WO2024036667A1 - 用于水下机器人的测温系统及方法 - Google Patents

用于水下机器人的测温系统及方法 Download PDF

Info

Publication number
WO2024036667A1
WO2024036667A1 PCT/CN2022/115762 CN2022115762W WO2024036667A1 WO 2024036667 A1 WO2024036667 A1 WO 2024036667A1 CN 2022115762 W CN2022115762 W CN 2022115762W WO 2024036667 A1 WO2024036667 A1 WO 2024036667A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature measurement
underwater
temperature
umbilical cable
optical fiber
Prior art date
Application number
PCT/CN2022/115762
Other languages
English (en)
French (fr)
Inventor
张定华
吉顺冬
涂绍平
王勇
朱迎谷
宋俊辉
朱俊
朱建波
徐蕾
肖峰
Original Assignee
上海中车艾森迪海洋装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海中车艾森迪海洋装备有限公司 filed Critical 上海中车艾森迪海洋装备有限公司
Publication of WO2024036667A1 publication Critical patent/WO2024036667A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C11/00Equipment for dwelling or working underwater; Means for searching for underwater objects
    • B63C11/52Tools specially adapted for working underwater, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D1/00Rope, cable, or chain winding mechanisms; Capstans
    • B66D1/60Rope, cable, or chain winding mechanisms; Capstans adapted for special purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • F16M11/043Allowing translations
    • F16M11/046Allowing translations adapted to upward-downward translation movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/18Heads with mechanism for moving the apparatus relatively to the stand

Definitions

  • the present disclosure relates to the technical field of underwater robots, and in particular, to a temperature measurement system and method for underwater robots.
  • Underwater robots are generally powered by surface vessels through umbilical cables, sending control signals and receiving feedback signals.
  • the temperature of the umbilical cable is usually measured through optical fiber temperature measurement technology.
  • the cable storage winch in the underwater robot deployment system uses a photoelectric slip ring due to the multi-layer rotating storage cable. The rotation of the photoelectric slip ring will cause the optical fiber temperature measurement The temperature measurement of the technology is distorted, so the accuracy of measuring the temperature of the umbilical is lower.
  • the purpose of the present disclosure is to propose a temperature measurement system and method for underwater robots, which at least to a certain extent solve one of the technical problems in the related art.
  • exemplary embodiments of the present disclosure provide a temperature measurement system for an underwater robot, including:
  • the umbilical cable is configured to be connected to the underwater robot
  • the winch includes a drum and a rotating shaft.
  • the drum can rotate around the rotating shaft.
  • the umbilical cord is partially wound on the outer wall of the drum.
  • a first photoelectric slide is provided on the rotating shaft.
  • Ring, the inner wall of the drum is provided with a first optical fiber temperature measurement unit, and the first optical fiber temperature measurement unit is configured to measure the temperature of the umbilical cable.
  • it also includes:
  • the winch is connected to the mooring cable management system through the umbilical cable, and the mooring cable management system is connected to the underwater robot through the mooring cable;
  • the tether management system includes a second optoelectronic slip ring, and the tether is partially wound in the tether management system;
  • the underwater robot includes a second optical fiber temperature measurement unit configured to measure the temperatures of the tether management system, the tether and the underwater robot.
  • it also includes:
  • the control system is configured to control the winch, the tether management system, and the underwater vehicle.
  • the winch further includes:
  • the first junction box is arranged on the inner wall of the reel, the first optical fiber temperature measurement unit is arranged inside the first junction box, and a first communication unit is also arranged inside the first junction box, The first optical fiber temperature measurement unit is electrically connected to the first communication unit;
  • a second communication unit is provided inside the second junction box
  • the first communication unit is configured to communicate with the second communication unit
  • the second communication unit is configured to communicate with the first communication unit and the control system.
  • the umbilical cable contains two optical fibers with fused ends;
  • the temperature of the two ends of the fused optical fibers is measured to obtain the temperature of the umbilical cable.
  • the first junction box is also provided with a coupling energy device
  • the coupling energy-taking device is configured to convert alternating current into direct current to supply power to the first optical fiber temperature measurement unit.
  • the winch further includes:
  • the cooling unit is configured to cool the umbilical cable
  • the control system is further configured to control the cooling unit to cool the umbilical cable in response to determining that the temperature of the umbilical cable is greater than or equal to a preset first temperature threshold.
  • the cooling unit includes a first cooling spray pipe and a second cooling spray pipe;
  • the first cooling spray pipe is arranged outside the reel and is spaced apart from the reel.
  • the spray direction of the first cooling spray pipe is toward the axis of the reel and vertically. Down;
  • the second cooling spray pipe is arranged inside the reel and is spaced apart from the reel.
  • the spray direction of the second cooling spray pipe is toward the axis of the reel and vertically upward. .
  • control system is further configured to control to turn off the power supply of the umbilical cable in response to determining that the temperature of the umbilical cable is greater than or equal to a preset second temperature threshold; wherein, the The second temperature threshold is greater than the first temperature threshold.
  • the underwater robot also includes an underwater temperature measurement optical fiber, an underwater electronic cabin, an underwater hydraulic station, and an underwater hydraulic valve box;
  • the second optical fiber temperature measurement unit is connected to the underwater temperature measurement optical fiber, and the underwater temperature measurement optical fiber passes through the underwater electronic cabin, the underwater hydraulic station and the underwater hydraulic valve in sequence. box and connected to the mooring cable;
  • the second optical fiber temperature measurement unit is further configured to measure the temperatures of the underwater electronic cabin, the underwater hydraulic station and the underwater hydraulic valve box.
  • a photoelectric conversion module is provided in the underwater electronic cabin
  • the photoelectric conversion module is configured to convert temperature data in the form of electrical signals into temperature data in the form of optical signals;
  • the umbilical cable is configured to transmit the temperature data in the form of optical signals to the control system.
  • the temperature of the umbilical cable is measured according to several different preset measurement intervals to obtain several umbilical cable temperature data, and the average of the umbilical cable temperature data in the target distance section is calculated to obtain the target The temperature of the umbilical cable from the distance section.
  • control system is further configured to control reducing the operating power of the underwater robot in response to determining that the temperature of the umbilical cable is greater than or equal to a preset third temperature threshold.
  • exemplary embodiments of the present disclosure also provide a temperature measurement method for an underwater robot, which is implemented by the temperature measurement system for an underwater robot as described above.
  • the method includes:
  • the temperature of the umbilical cable is measured through the first optical fiber temperature measurement unit.
  • inventions of the present disclosure provide a temperature measurement system and method for an underwater robot.
  • the system includes: a winch and an umbilical cable; the umbilical cable is configured to be connected to the underwater robot;
  • the winch includes a drum and a rotating shaft. The drum can rotate around the rotating shaft.
  • the umbilical cord is partially wound on the outer wall of the drum.
  • a first photoelectric slide is provided on the rotating shaft. Ring, the inner wall of the drum is provided with a first optical fiber temperature measurement unit, and the first optical fiber temperature measurement unit is configured to measure the temperature of the umbilical cable.
  • the first optical fiber temperature measurement unit is directly connected to the optical fiber in the umbilical cable without passing through the first photoelectric slip ring, which can avoid the distortion of temperature measurement caused by the first photoelectric slip ring and improve the accuracy of temperature measurement. .
  • Figure 1 is a schematic diagram of an application scenario of an exemplary temperature measurement system for underwater robots provided by an embodiment of the present disclosure
  • Figure 2 is a schematic structural diagram of an exemplary winch provided by an embodiment of the present disclosure
  • Figure 3 is a schematic structural diagram of an exemplary optoelectronic slip ring provided by an embodiment of the present disclosure
  • Figure 4 is a schematic structural diagram of an exemplary umbilical cable provided by an embodiment of the present disclosure.
  • Figure 5 is a schematic structural diagram of an exemplary tether management system provided by an embodiment of the present disclosure
  • Figure 6 is a schematic structural diagram of an exemplary underwater robot provided by an embodiment of the present disclosure.
  • Figure 7 is a schematic flow chart of an exemplary optical fiber temperature measurement method provided by an embodiment of the present disclosure.
  • Figure 8 is a schematic structural diagram of an exemplary underwater robot temperature measurement system provided by an embodiment of the present disclosure.
  • Figure 9 is a schematic structural diagram of an exemplary communication unit provided by an embodiment of the present disclosure.
  • Figure 10 is a schematic structural diagram of an exemplary coupling energy harvesting device provided by an embodiment of the present disclosure.
  • Figure 11 is a schematic diagram of an exemplary umbilical cable temperature distribution provided by an embodiment of the present disclosure.
  • Figure 12 is a schematic flow chart of an exemplary cooling method provided by an embodiment of the present disclosure.
  • Figure 13 is another schematic diagram of an exemplary umbilical cable temperature distribution provided by an embodiment of the present disclosure.
  • Figure 14 is another schematic diagram of an exemplary umbilical cable temperature distribution provided by an embodiment of the present disclosure.
  • Figure 15 is a schematic structural diagram of an exemplary cooling unit provided by an embodiment of the present disclosure.
  • Figure 16 is another structural schematic diagram of an exemplary underwater robot provided by an embodiment of the present disclosure.
  • Figure 17 is a schematic diagram of an exemplary communication connection structure provided by an embodiment of the present disclosure.
  • Figure 18 is a schematic flow chart of an exemplary temperature data processing method provided by an embodiment of the present disclosure.
  • Figure 19 is a schematic flowchart of an exemplary underwater robot power control method provided by an embodiment of the present disclosure.
  • Figure 20 is a schematic flowchart of an exemplary umbilical cable selection method provided by an embodiment of the present disclosure.
  • Winch 200 drum 201; rotating shaft 202; first photoelectric slip ring 203; photoelectric slip ring input optical fiber 2031; photoelectric slip ring refracting prism 2032; photoelectric slip ring output optical fiber 2033; first optical fiber temperature measurement unit 204; first wiring Box 205; second junction box 206; first communication unit 207; second communication unit 208; coupling energy device 209; cooling unit 210;
  • Umbilical cable 300 armor layer 301; protective layer 302; filling material 303; power unit 304; control unit 305; optical unit 306; ground wire unit 307;
  • Tether management system 400 second photoelectric slip ring 401;
  • Underwater robot 600 underwater hydraulic station 601; underwater hydraulic valve box 602; underwater transformer 603; second optical fiber temperature measurement unit 604; temperature measurement optical fiber 605; underwater electronic cabin 606;
  • a frame 700 A frame 700.
  • the inventor of the present disclosure found that the reason why the accuracy of measuring the temperature of the umbilical cable in the above related technologies is low is that the underwater robot system is different from the land, because the umbilical cable is particularly long, and a large part of it is immersed in water when deployed. After recycling, they are all layered and wound on the winch. Therefore, it is difficult to use traditional temperature measurement methods such as thermal resistors and thermocouples to measure the temperature of all umbilical cables. Choosing optical fiber temperature measurement can avoid these unfavorable factors. When the optical fiber temperature measurement unit is working It emits light of a specific wavelength, receives light reflected back at two different wavelengths, and calculates the temperature through the ratio of the reflected light power of the two wavelengths.
  • this ratio has a fixed corresponding relationship with different temperatures.
  • the cable storage winch in the underwater robot deployment system uses a photoelectric slip ring due to the multi-layer rotating storage cable.
  • the photoelectric slip ring rotates, the two wavelengths pass through different angles, resulting in different losses, which reduces the power
  • the ratio is no longer a normal proportional relationship, causing distortion in the measured temperature data.
  • the present disclosure provides a temperature measurement solution for an underwater robot, which specifically includes: a winch and an umbilical cable; the umbilical cable is configured to be connected to the underwater robot; the winch includes a coil A drum and a rotating shaft. The drum can rotate around the rotating shaft. The umbilical cord is partially wound on the outer wall of the drum. A first photoelectric slip ring is provided on the rotating shaft. The drum A first fiber optic temperature measurement unit is provided on the inner wall of the fiber optic cable, and the first fiber optic temperature measurement unit is configured to measure the temperature of the umbilical cable.
  • the first optical fiber temperature measurement unit is directly connected to the optical fiber in the umbilical cable without passing through the first photoelectric slip ring, which can avoid the distortion of temperature measurement caused by the first photoelectric slip ring and improve the accuracy of temperature measurement. .
  • FIG. 1 is a schematic diagram of an application scenario of an exemplary temperature measurement system for an underwater robot provided by an embodiment of the present disclosure.
  • the application scenario includes a control system 100, a winch 200, an umbilical (Umbilical) 300, a tether management system (TMS) 400, a tether (Tether) 500, an underwater robot (Remote Operated Vehicle, ROV) 600 and A frame 700.
  • a control system 100 a winch 200, an umbilical (Umbilical) 300, a tether management system (TMS) 400, a tether (Tether) 500, an underwater robot (Remote Operated Vehicle, ROV) 600 and A frame 700.
  • Umbilical umbilical
  • TMS tether management system
  • Tether tether
  • ROV Remote Operated Vehicle
  • control system 100 is used to control other components.
  • the winch 200 is connected to the mooring cable management system 400 through the umbilical cable 300.
  • the mooring cable management system 400 is connected to the underwater robot 600 through the mooring cable 500.
  • the underwater robot 600 is deployed through the A frame. and recycling.
  • the winch 200 includes a drum 201 and a rotating shaft 202 .
  • the drum 201 can rotate around the rotating shaft 202 , and a first photoelectric slip ring 203 is provided on the rotating shaft 202 .
  • the winch 200 is used to store and release the umbilical 300 .
  • the first optoelectronic slip ring 203 includes an optoelectronic slip ring input optical fiber 2031 , an optoelectronic slip ring refracting prism 2032 , and an optoelectronic slip ring output optical fiber 2033 .
  • Optoelectronic slip rings can transmit electrical energy, electrical signals, light energy, and optical signals between relatively rotating parts, ensuring the normal transmission of energy or signals in rotating connections.
  • the umbilical cable 300 includes an armor layer 301 , a protective layer 302 , a filling material 303 , a power unit 304 , a control unit 305 , an optical unit 306 and a ground wire unit 307 .
  • the power unit 304 includes a metal cable; the optical unit 306 includes a single-mode or multi-mode optical fiber.
  • Metal cables are generally used to transmit power and control power to underwater robots; surface control signals and underwater feedback signals are generally converted into optical signals through photoelectric conversion modules, and are sent and received to each other through optical fibers.
  • the umbilical cable 300 also includes hydraulic or chemical pipes, which can be steel pipes or hoses.
  • the umbilical cable 300 is partly wound around the winch 200 and partly arranged underwater.
  • the umbilical cable 300 is used to provide a power unit for the underwater robot 600 and transmit signals.
  • the tether 500 is the umbilical cable 300 that does not include the armor layer 301 .
  • the outer wall of the umbilical cable 300 usually includes an armor layer 301 (generally made of metal).
  • the bending radius of the umbilical cable 300 is large and relatively stiff. It is detrimental to the movement sensitivity of underwater robots in the water. Therefore, a section of the mooring cable 500 without the armor layer 301 is generally designed underwater, and the mooring cable 500 is released when the umbilical cable 300 is deployed to the working depth, so that the underwater robot 600 can move more freely.
  • a second optoelectronic slip ring 401 is provided within the tether management system 400.
  • Tether management system 400 is used to store and release tether 500.
  • the underwater robot 600 includes an underwater hydraulic station 601 , an underwater hydraulic valve box 602 and an underwater transformer 603 .
  • the underwater robot 600 also includes an underwater electronic cabin 606 (not shown in the figure) and underwater working tools (not shown in the figure).
  • the underwater robot 600 is used for underwater operations.
  • the A frame 700 is used for deploying and recovering the underwater robot 600 .
  • the A frame 700 can deploy the underwater robot 600 outside the ship's side.
  • the distributed optical fiber temperature sensor uses the spontaneous Raman scattering effect in the optical fiber and OTDR (optical time-domain reflectometer) technology. Its basic working process is shown in Figure 7.
  • the pulsed light emitted by the light source enters the temperature measurement fiber through the wavelength division multiplexer (WDM).
  • WDM wavelength division multiplexer
  • the excitation photons in the fiber collide inelastically with the fiber molecules, producing high-frequency shifted anti-Stokes light and low-frequency shifted Stokes light.
  • Stokes light, backscattered anti-Stokes light and Stokes light then reach the photodetector via WDM for photoelectric conversion, and finally enter the signal processing system for analysis.
  • the position where the backscattered light is generated in the optical fiber can be calculated through the time when the photoelectric detector detects the light signal; distributed measurement of the temperature of the temperature measurement optical fiber is achieved by detecting changes in the power of the backscattered light.
  • FIG. 8 is a schematic structural diagram of an exemplary underwater robot temperature measurement system provided by an embodiment of the present disclosure.
  • the temperature measurement system of underwater robots includes:
  • Winch 200 and umbilical cable 300 (not shown in the figure);
  • the umbilical cable 300 is configured to connect with the underwater robot 600;
  • the winch 200 includes a drum 201 and a rotating shaft 202.
  • the drum 201 can rotate around the rotating shaft 202.
  • the umbilical cord 300 is partially wound on the outer wall of the drum 201.
  • the rotating shaft A first photoelectric slip ring 203 is provided on the drum 202, and a first optical fiber temperature measurement unit 204 is provided on the inner wall of the drum 201.
  • the first optical fiber temperature measurement unit 204 is configured to measure the temperature of the umbilical cable 300.
  • the underwater robot 600 is usually connected by an umbilical cable 300 several kilometers long due to its large working depth and strong power requirements.
  • the metal cable provides power and the optical fiber transmits control signals.
  • the umbilical 300 is typically deployed and retrieved via a winch 200 . Due to the rotation characteristics of the multi-layer storage cable of the winch 200, in order to transmit the photoelectric signal of the umbilical cable 300 from the surface control cabin to the underwater robot 600, it must pass through the first photoelectric slip ring installed on the rotation axis 202 of the winch 200. 203.
  • the optical signal used for control signal communication is a kind of modulated light, which is modulated at the transmitting end and demodulated at the receiving end, and has a verification mechanism, so it will not affect communication when passing through the first photoelectric slip ring 203.
  • the first optical fiber temperature measurement unit 204 works, it emits light of a specific wavelength, receives reflected light of two different wavelengths, and calculates the temperature through the ratio of the reflected light power of the two wavelengths. Under normal circumstances, this ratio has a fixed corresponding relationship with different temperatures.
  • the first photoelectric slip ring 203 rotates, the two wavelengths pass through different angles and produce different losses, so that the power ratio is no longer normal. proportional relationship, thus causing distortion in the measured temperature data.
  • the first optical fiber temperature measurement unit 204 is arranged on the inner wall of the drum 201 of the winch 200.
  • the first optical fiber temperature measurement unit 204 is directly connected to the optical fiber in the umbilical cable 300 without passing through the first photoelectric slip ring 203. This can avoid The pulse laser emitted by the first optical fiber temperature measurement unit 204 passes through the first photoelectric slip ring 203, causing distortion in the temperature measurement.
  • the temperature measurement system for underwater robots also includes:
  • the control system 100 is configured to control the winch 200 .
  • control system 100 is further configured to receive umbilical temperature measurements obtained by measuring the temperature of the umbilical 300 .
  • the winch 200 further includes:
  • the first junction box 205 is arranged on the inner wall of the reel 201, and the first optical fiber temperature measurement unit 204 is arranged inside the first junction box 205.
  • the first junction box 205 is also provided with First communication unit 207, the first optical fiber temperature measurement unit 204 is electrically connected to the first communication unit 207;
  • a second communication unit 208 is provided inside the second junction box 206;
  • the first communication unit 207 is configured to communicate with the second communication unit 208;
  • the second communication unit 208 is configured to communicate with the first communication unit 207 and the control system 100 .
  • the first junction box 205 rotates as the drum 201 rotates, and the second junction box 206 does not rotate.
  • the first communication unit 207 is a wireless transmitter
  • the second communication unit 208 is a wireless receiver
  • the first optical fiber temperature measurement unit 204 and the wireless transmitter are installed in the first junction box 205 of the winch 200
  • the wireless The receiving end is installed in the second junction box 206 of the winch 200.
  • the first optical fiber temperature measurement unit 204 is connected to the wireless transmitter in the first junction box 205 of the winch 200, and a second connection between the wireless transmitter and the winch 200 is established.
  • the communication of the wireless receiving end in the box 206 can upload the temperature information of the umbilical cable 300 towing the underwater robot 600 to the control system 100 without interference.
  • the first communication unit 207 is a USB wireless network card adapter
  • the second communication unit 208 is a wireless router
  • the wireless router is connected to the network of the control system 100 through a network cable.
  • the wireless network card and wireless router here can also be replaced by "Bluetooth transmitter and receiver” or “near field communication transmitter and receiver” and other wireless data exchange devices that can realize the above functions.
  • the umbilical cable 300 includes two optical fibers with fused ends;
  • the temperature of the two ends of the fused optical fibers is measured to obtain the temperature of the umbilical cable 300 .
  • the two optical fibers with fused ends are spare optical fibers in the umbilical cable 300 .
  • the umbilical cable 300 contains multiple optical fibers, and usually reserves a number of, for example, 2 to 3 spare optical fibers. These spare optical fibers are used for temperature measurement in this disclosure. If the number of spare optical fibers allows, the two optical fibers can be fused at the end of the umbilical cable 300, so that double temperature data of the umbilical cable 300 can be obtained. By comparing the double temperature data, the temperature can be increased. Credibility, and timely detection of faults when comparison differences are large.
  • a coupling energy device 209 is also provided in the first junction box 205;
  • the coupling energy-taking device 209 is configured to convert alternating current into direct current to provide power to the first optical fiber temperature measurement unit 204 .
  • the present disclosure adds a coupling energy-taking device 209 in the first junction box 205, and three-phase high-voltage cables pass through three couplers respectively.
  • the AC current in the high-voltage cable and the coupler produce electromagnetic induction, which generates a current at the output end of the coupler.
  • the generated current is rectified into direct current by the rectification device and then connected to the current superposition device.
  • the output end of the current superposition device is connected to the inverter voltage stabilizing device to obtain a stable control power supply for use by the first optical fiber temperature measurement unit 204.
  • the control system 100 can collect the temperature distribution of the entire umbilical cable 300 through the first optical fiber temperature measurement unit 204 .
  • the measured temperature data is as shown below.
  • the abscissa is the length of the umbilical cable 300 in meters (m), and the ordinate is the temperature value in degrees Celsius (°C).
  • the temperature of the first 2000 meters of undeployed umbilical cable 300 is significantly higher than that of the deployed 4000 meters of umbilical cable 300 due to concentrated heat generation and difficulty in dissipating heat. From the temperature data of the undeployed 2000-meter umbilical cord 300, it can be found that the umbilical cord 300 in the middle of the winding layer of the umbilical cord 300 (900-1100 meters) has the highest temperature.
  • the winch 200 further includes:
  • the cooling unit 210 is configured to cool the umbilical cable 300;
  • the control system 100 is further configured to control the cooling unit 210 to cool the umbilical cable 300 in response to determining that the temperature of the umbilical cable 300 is greater than or equal to a preset first temperature threshold.
  • control system 100 is further configured to control to turn off the power supply of the umbilical cable 300 in response to determining that the temperature of the umbilical cable 300 is greater than or equal to a preset second temperature threshold; wherein , the second temperature threshold is greater than the first temperature threshold.
  • the control system 100 reads the temperature data of the entire umbilical cable 300 from the first optical fiber temperature measurement unit 204, and obtains the average temperature per unit distance after processing, and uses the obtained temperature value Compare with the set temperature threshold.
  • the cooling unit 210 is not started to save resources; when the temperature of the umbilical cable 300 exceeds the "cooling temperature threshold", the cooling unit 210 is automatically turned on to perform cooling on the umbilical cable 300. cool down.
  • the control system 100 will cut off the power supply of the umbilical cable 300 to prevent the umbilical cable 300 from being damaged due to overheating.
  • the cooling unit 210 includes a first cooling spray pipe and a second cooling spray pipe (not shown in the figure);
  • the first cooling spray pipe is arranged outside the drum 201 and is spaced apart from the drum 201.
  • the spray direction of the first cooling spray pipe is toward the axis of the drum 201. and vertically downward;
  • the second cooling spray pipe is arranged inside the drum 201 and is spaced apart from the drum 201.
  • the spray direction of the second cooling spray pipe is toward the axis of the drum 201. And vertically upward.
  • a cooling spray pipe is added above the winch 200.
  • the control system 100 compares the maximum temperature of the umbilical cable 300 to exceed the set cooling threshold temperature, the control system 100 issues a prompt and automatically opens the cooling spray pipe to start spraying.
  • a set of upward cooling spray pipes is also arranged inside the winch 200, so that the umbilical cable 300 can be cooled from both inside and outside at the same time. And the cooling water is sprayed toward the top of the winch 200, and the cooling water flows downward along the winch 200 and the umbilical cable 300, which can cool the umbilical cable 300 coiled on the entire winch 200.
  • the temperature measurement system for underwater robots also includes:
  • the winch 200 is connected to the mooring cable management system 400 through the umbilical cable 300, and the mooring cable management system 400 is connected to the underwater robot 600 through the mooring cable 500;
  • the tether management system 400 includes a second optoelectronic slip ring 401, and the tether 500 is partially wound in the tether management system 400;
  • the underwater robot 600 includes a second optical fiber temperature measurement unit 604.
  • the second optical fiber temperature measurement unit 604 is configured to measure the temperature of the tether management system 400, the tether 500 and the underwater robot 600. temperature.
  • the umbilical cable 300 includes a metal armor outer layer for load-bearing purposes, so the bending radius of the umbilical cable 300 is large and relatively stiff, which is very detrimental to the movement sensitivity of the underwater robot 600 in the water. Therefore, a section of mooring cable 500 without an armor layer is designed underwater, and the mooring cable 500 is released when the umbilical cable 300 is deployed to the working depth, so that the underwater robot 600 can move more freely.
  • the mooring cable 500 is coiled on the mooring cable management system 400.
  • the function and structure of the mooring cable management system 400 are similar to the winch 200. Therefore, it also needs to pass through an optoelectronic slip ring. Therefore, the temperature of the downward components of the mooring cable management system 400 cannot pass through the third An optical fiber temperature measurement unit 204 measures.
  • the present disclosure provides a second optical fiber temperature measurement unit 604 in the underwater robot 600.
  • the second optical fiber temperature measurement unit 604 is connected to the temperature measurement optical fiber 605.
  • the temperature measurement optical fiber 605 passes through the locations where the temperature needs to be measured in the underwater robot 600 in sequence, and is finally connected to the optical fiber in the mooring cable 500. All the places where the temperature measurement optical fiber 605 passes All can measure real-time temperature. If there is new equipment that needs to measure temperature in the future, you only need to arrange the temperature measurement optical fiber 605 to the new equipment for measurement, which greatly increases the scalability of the temperature measurement system.
  • control system 100 is further configured to control the tether management system 400 and the underwater vehicle 600 .
  • the underwater robot 600 also includes an underwater temperature measurement optical fiber 605, an underwater electronic cabin 606, an underwater hydraulic station 601 and an underwater hydraulic valve box 602;
  • the second optical fiber temperature measurement unit 604 is connected to the underwater temperature measurement optical fiber 605, and the underwater temperature measurement optical fiber 605 passes through the underwater electronic cabin 606, the underwater hydraulic station 601 and the The underwater hydraulic valve box 602 is connected to the mooring cable 500;
  • the second optical fiber temperature measurement unit 604 is also configured to measure the temperatures of the underwater electronic cabin 606 , the underwater hydraulic station 601 and the underwater hydraulic valve box 602 .
  • a photoelectric conversion module is provided in the underwater electronic cabin 606;
  • the photoelectric conversion module is configured to convert temperature data in the form of electrical signals into temperature data in the form of optical signals;
  • the umbilical cable 300 is configured to transmit the temperature data in the form of optical signals to the control system 100 .
  • the first optical fiber temperature measurement unit 204 is connected to the wireless router placed in the second junction box 206 of the winch 200 through the USB wireless network card connected to itself.
  • the wireless router is connected to the control system 100 through a network cable, so that the first optical fiber
  • the temperature measurement unit 204 is in the same local area network as the industrial computer of the control system 100;
  • the second fiber optic temperature measurement unit 604 is connected to the underwater electronic cabin 606 through a watertight network cable, and is converted into an optical signal through the photoelectric conversion module, and then passes through the umbilical cord 300 optical fiber It is connected to the water surface control cabin, and then converted into electrical signals by the photoelectric conversion module of the water surface control cabin, so that the underwater optical fiber temperature measurement unit is also in the same local area network as the control system 100 industrial computer.
  • the first optical fiber temperature measurement unit 204 establishes a Modbus TCP slave station 1
  • the second optical fiber temperature measurement unit 604 establishes a Modbus TCP slave station 2.
  • the Modbus TCP master station sends temperature reading instructions to slave stations 1 and 2 respectively, and the slave station replies with temperature data after receiving the reading instructions.
  • the data format received by the Modbus TCP master station is: "station number reading command interval distance temperature 1 temperature 2 temperature 3...temperature n check code".
  • the data displays the temperature distribution data with the horizontal axis as distance and the vertical axis as temperature, as shown in Figure 11, Figure 13 and Figure 14.
  • Modbus is a standard industrial control data exchange protocol.
  • Modbus TCP is a communication protocol that runs Modbus on a TCP network, which increases the Modbus communication bandwidth and reduces communication delays.
  • the temperature of the umbilical cable 300 is measured according to several different preset measurement intervals to obtain several umbilical cable 300 temperature data, and the average of the umbilical cable 300 temperature data in the target distance section is calculated. , to obtain the temperature of the umbilical cable 300 in the target distance section.
  • the temperature data obtained is a series of data streams separated by distance.
  • the measured temperature value represents the temperature of this section of optical fiber.
  • the temperature measurement distance of optical fiber temperature measurement units generally has a minimum resolution. As an example, the minimum separation distance of the selected optical fiber temperature measurement units is 0.5 meters. If it is always measured at a fixed distance interval, the temperature obtained will always be the temperature of a fixed point on the temperature measuring optical fiber 605, which greatly affects the comprehensiveness of the temperature measurement. Therefore, the present disclosure chooses to change the temperature measurement distance to distribute more temperature measurement points on the entire temperature measurement optical fiber 605, which can make the temperature measurement data obtained more comprehensive and accurate. For example, when the temperature is only measured at an interval of 0.5 meters, the measured temperature data between 1-2 meters is 3 (1, 1.5, 2).
  • control system 100 is further configured to control to reduce the operating power of the underwater robot 600 in response to determining that the temperature of the umbilical cable 300 is greater than or equal to a preset third temperature threshold.
  • the inventor of the present disclosure found that the ROV umbilical cable 300 continues to operate at full power only for 2% of the time, and operates below the maximum current 98% of the time. If the umbilical cable 300 design scheme selects the conductor according to the full power working condition, the cross-sectional area of the conductor will be very large, which is completely unnecessary in practical applications.
  • the temperature monitoring system can be used to continuously monitor the temperature of the umbilical cable 300, so that the umbilical cable 300 can still work normally even when the conductor cross-sectional area is reduced.
  • the operator can adjust the ROV operating conditions according to the actual working temperature of the umbilical cable 300 and use the umbilical cable 300 safely under the maximum allowable power of the ROV.
  • the control system 100 issues a warning to prompt the operator to temporarily reduce the use of the ROV. current so that the umbilical cable 300 temperature cools down.
  • the obtained temperature values are stored in the historical database for archiving according to time.
  • the maximum allowable current of umbilical cables 300 of various specifications at safe temperatures and the minimum cable diameter of the umbilical cable 300 at a fixed current can be analyzed based on the historical data.
  • a comparison table of the maximum current allowed for umbilical cables 300 of different specifications is formed.
  • this comparison table can be referred to to select the most economical umbilical cable 300 to reduce project costs.
  • the umbilical cable 300 has always been a high-cost component in the underwater robot system due to its high technical requirements and long distance. In the past, for the safety of the entire system, a very large cable diameter margin was reserved during design, which increased costs.
  • an umbilical cable 300 with a more reasonable cable diameter can be selected based on the temperature data obtained in the previous stage, which can reduce the cost of the umbilical cable 300.
  • the temperature measurement system for an underwater robot includes: a winch and an umbilical cable; the umbilical cable is configured to be connected to the underwater robot; in the winch It includes a drum and a rotating shaft. The drum can rotate around the rotating shaft. The umbilical cord is partially wound on the outer wall of the drum. A first optoelectronic slip ring is provided on the rotating shaft. A first optical fiber temperature measurement unit is provided on the inner wall of the drum, and the first optical fiber temperature measurement unit is configured to measure the temperature of the umbilical cable. In the present disclosure, the first optical fiber temperature measurement unit is directly connected to the optical fiber in the umbilical cable without passing through the first photoelectric slip ring, which can avoid the distortion of temperature measurement caused by the first photoelectric slip ring and improve the accuracy of temperature measurement. .
  • the present disclosure provides a real-time temperature measurement system for the entire ROV system, which includes using existing optical fibers and optical fiber temperature measurement technology to summarize the temperatures of various components and systems of the underwater ROV to achieve the temperature of the entire system. monitor.
  • Real-time monitoring of the temperature of the entire ROV system greatly ensures stable operation of the system; the use of spare optical fibers in the umbilical cable eliminates the need to increase costs; the temperature measurement range is large and the temperature of the entire umbilical cable can be detected.
  • This disclosure takes advantage of wireless temperature transmission to avoid temperature measurement distortion caused by the rotation of the photoelectric slip ring. It is suitable for temperature measurement of umbilical cables on winch-containing equipment such as ROVs, underwater trenchers, and manned underwater robots. It has low interference and uses wireless transmission data to avoid temperature measurement distortion caused by interruption of optical fiber paths caused by photoelectric slip rings.
  • the present disclosure provides a backup method that utilizes optical fiber ring network measurement and multi-point measurement to improve accuracy and prevent optical fiber damage at the same time.
  • Spare optical fibers are used to form a ring network to obtain double data without increasing costs; the double data can be compared in real time, and when the difference is too large, abnormalities in the temperature measurement system can be discovered in time; the double data can be calculated using the average value to obtain more stability temperature curve.
  • the present disclosure provides a self-coupling energy-taking device for equipment in the rotor box, realizing power-taking without physical connection between the rotor box and the outside world.
  • Self-coupling energy harvesting equipment can draw electricity without contact, reducing the risk of high-voltage electric shock and increasing equipment safety; non-contact electricity harvesting eliminates the need for insulation design and reduces costs.
  • the present disclosure provides an umbilical cable cooling system that can reduce the operating temperature of the umbilical cable and increase system availability.
  • Turning on the cooling water according to the temperature of the umbilical cord can reduce the operating temperature of the umbilical cord, increase system availability, and extend the working life of the umbilical cord.
  • the cooling water will not be turned on, saving fresh water resources on the ship; the cooling water will be collected from the umbilical cord.
  • the top of the cable winch is sprayed, and the cooling water flows from top to bottom, which can cool the umbilical cable of the entire winch; improve ROV usage efficiency; and improve system safety.
  • the present disclosure provides a method for temperature measurement of an umbilical cord with a variable spacing distance, which adds temperature points and solves the problem of fixed temperature measurement points; it uses multi-temperature data to calculate the average umbilical cord temperature, thereby improving the reliability of temperature measurement.
  • Variable interval distance temperature measurement increases the number of temperature data per unit distance; solves the problem of fixed temperature measurement points; multi-point temperature averaging increases temperature reliability.
  • the present disclosure provides an underwater optical fiber temperature measurement system that realizes temperature measurement of multiple components with a single optical fiber and has good expansibility. Compared with the traditional multi-point temperature measurement method of thermocouples and thermal resistors, only a single optical fiber is needed to measure temperature at multiple points, which reduces the cost of the sensor; multi-point temperature measurement with optical fiber saves valuable underwater analog input interface resources; The optical fiber layout path can be adjusted arbitrarily. When there are new components that require temperature measurement, the optical fiber can be deployed at the new components, which greatly improves the scalability of the temperature measurement system.
  • the present disclosure provides a data communication format that can read the temperature of the entire umbilical cord in a single communication. All umbilical cable temperature data can be read in a single communication, reducing system communication pressure; temperature measurement unit data can be read at a higher frequency, increasing the real-time nature of temperature data.
  • the present disclosure provides a method of adjusting ROV usage based on real-time temperature.
  • Operators can obtain real-time temperatures of the umbilical cable and underwater components. When the temperature is close to overheating, they can choose to reduce the power and use the ROV. Using the ROV at a safe temperature can extend the service life of the entire system.
  • the present disclosure provides a method for optimizing the diameter of an umbilical cord based on historical temperature data.
  • you can refer to the design margin reduced by temperature history data and select an umbilical cable with a smaller diameter to reduce costs.
  • the present disclosure provides a method to extend the ROV deck commissioning window time, allowing the ROV to be tested on the deck more safely and for a longer period of time.
  • Real-time monitoring of the temperature of underwater hydraulic stations, underwater electronic cabins and other components when operating in the air can effectively extend the deck debugging window time; over-temperature automatically cuts off the power supply, improving the safety of the system during deck debugging.
  • the methods in the embodiments of the present disclosure can be executed by a single device, such as a computer or server.
  • the method of this embodiment can also be applied in a distributed scenario, and is completed by multiple devices cooperating with each other.
  • one device among the multiple devices can only perform one or more steps in the method of the embodiment of the present disclosure, and the multiple devices will interact with each other to complete all the steps. method described.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

本公开提供一种用于水下机器人的测温系统及方法,该系统包括:绞车和脐带缆;所述脐带缆被配置为与所述水下机器人连接;所述绞车中包括卷筒和旋转轴,所述卷筒可以绕所述旋转轴进行旋转,所述脐带缆部分卷绕在所述卷筒的外壁,所述旋转轴上设置有第一光电滑环,所述卷筒的内壁设置有第一光纤测温单元,所述第一光纤测温单元被配置为测量所述脐带缆的温度。在本公开中,第一光纤测温单元不经过第一光电滑环而直接与脐带缆中的光纤连接,可以避免因第一光电滑环造成的温度测量的失真,提高了温度测量的准确性。

Description

用于水下机器人的测温系统及方法 技术领域
本公开涉及水下机器人技术领域,尤其涉及一种用于水下机器人的测温系统及方法。
背景技术
本部分旨在为权利要求书中陈述的本公开的实施方式提供背景或上下文。此处的描述不因为包括在本部分中就承认是现有技术。
随着对海洋资源的开发程度越来越高,水下作业例如海缆铺埋、海底管道维护、海底科考、深海采矿等的需求也越来越强,这些都需要水下机器人去替代人工完成相应的操作。水下机器人一般都由水面船只通过脐带缆提供电源动力、发送控制信号和接收反馈信号。
由于脐带缆的特殊运行环境,难以进行常规巡检。然而,脐带缆在运行过程中,会因为绝缘层老化、终端接头不良或者电源电压波动、负载过重等因素引起热击穿,因此,对脐带缆运行状态进行温度监测,以在脐带缆发生故障前发现问题并采取措施,对保证水下机器人的正常运转及安全生产具有重要意义。但是,由于脐带缆运行时一部分盘卷于绞车上,一部分布放到了水下,无法直接测量导体温度。
因此,通常通过光纤测温技术测量脐带缆的温度,然而,水下机器人布放系统中的储缆绞车由于多层旋转储缆会使用到光电滑环,光电滑环的转动会使光纤测温技术的温度测量失真,所以测量脐带缆的温度的准确性较低。
发明内容
有鉴于此,本公开的目的在于提出一种用于水下机器人的测温系统及方法,至少在一定程度上解决相关技术中的技术问题之一。
基于上述目的,本公开示例性实施例提供了一种用于水下机器人的测温系统,包括:
绞车和脐带缆;
所述脐带缆被配置为与所述水下机器人连接;
所述绞车中包括卷筒和旋转轴,所述卷筒可以绕所述旋转轴进行旋转,所述脐带缆部分卷绕在所述卷筒的外壁,所述旋转轴上设置有第一光电滑环, 所述卷筒的内壁设置有第一光纤测温单元,所述第一光纤测温单元被配置为测量所述脐带缆的温度。
在一些示例性实施例中,还包括:
系缆管理系统、系缆和水下机器人;
所述绞车通过所述脐带缆与所述系缆管理系统连接,所述系缆管理系统通过所述系缆与所述水下机器人连接;
所述系缆管理系统中包括第二光电滑环,所述系缆部分卷绕在所述系缆管理系统中;
所述水下机器人中包括第二光纤测温单元,所述第二光纤测温单元被配置为测量所述系缆管理系统、所述系缆和所述水下机器人的温度。
在一些示例性实施例中,还包括:
控制系统;
所述控制系统被配置为控制所述绞车、所述系缆管理系统和所述水下机器人。
在一些示例性实施例中,所述绞车中还包括:
第一接线箱和第二接线箱;
所述第一接线箱设置在所述卷筒的内壁,所述第一光纤测温单元设置在所述第一接线箱的内部,所述第一接线箱的内部还设置有第一通信单元,所述第一光纤测温单元与所述第一通信单元电连接;
所述第二接线箱的内部设置有第二通信单元;
所述第一通信单元被配置为与所述第二通信单元通信;
所述第二通信单元被配置为与所述第一通信单元和所述控制系统通信。
在一些示例性实施例中,所述脐带缆中包含两根末端熔接的光纤;
测量所述两根末端熔接的光纤的温度,得到所述脐带缆的温度。
在一些示例性实施例中,所述第一接线箱中还设置有耦合取能设备;
所述耦合取能设备被配置为将交流电转换为直流电,为所述第一光纤测温单元供电。
在一些示例性实施例中,所述绞车中还包括:
冷却单元;
所述冷却单元被配置为对所述脐带缆进行冷却;
所述控制系统还被配置为响应于确定所述脐带缆的温度大于或者等于预 设的第一温度阈值,控制所述冷却单元对所述脐带缆进行冷却。
在一些示例性实施例中,所述冷却单元包括第一冷却喷淋管和第二冷却喷淋管;
所述第一冷却喷淋管设置在所述卷筒的外侧,并与所述卷筒间隔设置,所述第一冷却喷淋管的喷淋方向朝向所述卷筒的轴心线且垂直向下;
所述第二冷却喷淋管设置在所述卷筒的内侧,并与所述卷筒间隔设置,所述第二冷却喷淋管的喷淋方向朝向所述卷筒的轴心线且垂直向上。
在一些示例性实施例中,所述控制系统还被配置为响应于确定所述脐带缆的温度大于或者等于预设的第二温度阈值,控制关断所述脐带缆的电源;其中,所述第二温度阈值大于所述第一温度阈值。
在一些示例性实施例中,所述水下机器人中还包括水下测温光纤、水下电子舱、水下液压站和水下液压阀箱;
其中,所述第二光纤测温单元与所述水下测温光纤连接,所述水下测温光纤依次穿过所述水下电子舱、所述水下液压站和所述水下液压阀箱,并与所述系缆连接;
所述第二光纤测温单元还被配置为测量所述水下电子舱、所述水下液压站和所述水下液压阀箱的温度。
在一些示例性实施例中,所述水下电子舱中设置有光电转换模块;
所述光电转换模块被配置为将电信号形式的温度数据转换为光信号形式的温度数据;
所述脐带缆被配置为将所述光信号形式的温度数据传输至所述控制系统。
在一些示例性实施例中,按照若干不同的预设的测量间距测量所述脐带缆的温度,得到若干脐带缆温度数据,计算目标距离区段的所述脐带缆温度数据的平均数,得到目标距离区段的所述脐带缆的温度。
在一些示例性实施例中,所述控制系统还被配置为响应于确定所述脐带缆的温度大于或者等于预设的第三温度阈值,控制降低所述水下机器人的工作功率。
基于同一发明构思,本公开示例性实施例还提供了一种用于水下机器人的测温方法,通过如上所述的用于水下机器人的测温系统实现,所述方法包括:
通过第一光纤测温单元测量脐带缆的温度。
从上面所述可以看出,本公开实施例提供的用于水下机器人的测温系统及方法,该系统包括:绞车和脐带缆;所述脐带缆被配置为与所述水下机器人连接;所述绞车中包括卷筒和旋转轴,所述卷筒可以绕所述旋转轴进行旋转,所述脐带缆部分卷绕在所述卷筒的外壁,所述旋转轴上设置有第一光电滑环,所述卷筒的内壁设置有第一光纤测温单元,所述第一光纤测温单元被配置为测量所述脐带缆的温度。在本公开中,第一光纤测温单元不经过第一光电滑环而直接与脐带缆中的光纤连接,可以避免因第一光电滑环造成的温度测量的失真,提高了温度测量的准确性。
附图说明
为了更清楚地说明本公开或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例提供的示例性用于水下机器人的测温系统的一种应用场景示意图;
图2为本公开实施例提供的示例性绞车的一种结构示意图;
图3为本公开实施例提供的示例性光电滑环的一种结构示意图;
图4为本公开实施例提供的示例性脐带缆的一种结构示意图;
图5为本公开实施例提供的示例性系缆管理系统的一种结构示意图;
图6为本公开实施例提供的示例性水下机器人的一种结构示意图;
图7为本公开实施例提供的示例性光纤测温方法的一种流程示意图;
图8为本公开实施例提供的示例性水下机器人的测温系统的一种结构示意图;
图9为本公开实施例提供的示例性通信单元的一种结构示意图;
图10为本公开实施例提供的示例性耦合取能设备的一种结构示意图;
图11为本公开实施例提供的示例性脐带缆温度分布的一种示意图;
图12为本公开实施例提供的示例性冷却方法的一种流程示意图;
图13为本公开实施例提供的示例性脐带缆温度分布的另一种示意图;
图14为本公开实施例提供的示例性脐带缆温度分布的另一种示意图;
图15为本公开实施例提供的示例性冷却单元的一种结构示意图;
图16为本公开实施例提供的示例性水下机器人的另一种结构示意图;
图17为本公开实施例提供的示例性通讯连接结构的一种示意图;
图18为本公开实施例提供的示例性温度数据处理方法的一种流程示意图;
图19为本公开实施例提供的示例性水下机器人功率控制方法的一种流程示意图;
图20为本公开实施例提供的示例性脐带缆选择方法的一种流程示意图。
附图标记说明:
控制系统100;
绞车200;卷筒201;旋转轴202;第一光电滑环203;光电滑环输入光纤2031;光电滑环折射棱镜2032;光电滑环输出光纤2033;第一光纤测温单元204;第一接线箱205;第二接线箱206;第一通信单元207;第二通信单元208;耦合取能设备209;冷却单元210;
脐带缆300;铠装层301;保护层302;填充材料303;动力单元304;控制单元305;光单元306;接地线单元307;
系缆管理系统400;第二光电滑环401;
系缆500;
水下机器人600;水下液压站601;水下液压阀箱602;水下变压器603;第二光纤测温单元604;测温光纤605;水下电子舱606;
A架700。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚明白,下面将参考若干示例性实施方式来描述本公开的原理和精神。应当理解,给出这些实施方式仅仅是为了使本领域技术人员能够更好地理解进而实现本公开,而并非以任何方式限制本公开的范围。相反,提供这些实施方式是为了使本公开更加透彻和完整,并且能够将本公开的范围完整地传达给本领域的技术人员。
在本文中,需要理解的是,附图中的任何元素数量均用于示例而非限制,以及任何命名都仅用于区分,而不具有任何限制含义。
需要说明的是,除非另外定义,本公开实施例使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开实施例中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语 意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
下面参考本公开的若干代表性实施方式,详细阐释本公开的原理和精神。
相关技术中,测量脐带缆的温度的准确性较低。
本公开的发明人发现,造成上述相关技术中测量脐带缆的温度的准确性较低的原因是:水下机器人系统不同于陆地,由于脐带缆特别长,且布放时很大部分浸泡于水中,回收后全部分层缠绕于绞车上,因此很难使用热电阻、热电偶等传统测温方式实现全部脐带缆的温度测量,选择光纤测温能避开这些不利因素,光纤测温单元工作时发出一个特定波长的光,接收反射回来两个不同波长的光,通过两个波长的反射光功率的比值来计算温度。正常情况下,这个比值随温度不同而有固定的对应关系。然而,水下机器人布放系统中的储缆绞车由于多层旋转储缆会使用到光电滑环,在光电滑环转动时,两个波长穿过的角度不一样,产生的损耗不同,使得功率比值不再是正常的比例关系,从而导致测出来的温度数据产生失真。
为了解决上述问题,本公开提供了一种用于水下机器人的测温方案,具体包括:绞车和脐带缆;所述脐带缆被配置为与所述水下机器人连接;所述绞车中包括卷筒和旋转轴,所述卷筒可以绕所述旋转轴进行旋转,所述脐带缆部分卷绕在所述卷筒的外壁,所述旋转轴上设置有第一光电滑环,所述卷筒的内壁设置有第一光纤测温单元,所述第一光纤测温单元被配置为测量所述脐带缆的温度。在本公开中,第一光纤测温单元不经过第一光电滑环而直接与脐带缆中的光纤连接,可以避免因第一光电滑环造成的温度测量的失真,提高了温度测量的准确性。
在介绍了本公开的基本原理之后,下面具体介绍本公开的各种非限制性实施方式。
参考图1,其为本公开实施例提供的示例性用于水下机器人的测温系统的一种应用场景示意图。
该应用场景包括控制系统100、绞车200、脐带缆(Umbilical)300、系缆管理系统(Tether Management System,TMS)400、系缆(Tether)500、水下 机器人(Remote Operated Vehicle,ROV)600和A架700。
其中,控制系统100用于控制其他组件,绞车200通过脐带缆300与系缆管理系统400连接,系缆管理系统400通过系缆500与水下机器人600连接,水下机器人600通过A架布放以及回收。
参考图2,绞车200中包括卷筒201和旋转轴202,卷筒201可以绕旋转轴202进行旋转,旋转轴202上设置有第一光电滑环203。
绞车200用于储存和释放脐带缆300。
参考图3,第一光电滑环203中包括光电滑环输入光纤2031、光电滑环折射棱镜2032和光电滑环输出光纤2033。
光电滑环,可以在相对转动的部间之间传输电能、电信号、光能、光信号,保证能量或者信号在旋转连接中的正常传输。
参考图4,脐带缆300中包括铠装层301、保护层302、填充材料303、动力单元304、控制单元305、光单元306和接地线单元307。
可选的,动力单元304包括金属电缆;光单元306包括单模或多模光纤。金属电缆一般用于向水下机器人输送动力电源和控制电源;水面控制信号和水下反馈信号一般通过光电转换模块将电信号转换为光信号,通过光纤来互相发送和接收。
可选的,脐带缆300中还包括液压或化学药剂管,可以是钢管或软管。
脐带缆300部分卷绕在绞车200上,部分布置在水下,脐带缆300用于为水下机器人600提供动力单元和传输信号。
系缆500为不包含铠装层301的脐带缆300。
其中,为了提高承受水下机器人600的重量的能力,脐带缆300的外壁通常都包含铠装层301(一般为金属),这种情况下,脐带缆300的弯曲半径较大且比较僵硬,这对水下机器人在水中的移动灵敏度较不利。因此,在水下一般还会设计一段不含铠装层301的系缆500,在脐带缆300布放到工作深度时释放系缆500,从而使水下机器人600能更自由的移动。
参考图5,系缆管理系统400内设置有第二光电滑环401。
系缆管理系统400用于储存和释放系缆500。
参考图6,水下机器人600中包括水下液压站601、水下液压阀箱602和水下变压器603。
可选的,水下机器人600中还包括水下电子舱606(图中未示出)和水下 作业工具(图中未示出)。
水下机器人600用于进行水下作业。
A架700用于布放以及回收水下机器人600。
其中,A架700可以将水下机器人600布放到船舷外。
下面结合图1的应用场景,来描述根据本公开示例性实施方式的用于水下机器人的测温系统以及方法。需要注意的是,上述应用场景仅是为了便于理解本公开的精神和原理而示出,本公开的实施方式在此方面不受任何限制。相反,本公开的实施方式可以应用于适用的任何场景。
参考图7,分布式光纤温度传感器利用的是光纤中的自发拉曼散射效应和OTDR(optical time-domain reflectometer,光时域反射仪)技术,其基本的工作过程如图7所示。光源发出的脉冲光经过波分复用器(WDM)进入测温光纤,在光纤中激发光子与光纤分子发生非弹性碰撞,产生高频移的反斯托克斯光和低频移的斯托克斯光,背向散射的反斯托克斯光和斯托克斯光,再经由WDM到达光电探测器进行光电转换,最后进入信号处理系统进行分析。其中,根据OTDR原理,通过光电探测器探测到光信号的时间可以计算出背向散射光在光纤中产生的位置;通过探测背向散射光功率的变化实现对测温光纤温度的分布式测量。
参考图8,其为本公开实施例提供的示例性水下机器人的测温系统的一种结构示意图。
水下机器人的测温系统,包括:
绞车200和脐带缆300(图中未示出);
所述脐带缆300被配置为与所述水下机器人600连接;
所述绞车200中包括卷筒201和旋转轴202,所述卷筒201可以绕所述旋转轴202进行旋转,所述脐带缆300部分卷绕在所述卷筒201的外壁,所述旋转轴202上设置有第一光电滑环203,所述卷筒201的内壁设置有第一光纤测温单元204,所述第一光纤测温单元204被配置为测量所述脐带缆300的温度。
其中,水下机器人600由于其工作深度大、动力需求强,通常会由几千米长的脐带缆300连接,其中的金属电缆提供动力电源,光纤传输控制信号。脐带缆300通常通过绞车200来布放和回收。由于绞车200的多层储缆的旋转特性,要将脐带缆300的光电信号由水面控制舱传送到水下机器人600, 就一定要经过安装于绞车200的旋转轴202上的第一光电滑环203。用于控制信号通讯的光信号是一种调制光,在发射端调制,在接收端解调,并且有校验机制,所以在通过第一光电滑环203时并不会对通讯产生影响。然而,第一光纤测温单元204工作时发出一个特定波长的光,接收反射回来两个不同波长的光,通过两个波长的反射光功率的比值来计算温度。正常情况下,这个比值随温度不同而有固定的对应关系,但是,在第一光电滑环203转动时,两个波长穿过的角度不一样,产生的损耗不同,使得功率比值不再是正常的比例关系,从而导致测出来的温度数据产生失真。
本公开将第一光纤测温单元204设置于绞车200的卷筒201的内壁,第一光纤测温单元204不经过第一光电滑环203而直接与脐带缆300中的光纤连接,这样可以避免第一光纤测温单元204发出的脉冲激光经过第一光电滑环203而造成温度测量的失真。
在一些示例性实施例中,用于水下机器人的测温系统还包括:
控制系统100;
所述控制系统100被配置为控制所述绞车200。
在一些示例性实施例中,所述控制系统100还被配置为接收测量所述脐带缆300的温度得到的脐带缆温度测量结果。
在一些示例性实施例中,所述绞车200中还包括:
第一接线箱205和第二接线箱206;
所述第一接线箱205设置在所述卷筒201的内壁,所述第一光纤测温单元204设置在所述第一接线箱205的内部,所述第一接线箱205的内部还设置有第一通信单元207,所述第一光纤测温单元204与所述第一通信单元207电连接;
所述第二接线箱206的内部设置有第二通信单元208;
所述第一通信单元207被配置为与所述第二通信单元208通信;
所述第二通信单元208被配置为与所述第一通信单元207和所述控制系统100通信。
其中,第一接线箱205随着卷筒201的旋转而发生旋转,第二接线箱206不发生旋转。
参考图9,其中,第一通信单元207为无线发射端,第二通信单元208为无线接收端,第一光纤测温单元204和无线发射端安装于绞车200的第一接 线箱205内,无线接收端安装于绞车200的第二接线箱206内,在绞车200的第一接线箱205内将第一光纤测温单元204与无线发射端相连,并建立无线发射端与绞车200的第二接线箱206内的无线接收端的通信,可以将牵引水下机器人600的脐带缆300的温度信息无干扰的上传到控制系统100中。
作为一个示例,第一通信单元207为USB无线网卡适配器,第二通信单元208为无线路由器,无线路由器通过网线连接到控制系统100的网络中。将USB无线网卡适配器通过无线WIFI连接到无线路由器,使得第一光纤测温单元204可以和控制系统100处于同一网络中,可以让第一光纤测温单元204的温度数据上传到控制系统100中。需要说明的是此处无线网卡和无线路由器也可以替代为“蓝牙发射端和接收端”或者“近场通信的发射端和接收端”等可以实现上述功能的无线数据交换设备。
在一些示例性实施例中,所述脐带缆300中包含两根末端熔接的光纤;
测量所述两根末端熔接的光纤的温度,得到所述脐带缆300的温度。
在一些示例性实施例中,所述两根末端熔接的光纤为所述脐带缆300中的备用光纤。
其中,脐带缆300中包含多根光纤,且通常保留有若干例如2至3根备用光纤,本公开测温使用的就是这些备用光纤。在备用光纤数量允许的情况下,可以在脐带缆300的尾部将两根光纤熔接起来,这样就可以获得双份脐带缆300的温度数据,利用这双份的温度数据比对,可以增加温度的可信度,以及比对差异较大时及时发现故障。
在一些示例性实施例中,所述第一接线箱205中还设置有耦合取能设备209;
所述耦合取能设备209被配置为将交流电转换为直流电,为所述第一光纤测温单元204供电。
其中,由于水下机器人600的功率较大,为了使脐带缆300的直径足够小,通常都会使用交流3000V左右的高电压向水下机器人600供电。这使得在绞车200的第一接线箱205中无法直接获取第一光纤测温单元204需要的低压电。
参考图10,本公开在第一接线箱205中增加耦合取能设备209,三相高压电缆分别从三个耦合器中穿过。高压电缆中的交流电流和耦合器产生电磁感应,从而在耦合器的输出端产生电流。产生的电流经过整流装置整流成直 流电后接入电流叠加装置,电流叠加装置输出端接入逆变稳压装置,得到稳定的控制电源,供给第一光纤测温单元204使用。
参考图11,控制系统100通过第一光纤测温单元204可以收集整根脐带缆300的温度分布。作为一个示例,当一台设计深度为6000米的水下机器人600工作于4000米深度时,仍会有2000米脐带缆300会分层盘绕在绞车200上。水下机器人600工作时,测得的温度数据如下图,横坐标为脐带缆300长度,单位为米(m),纵坐标为温度值,单位为摄氏度(℃)。此时可发现前2000米的未布放的脐带缆300由于发热集中且不易散热,温度明显高于已布放的4000米脐带缆300温度。未布放的2000米脐带缆300温度数据可以发现,处于脐带缆300缠绕层中间(900-1100米处)的脐带缆300温度最高。
在一些示例性实施例中,所述绞车200中还包括:
冷却单元210;
所述冷却单元210被配置为对所述脐带缆300进行冷却;
所述控制系统100还被配置为响应于确定所述脐带缆300的温度大于或者等于预设的第一温度阈值,控制所述冷却单元210对所述脐带缆300进行冷却。
在一些示例性实施例中,所述控制系统100还被配置为响应于确定所述脐带缆300的温度大于或者等于预设的第二温度阈值,控制关断所述脐带缆300的电源;其中,所述第二温度阈值大于所述第一温度阈值。
参考图12、图13和图14,其中,控制系统100从第一光纤测温单元204读取到整根脐带缆300的温度数据,经过处理后得到单位距离的平均温度,用得到的温度值与设定的温度阈值比较。当脐带缆300的温度低于“冷却温度阈值”时,不启动冷却单元210,节约资源;当脐带缆300的温度超过“冷却温度阈值”时,自动开启冷却单元210对所述脐带缆300进行冷却。此时如果脐带缆300温度继续上升,超过更高的“停机阈值温度”,控制系统100就会切断脐带缆300的电源,防止脐带缆300由于过热造成损坏。
参考图15,在一些示例性实施例中,所述冷却单元210包括第一冷却喷淋管和第二冷却喷淋管(图中未示出);
所述第一冷却喷淋管设置在所述卷筒201的外侧,并与所述卷筒201间隔设置,所述第一冷却喷淋管的喷淋方向朝向所述卷筒201的轴心线且垂直向下;
所述第二冷却喷淋管设置在所述卷筒201的内侧,并与所述卷筒201间隔设置,所述第二冷却喷淋管的喷淋方向朝向所述卷筒201的轴心线且垂直向上。
其中,在绞车200的上方增加冷却喷淋管,在控制系统100比较脐带缆300的最高温度超过设定的冷却阈值温度时,控制系统100发出提示,自动开启冷却喷淋管开始喷淋,在绞车200的内部同样布置一套向上的冷却喷淋管,这样可以同时从内外冷却脐带缆300。且冷却水是朝着绞车200的上方喷淋的,冷却水顺着绞车200和脐带缆300向下流动,可以冷却整个绞车200上盘卷的脐带缆300。
在一些示例性实施例中,用于水下机器人的测温系统还包括:
系缆管理系统400、系缆500和水下机器人600;
所述绞车200通过所述脐带缆300与所述系缆管理系统400连接,所述系缆管理系统400通过所述系缆500与所述水下机器人600连接;
所述系缆管理系统400中包括第二光电滑环401,所述系缆500部分卷绕在所述系缆管理系统400中;
所述水下机器人600中包括第二光纤测温单元604,所述第二光纤测温单元604被配置为测量所述系缆管理系统400、所述系缆500和所述水下机器人600的温度。
其中,脐带缆300为了承重包含金属铠装外层,所以脐带缆300的弯曲半径较大且比较僵硬,这对水下机器人600在水中的移动灵敏度非常不利。因此,在水下设计一段不含铠装层的系缆500,在脐带缆300布放到工作深度时释放系缆500,从而使水下机器人600能更自由的移动。系缆500盘卷在系缆管理系统400上,系缆管理系统400的作用和结构类似于绞车200,因此也需要经过一个光电滑环,所以系缆管理系统400向下的部件温度无法通过第一光纤测温单元204测量。
其中,为了测量系缆管理系统400、系缆500和水下机器人600的温度,本公开在水下机器人600中设置有第二光纤测温单元604。第二光纤测温单元604与测温光纤605连接,测温光纤605依次穿过水下机器人600中需要测量温度的位置,最后连接到系缆500中的光纤,测温光纤605经过的所有地方都可以测得实时温度。后期如有新增设备需要测量温度,只需要将测温光纤605布置到新增设备即可测量,大大增加了测温系统的可扩展性。
在一些示例性实施例中,所述控制系统100还被配置为控制所述系缆管理系统400和所述水下机器人600。
参考图16,在一些示例性实施例中,所述水下机器人600中还包括水下测温光纤605、水下电子舱606、水下液压站601和水下液压阀箱602;
其中,所述第二光纤测温单元604与所述水下测温光纤605连接,所述水下测温光纤605依次穿过所述水下电子舱606、所述水下液压站601和所述水下液压阀箱602,并与所述系缆500连接;
所述第二光纤测温单元604还被配置为测量所述水下电子舱606、所述水下液压站601和所述水下液压阀箱602的温度。
在一些示例性实施例中,所述水下电子舱606中设置有光电转换模块;
所述光电转换模块被配置为将电信号形式的温度数据转换为光信号形式的温度数据;
所述脐带缆300被配置为将所述光信号形式的温度数据传输至所述控制系统100。
参考图17,第一光纤测温单元204经过连接到自身的USB无线网卡,与放置于绞车200的第二接线箱206的无线路由器连接,无线路由器通过网线与控制系统100相连,这样第一光纤测温单元204就与控制系统100的工控机处于同一局域网内;第二光纤测温单元604与水下电子舱606通过水密网线连接,经过光电转换模块转换为光信号,再经过脐带缆300光纤连接到水面控制舱,由水面控制舱的光电转换模块再转换为电信号,这样水下光纤测温单元也与控制系统100工控机处于同一局域网内。
在ROV工控机上建立Modbus TCP主站,第一光纤测温单元204建立Modbus TCP从站1,第二光纤测温单元604建立Modbus TCP从站2。Modbus TCP主站分别给从站1、2发送温度读取指令,从站收到读取指令后回复温度数据。Modbus TCP主站接收到的数据格式为:“站号读指令间隔距离温度1温度2温度3…温度n校验码”。Modbus TCP主站工控机接收温度数据后将数据以横轴为距离、纵轴为温度显示温度分布数据,如图11、图13和图14所示。Modbus是一种标准的工业控制数据交换协议,Modbus TCP是一种将Modbus运行在TCP网络上的通讯协议,增加了Modbus通讯带宽和减少了通讯延迟。
在一些示例性实施例中,按照若干不同的预设的测量间距测量所述脐带 缆300的温度,得到若干脐带缆300温度数据,计算目标距离区段的所述脐带缆300温度数据的平均数,得到目标距离区段的所述脐带缆300的温度。
参考图18,获取到温度数据是一串以距离为间隔的数据流,测得的温度值即代表此段光纤的温度。光纤测温单元的测温距离一般都有最小分辨率,作为一个示例,选择的光纤测温单元最小间隔距离为0.5米。如果一直以固定的距离间隔来测量,得到的就一直是测温光纤605上固定点的温度,这非常影响温度测量的全面性。所以本公开选择改变测温距离来让整根测温光纤605上分布更多的测温点,这样可以让获得的测温数据更加全面、精确。例如,当只以间隔距离为0.5米测温时,测得的1-2米之间的温度数据为3个(1,1.5,2)。当选择分别以0.5米、0.6米、0.7米三种距离测温,那么就可以获得3组以距离为间隔的温度数据流,1-2米之间的温度数据为6个(1,1.2,1.4,1.5,1.8,2),测温数据量增加了一倍,经过平均后,使得1-2米之间的温度数据更准确。
在一些示例性实施例中,所述控制系统100还被配置为响应于确定所述脐带缆300的温度大于或者等于预设的第三温度阈值,控制降低所述水下机器人600的工作功率。
参考图19,本公开的发明人发现,ROV脐带缆300持续全功率工作的时间仅占2%,98%的时间都低于最大电流工作。脐带缆300设计方案如果按照全功率工况来选择导体,导体的横截面积会很大,这在实际应用中完全没有必要。采用温度监控系统可以持续监控脐带缆300的温度,让脐带缆300在导体横截面积减小的情况下仍能正常工作。操作者可以根据脐带缆300的实际工作温度调整ROV作业情况,在ROV最大允许功率下安全使用脐带缆300,当脐带缆300达到最大允许温度时控制系统100发出警告,提示操作员临时降低ROV使用电流,以便脐带缆300温度冷却下来。
参考图20,获取的温度值按时间存储到历史数据库中做存档。当获取到足够多的历史数据后,可以根据历史数据分析出各种规格的脐带缆300在安全温度下最大允许通过电流,以及固定电流下最小的脐带缆300的缆径。根据此数据形成不同规格脐带缆300的允许通过最大电流的对照表,在后续项目中可以参考此对照表选择最经济的脐带缆300,降低项目成本。其中,脐带缆300由于其技术要求高、距离长,一直是水下机器人系统中的高成本部件。以往在设计时为了整个系统的安全,都保留了非常大的电缆直径余量,增加 了成本支出。有了脐带缆300的实际运行温度后,后续设计项目时可以根据前期获得的温度数据选择更合理电缆直径的脐带缆300,可以降低脐带缆300的成本。
从上面所述可以看出,本公开实施例提供的用于水下机器人的测温系统,包括:绞车和脐带缆;所述脐带缆被配置为与所述水下机器人连接;所述绞车中包括卷筒和旋转轴,所述卷筒可以绕所述旋转轴进行旋转,所述脐带缆部分卷绕在所述卷筒的外壁,所述旋转轴上设置有第一光电滑环,所述卷筒的内壁设置有第一光纤测温单元,所述第一光纤测温单元被配置为测量所述脐带缆的温度。在本公开中,第一光纤测温单元不经过第一光电滑环而直接与脐带缆中的光纤连接,可以避免因第一光电滑环造成的温度测量的失真,提高了温度测量的准确性。
进一步的,本公开提供了一种针对整个ROV系统的实时测温系统,包括利用既有的光纤,通过光纤测温技术,将水下ROV的各个部件和系统的温度汇总,实现整个系统的温度监控。实时监控整个ROV系统温度,极大保障了系统稳定运行;利用脐带缆里的备用光纤,无需增加成本;测温范围大,可检测整根脐带缆的温度。
本公开利用了无线传输温度的优势,避免光电滑环转动带来的测温失真。适合ROV、水下挖沟机、载人水下机器人等含绞车设备的脐带缆温度测量;干扰小,使用了无线传输数据,避免了由于光电滑环造成光纤通路中断而引起的测温失真。
本公开提供了利用光纤环网测量,多点测量提高精度,同时防止光纤损坏的备份。使用了备用光纤组成环网,不增加成本的情况下获得双份数据;双份数据可以实时比对,差异过大时能及时发现测温系统异常;双份数据可利用平均值计算获得更稳定的温度曲线。
本公开提供了转子箱内设备自耦合取能设备,实现转子箱与外界无物理连接和取电。自耦合取能设备可以非接触取电,减少了高压电触电风险,增加了设备安全性;非接触取电免去了绝缘设计,降低了成本。
本公开提供了一种脐带缆冷却系统,可降低脐带缆工作温度,增加系统可用性。根据脐带缆温度开启冷却水,可以降低脐带缆工作温度,增加系统可用性,并延长脐带缆工作寿命;脐带缆温度不超过设定值时,不开启冷却水,节约船上淡水资源;冷却水从脐带缆绞车顶部喷淋,冷却水从上到下流 动,可以冷却整个绞车的脐带缆;提高ROV使用效率;提高系统安全。
本公开提供了一种脐带缆可变间隔距离的测温方法,增加了温度点,解决了测温点固定的问题;利用多温度数据计算平均脐带缆温度,提高了测温可靠性。可变间隔距离测温,增加了单位距离里温度数据的数量;解决了测温点固定的问题;多点温度平均,增加了温度可靠性。
本公开提供了一种水下光纤测温系统,实现单光纤多零部件测温,且有良好的扩展性。相比于传统的热电偶、热电阻多点测温方式,只需要单根光纤即可多点测温,降低了传感器成本;光纤多点测温节约了水下宝贵的模拟量输入接口资源;光纤可以任意调整布放路径,有新增部件需要测温时,将光纤布放到新增部件处即可,大大提高了测温系统的可扩展性。
本公开提供了一种数据通讯格式,单次通信即可将整根脐带缆温度全部读取。单次通信即可读取全部脐带缆温度数据,降低了系统通讯压力;能以更高频次读取测温单元数据,增加温度数据的实时性。
本公开提供了一种根据实时温度调整ROV使用的方法。操作人员可以获取实时的脐带缆和水下部件温度,在温度接近超温时,选择降低功率使用ROV;一直在安全温度以下使用ROV,可延长整套系统的使用寿命。
本公开提供了一种根据历史温度数据优化脐带缆缆径的方法。在后续项目设计时,可以参考温度历史数据减小的设计余量,选择更小缆径的脐带缆,降低成本。
本公开提供了一种延长ROV甲板调试窗口时间的方法,可以更安全更长时间地在甲板上测试ROV。实时监控水下液压站、水下电子舱等部件在空气中(散热能力差)运行时的温度,可有效延长甲板调试窗口时间;超温自动切断电源,提高了甲板调试时系统的安全性。
需要说明的是,本公开实施例的方法可以由单个设备执行,例如一台计算机或服务器等。本实施例的方法也可以应用于分布式场景下,由多台设备相互配合来完成。在这种分布式场景的情况下,这多台设备中的一台设备可以只执行本公开实施例的方法中的某一个或多个步骤,这多台设备相互之间会进行交互以完成所述的方法。
需要说明的是,上述对本公开的一些实施例进行了描述。其它实施例在所附权利要求书的范围内。在一些情况下,在权利要求书中记载的动作或步骤可以按照不同于上述实施例中的顺序来执行并且仍然可以实现期望的结果。 另外,在附图中描绘的过程不一定要求示出的特定顺序或者连续顺序才能实现期望的结果。在某些实施方式中,多任务处理和并行处理也是可以的或者可能是有利的。
此外,尽管在附图中以特定顺序描述了本公开方法的操作,但是,这并非要求或者暗示必须按照该特定顺序来执行这些操作,或是必须执行全部所示的操作才能实现期望的结果。相反,流程图中描绘的步骤可以改变执行顺序。附加地或备选地,可以省略某些步骤,将多个步骤合并为一个步骤执行,和/或将一个步骤分解为多个步骤执行。
申请文件中提及的动词“包括”、“包含”及其词形变化的使用不排除除了申请文件中记载的那些元素或步骤之外的元素或步骤的存在。元素前的冠词“一”或“一个”不排除多个这种元素的存在。
虽然已经参考若干具体实施方式描述了本公开的精神和原理,但是应该理解,本公开并不限于所公开的具体实施方式,对各方面的划分也不意味着这些方面中的特征不能组合以进行受益,这种划分仅是为了表述的方便。本公开旨在涵盖所附权利要求的精神和范围内所包括的各种修改和等同布置。所附权利要求的范围符合最宽泛的解释,从而包含所有这样的修改及等同结构和功能。

Claims (14)

  1. 一种用于水下机器人的测温系统,其特征在于,包括:
    绞车和脐带缆;
    所述脐带缆被配置为与所述水下机器人连接;
    所述绞车中包括卷筒和旋转轴,所述卷筒可以绕所述旋转轴进行旋转,所述脐带缆部分卷绕在所述卷筒的外壁,所述旋转轴上设置有第一光电滑环,所述卷筒的内壁设置有第一光纤测温单元,所述第一光纤测温单元被配置为测量所述脐带缆的温度。
  2. 根据权利要求1所述的用于水下机器人的测温系统,其特征在于,还包括:
    系缆管理系统、系缆和水下机器人;
    所述绞车通过所述脐带缆与所述系缆管理系统连接,所述系缆管理系统通过所述系缆与所述水下机器人连接;
    所述系缆管理系统中包括第二光电滑环,所述系缆部分卷绕在所述系缆管理系统中;
    所述水下机器人中包括第二光纤测温单元,所述第二光纤测温单元被配置为测量所述系缆管理系统、所述系缆和所述水下机器人的温度。
  3. 根据权利要求2所述的用于水下机器人的测温系统,其特征在于,还包括:
    控制系统;
    所述控制系统被配置为控制所述绞车、所述系缆管理系统和所述水下机器人。
  4. 根据权利要求3所述的用于水下机器人的测温系统,其特征在于,所述绞车中还包括:
    第一接线箱和第二接线箱;
    所述第一接线箱设置在所述卷筒的内壁,所述第一光纤测温单元设置在所述第一接线箱的内部,所述第一接线箱的内部还设置有第一通信单元,所述第一光纤测温单元与所述第一通信单元电连接;
    所述第二接线箱的内部设置有第二通信单元;
    所述第一通信单元被配置为与所述第二通信单元通信;
    所述第二通信单元被配置为与所述第一通信单元和所述控制系统通信。
  5. 根据权利要求1所述的用于水下机器人的测温系统,其特征在于,所述脐带缆中包含两根末端熔接的光纤;
    测量所述两根末端熔接的光纤的温度,得到所述脐带缆的温度。
  6. 根据权利要求4所述的用于水下机器人的测温系统,其特征在于,所述第一接线箱中还设置有耦合取能设备;
    所述耦合取能设备被配置为将交流电转换为直流电,为所述第一光纤测温单元供电。
  7. 根据权利要求3所述的用于水下机器人的测温系统,其特征在于,所述绞车中还包括:
    冷却单元;
    所述冷却单元被配置为对所述脐带缆进行冷却;
    所述控制系统还被配置为响应于确定所述脐带缆的温度大于或者等于预设的第一温度阈值,控制所述冷却单元对所述脐带缆进行冷却。
  8. 根据权利要求7所述的用于水下机器人的测温系统,其特征在于,所述冷却单元包括第一冷却喷淋管和第二冷却喷淋管;
    所述第一冷却喷淋管设置在所述卷筒的外侧,并与所述卷筒间隔设置,所述第一冷却喷淋管的喷淋方向朝向所述卷筒的轴心线且垂直向下;
    所述第二冷却喷淋管设置在所述卷筒的内侧,并与所述卷筒间隔设置,所述第二冷却喷淋管的喷淋方向朝向所述卷筒的轴心线且垂直向上。
  9. 根据权利要求7所述的用于水下机器人的测温系统,其特征在于,所述控制系统还被配置为响应于确定所述脐带缆的温度大于或者等于预设的第二温度阈值,控制关断所述脐带缆的电源;其中,所述第二温度阈值大于所述第一温度阈值。
  10. 根据权利要求3所述的用于水下机器人的测温系统,其特征在于,所述水下机器人中还包括水下测温光纤、水下电子舱、水下液压站和水下液压阀箱;
    其中,所述第二光纤测温单元与所述水下测温光纤连接,所述水下测温光纤依次穿过所述水下电子舱、所述水下液压站和所述水下液压阀箱,并与所述系缆连接;
    所述第二光纤测温单元还被配置为测量所述水下电子舱、所述水下液压站和所述水下液压阀箱的温度。
  11. 根据权利要求10所述的用于水下机器人的测温系统,其特征在于,所述水下电子舱中设置有光电转换模块;
    所述光电转换模块被配置为将电信号形式的温度数据转换为光信号形式的温度数据;
    所述脐带缆被配置为将所述光信号形式的温度数据传输至所述控制系统。
  12. 根据权利要求1所述的用于水下机器人的测温系统,其特征在于,按照若干不同的预设的测量间距测量所述脐带缆的温度,得到若干脐带缆温度数据,计算目标距离区段的所述脐带缆温度数据的平均数,得到目标距离区段的所述脐带缆的温度。
  13. 根据权利要求3所述的用于水下机器人的测温系统,其特征在于,所述控制系统还被配置为响应于确定所述脐带缆的温度大于或者等于预设的第三温度阈值,控制降低所述水下机器人的工作功率。
  14. 一种用于水下机器人的测温方法,其特征在于,通过如权利要求1至12任意一项所述的用于水下机器人的测温系统实现,所述方法包括:
    通过第一光纤测温单元测量脐带缆的温度。
PCT/CN2022/115762 2022-08-19 2022-08-30 用于水下机器人的测温系统及方法 WO2024036667A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211003259.2 2022-08-19
CN202211003259.2A CN115165140A (zh) 2022-08-19 2022-08-19 用于水下机器人的测温系统及方法

Publications (1)

Publication Number Publication Date
WO2024036667A1 true WO2024036667A1 (zh) 2024-02-22

Family

ID=83481469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115762 WO2024036667A1 (zh) 2022-08-19 2022-08-30 用于水下机器人的测温系统及方法

Country Status (2)

Country Link
CN (1) CN115165140A (zh)
WO (1) WO2024036667A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116973001B (zh) * 2023-09-25 2023-12-08 江苏亨通海洋光网系统有限公司 一种脐带缆堆叠温升测试系统及测试方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110253377A1 (en) * 2010-04-16 2011-10-20 Halliburton Energy Services, Inc. Testing Subsea Umbilicals
CN106884647A (zh) * 2015-12-10 2017-06-23 中国石油天然气股份有限公司 油井检测装置及油井检测方法
CN110333052A (zh) * 2019-04-10 2019-10-15 武汉理工大学 高温旋转部件测试平台
CN111516806A (zh) * 2020-04-29 2020-08-11 上海中车艾森迪海洋装备有限公司 一种水下装备的布放回收系统及方法
CN111896135A (zh) * 2019-05-05 2020-11-06 上海中车艾森迪海洋装备有限公司 用于水下机器人的温度监测方法及装置
CN111982348A (zh) * 2020-08-20 2020-11-24 中国科学院工程热物理研究所 一种旋转光纤测温系统
CN112224344A (zh) * 2020-09-30 2021-01-15 南京中船绿洲机器有限公司 一种潜水器吊放系统
CN113358102A (zh) * 2021-05-27 2021-09-07 中国海洋大学 一种船载测量海洋内孤立波振幅的装置与方法
CN114275699A (zh) * 2022-01-07 2022-04-05 海鹰企业集团有限责任公司 一种无人值守可变缆径式水下电动绞车
CN114562950A (zh) * 2022-02-28 2022-05-31 中国船舶科学研究中心 一种用于水下协同作业的脐带缆缆形监测系统及装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110253377A1 (en) * 2010-04-16 2011-10-20 Halliburton Energy Services, Inc. Testing Subsea Umbilicals
CN106884647A (zh) * 2015-12-10 2017-06-23 中国石油天然气股份有限公司 油井检测装置及油井检测方法
CN110333052A (zh) * 2019-04-10 2019-10-15 武汉理工大学 高温旋转部件测试平台
CN111896135A (zh) * 2019-05-05 2020-11-06 上海中车艾森迪海洋装备有限公司 用于水下机器人的温度监测方法及装置
CN111516806A (zh) * 2020-04-29 2020-08-11 上海中车艾森迪海洋装备有限公司 一种水下装备的布放回收系统及方法
CN111982348A (zh) * 2020-08-20 2020-11-24 中国科学院工程热物理研究所 一种旋转光纤测温系统
CN112224344A (zh) * 2020-09-30 2021-01-15 南京中船绿洲机器有限公司 一种潜水器吊放系统
CN113358102A (zh) * 2021-05-27 2021-09-07 中国海洋大学 一种船载测量海洋内孤立波振幅的装置与方法
CN114275699A (zh) * 2022-01-07 2022-04-05 海鹰企业集团有限责任公司 一种无人值守可变缆径式水下电动绞车
CN114562950A (zh) * 2022-02-28 2022-05-31 中国船舶科学研究中心 一种用于水下协同作业的脐带缆缆形监测系统及装置

Also Published As

Publication number Publication date
CN115165140A (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
WO2024036667A1 (zh) 用于水下机器人的测温系统及方法
CA2609876C (en) Distributed temperature sensing in a remotely operated vehicle umbilical fiber optic cable
JP7097367B2 (ja) 電力変圧器等におけるコンポーネントを監視するシステムおよび方法
CN206488060U (zh) 一种地下综合管廊天然气管道泄露在线监测预警装置
AU2013214446A1 (en) Fault detection in subsea power cables
RU2013147306A (ru) Способ и система для выполнения измерений и мониторинга под водой
CN102937489A (zh) 光纤复合架空相线分布式测温装置及方法
US20140320313A1 (en) System and method for supplying power to transmission tower using optical power transmission device and method for transmitting and receiving data using the optical power transmission device
CN103791848A (zh) 一种基于光纤传感技术的变压器绕组监测系统
CN109904932A (zh) 一种牵引供电系统27.5kV高压电缆在线状态监测方法及监测装置
CN109969343A (zh) 一种水下综合测量系统
KR101155865B1 (ko) 송전선로 직접부착형 통신중계장치
CN212458707U (zh) 变压器多参量光纤光栅在线监测装置
CN105157872B (zh) 一种电缆温度监测方法及其装置
CN103913251A (zh) 内置光纤的电缆测温系统
CN111896135B (zh) 用于水下机器人的温度监测方法及装置
CN104535220B (zh) 一种电力架空光缆分布式在线监测装置
CN112595434A (zh) 一种分布式光纤测温智能监测系统
CN112398317B (zh) 深水电源装置
CN108645445B (zh) 一种用于海底管柱的光纤分布式监测系统
CN109781296A (zh) 一种智能电缆插头及其检测系统
CN113405692A (zh) 一种井下电缆测温装置、监测系统及方法
CN209692431U (zh) 一种牵引供电系统27.5kV高压电缆在线状态监测装置
CN113340459A (zh) 一种电力设备无源无线测温系统
CN210293248U (zh) 一种基于单模光缆的电缆过热点多专业共享监测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22955445

Country of ref document: EP

Kind code of ref document: A1