WO2024037000A1 - 一种苯乙烯-聚烯烃功能聚合物及其制备方法 - Google Patents

一种苯乙烯-聚烯烃功能聚合物及其制备方法 Download PDF

Info

Publication number
WO2024037000A1
WO2024037000A1 PCT/CN2023/087955 CN2023087955W WO2024037000A1 WO 2024037000 A1 WO2024037000 A1 WO 2024037000A1 CN 2023087955 W CN2023087955 W CN 2023087955W WO 2024037000 A1 WO2024037000 A1 WO 2024037000A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
styrene
parts
polyolefin
functional polymer
Prior art date
Application number
PCT/CN2023/087955
Other languages
English (en)
French (fr)
Inventor
汤俊杰
纪永鹏
段浩
朱从山
史鹏伟
Original Assignee
佳易容聚合物(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 佳易容聚合物(上海)有限公司 filed Critical 佳易容聚合物(上海)有限公司
Publication of WO2024037000A1 publication Critical patent/WO2024037000A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/14Copolymers of styrene with unsaturated esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/18Suspension polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/20Aqueous medium with the aid of macromolecular dispersing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • C08F255/02Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/08Polymer mixtures characterised by other features containing additives to improve the compatibility between two polymers

Definitions

  • the invention belongs to the field of synthesis and reaction extrusion of polymer materials, and relates to a styrene-polyolefin functional polymer and a preparation method thereof.
  • Polyolefin (PO) and polystyrene (PS) are among the five major general-purpose plastics with large social demand and are also the main types of waste plastics. PS has the advantages of high hardness, low shrinkage, good thermoforming and easy printing, but its weather resistance is poor, easy to crack, and its toughness and solvent resistance are not ideal.
  • the main categories of PO are polypropylene (PP) and polyethylene (PE).
  • PP polypropylene
  • PE polyethylene
  • PP polyethylene
  • PP has a wide range of uses and has excellent mechanical properties, good electrical insulation and chemical resistance, but it has a molding shrinkage rate.
  • PE is odorless, non-toxic, feels like wax, has excellent low-temperature resistance (the lowest operating temperature can reach -100 ⁇ -70°C), and has good chemical stability , capable of corrosion by most acids and alkalis (not resistant to acids with oxidizing properties), PE is widely used, mainly used to make films, packaging materials, containers, pipes, monofilaments, wires and cables, daily necessities, etc., and can be used as TV, High-frequency insulation materials such as radar are insoluble in general solvents at room temperature, have low water absorption, and have excellent electrical insulation properties.
  • PE has average mechanical properties, low tensile strength, poor creep resistance, and low temperature resistance.
  • PS, PP or PE will be blended and modified to prepare alloy materials.
  • PS and PP or PE are typical incompatible systems. Simple mixing will lead to the aggregation of the dispersed phase, thus showing lower mechanical properties.
  • measures need to be taken to reduce the surface tension between the two phases and improve the compatibility between the two.
  • patent CN101580614 discloses another preparation method of PP-g-PS copolymer.
  • the polymer is prepared by coordination-anion polymerization method.
  • the production steps of this method are complicated and a variety of organic solvents and catalysts are used.
  • the reaction process It requires precise control. Not only is the manufacturing cost high, but this method can only produce specific PP main chain and PS branched copolymers.
  • the product structure is relatively single. What’s more serious is that at present, carbon emissions are peaking and environmental protection pressure is increasing sharply.
  • the various organic solvents and other additives used in this method are also not environmentally friendly, significantly increasing the recycling cost and the risk of environmental pollution.
  • compatibilizers to modify polyolefin/PS alloys.
  • CN103589060 mentions using grafted polypropylene as a compatibilizer, but this The functional groups such as acid anhydride used in the method fail to provide a suitable reaction pathway in the alloy to improve the two-phase interface, and the mechanism is not explained in detail. It may not be able to achieve good compatibilization effects in large-scale industrialization.
  • the present invention makes use of the shortcomings in the existing technology and provides a styrene-polyolefin functional polymer and a preparation method based on the existing technical means.
  • the polymer combines the characteristics of synthesis reaction technology and reaction extrusion technology to realize polymer Functionalization, one of the major advantages of this product is that the molecular structure can be adjusted. It can either make polystyrene the main chain of the molecule and the polyolefin the branch chain, or it can make the polyolefin the main chain of the molecule and the polystyrene the branch chain.
  • the main chain or branch chain molecular weight can be adjusted within a certain range, so that in addition to providing compatibility in polystyrene/polyolefin alloys, polymers of this structure type can also improve polystyrene. It can improve chemical resistance and reduce dielectric properties; it can also improve the friction properties of engineering plastics such as PA and POM, so it can provide a wider application space.
  • the present invention relates to a styrene-polyolefin functional polymer.
  • the polymer includes the following components and parts by weight: 30 to 70 parts of polymer I, 30 to 70 parts of polymer II, 0.01 to 1 part of catalyst, and anti- 0.1 ⁇ 1 part of oxygen agent, 0.1 ⁇ 1 part of lubricant, 0.2 ⁇ 5 parts of devolatilization aid;
  • polymer I consists of styrene with a weight ratio of: (80 ⁇ 99): (1 ⁇ 20): (0.1 ⁇ 1.0): (0.1 ⁇ 2.0): (0.01 ⁇ 0.1): (0.1 ⁇ 1.0), reaction
  • the monomer I, oil-soluble initiator, dispersant, co-dispersant and molecular weight regulator are prepared by suspension polymerization in water medium;
  • Polymer II consists of polyolefin, peroxide initiator, reactive monomer II, and diluent with a weight ratio of: 100: (0.01 ⁇ 2): (0.5 ⁇ 6): (0.1 ⁇ 5): (0.2 ⁇ 1.0) It is prepared with agents and processing aids.
  • the reactive monomer I is selected from one of methyl methacrylate, ethyl methacrylate, butyl methacrylate, and glycidyl methacrylate. Further preferred reactive monomer I is glycidyl methacrylate;
  • the oil-soluble initiator is an azo initiator.
  • the azo initiator is selected from at least one of azobisisobutyronitrile, azobisisoheptanitrile or dimethyl azobisisobutyrate.
  • a further preferred initiator is azobisisobutyronitrile.
  • the dispersant is at least one of polyvinyl alcohol, activated calcium phosphate, and hydroxyethyl cellulose.
  • the co-dispersing agent is sodium dodecyl benzene sulfonate or sodium lauryl sulfate.
  • the molecular weight regulator is dodecyl mercaptan.
  • the preparation method of the polymer I includes: A1, mixing the styrene monomer, reactive monomer, oil-soluble initiator, dispersant, co-dispersant, molecular weight regulator and water, and React at 65 ⁇ 80°C for 3 ⁇ 6 hours, raise the temperature to 85 ⁇ 90°C and mature for 0.5 ⁇ 2 hours; the mass ratio of total monomer weight to water is (1 ⁇ 3):1;
  • the total weight ratio of the styrene monomer, reactive monomer, oil-soluble initiator, dispersant, co-dispersant and molecular weight regulator to the monomer is (1 ⁇ 3):1 of deionized water in the reaction kettle, raise the temperature to 65 ⁇ 80°C with stirring, and react for 3 ⁇ 6 hours, then heat up to 85 ⁇ 90°C and mature for 0.5 ⁇ 2 hours; after completion, put it into a storage tank, and put the obtained After the material is filtered, it is washed with deionized water 2 to 5 times, dried at 75 to 85°C to a constant weight, and then sieved to obtain polymer I.
  • the polyolefin is selected from one or more combinations of polybutene, polypropylene, polyethylene, ethylene-propylene copolymer, ethylene-butene copolymer, and ethylene-octene copolymer.
  • the peroxide initiator is selected from dicumyl peroxide, benzoyl peroxide, p-chlorobenzoyl peroxide, di-tert-butyl cumene peroxide, 2,5- Dimethyl-2,5-bis(tert-butylperoxy)hexane, 2,5-dimethyl-2,5-bis(tert-butylperoxy)hexyne, 2,5-dimethyl- One of 2,5-bis(benzoylperoxide)hexane, 1,1-bis(tert-butylperoxide)-3,3,5-trimethylcyclohexane, and tert-butyl peroxide Or several combinations.
  • a further preferred oxide initiator is 1,1-bis(tert-butylperoxy)-3,3,5-trimethylcyclohexane.
  • the reactive monomer II is selected from the group consisting of acrylic acid, methacrylic acid, acrylic acid amide, methacrylic acid amide, maleic anhydride, fumaric acid, dibutyl maleate, citric acid, One or several combinations of itaconic acid; further preferred reactive monomers are acrylic acid or maleic anhydride.
  • the diluent is at least one of acetone, methyl ethyl ketone, methyl acetate, ethanol, and mineral oil.
  • the processing aid is a combination of lubricants (silicone, low molecular wax, fatty acid amides, metal soap salts) and antioxidants (hindered phenols, phosphites).
  • lubricants silicone, low molecular wax, fatty acid amides, metal soap salts
  • antioxidants hindered phenols, phosphites.
  • the weight ratio of lubricant and antioxidant is 1: (0.5 ⁇ 2).
  • the preparation method of polymer II includes: mixing the polyolefin, peroxide initiator, reactive monomer II, diluent and processing aid evenly, then putting them into a reaction extruder, and melting After mixing, extrusion reaction, devolatilization, granulation and drying, polymer II is obtained.
  • the preferred reaction extruder is a twin-screw extruder, the aspect ratio is (44 ⁇ 60):1, the extrusion temperature is 160 ⁇ 240°C, and the screw speed is 200 ⁇ 400rpm.
  • the catalyst is selected from at least one of quaternary ammonium salts, quaternary phosphorus salts, tertiary amines, tertiary phosphorus, and imidazole compounds. Further preferred catalysts are imidazole compounds and tertiary amines.
  • the antioxidant is selected from at least one of hindered phenols and phosphite antioxidants.
  • the antioxidant is a combination of hindered phenols and phosphite antioxidants; more preferably, the weight ratio of hindered phenols and phosphite antioxidants is 1: (0.3 ⁇ 3).
  • the lubricant is at least one of fatty acid amides, silicones, and pentaerythritol stearate.
  • the devolatilization aid is selected from at least one of absolute ethanol, acetone, supercritical CO 2 , deionized water, N 2 and the like.
  • a second aspect of the present invention provides a method for preparing a styrene-polyolefin functional polymer, which method includes the following steps:
  • the styrene-polyolefin functional polymer is obtained after being pelletized by water cooling and a pelletizer.
  • the present invention relates to the use of the styrene-polyolefin functional polymer as a compatibilizer for polyolefin/polystyrene alloys or for improving the chemical resistance of polystyrene.
  • a compatibilizer for polyolefin/polystyrene alloys or for improving the chemical resistance of polystyrene.
  • it can be used as an additive to reduce the dielectric properties of polystyrene, or as an additive to improve the friction properties of engineering plastics.
  • the engineering plastics include PA, POM, etc.
  • the present invention has the following beneficial effects:
  • the preparation method of the present invention is advanced in technology. It first uses a relatively environmentally friendly suspension polymerization process to prepare a polymer intermediate, and at the same time uses an extrusion reaction process to prepare another polyolefin intermediate with reactive functional groups. The two are then further extruded. The reaction process is carried out to prepare the final styrene-polyolefin functional polymer in a twin-screw extruder;
  • the products prepared by the method of the present invention can be widely used in plastic modification, especially as compatibilizers for polyolefin/polystyrene alloys, and have wide application value in 5G applications, green recycling, electronic appliances and other fields, It is the core technology to achieve high performance, functionality and high added value of plastic alloy materials.
  • Figure 1 is the micro surface morphology of samples 9 and 10 in Application Example 5 and the optical microscope photos of the solvent-corroded surfaces of Samples 16 and 17 in Application Example 8; where (a) is sample 9, (b) is sample 10, ( c) is sample 16, (d) is sample 17.
  • This embodiment 1 provides a styrene-polyolefin functional polymer, which includes the following components by weight: 30 parts of polymer I, 70 parts of polymer II, 0.05 parts of catalyst, 0.3 parts of antioxidant, 0.2 parts of lubricant, 1 part of devolatilizer; the polymer I consists of 95 parts of styrene, 5 parts of reactive monomer, 0.2 parts of oil-soluble initiator, 1 part of dispersant, 0.05 parts of auxiliary dispersant, 0.5 parts
  • the polymer II is prepared from 100 parts of polyolefin, 0.05 parts of peroxide initiator, 2 parts of reactive monomer, 2 parts of diluent, 0.3 parts of lubricant and 0.2 parts of antioxidant. Preparation composition.
  • the reactive monomer in the polymer I is glycidyl methacrylate
  • the oil-soluble initiator is azobisisobutyronitrile
  • the dispersant is hydroxyethyl cellulose
  • the co-dispersant is sodium dodecyl sulfate.
  • the molecular weight regulator is dodecyl mercaptan.
  • the polypropylene in the polymer II is a random copolymerized polypropylene with a melt index of 7 (230°C, 2.16kg) and a brand name of Yungsox 5060, provided by Taiwan Formosa Plastics Corporation;
  • the peroxide initiator is 1,1-bis (tert-butyl peroxide) -3,3,5-trimethylcyclohexane
  • the reactive monomer is acrylic acid
  • the diluent is acetone
  • the lubricant is PE wax
  • the antioxidants are 168 and 1010 at a ratio of 1:1 Compounded.
  • the catalyst is 2-methylimidazole
  • the antioxidant is a 1:1 complex of 168 and 1076
  • the lubricant is EBS
  • the devolatilizer is absolute ethanol.
  • the preparation method of the styrene-polyolefin functional polymer includes the following steps:
  • This embodiment 2 provides a styrene-polyolefin functional polymer, which includes the following components by weight: 70 parts of polymer I, 30 parts of polymer II, 1 part of catalyst, 0.6 part of antioxidant, 0.1 lubricant, 5 parts of devolatilizer; the polymer I consists of 80 parts of styrene, 20 parts of reactive monomer, 1 part of oil-soluble initiator, 2 parts of dispersant, 0.01 part of auxiliary dispersant, 1 part
  • the polymer II is prepared from 100 parts of polyolefin, 0.2 parts of peroxide initiator, 6 parts of reactive monomer, 3 parts of diluent, 0.5 parts of lubricant and 0.5 parts of antioxidant. Preparation composition.
  • the reactive monomer in the polymer I is glycidyl methacrylate
  • the oil-soluble initiator is azobisisobutyronitrile
  • the dispersant is active calcium phosphate
  • the co-dispersant is sodium dodecylbenzene sulfonate.
  • the molecular weight regulator is dodecyl mercaptan.
  • the polyolefin in the polymer II is linear low-density polyethylene, with a melt index of 20 (190°C, 2.16kg), and a brand name of LL6101XR, provided by Exxon Mobil Corporation of the United States;
  • the peroxide initiator is 1,1- Bis(tert-butylperoxide)-3,3,5-trimethylcyclohexane
  • the reactive monomer is acrylic acid
  • the diluent is white oil
  • the lubricant is zinc stearate
  • the antioxidants are 168 and 1076 Made of 1:3 compound.
  • the catalyst is 2-phenylimidazole
  • the antioxidant is a 1:1 complex of 168 and 1010
  • the lubricant is silicone
  • the devolatilizer is supercritical CO 2 .
  • the preparation method of the styrene-polyolefin functional polymer is the same as in Example 1.
  • This embodiment 3 provides a styrene-polyolefin functional polymer, which includes the following components by weight: 50 parts of polymer I, 50 parts of polymer II, 0.1 part of catalyst, 0.3 part of antioxidant, 0.3 lubricant, 0.2 part of devolatilizer; the polymer I consists of 99 parts of styrene, 1 part of reactive monomer, 0.1 part of oil-soluble initiator, 0.1 part of dispersant, 0.1 part of auxiliary dispersant, 0.5 part
  • the polymer II is prepared from 100 parts of polyolefin, 2 parts of peroxide initiator, 0.5 part of reactive monomer, 1 part of diluent, 0.3 part of lubricant and 0.2 part of antioxidant. Preparation composition.
  • the reactive monomer in the polymer I is glycidyl methacrylate
  • the oil-soluble initiator is azobisisoheptanitrile
  • the dispersant is active calcium phosphate
  • the co-dispersant is sodium lauryl sulfate.
  • the molecular weight The regulator is dodecyl mercaptan.
  • the polyolefin in the polymer II is an ethylene-octene copolymer, the melt index is 1 (190°C, 2.16kg), and the brand is Engage 8842, provided by Dow Chemical Company of the United States;
  • the peroxide initiator is 1,1- Bis(tert-butylperoxide)-3,3,5-trimethylcyclohexane, the reactive monomer is maleic anhydride, the diluent is methyl acetate, the lubricant is calcium stearate, antioxidant
  • the agent is a 1:1 mixture of 168 and 1010.
  • the catalyst is triethylamine
  • the antioxidant is a 1:1 complex of 168 and 1010
  • the lubricant is stearic acid amide
  • the devolatilizer is deionized water.
  • the preparation method of the styrene-polyolefin functional polymer is the same as in Example 1.
  • This embodiment 4 provides a styrene-polyolefin functional polymer, which includes the following components by weight: 60 parts of polymer I, 40 parts of polymer II, 0.5 parts of catalyst, 0.2 parts of antioxidant, 0.4
  • the polymer I consists of 97 parts of styrene, 3 parts of reactive monomer, 0.5 parts of oil-soluble initiator, 0.8 parts of dispersant, 0.05 parts of auxiliary dispersant, 0.3 parts
  • the polymer II is prepared from 100 parts of polyolefin, 0.4 parts of peroxide initiator, 1.5 parts of reactive monomer, 2 parts of diluent, 0.3 parts of lubricant and 0.2 parts of antioxidant. Preparation composition.
  • the reactive monomer in the polymer I is methyl methacrylate
  • the oil-soluble initiator is dimethyl azobisisobutyrate
  • the dispersant is polyvinyl alcohol
  • the co-dispersant is sodium lauryl sulfate.
  • the molecular weight regulator is dodecyl mercaptan.
  • the polyolefin in the polymer II is an ethylene-propylene copolymer, the melt index is 8 (230°C, 2.16kg), and the brand name is Vistamaxx 3588, provided by Exxon Mobil Company of the United States; the peroxide initiator is 2,5-bis Methyl-2,5-bis(tert-butylperoxy)hexane, the reactive monomer is methacrylic acid amide, the diluent is ethanol, the lubricant is polypropylene wax, the antioxidants are 168 and 1010 in 1: 1 compound.
  • the catalyst is triphenylphosphorus
  • the antioxidant is a 1:1 complex of 168 and 1010
  • the lubricant is erucamide
  • the devolatilizer is N 2 .
  • the preparation method of the styrene-polyolefin functional polymer is the same as in Example 1.
  • This embodiment 5 provides a styrene-polyolefin functional polymer, which includes the following components by weight: 40 parts of polymer I, 60 parts of polymer II, 0.2 parts of catalyst, 0.4 parts of antioxidant, 0.2 lubricant, 1 part of devolatilizer; the polymer I consists of 90 parts of styrene, 10 parts of reactive monomer, 0.8 parts of oil-soluble initiator, 1.2 parts of dispersant, 0.03 parts of auxiliary dispersant, 0.5 parts
  • the polymer II is prepared from 100 parts of polyolefin, 0.1 part of peroxide initiator, 3 parts of reactive monomer, 3 parts of diluent, 0.2 part of lubricant and 0.3 part of antioxidant. Preparation composition.
  • the reactive monomer in the polymer I is glycidyl methacrylate
  • the oil-soluble initiator is azobisisobutyronitrile
  • the dispersant is active calcium phosphate
  • the co-dispersant is sodium dodecylbenzene sulfonate.
  • the molecular weight regulator is dodecyl mercaptan.
  • the polyolefin in the polymer II is homopolypropylene with a melting index of 3 (230°C, 2.16kg) and a brand name of T30S from Sinopec;
  • the peroxide initiator is 1,1-bis(polypropylene). (tert-butyl oxide)-3,3,5-trimethylcyclohexane, the reactive monomer is itaconic acid, the diluent is methyl ethyl ketone, the lubricant is zinc stearate, and the antioxidant is methyl ethyl ketone.
  • the catalyst is 2-methylimidazole
  • the antioxidant is a 1:1 compound of triphenyl phosphite and 1010
  • the lubricant is a 1:1 compound of pentaerythritol stearate and silicone to aid detoxification.
  • the volatile agent is acetone.
  • the preparation method of the styrene-polyolefin functional polymer is the same as in Example 1.
  • the polymer includes the following components by weight: 60 parts of polymer I, 40 parts of polymer II, 0.2 parts of catalyst, 0.4 parts of antioxidant, 0.2 parts of lubricant, 1 part
  • the devolatilization aid is the same as in Example 5.
  • anhydrous aluminum trichloride was used as a catalyst to trigger an in-situ compatibilization reaction between PP and PS, and a PP-g-PS copolymer sample was prepared; the weight ratio of PP and PS was 7:3, PP is random copolymerized polypropylene, the melt index is 7 (230°C, 2.16kg), the brand is Yungsox 5060, provided by Taiwan Formosa Plastics Corporation, the PS melt index is 2 (190°C, 2.16kg).
  • anhydrous aluminum trichloride was used as a catalyst to trigger an in-situ compatibilization reaction between LLDPE and PS, and a PS-g-LLDPE copolymer sample was prepared; the weight ratio of LLDPE and PS was 3:7, the melt index of LLDPE is 20 (190°C, 2.16kg), the brand name is LL6101XR, provided by ExxonMobil Company of the United States, and the melt index of PS is 2 (190°C, 2.16kg).
  • Example 1 Take 10 parts of the samples in Example 1 and Comparative Example 1 respectively, and mix them with 70 parts of PP (Shanghai Seko Petrochemical, K8003), 30 parts of HIPS (Shanghai Seko Petrochemical, 622P), and 10 parts of SEBS (Yueyang Petrochemical) , YH503) and 0.5 parts of processing aids were blended and extruded in a twin-screw extruder to obtain PP/PS alloy samples 1 and 2 respectively.
  • PP Sthai Seko Petrochemical, K8003
  • HIPS Sthanghai Seko Petrochemical, 622P
  • SEBS Yueyang Petrochemical
  • Example 2 Take 5 parts of the samples in Example 2 and Comparative Example 2 respectively, and mix them with 30 parts of LLDPE (Sinopec, 7042), 70 parts of HIPS (Shanghai Secco Petrochemical, 622P), and 5 parts of SEBS (Katon, G1652) ) and 0.5 parts of processing aids were blended and extruded in a twin-screw extruder to obtain PS/PE alloy samples 3 and 4 respectively.
  • LLDPE Long-dPE
  • Example 3 Take 10 parts of the sample in Example 3 and SEBS (Katon, G1652) respectively, and mix them with 50 parts of PP (Sabic, 575P), 50 parts of HIPS (Shanghai Secco Petrochemical, 622P) and 0.5 parts of processing aids. Blending and extrusion were carried out in a twin-screw extruder to obtain PP/PS alloy samples 5 and 6 respectively. The relevant test results are shown in Table 2.
  • Example 4 Take 10 parts of the sample in Example 4 and SBS (Katon, D1102K) respectively, and mix them with 60 parts of PP (Sabic, 575P), 40 parts of HIPS (Shanghai Secco Petrochemical, 622P) and 0.5 parts of processing aids. Blending and extrusion were carried out in a twin-screw extruder to obtain PP/PS alloy samples 7 and 8 respectively. The relevant test results are shown in Table 2.
  • Example 5 Take 10 parts of the sample in Example 5, mix with 60 parts of PP (Sabic, 575P), 40 parts of HIPS (Shanghai Secco Petrochemical, 622P) and 0.5 parts of processing aids in a twin-screw extruder. out, prepare PP/PS alloy sample 9; the other part does not add any compatibilizer or toughening agent, only 60 parts of PP (Sabic, 575P), 40 parts of HIPS (Shanghai SECO Petrochemical, 622P) and 0.5 parts of processing aids were blended and extruded in a twin-screw extruder to obtain PP/PS sample 10.
  • Table 2 and Figure 1a and b The relevant test results are shown in Table 2 and Figure 1a and b.
  • Example 5 and Example 6 Take 5 parts each of the samples in Example 5 and Example 6 and the PP-g-MAH product (Jiayirong Polymer (Shanghai) Co., Ltd., CMG5701), and 60 parts of PP (Sabic, 575P), 40 parts HIPS (Shanghai SECCO Petrochemical, 622P) and 0.5 parts of processing aids were blended and extruded in a twin-screw extruder to obtain PP/PS alloy samples 11, 12 and 13 respectively.
  • the relevant test results are shown in Table 3.
  • Example 1 and Comparative Example 3 Take 5 parts of the samples in Example 1 and Comparative Example 3 respectively, and mix them with 70 parts of PP (Shanghai Seko Petrochemical, K8003), 30 parts of HIPS (Shanghai Seko Petrochemical, 622P), and 10 parts of SEBS (Yueyang Petrochemical, YH503) and 0.5 parts of processing aids were blended and extruded in a twin-screw extruder to obtain PP/PS alloy samples 14 and 15 respectively.
  • PP Sthai Seko Petrochemical, K8003
  • HIPS Sthanghai Seko Petrochemical, 622P
  • SEBS Yueyang Petrochemical, YH503
  • processing aids 0.5 parts
  • HIPS Zhenjiang Chimei, PH-88
  • sample 16 Take HIPS (Zhenjiang Chimei, PH-88) as sample 16
  • 10 parts of the POE-g-PP sample in Example 3 mix it with 90 parts of HIPS (the same brand as above) and 0.5 parts of processing aids, and then use it in a twin-screw extruder. Blending and extrusion are performed in the machine to obtain modified PS sample 17.
  • Samples 16 and 17 are injection molded into ISO samples and then soaked in a mixed solvent of ethyl acetate and ethanol with a mass ratio of 1:1, for 10 seconds. Then take out the sample and observe the surface corrosion of the sample with a microscope. The relevant test results are shown in Figure 1c and d.
  • the processing aids in the above formula are: 0.1 parts each of antioxidants 1010 and 168, and 0.3 parts of lubricant calcium stearate.
  • Twin-screw extruder parameters length-to-diameter ratio 40:1, screw diameter 35mm, temperature set to 200 ⁇ 230°C.
  • Charpy notched impact strength tested in accordance with ISO 179-1 standard, the impact energy is 4J;
  • Aging test Put the injection-molded sample into a hot oxygen aging oven at 150°C, and the aging time is 200 hours. After the aging is completed, test the yellowness index of the sample. The yellowness index is tested according to ASTM E313 standard;
  • test data of Application Examples 3 and 4 in Table 2 illustrates the overall mechanical properties of the styrene-polyolefin functional polymer prepared using the method of the present invention compared with conventional SEBS and SBS as compatibilizer/toughener. It performs better in terms of performance.
  • the styrene-polyolefin functional polymer prepared by the present invention has a greater degree of freedom in adjusting the molecular structure, which can make polystyrene It can become the main chain of the molecule, and the polyolefin can be designed as a branched chain, or the polyolefin can be made into the main chain of the molecule, and the polystyrene can be designed as a branched chain structure, which can achieve more functionality depending on the specific application.
  • the styrene-polyolefin functional polymer with appropriate structure can be selected according to the needs of the application scenario; in addition, the comparison of PP-g-MAH as a compatibilizer for PP/PS alloy and the functional polymer prepared by the method of the present invention is also compared , judging from the final test results, the mechanical properties of the products using PP-g-MAH are significantly lower than those of the functional polymers used using the method of the present invention. Therefore, it can be inferred that PP-g-MAH is not suitable as a compatibilizer for PP/PS alloys. use.
  • HIPS itself has poor solvent resistance. After being kept in a mixed solvent of ethyl acetate and ethanol for only 10 seconds, the appearance of the part became obviously concave. pits ( Figure 1(c)); while adding 10 parts of POE-g-PS (sample of Example 3) to HIPS and keeping it in the same solvent for the same time, the surface of the part was almost not corroded. Situation ((Fig.
  • the styrene-polyolefin functional polymer of the present invention can significantly improve the chemical resistance of PS, and due to the similarity of the molecular chain structures of PS and PO-g-PS, blending The compatibility of the latter two can also be well guaranteed.

Abstract

本发明涉及一种苯乙烯-聚烯烃功能聚合物及其制备方法。制备原料至少包括:聚合物Ⅰ30~70份、聚合物Ⅱ 30~70份、催化剂0.01~1份、抗氧剂0.1~1份、润滑剂0.1-1份、助脱挥剂0.2~5份。所述聚合物Ⅰ由苯乙烯、反应性单体、引发剂、分散剂、助分散剂、分子量调节剂制备而成;所述聚合物Ⅱ由聚烯烃、引发剂、反应性单体、稀释剂及加工助剂制备而成。所述功能聚合物的制备方法为:将原料按配比混合后,投入挤出机中经熔融反应、脱挥、造粒,得到目标产品。本发明制备的功能性聚合物可作为PS和PO的相容剂;也可以改善PS的耐化学品性、降低介电性能;还可以改善PA、POM等工程塑料的摩擦性能。

Description

一种苯乙烯-聚烯烃功能聚合物及其制备方法 技术领域
本发明属于高分子材料的合成和反应挤出领域,涉及一种苯乙烯-聚烯烃功能聚合物及其制备方法。
背景技术
聚烯烃(PO)、聚苯乙烯(PS)位于五大通用塑料之列,社会需求量大,也是废弃塑料中的主要种类。PS具有高硬度、低收缩、良热成型和易印刷的优点,但是其耐候性较差,容易开裂,而且韧性和耐溶剂性也不理想。PO中最主要的品类就是聚丙烯(PP)和聚乙烯(PE),PP作为常见的通用塑料用途极其广泛,而且力学性能优异,电绝缘性和耐化学药品性良好,但是其具有成型收缩率大、硬度低、易老化、热成型能力差的缺点;PE无臭、无毒,手感似蜡,具有优良的耐低温性能(最低使用温度可达-100~-70℃),化学稳定性好,能耐大多数酸碱的侵蚀(不耐具有氧化性质的酸),PE用途十分广泛,主要用来制造薄膜、包装材料、容器、管道、单丝、电线电缆、日用品等,并可作为电视、雷达等的高频绝缘材料,常温下不溶于一般溶剂,吸水性小,电绝缘性优良,但PE的力学性能一般,拉伸强度低,抗蠕变性差,耐温性不高。为了克服上述两类材料的缺点,会将PS、PP或者PE进行共混改性制备合金材料。根据研究发现PS与PP或PE是典型的不相容体系,简单混合会导致分散相的聚集,从而表现较低的力学性能。为了使二者有效共混,需要采取措施降低两相间表面张力,改善二者相容性。
目前,大多采用PP或PE与PS间就地相容化技术,它具有廉价、便于应用等优点。如专利CN101402765中以路易酸为催化剂引发PE、PS间产生Friedel-Crafts烷基化反应,从而就地增容PE/PS合金;美国专利US172384中也提到以无水三氯化铝作为聚烯烃和PS的反应增容催化剂,但此种方法在反应过程中可控性存在一定问题,而且无水三氯化铝等路易斯酸腐蚀性强、对水敏感,会引起PS的降解,制备的合金材料颜色易变黄,耐老化性能下降,致使材料应用受限。
另外有专利CN101580614中公开了另一种PP-g-PS共聚物的制备方法,该聚合物采用配位-阴离子聚合方法制备,该方法生产步骤复杂,使用了多种有机溶剂和催化剂,反应过程需要精准控制,不仅制造成本高,而且该方法只能生产特定PP主链、PS支链型的共聚物,产品结构相对单一,而更为严重的是,在目前碳达峰及环保压力剧增的背景下,该方法使用的多种有机溶剂和其它助剂也不利于环保,显著增加了回收成本以及环境污染的风险。
还有一些专利如CN102757596、CN101402766中提到使用SBS、SEP或者SEBS对PP/PS合金体系进行增容化改性,在改善界面结合力方面确实产生了一些有益效果,但其更多的是充当增韧剂的作用,加入量过多会影响材料的强度和刚性。
此外还有研究采用了PP-g-MAH、POE-g-MAH等作为相容剂对聚烯烃/PS合金进行改性,如CN103589060中提到以接枝聚丙烯作为相容剂,但此种方法中使用的酸酐等官能团未能在合金中提供合适的反应途径来改善两相界面,也未在机理方面给予详细解释,在大规模产业化方面未必能实现良好的相容化效果。
技术问题
本发明就是利用现有技术中的不足并基于现有技术手段提供一种苯乙烯-聚烯烃功能聚合物及制备方法,该聚合物结合了合成反应技术和反应挤出技术的特点,实现聚合物的功能化,该产品的一大优势就是分子结构可调,既可以使聚苯乙烯成为分子主链,聚烯烃设计成支链,也可以使聚烯烃成为分子主链,聚苯乙烯设计成为支链结构,而且根据应用的不同,可以在一定范围内调节主链或者支链分子量,使该结构类型的聚合物除了在聚苯乙烯/聚烯烃合金中提供相容性,还能改善聚苯乙烯的耐化学品性、降低介电性能;亦能改善PA、POM等工程塑料的摩擦性能等,因此其能提供更广阔的应用空间。
技术解决方案
本发明的目的可以通过以下方案实现:
一方面,本发明涉及一种苯乙烯-聚烯烃功能聚合物,所述聚合物包括以下组份及重量份:聚合物Ⅰ30~70份、聚合物Ⅱ30~70份、催化剂0.01~1份、抗氧剂0.1~1份、润滑剂0.1~1份、助脱挥剂0.2~5份;
其中,聚合物Ⅰ由重量比为:(80~99):(1~20):(0.1~1.0):(0.1~2.0):(0.01~0.1):(0.1~1.0)的苯乙烯、反应性单体Ⅰ、油溶性引发剂、分散剂、助分散剂、分子量调节剂在水介质中通过悬浮聚合方法制备而成;
聚合物Ⅱ由重量比为:100:(0.01~2):(0.5~6):(0.1~5):(0.2~1.0)的聚烯烃、过氧化物引发剂、反应性单体Ⅱ、稀释剂及加工助剂制备而成。
作为一个实施方案,所述反应性单体Ⅰ选自甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸丁酯、甲基丙烯酸缩水甘油酯中的一种。进一步优选的反应性单体Ⅰ为甲基丙烯酸缩水甘油酯;
作为一个实施方案,所述油溶性引发剂为偶氮类引发剂。所述偶氮类引发剂选自偶氮二异丁腈、偶氮二异庚腈或偶氮二异丁酸二甲酯中的至少一种。进一步优选的引发剂为偶氮二异丁腈。
作为一个实施方案,所述分散剂为聚乙烯醇、活性磷酸钙、羟乙基纤维素中的至少一种。
作为一个实施方案,所述助分散剂为十二烷基苯磺酸钠或十二烷基硫酸钠中。
作为一个实施方案,所述分子量调节剂为十二烷基硫醇。
作为一个实施方案,所述聚合物Ⅰ的制备方法包括:A1、将所述苯乙烯单体、反应性单体、油溶性引发剂、分散剂、助分散剂和分子量调节剂以及水混合,在65~80℃反应3~6小时,升温至85~90℃熟化0.5~2小时;单体总重与水的质量比为(1~3):1;
A2、反应结束后过滤、清洗,于75~85℃下干燥至恒重后过筛,得到聚合物Ⅰ。
在一些实施例中,将所述苯乙烯单体、反应性单体、油溶性引发剂、分散剂、助分散剂和分子量调节剂,和与单体总重量比为(1~3):1的去离子水混合于反应釜中,于搅拌下升温至65~80℃,并反应3~6小时,升温至85~90℃熟化0.5~2小时;结束后放入储料槽中,将所得物料过滤后用去离子水清洗2~5次后于75~85℃下干燥至恒重后过筛,得到聚合物Ⅰ。
作为一个实施方案,所述聚烯烃选自聚丁烯、聚丙烯、聚乙烯、乙烯-丙烯共聚物、乙烯-丁烯共聚物、乙烯-辛烯共聚物中的一种或几种组合。
作为一个实施方案,所述过氧化物引发剂选自过氧化二异丙苯、过氧化苯甲酰、过氧化对氯苯甲酰、二叔丁基过氧化异丙基苯、2,5-二甲基-2,5-双(叔丁过氧基)己烷、2,5-二甲基-2,5-双(叔丁过氧基)己炔、2,5-二甲基-2,5-双(过氧化苯甲酰)己烷、1,1-双(过氧化叔丁基)-3,3,5-三甲基环己烷、过氧化叔丁酯中的一种或几种组合。进一步优选的氧化物引发剂为1,1-双(过氧化叔丁基)-3,3,5-三甲基环己烷。
作为一个实施方案,所述反应性单体Ⅱ中的选自丙烯酸、甲基丙烯酸、丙烯酸酰胺、甲级丙烯酸酰胺、顺丁烯二酸酐、富马酸、马来酸二丁酯、柠檬酸、衣康酸中的一种或几种组合;进一步优选的反应性单体为丙烯酸或顺丁烯二酸酐。
作为一个实施方案,所述稀释剂为丙酮、甲基乙基酮、乙酸甲酯、乙醇、矿物油中的至少一种。
作为一个实施方案,所述加工助剂为润滑剂(硅酮类、低分子蜡、脂肪酸酰胺类、金属皂盐)和抗氧剂(受阻酚类、亚磷酸酯类)的组合物。润滑剂和抗氧剂的重量比为1:(0.5~2)。
作为一个实施方案,聚合物Ⅱ的制备方法包括:将所述聚烯烃、过氧化物引发剂、反应性单体Ⅱ、稀释剂及加工助剂混合均匀后投入到反应挤出机中,经熔融混合、挤出反应并脱挥后造粒、干燥,得到聚合物Ⅱ。优选反应挤出机为双螺杆挤出机,长径比为(44~60):1,挤出温度为160~240℃,螺杆转速为200~400rpm。
作为一个实施方案,所述催化剂选自季铵盐、季磷盐、三级胺、三级磷、咪唑化合物中的至少一种。进一步优选的催化剂为咪唑化合物和三级胺。
作为一个实施方案,所述抗氧剂选自受阻酚类和亚磷酸酯类抗氧剂中的至少一种。优选所述抗氧剂为受阻酚类和亚磷酸酯类抗氧剂的组合;更优选受阻酚类和亚磷酸酯类抗氧剂的重量比为1:(0.3~3)。
作为一个实施方案,所述润滑剂为脂肪酸酰胺类、硅酮类、季戊四醇硬脂酸酯中的至少一种。
作为一个实施方案,所述助脱挥剂选自无水乙醇、丙酮、超临界CO 2、去离子水、N 2等其中的至少一种。
本发明的第二方面是提供一种苯乙烯-聚烯烃功能聚合物的制备方法,所述方法包括以下步骤:
S1、将所述聚合物Ⅰ、聚合物Ⅱ、催化剂、抗氧剂、润滑剂混合均匀,于主喂料口投入到长径比为(44~60):1的双螺杆挤出机中,加工温度为180~240℃,转速为180~600rpm/min;
S2、在双螺杆挤出机后,通过注入口加入所述助脱挥剂,并通过脱挥口将反应过程中的残余小分子物质和助脱挥剂一起排出;
S3、经模头挤出后,经水冷、切粒机造粒后得到所述苯乙烯-聚烯烃功能聚合物。
第三方面,本发明涉及所述的苯乙烯-聚烯烃功能聚合物的用途,所述聚合物用作聚烯烃/聚苯乙烯合金的相容剂,或用作改善聚苯乙烯耐化学品性能的助剂,或用作降低聚苯乙烯介电性能的助剂,或用作改善工程塑料摩擦性能的助剂。所述工程塑料包括PA、POM等。
有益效果
与现有技术相比,本发明具有如下有益效果:
1)本发明的制备方法工艺先进,先利用相对环保的悬浮聚合工艺制备聚合物中间体,同时利用挤出反应工艺制备带反应性官能团的另一聚烯烃中间体,二者再通过进一步的挤出反应工艺,在双螺杆挤出机中制备最终的苯乙烯-聚烯烃功能聚合物;
2)本发明的方法制备的产品可广泛应用于塑料改性,尤其是作为聚烯烃/聚苯乙烯合金的相容剂,在5G应用、绿色可回收、电子电器等领域有广泛的应用价值,是实现塑料合金材料的高性能化、功能化、高附加值的核心技术。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为应用例5中样品9、10的微观表面形态以及应用例8中样品16、17被溶剂腐蚀表面的光学显微镜照片;其中,(a)为样品9,(b)为样品10,(c)为样品16,(d)为样品17。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
实施例一
本实施例1提供一种苯乙烯-聚烯烃功能聚合物,该聚合物包括以下按重量份组分:30份聚合物Ⅰ、70份聚合物Ⅱ、0.05份催化剂、0.3份抗氧剂、0.2份润滑剂、1 份助脱挥剂;其中所述的聚合物Ⅰ由95份苯乙烯、5份反应性单体、0.2份油溶性引发剂、1份分散剂、0.05份助分散剂、0.5份分子量调节剂制备而成;所述的聚合物Ⅱ由100份聚烯烃、0.05份过氧化物引发剂、2份反应性单体、2份稀释剂、0.3份润滑剂和0.2份抗氧剂制备组成。
所述聚合物Ⅰ中的反应性单体为甲基丙烯酸缩水甘油酯,油溶性引发剂为偶氮二异丁腈,分散剂为羟乙基纤维素,助分散剂为十二烷基硫酸钠,分子量调节剂为十二烷基硫醇。
所述聚合物Ⅱ中的聚丙烯为无规共聚聚丙烯,熔指为7(230℃,2.16kg),牌号为Yungsox 5060,台湾台塑公司提供;过氧化物引发剂为1,1-双(过氧化叔丁基) -3,3,5-三甲基环己烷,反应性单体为丙烯酸,稀释剂为丙酮,润滑剂为PE蜡,抗氧剂为168和1010以1:1复配制成。
所述催化剂为2-甲基咪唑,抗氧剂为168和1076为1:1的复合物,润滑剂为 EBS,助脱挥剂为无水乙醇。
所述苯乙烯-聚烯烃功能聚合物的制备方法包括以下步骤:
(1)、聚合物Ⅰ的制备:将按重量比的苯乙烯单体、反应性单体、油溶性引发剂、分散剂、助分散剂和分子量调节剂和与单体总重量比为2:1的去离子水混合于反应釜中,于搅拌下升温至75℃,并反应5小时,升温至85℃熟化2小时;结束后放入储料槽中,将所得物料过滤后用去离子水清洗3次后于80℃下干燥至恒重后过筛,得到聚合物Ⅰ。
(2)、聚合物Ⅱ的制备:将按重量比的聚烯烃、引发剂、反应性单体、稀释剂及加工助剂按配比称量混合均匀后投入到双螺杆挤出机中,经熔融混合、挤出反应并脱挥后造粒、干燥,得到聚合物Ⅱ;双螺杆挤出机长径比为50:1,挤出温度为 160~240℃,螺杆转速为300rpm。
(3)、将聚合物Ⅰ、聚合物Ⅱ、催化剂、抗氧剂、润滑剂按比例混合均匀,于主喂料口投入到长径比为52:1的双螺杆挤出机中,加工温度180~240℃,转速400rpm;在双螺杆挤出机后端,通过注入口加入助脱挥剂,一并脱挥后经挤出造粒后得到目标聚合物。
实施例二
本实施例2提供一种苯乙烯-聚烯烃功能聚合物,该聚合物包括以下按重量份组分:70份聚合物Ⅰ、30份聚合物Ⅱ、1份催化剂、0.6份抗氧剂、0.1份润滑剂、5份助脱挥剂;其中所述的聚合物Ⅰ由80份苯乙烯、20份反应性单体、1份油溶性引发剂、2份分散剂、0.01份助分散剂、1份分子量调节剂制备而成;所述的聚合物Ⅱ由 100份聚烯烃、0.2份过氧化物引发剂、6份反应性单体、3份稀释剂、0.5份润滑剂和0.5份抗氧剂制备组成。
所述聚合物Ⅰ中的反应性单体为甲基丙烯酸缩水甘油酯,油溶性引发剂为偶氮二异丁腈,分散剂为活性磷酸钙,助分散剂为十二烷基苯磺酸钠,分子量调节剂为十二烷基硫醇。
所述聚合物Ⅱ中的聚烯烃为线性低密度聚乙烯,熔指为20(190℃,2.16kg),牌号为LL6101XR,美国埃克森美孚公司提供;过氧化物引发剂为1,1-双(过氧化叔丁基)-3,3,5-三甲基环己烷,反应性单体为丙烯酸,稀释剂为白油,润滑剂为硬脂酸锌,抗氧剂为168和1076以1:3复配制成。
所述催化剂为2-苯基咪唑,抗氧剂为168和1010为1:1的复合物,润滑剂为硅酮,助脱挥剂为超临界CO 2
所述苯乙烯-聚烯烃功能聚合物的制备方法同实施例1。
实施例三
本实施例3提供一种苯乙烯-聚烯烃功能聚合物,该聚合物包括以下按重量份组分:50份聚合物Ⅰ、50份聚合物Ⅱ、0.1份催化剂、0.3份抗氧剂、0.3份润滑剂、0.2 份助脱挥剂;其中所述的聚合物Ⅰ由99份苯乙烯、1份反应性单体、0.1份油溶性引发剂、0.1份分散剂、0.1份助分散剂、0.5份分子量调节剂制备而成;所述的聚合物Ⅱ由100份聚烯烃、2份过氧化物引发剂、0.5份反应性单体、1份稀释剂、0.3份润滑剂和0.2份抗氧剂制备组成。
所述聚合物Ⅰ中的反应性单体为甲基丙烯酸缩水甘油酯,油溶性引发剂为偶氮二异庚腈,分散剂为活性磷酸钙,助分散剂为十二烷基硫酸钠,分子量调节剂为十二烷基硫醇。
所述聚合物Ⅱ中的聚烯烃为乙烯-辛烯共聚物,熔指为1(190℃,2.16kg),牌号为Engage 8842,美国Dow化学公司提供;过氧化物引发剂为1,1-双(过氧化叔丁基)-3,3,5-三甲基环己烷,反应性单体为顺丁烯二酸酐,稀释剂为乙酸甲酯,润滑剂为硬脂酸钙,抗氧剂为168和1010以1:1复配制成。
所述催化剂为三乙胺,抗氧剂为168和1010为1:1的复合物,润滑剂为硬脂酸酰胺,助脱挥剂为去离子水。
所述苯乙烯-聚烯烃功能聚合物的制备方法同实施例1。
实施例四
本实施例4提供一种苯乙烯-聚烯烃功能聚合物,该聚合物包括以下按重量份组分:60份聚合物Ⅰ、40份聚合物Ⅱ、0.5份催化剂、0.2份抗氧剂、0.4份润滑剂、3 份助脱挥剂;其中所述的聚合物Ⅰ由97份苯乙烯、3份反应性单体、0.5份油溶性引发剂、0.8份分散剂、0.05份助分散剂、0.3份分子量调节剂制备而成;所述的聚合物Ⅱ由100份聚烯烃、0.4份过氧化物引发剂、1.5份反应性单体、2份稀释剂、0.3份润滑剂和0.2份抗氧剂制备组成。
所述聚合物Ⅰ中的反应性单体为甲基丙烯酸甲酯,油溶性引发剂为偶氮二异丁酸二甲酯,分散剂为聚乙烯醇,助分散剂为十二烷基硫酸钠,分子量调节剂为十二烷基硫醇。
所述聚合物Ⅱ中的聚烯烃为乙烯-丙烯共聚物,熔指为8(230℃,2.16kg),牌号为Vistamaxx 3588,美国Exxon Mobil公司提供;过氧化物引发剂为2,5-二甲基-2,5-双(叔丁过氧基)己烷,反应性单体为甲基丙烯酸酰胺,稀释剂为乙醇,润滑剂为聚丙烯蜡,抗氧剂为168和1010以1:1复配制成。
所述催化剂为三苯基磷,抗氧剂为168和1010为1:1的复合物,润滑剂为芥酸酰胺,助脱挥剂为N 2
所述苯乙烯-聚烯烃功能聚合物的制备方法同实施例1。
实施例五
本实施例5提供一种苯乙烯-聚烯烃功能聚合物,该聚合物包括以下按重量份组分:40份聚合物Ⅰ、60份聚合物Ⅱ、0.2份催化剂、0.4份抗氧剂、0.2份润滑剂、1 份助脱挥剂;其中所述的聚合物Ⅰ由90份苯乙烯、10份反应性单体、0.8份油溶性引发剂、1.2份分散剂、0.03份助分散剂、0.5份分子量调节剂制备而成;所述的聚合物Ⅱ由100份聚烯烃、0.1份过氧化物引发剂、3份反应性单体、3份稀释剂、0.2份润滑剂和0.3份抗氧剂制备组成。
所述聚合物Ⅰ中的反应性单体为甲基丙烯酸缩水甘油酯,油溶性引发剂为偶氮二异丁腈,分散剂为活性磷酸钙,助分散剂为十二烷基苯磺酸钠,分子量调节剂为十二烷基硫醇。
所述聚合物Ⅱ中的聚烯烃为均聚聚丙烯,熔指为3(230℃,2.16kg),牌号为 T30S,来源于中国石化公司;过氧化物引发剂为1,1-双(过氧化叔丁基)-3,3,5- 三甲基环己烷,反应性单体为衣康酸,稀释剂为甲基乙基酮,润滑剂为硬脂酸锌,抗氧剂为亚磷酸三苯酯和1010以1:1复配制成。
所述催化剂为2-甲基咪唑,抗氧剂为亚磷酸三苯酯和1010为1:1的复合物,润滑剂为季戊四醇硬脂酸酯和硅酮为1:1的复合物,助脱挥剂为丙酮。
所述苯乙烯-聚烯烃功能聚合物的制备方法同实施例1。
实施例六
与实施例5略有不同的是,该聚合物包括以下按重量份组分:60份聚合物Ⅰ、 40份聚合物Ⅱ、0.2份催化剂、0.4份抗氧剂、0.2份润滑剂、1份助脱挥剂,其它均与实施例5相同。
对比例1
参照美国专利US172384中公开的方法,以无水三氯化铝作为催化剂引发PP和 PS间产生原位相容化反应,制备了PP-g-PS共聚物样品;其中PP和PS的重量比为 7:3,PP为无规共聚聚丙烯,熔指为7(230℃,2.16kg),牌号为Yungsox 5060,台湾台塑公司提供,PS熔指为2(190℃,2.16kg)。
对比例2
参照美国专利US172384中公开的方法,以无水三氯化铝作为催化剂引发LLDPE 和PS间产生原位相容化反应,制备了PS-g-LLDPE共聚物样品;其中LLDPE和PS 的重量比为3:7,LLDPE熔指为20(190℃,2.16kg),牌号为LL6101XR,美国埃克森美孚公司提供,PS熔指为2(190℃,2.16kg)。
对比例3
参照中国专利CN101580614中公开的以配位聚合-阴离子聚合方法制备PP-g-PS共聚物,先将丙烯和对烯丙基甲苯进行配位聚合制备出中间体,再通过锂化反应将共聚物中间体中苄基碳锂化,加入苯乙烯,进行阴离子接枝聚合,得到PP-g-PS共聚物。
应用例1
分别取实施例1中和对比例1中的样品各10份,与70份的PP(上海赛科石化,K8003),30份的HIPS(上海赛科石化,622P),10份SEBS(岳阳石化,YH503) 和0.5份加工助剂在双螺杆挤出机中进行共混挤出,分别得到PP/PS合金样品1和2,相关测试结果见表1。
应用例2
分别取实施例2中和对比例2中的样品各5份,与30份的LLDPE(中国石化, 7042),70份的HIPS(上海赛科石化,622P),5份SEBS(科腾,G1652)和0.5份加工助剂在双螺杆挤出机中进行共混挤出,分别得到PS/PE合金样品3和4,相关测试结果见表1。
应用例3
分别取实施例3中的样品和SEBS(科腾,G1652)各10份,与50份的PP(Sabic,575P),50份的HIPS(上海赛科石化,622P)和0.5份加工助剂在双螺杆挤出机中进行共混挤出,分别得到PP/PS合金样品5和6,相关测试结果见表2。
应用例4
分别取实施例4中的样品和SBS(科腾,D1102K)各10份,与60份的PP(Sabic,575P),40份的HIPS(上海赛科石化,622P)和0.5份加工助剂在双螺杆挤出机中进行共混挤出,分别得到PP/PS合金样品7和8,相关测试结果见表2。
应用例5
取实施例5中的样品10份,与60份的PP(Sabic,575P),40份的HIPS(上海赛科石化,622P)和0.5份加工助剂在双螺杆挤出机中进行共混挤出,制备PP/PS 合金样品9;另一份不加入任何的相容剂或增韧剂,仅是60份的PP(Sabic,575P), 40份的HIPS(上海赛科石化,622P)和0.5份加工助剂在双螺杆挤出机中进行共混挤出,得到PP/PS样品10,相关测试结果见表2和图1a、b。
应用例6
分别取实施例5、实施例6中的样品和PP-g-MAH产品(佳易容聚合物(上海) 有限公司,CMG5701)各5份,与60份的PP(Sabic,575P),40份的HIPS(上海赛科石化,622P)和0.5份加工助剂在双螺杆挤出机中进行共混挤出,分别得到PP/PS 合金样品11、12和13,相关测试结果见表3。
应用例7
分别取实施例1和对比例3中的样品各5份,与70份的PP(上海赛科石化,K8003),30份的HIPS(上海赛科石化,622P),10份SEBS(岳阳石化,YH503)和0.5份加工助剂在双螺杆挤出机中进行共混挤出,分别得到PP/PS合金样品14和15,相关测试结果见表4。
应用例8
取HIPS(镇江奇美,PH-88)作为样品16,再取实施例3中的POE-g-PP样品 10份与HIPS(同上牌号)90份及0.5份加工助剂复配后在双螺杆挤出机中进行共混挤出,得到改性的PS样品17,将样品16和17注塑成ISO样件后分别浸泡在质量比为1:1的乙酸乙酯和乙醇的混合溶剂中,10秒后取出样件用显微镜观察样件表面腐蚀情况,相关测试结果见图1c、d。
以上配方中的加工助剂为:抗氧剂1010和168各0.1份,润滑剂硬脂酸钙0.3份。双螺杆挤出机参数:长径比40:1,螺杆直径35mm,温度设置为200~230℃。
性能测试
拉伸强度:按照ISO 527标准测试,测试速度为50mm/min;
弯曲强度:按照ISO 178标准测试,测试速度为2mm/min;
Charpy缺口冲击强度:按照ISO 179-1标准测试,冲击能量为4J;
老化试验:将注塑的样条放入热氧老化箱中,150℃,老化时间为200h,老化完成后测试样条的黄度指数,黄度指数按ASTM E313标准测试;
样品微观形貌观察:使用扫描电镜观察;
样品表面腐蚀形态观察:使用光学显微镜观察。
根据应用例1和2制得的4个样品,力学性能和老化后的性能测试如表1。
从表1中应用例1、2的数据可以看出,在相同的合金配方体系中分别加入了等量的实施例和对比例制备的苯乙烯-聚烯烃功能化聚合物作为相容剂,从基本力学性能测试数据看,相差不大,采用本发明方法制备的相容剂在合金体系中的力学性能略有优势,特别是合金的冲击性能,但主要的差别在于,和实施例采用的方法相比,由于对比例中使用了无水三氯化铝作为催化剂,会引起聚苯乙烯的降解,从而劣化材料的抗老化性能,从老化前后材料的黄度指数值对比可以看出,使用本发明方法制备的功能聚合物耐老化性能更突出。
在表2应用例3、4的测试数据中,说明了使用本发明方法制备的苯乙烯-聚烯烃功能聚合物与常规的SEBS和SBS作为相容剂/增韧剂相比,其整体力学性能方面表现更佳,区别于SEBS或SBS相对固定的苯乙烯链段和烯烃链段,本发明制备的苯乙烯-聚烯烃功能聚合物的分子结构可调自由度更大,既可以使聚苯乙烯成为分子主链,聚烯烃设计成支链,也可以使聚烯烃成为分子主链,聚苯乙烯设计成为支链结构,可根据特定应用的不同,实现更多的功能性。
从表2和图1应用例5的结果呈现中,可以看出使用了本发明制备的功能聚合物与未使用的对比例相比,力学性能明显提高,特别是冲击性能提高显著,从图1中可以看出,未添加功能聚合物的PP/PS合金(样品10,图1(b))微观相态显示两相间界面清晰,PS在连续相中的分布呈大的块状,有少量的细小颗粒存在,由于两相的粘合能力差,被剪切分散的PS粒子容易聚集,使合金体系相容性表现不佳;而添加了本发明功能聚合物的PP/PS合金(样品9,图1(a)),分散相尺寸明显减小,孔洞清晰,相界面模糊,相间结合紧密,说明聚苯乙烯-聚烯烃功能聚合物起到了良好的增容作用。
从表3应用例6的测试数据中可以看出,选择不同分子结构作为主链的功能聚合物,在最终结果的呈现中会存在一定差异。本应用案例中使用的实施例5和6中的功能聚合物,其主链、支链结构正好相反,从制品的综合力学性能可以看出使用实施例 5的样品会优于使用实施例6的样品,因此可以根据应用场景的需要选择适宜结构的苯乙烯-聚烯烃功能聚合物;另外还比较了PP-g-MAH作为PP/PS合金的相容剂与本发明方法制备功能聚合物的对比,从最终测试结果看,使用PP-g-MAH的制品力学性能明显低于使用本发明方法使用的功能聚合物,因此可以推断出PP-g-MAH不适宜作为PP/PS合金的相容剂使用。
从表4应用例7的力学性能对比数据中可以得知,使用本发明实施例1的样品和对比例3的样品作为PP/PS合金的相容剂进行比较,虽然二者均可提高PP/PS合金的相容性,但使用本发明方法制备的功能聚合物在合金中体现的综合性能更有优势,而且相容剂本身的制备过程更为安全、简便、环保。
从图1应用例8的光学显微镜照片中可以看出,HIPS本身的耐溶剂性能较差,在乙酸乙酯和乙醇的混合溶剂中仅保持10秒钟,制件的外观就出现了明显的凹坑(图 1(c));而在HIPS中加入了10份的POE-g-PS(实施例3的样品),在同样的溶剂中保持同样的时间,制件的表面几乎没有被腐蚀的情况((图1(d)),因此本发明的苯乙烯-聚烯烃功能聚合物能够显著提高PS的耐化学品性,而且由于PS和PO-g-PS分子链结构的相似性,共混后的二者的相容性也能得到很好的保障。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。

Claims (10)

  1. 一种苯乙烯-聚烯烃功能聚合物,其特征在于,所述聚合物包括以下组分及重量份:聚合物Ⅰ30~70份、聚合物Ⅱ30~70份、催化剂0.01~1份、抗氧剂0.1~1份、润滑剂0.1~1份、助脱挥剂0.2~5份;其中,聚合物Ⅰ由重量比为(80~99):(1~20):(0.1~1.0):(0.1~2.0):(0.01~0.1):(0.1~1.0)的苯乙烯、反应性单体Ⅰ、油溶性引发剂、分散剂、助分散剂、分子量调节剂在水介质中通过悬浮聚合方法制备而成;聚合物Ⅱ由重量比为:100:(0.01~2):(0.5~6):(0.1~5):(0.2~1.0)的聚烯烃、过氧化物引发剂、反应性单体Ⅱ、稀释剂及加工助剂制备而成。
  2. 根据权利要求1所述的苯乙烯-聚烯烃功能聚合物,其特征在于,所述反应性单体Ⅰ选自甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸丁酯、甲基丙烯酸缩水甘油酯中的一种;所述油溶性引发剂为偶氮类引发剂,包括偶氮二异丁腈、偶氮二异庚腈或偶氮二异丁酸二甲酯中的至少一种;所述分散剂为PE醇、活性磷酸钙和羟乙基纤维素中的至少一种;所述助分散剂为十二烷基苯磺酸钠或十二烷基硫酸钠;所述分子量调节剂为十二烷基硫醇。
  3. 根据权利要求1或2所述的苯乙烯-聚烯烃功能聚合物,其特征在于,聚合物Ⅰ的制备包括:A1、将所述苯乙烯单体、反应性单体、油溶性引发剂、分散剂、助分散剂和分子量调节剂以及水混合,在65~80℃反应3~6小时,升温至85~90℃熟化0.5~2小时;单体总重与水的质量比为(1~3):1;A2、反应结束后过滤、清洗,于75~85℃下干燥至恒重后过筛,得到聚合物Ⅰ。
  4. 根据权利要求1所述的苯乙烯-聚烯烃功能聚合物,其特征在于,所述聚烯烃选自聚丁烯、PP、PE、乙烯‑丙烯共聚物、乙烯‑丁烯共聚物、乙烯‑辛烯共聚物中的一种或几种组合;所述过氧化物引发剂选自过氧化二异丙苯、过氧化苯甲酰、过氧化对氯苯甲酰、二叔丁基过氧化异丙基苯、2,5‑二甲基‑2,5‑双(叔丁过氧基)己烷、2,5‑二甲基‑2,5‑双(叔丁过氧基)己炔、2,5‑二甲基‑2,5‑双(过氧化苯甲酰)己烷、1,1‑双(过氧化叔丁基)‑3,3,5‑三甲基环己烷、过氧化叔丁酯中的一种或几种组合;所述反应性单体Ⅱ选自丙烯酸、甲基丙烯酸、丙烯酸酰胺、甲基丙烯酸酰胺、顺丁烯二酸酐、富马酸、马来酸二丁酯、柠檬酸、衣康酸中的一种或几种组合;所述稀释剂为丙酮、甲基乙基酮、乙酸甲酯、乙醇、矿物油中的一种或几种组合;所述加工助剂为润滑剂和抗氧剂组合物,所述润滑剂包括硅酮类、低分子蜡、脂肪酸酰胺类、金属皂盐中的一种或几种,所述抗氧剂包括受阻酚类、亚磷酸酯类抗氧剂中的一种或几种。
  5. 根据权利要求1或4所述的苯乙烯-聚烯烃功能聚合物,其特征在于,聚合物Ⅱ的制备包括:将所述聚烯烃、过氧化物引发剂、反应性单体Ⅱ、稀释剂及加工助剂混合均匀后投入到反应挤出机中,经熔融混合、挤出反应并脱挥后造粒、干燥,得到聚合物Ⅱ。
  6. 根据权利要求1所述的苯乙烯-聚烯烃功能聚合物,其特征在于,所述催化剂选自季铵盐、季磷盐、三级胺、三级磷、咪唑化合物中的至少一种。
  7. 根据权利要求1所述的苯乙烯-聚烯烃功能聚合物,其特征在于,所述抗氧剂为受阻酚类和亚磷酸酯类抗氧剂的组合;所述润滑剂为脂肪酸酰胺类、硅酮类、季戊四醇硬脂酸酯中的至少一种。
  8. 根据权利要求1所述的苯乙烯-聚烯烃功能聚合物,其特征在于,所述助脱挥剂选自无水乙醇、丙酮、超临界CO 2、去离子水、N 2中的至少一种。
  9. 一种根据权利要求1所述的苯乙烯-聚烯烃功能聚合物的制备方法,其特征在于,所述方法包括以下步骤:S1、将所述聚合物Ⅰ、聚合物Ⅱ、催化剂、抗氧剂、润滑剂混合均匀,于主喂料口投入到长径比为(44~60):1的双螺杆挤出机中,加工温度180~240℃,转速180~600rpm;S2、在双螺杆挤出机后端,通过注入口加入所述助脱挥剂,并通过脱挥口将反应过程中的残余小分子物质和助脱挥剂一起排出;S3、经模头挤出后,经水冷、切粒机造粒后得到所述苯乙烯-聚烯烃功能聚合物。
  10. 一种根据权利要求1所述的苯乙烯-聚烯烃功能聚合物的用途,其特征在于,所述聚合物用作聚烯烃/聚苯乙烯合金的相容剂,或用作改善聚苯乙烯耐化学品性能的助剂,或用作降低聚苯乙烯介电性能的助剂,或用作改善工程塑料摩擦性能的助剂。
PCT/CN2023/087955 2022-08-18 2023-04-13 一种苯乙烯-聚烯烃功能聚合物及其制备方法 WO2024037000A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210992797.2 2022-08-18
CN202210992797.2A CN115368687A (zh) 2022-08-18 2022-08-18 一种苯乙烯-聚烯烃功能聚合物及其制备方法

Publications (1)

Publication Number Publication Date
WO2024037000A1 true WO2024037000A1 (zh) 2024-02-22

Family

ID=84065897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/087955 WO2024037000A1 (zh) 2022-08-18 2023-04-13 一种苯乙烯-聚烯烃功能聚合物及其制备方法

Country Status (2)

Country Link
CN (1) CN115368687A (zh)
WO (1) WO2024037000A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115368687A (zh) * 2022-08-18 2022-11-22 佳易容聚合物(上海)有限公司 一种苯乙烯-聚烯烃功能聚合物及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0042153A2 (en) * 1980-06-11 1981-12-23 Fort Howard Cup Corporation Thermoformable polymer blend composition
CN102643484A (zh) * 2012-04-25 2012-08-22 金发科技股份有限公司 一种原位增容的聚烯烃/聚苯乙烯合金及其制法与应用
CN103183870A (zh) * 2011-12-29 2013-07-03 合肥杰事杰新材料股份有限公司 一种聚烯烃/苯乙烯基树脂组合物及其制备方法
CN115368687A (zh) * 2022-08-18 2022-11-22 佳易容聚合物(上海)有限公司 一种苯乙烯-聚烯烃功能聚合物及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1216984A (en) * 1983-10-12 1987-01-20 Gautam R. Ranade Blends of polyolefin graft polymers and asa polymers, sma polymers and condensation polymers
DE102007047837A1 (de) * 2007-11-21 2009-05-28 Wacker Chemie Ag Herstellung von Lösungen von Vinylpolymeren in reaktiven Monomeren
CN101402765A (zh) * 2008-11-17 2009-04-08 中国科学院长春应用化学研究所 原位反应增容制备聚乙烯/聚苯乙烯合金的方法
DE102012200735A1 (de) * 2012-01-19 2013-07-25 Wacker Chemie Ag Verwendung von funktionalisierten Polymerisaten als Low-Profile-Additive (LPA)
CN103421139A (zh) * 2012-05-21 2013-12-04 广州熵能聚合物技术有限公司 一种相容剂及其应用
CN111303438B (zh) * 2020-04-07 2022-03-01 嘉兴华雯化工股份有限公司 Abs、pc/abs合金用消光剂及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0042153A2 (en) * 1980-06-11 1981-12-23 Fort Howard Cup Corporation Thermoformable polymer blend composition
CN103183870A (zh) * 2011-12-29 2013-07-03 合肥杰事杰新材料股份有限公司 一种聚烯烃/苯乙烯基树脂组合物及其制备方法
CN102643484A (zh) * 2012-04-25 2012-08-22 金发科技股份有限公司 一种原位增容的聚烯烃/聚苯乙烯合金及其制法与应用
CN115368687A (zh) * 2022-08-18 2022-11-22 佳易容聚合物(上海)有限公司 一种苯乙烯-聚烯烃功能聚合物及其制备方法

Also Published As

Publication number Publication date
CN115368687A (zh) 2022-11-22
CN115368687A9 (zh) 2024-04-12

Similar Documents

Publication Publication Date Title
CN102030960B (zh) 含杂化长支链结构的高熔体强度聚烯烃的制备方法
JPWO2018180469A1 (ja) ポリオレフィン樹脂複合材及びその製造方法
WO2024037000A1 (zh) 一种苯乙烯-聚烯烃功能聚合物及其制备方法
EP1834987B1 (en) Method for the production of a polypropylene composition with selective cross-linkable dispersed phase
JPH01279937A (ja) 弾性プラスチック組成物およびその製法
CN101125947A (zh) 含长支链结构的高熔体强度聚丙烯及其制备方法
US20120245297A1 (en) Modified propylene polymer
CN105504170B (zh) 一种高熔体强度聚丙烯的制备方法
CN102079841A (zh) 高流动抗冲聚丙烯组合物及其制备方法
JP6865225B2 (ja) 低ゲル含量の官能化エチレン系ポリマーを製造するための方法
US8716408B2 (en) Method for producing modified propylene polymer
CN112094472B (zh) 一种高焊接强度聚丙烯组合物及其制备方法和应用
CN110041470A (zh) 一种官能化烯烃嵌段共聚物抗氧母粒及其制备方法
CN109206713A (zh) 一种含杨木粉的回收高密度聚乙烯复合材料的制备方法及应用
WO2014159952A1 (en) Grafted polyethylene
US5319031A (en) Segmented ionomeric copolymer
CN116261518A (zh) 基于丙烯聚合物的复合薄膜及其制备方法和应用
WO2000050509A1 (en) Lubricants for melt processable multipolymers of acrylonitrile and olefinically unsaturated monomers
JP2009040958A (ja) 変性ポリオレフィン樹脂の製造方法
JP3344155B2 (ja) 樹脂組成物の製造方法、樹脂組成物および成形品
CN114350069B (zh) 一种耐刮伤改性聚丙烯复合材料及其制备方法和用途
CN115895163A (zh) 一种聚烯烃-芳香族乙烯-氰化乙烯基功能聚合物及制备方法
CA2033158A1 (fr) Compositions comprenant des copolymeres d'ethylene
CA2075675A1 (en) Polymer blends
CN117304665A (zh) 一种聚乳酸接枝共聚物与生物基助剂协同改性pla/pbat复合材料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23853911

Country of ref document: EP

Kind code of ref document: A1