv6征求消息中,或者,在该上行数据包的BAP层的报头中)携带第一IAB节点的标识,该第一IAB节点的标识可以是例如第一IAB节点的BAP层标识,或者,还可以是第一IAB节点的C-RNTI以及第一IAB节点的父节点(如图2中第二IAB节点)的标识(例如第二IAB节点的小区标识、第二IAB节点的DU标识、第二IAB节点的BAP层标识等)。
在另一种可能的实施方式中,第一IAB节点可以既在上行数据包的BAP层报头中携带第一IAB节点的BAP层标识,也在DHCPv6征求消息中携带第一IAB节点的其余类型标识。进一步可选的,如果在DHCPv6征求消息内包含第一IAB节点的标识,则该第一IAB节点的标识可以携带在“客户端DUID”字段,对于该字段长度大于第一IAB节点的标识(例如第一IAB节点的标识为BAP层标识)的情况,则可以规定该字段中某些比特为第一IAB节点的标识,剩余的比特位为填充位,可以被填充为全0。或者,第一IAB节点的标识还可以是第一IAB节点的虚拟硬件标识,该虚拟硬件标识可以是预配置在第一IAB节点中的(例如在出厂时预配置在第一IAB节点中),或者由IAB宿主CU/IAB宿主CU-CP通过RRC消息预先配置给第一IAB节点的,或者第一IAB节点从第一IAB节点的OAM服务器处获取后配置的,该虚拟硬件标识可以与其他类型的无线网络或有线网络(如IEEE 802系列网络:以太网、无线局域网、无线个域网等)中的MAC地址长度相同,例如与DHCPv6征求消息中的“客户端DUID”字段长度一致。
对于第一IAB节点如何触发发送DHCPv6征求消息,可以有以下几种可能的情况:可以是在第一IAB节点的MT部分的BAP层配置好后,或者,在第一IAB节点与父节点之间的RLC信道配置好后,或者,由第一IAB节点具体实现来确定,本申请中不予限定。
需要说明的是,如果在第一IAB节点和IAB宿主DU之间有中间IAB节点(例如第二IAB节点)时,这些中间IAB节点可以根据BAP层报头中的信息对包含DHCP 消息的数据包(包括上行数据包和下行数据包)进行路由选择确定下一跳节点。中间IAB节点可以根据接收该数据包的RLC信道和配置的映射规则进行确定转发该数据包的RLC信道,无需感知转发的数据包中携带的是DHCP消息。
可选的,若第一IAB节点在上行数据包的BAP层报头中携带第一IAB节点的BAP层标识,IAB宿主DU接收到第一IAB节点发送的包含DHCPv6征求消息的数据包后,可以记录第一IAB节点的发送DHCPv6征求消息使用的源IP地址与第一IAB节点的BAP层标识之间的对应关系,即第一IAB节点的本地链路地址和其BAP层标识之间的对应关系。这样,IAB宿主DU在后续收到目的IP地址为第一IAB节点的本地链路地址的数据包(例如以单播形式发送的DHCPv6通知消息,或以单播形式发送的DHCPv6回复消息)时,可以确定数据包应该发送给第一IAB节点,IAB宿主DU可以在数据包中添加第一IAB节点的标识(例如在数据包的BAP层头中添加第一IAB节点的BAP层标识)后,向IAB宿主DU与第一IAB节点之间路径上的下一跳节点发送该数据包。
S1102、IAB宿主DU获取为第一IAB节点分配的IP地址。
IAB宿主DU在接收到第一IAB节点发送的DHCPv6征求消息之后,如果IAB宿主DU可以作为DHCP服务器或DHCP代理,则它自己处理第一IAB节点的DHCPv6征求消息,为第一IAB节点分配IP地址或前缀(即IPv6地址前缀)。如果IAB宿主DU作为DHCP中继,则IAB宿主DU可以向DHCP服务器转发该DHCPv6征求消息,从DHCP服务器获取为第一IAB节点分配的IP地址。在向DHCP服务器转发DHCPv6征求消息时,IAB宿主DU可以作为普通的路由器、DHCP中继或者DHCP代理,本申请中不予限定。
S1103、IAB宿主DU通过第二RLC信道向第一IAB节点发送包含DHCPv6通知消息的下行数据包。
DHCPv6通知消息中包括DHCP服务器准备分配给第一IAB节点的IP地址或前缀(即IPv6地址前缀)。DHCPv6通知消息可以是由DHCP服务器生成后由IAB宿主DU转发给第一IAB节点的,也可以是IAB宿主DU作为DHCP服务器或者DHCP代理时生成的。
如果IAB宿主DU接收到包含DHCPv6通知消息是单播的形态,其中包含的目的IP地址为第一IAB节点的本地链路地址,则IAB宿主DU可以根据之前记录的第一IAB节点的本地链路地址和BAP层标识的对应关系,确定第一IAB节点的标识(具体是BAP层标识);或者,如果IAB宿主DU是作为DHCP中继、DHCP代理或DHCP服务器,则IAB宿主DU可以查看DHCPv6通知消息中包含的第一IAB节点的标识(例如在“客户端DUID”字段所包含的第一IAB节点的标识)。IAB宿主DU根据第一IAB节点的标识选择下一跳节点,并在BAP层报头添加第一IAB节点的BAP层标识后向RLC实体发送包含DHCPv6通知消息的下行数据包,该RLC实体为用于发送下行DHCP消息的RLC信道对应的RLC层实体。下行数据包经过RLC层、MAC层、物理(physical,PHY)层处理后,再向第一IAB节点发送。IAB宿主DU可以直接通过第二RLC信道向第一IAB节点发送下行数据包,或者先通过第二RLC信道发送给下一跳节点(例如第二IAB节点),然后由第二IAB节点转发给第一IAB节点。
可选的,IAB宿主DU可以记录第一IAB节点的标识(例如BAP层标识)以及DHCPv6通知消息中分配给第一IAB节点的IP地址之间的对应关系。这样,IAB宿主DU在后续收到目的IP地址为第一IAB节点的IP地址的数据包时,可以确定数据包应该发送给第一IAB节点,IAB宿主DU可以在数据包中添加第一IAB节点的标识(例如在数据包的BAP层头中添加第一IAB节点的BAP层标识)后,向IAB宿主DU与第一IAB节点之间路径上的下一跳节点发送该数据包。
S1104、第一IAB节点通过第一RLC信道向IAB宿主DU发送包括DHCPv6请求消息的上行数据包。
第一IAB节点可以在该上行数据包的BAP层的报头中添加IAB宿主DU的标识,作为无线回传链路上行传输的目标节点。
与步骤S1101类似的,该上行数据包中还可以包括第一IAB节点的标识。
需要说明的是,步骤S1104中的第一RLC信道可以与步骤S1101中的第一RLC信道相同或不同。
S1105、IAB宿主DU通过第二RLC信道向第一IAB节点发送包含DHCPv6回复消息的下行数据包。
DHCPv6回复消息中包括确认分配给第一IAB节点的IP地址或前缀(即IPv6地址前缀)。
IAB宿主DU在接收到第一IAB节点发送的DHCPv6请求消息后,如果IAB宿主DU可以作为DHCP服务器或DHCP代理,则它自己处理第一IAB节点的DHCPv6请求消息。如果IAB宿主DU作为DHCP中继,则IAB宿主DU可以向DHCP服务器转发该DHCPv6请求消息。在向DHCP服务器转发DHCPv6请求消息时,IAB宿主DU可以作为普通的路由器、DHCP中继或者DHCP代理,本申请中不予限定。
该DHCPv6回复消息可以是由DHCP服务器生成后由IAB宿主DU转发给第一IAB节点的,也可以是IAB宿主DU作为DHCP服务器或者DHCP代理时生成的。
如果IAB宿主DU接收到包含DHCPv6回复消息是单播的形态,其中包含的目的IP地址为第一IAB节点的本地链路地址,则IAB宿主DU可以根据之前记录的第一IAB节点的本地链路地址和BAP层标识的对应关系,确定第一IAB节点的标识(具体是BAP层标识);或者,如果IAB宿主DU是作为DHCP中继、DHCP代理或DHCP服务器,则IAB宿主DU可以查看DHCPv6回复消息中包含的第一IAB节点的标识(例如在“客户端DUID”字段所包含的第一IAB节点的标识)。然后选择下一跳节点,并在BAP层报头添加第一IAB节点的BAP层标识后向RLC实体发送包含DHCPv6回复消息的下行数据包,该RLC实体为用于发送下行DHCP消息的RLC信道对应的RLC层实体。该下行数据包经过RLC层、MAC层、PHY层处理后,再向第一IAB节点发送。IAB宿主DU可以直接通过第二RLC信道向第一IAB节点发送下行数据包,或者先通过第二RLC信道发送给下一跳节点(例如第二IAB节点),然后由第二IAB节点转发给第一IAB节点。
可选的,IAB宿主DU可以记录第一IAB节点的标识(例如BAP层标识)以及DHCPv6回复消息中分配给第一IAB节点的IP地址之间的对应关系。这样,IAB宿主DU在后续收到目的IP地址为第一IAB节点的IP地址的数据包时,可以确定数据包 应该发送给第一IAB节点,IAB宿主DU可以在数据包中添加第一IAB节点的标识(例如在数据包的BAP层头中添加第一IAB节点的BAP层标识)后,向IAB宿主DU与第一IAB节点之间路径上的下一跳节点发送该数据包。
可选的,若DHCPv6回复消息中携带的是IPv6地址前缀,则IAB节点再以自己的接口地址为后缀,一起生成IPv6地址。
经过上述步骤,第一IAB节点获取IP地址,可将该获取的IP地址配置给第一IAB节点的DU部分,然后可以利用该IP地址进行数据传输,例如,与IAB宿主CU(或者IAB宿主CU-CP)之间的传输网络层(transport network layer,TNL)偶联(association)或者流控传输协议(stream control transport protocol,SCTP)偶联,与IAB宿主CU(或者IAB宿主CU-CP)之间的F1连接建立过程,与IAB宿主CU(或者IAB宿主CU-UP)之间的F1接口用户面数据传输,与IAB宿主CU(或者IAB宿主CU-CP)之间的F1接口控制面数据传输,与OAM服务器之间的连接和通信等。
可选的,第一IAB节点获取用于配置给其DU部分的IP地址后,可以向IAB宿主CU(或CU-CP)上报该IP地址,然后IAB宿主CU(或CU-CP)可以利用该IP地址与IAB节点之间建立F1连接,IAB宿主CU(或CU-CP)还可以向IAB宿主DU配置该IP地址与第一IAB节点的BAP层标识之间的对应关系,以便后续IAB宿主DU接收到目的IP地址为第一IAB节点(具体可以是第一IAB节点的DU部分)IP地址的数据包时,在数据包中添加第一IAB节点的BAP层标识,以便数据包在无线回传链路被正确的路由转发至第一IAB节点。
需要说明的是,步骤S1105中的第二RLC信道可以与步骤S1103中的第二RLC信道相同或不同。
如图12所示,下面以第一IAB节点确定第一RLC信道,IAB宿主DU确定第二RLC信道以后,第一IAB节点与IAB宿主DU之间通过基于IPv6的无状态地址配置方式来获取IP地址为例,对上述实施方式进一步进行说明:
S1201、第一IAB节点通过第一RLC信道向IAB宿主DU发送包括路由器请求消息的上行数据包。
在该上行数据包的BAP层的报头中,可以添加IAB宿主DU的标识,作为无线回传链路传输的目标节点。
基于前面介绍的对第一IAB节点的配置,第一IAB节点会为路由器请求消息选择合适的第一RLC信道,然后通过该第一RLC信道向父节点发送包括路由器请求消息的上行数据包。第一IAB节点的父节点可以为IAB宿主DU,或者,第一IAB节点的父节点为其他IAB节点,则第一IAB节点的父节点将继续向IAB宿主DU转发包含该路由器请求消息的数据包。
可选的,在一种可能的实施方式中,为了使得IAB宿主DU获知请求IP地址的IAB节点是哪一个,第一IAB节点可以在上行数据包中(例如在数据包的BAP层报头中,或者在IP层报头中,或者在路由器请求消息中)携带第一IAB节点的标识,该第一IAB节点的标识可以是例如第一IAB节点的BAP层标识,或者,还可以是第一IAB节点的C-RNTI以及第一IAB节点的父节点(如图2中第二IAB节点)的标识(例如第二IAB节点的小区标识、第二IAB节点的DU标识、第二IAB节点的BAP层标识 等)。
在另一种可能的实施方式中,第一IAB节点可以既在上行数据包的BAP层报头中携带第一IAB节点的BAP层标识,也在路由器请求消息或IP报头中(例如在IP报头中的源IP地址采用第一IAB节点的本地链路地址)携带第一IAB节点的其余类型标识。进一步可选的,在路由器请求消息内或IP报头中的字段携带第一IAB节点的标识时,对于该字段长度大于第一IAB节点的标识(例如第一IAB节点的标识为BAP层标识)的情况,则可以规定该字段中某些比特为第一IAB节点的标识,剩余的比特位为填充位,可以被填充为全0。或者,第一IAB节点的标识还可以是第一IAB节点的虚拟硬件标识,该虚拟硬件标识可以是预配置在第一IAB节点中的(例如在出厂时预配置在第一IAB节点中),或者由IAB宿主CU/IAB宿主CU-CP通过RRC消息预先配置给第一IAB节点的,或者第一IAB节点从第一IAB节点的OAM服务器处获取后配置的,该虚拟硬件标识可以与其他类型的无线网络或有线网络(如IEEE 802系列网络:以太网、无线局域网、无线个域网等)中的MAC地址长度相同。
对于第一IAB节点如何触发发送路由器请求消息,可以有以下几种可能的情况:可以是在第一IAB节点的MT部分的BAP层配置好后,或者,在第一IAB节点与父节点之间的RLC信道配置好后,或者,由第一IAB节点具体实现来确定,本申请中不予限定。
需要说明的是,如果在第一IAB节点和IAB宿主DU之间有中间IAB节点(例如第二IAB节点)时,这些中间IAB节点可以根据BAP层报头中的信息对包含路由器请求消息的数据包(包括上行数据包和下行数据包)进行路由选择确定下一跳节点。中间IAB节点可以根据接收该数据包的RLC信道和配置的映射规则进行确定转发该数据包的RLC信道,无需感知转发的数据包中携带的是路由器请求消息。
可选的,若第一IAB节点在上行数据包的BAP层报头中携带第一IAB节点的BAP层标识,IAB宿主DU接收到第一IAB节点发送的包含路由器请求消息的数据包后,可以记录第一IAB节点的发送路由器请求消息使用的源IP地址与第一IAB节点的BAP层标识之间的对应关系,即第一IAB节点的本地链路地址和其BAP层标识之间的对应关系。这样,IAB宿主DU在后续发送目的IP地址为第一IAB节点的本地链路地址的数据包(例如以单播形式发送的路由器公告消息)时,可以确定数据包应该发送给第一IAB节点。IAB宿主DU可以在数据包中添加第一IAB节点的标识(例如在数据包的BAP层头中添加第一IAB节点的BAP层标识)后,向IAB宿主DU与第一IAB节点之间路径上的下一跳节点发送该数据包。
S1202、IAB宿主DU通过第二RLC信道向第一IAB节点发送包含路由器公告消息的下行数据包。
路由器公告消息中携带有IPv6地址前缀。
IAB宿主DU在接收到第一IAB节点发送的路由器请求消息后,如果IAB宿主DU可以作为发送路由器公告消息的路由器,则它自己生成路由器公告消息并向第一IAB节点发送。或者,IAB宿主DU可以以IP单播或IP组播形式向路由器转发路由器公告消息,由网络中的其他路由器生成路由器公告消息,通过IAB宿主DU向第一IAB节点转发,本申请中不予限定。
如果IAB宿主DU生成或接收到的包含路由器公告消息的IP包是单播数据包,其中包含的目的IP地址为第一IAB节点的本地链路地址,则IAB宿主DU可以根据之前记录的第一IAB节点的本地链路地址和BAP层标识的对应关系,确定第一IAB节点的标识(具体是BAP层标识),然后选择下一跳节点,并在BAP层报头添加第一IAB节点的BAP层标识后向RLC实体发送包含路由器公告消息的下行数据包,该RLC实体为用于发送路由器公告消息的RLC信道对应的RLC层实体。该下行数据包经过RLC层、MAC层、PHY层处理后,再向第一IAB节点发送。IAB宿主DU可以直接通过第二RLC信道向第一IAB节点发送下行数据包,或者先通过第二RLC信道发送给下一跳节点(例如第二IAB节点),然后由第二IAB节点转发给第一IAB节点。
路由器公告消息中携带的是IPv6地址前缀,则IAB节点再以自己的接口地址(interface ID)为后缀,一起生成IPv6地址。
经过上述步骤,第一IAB节点获取IP地址,可将该获取的IP地址配置给第一IAB节点的DU部分,然后可以利用该IP地址进行数据传输,例如,与IAB宿主CU(或者IAB宿主CU-CP)之间的传输网络层(transport network layer,TNL)偶联(association)或者流控传输协议(stream control transport protocol,SCTP)偶联,与IAB宿主CU(或者IAB宿主CU-CP)之间的F1连接建立过程,与IAB宿主CU(或者IAB宿主CU-UP)之间的F1接口用户面数据传输,与IAB宿主CU(或者IAB宿主CU-CP)之间的F1接口控制面数据传输,与OAM服务器之间的连接和通信等。
可选的,第一IAB节点获取用于配置给其DU部分IP地址后,可以向IAB宿主CU(或CU-CP)上报该IP地址,然后IAB宿主CU(或CU-CP)可以利用该IP地址与IAB节点之间建立F1连接,IAB宿主CU(或CU-CP)还可以向IAB宿主DU配置该IP地址与第一IAB节点的BAP层标识之间的对应关系,以便后续IAB宿主DU接收到目的IP地址为第一IAB节点(具体可以是第一IAB节点的DU部分)IP地址的数据包时,在数据包中添加第一IAB节点的BAP层标识,以便数据包在无线回传链路被正确的路由转发至第一IAB节点。
需要说明的是,步骤S1202中的第二RLC信道可以与步骤S1201中的第一RLC信道相同或不同。
可以理解的是,以上各个实施例中,由IAB节点实现的方法和/或步骤,也可以由可用于IAB节点的部件(例如芯片或者电路)实现,由IAB宿主节点实现的方法和/或步骤,也可以由可用于IAB宿主节点的部件实现。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。相应的,本申请实施例还提供了通信装置,该通信装置用于实现上述各种方法。该通信装置可以为上述方法实施例中的IAB节点,或者包含上述IAB节点的装置,或者为IAB节点内的芯片或功能模块;或者,该通信装置可以为上述方法实施例中的IAB宿主节点,或者包含上述IAB宿主节点的装置,或者为IAB宿主节点内的芯片或功能模块;或者,该通信装置可以为上述方法实施例中的IAB宿主DU,或者包含上述IAB宿主DU的装置,或者为IAB宿主DU内的芯片或功能模块;或者,该通信装置可以为上述方法实施例中的IAB宿主CU,或者包含上述IAB宿主CU的装置,或者为IAB宿主CU内的芯片或功能模块。可以理解的是,该通信装置为了实现上述功能,其包含 了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法实施例对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
比如,以通信装置为上述方法实施例中的第一IAB节点为例。图13示出了一种通信装置130的结构示意图。该通信装置130包括处理模块1301和收发模块1302。收发模块1302,也可以称为收发单元,包括发送单元和/或接收单元,例如可以是收发电路、收发机、收发器或者通信接口,用以实现上述方法实施例中第一IAB节点的发送和/或接收功能。例如执行图5中的步骤S502,图6中的步骤S502、S601,图9中的步骤S901、S903,图10中的步骤S1001、S1003、S1004、S1005,图11中的步骤S1101、S1103、S1104、S1105,图12中的步骤S1201、S1202。处理模块1301用于进行数据处理,用以实现上述方法实施例中第一IAB节点进行处理的功能,例如执行步骤图5中的步骤S503,图6中的步骤S503。
示例性的,收发模块1302,用于从IAB宿主节点接收第一指示信息,第一指示信息用于指示第一IAB节点和第一IAB节点的父节点之间承载第一类型数据包的第一无线链路控制RLC信道,其中,第一类型数据包包括第一类型消息,第一类型消息用于请求互联网协议IP地址;处理模块1301,用于根据第一指示信息确定第一RLC信道。
在一种可能的实施方式中,第一指示信息包括第一RLC信道的标识。
在一种可能的实施方式中,第一指示信息还包括第一条件信息或者第一类型消息的类型信息;其中,第一条件信息包括第一类型数据包的IP五元组中的一项或者多项各自的第一取值或者第一取值范围,IP五元组包括源IP地址、目的IP地址、源端口号、目的端口号和传输层协议类型,类型信息包括如下中的一种或多种:动态主机配置协议DHCP消息、路由器请求RS消息、路由器公告RA消息、IP广播消息和IP组播消息。
在一种可能的实施方式中,处理模块1301,还用于生成第一数据包;当第一数据包的IP五元组中的一项或者多项相应满足第一类型数据包的IP五元组中的一项或者多项各自的第一取值或者第一取值范围,确定通过第一RLC信道承载第一数据包;或者,当第一数据包包括的第一消息的消息类型为类型信息中的一种时,确定通过第一RLC信道承载第一数据包。
在一种可能的实施方式中,第一指示信息还包括第一类型数据包的预设字段的目标值。
在一种可能的实施方式中,处理模块1301,还用于生成第一数据包;当第一数据 包的IP五元组中的一项或者多项相应满足第一类型数据包的IP五元组中的一项或者多项各自的第一取值或者第一取值范围,或者,当第一数据包包括的消息的类型为类型信息中的一种时,将第一数据包的预设字段设置为目标值;当第一数据包的预设字段的值为目标值时,确定通过第一RLC信道承载第一数据包。
在一种可能的实施方式中,预设字段为差分服务代码点DSCP或流标签。
在一种可能的实施方式中,第一数据包中还包括第一IAB节点的标识。
在一种可能的实施方式中,第一IAB节点的标识携带在以下第一数据包的一个或者多个字段中:客户端硬件地址字段、DHCP唯一标识、回传适配协议BAP层的BAP地址字段。
在一种可能的实施方式中,收发模块1302,还用于从IAB宿主节点接收第二指示信息,第二指示信息指示第一类型数据包在无线回传链路的目标节点为IAB宿主节点。
在一种可能的实施方式中,第二指示信息还包括IAB宿主节点的标识。
在一种可能的实施方式中,第一类型数据包中包括IAB宿主节点的标识,第二指示信息还包括第二条件信息或者第一类型消息的类型信息,第二条件信息为第一类型数据包的IP五元组中的一项或者多项各自的第二取值或者第二取值范围,类型信息包括如下中的一种或多种:DHCP消息、RS消息、RA消息、IP广播消息和IP组播消息。便于中间IAB节点获知第一类型数据包在无线回传链路的目标节点为IAB宿主节点,以便中间IAB节点向IAB宿主节点转发第一类型数据包。
在一种可能的实施方式中,处理模块1301,还用于生成第二数据包;当第二数据包的IP五元组中的一项或者多项相应满足第一类型数据包的IP五元组中的一项或者多项各自的第二取值或者第二取值范围时,或者,当第二数据包包括的消息的类型为类型信息中的一种时,第二数据包包括IAB宿主节点的标识。
在一种可能的实施方式中,收发模块1302,还用于接收第二类型数据包,其中,第二类型数据包包括第二类型消息,第二类型消息用于指示分配给第一IAB节点的IP地址。
在本实施例中,该通信装置130以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该通信装置130可以采用图3所示的网络设备30的形式。
比如,图3所示的网络设备30中的处理器301可以通过调用存储器302中存储的计算机执行指令,使得网络设备30执行上述方法实施例中的RLC信道确定方法。
具体的,图13中的处理模块1301和收发模块1302的功能/实现过程可以通过图3所示的网络设备30中的处理器301调用存储器302中存储的计算机执行指令来实现。或者,图13中的处理模块1301的功能/实现过程可以通过图3所示的网络设备30中的处理器301调用存储器302中存储的计算机执行指令来实现,图13中的收发模块1302的功能/实现过程可以通过图3中所示的网络设备30中的收发器303来实现。
由于本实施例提供的通信装置130可执行上述RLC信道确定方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
比如,以通信装置为上述方法实施例中的IAB宿主节点为例。图14示出了一种通信装置140的结构示意图。该通信装置140包括处理模块1401和收发模块1402。收发模块1402,也可以称为收发单元,包括发送单元和/或接收单元,例如可以是收发电路、收发机、收发器或者通信接口,用以实现上述方法实施例中IAB宿主节点的发送和/或接收功能。例如执行图5中的步骤S502,图6中的步骤S502、S601,图9中的步骤S901、S903。处理模块1401用于进行数据处理,用以实现上述方法实施例中IAB宿主节点进行处理的功能,例如执行步骤图5中的步骤S501,图6中的步骤S501,图9中的步骤S902。
示例性的,处理模块1401,用于确定第一指示信息,第一指示信息用于指示第一IAB节点和第一IAB节点的父节点之间承载第一类型数据包的无线链路控制RLC信道,其中,第一类型数据包包括第一类型消息,第一类型消息用于第一IAB节点请求互联网协议IP地址;收发模块1402,用于向第一IAB节点发送第一指示信息。
在一种可能的实施方式中,第一指示信息包括第一RLC信道的标识。
在一种可能的实施方式中,第一指示信息还包括第一条件信息或者第一类型消息的类型信息;其中,第一条件信息包括第一类型数据包的IP五元组中的一项或者多项各自的第一取值或者第一取值范围,IP五元组包括源IP地址、目的IP地址、源端口号、目的端口号和传输层协议类型,类型信息包括如下中的一种或多种:动态主机配置协议DHCP消息、路由器请求RS消息、路由器公告RA消息、IP广播消息和IP组播消息。
在一种可能的实施方式中,第一指示信息还包括第一类型数据包中的预设字段的目标值。
在一种可能的实施方式中,预设字段为差分服务代码点DSCP或流标签。
在一种可能的实施方式中,收发模块1402,还用于从第一IAB节点接收第一类型数据包;处理模块1401,还用于获取为第一IAB节点分配的IP地址;收发模块1402,还用于向第一IAB节点发送第二类型数据包,其中,第二类型数据包包括第二类型消息,第二类型消息用于指示分配给第一IAB节点的IP地址。
在一种可能的实施方式中,处理模块1401,还用于确定IP地址与第一IAB节点的标识之间的映射关系。
在一种可能的实施方式中,收发模块1402,还用于向第一IAB节点发送第二指示信息,第二指示信息指示第一类型数据包在无线回传链路的目标节点为IAB宿主节点。
在一种可能的实施方式中,第二指示信息还包括IAB宿主节点的标识。
在一种可能的实施方式中,第二指示信息还包括第二条件信息或者第一类型消息的类型信息,第二条件信息为第一类型数据包的IP五元组中的一项或者多项各自的第二取值或者第二取值范围,类型信息包括如下中的一种或多种:DHCP消息、RS消息、RA消息、IP广播消息和IP组播消息。便于中间IAB节点获知第一类型数据包在无线回传链路的目标节点为IAB宿主节点,以便中间IAB节点向IAB宿主节点转发第一类型数据包。
在本实施例中,该通信装置140以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理 器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该通信装置140可以采用图3所示的网络设备30的形式。
比如,图3所示的网络设备30中的处理器301可以通过调用存储器302中存储的计算机执行指令,使得网络设备30执行上述方法实施例中的RLC信道确定方法。
具体的,图14中的处理模块1401和收发模块1402的功能/实现过程可以通过图3所示的网络设备30中的处理器301调用存储器302中存储的计算机执行指令来实现。或者,图14中的处理模块1401的功能/实现过程可以通过图3所示的网络设备30中的处理器301调用存储器302中存储的计算机执行指令来实现,图14中的收发模块1402的功能/实现过程可以通过图3中所示的网络设备30中的收发器303来实现。
由于本实施例提供的通信装置140可执行上述RLC信道确定方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
比如,以通信装置为上述方法实施例中的IAB宿主DU为例。图15示出了一种通信装置150的结构示意图。该通信装置150包括处理模块1501和收发模块1502。收发模块1502,也可以称为收发单元,包括发送单元和/或接收单元,例如可以是收发电路、收发机、收发器或者通信接口,用以实现上述方法实施例中IAB宿主DU的发送和/或接收功能。例如执行图7中的步骤S702,图8中的步骤S702、S801,图10中的步骤S1001、S1003、S1004、S1005,图11中的步骤S1101、S1103、S1104、S1105,图12中的步骤S1201、S1202。处理模块1501用于进行数据处理,用以实现上述方法实施例中IAB宿主DU进行处理的功能,例如执行步骤图7中的步骤S703,图8中的步骤S703,图10中的步骤S1002,图11中的步骤S1102。
示例性的,收发模块1502,用于从IAB宿主集中式单元CU接收第三指示信息,第三指示信息用于指示IAB宿主DU与IAB宿主DU的子IAB节点之间承载第二类型数据包的第二RLC信道,其中,第二类型数据包包括第二类型消息,第二类型消息用于指示分配给第一IAB节点的互联网协议IP地址,第一IAB节点为IAB宿主DU的子节点或者第一IAB节点经过一个或者多个中间IAB节点连接至IAB宿主DU。
处理模块1501,用于IAB宿主DU根据第三指示信息确定第二RLC信道。
在一种可能的实施方式中,第三指示信息包括第二RLC信道的标识。
在一种可能的实施方式中,第三指示信息还包括第三条件信息或者第二类型消息的类型信息,其中,第三条件信息包括第二类型数据包的IP五元组中的一项或者多项各自的第三取值或者第三取值范围,IP五元组包括源IP地址、目的IP地址、源端口号、目的端口号和传输层协议类型,类型信息包括如下中的一种或多种:动态主机配置协议DHCP消息、路由器请求RS消息、路由器公告RA消息、IP广播消息和IP组播消息。
在一种可能的实施方式中,第三指示信息还包括第二类型数据包的预设字段的目标值。
在一种可能的实施方式中,处理模块1501,还用于:生成第二数据包。当第二数据包的IP五元组中的一项或者多项相应满足第二类型数据包的IP五元组中的一项或者多项各自的第三取值或者第三取值范围,或者,当第二数据包包括的消息的类型为 类型信息中的一种时,将第二数据包的预设字段设置为目标值。当第二数据包的预设字段的值为目标值时,通过第二RLC信道承载第二数据包。
在一种可能的实施方式中,预设字段为差分服务代码点DSCP或流标签。
在一种可能的实施方式中,收发模块1502,还用于IAB宿主DU从IAB宿主DU的子节点接收第一类型数据包,其中,第一类型数据包包括第一消息,第一消息用于第一IAB节点请求IP地址。处理模块1501,还用于获取为第一IAB节点分配的IP地址。收发模块1502,还用于通过第二RLC信道发送第二类型数据包。
在一种可能的实施方式中,处理模块1501,还用于IAB宿主DU确定IP地址与第一IAB节点的标识之间的映射关系。
在本实施例中,该通信装置150以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该通信装置150可以采用图3所示的网络设备30的形式。
比如,图3所示的网络设备30中的处理器301可以通过调用存储器302中存储的计算机执行指令,使得网络设备30执行上述方法实施例中的RLC信道确定方法。
具体的,图15中的处理模块1501和收发模块1502的功能/实现过程可以通过图3所示的网络设备30中的处理器301调用存储器302中存储的计算机执行指令来实现。或者,图15中的处理模块1501的功能/实现过程可以通过图3所示的网络设备30中的处理器301调用存储器302中存储的计算机执行指令来实现,图15中的收发模块1502的功能/实现过程可以通过图3中所示的网络设备30中的收发器303来实现。
由于本实施例提供的通信装置150可执行上述RLC信道确定方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
比如,以通信装置为上述方法实施例中的IAB宿主CU为例。图16示出了一种通信装置160的结构示意图。该通信装置160包括处理模块1601和收发模块1602。收发模块1602,也可以称为收发单元,包括发送单元和/或接收单元,例如可以是收发电路、收发机、收发器或者通信接口,用以实现上述方法实施例中IAB宿主DU的发送和/或接收功能。例如执行图7中的步骤S702,图8中的步骤S702。处理模块1601用于进行数据处理,用以实现上述方法实施例中IAB宿主CU进行处理的功能,例如执行步骤图7中的步骤S701,图8中的步骤S701。
示例性的,处理模块1601用于确定第三指示信息,第三指示信息用于指示IAB宿主分布式单元DU与连接到IAB宿主DU的子IAB节点之间承载第二类型数据包的第二RLC信道,其中,第二类型数据包包括第二类型消息,第二类型消息用于指示分配给第一IAB节点的互联网协议IP地址,第一IAB节点为IAB宿主DU的子节点或者第一IAB节点经过一个或者多个中间IAB节点连接至IAB宿主DU。
收发模块1602用于向IAB宿主DU发送第三指示信息。
在一种可能的实施方式中,第三指示信息包括第二RLC信道的标识。
在一种可能的实施方式中,第三指示信息还包括第三条件信息或者第二类型消息的类型信息或者,其中,第三条件信息包括第二类型数据包的IP五元组中的一项或者 多项各自的第三取值或者第三取值范围,IP五元组包括源IP地址、目的IP地址、源端口号、目的端口号和传输层协议类型,类型信息包括如下中的一种或多种:动态主机配置协议DHCP消息、路由器请求RS消息、路由器公告RA消息、IP广播消息和IP组播消息。
在一种可能的实施方式中,第三指示信息还包括第二类型数据包的预设字段的目标值;其中,预设字段为差分服务代码点DSCP或流标签。
在本实施例中,该通信装置160以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该通信装置160可以采用图3所示的网络设备30的形式。
比如,图3所示的网络设备30中的处理器301可以通过调用存储器302中存储的计算机执行指令,使得网络设备30执行上述方法实施例中的RLC信道确定方法。
具体的,图16中的处理模块1601和收发模块1602的功能/实现过程可以通过图3所示的网络设备30中的处理器301调用存储器302中存储的计算机执行指令来实现。或者,图16中的处理模块1601的功能/实现过程可以通过图3所示的网络设备30中的处理器301调用存储器302中存储的计算机执行指令来实现,图16中的收发模块1602的功能/实现过程可以通过图3中所示的网络设备30中的收发器303来实现。
由于本实施例提供的通信装置160可执行上述RLC信道确定方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
本申请实施例还提供了一种通信装置,该通信装置包括处理器、存储器和收发器,处理器与存储器耦合,当处理器执行存储器中的计算机程序或指令时,图5-图12中第一IAB节点、IAB宿主节点、IAB宿主DU或IAB宿主CU对应的RLC信道确定方法被执行。
本申请实施例还提供了一种芯片,包括:处理器和接口,用于从存储器中调用并运行存储器中存储的计算机程序,执行如图5-图12中第一IAB节点、IAB宿主节点、IAB宿主DU或IAB宿主CU对应的RLC信道确定方法。
本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在计算机或处理器上运行时,使得计算机或处理器执行图5-图12中第一IAB节点、IAB宿主节点、IAB宿主DU或IAB宿主CU对应的RLC信道确定方法。
本申请实施例还提供了一种包含指令的计算机程序产品,当指令在计算机或处理器上运行时,使得计算机或处理器执行图5-图12中第一IAB节点、IAB宿主节点、IAB宿主DU或IAB宿主CU对应的RLC信道确定方法。
本申请实施例提供了一种芯片系统,该芯片系统包括处理器,用于通信装置执行图5-图12中第一IAB节点、IAB宿主节点、IAB宿主DU或IAB宿主CU对应的RLC信道确定方法。
在一种可能的设计中,该芯片系统还包括存储器,该存储器,用于保存终端设备必要的程序指令和数据。该芯片系统,可以包括芯片,集成电路,也可以包含芯片和 其他分立器件,本申请实施例对此不作具体限定。
其中,本申请提供的通信装置、芯片、计算机存储介质、计算机程序产品或芯片系统均用于执行上文所述的RLC信道确定方法,因此,其所能达到的有益效果可参考上文所提供的实施方式中的有益效果,此处不再赘述。
本申请实施例涉及的处理器可以是一个芯片。例如,可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
本申请实施例涉及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些 接口,设备或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (41)

  1. 一种无线链路控制RLC信道确定方法,其特征在于,包括:
    第一接入回传一体化IAB节点从IAB宿主节点接收第一指示信息,所述第一指示信息用于指示所述第一IAB节点和所述第一IAB节点的父节点之间承载第一类型数据包的第一RLC信道,其中,所述第一类型数据包包括第一类型消息,所述第一类型消息用于请求互联网协议IP地址;
    所述第一IAB节点根据所述第一指示信息确定所述第一RLC信道。
  2. 根据权利要求1所述的方法,其特征在于,所述第一指示信息包括所述第一RLC信道的标识。
  3. 根据权利要求2所述的方法,其特征在于,所述第一指示信息还包括第一条件信息或者所述第一类型消息的类型信息;
    其中,所述第一条件信息包括所述第一类型数据包的IP五元组中的一项或者多项各自的第一取值或者第一取值范围,所述IP五元组包括源IP地址、目的IP地址、源端口号、目的端口号和传输层协议类型,所述类型信息包括如下中的一种或多种:动态主机配置协议DHCP消息、路由器请求RS消息、路由器公告RA消息、IP广播消息和IP组播消息。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    所述第一IAB节点生成第一数据包;
    所述第一IAB节点根据所述第一指示信息确定所述第一RLC信道包括:
    当所述第一数据包的IP五元组中的一项或者多项相应满足所述第一类型数据包的IP五元组中的一项或者多项各自的第一取值或者第一取值范围,确定通过所述第一RLC信道承载所述第一数据包;或者,
    当所述第一数据包包括的第一消息的消息类型为所述类型信息中的一种时,确定通过所述第一RLC信道承载所述第一数据包。
  5. 根据权利要求3所述的方法,其特征在于,所述第一指示信息还包括所述第一类型数据包的预设字段的目标值。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    所述第一IAB节点生成第一数据包;
    当所述第一数据包的IP五元组中的一项或者多项相应满足所述第一类型数据包的IP五元组中的一项或者多项各自的第一取值或者第一取值范围,或者,当所述第一数据包包括的消息的类型为所述类型信息中的一种时,将所述第一数据包的所述预设字段设置为所述目标值;
    当所述第一数据包的所述预设字段的值为所述目标值时,确定通过所述第一RLC信道承载所述第一数据包。
  7. 根据权利要求5或者6所述的方法,其特征在于,所述预设字段为差分服务代码点DSCP或流标签。
  8. 根据权利要求4、6任一项所述的方法,其特征在于,所述第一数据包中还包括所述第一IAB节点的标识。
  9. 根据权利要求8所述的方法,其特征在于,所述第一IAB节点的标识携带在 以下所述第一数据包的一个或者多个字段中:客户端硬件地址字段、DHCP唯一标识、回传适配协议BAP层的BAP地址字段。
  10. 根据权利要求1-9任一项所述的方法,其特征在于,所述方法还包括:
    所述第一IAB节点从所述IAB宿主节点接收第二指示信息,所述第二指示信息指示所述第一类型数据包在无线回传链路的目标节点为所述IAB宿主节点。
  11. 根据权利要求10所述的方法,其特征在于,所述第二指示信息还包括所述IAB宿主节点的标识。
  12. 根据权利要求10或者11所述的方法,其特征在于,所述第一类型数据包中包括所述IAB宿主节点的标识,所述第二指示信息还包括第二条件信息或者所述第一类型消息的类型信息,所述第二条件信息为所述第一类型数据包的IP五元组中的一项或者多项各自的第二取值或者第二取值范围,所述类型信息包括如下中的一种或多种:DHCP消息、RS消息、RA消息、IP广播消息和IP组播消息。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    所述第一IAB节点生成第二数据包;
    当所述第二数据包的IP五元组中的一项或者多项相应满足所述第一类型数据包的IP五元组中的一项或者多项各自的第二取值或者第二取值范围时,或者,当所述第二数据包包括的消息的类型为所述类型信息中的一种时,所述第二数据包包括所述IAB宿主节点的标识。
  14. 根据权利要求1-13任一项所述的方法,其特征在于,所述方法还包括:
    所述第一IAB节点接收第二类型数据包,其中,所述第二类型数据包包括第二类型消息,所述第二类型消息用于指示分配给所述第一IAB节点的IP地址。
  15. 一种无线链路控制RLC信道确定方法,其特征在于,包括:
    接入回传一体化IAB宿主节点确定第一指示信息,所述第一指示信息用于指示所述第一IAB节点和所述第一IAB节点的父节点之间承载第一类型数据包的第一RLC信道,其中,所述第一类型数据包包括第一类型消息,所述第一类型消息用于所述第一IAB节点请求互联网协议IP地址;
    所述IAB宿主节点向所述第一IAB节点发送所述第一指示信息。
  16. 根据权利要求15所述的方法,其特征在于,所述第一指示信息包括所述第一RLC信道的标识。
  17. 根据权利要求16所述的方法,其特征在于,所述第一指示信息还包括第一条件信息或者所述第一类型消息的类型信息;
    其中,所述第一条件信息包括所述第一类型数据包的IP五元组中的一项或者多项各自的第一取值或者第一取值范围,所述IP五元组包括源IP地址、目的IP地址、源端口号、目的端口号和传输层协议类型,所述类型信息包括如下中的一种或多种:动态主机配置协议DHCP消息、路由器请求RS消息、路由器公告RA消息、IP广播消息和IP组播消息。
  18. 根据权利要求17所述的方法,其特征在于,所述第一指示信息还包括所述第一类型数据包中的预设字段的目标值。
  19. 根据权利要求18所述的方法,其特征在于,所述预设字段为差分服务代码点 DSCP或流标签。
  20. 根据权利要求15-19任一项所述的方法,其特征在于,所述方法还包括:
    所述IAB宿主节点从第一IAB节点接收所述第一类型数据包;
    所述IAB宿主节点获取为所述第一IAB节点分配的IP地址;
    所述IAB宿主节点向所述第一IAB节点发送第二类型数据包,其中,所述第二类型数据包包括第二类型消息,所述第二类型消息用于指示分配给所述第一IAB节点的IP地址。
  21. 根据权利要求20所述的方法,其特征在于,所述方法还包括:
    所述IAB宿主节点确定所述IP地址与所述第一IAB节点的标识之间的映射关系。
  22. 根据权利要求15-21任一项所述的方法,其特征在于,所述方法还包括:
    所述IAB宿主节点向所述第一IAB节点发送第二指示信息,所述第二指示信息指示所述第一类型数据包在无线回传链路的目标节点为所述IAB宿主节点。
  23. 根据权利要求22所述的方法,其特征在于,所述第二指示信息还包括所述IAB宿主节点的标识。
  24. 根据权利要求22所述的方法,其特征在于,所述第二指示信息还包括第二条件信息或者所述第一类型消息的类型信息,所述第二条件信息为所述第一类型数据包的IP五元组中的一项或者多项各自的第二取值或者第二取值范围,所述类型信息包括如下中的一种或多种:DHCP消息、RS消息、RA消息、IP广播消息和IP组播消息。
  25. 一种无线链路控制RLC信道确定方法,包括:
    接入回传一体化IAB宿主分布式单元DU从IAB宿主集中式单元CU接收第三指示信息,所述第三指示信息用于指示IAB宿主DU与IAB宿主DU的子IAB节点之间承载第二类型数据包的第二RLC信道,其中,所述第二类型数据包包括第二类型消息,所述第二类型消息用于指示分配给第一IAB节点的互联网协议IP地址,所述第一IAB节点为IAB宿主DU的子节点或者所述第一IAB节点经过一个或者多个中间IAB节点连接至IAB宿主DU;
    所述IAB宿主DU根据所述第三指示信息确定第二RLC信道。
  26. 根据权利要求25所述的方法,其特征在于,所述第三指示信息包括所述第二RLC信道的标识。
  27. 根据权利要求26所述的方法,其特征在于,所述第三指示信息还包括第三条件信息或者第二类型消息的类型信息,其中,所述第三条件信息包括第二类型数据包的IP五元组中的一项或者多项各自的第三取值或者第三取值范围,所述IP五元组包括源IP地址、目的IP地址、源端口号、目的端口号和传输层协议类型,所述类型信息包括如下中的一种或多种:动态主机配置协议DHCP消息、路由器请求RS消息、路由器公告RA消息、IP广播消息和IP组播消息。
  28. 根据权利要求25或26所述的方法,其特征在于,所述第三指示信息还包括所述第二类型数据包的预设字段的目标值。
  29. 根据权利要求25-28任一项所述的方法,其特征在于,还包括:
    所述IAB宿主DU生成第二数据包;
    当所述第二数据包的IP五元组中的一项或者多项相应满足第二类型数据包的IP 五元组中的一项或者多项各自的第三取值或者第三取值范围,或者,当第二数据包包括的消息的类型为类型信息中的一种时,将第二数据包的预设字段设置为目标值;
    当第二数据包的预设字段的值为目标值时,通过第二RLC信道承载第二数据包。
  30. 根据权利要求29所述的方法,其特征在于,所述预设字段为差分服务代码点DSCP或流标签。
  31. 根据权利要求25-30任一项所述的方法,其特征在于,还包括:
    所述IAB宿主DU从所述IAB宿主DU的子节点接收第一类型数据包,其中,所述第一类型数据包包括第一消息,所述第一消息用于所述第一IAB节点请求IP地址;
    所述IAB宿主DU获取为所述第一IAB节点分配的IP地址;
    所述IAB宿主DU通过所述第二RLC信道发送第二类型数据包。
  32. 根据权利要求25-31任一项所述的方法,其特征在于,还包括:
    所述IAB宿主DU确定IP地址与所述第一IAB节点的标识之间的映射关系。
  33. 一种通信装置,其特征在于,包括处理器,所述处理器与存储器耦合,所述存储器用于存储计算机程序或指令,所述处理器用于执行存储器中的所述计算机程序或指令,使得权利要求1至14任一项所述的方法被执行。
  34. 一种通信装置,其特征在于,包括处理器,所述处理器与存储器耦合,所述存储器用于存储计算机程序或指令,所述处理器用于执行存储器中的所述计算机程序或指令,使得权利要求15至24任一项所述的方法被执行,或者,权利要求25至32任一项所述的方法被执行。
  35. 一种通信装置,其特征在于,包括:处理模块和收发模块;所述处理模块和所述收发模块用于执行如权利要求1-14任一项所述的方法。
  36. 一种通信装置,其特征在于,包括:处理模块和收发模块;所述处理模块和所述收发模块用于执行如权利要求15-24任一项所述的方法,或者,执行如权利要求25至32任一项所述的方法。
  37. 一种通信系统,其特征在于,包括如权利要求33所述的通信装置和如权利要求34所述的通信装置,或者,包括如权利要求35所述的通信装置和如权利要求36所述的通信装置。
  38. 一种计算机存储介质,其特征在于,存储有用于实现权利要求1至32任一项所述的方法的程序或者指令。
  39. 一种芯片,其特征在于,包括:处理器和接口,用于从存储器中调用并运行所述存储器中存储的计算机程序,执行如权利要求1-32任一项所述的方法。
  40. 一种包含指令的计算机程序产品,其特征在于,当所述指令在计算机或处理器上运行时,使得所述计算机或所述处理器执行如权利要求1-32任一项所述的方法。
  41. 一种装置,其特征在于,所述装置用于执行权利要求1-32任一项所述的方法。
PCT/CN2020/108745 2019-08-15 2020-08-12 Rlc信道确定方法和装置 WO2021027858A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910755860.9 2019-08-15
CN201910755860.9A CN112398959B (zh) 2019-08-15 2019-08-15 Rlc信道确定方法和装置

Publications (1)

Publication Number Publication Date
WO2021027858A1 true WO2021027858A1 (zh) 2021-02-18

Family

ID=74570530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108745 WO2021027858A1 (zh) 2019-08-15 2020-08-12 Rlc信道确定方法和装置

Country Status (2)

Country Link
CN (1) CN112398959B (zh)
WO (1) WO2021027858A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022151055A1 (en) * 2021-01-13 2022-07-21 Nec Corporation Methods, devices, and computer readable medium for communication
KR20230153422A (ko) * 2021-04-01 2023-11-06 지티이 코포레이션 통합 액세스 및 백홀 도너 마이그레이션 방법 및 시스템
WO2022205485A1 (zh) * 2021-04-02 2022-10-06 富士通株式会社 信息收发方法以及装置
CN116996436A (zh) * 2022-04-25 2023-11-03 华为技术有限公司 通信方法及装置、存储介质、程序产品

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019137443A1 (zh) * 2018-01-12 2019-07-18 华为技术有限公司 数据处理方法及相关设备
CN110035042A (zh) * 2018-01-12 2019-07-19 华为技术有限公司 一种数据传输方法及装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019137443A1 (zh) * 2018-01-12 2019-07-18 华为技术有限公司 数据处理方法及相关设备
CN110035042A (zh) * 2018-01-12 2019-07-19 华为技术有限公司 一种数据传输方法及装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "Support for NR IAB", 3GPP DRAFT; S2-1907203-SUPPORT FOR NR_IAB V6, vol. SA WG2, 18 June 2019 (2019-06-18), Sapparo, Japan, pages 1 - 8, XP051752172 *
ZTE; SANECHIPS: "Discussion on backhaul bearer setup in IAB network", 3GPP DRAFT; R2-1817411 DISCUSSION ON BACKHAUL BEARER SETUP IN IAB NETWORK, vol. RAN WG2, 2 November 2018 (2018-11-02), Spokane, USA, pages 1 - 6, XP051481316 *
ZTE; SANECHIPS: "Discussion on IAB BH RLF handling", 3GPP DRAFT; R3-190541 DISCUSSION ON IAB BH RLF HANDLING, vol. RAN WG3, 15 February 2019 (2019-02-15), Athens, Greece, pages 1 - 6, XP051604479 *

Also Published As

Publication number Publication date
CN112398959A (zh) 2021-02-23
CN112398959B (zh) 2022-02-25

Similar Documents

Publication Publication Date Title
WO2021027858A1 (zh) Rlc信道确定方法和装置
US9743437B2 (en) Mobile communication system
US10200511B2 (en) Telecommunications apparatus and method
US8539055B2 (en) Device abstraction in autonomous wireless local area networks
KR20200092431A (ko) 패킷 프로세싱 방법 및 디바이스
WO2020164175A1 (zh) 标识管理的方法和装置
WO2021057217A1 (zh) 一种通信方法、装置、设备、系统及介质
CN108092830B (zh) 在Mesh网络中应用TCP/IP协议的方法
WO2019185062A1 (zh) 一种通信方法及装置
EP2317821B1 (en) Wireless communication system and routing method for packet switching service, femto AP using the routing method
US11153207B2 (en) Data link layer-based communication method, device, and system
US20130182651A1 (en) Virtual Private Network Client Internet Protocol Conflict Detection
WO2020221360A1 (zh) 一种通信方法及装置
WO2013071819A1 (zh) 实现身份位置分离、分配接口标识的方法及网元和ue
WO2012106935A1 (zh) 数据通信网络配置方法、网关网元及数据通信系统
WO2014056412A1 (zh) 一种报文发送的方法、路由器桥及系统
JP2014502110A (ja) パブリックネットワークにおけるプライベート装置の識別
EP2536099A2 (en) Method and access node for preventing address conflict
WO2010072161A1 (zh) 一种数据出Gi口的路由方法、装置和通信系统
WO2018058620A1 (zh) 一种ip地址分配方法及装置
US20220263879A1 (en) Multicast session establishment method and network device
US9503418B2 (en) Method and apparatus for obtaining remote IP address
CN111163185A (zh) 用于对mesh网络中的节点进行IP寻址访问的方法
CN109698868B (zh) Ip地址分配方法及装置、计算机程序及存储介质
CN114365540B (zh) 通信方法、设备及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20852131

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20852131

Country of ref document: EP

Kind code of ref document: A1