WO2024036642A1 - 船外机、船舶及控制方法以及计算机可读存储介质 - Google Patents

船外机、船舶及控制方法以及计算机可读存储介质 Download PDF

Info

Publication number
WO2024036642A1
WO2024036642A1 PCT/CN2022/113770 CN2022113770W WO2024036642A1 WO 2024036642 A1 WO2024036642 A1 WO 2024036642A1 CN 2022113770 W CN2022113770 W CN 2022113770W WO 2024036642 A1 WO2024036642 A1 WO 2024036642A1
Authority
WO
WIPO (PCT)
Prior art keywords
connecting shaft
outboard motor
motor
clamp
motor according
Prior art date
Application number
PCT/CN2022/113770
Other languages
English (en)
French (fr)
Inventor
王海洋
刘岳峰
胡浩
李军
王勇
Original Assignee
广东逸动科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东逸动科技有限公司 filed Critical 广东逸动科技有限公司
Priority to CN202280053414.3A priority Critical patent/CN117794813A/zh
Priority to PCT/CN2022/113770 priority patent/WO2024036642A1/zh
Publication of WO2024036642A1 publication Critical patent/WO2024036642A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H20/00Outboard propulsion units, e.g. outboard motors or Z-drives; Arrangements thereof on vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H20/00Outboard propulsion units, e.g. outboard motors or Z-drives; Arrangements thereof on vessels
    • B63H20/02Mounting of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H20/00Outboard propulsion units, e.g. outboard motors or Z-drives; Arrangements thereof on vessels
    • B63H20/02Mounting of propulsion units
    • B63H20/06Mounting of propulsion units on an intermediate support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H20/00Outboard propulsion units, e.g. outboard motors or Z-drives; Arrangements thereof on vessels
    • B63H20/14Transmission between propulsion power unit and propulsion element

Definitions

  • the present application relates to the field of ships, and specifically to outboard motors, ships and control methods, and computer-readable storage media.
  • the known ship lifting device is to tilt the outboard motor at a certain angle toward the cabin so that the tail propeller is exposed to the water to achieve the purpose of lifting the ship out of the water.
  • this method will occupy the space of the cabin and reduce the activity space of the cabin. Reduced and inconvenient for users to use.
  • This application provides an outboard motor, a ship, a control method, and a computer-readable storage medium.
  • An embodiment of the present application provides an outboard motor, including:
  • the main body of the outdoor machine includes a first part and a second part, and the second part and the first part are connected along a first direction;
  • the driving part is connected to the clamp; the driving part is drivingly connected to the main body of the outer machine, and can drive the main body of the outer machine to move relative to the clamp, and the movement includes the movement of the first part and the movement of the second part.
  • the motion of the first part has at least a component in a first direction
  • the motion of the second part has a component in a second direction of zero, wherein the second direction is perpendicular to the first direction.
  • the driving part drives the movement of the outboard motor body so that the first part can be displaced in the first direction to achieve warping, and at the same time, the second part will not be displaced in the second direction, that is, it will not be displaced along the second direction.
  • the second direction takes up space in the hull.
  • An embodiment of the present application provides a ship, including a hull and the aforementioned outboard motor; the outboard motor is installed on the hull through a clamp, and the first part is located on the waterside side of the hull, and the second part is located on the waterside side of the hull. side.
  • Embodiments of the present application provide a ship control method.
  • the ship control method is based on the aforementioned outboard motor.
  • the ship control method includes:
  • the driving part controls the warping component value of the first part in the first direction, wherein the warping component value is adapted to the draft of the ship.
  • Embodiments of the present application provide a computer-readable storage medium.
  • the computer-readable storage medium includes a stored program, and the program executes the aforementioned ship control method.
  • Figure 1 is a schematic structural diagram of a ship according to an embodiment of the present application.
  • Figure 2 is a schematic diagram of the movement mode of the main body of the outdoor machine in Figure 1;
  • Figure 3 is a schematic structural diagram of an outboard motor in the first exemplary embodiment of the present application.
  • Figure 4 is a schematic structural diagram of an outboard motor in a second exemplary embodiment of the present application.
  • Figure 5 is a schematic structural diagram of an outboard motor in a third exemplary embodiment of the present application.
  • Figure 6 is a schematic diagram of another transmission mechanism used in the outboard motor in this embodiment.
  • Figure 7 is a schematic structural diagram of an outboard motor in a fourth exemplary embodiment of the present application.
  • Figure 8 is a schematic structural diagram of an outboard motor in the fifth exemplary embodiment of the present application.
  • Figure 9 is a schematic diagram of another transmission mechanism used in the outboard motor in this embodiment.
  • the first motor 13a The first motor 13a
  • this embodiment provides a ship 300 including a hull 310 and an outboard motor 100 .
  • the hull 310 may have a large buoyancy structure, allowing the entire ship 300 to float on the water surface P1.
  • the hull 310 may be used to carry people or items. When the carrying weight is different, the draft H of the hull 310 changes accordingly.
  • the outboard motor 100 is installed on the hull 310 and is used to provide power to push the ship 300 to move.
  • the outboard motor 100 includes an outboard motor body 10 , a clamp 20 and a driving part 30 .
  • the clamp 20 is used to be installed on the hull 310 .
  • the clamp 20 is fixedly installed on the stern of the hull 310 through bolts and other fasteners (not shown in the figure).
  • the outer machine body 10 is movably mounted on the clamp 20 and can partially extend under the water surface P1 and interact with the water to push the ship 300 to move on the water surface P1.
  • the driving part 30 is connected to the clamp 20 and is drivingly connected to the outer machine main body 10 for driving the whole or part of the outer machine main body 10 to move relative to the clamp.
  • the movement of the driving part 30 driven by the main body of the outdoor machine 10 can be used to achieve the lifting of the main body of the outdoor machine 10 to change the posture of the main body of the outdoor machine 10 and thereby change the pushing direction of the main body of the outdoor machine 10 .
  • the outer unit main body 10 includes a first part S1 and a second part S2, and the second part S2 and the first part S1 are connected along the first direction Z.
  • the first direction Z is along the direction of gravity, that is, the direction perpendicular to the water surface P1.
  • the first part S1 is located below the second part S2. It enters under the water surface P1 when needed to interact with the water to provide push.
  • the force interacts with the water, for example by arranging a propeller 13b on the first part S1. It can be understood that the first direction Z is only used as a reference direction and not as a limiting direction of the structure of the outboard motor body 10.
  • the outboard motor 100 When the outboard motor 100 is in a certain working state, there will be a state as shown in the figure, that is to say, when the outboard motor 100 is in a certain working state, When the outboard motor 100 is in other working states, the first direction Z will also be inclined with the water surface P1.
  • the movement driven by the driving part 30 of the outer machine body 10 includes the movement of the first part S1 and the movement of the second part S2.
  • the movement of the first part S1 at least has a component in the first direction Z
  • the movement of the second part S2 has a component in the second direction X that is zero, where the second direction X is perpendicular to the first direction Z.
  • the second direction X is parallel to the water surface P1 and points to the front and rear direction of the ship 300 .
  • the first vector Y1 is used to represent the movement of the first part S1
  • the second vector Y2 is used to represent the movement of the second part S2.
  • the movement of the first part S1 has a first direction component Y11 in the first direction Z.
  • the first direction component Y11 is the component of the first vector Y1 in the first direction Z.
  • the movement of the first part S1 has a first direction component Y11 in the second direction X.
  • the second direction component Y12 is the component of the first vector Y1 in the second direction X.
  • the movement of the first part S1 has a first direction component Y11, that is, the first direction component Y11 is not zero, which means that the driving part 30 has the ability to drive the first part S1 to move in the first direction Z; and the second direction component Y12 It may be zero or non-zero, without limitation.
  • the movement mode of the first part S1 driven by the driving part 30 is to move along the first direction Z, which may be reflected in a vertical lifting and lowering movement mode; when the second direction component Y12 is not zero, The movement mode of the first part S1 is a combination of the first direction component Y11 and the second direction component Y12, which may appear as a rotational movement of the first part S1 in the longitudinal plane defined by the first direction Z and the second direction X.
  • the component of the motion of the second part S2 in the second direction X is zero, that is, the second vector Y2 is equal to its component Y21 in the first direction Z.
  • the second part S2 remains stationary relative to the hull 310, and the driving part 30 will not drive it to move relative to the hull 310; when the second part S2
  • the value of the component Y21 of the movement of the part S2 in the first direction Z is not zero, the second part S2 will move along the first direction Z under the driving action of the driving part 30 .
  • the outboard motor body 10 of the outboard motor 100 provided in this embodiment includes a machine head 11 , a connecting shaft 12 and a propeller assembly 13 .
  • the connecting shaft 12 extends along the first direction Z.
  • the section of the connecting shaft 12 close to the propeller assembly 13 is defined as the first shaft section 12a and the section close to the machine head 11 A section is the second shaft section 12b.
  • the first shaft section 12a is the part of the connecting shaft 12 located on the side of the cross-section P2 close to the propeller assembly 13
  • the second shaft section 12b is the connecting shaft 12 located close to the cross-section P2.
  • the first shaft section 12a and the second shaft section 12b can be a complete shaft, or they can be two shafts fixedly connected by a connecting piece.
  • the connecting piece can be a screw, a pin, a latch, or other device.
  • the part of the connecting shaft 12 close to the machine head 11 (ie, the second shaft section 12b) and the machine head 11 form the aforementioned second part S2
  • the part of the connecting shaft 12 close to the propeller assembly 13 ie, the first shaft section 12a
  • the propeller assembly 13 ie, the first shaft section 12a
  • the propeller assembly 13 constitute the aforementioned first part S1. Therefore, in this embodiment, the first part S1 and the second part S2 are fixedly connected to each other through the first shaft section 12a and the second shaft section 12b.
  • the machine head 11 and the propeller assembly 13 are connected to both axial ends of the connecting shaft 12 respectively.
  • the machine head 11 includes a shell 11b, and the internal space 11c of the shell 11b can be used to accommodate other structures.
  • the other structures can be used to control the operation of each motor such as the controller 14 shown later, or can be used to stabilize the controller 14.
  • the bracket, the wiring harness electrically connected to the controller 14, and the structural components housed inside the housing 11b are not limited to the parts described in this embodiment.
  • the propeller assembly 13 is located at an end of the connecting shaft 12 away from the machine head 11, is connected to the first shaft section 12a, and can be located underwater when the outboard motor 100 is propelling the hull 310 (see Figure 1) for navigation, for interacting with the water.
  • Produces driving force For example, in this embodiment, the propeller assembly 13 is used to obtain propulsion force and includes a first motor 13a and a propeller 13b.
  • the first motor 13a is provided at the first part S1, such as at the lower end of the first shaft section 12a.
  • the first motor 13a is drivingly connected to the propeller 13b and can drive the propeller 13b to rotate so as to interact with water to generate propulsion force.
  • the first motor 13a may be a single-stator motor, a double-stator motor (a motor with two stators and one or two rotors), or other types of motors (such as a reduction motor with a built-in reducer).
  • the propeller 13b may be a contra-rotating propeller, a duct propeller or other forms of propeller.
  • the driving part 30 drives the connecting shaft 12 to move along the first direction Z, so that the first part S1 and the second part S2 move synchronously along the first direction Z, thereby driving the propeller assembly 13 to move along the first direction Z.
  • the connecting shaft 12 drives the propeller assembly 13 to move along the first direction Z and sink into the water, so that the outboard motor 100 can push the hull 310 to sail.
  • the connecting shaft 12 drives the propeller assembly 13 to move out of the water in the first direction Z, so that the outboard motor 100 stops pushing the hull 310, the hull 310 can be in a parking state, and the propeller assembly 13 avoids contact with the water.
  • the machine head 11 Since the machine head 11 only moves in the first direction Z, the machine head 11 will not move closer to the side of the ship body 310 , that is, the machine head 11 will not occupy the space of the ship body 310 , so that the ship body 310 can obtain more space. , improve the sailing experience.
  • the first motor 13a can also be disposed at an intermediate position in the longitudinal direction of the connecting shaft 12, and through the transmission structure 13c (such as bevel gear set, belt transmission mechanism, chain transmission mechanism, etc.) to transmit the power to the propeller 13b.
  • the transmission structure 13c can occupy the space inside the connecting shaft 12 .
  • the machine head 11 is located above the connecting shaft 12 and is connected to the second shaft section 12b.
  • the machine head 11 can be located at a higher position on the hull 310 to facilitate the operation of the operator on the ship.
  • an operating lever 11a is provided on the machine head 11 to facilitate the operator to assist in supporting the outer machine main body 10 when the outer machine main body 10 moves.
  • the intermediate position of the first motor 13a on the connecting shaft 12 is not limited to the illustrated state.
  • the output shaft of the first motor 13a is arranged along the first direction Z.
  • the connecting shaft 12 is provided with a central cavity, and the first motor 13a is accommodated in the central cavity.
  • the structural form of the connecting shaft 12 is not limited to the illustrated style, and the frame capable of supporting motors, drives, propellers and other devices may also be the same as the connecting shaft 12 in the embodiment of the present application.
  • the first motor 13a for driving the propeller 13b can also be disposed at the nose 11.
  • a transmission structure 13d can be provided on the connecting shaft 12, and the first motor 13a is transmission connected to the propeller 13b through the transmission structure 13d for transmitting the rotational torque of the first motor 13a to the propeller 13b.
  • the specific structure of the transmission structure 13d can be set as needed, such as gear transmission, belt transmission, worm gear transmission or any other suitable transmission method, which is not limited here.
  • the outboard motor 100 may further include a controller 14, which is electrically connected to the aforementioned first motor 13a and used to control the operation of the first motor 13a, such as controlling the operating speed, rotation direction, etc.
  • the controller 14 can be provided on the machine head 11 or the second shaft section 12b to facilitate maintenance or adjustment.
  • the controller 14 and the first motor 13a can communicate through short-range wireless communication (such as Bluetooth) or wired communication.
  • short-range wireless communication such as Bluetooth
  • wired communication the connecting shaft 12 can be set as a hollow shaft or a connecting channel can be opened to realize wiring.
  • the connecting shaft 12 is slidably engaged with the clamp 20 along the first direction Z.
  • the clamp 20 is provided with a fitting hole K1 penetrating along the first direction Z.
  • a linear guide rail 24 is provided inside the fitting hole K1.
  • the connecting shaft 12 passes through the fitting hole K1 and is slidably matched with the linear guide rail 24.
  • the linear guide rail 24 may be a roller linear guide rail, a cylindrical linear guide rail, a ball linear guide rail, or other structures capable of guiding linear sliding.
  • the linear guide 24 adopts a ball linear guide.
  • the connecting shaft 12 can also rotate relative to the clamp 20, thereby realizing the steering of the ship 300.
  • the first part S1 and the second part S2 of the outer machine body 10 can The whole body rotates relative to the rotation axis Z1 parallel to the first direction Z to change the direction of the propelling force of the propeller assembly 13 .
  • the linear guide rail 24 can be omitted, and the relative sliding fit and relative rotation can be selectively realized directly through the shaft hole fit between the connecting shaft 12 and the fitting hole K1.
  • the driving part 30 in this embodiment is installed on the clamp 20 and is drivingly connected to the outer machine main body 10 to drive the whole or part of the outer machine main body 10 to move.
  • the driving part 30 includes a second motor 31 and a transmission mechanism 32 .
  • the second motor 31 includes a fixed part 31a and an output shaft 31b.
  • the fixed part 31a is installed on the clamp 20.
  • the output shaft 31b can be driven to rotate and output rotational torque when the second motor 31 is powered on.
  • the transmission mechanism 32 is used to transmit the rotational torque output by the output shaft 31b to the outer machine main body 10, and to drive the outer machine main body 10 to move up and down along the first direction Z.
  • the first part S1 and the second part S2 move synchronously along the first direction Z, which is reflected in the fact that the first vector Y1 and the second vector Y2 are equal and move along the first direction Z, That is, the components of the first vector Y1 and the second vector Y2 in the second direction X are both zero, and the components in the first direction Z are equal.
  • various feasible transmission mechanisms 32 can be used to transmit the output torque of the second motor 31 .
  • the aforementioned connecting shaft 12 is connected to a first rack 12m, and the first rack 12m extends along the first direction Z.
  • the length of the first rack 12m can be determined according to the required lifting height of the outer machine body 10 .
  • the second motor 31 is installed on the clamp 20 and is connected to the first rack 12m through the transmission mechanism 32, for driving the first rack 12m and the connecting shaft 12 to move in the first direction, so that the second motor 31 can move in the first direction through the transmission mechanism 32.
  • the connecting shaft 12 drives the entire outer machine body 10 to move along the first direction Z.
  • the driving part 30 also includes a lifting controller 301 , which can be fixed together with the second motor 31 , that is, the lifting controller 301 can be fixed on the clamp 20 and electrically connected to the second motor 31 .
  • the warping controller 301 is used to receive the control instructions of the controller 14 and control the rotation speed and acceleration of the second motor 31 based on the control instructions of the controller 14, so that the second motor 31 can drive the output according to the input rotation speed and acceleration.
  • the target rotation torque, and then the first part S1 moves to the target position according to the target rotation torque output by the second motor 31 .
  • the transmission mechanism 32 may include a meshing worm 32a and a worm gear 32b, and the output shaft 31b of the second motor 31 is connected to the worm 32a.
  • the worm 32a is coaxially arranged with the output shaft 31b.
  • the driven rotation of the worm 32a can drive the worm gear 32b to rotate, and the worm gear 32b can directly engage with the first rack 12m or engage with the rack through other coaxially connected gear components.
  • the rotation of the output shaft 31b of the second motor 31 can drive the outer machine body 10 to move in the first direction Z through the meshing cooperation of the worm 32a, the worm gear 32b and the first rack 12m.
  • the worm gear 32b is rotatably mounted on a mounting bracket 21 on the clamp 20 .
  • the layout of the second motor 31 on the clamp 20 is not limited to the form shown in the figure.
  • the output shaft 31 b of the second motor 31 can be arranged parallel to the connecting shaft.
  • the transmission mechanism 32 can also be implemented by using a meshing gear 32d or a gear set (a gear set is a component composed of a plurality of meshing gears 32d).
  • the gear 32d or the gear set It is connected to the second motor 31 and meshes with the first rack 12m.
  • the gear 32d may be a spur gear, a bevel gear, or other types of gears or combinations.
  • the second motor 31 can be set to have a larger torque to provide a larger output force to drive the movement of the outer machine body 10.
  • the driving part 30 also includes a self-locking structure 32p (see Figure 5).
  • the self-locking structure 32p connects the second motor 31 and the transmission mechanism 32, and is used to lock the transmission after the second motor 31 outputs the target torque.
  • the mechanism 32 transmits torque to the outer machine main body 10, so that the outer machine main body 10 can be raised, lowered, and tilted to a certain height position so that the outer machine main body 10 can be maintained at that position.
  • the self-locking structure 32p can be implemented by an electromagnetic clutch, a hydraulic clutch, an electromagnetic brake, a mechanical locking device, etc., or by the second motor 31 with a self-locking function.
  • the extension range of the first rack 12m in the circumferential direction of the connecting shaft 12 in this embodiment can reach a certain angle, such as 60 degrees, so that in some embodiments, the connecting shaft 12 can rotate circumferentially relative to the clamp 20 to steer the ship 300 , the meshing fit between the first rack 12m and the transmission mechanism 32 can still be maintained.
  • the driving part 30 drives the entire outboard motor body 10 to rise and fall along the first direction Z (direction of gravity) without displacement in the second direction X (horizontal direction), thus avoiding the overall tilting of the outboard motor in the known technology.
  • the existing problem of outboard motors occupying the hull space for example, some outboard motors adopt the method of overall deflection and warping, and when the upper part of the outboard motor tilts to one side of the hull, it will occupy the hull space), to prevent the outboard motor from compressing the interior of the boat. Movement space or interference with seats or other structures in the boat.
  • the outboard motor 100 in this embodiment can adapt to different boat stern plate heights by adjusting the initial position of the outboard motor body 10 along the first direction Z.
  • this structure also facilitates adjusting the draft of the propeller 13b according to the draft of the hull 310 (reflecting the load condition), so that the propeller 13b is in the best pushing position.
  • the outer machine body 10 can also be raised to separate the outer machine body 10 from the water surface P1 to reduce corrosion or collision damage to the underwater part of the outer machine body 10 .
  • FIG. 7 shows another exemplary implementation of the outboard motor 100 in this embodiment.
  • the outboard motor 100 is further designed based on the outboard motor 100 shown in FIG. 3 .
  • the outboard motor 100 further includes the following structures based on the structure shown in Figure 3:
  • a second rack 22 is fixed on the clamp 20.
  • the second rack 22 and the first rack 12m are arranged in parallel and spaced apart, and the tooth surfaces face each other along the second direction X.
  • the second rack 22 is connected to the transmission mechanism 32, and the second motor 31 can move reversely relative to the second rack 22 and the first rack 12m respectively.
  • the outboard motor 100 also includes a lifting platform 23.
  • the lifting platform 23 is installed on the clamp 20 and can be raised and lowered along the first direction Z.
  • the lifting platform 23 is fixedly connected to the second motor 31 for use when the second motor 31 stops running. , supporting the second motor 31.
  • the transmission mechanism 32 includes a worm gear 32b and a worm 32a
  • the worm gear 32b or its coaxial gear can be provided between the first rack 12m and the second rack 22, and both sides of the worm gear 32b are respectively connected to the first rack. 12m meshes with the second rack 22.
  • the drive of the second motor 31 can drive the first rack 12m and the second rack 22 to move synchronously and reversely relative to the worm gear 32b. That is, the first rack 12m has twice the diameter of the worm gear relative to the second rack 22.
  • the movement at a speed of 32b torque enables the outer machine body 10 to have the effect of increasing the lifting speed and enlarging the stroke.
  • FIG. 8 shows another exemplary implementation of the outboard motor 100 in this embodiment.
  • the outboard motor body 10 of the outboard motor 100 in this embodiment includes a machine head 11 , a first connecting shaft 15 , a second connecting shaft 16 and a propeller assembly 13 .
  • the structure of the handpiece 11 may refer to the description in the embodiment shown in FIG. 3 .
  • the propeller assembly 13 may adopt the embodiment shown in FIG. 3 or FIG. 4 .
  • the second connecting shaft 16 is connected to the clamp 20 and extends along the first direction Z.
  • the second connecting shaft 16 is connected to the clamp 20 through bearings, suspensions, brackets and other devices.
  • the second connecting shaft 16 has no motion component in the second direction X, that is, the length direction of the second connecting shaft 16 always remains in the first direction Z.
  • the second connecting shaft 16 can also be configured to rotatably cooperate with the clamp 20 along its axis, so that the rotation of the second connecting shaft 16 can drive the first connecting shaft 15 and the propeller assembly 13 connected thereto. Swing laterally (that is, the direction perpendicular to the first direction Z and the second direction X) to adjust the steering of the ship 300 .
  • One end of the first connecting shaft 15 is rotatably connected to the second connecting shaft 16, and the other end is mounted with a propeller assembly 13.
  • the first connecting shaft 15 and the propeller assembly 13 constitute the first part S1.
  • the machine head 11 is connected to an end of the second connecting shaft 16 away from the first connecting shaft 15 , and the machine head 11 and the second connecting shaft 16 constitute the second part S2.
  • the driving part 30 is drivingly connected to the first part S1 (such as connected to the first connecting shaft 15), and is used to drive the first part S1 to rotate relative to the second part S2.
  • the movement of the first part S1 has a first direction component Y11 in the first direction Z and a second direction component Y12 in the second direction X
  • the movement of the second part S2 has a component in the first direction Z. is zero, and the component in the second direction X is also zero. That is, the second part S2 is fixedly arranged relative to the clamp 20 , and the end of the first part S1 close to the second part S2 is rotatably connected to the end of the second part S2 close to the first part S1 .
  • a propeller assembly 13 is provided at one end of the first part S1 away from the second part S2, and the propeller assembly 13 is used to obtain propulsion force.
  • the driving part 30 is drivingly connected to the first part S1 and is used to drive the first part S1 to rotate relative to the second part S2.
  • the driving part 30 includes a second motor 31 and a transmission mechanism 32 .
  • the second motor 31 is installed on the clamp 20 and is connected to the first connecting shaft 15 through the transmission mechanism 32 for driving the first connecting shaft 15 to rotate relative to the second connecting shaft 16 .
  • the first connecting shaft 15 is rotatably connected to the second connecting shaft 16 through a rotating shaft member 17.
  • the transmission mechanism 32 includes a meshing worm gear 32b and a worm 32a.
  • the worm 32a is connected to the second motor 31, and the worm gear 32b is connected to the rotating shaft. Item 17.
  • the axis of the rotating shaft member 17 is perpendicular to the first direction Z.
  • the transmission mechanism 32 may also adopt planetary gears and other embodiments proposed in the embodiments corresponding to Figures 3 to 7, such as gears or gear sets, belt transmission mechanisms, etc.
  • the transmission mechanism 32 includes a first gear 32e and a second gear 32f that mesh.
  • the first gear 32e is connected to the second motor 31
  • the second gear 32f is connected to the rotating shaft member 17 .
  • the output torque of the second motor 31 can be transmitted to the rotating shaft member 17 through the first gear 32e and the second gear 32f, so that the rotating shaft member 17 drives the first part S1 to rotate to achieve tilting.
  • the driving part 30 can also be provided with a self-locking structure 32p.
  • the self-locking structure 32p connects the second motor 31 and the transmission mechanism 32 and is used to lock the transmission mechanism 32 after the second motor 31 outputs the target torque. Transfers torque to the first section S1.
  • the self-locking structure 32p can be implemented in the manner mentioned in the corresponding embodiment of FIG. 3 .
  • the outboard motor 100 in this embodiment realizes the tilting of the outboard motor main body 10 by driving the part (the second part S2) of the outboard motor main body 10 to rotate through the driving part 30, thereby avoiding the overall tilt of the outboard motor in the known technology.
  • the problem of the outboard motor encroaching on the hull space exists in other ways, to avoid the outboard motor compressing the activity space in the boat or interfering with the seats or other structures in the boat, and only the second part S2 is raised instead of the whole body.
  • the method requires less power, and can achieve lifting by using a driving part 30 with smaller power or size, thereby saving costs.
  • this embodiment is designed to meet the needs of some users.
  • the axis of the propeller 13b of the outboard motor 100 and the horizontal direction clamping can be easily adjusted according to the driving conditions.
  • the angle allows the outboard motor 100 to achieve better propulsion efficiency.
  • the second part S2 can also be tilted to separate the outer machine main body 10 from the water surface P1 to reduce corrosion or collision damage to the underwater part of the outer machine main body 10 .
  • the outboard motor includes an outboard motor main body, a clamp and a driving part
  • the outboard motor main body includes a first part and a second part, and the second part and the first part are connected along the first direction
  • the clamp is used to be installed on the hull
  • the driving part is transmission connected to the main body of the outer machine and can drive the main body of the outer machine to move.
  • the movement includes the movement of the first part and the movement of the second part.
  • the movement of the first part has a component in the first direction.
  • the component of the movement of the second part in the second direction is zero, wherein the second direction is perpendicular to the first direction, so that the outboard motor 100 can easily realize the lifting of the outboard motor body 10 and avoid the known technology
  • the outboard motor 100 occupies the space of the hull 310 due to the overall tilting of the outboard motor 100, which has high practicability.
  • An embodiment of the present application also provides a ship control method based on the foregoing outboard motor 100.
  • the ship control method includes:
  • the obstacle can be an object such as the bottom of the water or a reef;
  • the safety threshold can be set as needed, such as setting it to 30cm;
  • the method of obtaining the obstacle can be to set a sensor on the ship 300 and obtain it through the sensor The distance between the obstacle and the ship;
  • the calculation can be performed through the controller 14, for example, the safety threshold is prestored in the controller 14, and the controller 14 is connected to the sensor through communication. Obtain the distance measured by the sensor, and calculate the difference between the distance and the safety threshold, which is used as the amount of lifting motion;
  • the tilting controller 301 receives the control instruction from the controller 14 and controls the rotation speed and acceleration of the second motor 31 based on the control instruction from the controller 14, so that the second motor 31 responds to the input.
  • the rotational speed and acceleration drive output the target rotational torque, and then the first part S1 and the second part S2 as a whole or the first part S1 alone is tilted according to the target rotational torque output by the second motor 31 to a position where the actual distance is greater than or equal to the safety threshold.
  • the lifting control command includes an overall lifting command, and the overall lifting command is used to instruct the driving part 30 to drive the first part S1 and the second part S2 as a whole. Move along the first direction Z to the target position.
  • the warping control instructions include partial warping instructions, and the partial warping instructions are used to instruct the driving part 30 to drive the first part S1 to move in the first direction Z. and move to the target position in the second direction X, such as rotating the first part S1 relative to the second part S2 to the target position.
  • Embodiments of the present application also provide a computer-readable storage medium, which includes a stored program that executes the aforementioned ship control method.
  • the readable storage medium may be provided on the aforementioned controller 14 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Motorcycle And Bicycle Frame (AREA)
  • Transmission Devices (AREA)

Abstract

本申请涉及船舶领域,旨在解决已知技术的船外机起翘时占用船舱空间的问题,提供船外机、船舶及控制方法以及计算机可读存储介质。其中,船外机包括外机主体、夹具和驱动部分。外机主体包括第一部分和第二部分,第二部分和第一部分沿第一方向连接;夹具用于安装于船身;驱动部分连接于夹具,驱动部分传动连接外机主体,并能够带动外机主体运动,运动包括第一部分的运动和第二部分的运动,第一部分的运动至少具有在第一方向上的分量,第二部分的运动在第二方向上的分量为零,其中,第二方向垂直于第一方向。本申请的有益效果是能够在实现起翘的同时避免占用船身空间。

Description

船外机、船舶及控制方法以及计算机可读存储介质 技术领域
本申请涉及船舶领域,具体而言,涉及船外机、船舶及控制方法以及计算机可读存储介质。
背景技术
已知的船舶起翘装置是通过将船外机向船舱方向倾斜一定的角度,使其尾部螺旋桨露出水面,达到起翘出水的目的,但是这种方式会占用船舱的空间,使得船舱的活动空间减少,不方便用户使用。
发明内容
本申请提供一种船外机、船舶及控制方法以及计算机可读存储介质。
本申请实施例提供一种船外机,包括:
外机主体,包括第一部分和第二部分,所述第二部分和所述第一部分沿第一方向连接;
夹具,用于安装于船身;
驱动部分,连接于所述夹具;所述驱动部分传动连接所述外机主体,并能够带动所述外机主体相对所述夹具运动,所述运动包括所述第一部分的运动和所述第二部分的运动,所述第一部分的运动至少具有在第一方向上的分量,所述第二部分的运动在第二方向上的分量为零,其中,所述第二方向垂直于所述第一方向。
本申请实施例中的船外机使用时,驱动部分带动外机主体的运动能够第一部分在第一方向上发生位移实现起翘,同时第二部分不会沿第二方向位移,即不会沿第二方向占用船身的空间。
本申请实施例提供一种船舶,包括船身和前述的船外机;船外机通过夹具安装于船身,且第一部分位于船身的背水一侧,第二部分位于船身的靠水一侧。
本申请实施例提供一种船舶控制方法,船舶控制方法基于前述的船外机,船舶控制方法包括:
通过驱动部分控制第一部分在第一方向上的起翘分量值,其中起翘分量值与船舶的吃水深度相适配。
本申请实施例提供一种计算机可读存储介质,计算机可读存储介质包括存储的程序,程序执行前述的船舶控制方法。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请实施例的船舶的结构示意图;
图2为图1的外机主体的运动方式的示意图;
图3为本申请的第一种示例性实施方式中的船外机的结构示意图;
图4为本申请的第二种示例性实施方式中的船外机的结构示意图;
图5为本申请的第三种示例性实施方式中的船外机的结构示意图;
图6为本实施例中的船外机采用的另外一种传动机构的示意图;
图7为本申请的第四种示例性实施方式中的船外机的结构示意图;
图8为本申请的第五种示例性实施方式中的船外机的结构示意图;
图9为本实施例中的船外机采用的另外一种传动机构的示意图。
主要元件符号说明:
船舶                               300
船身                               310
船外机                             100
外机主体                           10
机头                               11
操作杆                             11a
外壳                               11b
内部空间                           11c
连接轴                             12
第一轴段                           12a
第二轴段                           12b
第一齿条                           12m
螺旋桨组件                         13
第一电机                           13a
螺旋桨                             13b
传动结构                           13c,13d
控制器                             14
第一连轴                           15
第二连轴                           16
转轴件                             17
夹具                               20
安装支架                           21
第二齿条                           22
升降台                             23
直线导轨                           24
驱动部分                           30
第二电机                           31
固定部分                           31a
输出轴                             31b
传动机构                           32
蜗杆                               32a
蜗轮                               32b
齿轮                               32d
第一齿轮                           32e
第二齿轮                           32f
自锁结构                           32p
起翘控制器                         301
配合孔                             K1
水面                               P1
截面                               P2
第一部分                           S1
第二部分                           S2
第一向量                           Y1
第一方向分量                       Y11
第二方向分量                       Y12
第二向量                           Y2
分量                               Y21
第一方向                           Z
第二方向                           X
转动轴线                           Z1
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。当一个元件被认为是“设置于”另一个元件,它可以是直接设置在另一个元件上或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本申请。本文所使用的术语“或/及”包括一个或多个相关的所列项目的任意的和所有的组合。
本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施方式及实施方式中的特征可以相互组合。
实施例
参见图1,本实施例提供了一种船舶300,包括船身310和船外机100。
船身310可以具有较大浮力的结构,使船舶300整体浮于水面P1。船身310可以用于承载人或物品。在承载重量不同时,船身310的吃水深度H随之变化。
船外机100安装于船身310,用于提供动力,推动船舶300移动。
本实施例中,船外机100包括外机主体10、夹具20和驱动部分30。
其中,夹具20用于安装于船身310。例如,夹具20通过螺栓等紧固件(图中未示出)固定安装在船身310的尾部。外机主体10可活动地安装于夹具20,且能够部分伸入水面P1之下并与水相互作用以推动船舶300在水面P1上移动。驱动部分30连接于夹具20,并传动连接外机主体10,用于带动外机主体10的整体或部分相对夹具运动。
驱动部分30带动外机主体10的运动可以用于实现外机主体10的起翘,以改变外机主体10的姿态,进而改变外机主体10的推动方向。
外机主体10包括第一部分S1和第二部分S2,第二部分S2和第一部分S1沿第一方向Z连接。图示状态下,第一方向Z为沿重力方向,即垂直于水面P1的方向,第一部分S1位于第二部分S2的下方,在需要时进入水面P1之下,用于与水作用来提供推动力,例如通过在 第一部分S1上设置螺旋桨13b实现与水的相互作用。可以理解的是,第一方向Z仅作为参考方向,并不作为外机主体10结构的限定方向,在船外机100处于某一工作状态下,会存在如图所示状态,也就是说在船外机100处于其他工作状态下,第一方向Z也会与水面P1倾斜。
驱动部分30带动外机主体10的运动包括第一部分S1的运动和第二部分S2的运动。其中,第一部分S1的运动至少具有在第一方向Z上的分量,第二部分S2的运动在第二方向X上的分量为零,其中,第二方向X垂直于第一方向Z,在图示状态下,第二方向X平行于水面P1,指向船舶300的前后方向。
配合参见图2,为方便描述,用第一向量Y1表示第一部分S1的运动,用第二向量Y2表示第二部分S2的运动。
第一部分S1的运动在第一方向Z上具有第一方向分量Y11,第一方向分量Y11为第一向量Y1在第一方向Z上的分量,第一部分S1的运动在第二方向X上具有第二方向分量Y12,第二方向分量Y12为第一向量Y1在第二方向X上的分量。如前文描述,第一部分S1的运动具有第一方向分量Y11,即第一方向分量Y11不为零,表示驱动部分30具有带动第一部分S1在第一方向Z移动的能力;而第二方向分量Y12则可能为零或不为零,不做限定。当第二方向分量Y12为零时,第一部分S1在驱动部分30带动下的运动方式为沿第一方向Z移动,可能体现为垂直升降的运动方式;当第二方向分量Y12不为零时,第一部分S1的运动方式为第一方向分量Y11和第二方向分量Y12的结合,可能表现为第一部分S1在第一方向Z和第二方向X限定的纵向平面内的旋转运动。
第二部分S2的运动在第二方向X上的分量为零,即第二向量Y2等于其在第一方向Z上的分量Y21。当第二部分S2的运动在第一方向Z的分量Y21的取值也为零时,第二部分S2保持相对船身310静止,驱动部分30不会驱动其相对船身310运动;当第二部分S2的运动在第一方向Z的分量Y21的取值不为零时,第二部分S2会在驱动部分30的驱动作用下沿第一方向Z移动。
下面给出一些示例性的实现方式。
参见图3,本实施例提供的船外机100的外机主体10包括机头11、连接轴12和螺旋桨组件13。
其中,在船外机100处于图示状态运作时,连接轴12沿第一方向Z延伸,本实施例中,定义连接轴12靠近螺旋桨组件13的一段为第一轴段12a、靠近机头11的一段为第二轴段12b。如,定义一垂直于第一方向Z的截面P2,第一轴段12a为连接轴12位于该截面P2靠近螺旋桨组件13一侧的部分,第二轴段12b为连接轴12位于该截面P2靠近机头11一侧的部分。需要说明的是,该截面P2的位置可以根据需要设定。本实施例中,第一轴段12a和第二轴段12b可以为一根完整的轴,也可以为两根由连接件固定连接的轴,连接件可以是螺旋、销钉、插销等器件,在此不做限定,只需保持第一轴段12a和第二轴段12b在驱动部分30的带动下,能保持彼此的相对位置不变即可。该实施方式中,连接轴12靠近机头11的部分(即第二轴段12b)与机头11构成前述的第二部分S2,连接轴12靠近螺旋桨组件13的部分(即第一轴段12a)与螺旋桨组件13构成前述的第一部分S1。因此,该实施方式中,第一部分S1和第二部分S2为通过第一轴段12a和第二轴段12b一体的方式相互固定连接。
本实施例中,机头11和螺旋桨组件13分别连接在连接轴12的轴向两端。
机头11包括外壳11b,外壳11b的内部空间11c可以用于容置其他结构,其他结构可以如后文出现的用于控制各电机运行的控制器14,也可以是用于稳固控制器14的支架,电连接控制器14的线束,在此对外壳11b内部容置的结构器件并不限定本实施例中描述的部分。
螺旋桨组件13位于连接轴12远离机头11的一端,连接于第一轴段12a,并能够在船外机100处于推动船身310(参见图1)航行时位于水下,用于与水相互作用产生推动力。例如,本实施例中,螺旋桨组件13用于获取推进力,包括第一电机13a和螺旋桨13b,第一电机13a设于第一部分S1,如设于第一轴段12a的下端。第一电机13a传动连接螺旋桨13b,并能够带动螺旋桨13b旋转,以与水作用产生推动力。
本申请实施例中,第一电机13a可以是单定子电机、双定子电机(具有两个定子、一个或两个转子的电机)或其他类型的电机(如内置有减速器的减速电机)。
本申请实施例中,螺旋桨13b可以是对转桨、导管螺旋桨或其他形式的螺旋桨。
可以理解的是,第一部分S1与第二部分S2固定连接。驱动部分30驱动连接轴12沿第一方向Z运动,则实现第一部分S1和第二部分S2沿第一方向Z同步运动,进而带动螺旋桨组件13沿第一方向Z运动。在一种状态下,连接轴12带动螺旋桨组件13沿第一方向Z运动沉入水下,以使得船外机100能够推动船身310航行。在另一种状态,连接轴12带动螺旋桨组件13沿第一方向Z运动脱离水面,使得船外机100停止推动船身310,船身310可以处于停泊状态,而螺旋桨组件13避免与水接触,从而延长螺旋桨组件13的使用寿命。由于机头11仅在第一方向Z上运动,机头11不会向船身310一侧靠拢,即机头11不会侵占船身310的空间,从而船身310可以获得更多的使用空间,提高航船体验。
参见图4,在另一实施方式中,还可将第一电机13a设置在连接轴12的长向方向的中间位置,并通过连接于第一电机13a和螺旋桨13b之间的传动结构13c(如锥齿轮组、带传动机构、链传动机构等)将动力传递至螺旋桨13b。当连接轴12为空心轴时,传动结构13c可以占用连接轴12内空间。
机头11位于连接轴12的上方,连接于第二轴段12b。机头11可位于船身310较靠上的位置,方便船上的操作者操作。可选地,机头11上设置操作杆11a,方便操作者在外机主体10活动时,辅助扶持外机主体10。
可以理解的是,第一电机13a在连接轴12的中间位置并不限于图示状态,例如第一电机13a的输出轴沿第一方向Z设置。连接轴12设置中置腔,第一电机13a收容于中置腔内。本申请的实施例中,连接轴12的结构形式并不局限于图示样式,也可以是将能够实现对电机、驱动器、螺旋桨等器件支撑的机架等同于本申请实施例的连接轴12。
参见图5,在另一实施方式中,用于驱动螺旋桨13b的第一电机13a还可以设置在机头11处。此时为实现传动,在连接轴12上可设置传动结构13d,第一电机13a通过传动结构13d传动连接至螺旋桨13b,用于将第一电机13a的转动扭矩传递至螺旋桨13b。传动结构13d的具体结构可以根据需要设置,例如采用齿轮传动、带传动、蜗轮蜗杆传动或其他任何合适的传动方式,在此不做限定。
本实施例中,船外机100还可包括控制器14,控制器14电连接前述的第一电机13a,用于控制第一电机13a的运行,如控制运行速度、转动方向等。控制器14可设置于机头11或第二轴段12b,以方便维修或调节。
对于控制器14和第一电机13a分位于连接轴12的不同位置的情形,控制器14与第一电 机13a之间可以通过短距离无线通信(如蓝牙)或有线方式通信。当采用有线方式通信时,可设置连接轴12为空心轴或开设连通通道来实现走线。
本实施例中,连接轴12沿第一方向Z可滑动地配合于夹具20。例如,本实施例中,夹具20上设置沿第一方向Z贯通的配合孔K1,配合孔K1内侧设有直线导轨24,连接轴12穿过配合孔K1并可滑动地配合于直线导轨24。直线导轨24可以为滚轮直线导轨、圆柱直线导轨、滚珠直线导轨或其他能够引导直线滑动的结构。
在一些实施方式中,直线导轨24采用滚珠直线导轨,此时,连接轴12还能够相对夹具20旋转,从而实现船舶300的转向,此时外机主体10的第一部分S1和第二部分S2可以整体相对平行于第一方向Z的转动轴线Z1旋转,来改变螺旋桨组件13的推动力的朝向。
在其他实施例中,直线导轨24可以舍去,直接通过连接轴12和配合孔K1之间的轴孔配合实现相对滑动配合并可选择性地实现相对转动。
如前文描述,本实施例中的驱动部分30安装于夹具20,并传动连接外机主体10,用于带动外机主体10的整体或部分运动。
例如图3示出的,驱动部分30包括第二电机31和传动机构32。
第二电机31包括固定部分31a和输出轴31b,固定部分31a安装在夹具20上,输出轴31b能够在第二电机31通电时受驱转动输出转动扭矩。传动机构32用于将输出轴31b输出的转动扭矩传递给外机主体10,用于带动外机主体10沿第一方向Z升降。即,本实施例的外机主体10的运动中,第一部分S1和第二部分S2同步地沿第一方向Z移动,体现为第一向量Y1和第二向量Y2相等且沿第一方向Z,即第一向量Y1和第二向量Y2在第二方向X的分量均为零,在第一方向Z的分量相等。
本实施例中,可采用各种可行的传动机构32来实现第二电机31的输出扭矩的传递。
例如,前述连接轴12连接有第一齿条12m,第一齿条12m沿第一方向Z延伸。第一齿条12m的长度可根据外机主体10所需升降的高度确定。第二电机31安装于夹具20,并通过传动机构32传动连接于第一齿条12m,用于带动所述第一齿条12m和所述连接轴12沿所述第一方向移动,进而可以通过连接轴12带动整个外机主体10沿第一方向Z的移动。
驱动部分30还包括起翘控制器301,起翘控制器301可与第二电机31固定在一起,即起翘控制器301可固定于夹具20上,并电连接所述第二电机31。起翘控制器301用于接收所述控制器14的控制指令,并基于控制器14的控制指令控制第二电机31的转速和加速度,以使得第二电机31可以根据输入的转速和加速度驱动输出目标转动扭矩,进而第一部分S1根据第二电机31输出的目标转动扭矩运动至目标位置。
在一些实施方式中,传动机构32可以包括相啮合的蜗杆32a和蜗轮32b,第二电机31的输出轴31b连接蜗杆32a。蜗杆32a与输出轴31b同轴设置。蜗杆32a受驱转动可带动蜗轮32b转动,蜗轮32b可以直接与第一齿条12m啮合配合或通过同轴连接的其他齿轮件与齿条啮合配合。如此,第二电机31的输出轴31b的转动可通过蜗杆32a、蜗轮32b和第一齿条12m的啮合配合带动外机主体10沿第一方向Z移动。其中,蜗轮32b可转动安装于夹具20上的一安装支架21。可以理解的是,第二电机31在夹具20上的布局方式并不局限于图示形式,作为一种替换形式,例如可以将第二电机31的输出轴31b与连接轴平行设置。
参见图6,在另一实施例中,传动机构32还可以是采用啮合配合的齿轮32d或齿轮组(齿轮组为包括多个啮合配合的齿轮32d构成的组件)来实现,齿轮32d或齿轮组连接于第二电 机31并与第一齿条12m啮合。其中的齿轮32d可以是直齿轮、锥齿轮或其他类型的齿轮或组合。传动机构32采用单独的齿轮32d时,第二电机31可设置得具有较大扭矩,以提供较大的输出力来带动外机主体10的运动。
在一些实施方式中,驱动部分30还包括自锁结构32p(见图5),自锁结构32p连接第二电机31和传动机构32,用于在第二电机31输出目标转矩后锁止传动机构32传递扭矩至外机主体10,以实现外机主体10升降起翘至某一高度位置能够保持在该位置。自锁结构32p可以采用电磁离合器、液压离合器、电磁制动器、机械锁定装置等实现,或通过带自锁功能的第二电机31实现。
当采用具备自锁功能的蜗轮蜗杆作为传动机构32时,可以不设置额外的自锁结构32p。
本实施例中的第一齿条12m在连接轴12的周向的延伸范围可以达到一定的角度,如60度,以使一些实施方式中连接轴12相对夹具20周向旋转以使船舶300转向时,仍然能保持第一齿条12m和传动机构32之间的啮合配合。
本实施例中,驱动部分30带动外机主体10整体沿第一方向Z(重力方向)升降,而无第二方向X(水平方向)的位移,避免了已知技术船外机整体倾斜等方式存在的船外机侵占船身空间的问题(例如,一些船外机采取整体偏转起翘的方式,船外机上部向船身一侧倾斜时将侵占船身空间),避免船外机压缩船内活动空间或与船内的座椅或其他结构的干涉碰撞。同时本实施例中的船外机100对于不同尺寸的船艉板高度,能够通过沿第一方向Z调节外机主体10的初始位置来适配不同船型。此外,在船舶300运行时,该结构还便于根据船身310吃水深度(反应载重情况)调节螺旋桨13b的吃水深度,使螺旋桨13b位于最佳的推动位置。
在船舶300停泊或长时间不使用时,还可以升起外机主体10,使外机主体10脱离水面P1,降低外机主体10水下部分的腐蚀或碰撞损伤。
图7示出了本实施例中的船外机100的另一示例性实施方式,该船外机100为在图3示出的船外机100的基础上进一步设计而成。
配合参见图7,该船外机100在图3示出的结构的基础上进一步包括以下结构:
夹具20上固设有第二齿条22,第二齿条22和第一齿条12m平行间隔设置,且齿面沿第二方向X相对。第二齿条22与传动机构32连接,第二电机31能够分别相对第二齿条22及第一齿条12m反向运动。可选地,船外机100还包括升降台23,升降台23安装于夹具20并能沿第一方向Z升降,升降台23固定连接第二电机31,用于在第二电机31停止运行时,支撑第二电机31。
对于传动机构32包括蜗轮32b和蜗杆32a的情形,蜗轮32b或其同轴设置的齿轮可设在第一齿条12m和第二齿条22之间,且蜗轮32b两侧分别和第一齿条12m和第二齿条22啮合配合。
该实施方式中,第二电机31的驱动能够带动第一齿条12m和第二齿条22相对蜗轮32b相互同步反向移动,即第一齿条12m相对第二齿条22具有两倍于蜗轮32b扭矩的速率移动,使得该外机主体10具有提升升降速度和放大行程的效果。
图8示出了本实施例中的船外机100的另一示例性实施方式。
参见图8,本实施方式中的船外机100的外机主体10包括机头11、第一连轴15、第二连轴16和螺旋桨组件13。本实施例中,机头11的结构可参见图3示出的实施例中的描述。螺旋桨组件13可以采用前述图3或图4示出的实施方式。
第二连轴16连接夹具20,并沿第一方向Z延伸。例如第二连轴16通过轴承、悬置、支架等器件连接于夹具20。第二连轴16在第二方向X上不存在运动分量,即第二连轴16的长度方向始终保持在第一方向Z方向上。
在其他实施例中,第二连轴16还可以设置为沿其轴线可转动地配合于夹具20,以使第二连轴16转动能够带动第一连轴15和连接于其上的螺旋桨组件13侧向(即垂直于第一方向Z和第二方向X的方向)摆动,以调节船舶300转向航行。第一连轴15一端转动连接于第二连轴16、另一端安装螺旋桨组件13,第一连轴15和螺旋桨组件13构成第一部分S1。机头11连接于第二连轴16远离第一连轴15的一端,机头11和第二连轴16构成第二部分S2。驱动部分30传动连接第一部分S1(如连接第一连轴15),用于带动第一部分S1相对第二部分S2转动。
该实施方式中,第一部分S1的运动在第一方向Z上具有第一方向分量Y11、在第二方向X上具有第二方向分量Y12,第二部分S2的运动在第一方向Z上的分量为零、在第二方向X上的分量也为零。即,第二部分S2相对夹具20固定设置,第一部分S1靠近第二部分S2的一端可转动地连接于第二部分S2靠近第一部分S1一端。第一部分S1远离第二部分S2的一端设有螺旋桨组件13,螺旋桨组件13用于获取推进力。驱动部分30传动连接于第一部分S1,用于带动第一部分S1相对第二部分S2转动。
该实施例中,驱动部分30包括第二电机31和传动机构32。第二电机31安装于夹具20,并通过传动机构32传动连接于第一连轴15,用于带动第一连轴15相对第二连轴16转动。可选地,第一连轴15通过一转轴件17转动连接于第二连轴16,传动机构32包括相啮合的蜗轮32b和蜗杆32a,蜗杆32a连接于第二电机31,蜗轮32b连接于转轴件17。转轴件17的轴线垂直第一方向Z。
除蜗轮蜗杆机构外,传动机构32还可采用行星齿轮、图3-图7对应的各实施方式中提出的其他实施方式,如齿轮或齿轮组、带传动机构等。
例如图9示出的,传动机构32包括相啮合的第一齿轮32e和第二齿轮32f,第一齿轮32e连接于第二电机31,第二齿轮32f连接于转轴件17。如此,第二电机31的输出扭矩可通过第一齿轮32e和第二齿轮32f传递至转轴件17,以使转轴件17带动第一部分S1转动实现起翘。
相似地,本实施方式中,驱动部分30也可设置自锁结构32p,自锁结构32p连接第二电机31和传动机构32,用于在第二电机31输出目标转矩后锁止传动机构32传递扭矩至第一部分S1。自锁结构32p可采用图3对应的实施例中提及的方式实现。
该实施例中的船外机100,通过驱动部分30带动外机主体10的一部分(第二部分S2)旋转的方式,实现外机主体10的起翘,避免了已知技术船外机整体倾斜等方式存在的船外机侵占船身空间的问题,避免船外机压缩船内活动空间或与船内的座椅或其他结构的干涉碰撞,并且,只起翘第二部分S2而非整体起翘的方式所需动力较小,能够通过功率或尺寸较小的驱动部分30实现起翘,节约成本。此外,该实施方式针对一些用户场需求,在驾船行进时,在不同的速度及船身310载重、配重情况下,能够方便地根据行驶情况调节船外机100螺旋桨13b轴线与水平方向夹角使得船外机100发挥更优秀的推进效率。
在船舶300停泊或长时间不使用时,还可以翘起第二部分S2,使外机主体10脱离水面P1,降低外机主体10水下部分的腐蚀或碰撞损伤。
综合上述的各实施方式,本申请中,通过设置“船外机包括外机主体、夹具和驱动部分,外机主体包括第一部分和第二部分,第二部分和第一部分沿第一方向连接;夹具用于安装于船身;驱动部分传动连接外机主体,并能够带动外机主体运动,运动包括第一部分的运动和第二部分的运动,第一部分的运动具有在第一方向上的分量,第二部分的运动在第二方向上的分量为零,其中,第二方向垂直于第一方向”,使得船外机100能够方便地实现外机主体10的起翘,且避免了已知技术船外机100整体倾斜等方式存在的船外机100侵占船身310空间的问题,具有较高的实用性。
本申请实施例还提供一种船舶控制方法,基于前述的船外机100,该船舶控制方法包括:
获取障碍物距离和安全阈值;障碍物可以是水底面或礁石等物体;安全阈值可以根据需要设定,如设置为30cm;获取障碍物的方式,可以为在船舶300上设置传感器,通过传感器获得障碍物与船舶的距离;
将障碍物距离与安全阈值进行解算,输出起翘运动量;本实施例中,可通过控制器14执行该解算,如在控制器14中预存安全阈值,并使控制器14通信连接传感器来获得传感器测得的距离,并计算得到该距离和安全阈值的差值,用作起翘运动量;
获取第一部分S1的运动位置,并对所述第一部分S1的运动位置与所述起翘运动量进行姿态调整处理,输出起翘控制指令,所述起翘控制指令用于指示所述驱动部分30控制所述第一部分S1运动至目标位置,如起翘控制器301接收控制器14的控制指令,并基于控制器14的控制指令控制第二电机31的转速和加速度,以使得第二电机31根据输入的转速和加速度驱动输出目标转动扭矩,进而第一部分S1和第二部分S2整体或单独的第一部分S1根据第二电机31输出的目标转动扭矩起翘至实际距离大于或等于安全阈值的位置。
对于图3-图7示出的实施方式,所述起翘控制指令包括整体起翘指令,所述整体起翘指令用于指示所述驱动部分30带动所述第一部分S1及第二部分S2整体沿第一方向Z运动至目标位置。
对于图8-图9示出的实施方式,所述起翘控制指令包括部分起翘指令,所述部分起翘指令用于指示所述驱动部分30带动所述第一部分S1沿第一方向Z运动及第二方向X运动至目标位置,如使第一部分S1相对第二部分S2旋转至目标位置。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质包括存储的程序,该程序执行前述的船舶控制方法。该可读存储介质可以设置于前述控制器14。
以上实施方式仅用以说明本申请的技术方案而非限制,尽管参照以上较佳实施方式对本申请进行了详细说明,本领域的普通技术人员应当理解,可以对本申请的技术方案进行修改或等同替换都不应脱离本申请技术方案的精神和范围。

Claims (28)

  1. 一种船外机,其特征在于,包括:
    外机主体,包括第一部分和第二部分,所述第二部分和所述第一部分沿第一方向连接;
    夹具,用于安装于船身;
    驱动部分,连接于所述夹具;所述驱动部分传动连接所述外机主体,并用于带动所述外机主体相对所述夹具运动,所述运动包括所述第一部分的运动和所述第二部分的运动,所述第一部分的运动至少具有在第一方向上的分量,所述第二部分的运动在第二方向上的分量为零,其中,所述第二方向垂直于所述第一方向。
  2. 根据权利要求1所述的船外机,其特征在于:
    所述第一部分的运动在所述第二方向上的分量为零,所述第二部分的运动在第一方向上的分量等于所述第一部分的运动在第一方向上的分量。
  3. 根据权利要求2所述的船外机,其特征在于:
    所述第一部分和所述第二部分相互固定连接。
  4. 根据权利要求3所述的船外机,其特征在于:
    所述外机主体包括机头、连接轴和螺旋桨组件;
    所述连接轴沿所述第一方向延伸,所述机头和所述螺旋桨组件分别连接于所述连接轴的轴向两端;所述连接轴靠近所述机头的部分与所述机头构成所述第二部分,所述连接轴靠近所述螺旋桨组件的部分与所述螺旋桨组件构成所述第一部分,螺旋桨组件用于获取推进力;
    所述连接轴沿第一方向可滑动地配合于所述夹具。
  5. 根据权利要求4所述的船外机,其特征在于:
    所述连接轴连接有第一齿条,所述第一齿条沿所述第一方向延伸;
    所述驱动部分包括第二电机和传动机构;
    所述第二电机安装于所述夹具,并通过所述传动机构传动连接于所述第一齿条,用于带动所述第一齿条和所述连接轴沿所述第一方向移动。
  6. 根据权利要求5所述的船外机,其特征在于:
    所述传动机构包括相啮合的蜗杆和蜗轮,所述蜗杆连接于所述第二电机,所述蜗轮与所述第一齿条啮合。
  7. 根据权利要求5所述的船外机,其特征在于:
    所述传动机构包括齿轮或齿轮组,所述齿轮或齿轮组连接于所述第二电机,并与所述第一齿条啮合。
  8. 根据权利要求5所述的船外机,其特征在于:
    所述驱动部分还包括自锁结构,所述自锁结构连接所述第二电机和所述传动机构,用于在第二电机输出目标转矩后锁止传动机构传递扭矩至所述外机主体。
  9. 根据权利要求5-8任一项所述的船外机,其特征在于:
    所述夹具上固设有第二齿条,所述第二齿条和所述第一齿条平行间隔设置,且齿面沿第二方向相对;
    所述第二齿条与所述传动机构连接;所述第二电机能够分别相对所述第二齿条及所述第一齿条反向运动。
  10. 根据权利要求9所述的船外机,其特征在于:
    所述船外机还包括升降台,所述升降台安装于所述夹具并能沿第一方向升降,所述升降台固定连接所述第二电机,用于在第二电机停止运行时,支撑所述第二电机。
  11. 根据权利要求4所述的船外机,其特征在于:
    所述夹具开设有沿第一方向贯通的配合孔,所述配合孔内侧设有直线导轨,所述连接轴穿过所述配合孔并可滑动地配合于所述直线导轨。
  12. 根据权利要求4所述的船外机,其特征在于:
    所述机头设有第一电机,所述螺旋桨组件设有螺旋桨,所述外机主体还包括安装于所述连接轴的传动部件,所述传动部件与所述第一电机和所述螺旋桨连接,用于将所述第一电机的转动扭矩传递至所述螺旋桨。
  13. 根据权利要求1所述的船外机,其特征在于:
    所述第一部分的运动具有第一方向上的分量及在第二方向上的分量,所述第二部分的运动在第一方向上的分量为零。
  14. 根据权利要求13所述的船外机,其特征在于:
    所述第二部分在第一方向上相对所述夹具固定设置;
    所述第一部分靠近所述第二部分的一端可转动地连接于所述第二部分靠近所述第一部分一端;
    所述第一部分远离所述第二部分的一端设有螺旋桨组件,螺旋桨组件用于获取推进力;
    所述驱动部分传动连接于所述第一部分,用于带动所述第一部分相对所述第二部分转动。
  15. 根据权利要求14所述的船外机,其特征在于:
    所述外机主体包括机头、第一连轴、第二连轴和所述螺旋桨组件;
    所述第二连轴相对所述夹具固定设置,并沿第一方向延伸;
    所述第一连轴一端转动连接于所述第二连轴、另一端安装所述螺旋桨组件,所述第一连轴和所述螺旋桨组件构成所述第一部分;
    所述机头连接于所述第二连轴远离所述第一连轴的一端,所述机头和所述第二连轴构成所述第二部分。
  16. 根据权利要求15所述的船外机,其特征在于:
    所述驱动部分包括第二电机和传动机构;
    所述第二电机安装于所述夹具,并通过所述传动机构传动连接于所述第一连轴,用于带动所述第一连轴相对所述第二连轴转动。
  17. 根据权利要求16所述的船外机,其特征在于:
    所述第一连轴通过一转轴件转动连接于所述第二连轴;
    所述传动机构包括相啮合的蜗轮和蜗杆,所述蜗杆连接于所述第二电机,所述蜗轮连接于所述转轴件。
  18. 根据权利要求16所述的船外机,其特征在于:
    所述第一连轴通过一转轴件转动连接于所述第二连轴;所述传动机构包括相啮合的第一齿轮和第二齿轮,所述第一齿轮连接于所述第二电机,所述第二齿轮连接于所述转轴件。
  19. 根据权利要求16所述的船外机,其特征在于:
    所述驱动部分还包括自锁结构;
    所述自锁结构连接所述第二电机和所述传动机构,用于在第二电机输出目标转矩后锁止 传动机构传递扭矩至所述第一部分。
  20. 根据权利要求15所述的船外机,其特征在于:
    所述机头设有第一电机,所述螺旋桨组件设有螺旋桨,所述外机主体还包括安装于所述第一连轴及第二连轴的传动部件,所述传动部件与所述第一电机和所述螺旋桨连接,用于将所述第一电机的转动扭矩传递至所述螺旋桨。
  21. 根据权利要求12或20所述的船外机,其特征在于:
    所述第二部分设有控制器,所述控制器电连接所述第一电机,用于控制第一电机运行。
  22. 根据权利要求4或15所述的船外机,其特征在于:
    所述机头上设有操作杆。
  23. 根据权利要求1所述的船外机,其特征在于:
    所述第二部分与所述夹具可转动地连接,所述第二部分能够带动所述第一部分相对所述夹具转动,并且所述第二部分的转动轴线平行所述第一方向。
  24. 一种船舶,其特征在于,包括:
    船身;
    权利要求1-23任一项所述的船外机;所述船外机通过所述夹具安装于所述船身,且所述第一部分位于所述船身的背水一侧,所述第二部分位于所述船身的靠水一侧。
  25. 一种船舶控制方法,其特征在于,所述船舶控制方法用于控制权利要求1-23任一项所述的船外机,所述船舶控制方法包括:
    获取障碍物距离和安全阈值;
    将障碍物距离与安全阈值进行解算,输出起翘运动量;
    获取第一部分的运动位置,并对所述第一部分的运动位置与所述起翘运动量进行姿态调整处理,输出起翘控制指令,所述起翘控制指令用于指示所述驱动部分控制所述第一部分运动至目标位置。
  26. 根据权利要求25所述的船舶控制方法,其特征在于:
    所述起翘控制指令包括整体起翘指令,所述整体起翘指令用于指示所述驱动部分带动所述第一部分及第二部分整体沿第一方向运动至目标位置。
  27. 根据权利要求25所述的船舶控制方法,其特征在于:
    所述起翘控制指令包括部分起翘指令,所述部分起翘指令用于指示所述驱动部分带动所述第一部分沿第一方向运动及第二方向运动至目标位置。
  28. 一种计算机可读存储介质,所述计算机可读存储介质包括存储的程序,其特征在于,所述程序执行权利要求25-27任一项所述的船舶控制方法。
PCT/CN2022/113770 2022-08-19 2022-08-19 船外机、船舶及控制方法以及计算机可读存储介质 WO2024036642A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280053414.3A CN117794813A (zh) 2022-08-19 2022-08-19 船外机、船舶及控制方法以及计算机可读存储介质
PCT/CN2022/113770 WO2024036642A1 (zh) 2022-08-19 2022-08-19 船外机、船舶及控制方法以及计算机可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/113770 WO2024036642A1 (zh) 2022-08-19 2022-08-19 船外机、船舶及控制方法以及计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2024036642A1 true WO2024036642A1 (zh) 2024-02-22

Family

ID=89940484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/113770 WO2024036642A1 (zh) 2022-08-19 2022-08-19 船外机、船舶及控制方法以及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN117794813A (zh)
WO (1) WO2024036642A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010010937A1 (ja) * 2008-07-23 2010-01-28 ヤマハ発動機株式会社 船推進機
CN106828851A (zh) * 2017-01-20 2017-06-13 水星海事技术(苏州)有限公司 船用舷外发动机转向手柄的抬升锁止机构
CN108248804A (zh) * 2016-12-28 2018-07-06 雅马哈发动机株式会社 船外机
CN110155292A (zh) * 2019-05-24 2019-08-23 东莞亿动智能科技有限公司 电转向驱动装置及船用推进器电动转向系统
CN110341923A (zh) * 2019-08-13 2019-10-18 武义恒海工具股份有限公司 一种带有转向装置的舷外机
EP3896820A1 (en) * 2020-04-16 2021-10-20 Yamaha Hatsudoki Kabushiki Kaisha Outboard motor and control method for outboard motor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010010937A1 (ja) * 2008-07-23 2010-01-28 ヤマハ発動機株式会社 船推進機
CN108248804A (zh) * 2016-12-28 2018-07-06 雅马哈发动机株式会社 船外机
CN106828851A (zh) * 2017-01-20 2017-06-13 水星海事技术(苏州)有限公司 船用舷外发动机转向手柄的抬升锁止机构
CN110155292A (zh) * 2019-05-24 2019-08-23 东莞亿动智能科技有限公司 电转向驱动装置及船用推进器电动转向系统
CN110341923A (zh) * 2019-08-13 2019-10-18 武义恒海工具股份有限公司 一种带有转向装置的舷外机
EP3896820A1 (en) * 2020-04-16 2021-10-20 Yamaha Hatsudoki Kabushiki Kaisha Outboard motor and control method for outboard motor

Also Published As

Publication number Publication date
CN117794813A (zh) 2024-03-29

Similar Documents

Publication Publication Date Title
US20110263165A1 (en) Electric Marine Surface Drive
CN100497082C (zh) 整体全回转升降式舵桨装置
US20060258233A1 (en) Marine drive system
US8795011B2 (en) Marine vessel propulsion apparatus
JP2015515939A (ja) 減速歯車ユニットを備える引込式電動ラダープロペラ
WO2024036642A1 (zh) 船外机、船舶及控制方法以及计算机可读存储介质
US10207785B2 (en) Watercraft adjustable shaft spacing apparatus and related method of operation
KR20130000961A (ko) 포드형 추진기 및 이를 구비하는 선박
CN115071942B (zh) 船用舷外机、船舶及船用舷外机的控制方法
CN218506108U (zh) 船外机及船舶
CN218506109U (zh) 船外机及船舶
CN218506107U (zh) 船外机及船舶
US6688924B2 (en) Two-engine propulsion system for a ship
KR101091759B1 (ko) 직선 승강식 선미추진장치
CN212500970U (zh) 一种变动力双驱动全回转舵桨
US9914518B2 (en) Watercraft adjustable shaft spacing apparatus and related method of operation
CN114104247B (zh) 一种齿轮传动的喷水推进装置操纵机构
CN219154724U (zh) 一种船用舵效增强装置
CN219806959U (zh) 电动推进器及水域可移动设备
CN204473115U (zh) 用于驱动船舶的船用吊舱式驱动系统
CN219077464U (zh) 推进器及水域可移动设备
CN116080877A (zh) 一种船用拼装组合式可升降全回转动力舱
CN217945482U (zh) 一种基于智能减速的船舶
EP4144634A1 (en) Powering system for a watercraft
EP4299434A1 (en) Propulsion device for marine vessel, outboard motor and marine vessel

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280053414.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22955422

Country of ref document: EP

Kind code of ref document: A1