WO2024037044A1 - 一种架梁起重机的控制系统及控制方法 - Google Patents

一种架梁起重机的控制系统及控制方法 Download PDF

Info

Publication number
WO2024037044A1
WO2024037044A1 PCT/CN2023/091609 CN2023091609W WO2024037044A1 WO 2024037044 A1 WO2024037044 A1 WO 2024037044A1 CN 2023091609 W CN2023091609 W CN 2023091609W WO 2024037044 A1 WO2024037044 A1 WO 2024037044A1
Authority
WO
WIPO (PCT)
Prior art keywords
control module
lifting
operating data
hook
preset
Prior art date
Application number
PCT/CN2023/091609
Other languages
English (en)
French (fr)
Inventor
朱东明
李桐
梁辉
夏朝鹃
张延辉
王员根
向华
任华焘
张泽清
郑奕
杨志明
闵理
王汝良
王效知
Original Assignee
中铁九桥工程有限公司
中铁高新工业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中铁九桥工程有限公司, 中铁高新工业股份有限公司 filed Critical 中铁九桥工程有限公司
Publication of WO2024037044A1 publication Critical patent/WO2024037044A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C15/00Safety gear
    • B66C15/06Arrangements or use of warning devices
    • B66C15/065Arrangements or use of warning devices electrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C1/00Load-engaging elements or devices attached to lifting or lowering gear of cranes or adapted for connection therewith for transmitting lifting forces to articles or groups of articles
    • B66C1/10Load-engaging elements or devices attached to lifting or lowering gear of cranes or adapted for connection therewith for transmitting lifting forces to articles or groups of articles by mechanical means
    • B66C1/22Rigid members, e.g. L-shaped members, with parts engaging the under surface of the loads; Crane hooks
    • B66C1/34Crane hooks
    • B66C1/40Crane hooks formed or fitted with load measuring or indicating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/16Applications of indicating, registering, or weighing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/22Control systems or devices for electric drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/40Applications of devices for transmitting control pulses; Applications of remote control devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D1/00Rope, cable, or chain winding mechanisms; Capstans
    • B66D1/28Other constructional details
    • B66D1/40Control devices
    • B66D1/42Control devices non-automatic
    • B66D1/46Control devices non-automatic electric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present invention relates to the field of engineering machinery control technology, and specifically to a control system and a control method for a girder crane.
  • the problem solved by the present invention is how to ensure the transmission stability of operating data and the timeliness of input of work instructions during the operation of the girder crane, and to improve the construction efficiency and operation stability of the girder crane.
  • the present invention provides a control system for a girder crane, which is used to control the lifting mechanism of the girder crane, including a first control module, a display module and a plurality of second control modules.
  • the third control module A control module is communicatively connected to the lifting mechanism, the display module and the second control module respectively.
  • the driving component of the lifting mechanism is drivingly connected to the lifting component.
  • the second control module is connected to the lifting component.
  • the components are electrically connected in one-to-one correspondence, and the first control module is used for:
  • an alarm signal is output to the display module.
  • the beneficial effects of the control system of the girder crane of the present invention include: For the linkage and division of multiple lifting components, multiple second control modules are provided.
  • the second control modules are used to electrically connect with the lifting components in one-to-one correspondence.
  • the information of the lifting components can be obtained in real time.
  • Operating data ensures the collection efficiency of the operating data of the hoisting mechanism.
  • Each second control module transmits the obtained operating data of the corresponding hoisting component to the first control module without crossing each other, ensuring the transmission of operating data.
  • the operating data of all lifting components will be uniformly transmitted to the display module by the first control module, which facilitates the operator to obtain the operating data of the lifting components in real time from the display module, and facilitates the operator to obtain the operating data of the lifting components according to the operating data.
  • Input instructions in a timely manner discover operating data problems in a timely manner, and troubleshoot operating faults.
  • the second control module is used to electrically connect with the drum of the lifting assembly to obtain the rotation speed of the drum, and obtain the rotation speed of the hook of the lifting assembly according to the rotation speed of the drum.
  • Lifting height is used to electrically connect with the drum of the lifting assembly to obtain the rotation speed of the drum, and obtain the rotation speed of the hook of the lifting assembly according to the rotation speed of the drum.
  • the operating data includes the rotation speed of the drum, the lifting height of the hook and the height deviation value between the hooks, and the preset data includes the preset height deviation value between the hooks;
  • the first control module is also used to: obtain the height deviation value between the hooks according to the lifting height of the hooks, and compare the height deviation value between the hooks with the preset height deviation value. In contrast, when the height deviation value between the hooks is greater than the preset height deviation value, an alarm signal is output.
  • the second control module includes: a first rotary encoder, the first rotary encoder is used to connect with the drum to obtain the rotation speed of the drum;
  • An empty hook foot switch is used to electrically connect with the driving component.
  • the empty hook fast foot switch is used to drive the driving component. Overclocked operation.
  • the operating data also includes the pulling force value of the hook
  • the preset data also includes the preset pulling force value of the hook
  • the second control module includes a weight sensor, which is disposed on the hook to obtain the pulling force value of the hook;
  • the first control module is also used to compare the pulling force value of the hook with the preset pulling force value. When the pulling force value is greater than the preset pulling force value, output an alarm signal and disconnect all the hooks.
  • the driving component drives the control circuit for lifting the hook.
  • the number of the lifting assemblies is three, and all the hooks are distributed in a triangle;
  • the second control module includes an inclination sensor.
  • the inclination sensor is arranged on the material lifted by the hook and is located on one side of the hanging point of the hook.
  • the inclination sensor is used to obtain the hanging point.
  • the inclination direction of the hanging point, the operation data also includes the inclination direction of the hanging point;
  • the first control module is also used to adjust the rotation speed of the drum through the driving assembly according to the inclination angle direction of the hanging points, so that all the hanging points are kept on the same horizontal plane.
  • the drive assembly includes a variable frequency motor, the variable frequency motor is drivingly connected to the drum, the second control module includes a second rotary encoder and a frequency converter, the second rotary encoder and the frequency converter The second rotary encoder is used to obtain the rotation speed of the frequency conversion motor, and the frequency converter is used to adjust the rotation speed of the frequency conversion motor;
  • the operating data includes the rotation speed of the variable frequency motor
  • the preset data includes the preset rotation speed of the variable frequency motor
  • the first control module is also used to: obtain the rotation speed of the variable frequency motor, and compare the The rotation speed of the frequency conversion motor and the preset rotation speed of the frequency conversion motor. If the rotation speed of the frequency conversion motor does not match the preset rotation speed of the frequency conversion motor, an alarm signal is output and the rotation of the frequency conversion motor is adjusted. speed.
  • the second control module also includes a low-speed brake and a high-speed brake hydraulic push rod, and the first control module is also used for:
  • variable frequency motor When turning on the variable frequency motor, first turn on the low-speed brake, then run the frequency converter, and finally turn on the high-speed brake hydraulic push rod;
  • variable frequency motor When it is necessary to turn off the variable frequency motor, first turn off the high-speed brake hydraulic push rod, and then turn off the low-speed brake.
  • the display module includes a fault reset button, and the fault reset button is used to perform reset through the first control module when the display module obtains the alarm signal.
  • control system of the girder crane also includes a video acquisition module, which is communicatively connected to the display module.
  • the video acquisition module includes a plurality of cameras, and the cameras are used to be installed on the crane body. superior;
  • the display module includes a storage unit, the storage unit is used to store the operating data,
  • the operating data also includes image data.
  • the present invention also provides a control method for a girder crane, including:
  • an alarm signal is output to the display module.
  • Figure 1 is a schematic connection diagram of a control system of a girder crane in an embodiment of the present invention
  • Figure 2 is a flow chart of a control method of a girder crane in an embodiment of the present invention.
  • an embodiment of the present invention provides a control system for a girder crane, which is used to control the lifting mechanism of a girder crane, including a first control module, a display module and a plurality of second control modules.
  • the first control module is communicatively connected to the lifting mechanism, the display module and the second control module respectively.
  • the driving component of the lifting mechanism is drivingly connected to the lifting component.
  • the second control module is electrically connected to the lifting component in a one-to-one correspondence.
  • the first control module The module is used to: turn on the driving component and drive at least one lifting component to work; obtain the operation of the corresponding lifting component according to the second control module data; compare the operating data with the preset data to adjust the drive components; transmit the operating data to the display module in real time; when the operating data does not match the preset data, output an alarm signal to the display module.
  • the lifting mechanism generally requires multiple lifting
  • the components are linked together for lifting, and multiple driving components are set up to drive the lifting components.
  • one lifting component is generally used for split movement. Multiple lifting components can lift multiple materials at the same time.
  • the operating data of each lifting component is prone to cross errors during the transmission process, and the data collection and processing efficiency is low, which is not conducive to the timely transmission of operating data to the terminal and affects the operator's input of corresponding instructions. , reducing the construction efficiency and operational stability of the girder crane.
  • multiple second control modules are provided for the linkage and division of multiple lifting components, and the second control modules are used to electrically connect with the lifting components in one-to-one correspondence,
  • the lifting component is running, the operating data of the lifting component can be obtained in real time to ensure the efficiency of collecting operating data of the lifting mechanism.
  • Each second control module transmits the obtained operating data of the corresponding lifting component to the first control module. , will not overlap each other, ensuring the orderliness and stability of operational data transmission;
  • the operating data of all lifting components will be uniformly transmitted to the display module from the first control module, making it convenient for the operator to obtain the operating data of the lifting components in real time from the display module, making it convenient for the operator to input instructions in time based on the operating data, and to detect the operation in a timely manner.
  • the first control module is preset with preset data.
  • the first control module can compare the preset data with the operating data. If there is a deviation in the operating data, the first control module can promptly control the hoisting process through the second control module.
  • the mechanism is adjusted to ensure the operational stability and automatic control of the girder crane, reduce the burden on the operator, and output alarm signals in a timely manner to remind the operator to facilitate the operator's filing and inspection.
  • the first control module includes a remote control module and a local control module.
  • the remote control module is located in the cab of the girder crane to facilitate the driver to control through the operating console in the cab.
  • the local control module is located in the electrical operation room. inside, convenient for the operator to The girder crane is commissioned.
  • both the first control module and the second control module include control components such as circuit breakers, intermediate relays, and programmable controllers (PLC) to ensure the stability of the operation of the two control modules, and the first There is a communication connection between the control module and the PLC controller of the second control module, and the connection mode is CCLINK.
  • control components such as circuit breakers, intermediate relays, and programmable controllers (PLC) to ensure the stability of the operation of the two control modules
  • PLC programmable controllers
  • the display module is an industrial computer
  • the display screen of the industrial computer can display operating data in real time
  • the industrial computer performs data link with the first control module.
  • the lifting assembly includes a drum, a wire rope, a pulley set and a hook.
  • the drum is drivingly connected to the driving assembly.
  • the pulley set is used to be installed on the crane body.
  • One end of the wire rope is wound around the drum, and the other end passes through the pulley set and the hook.
  • the second control module is used to electrically connect with the drum to obtain the rotation speed of the drum, and obtain the lifting height of the hook according to the rotation speed of the drum; the operating data includes the rotation speed of the drum, the lifting height of the hook and the lifting height of the hook.
  • the preset data includes the preset height deviation value between the hooks; the first control module is also used to: obtain the height deviation value between the hooks according to the lifting height of the hooks, and transfer the height deviation value between the hooks. The height deviation value between the hooks is compared with the preset height deviation value. When the height deviation value between the hooks is greater than the preset height deviation value, an alarm signal is output.
  • the lifting assembly of the girder crane includes a drum, a wire rope, a pulley block and a hook.
  • the drum is drivingly connected to the driving assembly.
  • the pulley group is used to be installed on the crane body of the girder crane.
  • One end of the wire rope is wound around the drum. , the other end passes through the pulley block and is connected to the hook, which is used to lift materials.
  • the second control module is electrically connected to the drum and is used to obtain the rotation speed of the drum in real time.
  • the rotation of the drum retracts and releases the wire rope to realize the lifting and lowering of the hook.
  • the diameter of the drum and the initial position of the hook is determined, therefore, the second control module can obtain the lifting or descending distance of the hook based on the rotation speed, rotation time and diameter of the drum, and then combine it with the initial position of the hook to obtain the lifting height of the hook;
  • the first control module can obtain the lifting heights of multiple hooks in time through the second control module, thereby processing and obtaining the height deviation value between the hooks, and comparing it with the preset height deviation. Compare the difference. If it is less than the preset height deviation value, the hook is in a normal lifting state. When it is greater than the preset height deviation value, it is necessary to output an alarm signal in time and adjust the power output of the drive component to prevent the hooks from interfering with each other. Excessive height deviation causes the material to roll over.
  • the second control module includes: a first rotary encoder, the first rotary encoder is used to connect with the drum to obtain the rotation speed of the drum; an empty hook foot switch, and an empty hook fast foot switch is used to communicate with the drive The components are electrically connected. When the hook is in an unloaded state, the empty hook quick foot switch is used to drive the drive component to overclock operation.
  • a first rotary encoder is provided.
  • the first rotary encoder is connected to the drum to obtain the accurate rotation of the drum. speed.
  • an empty hook foot switch is provided, and the empty hook foot switch can drive the driving assembly to run at overclocking speed.
  • the hook is controlled to rise or fall quickly to shorten the time for adjusting the hook position.
  • the operating data also includes the tension value of the hook
  • the preset data also includes the preset tension value of the hook
  • the second control module includes a weight sensor, and the weight sensor is used to be installed on the hook to obtain the tension value of the hook.
  • Pulling force value the first control module is also used to compare the pulling force value of the hook with the preset pulling force value. When the pulling force value is greater than the preset pulling force value, output an alarm signal and disconnect the control of the driving assembly to drive the hook to rise. circuit.
  • a weight sensor is set on the hook to obtain the tension value of the hook in real time and transmit it to the first control module.
  • the first control module obtains the The hook tension value is compared with the preset tension value. When it is greater than the preset tension value, an alarm signal is output to prompt the operator, and the control circuit of the driving component to drive the hook to rise is promptly disconnected, and only the hook is allowed to fall to prevent overloading. This may cause the material to detach or the lifting component to be damaged.
  • the number of lifting components is three, and all hooks are distributed in a triangle;
  • the second control module includes an inclination sensor, and the inclination sensor is used to be arranged on the material lifted by the hook and is located on one side of the lifting point of the hook. , the inclination sensor is used to obtain the inclination direction of the hanging point, and the operating data also includes the inclination direction of the hanging point;
  • the first control module is also used to: according to the inclination direction of the hanging point, through the drive group Adjust the rotation speed of the drum to keep all lifting points at the same level.
  • an inclination sensor is installed on the material.
  • the inclination sensor is located on one side of the hanging point and can obtain the inclination direction of the hanging point in real time.
  • the first control module can obtain the inclination direction of the hanging point in real time and adjust it through the driving component.
  • the rotation speed of the roller keeps all lifting points dynamically on the same level.
  • the inclination sensor is a biaxial inclination sensor, which uses DC power storage to power it.
  • the inclination direction of the three hanging points in the cross-bridge direction and along the bridge direction is transmitted to the first control module through the digital transmission station, using wired CCNC-SB11OH+PW communication cable is used for transmission, which not only ensures the power required by the inclination sensor, but also transmits the signal to the first control module.
  • the X-axis of the dual-axis inclination sensor measures the cross-bridge direction of the steel beam
  • the Y-axis measures the direction of the steel beam along the bridge.
  • the steel beam is just lifted, it needs to be leveled first.
  • Three dual-axis inclination sensors simultaneously measure the original attitude of the steel beam, which is the horizontal attitude; the default is that the X and Y angles measured at this time are 0 degrees.
  • lifting when the dual-axis inclination sensor outputs an X angle of 0° ⁇ When 0.5° ⁇
  • the Y-axis angle is 0° ⁇ Y ⁇ 0.5°, it means that the middle side lifting point is too low.
  • the speed of the middle side hanging point can be increased.
  • the Y-axis angle is -0.5° ⁇ Y ⁇ 0°, it means that the middle side hanging point is too high.
  • the speed of the middle side hanging point can be reduced.
  • the measurement angle in any direction of the X or Y axis is greater than 0.5° or less than -0.5°, you can also stop lifting and manually adjust the hanging point attitude.
  • the driving component includes a variable frequency motor, and the variable frequency motor is connected to the drum drive.
  • the second control module includes a second rotary encoder and a frequency converter. The second rotary encoder and the frequency converter are both used to connect to the variable frequency motor.
  • the second The rotary encoder is used to obtain the rotation speed of the variable frequency motor, and the frequency converter is used to adjust the rotation speed of the variable frequency motor; the operating data includes the rotation speed of the variable frequency motor, and the preset data includes the preset rotation speed of the variable frequency motor.
  • the first control module is also used to: Obtain the rotation speed of the variable frequency motor, compare the rotation speed of the variable frequency motor with the preset rotation speed of the variable frequency motor, if the rotation speed of the variable frequency motor does not match the preset rotation speed of the variable frequency motor, output an alarm signal, and Adjust the rotation speed of the variable frequency motor.
  • a frequency converter and a second rotary encoder are both connected to the variable frequency motor.
  • the second rotary encoder and the speed feedback PG card in the frequency converter form a
  • the closed-loop feedback system can feedback the running speed of the variable frequency motor in real time;
  • the first control module compares the obtained rotation speed of the variable frequency motor with the preset rotation speed. When it does not match the preset rotation speed, it outputs an alarm signal to remind the operator and corrects the rotation speed in time through the frequency converter.
  • the adjustable frequency and voltage can be output by the first control module to drive the variable frequency motor to adjust the speed respectively, thereby realizing the sensed and step-by-step speed adjustment operation of the hoisting.
  • the high and medium speeds are set Three lower gears with different speeds.
  • the second control module also includes a low-speed brake and a high-speed brake hydraulic push rod.
  • the first control module is also used to: when turning on the variable frequency motor, first turn on the low-speed brake, then run the frequency converter, and finally turn on the high-speed brake hydraulic pressure.
  • Push rod when it is necessary to turn off the variable frequency motor, first turn off the high-speed brake hydraulic push rod, and then turn off the low-speed brake.
  • a low-speed brake and a high-speed brake hydraulic push rod are set.
  • the low-speed brake is opened first.
  • the first control module detects that the low-speed brake opening limit is in place (during linkage) All low-speed brakes are opened in place), allowing the inverter to operate.
  • the high-speed brake is opened.
  • the high-speed brake is closed first, and then the low-speed brake is closed.
  • the inverter stops running, and the system sends out an alarm signal to remind the operator.
  • the auxiliary contact of the brake air switch is connected to the first control module.
  • the display module includes a fault reset button, and the fault reset button is used to perform reset through the first control module when the display module obtains the alarm signal.
  • the electrical protection of the hoisting mechanism includes short circuit, overcurrent protection, zero position protection and overload protection.
  • the display module obtains the alarm signal, the operator must pass the linkage Use the fault reset button on the platform to reset.
  • control system of the girder crane also includes a video acquisition module, which is communicatively connected to the display module.
  • the video acquisition module includes multiple cameras, and the cameras are used to be installed on the crane body;
  • the display module includes a storage unit, and the storage unit Used to store operating data, which also includes image data.
  • a video acquisition module is set up that is connected to the display module.
  • the video acquisition module contains multiple cameras.
  • the parts that are collected, displayed and recorded include each fulcrum and anchor. Points, winch operation, hoisting point operation, spreader slope adjustment, lifting and reversing rails, longitudinal movement of the whole machine, movable and fixed pulleys, and various control actions and changes in the cab interior and hydraulic substations.
  • a storage unit is set up in the display module to store the transmitted operating data in time for reference, and the data storage time is not less than 30 consecutive working days, and the video storage time is not less than 72 hours.
  • data and video signals All can be viewed and managed remotely using mobile phones and computers through 4G networks.
  • control system of the girder crane is equipped with an uninterruptible power supply (UPS) to ensure that the system can still operate normally for a period of time after an unexpected power outage and to ensure timely storage of relevant information. information.
  • UPS uninterruptible power supply
  • an embodiment of the present invention also provides a control method for a girder crane, which includes: turning on the driving component to drive at least one hoisting component to work; obtaining the operation data of the corresponding hoisting component according to the second control module; Compare the operating data with the preset data to adjust the drive components; transmit the operating data to the display module in real time; when the operating data does not match the preset data, output an alarm signal to the display module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Control And Safety Of Cranes (AREA)
  • Bridges Or Land Bridges (AREA)

Abstract

一种架梁起重机的控制系统及控制方法。该架梁起重机的控制系统针对多个起升组件的联动和分动,设置多个第二控制模块,第二控制模块用于与起升组件一一对应电连接,在起升组件运行时,能够实时获取起升组件的运行数据,保证对起升机构运行数据的采集效率,每个第二控制模块将获取的对应起升组件的运行数据传输至第一控制模块,相互之间不会产生交叉,保证了运行数据传输的有序性和稳定性;同时,所有起升组件的运行数据会由第一控制模块统一传输至显示模块,方便操作人员从显示模块实时获取起升组件的运行数据,方便操作人员根据运行数据及时输入指令,以及及时发现运行数据问题,排除运行故障。

Description

一种架梁起重机的控制系统及控制方法 技术领域
本发明涉及工程机械控制技术领域,具体而言,涉及一种架梁起重机的控制系统及控制方法。
背景技术
近年来,随着自动化控制技术的发展,工程机械设备如架梁起重机的施工运行也逐渐趋于自动化。
但是,架梁起重机等重型设备结构复杂,施工运行的工序繁琐,在控制架梁起重机运行的过程中,数据的反馈较为滞后,数据易出现交叉传输错误,不利于工作人员根据运行数据及时输入相应指令,对架梁起重机的施工效率和运行稳定性造成不利影响。
发明内容
本发明解决的问题是如何保证架梁起重机运行中运行数据的传输稳定性和工作指令输入的及时性,提升架梁起重机的施工效率和运行稳定性。
为解决上述问题,一方面,本发明提供一种架梁起重机的控制系统,用于控制架梁起重机的起升机构,包括第一控制模块、显示模块和多个第二控制模块,所述第一控制模块分别与所述起升机构、所述显示模块和所述第二控制模块通信连接,所述起升机构的驱动组件与起升组件驱动连接,所述第二控制模块与所述起升组件一一对应电连接,所述第一控制模块用于:
开启所述驱动组件,驱动至少一个所述起升组件工作;
根据所述第二控制模块获取对应的所述起升组件的运行数据;
将所述运行数据和预设数据进行对比,调节所述驱动组件;
实时传输所述运行数据至所述显示模块;
当所述运行数据与所述预设数据不匹配时,输出报警信号至所述显示模块。
与现有技术相比,本发明的架梁起重机的控制系统的有益效果包括: 针对多个起升组件的联动和分动,设置多个第二控制模块,第二控制模块用于与起升组件一一对应电连接,在起升组件运行时,能够实时获取起升组件的运行数据,保证对起升机构运行数据的采集效率,每个第二控制模块将获取的对应起升组件的运行数据传输至第一控制模块,相互之间不会产生交叉,保证了运行数据传输的有序性和稳定性;同时,所有起升组件的运行数据会由第一控制模块统一传输至显示模块,方便操作人员从显示模块实时获取起升组件的运行数据,方便操作人员根据运行数据及时输入指令,以及及时发现运行数据问题,排除运行故障。
可选地,所述第二控制模块用于与所述起升组件的滚筒电连接,以获取所述滚筒的旋转速度,并根据所述滚筒的旋转速度获取所述起升组件的吊钩的升降高度;
所述运行数据包括所述滚筒的旋转速度、所述吊钩的升降高度和所述吊钩之间的高度偏差值,所述预设数据包括所述吊钩之间的预设高度偏差值;
所述第一控制模块还用于:根据所述吊钩的升降高度获取所述吊钩之间的高度偏差值,将所述吊钩之间的高度偏差值与所述预设高度偏差值进行对比,当所述吊钩之间的高度偏差值大于所述预设高度偏差值时,输出报警信号。
可选地,所述第二控制模块包括:第一旋转编码器,所述第一旋转编码器用于与所述滚筒相连接,以获取所述滚筒的旋转速度;
空钩脚踏开关,所述空钩快速脚踏开关用于与所述驱动组件电连接,当所述吊钩为空载状态时,所述空钩快速脚踏开关用于驱动所述驱动组件超频运行。
可选地,所述运行数据还包括所述吊钩的拉力值,所述预设数据还包括所述吊钩的预设拉力值;
所述第二控制模块包括重量传感器,所述重量传感器用于设于所述吊钩上,以获取所述吊钩的拉力值;
所述第一控制模块还用于:将所述吊钩的拉力值与所述预设拉力值进行对比,当所述拉力值大于所述预设拉力值时,输出报警信号,并断开所 述驱动组件驱动所述吊钩上升的控制电路。
可选地,所述起升组件的数量为三个,所有所述吊钩呈三角形分布;
所述第二控制模块包括倾角传感器,所述倾角传感器用于设置于所述吊钩起吊的物料上,且位于所述吊钩的吊点一侧,所述倾角传感器用于获取所述吊点的倾角方向,所述运行数据还包括所述吊点的倾角方向;
所述第一控制模块还用于:根据所述吊点倾角方向,通过所述驱动组件调节所述滚筒的旋转速度,以使所有所述吊点保持在同一水平面。
可选地,所述驱动组件包括变频电机,所述变频电机与所述滚筒驱动连接,所述第二控制模块包括第二旋转编码器和变频器,所述第二旋转编码器和所述变频器均用于与所述变频电机相连接,所述第二旋转编码器用于获取所述变频电机的旋转速度,所述变频器用于调节所述变频电机的旋转速度;
所述运行数据包括所述变频电机的旋转速度,所述预设数据包括所述变频电机的预设旋转速度,所述第一控制模块还用于:获取所述变频电机的旋转速度,对比所述变频电机的旋转速度和所述变频电机的预设旋转速度,若所述变频电机的旋转速度与所述变频电机的预设旋转速度不匹配,输出报警信号,并调节所述变频电机的旋转速度。
可选地,所述第二控制模块还包括低速制动器和高速制动液压推杆,所述第一控制模块还用于:
当开启所述变频电机时,先开启所述低速制动器,再运行所述变频器,最后开启所述高速制动液压推杆;
当需要关闭所述变频电机时,先关闭所述高速制动液压推杆,再关闭所述低速制动器。
可选地,所述显示模块包括故障复位按钮,所述故障复位按钮用于:当所述显示模块获取所述报警信号时,通过所述第一控制模块进行复位。
可选地,所述架梁起重机的控制系统还包括视频采集模块,所述视频采集模块与所述显示模块通信连接,所述视频采集模块包括多个摄像头,所述摄像头用于安装在起重机本体上;
所述显示模块包括存储单元,所述存储单元用于存储所述运行数据, 所述运行数据还包括图像数据。
另一方面,本发明还提供一种架梁起重机的控制方法,包括:
开启驱动组件,驱动至少一个起升组件工作;
根据第二控制模块获取对应的起升组件的运行数据;
将所述运行数据和预设数据进行对比,调节所述驱动组件;
实时传输所述运行数据至显示模块;
当所述运行数据与所述预设数据不匹配时,输出报警信号至所述显示模块。
与现有技术相比,本发明的架梁起重机的控制方法的有益效果与如上所述的架梁起重机的控制系统相同,在此不再赘述。
附图说明
图1为本发明一实施例中架梁起重机的控制系统的连接示意图;
图2为本发明一实施例中架梁起重机的控制方法的流程图。
具体实施方式
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。
为了解决上述问题,一方面,本发明一实施例提供一种架梁起重机的控制系统,用于控制架梁起重机的起升机构,包括第一控制模块、显示模块和多个第二控制模块,第一控制模块分别与起升机构、显示模块和第二控制模块通信连接,起升机构的驱动组件与起升组件驱动连接,第二控制模块与起升组件一一对应电连接,第一控制模块用于:开启驱动组件,驱动至少一个起升组件工作;根据第二控制模块获取对应的起升组件的运行 数据;将运行数据和预设数据进行对比,调节驱动组件;实时传输运行数据至显示模块;当运行数据与预设数据不匹配时,输出报警信号至显示模块。
需要说明的是,在架梁起重机的运用中,根据需要起吊的物料体积和重量的不同,如钢梁以及箱梁这种体积和重量均较大的物料,起升机构一般需要多个起升组件联动进行起吊,并设置多个驱动组件对应驱动起升组件,对于一些体积和重量较小的物料,一般使用一个起升组件进行分动,多个起升组件可同时起吊多个物料,但是,在这种起吊过程中,各个起升组件的运行数据在传输过程中易出现交叉错误,且对数据的采集和处理效率较低,不利于运行数据及时传输至终端,影响操作人员输入相应指令,降低架梁起重机的施工效率和运行稳定性。
因此,如图1所示,在本实施例中,针对多个起升组件的联动和分动,设置多个第二控制模块,第二控制模块用于与起升组件一一对应电连接,在起升组件运行时,能够实时获取起升组件的运行数据,保证对起升机构运行数据的采集效率,每个第二控制模块将获取的对应起升组件的运行数据传输至第一控制模块,相互之间不会产生交叉,保证了运行数据传输的有序性和稳定性;
同时,所有起升组件的运行数据会由第一控制模块统一传输至显示模块,方便操作人员从显示模块实时获取起升组件的运行数据,方便操作人员根据运行数据及时输入指令,以及及时发现运行数据问题,排除运行故障;
此外,第一控制模块内预设有预设数据,第一控制模块可以将预设数据与运行数据进行比对,若运行数据出现偏差,第一控制模块可及时通过第二控制模块对起升机构进行调节,从而保证架梁起重机的运行稳定性和自动化控制,减轻操作人员的负担,且及时输出报警信号,提醒操作人员,方便操作人员进行备案和检查。
需要说明的是,第一控制模块包括远程控制模块和本地控制模块,其中,远程控制模块位于架梁起重机的驾驶室内,方便驾驶人员通过驾驶室内的操作台进行控制,本地控制模块位于电气操作间内,方便操作人员对 架梁起重机进行调试。
需要说明的是,在本实施例中,第一控制模块和第二控制模块均包括断路器、中间继电器和可编程控制器PLC等控制元件,保证两个控制模块工作的稳定性,且第一控制模块和第二控制模块的PLC控制器之间为通信连接,连接方式为CCLINK。
需要说明的是,显示模块为工控机,工控机的显示屏可实时显示运行数据,工控机与第一控制模块进行数据链接。
可选地,起升组件包括滚筒、钢丝绳、滑轮组和吊钩,滚筒与驱动组件驱动连接,滑轮组用于安装在起重机本体上,钢丝绳的一端绕接在滚筒上,另一端穿过滑轮组与吊钩相连接,第二控制模块用于与滚筒电连接,以获取滚筒的旋转速度,并根据滚筒的旋转速度获取吊钩的升降高度;运行数据包括滚筒的旋转速度、吊钩的升降高度和吊钩之间的高度偏差值,预设数据包括吊钩之间的预设高度偏差值;第一控制模块还用于:根据吊钩的升降高度获取吊钩之间的高度偏差值,将吊钩之间的高度偏差值与预设高度偏差值进行对比,当吊钩之间的高度偏差值大于预设高度偏差值时,输出报警信号。
需要说明的是,架梁起重机的起升组件包括滚筒、钢丝绳、滑轮组和吊钩,滚筒与驱动组件驱动连接,滑轮组用于安装在架梁起重机的起重机本体上,钢丝绳的一端绕接在滚筒上,另一端穿过滑轮组与吊钩相连接,吊钩用于吊起物料。
在本实施例中,第二控制模块与滚筒电连接,用于实时获取滚筒的旋转速度,滚筒的旋转收起和放出钢丝绳,从而实现吊钩的升降,而滚筒的直径以及吊钩的初始位置是确定的,因此,第二控制模块可根据滚筒的旋转速度、旋转时间以及滚筒的直径获取吊钩上升或下降的距离,再与吊钩的初始位置结合即可得出吊钩的升降高度;
而在吊钩吊起物料的过程中,针对多个吊钩吊起一个物料的情况,需要保证吊钩之间的高度偏差值小于预设高度偏差值,以保证物料不会发生侧翻等情况,因此,第一控制模块可通过第二控制模块及时获取多个吊钩的升降高度,从而处理得到吊钩之间的高度偏差值,将其与预设的高度偏 差值进行比较,若小于预设高度偏差值,则吊钩属于正常起吊状态,当大于预设高度偏差值时,需要及时输出报警信号,并调整驱动组件输出的功率,防止吊钩之间的高度偏差过大导致物料发生侧翻。
可选地,第二控制模块包括:第一旋转编码器,第一旋转编码器用于与滚筒相连接,以获取滚筒的旋转速度;空钩脚踏开关,空钩快速脚踏开关用于与驱动组件电连接,当吊钩为空载状态时,空钩快速脚踏开关用于驱动驱动组件超频运行。
为了准确的获取滚筒的旋转速度,以获得吊钩之间准确的高度偏差值,在本实施例中,设置第一旋转编码器,第一旋转编码器与滚筒相连接,能够获取滚筒准确的旋转速度。
此外,为了在吊钩空载时提升吊钩的升降速度,提升起吊的工作效率,在本实施例中,设置空钩脚踏开关,空钩脚踏开关可驱动驱动组件超频运行,在吊钩空载时,控制吊钩快速上升或下降,缩短吊钩位置调整的时间。
可选地,运行数据还包括吊钩的拉力值,预设数据还包括吊钩的预设拉力值;第二控制模块包括重量传感器,重量传感器用于设于吊钩上,以获取吊钩的拉力值;第一控制模块还用于:将吊钩的拉力值与预设拉力值进行对比,当拉力值大于预设拉力值时,输出报警信号,并断开驱动组件驱动吊钩上升的控制电路。
为了保证吊钩起吊的稳定性,防止出现超载情况,在本实施例中,在吊钩上设置重量传感器,实时获取吊钩的拉力值,并传输至第一控制模块,第一控制模块根据获取的吊钩拉力值与预设拉力值进行对比,当大于预设拉力值时,输出报警信号提示操作人员,并及时断开驱动组件驱动吊钩上升的控制电路,只允许吊钩下降,防止超载造成物料脱离或起升组件损坏。
可选地,起升组件的数量为三个,所有吊钩呈三角形分布;第二控制模块包括倾角传感器,倾角传感器用于设置于吊钩起吊的物料上,且位于吊钩的吊点一侧,倾角传感器用于获取吊点的倾角方向,运行数据还包括吊点的倾角方向;第一控制模块还用于:根据吊点倾角方向,通过驱动组 件调节滚筒的旋转速度,以使所有吊点保持在同一水平面。
一般情况下,对于大型较重的物料如箱梁进行起吊时,多采用三角吊点来进行起吊,但是,在起吊过程中,需要保证三个吊点处于同一水平面,避免箱梁发生侧翻,因此,在本实施例中,在物料上设置倾角传感器,倾角传感器位于吊点一侧,可实时获取吊点的倾角方向,第一控制模块可实时获取吊点的倾角方向,并通过驱动组件调节辊筒的旋转速度,使得所有吊点动态保持在同一水平面上。
需要说明的是,倾角传感器为双轴倾角传感器,利用直流蓄电给其供电,通过数传电台将三吊点横桥向与顺桥向方向的倾角方向传输到第一控制模块中,使用有线CCNC-SB11OH+PW通讯电缆进行传输,既保证倾角传感器所需的电源,也能将信号传输到第一控制模块中。
示例性地,对钢梁进行起吊,三吊点同时起升时,双轴倾角传感器X轴测量出钢梁的横桥方向,Y轴测出钢梁顺桥方向。当钢梁刚起升时,需先调平钢梁。3个双轴倾角传感器同时测量出钢梁的原始姿态即水平姿态;默认为此时所测X、Y角度为0度。起升时当双轴倾角传感器输出X角度为0°<X<0.5°时说明一侧吊点过高,自动降低一侧吊点速度,直至X角度趋于0°,同理当X角度为-0.5°<X<0°时说明另一侧吊点过高,自动降低另一侧吊点速度,直至X角度趋于0°。同理当Y轴角度为0°<Y<0.5°说明中间侧吊点过低,此时可以提高中间侧吊点速度。当Y轴角度为-0.5°<Y<0°说明中间侧吊点过高,此时可以降低中间侧吊点速度。当X、Y轴任意一方向测量角度大于0.5°或小于-0.5°时,还可停止起升进行手动调正吊点姿态。
可选地,驱动组件包括变频电机,变频电机与滚筒驱动连接,第二控制模块包括第二旋转编码器和变频器,第二旋转编码器和变频器均用于与变频电机相连接,第二旋转编码器用于获取变频电机的旋转速度,变频器用于调节变频电机的旋转速度;运行数据包括变频电机的旋转速度,预设数据包括变频电机的预设旋转速度,第一控制模块还用于:获取变频电机的旋转速度,对比变频电机的旋转速度和变频电机的预设旋转速度,若变频电机的旋转速度与变频电机的预设旋转速度不匹配,输出报警信号,并 调节变频电机的旋转速度。
为了保证第二控制模块对驱动组件的变频电机的稳定控制,设置了均与变频电机相连接的变频器和第二旋转编码器,第二旋转编码器和变频器内的速度反馈PG卡构成一个闭环反馈系统,能实时反馈出变频电机运行的速度;
同时,第一控制模块将获取的变频电机的旋转速度与预设旋转速度进行对比,在与预设旋转速度不匹配时,输出报警信号提醒操作人员,并通过变频器及时纠正旋转速度。
需要说明的是,在本实施例中,可通过第一控制模块输出可调频率和电压,分别驱动变频电机调速运行,实现起升的有感有级调速运行,示例性地,设置高中低三档不同的速度。
可选地,第二控制模块还包括低速制动器和高速制动液压推杆,第一控制模块还用于:当开启变频电机时,先开启低速制动器,再运行变频器,最后开启高速制动液压推杆;当需要关闭变频电机时,先关闭高速制动液压推杆,再关闭低速制动器。
为了保证变频电机运行的稳定性,在本实施例中,设置低速制动器和高速制动液压推杆,工作时低速制动器先打开,第一控制模块检测到低速制动打开限位到位后(联动时为所有的低速制动均打开到位),使变频器运行,力矩达到开闸要求时,高速制动器打开。抱闸时,高速制动器先闭合,低速制动器再闭合,当出现超速故障时,高速制动器及低速制动器立即闭合,变频器停止运行,系统发出报警信号提示操作人员。
当然,在本实施例中,制动器空气开关辅助触头与第一控制模块相连接,当任一变频电机高低速制动器出现运行故障时,发出相应指令使得其他变频电机同时停止运行,保证吊梁的安全。
可选地,显示模块包括故障复位按钮,故障复位按钮用于:当显示模块获取报警信号时,通过第一控制模块进行复位。
为了保证起升机构的运行稳定性,在本实施例中,起升机构的电气保护有短路、过电流保护,零位保护及超载荷保护,当显示模块获取报警信号时,操作人员必须通过联动台上的故障复位按钮进行复位。
可选地,架梁起重机的控制系统还包括视频采集模块,视频采集模块与显示模块通信连接,视频采集模块包括多个摄像头,摄像头用于安装在起重机本体上;显示模块包括存储单元,存储单元用于存储运行数据,运行数据还包括图像数据。
为了保证对架梁起重机的各个工作位的有效监控,在本实施例中,设置与显示模块通信连接的视频采集模块,视频采集模块包含多个摄像头,采集显示并记录的部位包括各个支点、锚点、卷扬机运行、吊点运行、吊具坡度调整、顶升倒运轨道、整机纵移及动定滑轮组及驾驶室内部等位置和液压子站的各种控制动作及动作时的变化。
同时,在显示模块内设置存储单元,对传输的运行数据进行及时存储,以备查阅,且数据存储时间不少于30个连续工作日,视频存储时间不少于72小时,同时数据及视频信号均可通过4G网络利用手机及电脑进行远程查看和管理。
此外,为了保证工作记录的完整,在本实施例中,架梁起重机的控制系统配有一台不间断电源(UPS),保证系统在意外断电后仍可正常运行一段时间,能够保证及时存储相关信息。
另一方面,本发明一实施例还提供一种架梁起重机的控制方法,包括:开启驱动组件,驱动至少一个起升组件工作;根据第二控制模块获取对应的起升组件的运行数据;将运行数据和预设数据进行对比,调节驱动组件;实时传输运行数据至显示模块;当运行数据与预设数据不匹配时,输出报警信号至显示模块。
如图2中S1至S5所示,本实施例中的架梁起重机的控制方法的技术效果与上述的架梁起重机的控制系统的技术效果相同,在此不再赘述。
虽然本公开披露如上,但本公开的保护范围并非仅限于此。本领域技术人员在不脱离本公开的精神和范围的前提下,可进行各种变更与修改,这些变更与修改均将落入本申请的保护范围。

Claims (10)

  1. 一种架梁起重机的控制系统,用于控制架梁起重机的起升机构,包括第一控制模块、显示模块和多个第二控制模块,所述第一控制模块分别与所述起升机构、所述显示模块和所述第二控制模块通信连接,所述起升机构的驱动组件与起升组件驱动连接,所述第二控制模块与所述起升组件一一对应电连接,所述第一控制模块用于:
    开启所述驱动组件,驱动至少一个所述起升组件工作;
    根据所述第二控制模块获取对应的所述起升组件的运行数据;
    将所述运行数据和预设数据进行对比,调节所述驱动组件;
    实时传输所述运行数据至所述显示模块;
    当所述运行数据与所述预设数据不匹配时,输出报警信号至所述显示模块。
  2. 根据权利要求1所述的架梁起重机的控制系统,其中,
    所述第二控制模块用于与所述起升组件的滚筒电连接,以获取所述滚筒的旋转速度,并根据所述滚筒的旋转速度获取所述起升组件的吊钩的升降高度;
    所述运行数据包括所述滚筒的旋转速度、所述吊钩的升降高度和所述吊钩之间的高度偏差值,所述预设数据包括所述吊钩之间的预设高度偏差值;
    所述第一控制模块还用于:根据所述吊钩的升降高度获取所述吊钩之间的高度偏差值,将所述吊钩之间的高度偏差值与所述预设高度偏差值进行对比,当所述吊钩之间的高度偏差值大于所述预设高度偏差值时,输出报警信号。
  3. 根据权利要求2所述的架梁起重机的控制系统,其中,所述第二控制模块包括:第一旋转编码器,所述第一旋转编码器用于与所述滚筒相连接,以获取所述滚筒的旋转速度;
    空钩快速脚踏开关,所述空钩快速脚踏开关用于与所述驱动组件电连接,当所述吊钩为空载状态时,所述空钩快速脚踏开关用于驱动所述驱动组件超 频运行。
  4. 根据权利要求2所述的架梁起重机的控制系统,其中,
    所述运行数据还包括所述吊钩的拉力值,所述预设数据还包括所述吊钩的预设拉力值;
    所述第二控制模块包括重量传感器,所述重量传感器用于设于所述吊钩上,以获取所述吊钩的拉力值;
    所述第一控制模块还用于:将所述吊钩的拉力值与所述预设拉力值进行对比,当所述拉力值大于所述预设拉力值时,输出报警信号,并断开所述驱动组件驱动所述吊钩上升的控制电路。
  5. 根据权利要求2所述的架梁起重机的控制系统,其中,所述起升组件的数量为三个,所有所述吊钩呈三角形分布;
    所述第二控制模块包括倾角传感器,所述倾角传感器用于设置于所述吊钩起吊的物料上,且位于所述吊钩的吊点一侧,所述倾角传感器用于获取所述吊点的倾角方向,所述运行数据还包括所述吊点的倾角方向;
    所述第一控制模块还用于:根据所述吊点倾角方向,通过所述驱动组件调节所述滚筒的旋转速度,以使所有所述吊点保持在同一水平面。
  6. 根据权利要求2所述的架梁起重机的控制系统,其中,所述驱动组件包括变频电机,所述变频电机与所述滚筒驱动连接,所述第二控制模块包括第二旋转编码器和变频器,所述第二旋转编码器和所述变频器均用于与所述变频电机相连接,所述第二旋转编码器用于获取所述变频电机的旋转速度,所述变频器用于调节所述变频电机的旋转速度;
    所述运行数据包括所述变频电机的旋转速度,所述预设数据包括所述变频电机的预设旋转速度,所述第一控制模块还用于:获取所述变频电机的旋转速度,对比所述变频电机的旋转速度和所述变频电机的预设旋转速度,若所述变频电机的旋转速度与所述变频电机的预设旋转速度不匹配,输出报警信号,并调节所述变频电机的旋转速度。
  7. 根据权利要求6所述的架梁起重机的控制系统,其中,所述第二控制模块还包括低速制动器和高速制动液压推杆,所述第一控制模块还用于:
    当开启所述变频电机时,先开启所述低速制动器,再运行所述变频器,最后开启所述高速制动液压推杆;
    当需要关闭所述变频电机时,先关闭所述高速制动液压推杆,再关闭所述低速制动器。
  8. 根据权利要求1所述的架梁起重机的控制系统,其中,所述显示模块包括故障复位按钮,所述故障复位按钮用于:当所述显示模块获取所述报警信号时,通过所述第一控制模块进行复位。
  9. 根据权利要求1至8中任一项所述的架梁起重机的控制系统,其中,还包括视频采集模块,所述视频采集模块与所述显示模块通信连接,所述视频采集模块包括多个摄像头,所述摄像头用于安装在起重机本体上;
    所述显示模块包括存储单元,所述存储单元用于存储所述运行数据,所述运行数据还包括图像数据。
  10. 一种架梁起重机的控制方法,其中,包括:
    开启驱动组件,驱动至少一个起升组件工作;
    根据第二控制模块获取对应的起升组件的运行数据;
    将所述运行数据和预设数据进行对比,调节所述驱动组件;
    实时传输所述运行数据至显示模块;
    当所述运行数据与所述预设数据不匹配时,输出报警信号至所述显示模块。
PCT/CN2023/091609 2022-08-15 2023-04-28 一种架梁起重机的控制系统及控制方法 WO2024037044A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210974296.1A CN115402934B (zh) 2022-08-15 2022-08-15 一种架梁起重机的控制系统及控制方法
CN202210974296.1 2022-08-15

Publications (1)

Publication Number Publication Date
WO2024037044A1 true WO2024037044A1 (zh) 2024-02-22

Family

ID=84159896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/091609 WO2024037044A1 (zh) 2022-08-15 2023-04-28 一种架梁起重机的控制系统及控制方法

Country Status (2)

Country Link
CN (1) CN115402934B (zh)
WO (1) WO2024037044A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115402934B (zh) * 2022-08-15 2023-08-11 中铁九桥工程有限公司 一种架梁起重机的控制系统及控制方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101139069A (zh) * 2007-06-29 2008-03-12 大连华锐股份有限公司 多吊点起重机电气控制方法
JP2008189446A (ja) * 2007-02-06 2008-08-21 Taisei Corp ジブクレーンの制御システム
CN102408065A (zh) * 2011-10-28 2012-04-11 上海三一科技有限公司 多卷扬同步控制装置及控制方法及包括该装置的起重机
CN102807170A (zh) * 2012-08-20 2012-12-05 徐州重型机械有限公司 起重机及其双卷扬同步控制装置、控制方法
CN103318778A (zh) * 2013-06-21 2013-09-25 中联重科股份有限公司 双吊臂动臂塔机及其控制方法
GB2502800B (en) * 2012-06-07 2015-05-20 Jaguar Land Rover Ltd Crane and related method of operation
CN108529456A (zh) * 2018-06-12 2018-09-14 徐州建机工程机械有限公司 一种新型塔机力矩安全控制系统及方法
CN114084799A (zh) * 2021-11-22 2022-02-25 徐州建机工程机械有限公司 一种塔机多起升同步安全性控制的三重保护系统及方法
CN114104978A (zh) * 2021-10-26 2022-03-01 湖南三一中型起重机械有限公司 双卷扬同步控制方法、装置、作业机械、设备及介质
CN115402934A (zh) * 2022-08-15 2022-11-29 中铁九桥工程有限公司 一种架梁起重机的控制系统及控制方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008189446A (ja) * 2007-02-06 2008-08-21 Taisei Corp ジブクレーンの制御システム
CN101139069A (zh) * 2007-06-29 2008-03-12 大连华锐股份有限公司 多吊点起重机电气控制方法
CN102408065A (zh) * 2011-10-28 2012-04-11 上海三一科技有限公司 多卷扬同步控制装置及控制方法及包括该装置的起重机
GB2502800B (en) * 2012-06-07 2015-05-20 Jaguar Land Rover Ltd Crane and related method of operation
CN102807170A (zh) * 2012-08-20 2012-12-05 徐州重型机械有限公司 起重机及其双卷扬同步控制装置、控制方法
CN103318778A (zh) * 2013-06-21 2013-09-25 中联重科股份有限公司 双吊臂动臂塔机及其控制方法
CN108529456A (zh) * 2018-06-12 2018-09-14 徐州建机工程机械有限公司 一种新型塔机力矩安全控制系统及方法
CN114104978A (zh) * 2021-10-26 2022-03-01 湖南三一中型起重机械有限公司 双卷扬同步控制方法、装置、作业机械、设备及介质
CN114084799A (zh) * 2021-11-22 2022-02-25 徐州建机工程机械有限公司 一种塔机多起升同步安全性控制的三重保护系统及方法
CN115402934A (zh) * 2022-08-15 2022-11-29 中铁九桥工程有限公司 一种架梁起重机的控制系统及控制方法

Also Published As

Publication number Publication date
CN115402934A (zh) 2022-11-29
CN115402934B (zh) 2023-08-11

Similar Documents

Publication Publication Date Title
CN108328478B (zh) 多起重机协同起升作业方法、装置及起重机
CN201217613Y (zh) 塔式起重机安全监控管理系统
WO2024037044A1 (zh) 一种架梁起重机的控制系统及控制方法
CN110015611A (zh) 一种吊具及吊装方法
CN110386555B (zh) 缆索吊机集中控制系统
CN104310222B (zh) 一种带四点平衡控制的龙门吊
KR20180020986A (ko) 제어 시스템
CN108758272A (zh) 用于变电站带电检修作业的绝缘升降臂系统及方法
CN113233334A (zh) 一种直臂式随车起重机控制系统及其控制方法
CN109734000A (zh) 一种天车无人化系统变频传动控制的方法
CN104743446B (zh) 一种起重机制动器制动力矩检测方法和系统
CN211180123U (zh) 爬架控制装置
CN102464269B (zh) 伸缩臂式起重机及其超起角度自动变换装置
CN203382396U (zh) 吊臂伸缩和卷扬钢丝绳放收的控制系统及起重机
CN105480899A (zh) 一种高空作业平台闭环自适应控制系统及其方法
CN104444812A (zh) 新型起重机监控系统
CN210457225U (zh) 缆索吊机集中控制系统
CN201980906U (zh) 超起角度自动变换装置及伸缩臂式起重机
CN203192300U (zh) 起重设备性能测试模拟系统
CN202245826U (zh) 双门机抬吊装置
CN104571080A (zh) 环吊起升保护系统的模拟测试系统
CN210029867U (zh) 智能储罐顶升装置
CN114014164A (zh) 一种起重机吊钩垂直控制系统及其控制方法
CN217230007U (zh) 一种直臂式随车起重机控制系统
CN217126717U (zh) 一种起重设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23853951

Country of ref document: EP

Kind code of ref document: A1