WO2024037081A9 - 反向充电系统、方法及相关装置 - Google Patents
反向充电系统、方法及相关装置 Download PDFInfo
- Publication number
- WO2024037081A9 WO2024037081A9 PCT/CN2023/095148 CN2023095148W WO2024037081A9 WO 2024037081 A9 WO2024037081 A9 WO 2024037081A9 CN 2023095148 W CN2023095148 W CN 2023095148W WO 2024037081 A9 WO2024037081 A9 WO 2024037081A9
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electronic device
- voltage
- value
- battery voltage
- battery
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 91
- 230000007423 decrease Effects 0.000 claims abstract description 18
- 238000004590 computer program Methods 0.000 claims description 19
- 238000010586 diagram Methods 0.000 description 29
- 238000004891 communication Methods 0.000 description 19
- 238000007726 management method Methods 0.000 description 12
- 238000004088 simulation Methods 0.000 description 12
- 230000006870 function Effects 0.000 description 9
- 230000003287 optical effect Effects 0.000 description 8
- 238000012545 processing Methods 0.000 description 8
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 4
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 3
- 238000013500 data storage Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000010295 mobile communication Methods 0.000 description 3
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 2
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 241000599985 Beijerinckia mobilis Species 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/007—Regulation of charging or discharging current or voltage
- H02J7/00712—Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
- H02J7/007182—Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/00032—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
- H02J7/00034—Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0047—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
- H02J7/0048—Detection of remaining charge capacity or state of charge [SOC]
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/007—Regulation of charging or discharging current or voltage
- H02J7/007188—Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
- H02J7/007192—Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/34—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
- H02J7/342—The other DC source being a battery actively interacting with the first one, i.e. battery to battery charging
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2207/00—Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J2207/20—Charging or discharging characterised by the power electronics converter
Definitions
- the present application relates to the field of terminal technology, and in particular to a reverse charging system, method and related devices.
- the battery power of an electronic device will gradually decrease during use. When the battery power of the electronic device is low, it will shut down, which causes inconvenience to the user.
- a mobile phone with higher power can be used to wirelessly charge a mobile phone with lower power.
- mobile phone A with higher power is used to wirelessly reverse charge mobile phone B with lower power.
- mobile phone A radiates a wireless charging signal based on its boosted voltage
- mobile phone B converts the received wireless charging signal into a voltage, and uses the converted voltage to charge the battery of mobile phone B.
- Mobile phone B steps down the received boosted voltage, and then uses the stepped-down voltage to charge the battery of mobile phone B.
- the embodiments of the present application provide a reverse charging system, method and related devices, which improve the efficiency of reverse charging.
- an embodiment of the present application provides a reverse charging system, the charging system comprising a first electronic device and a second electronic device, the first electronic device being used to boost the first battery voltage of the first electronic device to a first voltage value, and then reversely charge the second electronic device using the first voltage value; the second electronic device being used to adjust the first voltage value to the second battery voltage of the second electronic device, and to charge using the second battery voltage, wherein the first battery voltage of the first electronic device decreases as the power supply time of the first electronic device increases, and the second battery voltage of the second electronic device increases as the charging time of the second electronic device increases.
- the second electronic device can charge the battery of the second electronic device using a voltage suitable for the second battery during the reverse charging process, thereby improving the efficiency of reverse charging.
- the first electronic device includes a first charging chip
- the second electronic device includes a step-down circuit
- the first voltage value is X times the first battery voltage of the first electronic device
- X is a positive integer greater than 1
- the first charging chip is used to boost the first battery voltage of the first electronic device to the X times the first battery voltage
- the step-down circuit is used to adjust the X times the first battery voltage to the second battery voltage of the second electronic device.
- the second electronic device can adjust the X times the first battery voltage to the second battery voltage of the second electronic device, further improving the efficiency of reverse charging.
- the first electronic device is specifically used to boost the first battery voltage of the first electronic device to X times the first battery voltage through the first charging chip when the temperature of the first electronic device is higher than a first temperature threshold and lower than a second temperature threshold, and reverse charge the second electronic device using the X times the first battery voltage; the first temperature threshold is lower than the second temperature threshold. In this way, the temperature of the first electronic device rises less during the reverse charging process, which improves the user experience and the charging efficiency.
- the first electronic device further includes a boost circuit
- the second electronic device further includes a second charging chip
- the first voltage value is Y times the second battery voltage of the second electronic device
- Y is a positive integer greater than 1
- the first electronic device is specifically used to switch to boosting the first battery voltage of the first electronic device to Y times the second battery voltage through the boost circuit when the temperature of the second electronic device is higher than the second temperature threshold and the first electronic device boosts the first battery voltage of the first electronic device to X times the first battery voltage through the first charging chip, and reverse charging the second electronic device using the Y times the second battery voltage
- the second electronic device is specifically used to switch to adjusting the Y times the second battery voltage to the second battery voltage of the second electronic device through the second charging chip when the temperature of the second electronic device is higher than the second temperature threshold and the second electronic device boosts the X times the first battery voltage to the second battery voltage of the second electronic device through the step-down circuit, and charging using the second battery voltage.
- the speed at which the temperature of the second electronic device rises during the reverse charging process can be slowed down, the charging efficiency can be improved, and the user experience can be enhanced.
- the first electronic device further includes a boost circuit, the first voltage value is a specific voltage value, and the specific voltage value is the minimum charging voltage value allowed by the second electronic device; the first electronic device is specifically used to switch to boosting the first battery voltage of the first electronic device to a specific voltage value through the boost circuit when the temperature of the first electronic device is lower than the first temperature threshold or the temperature of the first electronic device is higher than the second temperature threshold, and the first electronic device boosts the first battery voltage of the first electronic device to X times the first battery voltage through the first charging chip, and reverse charging the second electronic device using the specific voltage value.
- switching the charging strategy can slow down the temperature increase of the first electronic device during the reverse charging process, thereby improving the user experience.
- the first electronic device is specifically used to, when the first value is greater than the second value, boost the first battery voltage of the first electronic device to X times the first battery voltage through the first charging chip, and use the X times the first battery voltage to reverse charge the second electronic device;
- the first value is the product of the first battery capacity of the first electronic device and the first remaining power of the first electronic device
- the second value is the product of the second battery capacity of the second electronic device and the second remaining power of the second electronic device
- the first value is greater than a preset value
- the second value is less than the preset value.
- the first electronic device includes a boost circuit, the first voltage value is a specific voltage value, and the specific voltage value is the minimum charging voltage value allowed by the second electronic device; the first electronic device is specifically used to boost the first battery voltage of the first electronic device to a specific voltage value through the boost circuit when the first value and the second value meet a preset condition, and use the specific voltage value to reverse charge the second electronic device; the first value is the product of the first battery capacity of the first electronic device and the first remaining power of the first electronic device, and the second value is the product of the second battery capacity of the second electronic device and the second remaining power of the second electronic device, and the preset condition includes any one of the following: the first value is less than the second value, the first value and the second value are both less than the preset value, and the first value and the second value are both greater than the preset value. In this way, the first electronic device has enough power to operate, which improves the user experience.
- the first electronic device includes a boost circuit, the first voltage value is a specific voltage value, and the specific voltage value is the minimum charging voltage value allowed by the second electronic device; the first electronic device is specifically used to boost the first battery voltage of the first electronic device to a specific voltage value through the boost circuit when the temperature of the first electronic device is lower than the first temperature threshold or the temperature of the first electronic device is higher than the second temperature threshold, and the first value is greater than the second value, and reverse charge the second electronic device using the specific voltage value; the first temperature threshold is less than the second temperature threshold; the first value is the product of the first battery capacity of the first electronic device and the first remaining power of the first electronic device, the second value is the product of the second battery capacity of the second electronic device and the second remaining power of the second electronic device, the first value is greater than a preset value, and the second value is less than the preset value. In this way, the temperature of the first electronic device rises less during the charging process, thereby improving the user experience.
- the first electronic device includes a boost circuit
- the second electronic device includes a second charging chip
- the first voltage value is Y times the second battery voltage of the second electronic device
- Y is a positive integer greater than 1
- the boost circuit is used to boost the first battery voltage of the first electronic device to Y times the second battery voltage
- the second charging chip is used to adjust the Y times the second battery voltage to the second battery voltage of the second electronic device.
- the second charging chip can adjust the Y times the second battery voltage to the second battery voltage of the second electronic device, thereby improving the charging power.
- the first electronic device further includes a first protocol module
- the second electronic device further includes a second protocol module
- the first protocol module is used to receive the second battery voltage of the second electronic device from the second protocol module in real time when the first electronic device performs reverse charging for the second electronic device
- the second protocol module is used to send the second battery voltage of the second electronic device to the first protocol module in real time when the second electronic device uses the second battery voltage to charge.
- the first electronic device includes a boost circuit
- the second electronic device includes a buck circuit
- the first voltage value is a voltage value with the smallest difference from the voltage upper limit value of the second electronic device among the preset voltage values
- the boost circuit is used to boost the first battery voltage of the first electronic device to a voltage value with the smallest difference from the voltage upper limit value of the second electronic device among the preset voltage values
- the buck circuit is used to adjust the voltage value with the smallest difference from the voltage upper limit value of the second electronic device among the preset voltage values to the second battery voltage of the second electronic device.
- the first electronic device further includes a first protocol module
- the second electronic device further includes a second protocol module
- the first protocol module is used to receive the voltage upper limit value of the second electronic device from the second protocol module when the first electronic device is connected to the second electronic device by wire; wherein the first voltage value is less than the voltage upper limit value; and the second protocol module is used to obtain the voltage upper limit value of the second electronic device.
- the first electronic device is further configured to reversely charge the second electronic device when the first electronic device is connected to the second electronic device by wire, if the first battery capacity of the first electronic device is greater than the second battery capacity of the second electronic device, or the first value of the first electronic device is greater than the second value of the second electronic device. In this way, a device with a large battery capacity can charge a device with a small battery capacity, thereby improving user experience.
- the first electronic device is further used to display a first interface when the first electronic device is connected to the second electronic device by wire, wherein the first interface includes prompt information for prompting whether to use the first electronic device for external charging, as well as a first button and a second button.
- the first voltage value is used to reversely charge the second electronic device, or when an operation is received for the second button, the charging from the second electronic device is accepted. In this way, the user can independently select the charging device and the power supply device, thereby improving the user experience.
- the first electronic device is further used to display a second interface, and when the user inputs the cut-off power of reverse charging of the second electronic device in the second interface, the cut-off power of reverse charging for the second electronic device is obtained; the second interface is used to receive the cut-off power of reverse charging of the second electronic device input by the user; the first electronic device is further used to stop reverse charging for the second electronic device when the first remaining power of the first electronic device reaches the cut-off power. In this way, the first electronic device can charge the second electronic device to a power level that meets the user's needs, thereby improving the user experience.
- an embodiment of the present application provides a reverse charging method, comprising: a first electronic device boosts a first battery voltage of the first electronic device to a first voltage value, and then reverse charges the second electronic device using the first voltage value; a second electronic device adjusts the first voltage value to a second battery voltage of the second electronic device, and charges the second battery voltage, wherein the first battery voltage of the first electronic device decreases as the power supply time of the first electronic device increases, and the second battery voltage of the second electronic device increases as the charging time of the second electronic device increases.
- the first voltage value is X times the first battery voltage of the first electronic device; X is a positive integer greater than 1; the first electronic device includes a first charging chip, and the second electronic device includes a step-down circuit.
- the first electronic device boosts the first battery voltage of the first electronic device to a first voltage value, including: the first electronic device boosts the first battery voltage of the first electronic device to X times the first battery voltage through the first charging chip; the second electronic device adjusts the first voltage value to a second battery voltage of the second electronic device, including: the second electronic device adjusts the X times the first battery voltage to the second battery voltage of the second electronic device through the step-down circuit.
- the first electronic device uses the first voltage value to reverse charge the second electronic device, including: when the temperature of the first electronic device is higher than a first temperature threshold and lower than a second temperature threshold, the first electronic device boosts the first battery voltage of the first electronic device to X times the first battery voltage through the first charging chip, and uses the X times the first battery voltage to reverse charge the second electronic device; the first temperature threshold is less than the second temperature threshold.
- the first electronic device further includes a boost circuit
- the second electronic device further includes a second charging chip
- the first voltage value is Y times the second battery voltage of the second electronic device
- Y is a positive integer greater than 1
- the first electronic device uses the first voltage value to reverse charge the second electronic device, including: when the temperature of the second electronic device is higher than the second temperature threshold, and the first electronic device boosts the first battery voltage of the first electronic device to X times the first battery voltage through the first charging chip, the first electronic device switches to boosting the first battery voltage of the first electronic device to Y times the second battery voltage through the boost circuit, and reverse charging the second electronic device using the Y times the second battery voltage
- the second electronic device adjusts the first voltage value to the second battery voltage of the second electronic device, and uses the second battery voltage to achieve charging, including: when the temperature of the second electronic device is higher than the second temperature threshold, and the second electronic device increases the X times the first battery voltage
- the first electronic device further includes a boost circuit, the first voltage value is a specific voltage value, and the specific voltage value is the minimum charging voltage value allowed by the second electronic device; after the first electronic device boosts the first battery voltage of the first electronic device to the first voltage value, the first electronic device uses the first voltage value to reverse charge the second electronic device, including: when the temperature of the first electronic device is lower than the first temperature threshold or the temperature of the first electronic device is higher than the second temperature threshold, and the first electronic device boosts the first battery voltage of the first electronic device to X times the first battery voltage through the first charging chip, the first electronic device switches to boosting the first battery voltage of the first electronic device to the specific voltage value through the boost circuit, and uses the specific voltage value to reverse charge the second electronic device.
- the first electronic device further includes a boost circuit
- the first voltage value is a specific voltage value
- the specific voltage value is the minimum charging voltage value allowed by the second electronic device
- the first electronic device uses the first voltage value to reverse charge the second electronic device, including: when the temperature of the first electronic device
- the first electronic device further includes a boost circuit, and after the first electronic device boosts the first battery voltage of the first electronic device to a first voltage value, the first electronic device uses the first voltage value to reverse charge the second electronic device, including: when the first value is greater than the second value, the first electronic device boosts the first battery voltage of the first electronic device to X times the first battery voltage through the first charging chip, and uses the X times the first battery voltage to reverse charge the second electronic device; the first value is the product of the first battery capacity of the first electronic device and the first remaining power of the first electronic device, the second value is the product of the second battery capacity of the second electronic device and the second remaining power of the second electronic device, the first value is greater than a preset value, and the second value is less than the preset value.
- the first electronic device includes a boost circuit
- the first voltage value is a specific voltage value
- the specific voltage value is the minimum charging voltage value allowed by the second electronic device
- the first electronic device uses the first voltage value to reverse charge the second electronic device, including: when the first value and the second value meet a preset condition, the first electronic device boosts the first battery voltage of the first electronic device to the specific voltage value through the boost circuit, and uses the specific voltage value to reverse charge the second electronic device
- the first value is the product of the first battery capacity of the first electronic device and the first remaining power of the first electronic device
- the second value is the product of the second battery capacity of the second electronic device and the second remaining power of the second electronic device
- the preset condition includes any one of the following: the first value is less than the second value, the first value and the second value are both less than the preset value, and the first value and the second value are both greater than the preset value.
- the first electronic device includes a boost circuit
- the first voltage value is a specific voltage value
- the specific voltage value is the minimum charging voltage value allowed by the second electronic device
- the first electronic device uses the first voltage value to reverse charge the second electronic device, including: when the temperature of the first electronic device is lower than the first temperature threshold or the temperature of the first electronic device is higher than the second temperature threshold, and the first value is greater than the second value
- the first electronic device through the boost circuit, boosts the first battery voltage of the first electronic device to the specific voltage value, and uses the specific voltage value to reverse charge the second electronic device
- the first temperature threshold is less than the second temperature threshold
- the first value is the product of the first battery capacity of the first electronic device and the first remaining power of the first electronic device
- the second value is the product of the second battery capacity of the second electronic device and the second remaining power of the second electronic device
- the first value is greater than a preset value
- the second value is less than the
- the first electronic device includes a boost circuit
- the second electronic device includes a second charging chip
- the first voltage value is Y times the second battery voltage of the second electronic device
- Y is a positive integer greater than 1
- the first electronic device boosts the first battery voltage of the first electronic device to the first voltage value, including: the first electronic device boosts the first battery voltage of the first electronic device to Y times the second battery voltage through the boost circuit
- the second electronic device adjusts the first voltage value to the second battery voltage of the second electronic device, including: the second electronic device adjusts the Y times the second battery voltage to the second battery voltage of the second electronic device through the second charging chip.
- the first electronic device further includes a first protocol module
- the second electronic device further includes a second protocol module
- the method further includes: when the first electronic device performs reverse charging for the second electronic device, the first protocol module receives in real time a second battery voltage of the second electronic device from the second protocol module; when the second electronic device uses the second battery voltage to charge, the second protocol module sends in real time the second battery voltage of the second electronic device to the first protocol module.
- the first electronic device includes a boost circuit
- the second electronic device includes a buck circuit
- the first voltage value is a voltage value with the smallest difference from a voltage upper limit value of the second electronic device among preset voltage values
- the first electronic device boosts the first battery voltage of the first electronic device to the first voltage value, including: the first electronic device uses the boost circuit to boost the first battery voltage of the first electronic device to a voltage value with the smallest difference from a voltage upper limit value of the second electronic device among the preset voltage values
- the second electronic device adjusts the first voltage value to a second battery voltage of the second electronic device, including: the second electronic device adjusts the voltage value with the smallest difference from a voltage upper limit value of the second electronic device among the preset voltage values to the second battery voltage of the second electronic device through the buck circuit.
- the first electronic device further includes a first protocol module
- the second electronic device further includes a second protocol module
- the method further includes: when the first electronic device is connected to the second electronic device by wire, the first protocol module receives a voltage upper limit value of the second electronic device from the second protocol module; wherein the first voltage value is less than the voltage upper limit value; and the second protocol module obtains the voltage upper limit value of the second electronic device.
- the method further includes: when the first electronic device is connected to the second electronic device by wire, if the first battery capacity of the first electronic device is greater than the second battery capacity of the second electronic device, or the first value of the first electronic device is greater than the second value of the second electronic device, the first electronic device reverse charges the second electronic device.
- the method further includes: when the first electronic device is connected to the second electronic device by wire, the first electronic device displays a first interface, the first interface includes prompt information for prompting whether to use the first electronic device for external charging, as well as a first button and a second button, and when an operation is received on the first button, the first voltage value is used to reverse charge the second electronic device, or when an operation is received on the second button, the charging from the second electronic device is accepted.
- the method further includes: the first electronic device displays a second interface, and when the user inputs a cut-off power level for reverse charging of the second electronic device in the second interface, the cut-off power level for reverse charging of the second electronic device is acquired; the second interface is used to receive the cut-off power level for reverse charging of the second electronic device input by the user;
- the first electronic device stops reverse charging the second electronic device.
- an embodiment of the present application provides an electronic device, comprising a processor and a memory, the memory being used to store code instructions, and the processor being used to run the code instructions to execute the steps performed by a first electronic device in the method described in the first aspect or any possible implementation of the first aspect, or to execute the steps performed by a second electronic device in the method described in the first aspect or any possible implementation of the first aspect.
- an embodiment of the present application provides a computer-readable storage medium, wherein the computer-readable storage medium stores a computer program.
- the steps performed by the first electronic device in the method described in the first aspect or any possible implementation of the first aspect are implemented, or when the computer program is executed by a processor, the steps performed by the second electronic device in the method described in the first aspect or any possible implementation of the first aspect are implemented.
- an embodiment of the present application provides a computer program product, which includes a computer program.
- the computer program When the computer program is run, it enables the computer to execute the steps performed by the first electronic device in the method described in the first aspect or any possible implementation of the first aspect, or enables the computer to execute the steps performed by the second electronic device in the method described in the first aspect or any possible implementation of the first aspect.
- an embodiment of the present application provides a chip, the chip including a processor, the processor being used to call a computer program in a memory to execute steps performed by a first electronic device in a method described in the first aspect or any possible implementation of the first aspect, or to execute steps performed by a second electronic device in a method described in the first aspect or any possible implementation of the first aspect.
- FIG1 is a schematic diagram of an application scenario of a reverse charging system provided in an embodiment of the present application.
- FIG2 is a schematic diagram of the structure of an electronic device provided in an embodiment of the present application.
- FIG3 is a schematic diagram of the internal architecture of a reverse charging system provided in an embodiment of the present application.
- FIG4 is a circuit diagram 1 of a reverse charging system provided in an embodiment of the present application.
- FIG5 is a second circuit diagram of a reverse charging system provided in an embodiment of the present application.
- FIG6 is a third circuit diagram of a reverse charging system provided in an embodiment of the present application.
- FIG. 7 is a schematic diagram of simulation results of input voltage and output voltage of a boost circuit provided in an embodiment of the present application.
- FIG8 is a second schematic diagram of simulation results of input voltage and output voltage of a boost circuit provided in an embodiment of the present application.
- FIG9 is a schematic diagram 1 of simulation results of input voltage and output voltage of a buck circuit provided in an embodiment of the present application.
- FIG10 is a schematic diagram 1 of simulation results of input voltage and output voltage of a buck circuit provided in an embodiment of the present application;
- FIG11 is a schematic diagram of a flow chart of a reverse charging method provided in an embodiment of the present application.
- FIG12 is a schematic diagram of a first interface provided in an embodiment of the present application.
- FIG13 is a schematic diagram of a second interface provided in an embodiment of the present application.
- FIG14 is a schematic diagram of the hardware structure of an electronic device provided in an embodiment of the present application.
- FIG. 15 is a schematic diagram of the structure of a chip provided in an embodiment of the present application.
- the words “first”, “second” and the like are used to distinguish between the same items or similar items with substantially the same functions and effects.
- the interface of the first target function and the interface of the second target function are to distinguish between different response interfaces, and their order of precedence is not limited.
- the words “first”, “second” and the like do not limit the quantity and execution order, and the words “first”, “second” and the like do not necessarily limit them to be different.
- At least one means one or more
- plural means two or more.
- “And/or” describes the association relationship of associated objects, indicating that three relationships may exist. For example, A and/or B can mean: A exists alone, A and B exist at the same time, and B exists alone, where A and B can be singular or plural. The character “/” generally indicates that the previous and next associated objects are in an “or” relationship. "At least one of the following” or similar expressions refers to any combination of these items, including any combination of single or plural items.
- At least one of a, b, or c can mean: a, b, c, a and b, a and c, b and c, or a, b and c, where a, b, c can be single or multiple.
- the technical solution provided in the embodiment of the present application can be applied to the scenario of reverse charging of electronic devices.
- the electronic device may be shut down due to the inability to charge for a long time, which causes inconvenience to the user.
- most electronic devices are powered by large-capacity batteries, and the electronic devices may have hardware that supports reverse charging, such as the boost circuit and the buck circuit in the mobile phone. In this way, the electronic device can be used as a power source to reverse charge other electronic devices with lower power, providing users with an emergency solution for charging electronic devices.
- mobile phone A when mobile phone A is wirelessly charging mobile phone B, mobile phone A can boost the voltage through a boost circuit and radiate a wireless charging signal based on the boosted voltage.
- Mobile phone B receives the wireless charging signal and converts the received wireless charging signal into an input voltage to charge the battery of mobile phone B, thereby enabling mobile phone A to wirelessly charge mobile phone B, so that the power of mobile phone B is replenished in time, and mobile phone B will not shut down due to low power, causing inconvenience to the user.
- the voltage of mobile phone A is boosted by a certain multiple and then stepped down by mobile phone B by a certain multiple.
- the voltage of mobile phone B after the step-down does not necessarily match the battery voltage of mobile phone B. For example, it may be greater than or less than the battery voltage of mobile phone B, resulting in more losses in the charging process and lower charging efficiency.
- an embodiment of the present application provides a reverse charging system, in which a first electronic device is a power supply device and a second electronic device is a charging device.
- the first electronic device charges the second electronic device using the boosted first voltage value
- the second electronic device can adjust the first voltage value output by the first electronic device to the second battery voltage of the second electronic device, and use the second battery voltage to achieve charging.
- the battery voltage and the charging voltage can be highly matched, thereby improving the efficiency of reverse charging.
- FIG1 is a schematic diagram of an application scenario of a reverse charging system provided in an embodiment of the present application.
- the application scenario may include a first electronic device and a second electronic device.
- the interface displayed by the first electronic device may include time, weather, and multiple application controls.
- the embodiment of the present application is only illustrated by an example of the first electronic device displaying an interface such as FIG1 , and the example does not constitute a limitation of the embodiment of the present application.
- the current remaining power of the first electronic device is 80%, and the current remaining power of the second electronic device is 10%.
- the first electronic device can charge the second electronic device.
- the reverse charging system provided in the embodiment of the present application can realize reverse charging of a mobile phone to an earphone, or reverse charging of a mobile phone to another mobile phone. Since the earphone is portable, small in size, and the battery capacity is usually smaller than the battery capacity of a mobile phone, when the earphone power is low, the mobile phone can be used as a power source to charge the earphone, which can provide greater convenience for the user.
- the first electronic device and the second electronic device may also be referred to as a terminal, a user equipment (UE), a mobile station (MS), a mobile terminal (MT), etc.
- the electronic device may be a mobile phone with a MIC, a smart TV, a wearable device, a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (VR) electronic device, an augmented reality (AR) electronic device, a wireless terminal in industrial control (industrial control), a wireless terminal in self-driving, a wireless terminal in remote medical surgery, a wireless terminal in smart grid (smart grid), a wireless terminal in transportation safety (transportation safety), a wireless terminal in a smart city (smart city), a wireless terminal in a smart home (smart home), etc.
- the embodiments of the present application do not limit the specific technology and specific device form adopted by the electronic device.
- the electronic device 100 may include a processor 110, an external memory interface 120, an internal memory 121, a universal serial bus (USB) interface 130, a charging management module 140, a power management module 141, an antenna 1, an antenna 2, a mobile communication module 150, a wireless communication module 160, a sensor module 180, a button 190, an indicator 192, and a display screen 194, etc.
- a processor 110 an external memory interface 120, an internal memory 121, a universal serial bus (USB) interface 130, a charging management module 140, a power management module 141, an antenna 1, an antenna 2, a mobile communication module 150, a wireless communication module 160, a sensor module 180, a button 190, an indicator 192, and a display screen 194, etc.
- USB universal serial bus
- the structures illustrated in the embodiments of the present application do not constitute specific limitations on the electronic device.
- the electronic device may include more or fewer components than shown in the figure, or combine certain components, or split certain components, or arrange the components differently.
- the illustrated components may be implemented in hardware, software, or a combination of software and hardware.
- the processor 110 may include one or more processing units. Different processing units may be independent devices or integrated into one or more processors.
- the processor 110 may also be provided with a memory for storing instructions and data.
- the USB interface 130 is an interface that complies with the USB standard specification, and can specifically be a Mini USB interface, a Micro USB interface, a USB Type C interface, etc.
- the USB interface 130 can be used to connect a charger to charge an electronic device, and can also be used to transfer data between an electronic device and a peripheral device. It can also be used to connect headphones to play audio through the headphones.
- the interface can also be used to connect other electronic devices, such as AR devices, etc.
- the USB interface 130 can also be used to connect to other electronic devices to reverse charge the connected electronic devices.
- the charging management module 140 is used to receive charging input from a charger.
- the charger may be a wireless charger or a wired charger.
- the charging management module 140 may also be used to receive charging input from other electronic devices, as shown in the scenario described in FIG. 1 above.
- the power management module 141 is used to connect the charging management module 140 to the processor 110.
- the wireless communication function of the electronic device can be implemented through antenna 1, antenna 2, mobile communication module 150, wireless communication module 160, modem processor and baseband processor.
- the mobile communication module 150 can provide solutions for wireless communications including 2G/3G/4G/5G, etc., applied in electronic devices.
- the wireless communication module 160 can provide wireless communication solutions for application in electronic devices, including wireless local area networks (WLAN) (such as wireless fidelity (Wi-Fi) networks), Bluetooth (BT), global navigation satellite system (GNSS), frequency modulation (FM), etc.
- WLAN wireless local area networks
- Wi-Fi wireless fidelity
- BT Bluetooth
- GNSS global navigation satellite system
- FM frequency modulation
- the electronic device realizes the display function through the GPU, the display screen 194, and the application processor.
- the GPU is a microprocessor for image processing, connecting the display screen 194 and the application processor.
- the GPU is used to perform mathematical and geometric calculations for graphics rendering.
- the display screen 194 is used to display images, videos, etc.
- the display screen 194 includes a display panel.
- the electronic device may include 1 or N display screens 194, where N is a positive integer greater than 1.
- the external memory interface 120 can be used to connect an external memory card, such as a Micro SD card, to expand the storage capacity of the electronic device.
- the external memory card communicates with the processor 110 through the external memory interface 120 to implement a data storage function. For example, files such as music and videos can be saved in the external memory card.
- the internal memory 121 can be used to store computer executable program codes, and the executable program codes include instructions.
- the internal memory 121 can include a program storage area and a data storage area.
- the sensor module 180 may include one or more of the following sensors, for example: a pressure sensor, a gyroscope sensor, an air pressure sensor, a magnetic sensor, an acceleration sensor, a distance sensor, a proximity light sensor, a fingerprint sensor, a temperature sensor, a touch sensor, an ambient light sensor, or a bone conduction sensor, etc. (not shown in FIG. 2 ).
- sensors for example: a pressure sensor, a gyroscope sensor, an air pressure sensor, a magnetic sensor, an acceleration sensor, a distance sensor, a proximity light sensor, a fingerprint sensor, a temperature sensor, a touch sensor, an ambient light sensor, or a bone conduction sensor, etc. (not shown in FIG. 2 ).
- the electronic device 100 may also include a power management integrated circuit (Power Management IC, referred to as PMIC), a boost circuit, a buck circuit, and a charging chip SC charger (not shown in FIG. 2 ).
- the PMIC is used to manage power devices in the host system of the electronic device, etc.
- the power management integrated circuit (Power Management IC, referred to as PMIC), the boost circuit, the buck circuit, and the charging chip SC charger are included in the power management module 141, and can be included in the charging management module 140.
- the boost circuit is used to boost the battery voltage of the electronic device when the electronic device is charging externally.
- the buck circuit is used to buck the received voltage when the electronic device receives the voltage input from other electronic devices, and use the bucked voltage to achieve charging.
- the SC charger has both boost and buck functions, so during the reverse charging process of the electronic device, the SC charger can be used as a boost circuit or a buck circuit.
- the boost circuit, the buck circuit, and the charging chip SC charger may be integrated in the PMIC or may be separately provided, which is not limited in the embodiments of the present application.
- the boost circuit and the buck circuit may be external or integrated in the PMIC.
- the software system of the electronic device 100 may adopt a layered architecture, an event-driven architecture, a micro-core architecture, a micro-service architecture, or a cloud architecture, etc.
- the embodiment of the present application does not specifically limit the software system of the electronic device.
- FIG3 is a schematic diagram of the internal architecture of a reverse charging system provided in an embodiment of the present application.
- the first electronic device 200 is a power supply device
- the second electronic device 300 is a charging device.
- the first electronic device 200 may include a first protocol module 201, a first system on chip 202 (system on chip, SOC), a first battery 203, and a boost circuit 204.
- the second electronic device 300 may include a second protocol module 301, a second SOC302, a second battery 303, and a buck circuit 304.
- the first protocol module 201 may be a first protocol chip, and the second protocol module 201 may be a second protocol chip.
- the boost circuit 204 may be a first SC charger or a boost circuit, and the buck circuit 304 may be a second SC charger.
- the first protocol module 201 and the second protocol module 301 may communicate with each other.
- the charging protocols used when the first protocol module 201 and the second protocol module 301 communicate include but are not limited to fast charging protocol (fast fharger protocol, FCP), super fast charging protocol (super charge protocol, SCP), quick charging protocol (quick charge, QC), first fast charging protocol (Programmable Power Supply, PPS), charging protocol (Power Delivery, PD), second charging protocol (adaptive fast charge, AFC), VOOC flash charging protocol, etc.
- fast charging protocol fast fharger protocol, FCP
- super fast charging protocol super fast charging protocol
- SCP super fast charging protocol
- quick charging protocol quick charge, QC
- first fast charging protocol Programmable Power Supply, PPS
- charging protocol Power Delivery, PD
- second charging protocol adaptive fast charge, AFC
- VOOC flash charging protocol etc.
- the first protocol module 201 in the first electronic device 200 can receive a charging demand instruction from the second protocol module 301 through communication with the second protocol module 301, and the charging demand instruction can carry charging power, voltage upper limit value, etc.
- the second protocol module 301 can send the charging demand instruction to the first SOC 202 through IIC.
- the first SOC 202 controls the boost circuit 204 to boost the first battery voltage to the first voltage value based on the voltage upper limit value, and uses the first voltage value to reverse charge the second electronic device 300.
- the first voltage value is less than the voltage upper limit value.
- the first battery voltage of the first electronic device 200 decreases as the power supply time of the first electronic device 200 increases.
- the second protocol module 301 in the second electronic device 300 sends the charging power to the second SOC 302 through the IIC.
- the second SOC 302 can control the step-down circuit 304 to adjust the first voltage value to the second battery voltage of the second electronic device 300, and use the second battery voltage to achieve charging.
- the second battery voltage of the second electronic device 300 increases as the charging time of the second electronic device 300 increases.
- the second battery voltage continues to increase between 0V and the cut-off voltage.
- the second battery voltage of the second electronic device 300 can be increased from 3V to 4.5V.
- the first electronic device 200 boosts the voltage of the first battery of the first electronic device 200 to 9V through the boost circuit 2042, and outputs 9V 1A to the second electronic device 300.
- the second electronic device 300 converts 9V 1A into 5V 2A through the step-down circuit 304 to charge the second battery 303.
- the first electronic device 200 can charge the second electronic device 300 in the following three possible implementations as shown in Figures 4 to 6.
- Figure 4 is a circuit schematic diagram 1 of a reverse charging system provided in an embodiment of the present application.
- Figure 5 is a circuit schematic diagram 2 of a reverse charging system provided in an embodiment of the present application.
- Figure 6 is a circuit schematic diagram 3 of a reverse charging system provided in an embodiment of the present application.
- the boost circuit 204 in the first electronic device 200 may be a first charging chip, and the charging chip may be a first SC charger 2041.
- the first electronic device 200 may include a first protocol chip 2011, a first battery 203, a first SOC 202, and a first SC charger 2041
- the second electronic device 300 may include a second protocol chip 3011, a second battery 303, a second SOC 302, and a step-down circuit 304.
- the step-down circuit 304 is a continuously adjustable step-down circuit.
- the SC charger has a higher conversion efficiency in the power conversion process, and the power conversion efficiency of the SC charger can reach a higher proportion, for example, the power conversion efficiency of the SC charger may reach 97%. Therefore, using the SC charger for reverse charging can reduce power loss and improve the efficiency of reverse charging.
- the first protocol chip 2011 communicates with the second protocol chip 3011, and the first protocol chip 2011 can receive the voltage upper limit value from the second protocol chip 3011, and determine that the voltage value of reverse charging to the second electronic device 300 is X times the first battery voltage based on the received voltage upper limit value and the first battery voltage, where X is a positive integer greater than 1.
- the X times the first battery voltage is less than the voltage upper limit value, and in order to further improve the efficiency of reverse charging, the X times the first battery voltage can be the maximum voltage value allowed within the voltage upper limit value.
- the first SOC 202 controls the first SC charger 2041 to boost the first battery voltage of the first electronic device 200 to X times the first battery voltage based on the reverse charging voltage value determined by the first protocol chip 2011, and outputs X times the first battery voltage to the step-down circuit 304 of the second electronic device 300.
- the first battery voltage is Vabtt1
- the second battery voltage is Vabtt2.
- the first protocol chip 1011 determines that the reverse charging battery voltage value can be 2 times Vabtt1, and the first electronic device 200 boosts the Vabtt1 of the first electronic device 200 to 2 times Vabtt1 through the first SC charger 2041, and uses the 2 times Vabtt1 to charge the second electronic device 300.
- the first battery voltage of the first electronic device 200 decreases as the power supply time of the first electronic device 200 increases, and the boost ratio of the first SC charger 2041 increases as the first battery voltage decreases.
- the second protocol chip 3011 in the second electronic device 300 can send the second battery voltage to the second SOC 302 in real time.
- the second SOC 302 controls the step-down circuit 304 to step down the X-fold first battery voltage to the second battery voltage of the second electronic device 300, and uses the second battery voltage to charge the second battery 303.
- the second battery voltage of the second electronic device 300 increases as the charging time of the second electronic device 300 increases, and the buck circuit 304 continuously adjusts its buck ratio so that the buck circuit 304 can buck the first battery voltage X times to the second battery voltage.
- the first electronic device 200 is boosted by the first SC charger 2041, and the second electronic device 300 is stepped down by the step-down circuit 304.
- the first SC charger 2041 generates less heat during reverse charging, so that the temperature of the first electronic device 200 rises slowly during the charging process, reducing power loss and increasing the power of reverse charging, which can effectively improve the efficiency of reverse charging and enhance user experience.
- the boost circuit 204 in the first electronic device 200 may be a boost circuit 2042
- the buck circuit 304 in the second electronic device 300 may be a second charging chip, which may be a second SC charger 3041.
- the first electronic device 200 may include a first protocol chip 2011, a first battery 203, a first SOC 202, and a boost circuit 2042
- the second electronic device 300 may include a second protocol chip 3011, a second battery 303, a second SOC 302, and a second SC charger 3041.
- the boost circuit 2042 is a continuously adjustable boost circuit.
- the first protocol chip 2011 communicates with the second protocol chip 3011, and the first protocol chip 2011 can receive the voltage upper limit value from the second protocol chip 3011 and the second battery voltage of the second electronic device 300, and determine the voltage value of reverse charging to the second electronic device 300 to be Y times the second battery voltage based on the received voltage upper limit value, the first battery voltage and the second battery voltage, where Y is a positive integer greater than 1. Among them, the Y times the second battery voltage is less than the voltage upper limit value.
- the first SOC 202 controls the first SC charger 2041 to boost the first battery voltage of the first electronic device 200 to Y times the first battery voltage based on the reverse charging voltage value determined by the first protocol chip 2011, and outputs Y times the second battery voltage to the step-down circuit 304 of the second electronic device 300.
- the first battery voltage is Vabtt1
- the second battery voltage is Vabtt2.
- the first protocol chip 1011 determines that the reverse charging battery voltage value can be 2 times Vabtt2, and the first electronic device 200 boosts Vabtt1 to 2 times Vabtt2 through the boost circuit 2042, and uses 2 times Vabtt2 to reverse charge the second electronic device 300.
- the first battery voltage of the first electronic device 200 decreases as the power supply time of the first electronic device 200 increases, and the boost ratio of the boost circuit 2042 changes continuously as the first battery voltage decreases.
- the second protocol chip 3011 in the second electronic device 300 can send the second battery voltage to the second SOC 302 in real time.
- the second SOC 302 controls the second SC charger 3041 to step down the Y times second battery voltage to the second battery voltage of the second electronic device 300, and uses the second battery voltage to charge the second battery 303.
- the first electronic device 200 boosts the voltage of the first battery through the continuously adjustable boost circuit 2042, and the second electronic device 300 can step down the boosted voltage to the second battery voltage through the second SC charger 3041, so that the first electronic device 200 performs reverse charging for the second electronic device 300.
- the second SC charger 3041 generates less heat, so that the temperature of the second electronic device 300 rises slowly during the charging process, reducing power loss, increasing the power of reverse charging, and effectively improving the efficiency of reverse charging and user experience.
- the first electronic device 200 may include a first protocol chip 2011, a first battery 203, a first SOC 202, and a boost circuit 2042
- the second electronic device 300 may include a second protocol chip 3011, a second battery 303, a second SOC 302, and a step-down circuit 304
- the boost circuit 2042 can increase the first battery voltage of the first electronic device 200 to a preset voltage value, which is related to the charging voltage of different electronic devices.
- the boost circuit 2042 may include a first controller, an inductor 1, a MOS tube 1, and a diode 1.
- the step-down circuit 304 may include a second controller, a MOS tube 2, and a diode 2.
- the first protocol chip 2011 communicates with the second protocol chip 3011, and the first protocol chip 2011 can receive the voltage upper limit value from the second protocol chip 3011, and based on the received voltage upper limit value, determine that the voltage value for reverse charging the second electronic device 300 is the voltage value with the smallest difference between the preset voltage values and the voltage upper limit value of the second electronic device.
- the first SOC 202 controls the boost circuit 2042 to increase the first battery voltage of the first electronic device 200 to a voltage value with the smallest difference from the voltage upper limit of the second electronic device among the preset voltage values based on the reverse charging voltage value determined by the first protocol chip 2011, and outputs the voltage value with the smallest difference from the voltage upper limit of the second electronic device among the preset voltage values to the step-down circuit 304 of the second electronic device 300.
- the first SOC 202 boosts the first battery voltage to a voltage value with the smallest difference from the voltage upper limit of the second electronic device among the preset voltage values by adjusting the duty cycle of the first controller.
- the first battery voltage of the first electronic device 200 decreases as the power supply time of the first electronic device 200 increases, and the boost ratio of the boost circuit 2042 changes continuously as the first battery voltage decreases.
- the second protocol chip 3011 in the second electronic device 300 can send the second battery voltage to the second SOC 302 in real time.
- the second SOC 302 controls the step-down circuit 304 to reduce the voltage value with the smallest difference from the voltage upper limit value of the second electronic device among the preset voltage values to the second battery voltage of the second electronic device 300, and uses the second battery voltage to charge the second battery 303.
- the second battery voltage of the second electronic device 300 increases as the charging time of the second electronic device 300 increases, and the buck circuit 304 continuously adjusts its buck ratio so that the buck circuit 304 can buck the first battery voltage X times to the second battery voltage.
- the first electronic device 200 performs a voltage boost through the boost circuit 2042
- the second electronic device 300 performs a voltage step-down circuit 304 to step down the voltage output by the first electronic device 200, and uses the stepped-down voltage to charge the second battery 303, so that no hardware is added to the first electronic device 200 and the second electronic device 300, thereby improving the compatibility of the reverse charging method.
- the step-down circuit 304 is a step-down circuit with continuously adjustable voltage
- the reverse charging circuit shown in FIG6 can improve the efficiency of reverse charging.
- FIG8 is a schematic diagram 2 of the simulation results of the input voltage and output voltage of a boost circuit provided in an embodiment of the present application.
- a simulation result including the input voltage and the output voltage as shown in FIG8 can be obtained.
- the output voltage of the boost circuit 2042 is 5V
- the output voltage is 12V
- the input voltage and the output voltage do not increase or decrease. Therefore, when the input voltage of the boost circuit 2042 is 5V, it can stably output a voltage of 12V after being boosted by the boost circuit 2042.
- the boost circuit 2042 in the reverse charging circuit can boost the voltage value of the first battery of the first electronic device 200 to different voltage values.
- the boost circuit 2042 can boost the 5V output voltage of the lithium battery of the first electronic device 200 to three power levels of 9V 1A, 9V 2A, and 12V 1A.
- FIG9 is a schematic diagram of the simulation results of the input voltage and output voltage of a buck circuit provided in an embodiment of the present application.
- a simulation result including the input voltage and the output voltage as shown in FIG9 can be obtained.
- the output voltage of the buck circuit 304 is 9V
- the output voltage is 5V
- the input voltage and the output voltage do not increase or decrease. Therefore, when the input voltage of the buck circuit 304 is 9V, it can stably output a voltage of 5V after the buck circuit 304 steps down the voltage.
- FIG10 is a schematic diagram of the simulation results of the input voltage and output voltage of a buck circuit provided in an embodiment of the present application.
- a simulation result including the input voltage and the output voltage as shown in FIG10 can be obtained.
- the output voltage of the buck circuit 304 is 12V
- the output voltage is 5V
- the input voltage and the output voltage do not increase or decrease. Therefore, when the input voltage of the buck circuit 304 is 12V, it can stably output a voltage of 5V after the buck circuit 304 steps down the voltage.
- the buck circuit 304 in the reverse charging circuit can buck different voltages to the second battery voltage of the second electronic device 300.
- the buck circuit 304 can buck the input voltages of the three power levels of 9V 1A, 9V 2A, and 12V 1A to 5V.
- FIG11 is a flow chart of a reverse charging method provided by the embodiment of the present application.
- the reverse charging method includes the following steps:
- a first electronic device is connected to a second electronic device by wire.
- a first protocol module in a first electronic device communicates with a second protocol module in a second electronic device, and determines that the first electronic device charges the second electronic device.
- the first protocol module and the second protocol module may communicate via a communication protocol.
- the communication protocol may be described in the above embodiment, and will not be described in detail in this embodiment.
- the first protocol module and the second protocol module may determine the charging device and the power supply device based on the first value of the first electronic device and the second value of the second electronic device.
- the first value is the product of the first battery capacity of the first electronic device and the first remaining power of the first electronic device
- the second value is the product of the second battery capacity of the second electronic device and the second remaining power of the second electronic device. If the first value of the first electronic device is greater than the second value of the second electronic device, the first electronic device charges the second electronic device.
- the first protocol module and the second protocol module may determine the charging device and the power supply device based on the user's selection.
- FIG. 12 is a schematic diagram of a first interface provided in an embodiment of the present application.
- the first interface includes a prompt message 1201 for prompting whether to use the first electronic device to charge externally, as well as a first button 1202 and a second button 1203.
- the first electronic device may display an interface including "Use this device to charge externally" and "Yes" and "No".
- “Use this device to charge externally” may correspond to the prompt message 1201 prompting whether to use the first electronic device to charge externally
- the "Yes" button may correspond to the first button 1202
- the "No" may correspond to the second button 1203.
- the first electronic device when the first electronic device receives a “yes” operation on the first button, the first electronic device charges the second electronic device.
- the first electronic device when the first electronic device receives an operation of "No" on the second button, the first electronic device accepts charging from the second electronic device.
- first interface can also be displayed on the second electronic device.
- the user can independently choose whether the first electronic device is a power supply device or a charging device, thereby improving the user experience.
- S1103 The first protocol module and the second protocol module agree on charging power, charging voltage, and charging stop conditions during reverse charging.
- the second protocol module may send the voltage upper limit value of the second electronic device and/or the second battery voltage to the first protocol module, and accordingly, the first protocol module receives the voltage upper limit value of the second electronic device and/or the second battery voltage from the second protocol module, and determines the charging voltage based on the voltage upper limit value and/or.
- the charging power during reverse charging can be determined according to the charging voltage and charging current.
- the charging stop condition during reverse charging may include that the remaining power of the first electronic device meets the first condition, or the remaining power of the second electronic device meets the second condition, or the second battery voltage of the second electronic device meets the third condition.
- the charging stop condition may be set by the user on the display interface of the first electronic device.
- Figure 13 is a schematic diagram of a second interface provided in an embodiment of the present application. The second interface is used to receive the cut-off power for reverse charging of the second electronic device input by the user. As shown in Figure 13, when it is determined that the first electronic device is charging the second electronic device, the first electronic device may display a second interface including "Please set the cut-off power for external charging", a cut-off power input box and "OK". When the user enters the cut-off power for reverse charging of the second electronic device in the second interface, the first electronic device can obtain the cut-off power for reverse charging of the second electronic device, such as the cut-off power of 35% shown in Figure 13.
- the user can enter the cutoff power in the cutoff power input box in the second interface shown in Figure 13, or select the cutoff power through the cutoff power input box, or select the cutoff power from multiple pre-set cutoff power levels.
- the embodiment of the present application does not specifically limit the method for setting the cutoff power.
- the first electronic device controls the boost circuit to boost the first battery voltage of the first electronic device to a first voltage value through the first SOC, and outputs the first voltage value to the step-down circuit of the second electronic device.
- the corresponding circuit when the boost circuit boosts the first battery voltage of the first electronic device to the first voltage value can be referred to the above-mentioned Figures 4 to 6.
- which circuit in Figures 4 to 6 is used for reverse charging can be determined according to the temperature of the electronic device, the battery capacity, and the remaining power.
- the second electronic device controls the voltage reduction circuit through the second SOC to adjust the first voltage value to the second battery voltage, and uses the second battery voltage to charge the second electronic device.
- the corresponding circuit when the step-down circuit adjusts the first voltage value to the second battery voltage of the second electronic device can refer to the above-mentioned Figures 4 to 6.
- which circuit in Figures 4 to 6 is used for reverse charging can be determined according to the temperature of the electronic device, the battery capacity, and the remaining power.
- S1106 When the remaining power of the first electronic device meets the first condition, or the remaining power of the second electronic device meets the second condition, or the second battery voltage of the second electronic device meets the third condition, the first electronic device stops charging the second electronic device.
- the first condition may be the cut-off power of the first electronic device.
- the cut-off power of the first electronic device is 35%.
- the first electronic device charges the second electronic device and the remaining power of the first electronic device reaches 35%, the first electronic device stops charging the second electronic device. In this way, the first electronic device can charge the power required for its own operation while reversely charging the second electronic device, thereby improving the user experience.
- the second condition may be the cut-off power of the second electronic device, and the cut-off power of the second electronic device may also be set according to the interface shown in FIG13.
- the current remaining power of the second electronic device is 10%
- the user sets the charging cut-off voltage of the second electronic device to 60% on the interface shown in FIG13, that is, when the first electronic device charges the second electronic device and the remaining power of the second electronic device reaches 60%, the first electronic device stops charging the second electronic device.
- the third condition may be a cut-off voltage of the second electronic device.
- the first electronic device charges the second electronic device and the second battery voltage of the second electronic device reaches the cut-off voltage, the first electronic device stops charging the second electronic device.
- the second electronic device when the first electronic device reversely charges the second electronic device, the second electronic device can use the second battery voltage to charge the battery of the second electronic device, thereby improving the reverse charging efficiency.
- the first electronic device and the second electronic device can determine the boost circuit used by the first electronic device 200 and the buck circuit used by the second electronic device based on the temperature of the first electronic device, the temperature of the second electronic device, the battery capacity of the first electronic device and the battery capacity of the second electronic device, that is, determine which reverse charging circuit in Figures 4 to 6 to use.
- the corresponding reverse charging circuits under different conditions are described below.
- the first electronic device and the second electronic device may determine a reverse charging circuit based on the temperature of the first electronic device.
- the reverse charging circuit shown in FIG. 4 may be used for reverse charging.
- the process of reverse charging through the reverse charging circuit shown in FIG. 4 can be referred to as described in the above embodiment, and this embodiment will not be repeated. In this way, the speed at which the temperature of the first electronic device rises during reverse charging can be slowed down, the user experience can be improved, and the efficiency of reverse charging can be improved.
- the temperature range between the first temperature threshold and the second temperature threshold may be a temperature range in which the electronic device can operate stably.
- the first temperature threshold may be 20 degrees Celsius
- the second temperature threshold may be 40 degrees Celsius, that is, when the temperature of the first electronic device is between 20 degrees Celsius and 40 degrees Celsius, reverse charging is performed using the reverse charging circuit shown in FIG. 4 .
- the temperature of the first electronic device is higher than the first temperature threshold and lower than the second temperature threshold, and the first electronic device does not have an SC charger, and the second electronic device has an SC charger, it can be charged by the reverse charging circuit shown in FIG5. If both the first electronic device and the second electronic device do not have an SC charger, they can be charged by the reverse charging circuit shown in FIG6.
- the hardware in the reverse charging shown in FIG6 can be used for reverse charging, but during the reverse charging process, the first electronic device can control the boost circuit through the first SOC to boost the first battery voltage of the first electronic device to a specific voltage value, and use the specific voltage value to reverse charge the second electronic device.
- the second electronic device adjusts the specific voltage value to the second battery voltage of the second electronic device through the second SOC control buck circuit.
- the specific voltage value is the minimum charging voltage value allowed by the second electronic device.
- the first electronic device uses the first preset value to reversely charge the second electronic device, so that the reverse charging power is small and the charging process is safer.
- the temperature of the first electronic device and the temperature of the second electronic device can affect the selection of the reverse charging circuit.
- a lower power reverse charging circuit is used, that is, the first electronic device can boost the first battery voltage of the first electronic device to a first preset voltage value through a boost circuit, and use the first preset voltage value to reverse charge the second electronic device.
- the second electronic device adjusts the first preset voltage value to the second battery voltage of the second electronic device through a step-down circuit 304.
- the temperature is between 50°C-100°C, a higher power reverse charging circuit is used, and any of the charging schemes shown in Figures 4-6 can be selected.
- the first electronic device and the second electronic device may determine a reverse charging circuit based on a first value of the first electronic device and a second value of the second electronic device.
- the reverse charging circuit shown in FIG. 4 may be used for reverse charging.
- the process of reverse charging by the reverse charging circuit shown in FIG. 4 can be referred to as described in the above embodiment, and this embodiment will not be repeated. In this way, the temperature rise rate of the first electronic device during reverse charging can be slowed down, thereby improving the user experience and improving the efficiency of reverse charging.
- the preset value is 2000mA
- the battery capacity of the first electronic device is 8000mA
- the first remaining power of the first electronic device is 40%
- the battery capacity of the second electronic device is 5000mA
- the second remaining power of the second electronic device is 50%.
- the first value is 3200mA and the second value is 2500mA.
- the reverse charging circuit shown in Figure 4 is used to realize that the first electronic device charges the second electronic device.
- the first electronic device can obtain the first battery capacity through its own power meter
- the second electronic device can obtain the second battery capacity through its own power meter.
- the power meter can monitor the charging and discharging of the battery and can provide real-time and true battery capacity.
- the preset value is related to the battery capacity of the first electronic device and/or the second electronic device.
- the preset value may be 50% of the battery capacity of the first electronic device, so that when the first value of the first electronic device is larger, The second electronic device can be charged quickly and efficiently.
- the preset value may be 55% of the battery capacity of the second electronic device, or the preset value may be the average value of the battery capacity of the first electronic device and the battery capacity of the second electronic device.
- charging can be performed using the reverse charging circuit shown in FIG5. If both the first electronic device and the second electronic device do not have an SC charger, charging can be performed using the reverse charging circuit shown in FIG6.
- the reverse charging is performed using the hardware in the reverse charging shown in FIG6 , but during the reverse charging process, the first electronic device can control the boost circuit through the first SOC to boost the first battery voltage of the first electronic device to a specific voltage value, and use the specific voltage value to reverse charge the second electronic device.
- the second electronic device adjusts the specific voltage value to the second battery voltage of the second electronic device through the second SOC control buck circuit, and uses the second battery voltage to achieve charging.
- the preset conditions include any of the following: the first value is less than the second value, the first value and the second value are both less than the preset value, and the first value and the second value are both greater than the preset value.
- the preset value is 45% of the battery capacity of the first electronic device, and when the battery capacity of the first electronic device is the same as the battery capacity of the second electronic device, and the first remaining power of the first electronic device is 20%, the second remaining power of the second electronic device is 40%, or the first remaining power and the second remaining power are both 20%, or the first remaining power and the second remaining power are both 60%, the first electronic device uses a boost circuit to boost the first battery voltage to a specific voltage value, and the second electronic device adjusts the specific voltage value to the second battery voltage of the second electronic device through a step-down circuit.
- the electronic device can operate and the user experience is improved.
- the difference between the first value and the second value, or the difference between the first remaining power and the second remaining power may affect the selected reverse charging circuit.
- a higher power reverse charging circuit can be used for reverse charging, for example, using any one of Figures 4-6; otherwise, a lower power reverse charging circuit is used for reverse charging, and the first electronic device can boost the first battery voltage of the first electronic device to a specific voltage value through a boost circuit, and use the specific voltage value to reverse charge the second electronic device.
- the second electronic device adjusts the specific voltage value to the second battery voltage of the second electronic device through a step-down circuit, and uses the second battery voltage to achieve charging.
- the first electronic device may perform reverse charging using the reverse charging circuit shown in FIG. 4 .
- a reverse charging circuit determined based on temperature there may be a reverse charging circuit determined based on the product of battery capacity and remaining power.
- a boost circuit and a buck circuit determined based on temperature are preferably selected to make reverse charging safer.
- the hardware in the reverse charging shown in FIG6 can be used for reverse charging, but during the reverse charging process, the first electronic device can control the boost circuit through the first SOC to boost the first battery voltage of the first electronic device to a specific voltage value, and use the specific voltage value to reverse charge the second electronic device.
- the second electronic device adjusts the specific voltage value to the second battery voltage of the second electronic device through the second SOC control buck circuit, and uses the second battery voltage to achieve charging.
- the first electronic device and the second electronic device can switch the reverse charging circuit used according to changes in temperature and remaining power to improve the user experience.
- the first electronic device can switch to control the boost circuit through the first SOC to boost the first battery voltage of the first electronic device to Y times the second battery voltage, and use the Y times the second battery voltage to reverse charge the second electronic device.
- the second electronic device can switch to control the second SC charger through the second SOC to adjust the Y times the second battery voltage to the second battery voltage of the second electronic device, and use the second battery voltage to achieve charging.
- X is a positive integer greater than 1
- Y is a positive integer greater than 1.
- the first electronic device can control the boost circuit through the first SOC to boost the first battery voltage of the first electronic device to a specific voltage value, and use the specific voltage value to reverse charge the second electronic device.
- the second electronic device adjusts the specific voltage value to the second battery voltage of the second electronic device through the second SOC control buck circuit.
- the specific voltage value is the minimum charging voltage value allowed by the second electronic device. In this way, the power of reverse charging can be reduced, the battery of the second electronic device can be protected, and the user experience can be improved.
- the first electronic device can switch back to the previously used boost circuit and the second electronic device can switch back to the previously used buck circuit.
- the electronic device can also switch the boost circuit used by the first electronic device and the buck circuit used by the second electronic device in the reverse charging circuit according to the current power consumption of the first electronic device.
- the first electronic device when the first electronic device is running an application with large power consumption, such as games, video shooting, etc., and the first electronic device boosts the first battery voltage of the first electronic device to X times the first battery voltage through the first SC charger, it can be switched to reverse charging using the hardware in the reverse charging shown in Figure 6, but during the reverse charging process, the first electronic device can control the boost circuit through the first SOC to boost the first battery voltage of the first electronic device to a specific voltage value, and use the specific voltage value to reverse charge the second electronic device.
- the second electronic device adjusts the specific voltage value to the second battery voltage of the second electronic device through the second SOC control buck circuit.
- the specific voltage value is the minimum charging voltage value allowed by the second electronic device. In this way, the power of reverse charging can be reduced, so that the first electronic device can stably run the currently running application, thereby improving the user experience.
- FIG14 is a schematic diagram of the hardware structure of an electronic device provided in an embodiment of the present application.
- the electronic device includes a processor 1401, a communication line 1404 and at least one communication interface (the communication interface 1403 is used as an example in FIG14 ).
- the processor 1401 may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more integrated circuits for controlling the execution of the program of the present application.
- CPU central processing unit
- ASIC application-specific integrated circuit
- Communications link 1404 may include circuitry to transmit information between the above-described components.
- the communication interface 1403 uses any transceiver-like device for communicating with other devices or communication networks, such as Ethernet, wireless local area networks (WLAN), etc.
- the electronic device may further include a memory 1402 .
- the memory 1402 may be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, a random access memory (RAM) or other types of dynamic storage devices that can store information and instructions, or an electrically erasable programmable read-only memory (EEPROM), a compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (including compressed optical disc, laser disc, optical disc, digital versatile disc, Blu-ray disc, etc.), a magnetic disk storage medium or other magnetic storage device, or any other medium that can be used to carry or store the desired program code in the form of instructions or data structures and can be accessed by a computer, but is not limited thereto.
- the memory may be independent and connected to the processor via a communication line 1404. The memory may also be integrated with the processor.
- the memory 1402 is used to store computer-executable instructions for executing the solution of the present application, and the execution is controlled by the processor 1401.
- the processor 1401 is used to execute the computer-executable instructions stored in the memory 1402, thereby implementing the steps performed by the first electronic device in the method provided in the embodiment of the present application, or implementing the steps performed by the second electronic device in the method provided in the embodiment of the present application.
- the computer-executable instructions in the embodiments of the present application may also be referred to as application code, and the embodiments of the present application do not specifically limit this.
- the processor 1401 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 14 .
- the electronic device may include multiple processors, such as processor 1401 and processor 1405 in FIG. 14.
- processors may be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor.
- the processor here may refer to one or more devices, circuits, and/or processing cores for processing data (e.g., computer program instructions).
- the chip 1500 is a schematic diagram of the structure of a chip provided in an embodiment of the present application.
- the chip 1500 includes one or more (including two) processors 1520 and a communication interface 1530 .
- the memory 1540 stores the following elements: executable modules or data structures, or a subset thereof, or an extended set thereof.
- the memory 1540 may include a read-only memory and a random access memory, and provide instructions and data to the processor 1520.
- a portion of the memory 1540 may also include a non-volatile random access memory (NVRAM).
- NVRAM non-volatile random access memory
- bus system 1510 In addition to the data bus, the bus system 1510 may also include a power bus, a control bus and a status signal bus. For ease of description, various buses are labeled as bus system 1510 in FIG. 15 .
- the method described in the above embodiment of the present application can be applied to the processor 1520, or implemented by the processor 1520.
- the processor 1520 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the above method can be completed by an integrated logic circuit of hardware in the processor 1520 or an instruction in the form of software.
- the above processor 1520 can be a general-purpose processor (for example, a microprocessor or a conventional processor), a digital signal processor (digital signal processing, DSP), an application specific integrated circuit (application specific integrated circuit, ASIC), a field-programmable gate array (field-programmable gate array, FPGA) or other programmable logic devices, discrete gates, transistor logic devices or discrete hardware components.
- the processor 1520 can implement or execute the disclosed methods, steps and logic block diagrams in the embodiments of the present application.
- the steps of the method disclosed in the embodiments of the present application can be directly embodied as being executed by a hardware decoding processor, or can be executed by a combination of hardware and software modules in the decoding processor.
- the software module can be located in a mature storage medium in the field such as a random access memory, a read-only memory, a programmable read-only memory, or an electrically erasable programmable read only memory (EEPROM).
- the storage medium is located in the memory 1540, and the processor 1520 reads the information in the memory 1540 and completes the steps of the above method in combination with its hardware.
- the instructions stored in the memory for execution by the processor may be implemented in the form of a computer program product, wherein the computer program product may be pre-written in the memory, or may be downloaded and installed in the memory in the form of software.
- a computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, the process or function according to the embodiment of the present application is generated in whole or in part.
- the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
- Computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, computer instructions may be transmitted from one website, computer, server, or data center to another website, computer, server, or data center by wired (e.g., coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (e.g., infrared, wireless, microwave, etc.) means.
- wired e.g., coaxial cable, optical fiber, digital subscriber line (DSL)
- wireless e.g., infrared, wireless, microwave, etc.
- the computer-readable storage medium may be any available medium that a computer can store or a data storage device such as a server or data center that includes one or more available media integrated.
- available media may include magnetic media (e.g., floppy disks, hard disks, or tapes), optical media (e.g., digital versatile discs (DVD)), or semiconductor media (e.g., solid-state drives (SSD)), etc.
- Computer-readable media may include computer storage media and communication media, and may also include any medium that can transfer a computer program from one place to another.
- the storage medium may be any target medium that can be accessed by a computer.
- the computer-readable medium may include a compact disc read-only memory (CD-ROM), RAM, ROM, EEPROM or other optical disc storage; the computer-readable medium may include a magnetic disk storage or other magnetic disk storage device.
- any connecting line may also be appropriately referred to as a computer-readable medium.
- the software is transmitted from a website, server or other remote source using a coaxial cable, fiber optic cable, twisted pair, DSL or wireless technologies such as infrared, radio and microwave
- the coaxial cable, fiber optic cable, twisted pair, DSL or wireless technologies such as infrared, radio and microwave are included in the definition of the medium.
- Disks and discs as used herein include compact discs (CDs), laser discs, optical discs, digital versatile discs (DVDs), floppy disks and Blu-ray discs, where disks typically reproduce data magnetically, while optical discs reproduce data optically using lasers.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
Abstract
本申请实施例提供了一种反向充电系统、方法及相关装置。该充电系统包括第一电子设备和第二电子设备,第一电子设备,用于将第一电子设备的第一电池电压升压到第一电压值后,利用第一电压值为第二电子设备进行反向充电;第二电子设备,用于将第一电压值调整到第二电子设备的第二电池电压,并利用第二电池电压实现充电,其中,第一电子设备的第一电池电压随着第一电子设备供电时长的增加而减小,第二电子设备的第二电池电压随着第二电子设备充电时长的增加而增大。这样,使得第二电子设备能够利用与第二电池相适应的电压为第二电子设备的电池进行充电,提升了反向充电的效率。
Description
本申请要求于2022年08月16日提交中国国家知识产权局、申请号为202210983509.7、申请名称为“反向充电系统、方法及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及终端技术领域,尤其涉及一种反向充电系统、方法及相关装置。
电子设备在使用过程中电池的电量会逐渐减少,电子设备的电量较低时会关机,这对用户造成不便。
目前,可以使用其他的电子设备为电量较低的电子设备充电,例如,使用电量较高的手机为电量较低的手机无线充电。具体的,使用电量高的手机A为电量低的手机B进行无线反向充电,在无线反向充电过程中,手机A基于其升压后的电压向外辐射无线充电信号,手机B将接收到的无线充电信号转换为电压,并使用转换后的电压为手机B的电池充电。手机B对接收到的升压后的电压进行降压,进而使用降压后的电压为手机B的电池充电。
然而,上述电子设备反向充电的效率较低。
发明内容
本申请实施例提供一种反向充电系统、方法及相关装置,提升了反向充电的效率。
第一方面,本申请实施例提供一种反向充电系统,所述充电系统包括第一电子设备和第二电子设备,所述第一电子设备,用于将所述第一电子设备的第一电池电压升压到第一电压值后,利用所述第一电压值为所述第二电子设备进行反向充电;所述第二电子设备,用于将所述第一电压值调整到所述第二电子设备的第二电池电压,并利用所述第二电池电压实现充电,其中,所述第一电子设备的第一电池电压随着所述第一电子设备供电时长的增加而减小,所述第二电子设备的第二电池电压随着所述第二电子设备充电时长的增加而增大。这样,使得第二电子设备在反向充电过程中能够使用与第二电池相适应的电压为第二电子设备的电池进行充电,提升了反向充电的效率。
一种可能的实现中,所述第一电子设备包括第一充电芯片,所述第二电子设备包括降压电路,所述第一电压值为X倍的所述第一电子设备的第一电池电压;所述X为大于1的正整数;所述第一充电芯片,用于将所述第一电子设备的第一电池电压升压到所述X倍的第一电池电压;所述降压电路,用于将所述X倍的第一电池电压调整到所述第二电子设备的第二电池电压。这样,能够使得第二电子设备将X倍的第一电池电压调整到第二电子设备的第二电池电压,进一步提升反向充电的效率。
一种可能的实现中,所述第一电子设备,具体用于在所述第一电子设备的温度高于第一温度阈值且低于第二温度阈值时,通过所述第一充电芯片将所述第一电子设备的第一电池电压升压到X倍的第一电池电压,利用所述X倍的第一电池电压为所述第二电子设备进行反向充电;所述第一温度阈值小于所述第二温度阈值。这样,使得第一电子设备在反向充电过程中的温度升高较少,提升了用户体验,且提升了充电效率。
一种可能的实现中,所述第一电子设备还包括升压电路,所述第二电子设备还包括第二充电芯片,所述第一电压值为Y倍的所述第二电子设备的第二电池电压;所述Y为大于1的正整数;所述第一电子设备,具体用于当所述第二电子设备的温度高于所述第二温度阈值,且所述第一电子设备通过所述第一充电芯片将所述第一电子设备的第一电池电压升压到X倍的第一电池电压时,切换为通过所述升压电路将所述第一电子设备的第一电池电压升压到Y倍的第二电池电压,利用所述Y倍的第二电池电压为所述第二电子设备进行反向充电;所述第二电子设备,具体用于当所述第二电子设备的温度高于所述第二温度阈值,且所述第二电子设备通过所述降压电路将所述X倍的第一电池电压到所述第二电子设备的第二电池电压时,切换为通过所述第二充电芯片将所述Y倍的第二电池电压调整到所述第二电子设备的第二电池电压,并利用所述第二电池电压实现充电。
这样,能够减缓第二电子设备在反向充电过程中温度上升的速度,提升充电效率,提升了用户体验。
一种可能的实现中,所述第一电子设备还包括升压电路,所述第一电压值为特定电压值,所述特定电压值为所述第二电子设备允许的最小充电电压值;所述第一电子设备,具体用于当所述第一电子设备的温度低于所述第一温度阈值或所述第一电子设备的温度高于所述第二温度阈值,且所述第一电子设备通过所述第一充电芯片将所述第一电子设备的第一电池电压升压到X倍的第一电池电压时,切换为通过所述升压电路将所述第一电子设备的第一电池电压升压到特定电压值,利用所述特定电压值为所述第二电子设备进行反向充电。这样,在第一电子设备的温度升高或者降低时,切换充电策略能够减缓第一电子设备在反向充电过程中温度升高的速度,提升了用户体验。
一种可能的实现中,所述第一电子设备,具体用于当第一值大于第二值时,通过所述第一充电芯片将所述第一电子设备的第一电池电压升压到X倍的第一电池电压,利用X倍的第一电池电压为所述第二电子设备进行反向充电;所述第一值为所述第一电子设备的第一电池容量和所述第一电子设备的第一剩余电量的乘积,所述第二值为所述第二电子设备的第二电池容量和所述第二电子设备的第二剩余电量的乘积,所述第一值大于预设值,所述第二值小于所述预设值。这样,使得在第一电子设备电量充足的情况下,使用第一充电芯片进行升压,提升了充电效率。
一种可能的实现中,所述第一电子设备包括升压电路,所述第一电压值为特定电压值,所述特定电压值为所述第二电子设备允许的最小充电电压值;所述第一电子设备,具体用于当第一值和第二值满足预设条件时,通过所述升压电路将所述第一电子设备的第一电池电压升压到特定电压值,利用所述特定电压值为所述第二电子设备进行反向充电;所述第一值为所述第一电子设备的第一电池容量和所述第一电子设备的第一剩余电量的乘积,所述第二值为所述第二电子设备的第二电池容量和所述第二电子设备的第二剩余电量的乘积,所述预设条件包括以下任一项:所述第一值小于所述第二值、所述第一值和所述第二值均小于预设值、所述第一值和所述第二值均大于所述预设值。这样,使得第一电子设备有足够的电量运行,提升了用户体验。
一种可能的实现中,所述第一电子设备包括升压电路,所述第一电压值为特定电压值,所述特定电压值为所述第二电子设备允许的最小充电电压值;所述第一电子设备,具体用于当所述第一电子设备的温度低于第一温度阈值或所述第一电子设备的温度高于第二温度阈值,且第一值大于第二值时,通过所述升压电路将所述第一电子设备的第一电池电压升压到特定电压值,利用所述特定电压值为所述第二电子设备进行反向充电;所述第一温度阈值小于所述第二温度阈值;所述第一值为所述第一电子设备的第一电池容量和所述第一电子设备的第一剩余电量的乘积,所述第二值为所述第二电子设备的第二电池容量和所述第二电子设备的第二剩余电量的乘积,所述第一值大于预设值,所述第二值小于所述预设值。这样,使得充电过程中第一电子设备的温度升高较少,提升了用户体验。
一种可能的实现中,所述第一电子设备包括升压电路,所述第二电子设备包括第二充电芯片,所述第一电压值为Y倍的所述第二电子设备的第二电池电压;所述Y为大于1的正整数;所述升压电路,用于将所述第一电子设备的第一电池电压升压到Y倍的所述第二电池电压;所述第二充电芯片,用于将所述Y倍的第二电池电压调整到所述第二电子设备的第二电池电压。这样,使得第二充电芯片能够将Y倍的第二电池电压调整到第二电子设备的第二电池电压,提升了充电功率。
一种可能的实现中,所述第一电子设备还包括第一协议模块,所述第二电子设备还包括第二协议模块,所述第一协议模块,用于当所述第一电子设备为所述第二电子设备进行反向充电时,实时接收来自所述第二协议模块的所述第二电子设备的第二电池电压;所述第二协议模块,用于当所述第二电子设备利用所述第二电池电压实现充电时,实时向所述第一协议模块发送所述第二电子设备的第二电池电压。这样,使得在反向充电过程中,第二电子设备能够通过降压模块得到第二电池电压,提升了充电效率。使得第一电子设备升高后的电压更加准确。
一种可能的实现中,所述第一电子设备包括升压电路,所述第二电子设备包括降压电路,所述第一电压值为预设电压值中与所述第二电子设备的电压上限值差值最小的电压值;所述升压电路,用于将所述第一电子设备的第一电池电压升压到所述预设电压值中与所述第二电子设备的电压上限值差值最小的电压值;所述降压电路,用于将所述预设电压值中与所述第二电子设备的电压上限值差值最小的电压值调整到所述第二电子设备的第二电池电压。这样,可以适用于没有充电芯片的第一电子设备或第二电子设备,提升了反向充电的兼容性,同时提升了充电效率。
一种可能的实现中,所述第一电子设备还包括第一协议模块,所述第二电子设备还包括第二协议模块,所述第一协议模块,用于当所述第一电子设备与所述第二电子设备有线连接时,接收来自所述第二协议模块的所述第二电子设备的电压上限值;其中,所述第一电压值小于所述电压上限值;所述第二协议模块,用于获取所述第二电子设备的电压上限值。这样,使得第一电子设备输出的电压不会对第二电子设备造成损坏,提升了用户体验。
一种可能的实现中,所述第一电子设备,还用于当所述第一电子设备与所述第二电子设备有线连接时,若所述第一电子设备的第一电池容量大于所述第二电子设备的第二电池容量,或所述第一电子设备的第一值大于所述第二电子设备的第二值,则为所述第二电子设备进行反向充电。这样,使得电池容量大的设备向电池容量小的设备充电,提升了用户体验。
一种可能的实现中,所述第一电子设备,还用于当所述第一电子设备与所述第二电子设备有线连接时,显示第一界面,所述第一界面包括用于提示是否采用所述第一电子设备对外充电的提示信息,以及第一按钮和第二按钮,当接收到针对所述第一按钮的操作时,利用所述第一电压值为所述第二电子设备进行反向充电,或者,当接收到针对所述第二按钮的操作时,接受来自所述第二电子设备的充电。这样,使得用户能够自主选择充电设备和供电设备,提升了用户体验。
一种可能的实现中,所述第一电子设备,还用于显示第二界面,并当用户在所述第二界面输入第二电子设备反向充电的截止电量时,获取为所述第二电子设备反向充电的截止电量;所述第二界面用于接收用户输入的所述第二电子设备反向充电的截止电量;所述第一电子设备,还用于当所述第一电子设备的第一剩余电量达到所述截止电量时,停止为所述第二电子设备进行反向充电。这样,能够使得第一电子设备可以向第二电子设备充到符合用户需求的电量,提升了用户体验。
第二方面,本申请实施例提供一种反向充电方法,方法包括:第一电子设备将所述第一电子设备的第一电池电压升压到第一电压值后,利用所述第一电压值为所述第二电子设备进行反向充电;第二电子设备将所述第一电压值调整到所述第二电子设备的第二电池电压,并利用所述第二电池电压实现充电,其中,所述第一电子设备的第一电池电压随着所述第一电子设备供电时长的增加而减小,所述第二电子设备的第二电池电压随着所述第二电子设备充电时长的增加而增大。
一种可能的实现中,所述第一电压值为X倍的所述第一电子设备的第一电池电压;所述X为大于1的正整数;所述第一电子设备包括第一充电芯片,所述第二电子设备包括降压电路,所述第一电子设备将所述第一电子设备的第一电池电压升压到第一电压值,包括:所述第一电子设备通过所述第一充电芯片将所述第一电子设备的第一电池电压升压到所述X倍的第一电池电压;所述第二电子设备将所述第一电压值调整到所述第二电子设备的第二电池电压,包括:所述第二电子设备通过所述降压电路将所述X倍的第一电池电压调整到所述第二电子设备的第二电池电压。
一种可能的实现中,所述第一电子设备将所述第一电子设备的第一电池电压升压到第一电压值后,利用所述第一电压值为所述第二电子设备进行反向充电,包括:当所述第一电子设备的温度高于第一温度阈值且低于第二温度阈值时,所述第一电子设备通过所述第一充电芯片将所述第一电子设备的第一电池电压升压到X倍的第一电池电压,利用所述X倍的第一电池电压为所述第二电子设备进行反向充电;所述第一温度阈值小于所述第二温度阈值。
一种可能的实现中,所述第一电子设备还包括升压电路,所述第二电子设备还包括第二充电芯片,所述第一电压值为Y倍的所述第二电子设备的第二电池电压;所述Y为大于1的正整数;所述第一电子设备将所述第一电子设备的第一电池电压升压到第一电压值后,利用所述第一电压值为所述第二电子设备进行反向充电,包括:当所述第二电子设备的温度高于所述第二温度阈值,且所述第一电子设备通过所述第一充电芯片将所述第一电子设备的第一电池电压升压到X倍的第一电池电压时,所述第一电子设备切换为通过所述升压电路将所述第一电子设备的第一电池电压升压到Y倍的第二电池电压,利用所述Y倍的第二电池电压为所述第二电子设备进行反向充电;所述第二电子设备将所述第一电压值调整到所述第二电子设备的第二电池电压,并利用所述第二电池电压实现充电,包括:当所述第二电子设备的温度高于所述第二温度阈值,且所述第二电子设备通过所述降压电路将所述X倍的第一电池电压到所述第二电子设备的第二电池电压时,所述第二电子设备切换为通过所述第二充电芯片将所述Y倍的第二电池电压调整到所述第二电子设备的第二电池电压,并利用所述第二电池电压实现充电。
一种可能的实现中,所述第一电子设备还包括升压电路,所述第一电压值为特定电压值,所述特定电压值为所述第二电子设备允许的最小充电电压值;所述第一电子设备将所述第一电子设备的第一电池电压升压到第一电压值后,利用所述第一电压值为所述第二电子设备进行反向充电,包括:当所述第一电子设备的温度低于所述第一温度阈值或所述第一电子设备的温度高于所述第二温度阈值,且所述第一电子设备通过所述第一充电芯片将所述第一电子设备的第一电池电压升压到X倍的第一电池电压时,所述第一电子设备切换为通过所述升压电路将所述第一电子设备的第一电池电压升压到特定电压值,利用所述特定电压值为所述第二电子设备进行反向充电。
一种可能的实现中,所述第一电子设备还包括升压电路,所述第一电子设备将所述第一电子设备的第一电池电压升压到第一电压值后,利用所述第一电压值为所述第二电子设备进行反向充电,包括:当第一值大于第二值时,所述第一电子设备通过所述第一充电芯片将所述第一电子设备的第一电池电压升压到X倍的第一电池电压,利用X倍的第一电池电压为所述第二电子设备进行反向充电;所述第一值为所述第一电子设备的第一电池容量和所述第一电子设备的第一剩余电量的乘积,所述第二值为所述第二电子设备的第二电池容量和所述第二电子设备的第二剩余电量的乘积,所述第一值大于预设值,所述第二值小于所述预设值。
一种可能的实现中,所述第一电子设备包括升压电路,所述第一电压值为特定电压值,所述特定电压值为所述第二电子设备允许的最小充电电压值;所述第一电子设备将所述第一电子设备的第一电池电压升压到第一电压值后,利用所述第一电压值为所述第二电子设备进行反向充电,包括:当第一值和第二值满足预设条件时,所述第一电子设备通过所述升压电路将所述第一电子设备的第一电池电压升压到特定电压值,利用所述特定电压值为所述第二电子设备进行反向充电;所述第一值为所述第一电子设备的第一电池容量和所述第一电子设备的第一剩余电量的乘积,所述第二值为所述第二电子设备的第二电池容量和所述第二电子设备的第二剩余电量的乘积,所述预设条件包括以下任一项:所述第一值小于所述第二值、所述第一值和所述第二值均小于预设值、所述第一值和所述第二值均大于所述预设值。
一种可能的实现中,所述第一电子设备包括升压电路,所述第一电压值为特定电压值,所述特定电压值为所述第二电子设备允许的最小充电电压值;所述第一电子设备将所述第一电子设备的第一电池电压升压到第一电压值后,利用所述第一电压值为所述第二电子设备进行反向充电,包括:当所述第一电子设备的温度低于第一温度阈值或所述第一电子设备的温度高于第二温度阈值,且第一值大于第二值时,所述第一电子设备,通过所述升压电路将所述第一电子设备的第一电池电压升压到特定电压值,利用所述特定电压值为所述第二电子设备进行反向充电;所述第一温度阈值小于所述第二温度阈值;所述第一值为所述第一电子设备的第一电池容量和所述第一电子设备的第一剩余电量的乘积,所述第二值为所述第二电子设备的第二电池容量和所述第二电子设备的第二剩余电量的乘积,所述第一值大于预设值,所述第二值小于所述预设值。
一种可能的实现中,所述第一电子设备包括升压电路,所述第二电子设备包括第二充电芯片,所述第一电压值为Y倍的所述第二电子设备的第二电池电压;所述Y为大于1的正整数;所述第一电子设备将所述第一电子设备的第一电池电压升压到第一电压值,包括:所述第一电子设备通过所述升压电路将所述第一电子设备的第一电池电压升压到Y倍的所述第二电池电压;所述第二电子设备将所述第一电压值调整到所述第二电子设备的第二电池电压,包括:所述第二电子设备通过所述第二充电芯片将所述Y倍的第二电池电压调整到所述第二电子设备的第二电池电压。
一种可能的实现中,所述第一电子设备还包括第一协议模块,所述第二电子设备还包括第二协议模块,所述方法还包括:当所述第一电子设备为所述第二电子设备进行反向充电时,所述第一协议模块实时接收来自所述第二协议模块的所述第二电子设备的第二电池电压;当所述第二电子设备利用所述第二电池电压实现充电时,所述第二协议模块实时向所述第一协议模块发送所述第二电子设备的第二电池电压。
一种可能的实现中,所述第一电子设备包括升压电路,所述第二电子设备包括降压电路,所述第一电压值为预设电压值中与所述第二电子设备的电压上限值差值最小的电压值;所述第一电子设备将所述第一电子设备的第一电池电压升压到第一电压值,包括:所述第一电子设备通过所述升压电路,用于将所述第一电子设备的第一电池电压升压到所述预设电压值中与所述第二电子设备的电压上限值差值最小的电压值;所述第二电子设备将所述第一电压值调整到所述第二电子设备的第二电池电压,包括:所述第二电子设备通过所述降压电路将所述预设电压值中与所述第二电子设备的电压上限值差值最小的电压值调整到所述第二电子设备的第二电池电压。
一种可能的实现中,所述第一电子设备还包括第一协议模块,所述第二电子设备还包括第二协议模块,所述方法还包括:当所述第一电子设备与所述第二电子设备有线连接时,所述第一协议模块接收来自所述第二协议模块的所述第二电子设备的电压上限值;其中,所述第一电压值小于所述电压上限值;所述第二协议模块获取所述第二电子设备的电压上限值。
一种可能的实现中,所述方法还包括:当所述第一电子设备与所述第二电子设备有线连接时,若所述第一电子设备的第一电池容量大于所述第二电子设备的第二电池容量,或所述第一电子设备的第一值大于所述第二电子设备的第二值,则所述第一电子设备为所述第二电子设备进行反向充电。
一种可能的实现中,所述方法还包括:当所述第一电子设备与所述第二电子设备有线连接时,所述第一电子设备显示第一界面,所述第一界面包括用于提示是否采用所述第一电子设备对外充电的提示信息,以及第一按钮和第二按钮,当接收到针对所述第一按钮的操作时,利用所述第一电压值为所述第二电子设备进行反向充电,或者,当接收到针对所述第二按钮的操作时,接受来自所述第二电子设备的充电。
一种可能的实现中,所述方法还包括:所述第一电子设备显示第二界面,并当用户在所述第二界面输入第二电子设备反向充电的截止电量时,获取为所述第二电子设备反向充电的截止电量;所述第二界面用于接收用户输入的所述第二电子设备反向充电的截止电量;
所述第一电子设备当所述第一电子设备的第一剩余电量达到所述截止电量时,停止为所述第二电子设备进行反向充电。
第三方面,本申请实施例提供一种电子设备,包括处理器和存储器,存储器用于存储代码指令,处理器用于运行代码指令,以执行第一方面或第一方面的任意一种可能的实现方式描述的方法中第一电子设备执行的步骤,或者,以执行第一方面或第一方面的任意一种可能的实现方式描述的方法中第二电子设备执行的步骤。
第四方面,本申请实施例提供一种计算机可读存储介质,计算机可读存储介质存储有计算机程序。计算机程序被处理器执行时实现如第一方面或第一方面的任意一种可能的实现方式描述的方法中第一电子设备执行的步骤,或者,计算机程序被处理器执行时实现如第一方面或第一方面的任意一种可能的实现方式描述的方法中第二电子设备执行的步骤。
第五方面,本申请实施例提供一种计算机程序产品,计算机程序产品包括计算机程序,当计算机程序被运行时,使得计算机执行如第一方面或第一方面的任意一种可能的实现方式描述的方法中第一电子设备执行的步骤,或者,使得计算机执行如第一方面或第一方面的任意一种可能的实现方式描述的方法中第二电子设备执行的步骤。
第六方面,本申请实施例提供了一种芯片,芯片包括处理器,处理器用于调用存储器中的计算机程序,以执行如第一方面或第一方面的任意一种可能的实现方式描述的方法中第一电子设备执行的步骤,或者,以执行如第一方面或第一方面的任意一种可能的实现方式描述的方法中第二电子设备执行的步骤。
应当理解的是,本申请的第二方面至第六方面与本申请的第一方面的技术方案相对应,各方面及对应的可行实施方式所取得的有益效果相似,不再赘述。
图1为本申请实施例提供的一种反向充电系统的应用场景示意图;
图2为本申请实施例提供的一种电子设备的结构示意图;
图3为本申请实施例提供的一种反向充电系统内部架构示意图;
图4为本申请实施例提供的一种反向充电系统的电路示意图一;
图5为本申请实施例提供的一种反向充电系统的电路示意图二;
图6为本申请实施例提供的一种反向充电系统的电路示意图三;
图7为本申请实施例提供的一种boost升压电路输入电压和输出电压的仿真结果示意图一;
图8为本申请实施例提供的一种boost升压电路输入电压和输出电压的仿真结果示意图二;
图9为本申请实施例提供的一种降压电路输入电压和输出电压的仿真结果示意图一;
图10为本申请实施例提供的一种降压电路输入电压和输出电压的仿真结果示意图一;
图11为本申请实施例提供的一种反向充电方法的流程示意图;
图12为本申请实施例提供的一种第一界面的示意图;
图13为本申请实施例提供的一种第二界面的示意图;
图14为本申请实施例提供的一种电子设备的硬件结构示意图;
图15为本申请实施例提供的一种芯片的结构示意图。
为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。例如,第一目标功能的界面和第二目标功能的界面是为了区分不同的响应界面,并不对其先后顺序进行限定。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
需要说明的是,本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c,或a、b和c,其中a,b,c可以是单个,也可以是多个。
本申请实施例提供的技术方案可以应用于电子设备反向充电的场景中。在长时间外出的场景中,电子设备可能因长时间无法充电而关机,这为用户造成不便。目前,大多数的电子设备使用大容量的电池进行供电,并且电子设备中可以有支持反向充电的硬件,例如,手机中的升压电路和降压电路。这样,可以将电子设备作为电源为其他电量较低的电子设备进行反向充电,为用户提供一种电子设备充电的应急方案。
一种实现中,手机A在向手机B无线充电时,手机A可以通过升压电路进行升压,并基于升压后的电压向外辐射无线充电信号,手机B接收该无线充电信号,并将接收的无线充电信号转换为输入电压为手机B的电池充电,从而实现手机A为手机B无线充电,使得手机B的电量得到及时的补充,使得手机B不会因电量低而关机,为用户造成不便的情况。
但是,上述实现中,是将手机A的电压升压一定倍数后,再由手机B降压一定倍数,手机B降压后的电压并不一定符合手机B的电池电压的情况,例如可能大于或小于手机B的电池电压,导致充电过程存在较多损耗,充电效率较低。
基于现有技术反向充电效率较低的问题,本申请实施例提供了一种反向充电系统,该反向充电系统中,第一电子设备为供电设备,第二电子设备为充电设备。在第一电子设备为第二电子设备充电的过程中,第一电子设备利用升压后的第一电压值为第二电子设备充电,第二电子设备能够将第一电子设备输出的第一电压值调整到第二电子设备的第二电池电压,并利用第二电池电压实现充电,这样,第二电子设备在充电时,可以实现电池电压与充电电压高度匹配,从而能够提升反向充电的效率。
示例性的,图1为本申请实施例提供的一种反向充电系统的应用场景示意图。如图1所示,应用场景中可以包括第一电子设备和第二电子设备。其中,第一电子设备显示的界面中可以包括时间、天气以及多个应用程序控件。本申请实施例仅以第一电子设备显示如图1的界面进行示例说明,该示例并不构成本申请实施例的限定。
如图1所示,第一电子设备当前的剩余电量为80%,第二电子设备当前的剩余电量为10%,当第一电子设备和第二电子设备之间有线连接时,第一电子设备可以为第二电子设备充电。
示例性的,本申请实施例提供的反向充电系统可以实现手机向耳机进行反向充电,或者手机向手机进行反向充电。由于耳机具有便携的特性,体积小,且电池容量通常小于手机的电池容量。因此,在耳机电量较低的情况下,可以将手机作为电源为耳机充电,能够为用户提供较大的便利。
可以理解的是,上述第一电子设备和第二电子设备也可以称为终端,(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。电子设备可以为拥有MIC的手机(mobile phone)、智能电视、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)电子设备、增强现实(augmented reality,AR)电子设备、工业控制(industrial control)中的无线终端、无人驾驶(self-driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对电子设备所采用的具体技术和具体设备形态不做限定。
为了能够更好地理解本申请实施例,下面对本申请实施例的电子设备的结构进行介绍。示例性的,图2为本申请实施例提供的一种电子设备的结构示意图。
电子设备100可以包括处理器110,外部存储器接口120,内部存储器121,通用串行总线(universal serial bus,USB)接口130,充电管理模块140,电源管理模块141,天线1,天线2,移动通信模块150,无线通信模块160,传感器模块180,按键190,指示器192,以及显示屏194等。
可以理解的是,本申请实施例示意的结构并不构成对电子设备的具体限定。在本申请另一些实施例中,电子设备可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器110可以包括一个或多个处理单元。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。处理器110中还可以设置存储器,用于存储指令和数据。
USB接口130是符合USB标准规范的接口,具体可以是Mini USB接口,Micro USB接口,USB Type C接口等。USB接口130可以用于连接充电器为电子设备充电,也可以用于电子设备与外围设备之间传输数据。也可以用于连接耳机,通过耳机播放音频。该接口还可以用于连接其他电子设备,例如AR设备等。在本申请实施例中,USB接口130还可以用于与其他电子设备连接,以对连接的电子设备进行反向充电。
充电管理模块140用于从充电器接收充电输入。其中,充电器可以是无线充电器,也可以是有线充电器。充电管理模块140还可以用于从其他电子设备处接收充电输入,可参见上述图1所述的场景。电源管理模块141用于连接充电管理模块140与处理器110。
电子设备的无线通信功能可以通过天线1,天线2,移动通信模块150,无线通信模块160,调制解调处理器以及基带处理器等实现。
移动通信模块150可以提供应用在电子设备上的包括2G/3G/4G/5G等无线通信的解决方案。
无线通信模块160可以提供应用在电子设备上的包括无线局域网(wirelesslocal area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM)等无线通信的解决方案。
电子设备通过GPU,显示屏194,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏194和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。
显示屏194用于显示图像,视频等。显示屏194包括显示面板。在一些实施例中,电子设备可以包括1个或N个显示屏194,N为大于1的正整数。
外部存储器接口120可以用于连接外部存储卡,例如Micro SD卡,实现扩展电子设备的存储能力。外部存储卡通过外部存储器接口120与处理器110通信,实现数据存储功能。例如将音乐,视频等文件保存在外部存储卡中。
内部存储器121可以用于存储计算机可执行程序代码,可执行程序代码包括指令。内部存储器121可以包括存储程序区和存储数据区。
传感器模块180可以包括下述一种或多种传感器,例如:压力传感器,陀螺仪传感器,气压传感器,磁传感器,加速度传感器,距离传感器,接近光传感器,指纹传感器,温度传感器,触摸传感器,环境光传感器,或骨传导传感器等(图2中未示出)。
电子设备100还可以包括电源管理集成电路(Power Management IC,简称PMIC),升压电路,降压电路,以及充电芯片SC charger(图2中未示出)。PMIC用于管理电子设备主机系统中的电源设备等。电源管理集成电路(Power Management IC,简称PMIC),升压电路,降压电路,以及充电芯片SC charger在包括电源管理模块141中,可以在充电管理模块140中
示例性的,升压电路用于当电子设备对外充电时,对电子设备的电池电压进行升压处理。降压电路用于当电子设备接收其他电子设备输入的电压时,对接收到的电压进行降压处理,并使用降压后的电压实现充电。SC charger具有升压功能和降压功能,因此,在电子设备反向充电过程中,SC charger可以作为升压电路,也可以作为降压电路。
示例性的,升压电路,降压电路,以及充电芯片SC charger可以是集成在PMIC中的,可以是单独设置的,本申请实施例对此不作限定。
本申请实施例中,升压电路和降压电路可以是外置的,也可以是集成在PMIC中的。
电子设备100的软件系统可以采用分层架构,事件驱动架构,微核架构,微服务架构,或云架构,等。本申请实施例对于电子设备的软件系统不作具体限定。
下面以具体地实施例对本申请的技术方案以及本申请的技术方案如何解决上述技术问题进行详细说明。下面这几个具体的实施例可以独立实现,也可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。
示例性的,以第一电子设备和第二电子设备均为手机进行示例说明,图3为本申请实施例提供的一种反向充电系统内部架构示意图。如图3所示,第一电子设备200为供电设备,第二电子设备300为充电设备。第一电子设备200中可以包括第一协议模块201、第一片上系统202(system on chip,SOC)、第一电池203以及升压电路204。第二电子设备300中可以包括第二协议模块301、第二SOC302、第二电池303以及降压电路304。
可选的,第一协议模块201可以为第一协议芯片,第二协议模块201可以为第二协议芯片。升压电路204可以为第一SC charger或boost升压电路,降压电路304可以为第二SC charger。第一协议模块201和第二协议模块301之间可以进行通信。其中,第一协议模块201和第二协议模块301进行通信时使用的充电协议包括但不限于快速充电协议(fast fharger protocol,FCP)、超级快充协议(super charge protocol,SCP)、快充协议(quick charge,QC)、第一快速充电协议(Programmable Power Supply,PPS)、充电协议(Power Delivery,PD)、第二充电协议(adaptive fast charge,AFC)、VOOC闪充协议等。
当第一电子设备200和第二电子设备300之间有线连接时,第一电子设备200中的第一协议模块201可以通过与第二协议模块301之间的通信接收来自第二协议模块301的充电需求指令,该充电需求指令中可以携带充电功率,电压上限值,等。第二协议模块301可以通过IIC将充电需求指令发送给第一SOC202。第一SOC202基于该电压上限值控制升压电路204将第一电池电压升压到第一电压值,并利用第一电压值为第二电子设备300进行反向充电。其中,第一电压值小于电压上限值。第一电子设备200的第一电池电压随着第一电子设备200供电时长的增加而减小。
第二电子设备300中的第二协议模块301通过IIC将充电功率发送给第二SOC302。第二SOC302可以控制降压电路304将第一电压值调整到第二电子设备300的第二电池电压,并利用第二电池电压实现充电。
可以理解的是,第二电子设备300的第二电池电压随着第二电子设备300充电时长的增加而增大。其中,随着第二电子设备300充电时长的增加第二电池电压在0V至截止电压之间不断增大,例如,随着充电时长的增加,第二电子设备300的第二电池电压可以从3V升高到4.5V。当第一电子设备200为第二电子设备300充电的过程中,当第二电子设备300的第二电池电压达到截止电压,则第二电子设备300的第二电池电压不再增大。
例如,第一电子设备200通过boost升压电路2042将第一电子设备200的第一电池电压升压到9V,并向输出9V 1A给第二电子设备300,第二电子设备300通过降压电路304将9V 1A转换为5V 2A给第二电池303充电。
示例性的,第一电子设备200为第二电子设备300充电可以有以下图4-图6所示的三种可能的实现方式。下面,结合图4-图6三种可能的实现方式,对第一电子设备200为第二电子设备300进行反向充电的过程进行示例说明。图4为本申请实施例提供的一种反向充电系统的电路示意图一。图5为本申请实施例提供的一种反向充电系统的电路示意图二。图6为本申请实施例提供的一种反向充电系统的电路示意图三。
可能的实现方式中,如图4所示,第一电子设备200中的升压电路204可以为第一充电芯片,该充电芯片可以为第一SC charger2041。第一电子设备200可以包括第一协议芯片2011、第一电池203、第一SOC202、第一SC charger2041,第二电子设备300可以包括第二协议芯片3011、第二电池303、第二SOC302、降压电路304。其中,降压电路304是连续可调的降压电路。
可以理解的是,SC charger在电源转换过程中具有较高的转换效率,SC charger的电源转换效率能够达到较高的比例,例如,SC charger的电源转换效率可能达到97%。因此,使用SC charger进行反向充电,能够减少功率的损耗,提升反向充电的效率。
示例性的,当第一电子设备200和第二电子设备300之间有线连接,且确定第一电子设备200为第二电子设备300反向充电时,第一协议芯片2011通过与第二协议芯片3011之间进行通信,第一协议芯片2011可以接收来自第二协议芯片3011的电压上限值,并基于接收到的电压上限值和第一电池电压确定向第二电子设备300反向充电的电压值为X倍的第一电池电压,X为大于1的正整数。其中,X倍的第一电池电压小于电压上限值,且为了进一步提升反向充电的效率X倍的第一电池电压可以是电压上限值内允许的最大电压值。
第一SOC202基于第一协议芯片2011确定的反向充电电压值控制第一SC charger2041将第一电子设备200的第一电池电压升压到X倍的第一电池电压,并向第二电子设备300的降压电路304输出X倍的第一电池电压。例如,第一电池电压为Vabtt1,第二电池电压为Vabtt2。当第一电子设备200和第二电子设备300之间有线连接时,第一协议芯片1011确定反向充电的电池电压值可以为可以2倍的Vabtt1,第一电子设备200通过第一SC charger2041将第一电子设备200的Vabtt1升压到2倍的Vabtt1,并利用2倍的Vabtt1为第二电子设备300充电。
可以理解的是,在反向充电过程中,第一电子设备200的第一电池电压随着第一电子设备200供电时长的增加而减小,第一SC charger2041的升压比例随着第一电池电压的减小而增加。
相应的,第二电子设备300中的第二协议芯片3011可以实时向第二SOC302发送第二电池电压。第二SOC302控制降压电路304将X倍的第一电池电压降压到第二电子设备300的第二电池电压,并使用第二电池电压为第二电池303充电。
可以理解的是,在反向充电过程中,第二电子设备300的第二电池电压随着第二电子设备300充电时长的增加而增大,降压电路304不断调整其降压比例,使得降压电路304能够将X倍的第一电池电压降压到第二电池电压。
基于此,第一电子设备200通过第一SC charger2041进行升压,第二电子设备300通过降压电路304进行降压,第一SC charger2041在反向充电时的发热较小,使得第一电子设备200在充电过程中的温度上升速度缓慢,减少了功率损耗,提高了反向充电的功率,能够有效的提升反向充电的效率,提升用户体验。
可能的实现方式中,如图5所示,第一电子设备200中的升压电路204可以为boost升压电路2042,第二电子设备300中的降压电路304可以为第二充电芯片,该充电芯片可以为第二SC charger3041。第一电子设备200可以包括第一协议芯片2011、第一电池203、第一SOC202、boost升压电路2042,第二电子设备300可以包括第二协议芯片3011、第二电池303、第二SOC302、第二SC charger 3041。其中,boost升压电路2042为连续可调的升压电路。
示例性的,当第一电子设备200和第二电子设备300之间有线连接,且确定第一电子设备200为第二电子设备300反向充电时,第一协议芯片2011通过与第二协议芯片3011之间进行通信,第一协议芯片2011可以接收来自第二协议芯片3011的电压上限值和第二电子设备300的第二电池电压,并基于接收到的电压上限值、第一电池电压和第二电池电压确定向第二电子设备300反向充电的电压值为Y倍的第二电池电压,Y为大于1的正整数。其中,Y倍的第二电池电压小于电压上限值。
第一SOC202基于第一协议芯片2011确定的反向充电的电压值控制第一SC charger2041将第一电子设备200的第一电池电压升压到Y倍的第一电池电压,并向第二电子设备300的降压电路304输出Y倍的第二电池电压。例如,第一电池电压为Vabtt1,第二电池电压为Vabtt2。当第一电子设备200和第二电子设备300之间有线连接时,第一协议芯片1011确定反向充电的电池电压值可以为可以2倍的Vabtt2,第一电子设备200通过boost升压电路2042将Vabtt1升压到2倍的Vabtt2,并利用2倍的Vabtt2为第二电子设备300进行反向充电。
可以理解的是,在反向充电过程中,第一电子设备200的第一电池电压随着第一电子设备200供电时长的增加而减小,boost升压电路2042的升压比例随着第一电池电压的减小而不断变化。
相应的,第二电子设备300中的第二协议芯片3011可以实时向第二SOC302发送第二电池电压。第二SOC302控制第二SC charger 3041将Y倍的第二电池电压降压到第二电子设备300的第二电池电压,并使用第二电池电压为第二电池303充电。
可以理解的是,在反向充电过程中,第二电子设备300的第二电池电压随着第二电子设备300充电时长的增加而增大。
基于此,第一电子设备200通过连续可调的boost升压电路2042对第一电池电压进行升压,第二电子设备300能够通过第二SC charger 3041将升压后的电压降压至第二电池电压,从而实现第一电子设备200为第二电子设备300进行反向充电。第二SC charger 3041的发热较小,使得第二电子设备300在充电过程中的温度上升速度缓慢,减少了功率损耗,提高了反向充电的功率,能够有效的提升反向充电的效率,提升用户体验。
可能的实现方式中,如图6所示,第一电子设备200可以包括可以包括第一协议芯片2011、第一电池203、第一SOC202、boost升压电路2042,第二电子设备300可以包括第二协议芯片3011、第二电池303、第二SOC302、降压电路304。其中,boost升压电路2042可以将第一电子设备200的第一电池电压升高至预设电压值,该预设电压值与不同电子设备的充电电压相关。如图6所示,boost升压电路2042中可以包括第一控制器、电感1、MOS管1以及二极管1。降压电路304可以包括第二控制器、MOS管2以及二极管2。
示例性的,当第一电子设备200和第二电子设备300有线连接,且确定第一电子设备200为第二电子设备300反向充电时,第一协议芯片2011通过与第二协议芯片3011之间进行通信,第一协议芯片2011可以接收来自第二协议芯片3011的电压上限值,并基于接收到的电压上限值确定向第二电子设备300反向充电的电压值为预设电压值中与第二电子设备的电压上限值差值最小的电压值。
第一SOC202基于第一协议芯片2011确定的反向充电的电压值控制boost升压电路2042将第一电子设备200的第一电池电压升高至预设电压值中与第二电子设备的电压上限值差值最小的电压值,并向第二电子设备300的降压电路304输出预设电压值中与第二电子设备的电压上限值差值最小的电压值。可选的,第一SOC202通过调节第一控制器的占空比将第一电池电压升压至预设电压值中与第二电子设备的电压上限值差值最小的电压值。
可以理解的是,在反向充电过程中,第一电子设备200的第一电池电压随着第一电子设备200供电时长的增加而减小,boost升压电路2042的升压比例随着第一电池电压的减小而不断变化。
相应的,第二电子设备300中的第二协议芯片3011可以实时向第二SOC302发送第二电池电压。第二SOC302控制降压电路304将预设电压值中与第二电子设备的电压上限值差值最小的电压值降低至第二电子设备300的第二电池电压,并使用第二电池电压为第二电池303充电。
可以理解的是,在反向充电过程中,第二电子设备300的第二电池电压随着第二电子设备300充电时长的增加而增大,降压电路304不断调整其降压比例,使得降压电路304能够将X倍的第一电池电压降压到第二电池电压。
基于此,第一电子设备200通过boost升压电路2042进行升压,第二电子设备300通过降压电路304对第一电子设备200输出的电压进行降压,并使用降压后的电压对第二电池303进行充电,使得无需在第一电子设备200和第二电子设备300中新增任何硬件,提升了反向充电方法的兼容性较强。由于降压电路304是电压连续可调的降压电路,因此,图6所示的反向充电电路能够提升反向充电的效率。
综上所述,电子设备在使用上述图4-图6所示的反向充电电路进行反向充电时,能够实现高功率的反向充电,从而提升反向充电的效率。
图7为本申请实施例提供的一种boost升压电路输入电压和输出电压的仿真结果示意图一。对上述反向充电电路中的boost升压电路2042进行仿真,可以得到如图7所示的包括输入电压和输出电压的仿真结果。如图7所示,boost升压电路2042的输出电压为5V,输出电压为9V,且随着时间的变化,输入电压和输出电压并没有出现升高或降压的现象。因此,在boost升压电路2042的输入电压为5V时,在经过boost升压电路2042升压后能够稳定的输出9V的电压。
图8为本申请实施例提供的一种boost升压电路输入电压和输出电压的仿真结果示意图二。对上述反向充电电路中的boost升压电路2042进行仿真,可以得到如图8所示的包括输入电压和输出电压的仿真结果。如图8所示,boost升压电路2042的输出电压为5V,输出电压为12V,且随着时间的变化,输入电压和输出电压并没有出现升高或降压的现象。因此,在boost升压电路2042的输入电压为5V时,在经过boost升压电路2042升压后能够稳定的输出12V的电压。
基于此,反向充电电路中的boost升压电路2042能够实现将第一电子设备200的第一电池电压值升压至不同的电压值。例如,boost升压电路2042可以将第一电子设备200的锂电池输出5V的电压升为9V 1A、9V 2A、12V 1A三个功率档位。
图9为本申请实施例提供的一种降压电路输入电压和输出电压的仿真结果示意图一。对上述反向充电电路中的降压电路304进行仿真,可以得到如图9所示的包括输入电压和输出电压的仿真结果。如图9所示,降压电路304的输出电压为9V,输出电压为5V,且随着时间的变化,输入电压和输出电压并没有出现升高或降压的现象。因此,在降压电路304的输入电压为9V时,在经过降压电路304降压后能够稳定的输出5V的电压。
图10为本申请实施例提供的一种降压电路输入电压和输出电压的仿真结果示意图一。对上述反向充电电路中的降压电路304进行仿真,可以得到如图10所示的包括输入电压和输出电压的仿真结果。如图10所示,降压电路304的输出电压为12V,输出电压为5V,且随着时间的变化,输入电压和输出电压并没有出现升高或降压的现象。因此,在降压电路304的输入电压为12V时,在经过降压电路304降压后能够稳定的输出5V的电压。
基于此,反向充电电路中的降压电路304能够实现将不同的电压降压至第二电子设备300的第二电池电压。例如,降压电路304可以将9V 1A、9V 2A、12V 1A三个功率档位的输入电压降压至5V。
示例性的,结合图11所示,对本申请实施例的反向充电方法进行示例说明,图11为本申请实施例提供的一种反向充电方法的流程示意图。如图11所示,该反向充电方法包括下述步骤:
S1101、第一电子设备与第二电子设备有线连接。
S1102、第一电子设备中的第一协议模块与第二电子设备中的第二协议模块进行通信,并确定第一电子设备为第二电子设备充电。
示例性的,第一协议模块和第二协议模块可以通过通信协议进行通信,通信协议可参见上述实施例所述,本实施例不再赘述。
可能的实现方式中,第一协议模块和第二协议模块可以基于第一电子设备的第一电池容量和第二电子设备的第二电池容量,确定充电设备和供电设备。若第一电子设备的第一电池容量大于第二电子设备的第二电池容量,则第一电子设备为第二电子设备充电。
可能的实现方式中,第一协议模块和第二协议模块可以基于第一电子设备的第一值和第二电子设备的第二值,确定充电设备和供电设备。其中,第一值为第一电子设备的第一电池容量和第一电子设备的第一剩余电量的乘积,第二值为第二电子设备的第二电池容量和第二电子设备的第二剩余电量的乘积。若第一电子设备的第一值大于第二电子设备的第二值,则第一电子设备为第二电子设备充电。
可能的实现方式中,第一协议模块和第二协议模块可以基于用户的选择确定充电设备和供电设备。示例性的,可参见图12所示,图12为本申请实施例提供的一种第一界面的示意图。该第一界面包括用于提示是否采用第一电子设备对外充电的提示信息1201,以及第一按钮1202和第二按钮1203。如图12所示,当第一电子设备和第二电子设备有线连接时,第一电子设备可以显示包括“采用此设备对外充电”和“是”“否”的界面。其中,“采用此设备对外充电”可以对应于提示是否采用第一电子设备对外充电的提示信息1201,“是”按钮可以对应于第一按钮1202,“否”可以对应于第二按钮1203。
一种情况下,当第一电子设备接收到针对第一按钮“是”的操作时,则第一电子设备为第二电子设备充电。
另一种情况下,当第一电子设备接收到针对第二按钮“否”的操作时,则第一电子设备接受来自第二电子设备的充电。
可以理解的是,上述第一界面也可以在第二电子设备上显示。
这样,是的用户可以自主选择第一电子设备为供电设备还是充电设备,提升用户体验。
S1103、第一协议模块和第二协议模块协议反向充电时的充电功率、充电电压、充电停止条件。
示例性的,第二协议模块可以向第一协议模块发送第二电子设备的电压上限值和/或第二电池电压,相应的,第一协议模块接收来自第二协议模块的第二电子设备的电压上限值和/或第二电池电压,并基于电压上限值和/或确定充电电压,具体的可参加上述图4-图6所述,本实施例在此不再赘述。反向充电时的充电功率可根据充电电压和充电电流确定。
可能的实现方式中,反向充电时的充电停止条件可以包括第一电子设备的剩余电量满足第一条件,或第二电子设备的剩余电量满足第二条件,或者第二电子设备的第二电池电压满足第三条件。
可能的实现方式中,充电停止条件可以是用户在第一电子设备的显示界面上设置的。图13为本申请实施例提供的一种第二界面的示意图。该第二界面用于接收用户输入的第二电子设备反向充电的截止电量。如图13所示,当确定第一电子设备为第二电子设备充电时,第一电子设备可以显示包括“请设置对外充电截止电量”,截止电量输入框和“确定”的第二界面。当用户在第二界面输入第二电子设备反向充电的截止电量时,第一电子设备可以获取为第二电子设备反向充电的截止电量,如图13所示的截止电量35%。
可以理解的是,用户可以在图13所示的第二界面中的截止电量输入框中输入截止电量,或者通过截止电量输入框选择截止电量,或者在预先设定的多个截止电量中选择截止电量,本申请实施例对于设置截止电量的方式不做具体限定。
S1104、第一电子设备通过第一SOC控制升压电路将第一电子设备的第一电池电压升压到第一电压值,并向第二电子设备的降压电路输出第一电压值。
升压电路将第一电子设备的第一电池电压升压到第一电压值时对应的电路可以参见上述图4-图6所述。示例性的,具体使用的图4-图6中哪种电路进行反向充电可以根据电子设备的温度、电池容量以及剩余电量等确定。
S1105、第二电子设备通过第二SOC控制降压电路将第一电压值调整到第二电池电压,并利用第二电池电压为第二电子设备充电。
降压电路将第一电压值调整到第二电子设备的第二电池电压时对应的电路可以参见上述图4-图6所述。示例性的,具体使用的图4-图6中哪种电路进行反向充电可以根据电子设备的温度、电池容量以及剩余电量等确定。
S1106、当第一电子设备的剩余电量满足第一条件,或第二电子设备的剩余电量满足第二条件,或者第二电子设备的第二电池电压满足第三条件时,第一电子设备停止为第二电子设备充电。
示例性的,第一条件可以为第一电子设备的截止电量,如图13所示,第一电子设备的截止电量为35%。当第一电子设备为第二电子设备充电,且第一电子设备的剩余电量达到35%时,第一电子设备停止为第二电子设备充电。这样,使得第一电子设备在为第二电子设备反向充电的同时能够使得自身的运行所需的电量,提升了用户体验。
示例性的,第二条件可以为第二电子设备的截止电量,第二电子设备的截止电量也可以是根据图13所示的界面设定的。例如,第二电子设备当前的剩余电量为10%,用户在如图13所示的界面上设置第二电子设备的充电截止电压为60%,即当第一电子设备为第二电子设备充电,且第二电子设备的剩余电量达到60%时,第一电子设备停止为第二电子设备充电。
示例性的,第三条件可以为第二电子设备的截止电压。当第一电子设备为第二电子设备充电,且第二电子设备的第二电池电压达到截止电压时,第一电子设备停止为第二电子设备充电。
综上所述,第一电子设备为第二电子设备反向充电时,第二电子设备能够利用第二电池电压为第二电子设备的电池充电,提升了反向充电效率。
为了进一步提升反向充电时用户的体验,当第一电子设备和第二电子设备有线连接时,第一电子设备和第二电子设备可以基于第一电子设备的温度、第二电子设备的温度、第一电子设备的电池容量和第二电子设备的电池容量等条件确定第一电子设备200使用的升压电路以及第二电子设备使用的降压电路,即确定使用上述图4-图6中的哪种反向充电电路。下面,对不同条件下对应的反向充电电路进行说明。
下面,对基于电子设备的温度确定反向充电电路进行说明。
可能的实现方式中,第一电子设备和第二电子设备可以基于第一电子设备的温度确定反向充电电路。当第一电子设备的温度高于第一温度阈值且低于第二温度阈值时,可以使用上述图4所示的反向充电电路进行反向充电。通过图4所示的反向充电电路进行反向充电的过程可参见上述实施例所述,本实施例不再赘述。这样,能够减缓反向充电过程中第一电子设备的温度上升的速度,提升用户的体验,同时提升反向充电的效率。
可以理解的是,为了第一电子设备的正常运行,第一温度阈值与第二温度阈值之间的温度范围可以为电子设备能够稳定运行的温度范围。例如,第一温度阈值可以为20摄氏度,第二温度阈值可以为40摄氏度,即第一电子设备的温度处于在20摄氏度至40摄氏度之间时,使用图4所示的反向充电电路进行反向充电。
示例性的,若第一电子设备的温度高于第一温度阈值且低于第二温度阈值,且第一电子设备中没有SC charger,第二电子设备有SC charger时,可以通过图5所示的反向充电电路进行充电。若第一电子设备和第二电子设备均没有SC charger时,可以通过图6所示的反向充电电路进行充电。
可能的实现方式中,当第一电子设备的温度低于第一温度阈值,或第一电子设备的温度高于第二温度阈值时,可以使用图6所示的反向充电中的硬件进行反向充电,但在反向充电过程中,第一电子设备可以通过第一SOC控制boost升压电路将第一电子设备的第一电池电压升压到特定电压值,利用特定电压值为第二电子设备进行反向充电。第二电子设备通过第二SOC控制降压电路将特定电压值调整到第二电子设备的第二电池电压。其中,特定电压值为第二电子设备允许的最小充电电压值。
这样,在第一电子设备的温度较低或者较高时,第一电子设备利用第一预设值为第二电子设备反向充电,使得反向充电的功率较小,使得充电过程中的安全性较高。
在本申请实施例中,第一电子设备的温度与第二电子设备的温度和能够影响反向充电电路的选择。例如,当温度和在100℃-150℃之间时,使用功率较低的反向充电电路,即第一电子设备可以通过boost升压电路将第一电子设备的第一电池电压升压到第一预设电压值,利用第一预设电压值为第二电子设备进行反向充电。第二电子设备通过降压电路304将第一预设电压值调整到第二电子设备的第二电池电压。当温度和在50℃-100℃时,使用功率较高的反向充电电路,可以选择如图4-图6所示的充电方案中的任一种。
可能的实现方式中,第一电子设备和第二电子设备可以基于第一电子设备的第一值和第二电子设备的第二值确定反向充电电路。当第一值大于第二值,且第一值大于预设值,第二值小于预设值时,可以使用上述图4所示的反向充电电路进行反向充电。通过图4所示的反向充电电路进行反向充电的过程可参见上述实施例所述,本实施例不再赘述。这样,能够使得反向充电过程中第一电子设备的温度上升速度较慢,提升用户的体验,同时提升反向充电的效率。
例如,预设值为2000mA,第一电子设备的电池容量为8000mA,第一电子设备的第一剩余电量为40%,第二电子设备的电池容量为5000mA,第二电子设备的第二剩余电量为50%,可知,第一值为3200mA,第二值为2500mA。此时,使用图4所示的反向充电电路实现第一电子设备为第二电子设备充电。
示例性的,第一电子设备可以通过自带的电量计获取第一电池容量,第二电子设备可以通过自带的电量计获取第二电池容量。其中,电量计能够监测电池的充放电,可以提供实时的、真实的电池容量。
可以理解的是,预设值与第一电子设备和/或第二电子设备的电池容量有关。例如,预设值可以为第一电子设备电池容量的50%,使得在第一电子设备的第一值较大时,
能够为第二电子设备快速高效的进行充电。或者,预设值可以为第二电子设备电池容量的55%,或者,预设值可以为第一电子设备的电池容量和第二电子设备电池容量的平均值。
示例性的,若第一值大于第二值,第一值大于预设值,第二值小于预设值,且第一电子设备中没有SC charger,第二电子设备有SC charger时,可以通过图5所示的反向充电电路进行充电。若第一电子设备和第二电子设备均没有SC charger时,可以通过图6所示的反向充电电路进行充电。
可能的实现方式中,在第一值和第二值满足预设条件时,使用图6所示的反向充电中的硬件进行反向充电,但在反向充电过程中,第一电子设备可以通过第一SOC控制boost升压电路将第一电子设备的第一电池电压升压到特定电压值,利用特定电压值为第二电子设备进行反向充电。第二电子设备通过第二SOC控制降压电路将特定电压值调整到第二电子设备的第二电池电压,并利用第二电池电压实现充电。其中,预设条件包括以下任一项:第一值小于第二值、第一值和第二值均小于预设值、第一值和第二值均大于预设值。
例如,预设值为第一电子设备的电池容量的45%,在第一电子设备的电池容量与第二电子设备的电池容量相同,且第一电子设备的第一剩余电量为20%,第二电子设备的第二剩余电量为40%,或者第一剩余电量和第二剩余电量均为20%,或者第一剩余电量和第二剩余电量均为60%时,第一电子设备使用boost升压电路将第一电池电压升压到特定电压值,第二电子设备通过降压电路将特定电压值调整到第二电子设备的第二电池电压。
这样,使得电子设备能够运行,提升了用户体验。
在本申请实施例中,在第一电子设备为第二电子设备反向充电时,第一值和第二值的差值,或者第一剩余电量和第二剩余电量的差值可能影响选择的反向充电电路。
示例的,当第一值和第二值的差值大于第一预设差值,或者第一剩余电量和第二剩余电量的差值大于第二预设差值,可以使用功率较高的反向充电电路进行反向充电,例如,使用图4-图6中的任一种;反之,则使用功率较低的反向充电电路进行反向充电,第一电子设备可以通过boost升压电路将第一电子设备的第一电池电压升压到特定电压值,利用特定电压值为第二电子设备进行反向充电。第二电子设备通过降压电路将特定电压值调整到第二电子设备的第二电池电压,并利用第二电池电压实现充电。
可能的实现方式中,在第一电子设备的第一剩余电量大于第二电子设备的第二剩余电量时,第一电子设备可以使用上述图4所示的反向充电电路进行反向充电。
在本申请实施例中,可能存在基于温度确定的反向充电电路和基于电池容量与剩余电量的乘积确定的反向充电电路不同,为了提升用户的体验,优先选择基于温度确定的升压电路和降压电路,使得反向充电的安全性较高。
可能的实现方式中,在第一电子设备的温度低于第一温度阈值或第一电子设备的温度高于第二温度阈值,且第一值大于第二值时,基于温度优先的原则,可以使用图6所示的反向充电中的硬件进行反向充电,但在反向充电过程中,第一电子设备可以通过第一SOC控制boost升压电路将第一电子设备的第一电池电压升压到特定电压值,利用特定电压值为第二电子设备进行反向充电。第二电子设备通过第二SOC控制降压电路将特定电压值调整到第二电子设备的第二电池电压,并利用第二电池电压实现充电。
在本申请实施例中,第一电子设备为第二电子设备反向充电过程中,第一电子设备和第二电子设备可以根据温度和剩余电量的变化对使用的反向充电电路进行切换,以提升用户体验。
可能的实现方式中,反向充电过程中,在第二电子设备的温度高于第二温度阈值,且第一电子设备通过充电芯片第一SC charger将第一电子设备的第一电池电压升压到X倍的第一电池电压时,第一电子设备可以切换为通过第一SOC控制boost升压电路将第一电子设备的第一电池电压升压到Y倍的第二电池电压,利用Y倍的第二电池电压为第二电子设备进行反向充电。第二电子设备可以切换为通过第二SOC控制第二SC charger将Y倍的第二电池电压调整到第二电子设备的第二电池电压,并利用第二电池电压实现充电。其中,X为大于1的正整数,Y为大于1的正整数。
示例性的,当第二电子设备中没有第二SC charger时,可以切换为使用图6所示的反向充电中的硬件进行反向充电,但在反向充电过程中,第一电子设备可以通过第一SOC控制boost升压电路将第一电子设备的第一电池电压升压到特定电压值,利用特定电压值为第二电子设备进行反向充电。第二电子设备通过第二SOC控制降压电路将特定电压值调整到第二电子设备的第二电池电压。其中,特定电压值为第二电子设备允许的最小充电电压值。这样,能够减小反向充电的功率,保护第二电子设备的电池,提升用户体验。
可以理解的是,在第二电子设备的温度降低至高于第一温度阈值且低于第二温度阈值时,第一电子设备可以再切换回之前使用的升压电路,第二电子设备可以切换回之前使用的降压电路。
可能的实现方式中,电子设备还可以根据第一电子设备当前的电量消耗情况切换反向充电电路中第一电子设备使用的升压电路和第二电子设备使用的降压电路。反向充电过程中,当第一电子设备正在运行电量消耗量较大的应用,例如游戏、视频拍摄等应用,且第一电子设备通过第一SC charger将第一电子设备的第一电池电压升压到X倍的第一电池电压时,可以切换为使用图6所示的反向充电中的硬件进行反向充电,但在反向充电过程中,第一电子设备可以通过第一SOC控制boost升压电路将第一电子设备的第一电池电压升压到特定电压值,利用特定电压值为第二电子设备进行反向充电。第二电子设备通过第二SOC控制降压电路将特定电压值调整到第二电子设备的第二电池电压。其中,特定电压值为第二电子设备允许的最小充电电压值。这样,能够减小反向充电的功率,使得第一电子设备能够稳定的运行当前运行的应用,提升了用户体验。
图14为本申请实施例提供的一种电子设备的硬件结构示意图,如图14所示,该电子设备包括处理器1401,通信线路1404以及至少一个通信接口(图14中示例性的以通信接口1403为例进行说明)。
处理器1401可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路1404可包括在上述组件之间传送信息的电路。
通信接口1403,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线局域网(wireless local area networks,WLAN)等。
可能的,该电子设备还可以包括存储器1402。
存储器1402可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路1404与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器1402用于存储执行本申请方案的计算机执行指令,并由处理器1401来控制执行。处理器1401用于执行存储器1402中存储的计算机执行指令,从而实现本申请实施例所提供的方法中第一电子设备执行的步骤,或者,实现本申请实施例所提供的方法中第二电子设备执行的步骤。
可能的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器1401可以包括一个或多个CPU,例如图14中的CPU0和CPU1。
在具体实现中,作为一种实施例,电子设备可以包括多个处理器,例如图14中的处理器1401和处理器1405。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
示例性的,图15为本申请实施例提供的一种芯片的结构示意图。芯片1500包括一个或两个以上(包括两个)处理器1520和通信接口1530。
在一些实施方式中,存储器1540存储了如下的元素:可执行模块或者数据结构,或者他们的子集,或者他们的扩展集。
本申请实施例中,存储器1540可以包括只读存储器和随机存取存储器,并向处理器1520提供指令和数据。存储器1540的一部分还可以包括非易失性随机存取存储器(non-volatile random access memory,NVRAM)。
本申请实施例中,存储器1540、通信接口1530以及处理器1520通过总线系统1510耦合在一起。其中,总线系统1510除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。为了便于描述,在图15中将各种总线都标为总线系统1510。
上述本申请实施例描述的方法可以应用于处理器1520中,或者由处理器1520实现。处理器1520可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器1520中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器1520可以是通用处理器(例如,微处理器或常规处理器)、数字信号处理器(digital signal processing,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field-programmable gate array,FPGA)或者其他可编程逻辑器件、分立门、晶体管逻辑器件或分立硬件组件,处理器1520可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。
结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。其中,软件模块可以位于随机存储器、只读存储器、可编程只读存储器或带电可擦写可编程存储器(electrically erasable programmable read only memory,EEPROM)等本领域成熟的存储介质中。该存储介质位于存储器1540,处理器1520读取存储器1540中的信息,结合其硬件完成上述方法的步骤。
在上述实施例中,存储器存储的供处理器执行的指令可以以计算机程序产品的形式实现。其中,计算机程序产品可以是事先写入在存储器中,也可以是以软件形式下载并安装在存储器中。
计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包括一个或多个可用介质集成的服务器、数据中心等数据存储设备。例如,可用介质可以包括磁性介质(例如,软盘、硬盘或磁带)、光介质(例如,数字通用光盘(digital versatile disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本申请实施例还提供了一种计算机可读存储介质。上述实施例中描述的方法可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。计算机可读介质可以包括计算机存储介质和通信介质,还可以包括任何可以将计算机程序从一个地方传送到另一个地方的介质。存储介质可以是可由计算机访问的任何目标介质。
作为一种可能的设计,计算机可读介质可以包括紧凑型光盘只读储存器(compact disc read-only memory,CD-ROM)、RAM、ROM、EEPROM或其它光盘存储器;计算机可读介质可以包括磁盘存储器或其它磁盘存储设备。而且,任何连接线也可以被适当地称为计算机可读介质。例如,如果使用同轴电缆,光纤电缆,双绞线,DSL或无线技术(如红外,无线电和微波)从网站,服务器或其它远程源传输软件,则同轴电缆,光纤电缆,双绞线,DSL或诸如红外,无线电和微波之类的无线技术包括在介质的定义中。如本文所使用的磁盘和光盘包括光盘(CD),激光盘,光盘,数字通用光盘(digital versatile disc,DVD),软盘和蓝光盘,其中磁盘通常以磁性方式再现数据,而光盘利用激光光学地再现数据。
上述的组合也应包括在计算机可读介质的范围内。以上,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。
Claims (30)
- 一种反向充电系统,其特征在于,所述充电系统包括第一电子设备和第二电子设备,所述第一电子设备,用于将所述第一电子设备的第一电池电压升压到第一电压值后,利用所述第一电压值为所述第二电子设备进行反向充电;所述第二电子设备,用于将所述第一电压值调整到所述第二电子设备的第二电池电压,并利用所述第二电池电压实现充电,其中,所述第一电子设备的第一电池电压随着所述第一电子设备供电时长的增加而减小,所述第二电子设备的第二电池电压随着所述第二电子设备充电时长的增加而增大。
- 根据权利要求1所述的反向充电系统,其特征在于,所述第一电子设备包括第一充电芯片,所述第二电子设备包括降压电路,所述第一电压值为X倍的所述第一电子设备的第一电池电压;所述X为大于1的正整数;所述第一充电芯片,用于将所述第一电子设备的第一电池电压升压到所述X倍的第一电池电压;所述降压电路,用于将所述X倍的第一电池电压调整到所述第二电子设备的第二电池电压。
- 根据权利要求2所述的反向充电系统,其特征在于,所述第一电子设备,具体用于在所述第一电子设备的温度高于第一温度阈值且低于第二温度阈值时,通过所述第一充电芯片将所述第一电子设备的第一电池电压升压到X倍的第一电池电压,利用所述X倍的第一电池电压为所述第二电子设备进行反向充电;所述第一温度阈值小于所述第二温度阈值。
- 根据权利要求3所述的反向充电系统,其特征在于,所述第一电子设备还包括升压电路,所述第二电子设备还包括第二充电芯片,所述第一电压值为Y倍的所述第二电子设备的第二电池电压;所述Y为大于1的正整数;所述第一电子设备,具体用于当所述第二电子设备的温度高于所述第二温度阈值,且所述第一电子设备通过所述第一充电芯片将所述第一电子设备的第一电池电压升压到X倍的第一电池电压时,切换为通过所述升压电路将所述第一电子设备的第一电池电压升压到Y倍的第二电池电压,利用所述Y倍的第二电池电压为所述第二电子设备进行反向充电;所述第二电子设备,具体用于当所述第二电子设备的温度高于所述第二温度阈值,且所述第二电子设备通过所述降压电路将所述X倍的第一电池电压到所述第二电子设备的第二电池电压时,切换为通过所述第二充电芯片将所述Y倍的第二电池电压调整到所述第二电子设备的第二电池电压,并利用所述第二电池电压实现充电。
- 根据权利要求3所述的反向充电系统,其特征在于,所述第一电子设备还包括升压电路,所述第一电压值为特定电压值,所述特定电压值为所述第二电子设备允许的最小充电电压值;所述第一电子设备,具体用于当所述第一电子设备的温度低于所述第一温度阈值或所述第一电子设备的温度高于所述第二温度阈值,且所述第一电子设备通过所述第一充电芯片将所述第一电子设备的第一电池电压升压到X倍的第一电池电压时,切换为通过所述升压电路将所述第一电子设备的第一电池电压升压到特定电压值,利用所述特定电压值为所述第二电子设备进行反向充电。
- 根据权利要求2所述的反向充电系统,其特征在于,所述第一电子设备,具体用于当第一值大于第二值时,通过所述第一充电芯片将所述第一电子设备的第一电池电压升压到X倍的第一电池电压,利用X倍的第一电池电压为所述第二电子设备进行反向充电;所述第一值为所述第一电子设备的第一电池容量和所述第一电子设备的第一剩余电量的乘积,所述第二值为所述第二电子设备的第二电池容量和所述第二电子设备的第二剩余电量的乘积,所述第一值大于预设值,所述第二值小于所述预设值。
- 根据权利要求1所述的反向充电系统,其特征在于,所述第一电子设备包括升压电路,所述第一电压值为特定电压值,所述特定电压值为所述第二电子设备允许的最小充电电压值;所述第一电子设备,具体用于当第一值和第二值满足预设条件时,通过所述升压电路将所述第一电子设备的第一电池电压升压到特定电压值,利用所述特定电压值为所述第二电子设备进行反向充电;所述第一值为所述第一电子设备的第一电池容量和所述第一电子设备的第一剩余电量的乘积,所述第二值为所述第二电子设备的第二电池容量和所述第二电子设备的第二剩余电量的乘积,所述预设条件包括以下任一项:所述第一值小于所述第二值、所述第一值和所述第二值均小于预设值、所述第一值和所述第二值均大于所述预设值。
- 根据权利要求1所述的反向充电系统,其特征在于,所述第一电子设备包括升压电路,所述第一电压值为特定电压值,所述特定电压值为所述第二电子设备允许的最小充电电压值;所述第一电子设备,具体用于当所述第一电子设备的温度低于第一温度阈值或所述第一电子设备的温度高于第二温度阈值,且第一值大于第二值时,通过所述升压电路将所述第一电子设备的第一电池电压升压到特定电压值,利用所述特定电压值为所述第二电子设备进行反向充电;所述第一温度阈值小于所述第二温度阈值;所述第一值为所述第一电子设备的第一电池容量和所述第一电子设备的第一剩余电量的乘积,所述第二值为所述第二电子设备的第二电池容量和所述第二电子设备的第二剩余电量的乘积,所述第一值大于预设值,所述第二值小于所述预设值。
- 根据权利要求1所述的反向充电系统,其特征在于,所述第一电子设备包括升压电路,所述第二电子设备包括第二充电芯片,所述第一电压值为Y倍的所述第二电子设备的第二电池电压;所述Y为大于1的正整数;所述升压电路,用于将所述第一电子设备的第一电池电压升压到所述Y倍的第二电池电压;所述第二充电芯片,用于将所述Y倍的第二电池电压调整到所述第二电子设备的第二电池电压。
- 根据权利要求9所述的反向充电系统,其特征在于,所述第一电子设备还包括第一协议模块,所述第二电子设备还包括第二协议模块,所述第一协议模块,用于当所述第一电子设备为所述第二电子设备进行反向充电时,实时接收来自所述第二协议模块的所述第二电子设备的第二电池电压;所述第二协议模块,用于当所述第二电子设备利用所述第二电池电压实现充电时,实时向所述第一协议模块发送所述第二电子设备的第二电池电压。
- 根据权利要求1所述的反向充电系统,其特征在于,所述第一电子设备包括升压电路,所述第二电子设备包括降压电路,所述第一电压值为预设电压值中与所述第二电子设备的电压上限值差值最小的电压值;所述升压电路,用于将所述第一电子设备的第一电池电压升压到所述预设电压值中与所述第二电子设备的电压上限值差值最小的电压值;所述降压电路,用于将所述预设电压值中与所述第二电子设备的电压上限值差值最小的电压值调整到所述第二电子设备的第二电池电压。
- 根据权利要求1-11任一项所述的反向充电系统,其特征在于,所述第一电子设备还包括第一协议模块,所述第二电子设备还包括第二协议模块,所述第一协议模块,用于当所述第一电子设备与所述第二电子设备有线连接时,接收来自所述第二协议模块的所述第二电子设备的电压上限值;其中,所述第一电压值小于所述电压上限值;所述第二协议模块,用于获取所述第二电子设备的电压上限值。
- 根据权利要求1-12任一项所述的反向充电系统,其特征在于,所述第一电子设备,还用于当所述第一电子设备与所述第二电子设备有线连接时,若所述第一电子设备的第一电池容量大于所述第二电子设备的第二电池容量,或所述第一电子设备的第一值大于所述第二电子设备的第二值,则为所述第二电子设备进行反向充电。
- 根据权利要求1-12任一项所述的反向充电系统,其特征在于,所述第一电子设备,还用于当所述第一电子设备与所述第二电子设备有线连接时,显示第一界面,所述第一界面包括用于提示是否采用所述第一电子设备对外充电的提示信息,以及第一按钮和第二按钮,当接收到针对所述第一按钮的操作时,利用所述第一电压值为所述第二电子设备进行反向充电,或者,当接收到针对所述第二按钮的操作时,接受来自所述第二电子设备的充电。
- 根据权利要求1-14任一项所述的反向充电系统,其特征在于,所述第一电子设备,还用于显示第二界面,并当用户在所述第二界面输入第二电子设备反向充电的截止电量时,获取为所述第二电子设备反向充电的截止电量;所述第二界面用于接收用户输入的所述第二电子设备反向充电的截止电量;所述第一电子设备,还用于当所述第一电子设备的第一剩余电量达到所述截止电量时,停止为所述第二电子设备进行反向充电。
- 一种反向充电方法,其特征在于,包括:第一电子设备将所述第一电子设备的第一电池电压升压到第一电压值后,利用所述第一电压值为第二电子设备进行反向充电;第二电子设备将所述第一电压值调整到所述第二电子设备的第二电池电压,并利用所述第二电池电压实现充电,其中,所述第一电子设备的第一电池电压随着所述第一电子设备供电时长的增加而减小,所述第二电子设备的第二电池电压随着所述第二电子设备充电时长的增加而增大。
- 根据权利要求16所述的方法,其特征在于,所述第一电压值为X倍的所述第一电子设备的第一电池电压;所述X为大于1的正整数;所述第一电子设备包括第一充电芯片,所述第二电子设备包括降压电路,所述第一电子设备将所述第一电子设备的第一电池电压升压到第一电压值,包括:所述第一电子设备通过所述第一充电芯片将所述第一电子设备的第一电池电压升压到所述X倍的第一电池电压;所述第二电子设备将所述第一电压值调整到所述第二电子设备的第二电池电压,包括:所述第二电子设备通过所述降压电路将所述X倍的第一电池电压调整到所述第二电子设备的第二电池电压。
- 根据权利要求17所述的方法,其特征在于,所述第一电子设备将所述第一电子设备的第一电池电压升压到第一电压值后,利用所述第一电压值为所述第二电子设备进行反向充电,包括:当所述第一电子设备的温度高于第一温度阈值且低于第二温度阈值时,所述第一电子设备通过所述第一充电芯片将所述第一电子设备的第一电池电压升压到X倍的第一电池电压,利用所述X倍的第一电池电压为所述第二电子设备进行反向充电;所述第一温度阈值小于所述第二温度阈值。
- 根据权利要求18所述的方法,其特征在于,所述第一电子设备还包括升压电路,所述第一电压值为特定电压值,所述特定电压值为所述第二电子设备允许的最小充电电压值;所述第一电子设备将所述第一电子设备的第一电池电压升压到第一电压值后,利用所述第一电压值为所述第二电子设备进行反向充电,包括:当所述第一电子设备的温度低于所述第一温度阈值或所述第一电子设备的温度高于所述第二温度阈值,且所述第一电子设备通过所述第一充电芯片将所述第一电子设备的第一电池电压升压到X倍的第一电池电压时,所述第一电子设备切换为通过所述升压电路将所述第一电子设备的第一电池电压升压到特定电压值,利用所述特定电压值为所述第二电子设备进行反向充电。
- 根据权利要求17所述的方法,其特征在于,所述第一电子设备还包括升压电路,所述第一电子设备将所述第一电子设备的第一电池电压升压到第一电压值后,利用所述第一电压值为所述第二电子设备进行反向充电,包括:当第一值大于第二值时,所述第一电子设备通过所述第一充电芯片将所述第一电子设备的第一电池电压升压到X倍的第一电池电压,利用X倍的第一电池电压为所述第二电子设备进行反向充电;所述第一值为所述第一电子设备的第一电池容量和所述第一电子设备的第一剩余电量的乘积,所述第二值为所述第二电子设备的第二电池容量和所述第二电子设备的第二剩余电量的乘积,所述第一值大于预设值,所述第二值小于所述预设值。
- 根据权利要求16所述的方法,其特征在于,所述第一电子设备包括升压电路,所述第二电子设备包括第二充电芯片,所述第一电压值为Y倍的所述第二电子设备的第二电池电压;所述Y为大于1的正整数;所述第一电子设备将所述第一电子设备的第一电池电压升压到第一电压值,包括:所述第一电子设备通过所述升压电路将所述第一电子设备的第一电池电压升压到所述Y倍的第二电池电压;所述第二电子设备将所述第一电压值调整到所述第二电子设备的第二电池电压,包括:所述第二电子设备通过所述第二充电芯片将所述Y倍的第二电池电压调整到所述第二电子设备的第二电池电压。
- 根据权利要求21所述的方法,其特征在于,所述第一电子设备还包括第一协议模块,所述第二电子设备还包括第二协议模块,所述方法还包括:当所述第一电子设备为所述第二电子设备进行反向充电时,所述第一协议模块实时接收来自所述第二协议模块的所述第二电子设备的第二电池电压;当所述第二电子设备利用所述第二电池电压实现充电时,所述第二协议模块实时向所述第一协议模块发送所述第二电子设备的第二电池电压。
- 根据权利要求16所述的方法,其特征在于,所述第一电子设备包括升压电路,所述第二电子设备包括降压电路,所述第一电压值为预设电压值中与所述第二电子设备的电压上限值差值最小的电压值;所述第一电子设备将所述第一电子设备的第一电池电压升压到第一电压值,包括:所述第一电子设备通过所述升压电路,用于将所述第一电子设备的第一电池电压升压到所述预设电压值中与所述第二电子设备的电压上限值差值最小的电压值;所述第二电子设备将所述第一电压值调整到所述第二电子设备的第二电池电压,包括:所述第二电子设备通过所述降压电路将所述预设电压值中与所述第二电子设备的电压上限值差值最小的电压值调整到所述第二电子设备的第二电池电压。
- 根据权利要求16-23任一项所述的方法,其特征在于,所述第一电子设备还包括第一协议模块,所述第二电子设备还包括第二协议模块,所述方法还包括:当所述第一电子设备与所述第二电子设备有线连接时,所述第一协议模块接收来自所述第二协议模块的所述第二电子设备的电压上限值;其中,所述第一电压值小于所述电压上限值;所述第二协议模块获取所述第二电子设备的电压上限值。
- 根据权利要求16-24任一项所述的方法,其特征在于,所述方法还包括:当所述第一电子设备与所述第二电子设备有线连接时,若所述第一电子设备的第一电池容量大于所述第二电子设备的第二电池容量,或所述第一电子设备的第一值大于所述第二电子设备的第二值,则所述第一电子设备为所述第二电子设备进行反向充电。
- 根据权利要求16-25任一项所述的方法,其特征在于,所述方法还包括:当所述第一电子设备与所述第二电子设备有线连接时,所述第一电子设备显示第一界面,所述第一界面包括用于提示是否采用所述第一电子设备对外充电的提示信息,以及第一按钮和第二按钮,当接收到针对所述第一按钮的操作时,利用所述第一电压值为所述第二电子设备进行反向充电,或者,当接收到针对所述第二按钮的操作时, 接受来自所述第二电子设备的充电。
- 根据权利要求16-26任一项所述的方法,其特征在于,所述方法还包括:所述第一电子设备显示第二界面,并当用户在所述第二界面输入第二电子设备反向充电的截止电量时,获取为所述第二电子设备反向充电的截止电量;所述第二界面用于接收用户输入的所述第二电子设备反向充电的截止电量;所述第一电子设备当所述第一电子设备的第一剩余电量达到所述截止电量时,停止为所述第二电子设备进行反向充电。
- 一种电子设备,其特征在于,包括:处理器和存储器;所述存储器存储计算机执行指令;所述处理器执行所述存储器存储的计算机执行指令,使得所述电子设备执行如权利要求16-27中任一项所述的方法中第一电子设备执行的步骤,或者,所述电子设备执行如权利要求16-27中任一项所述的方法中第二电子设备执行的步骤。
- 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求16-27任一项所述的方法中第一电子设备执行的步骤,或者,所述计算机程序被处理器执行时实现如权利要求16-27任一项所述的方法中第二电子设备执行的步骤。
- 一种计算机程序产品,其特征在于,包括计算机程序,当所述计算机程序被运行时,使得计算机执行如权利要求16-27任一项所述的方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210983509.7 | 2022-08-16 | ||
CN202210983509.7A CN117639137A (zh) | 2022-08-16 | 2022-08-16 | 反向充电系统、方法及相关装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2024037081A1 WO2024037081A1 (zh) | 2024-02-22 |
WO2024037081A9 true WO2024037081A9 (zh) | 2024-05-30 |
Family
ID=89940604
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/095148 WO2024037081A1 (zh) | 2022-08-16 | 2023-05-18 | 反向充电系统、方法及相关装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN117639137A (zh) |
WO (1) | WO2024037081A1 (zh) |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08149704A (ja) * | 1994-11-25 | 1996-06-07 | Nippondenso Co Ltd | 車載電子機器用電源装置 |
CN105790349A (zh) * | 2016-01-27 | 2016-07-20 | 努比亚技术有限公司 | 移动终端互相充电控制方法及装置 |
CN106340937A (zh) * | 2016-11-22 | 2017-01-18 | 宇龙计算机通信科技(深圳)有限公司 | 一种otg低压充电的方法及移动终端 |
CN112928787B (zh) * | 2019-12-06 | 2024-07-09 | 北京小米移动软件有限公司 | 充电电路、电子设备、充电控制方法及装置 |
CN211018337U (zh) * | 2019-12-18 | 2020-07-14 | 维沃移动通信有限公司 | 一种充电控制装置、移动终端 |
CN113162131A (zh) * | 2020-01-22 | 2021-07-23 | 华为技术有限公司 | 反向充电系统、反向充电方法及终端设备 |
CN114597983A (zh) * | 2020-12-04 | 2022-06-07 | 华为技术有限公司 | 一种无线充电电路及系统、电子设备及控制方法 |
-
2022
- 2022-08-16 CN CN202210983509.7A patent/CN117639137A/zh active Pending
-
2023
- 2023-05-18 WO PCT/CN2023/095148 patent/WO2024037081A1/zh active Application Filing
Also Published As
Publication number | Publication date |
---|---|
CN117639137A (zh) | 2024-03-01 |
WO2024037081A1 (zh) | 2024-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220285969A1 (en) | Battery charging method and electronic device | |
KR102216484B1 (ko) | 충전 제어 방법 및 그 장치 | |
ES2806090T3 (es) | Procedimiento para cargar una batería y dispositivo electrónico | |
JP6882174B2 (ja) | バッテリのサイクル寿命を延ばすための機構 | |
US20160190862A1 (en) | Wireless Charging Method and System, Wireless Charging Device and Wearable Device | |
WO2023197699A1 (zh) | 充电电路、充电控制方法和电子设备 | |
US9952997B2 (en) | Method for improving data transmission speed and electronic device implementing the same | |
CN105324911B (zh) | 充电装置及其操作方法 | |
CN110911770B (zh) | 充电方法及待充电设备 | |
US9395781B2 (en) | Electronic device to perform enumeration without power request to an external device when electronic device is on | |
CN112994173B (zh) | 无线充电方法及装置、设备、存储介质 | |
US20130193906A1 (en) | Terminals, terminal systems and charging/discharging methods thereof | |
KR20210064736A (ko) | 전자 장치 및 이의 충전 방법 | |
WO2024037081A9 (zh) | 反向充电系统、方法及相关装置 | |
US20200249735A1 (en) | Charge control apparatus and charge control system | |
US20220060034A1 (en) | Charging current control method, electronic device, and power supply device | |
EP2988391A1 (en) | Mobile power supply terminal and power supply method therefor | |
CN110892391A (zh) | 数据处理系统 | |
CN112448429B (zh) | 一种控制方法、终端及计算机存储介质 | |
WO2024093575A9 (zh) | 终端设备及充电控制方法 | |
JP2010029059A (ja) | 電池管理システム及び電池管理方法 | |
US11960343B2 (en) | Remote controller and controlling method thereof | |
US20240372382A1 (en) | Charging circuit, charging control method, and electronic device | |
CN114069768B (zh) | 充电电路、充电控制方法、装置和电子设备 | |
WO2023001034A1 (zh) | 一种放电电路及终端设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23853988 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023853988 Country of ref document: EP Ref document number: 23853988 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2023853988 Country of ref document: EP Effective date: 20240816 |