WO2024036566A1 - 一种天线系统 - Google Patents

一种天线系统 Download PDF

Info

Publication number
WO2024036566A1
WO2024036566A1 PCT/CN2022/113340 CN2022113340W WO2024036566A1 WO 2024036566 A1 WO2024036566 A1 WO 2024036566A1 CN 2022113340 W CN2022113340 W CN 2022113340W WO 2024036566 A1 WO2024036566 A1 WO 2024036566A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
array
antenna array
rows
target direction
Prior art date
Application number
PCT/CN2022/113340
Other languages
English (en)
French (fr)
Inventor
王江
王强
邓长顺
范俊方
白雪
易欢
崔鹤
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2022/113340 priority Critical patent/WO2024036566A1/zh
Publication of WO2024036566A1 publication Critical patent/WO2024036566A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B15/00Suppression or limitation of noise or interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex

Definitions

  • Embodiments of the present application relate to the field of communications, and in particular, to an antenna system.
  • the IAB node includes a mobile terminal (MT) antenna and a distributed unit (DU) antenna.
  • the MT antenna is used to communicate with the macro base station
  • the DU antenna is used to communicate with the user equipment (UE). Due to the low isolation between the MT antenna and the DU antenna, traditional IAB nodes work in frequency division duplex or time division duplex mode, resulting in a waste of spectrum resources or time slot resources.
  • the MT antenna can also receive signals from the macro base station when the DU antenna sends signals to the UE, and the DU antenna can also receive signals from the UE when the MT antenna sends signals to the macro base station, it must Reduce interference between two antennas.
  • two metal fences are set up to surround the MT antenna and the DU antenna respectively, and a metal strip array is set up between the two metal fences to reduce interference between the antennas.
  • the above-mentioned metal fences often have a high height, and the metal bar array also takes up a lot of space, affecting the design of other parts of the IAB node.
  • This application provides an antenna system for improving the isolation between the MT antenna and the DU antenna.
  • the first aspect of this application provides an antenna system:
  • the spacing between two adjacent rows of antenna elements of the first antenna array in the target direction is determined based on the phase difference and wavelength fed by the two adjacent rows of antenna elements of the first antenna array in the target direction.
  • the spacing between two adjacent rows of antenna elements of the second antenna array in the target direction is determined based on the phase difference and wavelength fed by the two adjacent rows of antenna elements of the second antenna array in the target direction.
  • the target direction Pointing from the first side to the second side, the wavelength is the wavelength corresponding to the working frequency band of the first antenna array and the second antenna array.
  • the interference signal transmitted from the first antenna to the second antenna array can be suppressed, and the interference signal transmitted by the first antenna to the second antenna array can be suppressed.
  • the second antenna transmits interference signals to the first antenna array, so that there is no need to set up additional metal fences and metal bar arrays, and good isolation between the first antenna array and the second antenna array can be obtained.
  • the spacing between two adjacent rows of antenna elements of the first antenna array in the target direction is half a wavelength.
  • the spacing between two adjacent rows of antenna elements in the target direction of the first antenna array is less than half wavelength.
  • the spacing between two adjacent rows of antenna elements in the target direction of the first antenna array is greater than half a wavelength.
  • the spacing d a of two adjacent rows of antenna elements of the first antenna array in the target direction satisfy
  • ⁇ a is the phase difference fed by two adjacent rows of antenna elements in the target direction of the first antenna array
  • is the wavelength.
  • the spacing between two adjacent rows of antenna elements of the second antenna array in the target direction is half a wavelength.
  • the spacing between two adjacent rows of antenna elements of the second antenna array in the target direction is greater than half wavelength.
  • the distance between two adjacent rows of antenna elements in the target direction of the second antenna array is less than half a wavelength.
  • the spacing d b between two adjacent rows of antenna elements of the second antenna array in the target direction satisfy where ⁇ b is the phase difference fed by two adjacent rows of antenna elements in the target direction of the second antenna array.
  • the spacing d b between two adjacent rows of antenna elements of the second antenna array in the target direction satisfies
  • the excitation voltage amplitude of the M rows of antenna elements first increases and then decreases in the target direction. If the second antenna array is in The target direction includes N rows of antenna elements, so the excitation voltage amplitude of the N rows of antenna elements first increases and then decreases in the target direction.
  • the ratios of the excitation voltage amplitudes of the M rows of antenna elements of the first antenna array in the target direction are:
  • the ratios of the excitation voltage amplitudes of the N rows of antenna elements of the second antenna array in the target direction are:
  • the first antenna array includes M rows of antenna elements in the target direction
  • the sum of the excitation voltage amplitudes of odd-numbered rows of antenna elements in the M rows of antenna elements is equal to The sum of the excitation voltage amplitudes of the even-numbered rows of antenna elements.
  • the second antenna array includes N rows of antenna elements in the target direction, then the sum of the excitation voltage amplitudes of the odd-numbered rows of antenna elements in the N rows of antenna elements is equal to the N rows of antennas. The sum of the excitation voltage amplitudes of the even-numbered rows of antenna elements in the element.
  • the first side is the upper side
  • the second side is the lower side.
  • the first side is the left side and the second side is the right side.
  • the second aspect of this application provides an antenna system:
  • the first antenna array includes one row of antenna elements in the target direction, and the spacing between the two adjacent rows of antenna elements of the second antenna array in the target direction is based on the distance between the two adjacent rows of the second antenna array in the target direction.
  • the phase difference and wavelength fed by the antenna element are determined.
  • the target direction is from the first side to the second side, and the wavelength is the wavelength corresponding to the working frequency band of the first antenna array and the second antenna array.
  • the spacing between two adjacent rows of antenna elements of the second antenna array in the target direction is half a wavelength.
  • the second antenna array if the second antenna array is disposed on the first side, and the main beam generated by the second antenna array is biased toward the first side relative to the direction of the vertical array, then the second antenna array in the target direction The distance between two adjacent rows of antenna elements is less than half a wavelength. Or, if the second antenna array is disposed on the first side, and the main beam generated by the second antenna array is biased toward the second side relative to the direction of the vertical array, then the two adjacent rows of antenna elements of the second antenna array in the target direction The spacing is greater than half a wavelength.
  • the second antenna array if the second antenna array is disposed on the second side, and the main beam generated by the second antenna array is biased toward the first side relative to the direction of the vertical array, then the second antenna array in the target direction The distance between two adjacent rows of antenna elements is greater than half the wavelength. Or, if the second antenna array is disposed on the second side, and the main beam generated by the second antenna array is biased toward the second side relative to the direction of the vertical array, then the two adjacent rows of antenna elements of the second antenna array in the target direction The spacing is less than half the wavelength.
  • the second antenna array in the target direction
  • the distance d a between two adjacent rows of antenna elements satisfies where ⁇ a is the phase difference fed by two adjacent rows of antenna elements in the target direction of the second antenna array, and ⁇ is the wavelength;
  • the second antenna array if the second antenna array is disposed on the second side, and the main beam generated by the second antenna array is biased toward the first side relative to the direction of the vertical array, then the second antenna array in the target direction
  • the spacing d b between two adjacent rows of antenna elements satisfies where ⁇ b is the phase difference fed by two adjacent rows of antenna elements in the target direction of the second antenna array.
  • the second antenna array is disposed on the second side, and the main beam generated by the second antenna array is biased toward the second side relative to the direction of the vertical array, then the two adjacent rows of antenna elements of the second antenna array in the target direction
  • the distance d b satisfies
  • the excitation voltage amplitude of the N rows of antenna elements first increases and then decreases in the target direction.
  • the ratios of the excitation voltage amplitudes of the M rows of antenna elements in the target direction are:
  • the sum of the excitation voltage amplitudes of the odd-numbered rows of antenna elements in the N rows of antenna elements of the second antenna array is equal to the sum of the excitation voltage amplitudes of the even-numbered rows of the N rows of antenna elements.
  • the first side is the upper side
  • the second side is the lower side.
  • the first side is the left side and the second side is the right side.
  • the second antenna array includes at least 3 rows of antenna elements in the target direction.
  • the third aspect of this application provides an antenna pole station:
  • the antenna module includes a pole, a mounting piece, a baffle and an antenna module.
  • the antenna module is provided with an antenna system as in the first aspect or the second aspect.
  • the mounting piece is fixedly connected to the pole, the baffle and the antenna module are fixedly connected to the mounting piece, and the baffle is arranged between the pole and the antenna module.
  • the electromagnetic waves generated by the MT antenna and the DU antenna in the antenna system can be scattered or adjusted, thereby ensuring that the isolation between the MT antenna and the DU antenna is not affected.
  • the impact of poles and mounting hardware by setting a baffle between the antenna module and the pole, the electromagnetic waves generated by the MT antenna and the DU antenna in the antenna system can be scattered or adjusted, thereby ensuring that the isolation between the MT antenna and the DU antenna is not affected.
  • the shape of the baffle is a rectangle or a curved surface.
  • FIG. 1 is a schematic structural diagram of the IAB node in this application.
  • Figure 2 is a schematic diagram of the application scenario in this application.
  • Figure 3 is another schematic diagram of the application scenario in this application.
  • FIG. 4 is a schematic diagram of an antenna system in the prior art
  • FIG. 5 is a schematic diagram of the antenna system in this application.
  • FIG. 6 is another schematic diagram of the antenna system in this application.
  • Figure 7 is a schematic diagram of the principle used by this application to achieve higher isolation
  • Figure 8 is a schematic diagram showing the difference in isolation between the antenna system of the present application and the antenna system of the prior art
  • Figure 9a is a gain diagram of the antenna system in this application.
  • Figure 9b is another gain diagram of the antenna system in this application.
  • Figure 9c shows the isolation corresponding to different excitation voltage amplitude ratios in this application.
  • FIG. 10 is another schematic diagram of the antenna system in this application.
  • Figure 11 is another schematic diagram of the principle of achieving higher isolation in this application.
  • Figure 12 is a schematic diagram showing another difference in isolation between the antenna system of the present application and the antenna system of the prior art
  • Figure 13a is a gain diagram of the antenna system in this application.
  • Figure 13b is another gain diagram of the antenna system in this application.
  • FIG 14 is another schematic diagram of the antenna system in this application.
  • Figure 15 is another schematic diagram of the principle of achieving higher isolation in this application.
  • Figure 16 is a schematic diagram showing another difference in isolation between the antenna system of the present application and the antenna system of the prior art
  • Figure 17a is a gain diagram of the antenna system in this application.
  • Figure 17b is another gain diagram of the antenna system in this application.
  • FIG. 18 is another schematic diagram of the antenna system in this application.
  • Figure 19 is another schematic diagram of the principle of achieving higher isolation in this application.
  • Figure 20 is a schematic diagram showing another difference in isolation between the antenna system of the present application and the antenna system of the prior art
  • Figure 21a is a gain diagram of the antenna system in this application.
  • Figure 21b is another gain diagram of the antenna system in this application.
  • FIG 22 is a schematic structural diagram of the antenna mast station in this application.
  • FIG 23 is another structural schematic diagram of the antenna mast station in this application.
  • the antenna of the IAB node includes two parts: MU antenna and DU antenna.
  • the two antennas are responsible for different functions, thereby realizing the coverage extension and blind filling of the macro base station, maximizing the capacity potential and spectrum value of MIMO.
  • Figure 2 In a typical application scenario of an IAB node, it includes a backhaul link and an access link.
  • the DU antenna of the IAB node provides wireless access services to the UE through the access link.
  • the MT antenna of the IAB node is connected to the macro base station through the backhaul link and transmits service data from the UE to the macro base station.
  • FIG. 2 is only a simple illustration of an application scenario, and the application scenario of an IAB node may also include multiple IAB nodes and multiple UEs.
  • This application scenario includes IAB node 1, IAB node 2 and macro base station.
  • the macro base station can access the core network.
  • the MT antenna of IAB node 1 is connected to the macro base station through the upper-level backhaul link.
  • the IAB node The MT antenna of 2 is connected to IAB node 1 through the lower-level backhaul link.
  • IAB node 1, IAB node 2 and the DU antenna of the macro base station provide access services to the UE through the access link.
  • IAB nodes In the current technology, due to the low isolation between the MT antenna and the DU antenna, IAB nodes often work in frequency division duplex mode or time division duplex mode, and cannot transmit and receive signals simultaneously in the same frequency band. , that is, it is impossible to realize that when the DU antenna sends signals to the UE, the MT antenna can also receive signals from the macro base station, and when the DU antenna receives signals from the UE, the MT antenna can also send signals to the macro base station.
  • a metal fence is used to surround the MT antenna and the DU antenna. The metal fence reflects electromagnetic waves to reduce the interference between the two antennas. interference.
  • a metal strip array is set up between the MT antenna and the DU antenna to further improve the isolation between the two antennas by suppressing surface waves.
  • the above-mentioned metal fences and metal bar arrays will occupy a lot of space and affect the design of other parts of the IAB node.
  • the embodiment of the present application provides an antenna system for improving the isolation between the MT antenna and the DU antenna.
  • the antenna array in the embodiment of the present application can be used as an IAB node and applied in application scenarios as shown in Figure 2 or Figure 3.
  • the antenna system in the embodiment of the present application includes a first antenna array and a second antenna array.
  • the first antenna array is disposed on the first side
  • the second antenna array is disposed on the second side.
  • the first antenna array and the second antenna array are respectively used as the MT antenna and the DU antenna.
  • the first antenna array is used as the MT antenna
  • the first antenna array is used as the DU antenna.
  • the first side is, for example, the upper side
  • the second side is, for example, the lower side; or in another case, the first side is the left side, and the second side is the right side.
  • the first side and the second side are The side is not limited to the above situations.
  • the first antenna array and the second antenna array can be used to transmit and receive signals in the same frequency band at the same time, that is, when the DU antenna sends signals to the UE in the same frequency band, the MT antenna can also receive signals from Acer. When the DU antenna receives the signal from the UE, the MT antenna can also send signals to the macro base station.
  • the spacing between two adjacent rows of antenna elements in the first antenna array in the target direction is determined based on the phase difference and wavelength fed by the two adjacent rows of antenna elements.
  • the spacing between the two adjacent rows of antenna elements in the target direction of the second antenna array is determined.
  • the spacing between two rows of antenna elements is determined based on the phase difference and wavelength of the power fed by the two adjacent rows of antenna elements.
  • the above-mentioned target direction is the direction from the first side to the second side.
  • the first antenna array and the second antenna array use the same operating frequency band.
  • the above-mentioned wavelength corresponds to the wavelength of the operating frequency band. For example, it may correspond to the center frequency in the operating frequency band.
  • the wavelength, the wavelength corresponding to the high frequency frequency or the wavelength corresponding to the low frequency frequency, in a preferential manner, the above wavelength can be the wavelength corresponding to the center frequency in the above working frequency band.
  • the spacing d between two adjacent rows of antenna elements of the first antenna array in the target direction a1 satisfies the following formula (1):
  • ⁇ a1 is the phase difference fed by the two adjacent rows of antenna elements, and ⁇ is the wavelength.
  • ⁇ a2 is the phase difference fed by the two adjacent rows of antenna elements.
  • ⁇ b1 is the phase difference fed by the two adjacent rows of antenna elements.
  • the spacing d b2 between two adjacent rows of antenna elements in the target direction of the second antenna array satisfies the following formula (4 ):
  • ⁇ b2 is the phase difference fed by the two adjacent rows of antenna elements.
  • the spacing between two adjacent rows of antenna elements in the target direction of the antenna array is half a wavelength.
  • the above spacing can also be greater than half a wavelength. Choose an appropriate value within the range of one wavelength or less than half a wavelength.
  • the spacing between two adjacent rows of antenna elements in the target direction of the first antenna array is also It does not need to be set exactly according to formula (1), but an appropriate value can be selected within a range of less than half a wavelength.
  • the spacing between two adjacent rows of antenna elements in the target direction of the first antenna array may not be set entirely in accordance with formula (2), Instead, an appropriate value can be selected within a range greater than half a wavelength.
  • the spacing between the two adjacent rows of antenna elements in the target direction of the second antenna array does not need to be set entirely in accordance with formula (3). Instead, an appropriate value can be selected within a range greater than half a wavelength.
  • the spacing between the two adjacent rows of antenna elements in the target direction of the second antenna array does not need to be set entirely in accordance with formula (4). Instead, an appropriate value can be selected within a range of less than half a wavelength.
  • the excitation voltage amplitude of each antenna element in a row of antenna elements in the target direction of the first antenna array and the second antenna array is the same.
  • the excitation voltage amplitude of the M rows of antenna elements first increases and then decreases in the target direction.
  • the second antenna array includes M rows of antenna elements in the target direction, Including N rows of antenna elements, the excitation voltage amplitude of the N rows of antenna elements first increases and then decreases in the target direction, that is, it meets the tapering distribution.
  • the ratios of the excitation voltage amplitudes of the M rows of antenna elements in the target direction are sequentially: If the second antenna array includes N rows of antenna elements in the target direction, then the ratios of the excitation voltage amplitudes of these N rows of antenna elements in the target direction are:
  • the first antenna array includes M rows of antenna elements in the target direction
  • the sum of the excitation voltage amplitudes of the odd-numbered rows of antenna elements in the M rows of antenna elements is equal to the sum of the excitation voltage amplitudes of the M rows of antenna elements.
  • the second antenna array includes N rows of antenna elements in the target direction, then the sum of the excitation voltage amplitudes of the odd-numbered rows of antenna elements in the N rows of antenna elements is equal to N rows.
  • the sum of the excitation voltage amplitudes of the first row of antenna elements and the third row of antenna elements in the target direction is equal to the second row of antenna elements in the target direction.
  • the sum of the excitation voltage amplitudes of the antenna element and the antenna element in the fourth row is equal to the second row of antenna elements in the target direction.
  • the above is a general introduction to the antenna arrays in the embodiments of the present application.
  • there is at least one antenna array in the first antenna array and the second antenna array with more than or equal to three rows of antenna elements in the target direction.
  • one of the first antenna array and the second antenna array has only one row of antenna elements in the target direction, while the other antenna array is arranged in the manner described above.
  • the first antenna array is disposed on the upper side
  • the second antenna array is disposed on the lower side
  • both the first antenna array and the second antenna array include 3 rows of antennas in the target direction. vibrator.
  • the main beam generated by the first antenna array and the second antenna array does not deflect.
  • the spacing between two adjacent rows of antenna elements in the target direction of the first antenna array is half a wavelength
  • the spacing between two adjacent rows of antenna elements in the second antenna array in the target direction is also half a wavelength.
  • the distance between the upper edge of the first antenna array and the lower edge of the second antenna array is 5.3 wavelengths.
  • the ratio of the excitation voltage amplitudes of each row of antenna elements from top to bottom of the first antenna array can be set to 1:2:1, and the ratio of the excitation voltage amplitudes of each row of antenna elements from top to bottom of the second antenna array can be set to 1:2:1.
  • the ratio of voltage amplitudes is also 1:2:1. It should be noted that the above ratio relationship of excitation voltage amplitudes can be achieved by adjusting the feeder width of each row of antenna elements in the power division feed network, and the details will not be explained here.
  • each row of antenna elements of the first antenna array mainly radiates the feed signal perpendicular to the array surface.
  • the electrical signal will not affect the second antenna array located below.
  • each row of antenna elements will also generate interference signals, which propagate perpendicularly to the feed signal to the second antenna array below, resulting in interference between the two antenna arrays. Isolation worsens.
  • the three rows of antenna elements from top to bottom of the first antenna array are marked as antenna element row I, antenna element row II and antenna element row III.
  • the interference signal generated by antenna element row I is marked as c1, and the antenna element row II is marked as c1.
  • the interference signal generated is marked as c2, and the interference signal generated by the antenna element row III is marked as c3.
  • the interference signal c2 propagates half a wavelength longer than the interference signal c3, and has a phase difference of 180° with the interference signal c3, which is exactly the opposite phase and cancellation of the interference signal c1 and the interference signal c3.
  • the first antenna array can achieve good interference signal suppression and avoid the impact of the interference signal on the second antenna array.
  • good isolation between the first antenna array and the second antenna array is obtained.
  • the excitation voltage amplitude of the interference signal c1: the excitation voltage amplitude of the interference signal c2: the excitation voltage amplitude of the interference signal c3 can be selected as 1:2:1.
  • the principle of achieving good interference signal suppression for the second antenna array is similar to that introduced above and will not be described again here.
  • FIG. 8 the following is a schematic diagram illustrating the improvement in isolation of the antenna system according to the embodiment of the present application compared with the antenna system in the prior art.
  • the ordinate is the isolation
  • the abscissa is the operating frequency of the antenna array.
  • the line marked “Ori” is used to indicate the isolation between the MT antenna and the DU antenna in the antenna system of the prior art
  • is marked “Opt” ” line is used to indicate the isolation between the MT antenna and the DU antenna in the antenna system shown in Figure 6.
  • the mark "PP” in Figure 8 indicates that the MT antenna and the DU antenna are both +45° polarized; the marks “PN” and “NP” indicate that one of the MT antenna and the DU antenna is +45° polarized, and the other is -. The case of 45° polarization; the mark “NN” indicates that both the MT antenna and the DU antenna are -45° polarized.
  • the line marked "Ori-PP" in Figure 8 is used to indicate the isolation degree when the MT antenna and the DU antenna are both +45° polarized in the antenna system of the prior art; the mark The line labeled "Opt-PP” is used to indicate the isolation in the antenna system shown in Figure 6 when the MT antenna and the DU antenna are both +45° polarized. It is easy to see that, taking the line marked "Ori" as the baseline, the isolation between the MT antenna and the DU antenna in the antenna system of this application is increased by 20 dB on average.
  • Figure 9a The ordinate of Figure 9a represents the gain corresponding to the first antenna array in Figure 6.
  • the abscissa is the angle, where 0 degrees corresponds to the direction perpendicular to the array, and 0 degrees to 180 degrees correspond to the relative perpendicular direction.
  • the direction of the array is deflected clockwise, and 0 degrees to -180 degrees are the directions of counterclockwise deflection relative to the direction perpendicular to the array.
  • the area deflected clockwise by about 90 degrees relative to the direction perpendicular to the array can be understood as an interference area that will affect the second antenna array.
  • Figure 9b The ordinate of Figure 9b represents the gain corresponding to the second antenna array in Figure 6.
  • 0 degrees corresponds to the direction perpendicular to the array
  • 0 degrees to 180 degrees correspond to the direction perpendicular to the array.
  • the direction of deflection is clockwise
  • 0 degrees to -180 degrees are the directions of counterclockwise deflection relative to the direction perpendicular to the array.
  • the area deflected counterclockwise by about 90 degrees relative to the direction perpendicular to the array can be understood as an interference area that will affect the first antenna array.
  • the gains corresponding to the interference areas are both low, so the MT antenna and the DU antenna in the antenna system shown in Figure 6 can obtain good isolation.
  • the ratio of the excitation voltage amplitudes of the antenna elements in each row from top to bottom of the first antenna array and the second antenna array can also be other situations.
  • the ordinate in Figure 9c is the isolation degree, and the abscissa is the ratio of the above-mentioned excitation voltage amplitudes. It is not difficult to see that the best isolation can be achieved when the ratio of the above-mentioned excitation voltage amplitudes is 1:2:1.
  • the antenna system does not need to install additional metal fences and metal bar arrays. Good isolation can be obtained only by adjusting the spacing between two adjacent rows of antenna elements and the ratio of the excitation voltage amplitudes of each row of antenna elements. This saves a lot of space.
  • the first antenna array is disposed on the upper side
  • the second antenna array is disposed on the lower side
  • both the first antenna array and the second antenna array include 3 rows in the target direction.
  • the antenna element the distance between the upper edge of the first antenna array and the lower edge of the second antenna array is 5.3 wavelengths.
  • the spacing between the three rows of antenna elements of the first antenna array in the target direction is d 1 and d 2 respectively, and the spacing between the three rows of antenna elements of the second antenna array in the target direction is d 3 and d respectively. 4 .
  • the main beam generated by the first antenna array is deflected 5 degrees upward relative to the direction of the vertical front
  • the main beam generated by the second antenna array is deflected 5 degrees downward relative to the direction of the vertical front.
  • the deflection of the main beams of the first antenna array and the second antenna array can be achieved by adjusting the feeder lengths of each row of antenna elements in the power division feed network, and the details will not be described here.
  • the ratio of the excitation voltage amplitudes of each row of antenna elements from top to bottom of the first antenna array can be set to 1:2:1, and the ratio of the excitation voltage amplitudes of each row of antenna elements from top to bottom of the second antenna array can be set to 1:2:1.
  • the ratio of voltage amplitudes is also 1:2:1.
  • the first antenna array in Figure 10 is used as an MT antenna
  • the second antenna array is used as a DU antenna.
  • antenna element row I The six rows of antenna elements from top to bottom in Figure 10 are marked in Figure 11 as antenna element row I, antenna element row II, antenna element row III, antenna element row IV, antenna element row V and antenna Oscillator row VI.
  • the interference signal generated by the antenna element row I is marked as c1
  • the interference signal generated by the antenna element row II is marked as c2
  • the interference signal generated by the antenna element row III is marked as c3
  • the interference signal generated by the antenna element row IV is marked as c6
  • the interference signal generated by the antenna element row IV is marked as c6.
  • the interference signal generated by row V is marked as c5
  • the interference signal generated by the antenna element row VI is marked as c4.
  • the phase lag amounts of the feed signals of antenna element row I and antenna element row II are ⁇ 1 and ⁇ 2 respectively ( ⁇ 1 > ⁇ 2 > 0).
  • the phase lags of the feed signals of antenna element row V and antenna element row VI are ⁇ 3 and ⁇ 4 respectively ( ⁇ 4 > ⁇ 3 > 0).
  • the phase difference between the interference signal c1 and the interference signal c3 Satisfy the following formula (5):
  • FIG. 13a Please refer to Figure 13a.
  • the ordinate of Figure 13a represents the gain corresponding to the first antenna array in Figure 10. 0 degrees corresponds to the direction of the vertical array, and -5 degrees represents the maximum direction of the main beam generated by the first antenna array. The area deflected clockwise by about 90 degrees relative to the direction of the vertical array can be understood as an interference area that will affect the second antenna array.
  • Figure 13b The ordinate of Figure 13b represents the gain corresponding to the second antenna array in Figure 10. 0 degrees indicates the direction of the vertical array, and +5 degrees represents the main gain generated by the second antenna array. The maximum direction of the beam. The area deflected counterclockwise by about 90 degrees relative to the vertical array can be understood as an interference area that will affect the first antenna array.
  • the gains corresponding to the interference areas are both low, so good isolation can be obtained between the MT antenna and the DU antenna in the antenna system shown in Figure 10.
  • the first antenna array is disposed on the upper side
  • the second antenna array is disposed on the lower side
  • both the first antenna array and the second antenna array include 3 rows in the target direction.
  • the antenna element the distance between the upper edge of the first antenna array and the lower edge of the second antenna array is 5.3 wavelengths.
  • the spacing between the three rows of antenna elements of the first antenna array in the target direction is d 1 and d 2 respectively
  • the spacing between the three rows of antenna elements of the second antenna array in the target direction is d 3 and d respectively. 4 .
  • the main beam generated by the first antenna array is deflected 5 degrees downward relative to the direction of the vertical front
  • the main beam generated by the second antenna array is deflected 5 degrees upward relative to the direction of the vertical front.
  • the ratio of the excitation voltage amplitudes of each row of antenna elements from top to bottom of the first antenna array can be set to 1:2:1
  • the ratio of the excitation voltage amplitudes of each row of antenna elements from top to bottom of the second antenna array can be set to 1:2:1.
  • the ratio of voltage amplitudes is also 1:2:1.
  • the first antenna array in Figure 14 is used as a DU antenna
  • the second antenna array is used as an MT antenna.
  • antenna element row I The six rows of antenna elements from top to bottom in Figure 14 are marked as antenna element row I, antenna element row II, antenna element row III, antenna element row IV, antenna element row V and antenna element in Figure 15.
  • Oscillator row VI The interference signal generated by the antenna element row I is marked as c1, the interference signal generated by the antenna element row II is marked as c2, the interference signal generated by the antenna element row III is marked as c3, the interference signal generated by the antenna element row IV is marked as c6, and the interference signal generated by the antenna element row IV is marked as c6.
  • the interference signal generated by row V is marked as c5
  • the interference signal generated by the antenna element row VI is marked as c4.
  • the phase leads of the feed signals of antenna element row I and antenna element row II are ⁇ 1 and ⁇ 2 respectively ( ⁇ 1 > ⁇ 2 > 0).
  • the phase leads of the feed signals of antenna element row V and antenna element row VI are ⁇ 3 and ⁇ 4 respectively ( ⁇ 4 > ⁇ 3 > 0).
  • FIG. 17a Please refer to Figure 17a.
  • the ordinate of Figure 17a represents the gain corresponding to the first antenna array in Figure 14. 0 degrees corresponds to the direction of the vertical array, and +5 degrees represents the maximum direction of the main beam generated by the first antenna array.
  • the area deflected clockwise by about 90 degrees relative to the direction of the vertical array can be understood as an interference area that will affect the second antenna array.
  • Figure 17b The ordinate of Figure 17b represents the gain corresponding to the second antenna array in Figure 14. 0 degrees indicates the direction of the vertical array, and -5 degrees represents the main gain generated by the second antenna array. The maximum direction of the beam.
  • the area deflected counterclockwise by about 90 degrees relative to the vertical array can be understood as an interference area that will affect the first antenna array.
  • the gains corresponding to the interference areas are both low, so good isolation can be obtained between the MT antenna and the DU antenna in the antenna system shown in Figure 14.
  • the first antenna array is disposed on the upper side
  • the second antenna array is disposed on the lower side
  • both the first antenna array and the second antenna array include 3 rows in the target direction.
  • the antenna element the distance between the upper edge of the first antenna array and the lower edge of the second antenna array is 5.3 wavelengths.
  • the spacing between the three rows of antenna elements of the first antenna array in the target direction is d 1 and d 2 respectively, and the spacing between the three rows of antenna elements of the second antenna array in the target direction is d 3 and d respectively. 4 .
  • the main beam generated by the first antenna array is deflected 5 degrees downward relative to the direction of the vertical front
  • the main beam generated by the second antenna array is deflected 5 degrees downward relative to the direction of the vertical front.
  • the ratio of the excitation voltage amplitudes of each row of antenna elements from top to bottom of the first antenna array can be set to 1:2:1
  • the ratio of the excitation voltage amplitudes of each row of antenna elements from top to bottom of the second antenna array can be set to 1:2:1.
  • the ratio of voltage amplitudes is also 1:2:1.
  • antenna element row I The six rows of antenna elements from top to bottom in Figure 18 are marked in Figure 19 as antenna element row I, antenna element row II, antenna element row III, antenna element row IV, antenna element row V and antenna Oscillator row VI.
  • the interference signal generated by the antenna element row I is marked as c1
  • the interference signal generated by the antenna element row II is marked as c2
  • the interference signal generated by the antenna element row III is marked as c3
  • the interference signal generated by the antenna element row IV is marked as c6
  • the interference signal generated by the antenna element row IV is marked as c6.
  • the interference signal generated by row V is marked as c5
  • the interference signal generated by the antenna element row VI is marked as c4.
  • the phase leads of the feed signals of antenna element row I and antenna element row II are ⁇ 1 and ⁇ 2 respectively ( ⁇ 1 > ⁇ 2 > 0).
  • the phase lags of the feed signals of antenna element row V and antenna element row VI are ⁇ 3 and ⁇ 4 respectively ( ⁇ 4 > ⁇ 3 > 0).
  • Figure 21a Please refer to Figure 21a.
  • the ordinate of Figure 21a represents the gain corresponding to the first antenna array in Figure 18. 0 degrees corresponds to the direction of the vertical array, and +5 degrees represents the maximum direction of the main beam generated by the first antenna array.
  • the area deflected clockwise by about 90 degrees relative to the direction of the vertical array can be understood as an interference area that will affect the second antenna array.
  • Figure 21b The ordinate of Figure 21b represents the gain corresponding to the second antenna array in Figure 18. 0 degrees indicates the direction of the vertical array, and +5 degrees represents the main gain generated by the second antenna array. The maximum direction of the beam.
  • the area deflected counterclockwise by about 90 degrees relative to the vertical array can be understood as an interference area that will affect the first antenna array.
  • the gains corresponding to the interference areas are both low, so good isolation can be obtained between the MT antenna and the DU antenna in the antenna system shown in Figure 18.
  • the antenna pole station includes a pole 2201, an installation piece 2202, a baffle 2203 and an antenna module 2204.
  • the pole 2201 is fixedly connected to the installation piece 2202.
  • the installation piece 2202 is fixedly connected to the baffle 2203 and the antenna module 2204, and the baffle 2203 is provided between the pole 2201 and the antenna module 2204.
  • the antenna module 2204 is provided with the antenna system introduced above.
  • the pole 2201 and the mounting member 2202 will reflect electromagnetic waves, for example, the electromagnetic waves generated by the MT antenna will be reflected to the DU antenna, resulting in a decrease in isolation.
  • Figure 23 shows the three-dimensional relationship between the pole 2301, the baffle 2302 and the antenna system 2303.
  • the disclosed systems and devices can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Details Of Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请实施例公开了一种天线系统,用于提高两个天线阵列之间的隔离度。包括:第一天线阵列以及第二天线阵列,第一天线阵列在目标方向上的相邻的两行天线振子之间的间距,为根据第一天线阵列在目标方向上的相邻的两行天线振子所馈电相位差以及波长确定,第二天线阵列在目标方向上的相邻的两行天线振子之间的间距,为根据第二天线阵列在目标方向上的相邻的两行天线振子所馈电的相位差以及波长确定。

Description

一种天线系统 技术领域
本申请实施例涉及通信领域,尤其涉及一种天线系统。
背景技术
随着多入多出(multi-input multi-output,MIMO)技术的大规模商用,接入回传一体化(integrated access backhaul,IAB)节点的方案得以提出,该方案用于实现宏基站的覆盖延伸和补盲,可以最大化MIMO的容量潜能和频谱价值。IAB节点包含移动终端(mobile termination,MT)天线和分布单元(distributed unit,DU)天线,MT天线用于与宏基站进行通信,DU天线用于与用户设备(user equipment,UE)进行通信。传统的IAB节点由于MT天线与DU天线之间的隔离度较低,因此工作于频分双工或时分双工模式,造成了频谱资源或时隙资源的浪费。若要求IAB节点在同一频带内,DU天线在向UE发送信号时MT天线也能接收来自宏基站的信号,且MT天线在向宏基站发送信号时DU天线也能接收来自UE的信号,就必须减少两个天线之间的干扰。
在现有的技术中,通过设置两个金属围栏分别将MT天线以及DU天线包围起来,以及在两个金属围栏之间设置金属条阵,以减少天线之间的干扰。然而上述金属围栏往往具备较高的高度,并且金属条阵也会占用大量的空间,影响IAB节点的其它部分的设计。
发明内容
本申请提供了一种天线系统,用于提高MT天线与DU天线之间的隔离度。
本申请第一方面提供了一种天线系统:
包括第一天线阵列以及第二天线阵列,第一天线阵列设置于第一侧,第二天线阵列设置于第二侧。第一天线阵列在目标方向上的相邻的两行天线振子之间的间距,为根据第一天线阵列在目标方向上的相邻的两行天线振子所馈电的相位差以及波长确定,第二天线阵列在目标方向上的相邻的两行天线振子之间的间距,为根据第二天线阵列在目标方向上的相邻的两行天线振子所馈电的相位差以及波长确定,目标方向由第一侧指向第二侧,波长为第一天线阵列以及第二天线阵列的工作频段对应的波长。
本申请中,通过上述的方式设置第一天线阵列以及第二天线阵列在目标方向上的相邻的两行天线振子的间距,能够抑制第一天线向第二天线阵列传输的干扰信号,以及抑制第二天线向第一天线阵列向传输的干扰信号,从而无需额外设置金属围栏以及金属条阵,也能获取第一天线阵列与第二天线阵列之间的良好隔离度。
在一种可能的实现方式中,若第一天线阵列所产生的主波束相对垂直阵面的方向不发生偏转,则第一天线阵列在目标方向上的相邻的两行天线振子之间的间距为半个波长。
在一种可能的实现方式中,若第一天线阵列产生的主波束相对垂直阵面的方向偏向第一侧,则第一天线阵列在目标方向上的相邻的两行天线振子的间距小于半个波长。或,若第一天线阵列产生的主波束相对垂直阵面的方向偏向第二侧,则第一天线阵列在目标方向上的相邻的两行天线振子的间距大于半个波长。
在一种可能的实现方式中,若第一天线阵列产生的主波束相对垂直阵面的方向偏向第一侧,则第一天线阵列在目标方向上的相邻的两行天线振子的间距d a满足
Figure PCTCN2022113340-appb-000001
Figure PCTCN2022113340-appb-000002
其中δ a为第一天线阵列在目标方向上的相邻的两行天线振子所馈电的相位差,λ为波长。或,若第一天线阵列产生的主波束偏向第二侧,则d a满足
Figure PCTCN2022113340-appb-000003
在一种可能的实现方式中,若第二天线阵列所产生的主波束相对垂直阵面的方向不发生偏转,则第二天线阵列在目标方向上的相邻的两行天线振子之间的间距为半个波长。
在一种可能的实现方式中,若第二天线阵列产生的主波束相对垂直阵面的方向偏向第一侧,则第二天线阵列在目标方向上的相邻的两行天线振子的间距大于半个波长。或,若第二天线阵列产生的主波束相对垂直阵面的方向偏向第二侧,则第二天线阵列在目标方向上的相邻的两行天线振子的间距小于半个波长。
在一种可能的实现方式中,若第二天线阵列产生的主波束相对垂直阵面的方向偏向第一侧,则第二天线阵列在目标方向上的相邻的两行天线振子的间距d b满足
Figure PCTCN2022113340-appb-000004
Figure PCTCN2022113340-appb-000005
其中δ b为第二天线阵列在目标方向上的相邻的两行天线振子所馈电的相位差。或,若第二天线阵列产生的主波束相对垂直阵面的方向偏向第二侧,则第二天线阵列在目标方向上的相邻的两行天线振子的间距d b满足
Figure PCTCN2022113340-appb-000006
在一种可能的实现方式中,若第一天线阵列在目标方向上包括M行天线振子,则M行天线振子的激励电压幅度在目标方向上先增大后减小,若第二天线阵列在目标方向上包括N行天线振子,则N行天线振子的激励电压幅度在目标方向上先增大后减小。
在一种可能的实现方式中,第一天线阵列的M行天线振子的激励电压幅度的比值在目标方向上依次为
Figure PCTCN2022113340-appb-000007
第二天线阵列的N行天线振子的激励电压幅度的比值在目标方向上依次为
Figure PCTCN2022113340-appb-000008
在一种可能的实现方式中,若第一天线阵列在目标方向上包括M行天线振子,则M行天线振子中的奇数行的天线振子的激励电压幅度的总和,等于M行天线振子中的偶数行的天线振子的激励电压幅度的总和,若第二天线阵列在目标方向上包括N行天线振子,则N行天线振子中的奇数行的天线振子的激励电压幅度的总和,等于N行天线振子中的偶数行的天线振子的激励电压幅度的总和。
在一种可能的实现方式中,第一侧为上侧,第二侧为下侧。或,第一侧为左侧,第二侧为右侧。
本申请第二方面提供了一种天线系统:
包括第一天线阵列以及第二天线阵列,第一天线阵列以及第二天线阵列分别设置于第一侧以及第二侧。第一天线阵列在目标方向上包括一行天线振子,第二天线阵列在目标方向上的相邻的两行天线振子之间的间距,为根据第二天线阵列在目标方向上的相邻的两行天线振子所馈电的相位差以及波长确定,目标方向由第一侧指向第二侧,波长为第一天线阵列以及第二天线阵列的工作频段对应的波长。
本申请中,通过上述的方式设置第二天线阵列在目标方向上的相邻的两行天线振子的间距,能够抑制第二天线向以及第一天线阵列向传输的干扰信号,从而无需额外设置金属围栏以及金属条阵,也能获取第一天线阵列与第二天线阵列之间的良好隔离度。
在一种可能的实现方式中,若第二天线阵列所产生的主波束相对垂直阵面的方向不发生偏转,则第二天线阵列在目标方向上的相邻的两行天线振子之间的间距为半个波长。
在一种可能的实现方式中,若第二天线阵列设置于第一侧,且第二天线阵列产生的主波束相对垂直阵面的方向偏向第一侧,则第二天线阵列在目标方向上的相邻的两行天线振子的间距小于半个波长。或,若第二天线阵列设置于第一侧,且第二天线阵列产生的主波束相对垂直阵面的方向偏向第二侧,则第二天线阵列在目标方向上的相邻的两行天线振子的间距大于半个波长。
在一种可能的实现方式中,若第二天线阵列设置于第二侧,且第二天线阵列产生的主波束相对垂直阵面的方向偏向第一侧,则第二天线阵列在目标方向上的相邻的两行天线振子的间距大于一半的波长。或,若第二天线阵列设置于第二侧,且第二天线阵列产生的主波束相对垂直阵面的方向偏向第二侧,则第二天线阵列在目标方向上的相邻的两行天线振子的间距小于一半的波长。
在一种可能的实现方式中,若第二天线阵列设置于第一侧,且第二天线阵列产生的主波束相对垂直阵面的方向偏向第一侧,则第二天线阵列在目标方向上的相邻的两行天线振子的间距d a满足
Figure PCTCN2022113340-appb-000009
其中δ a为第二天线阵列在目标方向上的相邻的两行天线振子所馈电的相位差,λ为波长;
或,
若第二天线阵列设置于第一侧,且第二天线阵列产生的主波束偏向第二侧,则d a满足
Figure PCTCN2022113340-appb-000010
在一种可能的实现方式中,若第二天线阵列设置于第二侧,且第二天线阵列产生的主波束相对垂直阵面的方向偏向第一侧,则第二天线阵列在目标方向上的相邻的两行天线振子的间距d b满足
Figure PCTCN2022113340-appb-000011
其中δ b为第二天线阵列在目标方向上的相邻的两行天线振子所馈电的相位差。或,若第二天线阵列设置于第二侧,且第二天线阵列产生的主波束相对垂直阵面的方向偏向第二侧,则第二天线阵列在目标方向上的相邻的两行天线振子的间距d b满足
Figure PCTCN2022113340-appb-000012
在一种可能的实现方式中,若第二天线阵列在目标方向上包括N行天线振子,则N行天线振子的激励电压幅度在目标方向上先增大后减小。
在一种可能的实现方式中,若第二天线阵列在目标方向上包括M行天线振子,则M行天线振子的激励电压幅度的比值在目标方向上依次为
Figure PCTCN2022113340-appb-000013
在一种可能的实现方式中,第二天线阵列的N行天线振子中的奇数行的天线振子的激励电压幅度的总和,等于N行天线振子中的偶数行的天线振子的激励电压幅度的总和。
在一种可能的实现方式中,第一侧为上侧,第二侧为下侧。或,第一侧为左侧,第二侧为右侧。
在一种可能的实现方式中,第二天线阵列在目标方向上包括至少3行天线振子。
本申请第三方面提供了一种天线杆站:
包括抱杆、安装件、挡板以及天线模块,天线模块中设置如第一方面或第二方面中的天线系统。安装件与抱杆固定连接,挡板以及天线模块与安装件固定连接,挡板设置于抱杆以及天线模块之间。
本申请中,通过在天线模块与抱杆之间设置挡板,能够对天线系统中的MT天线以及 DU天线产生的电磁波进行散射或调节,从而保证MT天线与DU天线之间的隔离度不受抱杆以及安装件的影响。
在一种可能的实现方式中,挡板的形状为矩形或者曲面。
附图说明
图1为本申请中的IAB节点的结构示意图;
图2为本申请中应用场景的一个示意图;
图3为本申请中应用场景的另一示意图;
图4为现有技术的天线系统的示意图;
图5为本申请中天线系统的一个示意图;
图6为本申请中天线系统的另一示意图;
图7为本申请实现较高隔离度的一个原理示意图;
图8为本申请的天线系统与现有技术的天线系统的隔离度的一个区别示意图;
图9a为本申请中天线系统的一个增益示意图;
图9b为本申请中天线系统的另一增益示意图;
图9c为本申请中不同的激励电压幅度的比值对应的隔离度;
图10为本申请中天线系统的另一示意图;
图11为本申请实现较高隔离度的另一原理示意图;
图12为本申请的天线系统与现有技术的天线系统的隔离度的另一区别示意图;
图13a为本申请中天线系统的一个增益示意图;
图13b为本申请中天线系统的另一增益示意图;
图14为本申请中天线系统的另一示意图;
图15为本申请实现较高隔离度的另一原理示意图;
图16为本申请的天线系统与现有技术的天线系统的隔离度的另一区别示意图;
图17a为本申请中天线系统的一个增益示意图;
图17b为本申请中天线系统的另一增益示意图;
图18为本申请中天线系统的另一示意图;
图19为本申请实现较高隔离度的另一原理示意图;
图20为本申请的天线系统与现有技术的天线系统的隔离度的另一区别示意图;
图21a为本申请中天线系统的一个增益示意图;
图21b为本申请中天线系统的另一增益示意图;
图22为本申请中天线杆站的一个结构示意图;
图23为本申请中天线杆站的另一结构示意图。
具体实施方式
下面结合附图,对本申请的实施例进行描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。本领域普通技术人员可知,随着技术发展和新场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类 似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
请参阅图1,IAB节点的天线包括MU天线以及DU天线两部分,两个天线负责不同的功能,从而实现宏基站的覆盖延伸和补盲,最大化MIMO的容量潜能和频谱价值。请参阅图2,在IAB节点的一个典型应用场景中,包括回传链路以及接入链路。IAB节点的DU天线通过接入链路为UE提供无线接入服务,IAB节点的MT天线通过回传链路连接到宏基站,并向宏基站传输来自UE的业务数据。需要说明的是,图2仅为应用场景的一个简单示意,IAB节点的应用场景也可以包括多个IAB节点以及多个UE。例如,请参阅图3,该应用场景中包括IAB节点1、IAB节点2以及宏基站,宏基站能够接入核心网,IAB节点1的MT天线通过上级回传链路接入宏基站,IAB节点2的MT天线通过下级回传链路接入IAB节点1。另外,IAB节点1、IAB节点2以及宏基站的DU天线通过接入链路为UE提供接入服务。
在当前的技术中,受限于MT天线与DU天线之间的隔离度较低,IAB节点往往工作于频分双工模式或时分双工模式,无法实现在同一频段内同时对信号进行收发处理,也即无法实现DU天线在向UE发送信号时,MT天线也能接收来自宏基站的信号,且DU天线在接收来自UE的信号时,MT天线也能向宏基站发送信号。为了提高MT天线与DU天线之间的隔离度,请参阅图4,在现有的技术中使用金属围栏将MT天线以及DU天线进行了包围,通过金属围栏反射电磁波从而降低两个天线之间的干扰。此外,MT天线与DU天线之间还设置了金属条阵,通过抑制表面波进一步提高两个天线之间的隔离度。然而,上述金属围栏以及金属条阵会占用大量的空间,影响IAB节点的其它部分的设计。
本申请实施例提供了一种天线系统,用于提高MT天线与DU天线之间的隔离度。
本申请实施例中的天线阵列可以用作IAB节点,应用于如图2或图3所示的应用场景中。
请参阅图5,本申请实施例中的天线系统包括第一天线阵列以及第二天线阵列,第一天线阵列设置于第一侧,第二天线阵列设置于第二侧。上述第一天线阵列以及第二天线阵列分别用作MT天线以及DU天线,例如第一天线阵列用作MT天线,或者第一天线阵列用作DU天线。一种情况中,第一侧例如是上侧,第二侧例如是下侧;或者在另一种情况中,第一侧是左侧,第二侧是右侧,当然第一侧以及第二侧并不仅限制于上述的情况。一种情况中,第一天线阵列以及第二天线阵列能够用于在同一频段同时对信号进行收发处理,也即实现在同一频段内DU天线在向UE发送信号时,MT天线也能接收来自宏基站的信号,且DU天线在接收来自UE的信号时,MT天线也能向宏基站发送信号。
第一天线阵列在目标方向上相邻的两行天线振子的间距为根据该相邻的两行天线振子所馈电的相位差以及波长确定,同理第二天线阵列在目标方向上相邻的两行天线振子的间距为根据该相邻的两行天线振子所馈电的相位差以及波长确定。上述目标方向为第一侧 指向第二侧的方向,第一天线阵列以及第二天线阵列采用相同的工作频段,上述波长为该工作频段对应的波长,例如可以是该工作频段中的中心频率对应的波长、高频频率对应的波长或者低频频率对应的波长,在一种优先的方式中上述波长可以是上述工作频段中的中心频率对应的波长。
在一种具体的实现方式中,若第一天线阵列所产生的主波束相对垂直阵面的方向偏向第一侧,则第一天线阵列在目标方向上的相邻的两行天线振子的间距d a1满足如下公式(1):
Figure PCTCN2022113340-appb-000014
δ a1为上述相邻的两行天线振子所馈电的相位差,λ为波长。
若第一天线阵列所产生的主波束相对于垂直阵面的方向偏向第二侧,则第一天线阵列在目标方向上的相邻的两行天线振子的间距d a2满足如下公式(2):
Figure PCTCN2022113340-appb-000015
δ a2为上述相邻的两行天线振子所馈电的相位差。
若第二天线阵列所产生的主波束相对于垂直阵面的方向偏向第一侧,则第二天线阵列在目标方向上的相邻的两行天线振子的间距d b1满足如下公式(3):
Figure PCTCN2022113340-appb-000016
δ b1为上述相邻的两行天线振子所馈电的相位差。
或者,若第二天线阵列所产生的主波束相对于垂直阵面的方向偏向第二侧,则第二天线阵列在目标方向上的相邻的两行天线振子的间距d b2满足如下公式(4):
Figure PCTCN2022113340-appb-000017
δ b2为上述相邻的两行天线振子所馈电的相位差。
若第一天线阵列以及第二天线阵列中存在主波束不发生偏转的天线阵列,也即该天线阵列所产生的主波束垂直于阵面,由于该天线阵列在目标方向上的相邻的两行天线振子所馈电的相位差为零,从而推导得出该天线阵列在目标方向上的相邻的两行天线振子的间距为半个波长,当然在实际的实现中上述间距也可以在大于半个波长或小于半个波长的范围内选择适当的取值。
在另一种具体的实现方式中,若第一天线阵列所产生的主波束相对于垂直阵面的方向偏向第一侧,第一天线阵列在目标方向的相邻的两行天线振子的间距也可以不完全依照公式(1)设置,而是可以在小于半个波长的范围内选择适当的取值。
若第一天线阵列所产生的主波束相对于垂直阵面的方向偏向第二侧,第一天线阵列在目标方向的相邻的两行天线振子的间距也可以不完全依照公式(2)设置,而是可以在大于半个波长的范围内选择适当的取值。
若第二天线阵列所产生的主波束相对于垂直阵面的方向偏向第一侧,第二天线阵列在目标方向的相邻的两行天线振子的间距也可以不完全依照公式(3)设置,而是可以在大于半个波长的范围内选择适当的取值。
若第二天线阵列所产生的主波束相对于垂直阵面的方向偏向第二侧,第二天线阵列在目标方向的相邻的两行天线振子的间距也可以不完全依照公式(4)设置,而是可以在小于 半个波长的范围内选择适当的取值。
需要说明的是,第一天线阵列以及第二天线阵列在目标方向上的一行天线振子内的各个天线振子的激励电压幅度相同。在上述的基础之上,若第一天线阵列在目标方向上包括M行天线振子,则M行天线振子的激励电压幅度在目标方向上先增大后减小,若第二天线阵列在目标方向上包括N行天线振子,则N行天线振子的激励电压幅度在目标方向上先增大后减小,也即满足锥削分布。例如,在一种优选的方式中,若第一天线阵列在目标方向上包括M行天线振子,则这M行天线振子的激励电压幅度的比值在目标方向上依次为
Figure PCTCN2022113340-appb-000018
若第二天线阵列在目标方向上包括N行天线振子,则这N行天线振子的激励电压幅度的比值在目标方向上依次为
Figure PCTCN2022113340-appb-000019
或者,在另外的一种情况中,若第一天线阵列在目标方向上包括M行天线振子,则M行天线振子中的奇数行的天线振子的激励电压幅度的总和,等于M行天线振子中的偶数行的天线振子的激励电压幅度的总和,若第二天线阵列在目标方向上包括N行天线振子,则N行天线振子中的奇数行的天线振子的激励电压幅度的总和,等于N行天线振子中的偶数行的天线振子的激励电压幅度的总和。例如,第一天线阵列在目标方向上包括4行天线振子,则其在目标方向上的第一行天线振子与第三行天线振子的激励电压幅度的总和,等于在目标方向上的第二行天线振子与第四行天线振子的激励电压幅度的总和。
上面对本申请实施例中的天线阵列进行了概括性的介绍,在实际的实现中,第一天线阵列以及第二天线阵列中至少存在一个天线阵列,在目标方向上大于或等于三行的天线振子。在一种特殊的情况中,第一天线阵列以及第二天线阵列中存在一个天线阵列,其在目标方向上只有一行天线振子,而另一个天线阵列则按照前述所描述的方式进行设置。
下面结合更为具体的设计,对本申请实施例中的天线系统进行介绍:
请参阅图6,在一种可能的设计中,第一天线阵列设置于上侧,第二天线阵列设置于下侧,且第一天线阵列以及第二天线阵列在目标方向上均包括3行天线振子。并且,第一天线阵列以及第二天线阵列所产生的主波束不发生偏转。基于前述的描述,第一天线阵列在目标方向上的相邻的两行天线振子的间距为半个波长,第二天线阵列在目标方向上的相邻的两行天线振子的间距同样为半个波长,第一天线阵列的上边缘与第二天线阵列的下边缘的间距为5.3个波长。一种可选的实现方式中,第一天线阵列从上往下的各行天线振子的激励电压幅度的比值可以设置为1:2:1,第二天线阵列从上往下的各行天线振子的激励电压幅度的比值同样为1:2:1。需要说明的是,上述激励电压幅度的比值关系可以通过在功分馈电网络中,调节各行天线振子的馈线宽度实现,具体此处不再展开说明。
请参阅图7,下面结合原理对图6所示的天线系统的隔离度进行分析。本申请实施例中的天线阵列基于干扰信号抑制的原理提高隔离度,以第一天线阵列为例,第一天线阵列的每行天线振子以垂直于阵面的馈电信号为主辐射,上述馈电信号不会对位于下方的第二天线阵列产生影响,然而每行天线振子还会产生干扰信号,该信号垂直于馈电信号向下方的第二天线阵列传播,导致两个天线阵列之间的隔离度恶化。图6中第一天线阵列从上往下的三行天线振子依次记为天线振子行I、天线振子行II以及天线振子行III,天线振子行I产生的干扰信号记为c1,天线振子行II产生的干扰信号记为c2,天线振子行III产 生的干扰信号记为c3。在第一天线阵列的下方取一个参考面,假设干扰信号c3的相位为0,不难发现,干扰信号c1相比干扰信号c3多传播了一个波长的间距后,与干扰信号c3的相位差为360°,正好与干扰信号c3同相叠加。而干扰信号c2相比干扰信号c3多传播了半个波长的间距,与干扰信号c3的相位差为180°,刚好与干扰信号c1和干扰信号c3反相相消。基于此,当干扰信号c1、干扰信号c2以及干扰信号c3的激励电压幅度满足c1+c3=c2时,第一天线阵列能够实现良好的干扰信号抑制,避免干扰信号对第二天线阵列产生影响,进而获取第一天线阵列与第二天线阵列之间的良好隔离度。基于上述描述,干扰信号c1的激励电压幅度:干扰信号c2的激励电压幅度:干扰信号c3的激励电压幅度可以选取为1:2:1。对于第二天线阵列实现良好的干扰信号抑制的原理与上述所介绍的类似,此处不再赘述。
请参阅图8,下面通过示意图说明本申请实施例的天线系统相比于现有技术的天线系统在隔离度方面的提升。图8中纵坐标为隔离度,横坐标为天线阵列的工作频率,标识为“Ori”的线条用于指示现有技术的天线系统中MT天线与DU天线之间的隔离度,标识为“Opt”的线条用于指示图6所示的天线系统中MT天线与DU天线之间的隔离度。图8中的标识“PP”指示MT天线以及DU天线均为+45°极化的情况;标识“PN”以及“NP”指示MT天线以及DU天线中一个为+45°极化,一个为-45°极化的情况;标识“NN”指示MT天线以及DU天线均为-45°极化的情况。结合上述介绍,示例性的,图8中标识为“Ori-PP”的线条用于指示现有技术的天线系统中MT天线与DU天线均为+45°极化的情况下的隔离度;标识为“Opt-PP”的线条用于指示图6所示的天线系统中MT天线与DU天线均为+45°极化的情况下的隔离度。不难看出,以标识为“Ori”的线条作为基线,本申请的天线系统中MT天线以及DU天线之间的隔离度平均提升了20dB。
请参阅图9a,图9a的纵坐标表示图6中的第一天线阵列所对应的增益,横坐标为角度,其中0度对应垂直于阵面的方向,0度至180度依次为相对垂直于阵面的方向进行顺时针偏转的方向,0度至-180度依次为相对垂直于阵面的方向进行逆时针偏转的方向。在相对垂直于阵面的方向顺时针偏转90度左右的区域,可以理解为会对第二天线阵列产生影响的干扰区域。类似的,请参阅图9b,图9b的纵坐标表示图6中的第二天线阵列所对应的增益,0度对应垂直于阵面的方向,0度至180度依次为相对垂直于阵面的方向进行顺时针偏转的方向,0度至-180度依次为相对垂直于阵面的方向进行逆时针偏转的方向。在相对垂直于阵面的方向逆时针偏转90度左右的区域,可以理解为会对第一天线阵列产生影响的干扰区域。在上述图9a以及图9b中,干扰区域所对应的增益均较低,因此图6所示的天线系统中MT天线以及DU天线能够获取良好的隔离度。
当然,图6所述的天线系统中,第一天线阵列以及第二天线阵列从上往下的各行天线振子的激励电压幅度的比值也可以为其它情况。请参阅图9c,图9c中的纵坐标为隔离度,横坐标为上述激励电压幅度的比值,不难看出,当上述激励电压幅度的比值为1:2:1时能取得最佳隔离度。
本申请实施例中,天线系统不需要额外设置金属围栏以及金属条阵,仅通过调整相邻两行天线振子之间的间距以及各行天线振子的激励电压幅度的比值就能获取良好的隔离度,从而节省了大量的空间。
请参阅图10,在另外一种具体的设计中,第一天线阵列设置于上侧,第二天线阵列设置于下侧,且第一天线阵列以及第二天线阵列在目标方向上均包括3行天线振子,第一天线阵列的上边缘与第二天线阵列的下边缘距离5.3个波长。第一天线阵列在目标方向上的3行天线振子彼此之间的间距分别为d 1以及d 2,第二天线阵列在目标方向上的3行天线振子彼此之间的间距分别为d 3以及d 4。并且,第一天线阵列所产生的主波束相对于垂直阵面的方向向上侧偏转5度,第二天线阵列所产生的主波束相对于垂直阵面的方向向下侧偏转5度。需要说明的是,第一天线阵列以及第二天线阵列的主波束的偏转,可以通过在功分馈电网络中,调节各行天线振子的馈线长度实现,具体此处不再展开说明。一种可选的实现方式中,第一天线阵列从上往下的各行天线振子的激励电压幅度的比值可以设置为1:2:1,第二天线阵列从上往下的各行天线振子的激励电压幅度的比值同样为1:2:1。需要说明的是,图10中的第一天线阵列用作MT天线,第二天线阵列用作DU天线。
请参阅图11,图10中从上往下的6行天线振子在图11中依次记为天线振子行I、天线振子行II、天线振子行III、天线振子行Ⅳ、天线振子行Ⅴ以及天线振子行Ⅵ。天线振子行I产生的干扰信号记为c1,天线振子行II产生的干扰信号记为c2,天线振子行III产生的干扰信号记为c3,天线振子行Ⅳ产生的干扰信号记为c6,天线振子行Ⅴ产生的干扰信号记为c5,天线振子行Ⅵ产生的干扰信号记为c4。
以天线振子行III的馈电信号为基准,天线振子行I以及天线振子行II的馈电信号的相位滞后量分别为δ 1和δ 21>δ 2>0)。以天线振子行Ⅳ的馈电信号为基准,天线振子行Ⅴ以及天线振子行Ⅵ的馈电信号的相位滞后量分别为δ 3和δ 44>δ 3>0)。
在第一天线阵列与第二天线阵列之间取一个参考面,干扰信号c1与干扰信号c3的相位差
Figure PCTCN2022113340-appb-000020
满足如下公式(5):
Figure PCTCN2022113340-appb-000021
干扰信号c2与干扰信号c3的相位差
Figure PCTCN2022113340-appb-000022
满足如下公式(6):
Figure PCTCN2022113340-appb-000023
基于上述公式(5)以及公式(6),若要使得干扰信号c1与干扰信号c3同相叠加,且与干扰信号c2反向相消,可推导出d 1满足
Figure PCTCN2022113340-appb-000024
以及d 2满足
Figure PCTCN2022113340-appb-000025
基于类似的推导方式,可以得到d 3满足
Figure PCTCN2022113340-appb-000026
以及d 4满足
Figure PCTCN2022113340-appb-000027
Figure PCTCN2022113340-appb-000028
基于上述介绍,能够得到d 1、d 2、d 3以及d 4的具体取值,从而实现干扰信号抑制。
请参阅图12,不难看出,图10所示的天线系统中MT天线以及DU天线之间同样能够获取良好的隔离度。
请参阅图13a,图13a的纵坐标表示图10中的第一天线阵列所对应的增益,0度对应垂直阵面的方向,-5度为第一天线阵列所产生的主波束的最大指向。在相对垂直阵面的方向顺时针偏转90度左右的区域,可以理解为会对第二天线阵列产生影响的干扰区域。类似 的,请参阅图13b,图13b的纵坐标表示图10中的第二天线阵列所对应的增益,0度指示为垂直阵面的方向,+5度即为第二天线阵列所产生的主波束的最大指向。在相对垂直阵面的角度逆时针偏转90度左右的区域,可以理解为会对第一天线阵列产生影响的干扰区域。在上述图13a以及图13b中,干扰区域所对应的增益均较低,因此图10所示的天线系统中MT天线以及DU天线之间能够获取良好的隔离度。
请参阅图14,在另外一种具体的设计中,第一天线阵列设置于上侧,第二天线阵列设置于下侧,且第一天线阵列以及第二天线阵列在目标方向上均包括3行天线振子,第一天线阵列的上边缘与第二天线阵列的下边缘距离5.3个波长。第一天线阵列在目标方向上的3行天线振子彼此之间的间距分别为d 1以及d 2,第二天线阵列在目标方向上的3行天线振子彼此之间的间距分别为d 3以及d 4。并且,第一天线阵列所产生的主波束相对于垂直阵面的方向向下侧偏转5度,第二天线阵列所产生的主波束相对于垂直阵面的方向向上侧偏转5度。一种可选的实现方式中,第一天线阵列从上往下的各行天线振子的激励电压幅度的比值可以设置为1:2:1,第二天线阵列从上往下的各行天线振子的激励电压幅度的比值同样为1:2:1。需要说明的是,图14中的第一天线阵列用作DU天线,第二天线阵列用作MT天线。
请参阅图15,图14中从上往下的6行天线振子在图15中依次记为天线振子行I、天线振子行II、天线振子行III、天线振子行Ⅳ、天线振子行Ⅴ以及天线振子行Ⅵ。天线振子行I产生的干扰信号记为c1,天线振子行II产生的干扰信号记为c2,天线振子行III产生的干扰信号记为c3,天线振子行Ⅳ产生的干扰信号记为c6,天线振子行Ⅴ产生的干扰信号记为c5,天线振子行Ⅵ产生的干扰信号记为c4。
以天线振子行III的馈电信号为基准,天线振子行I以及天线振子行II的馈电信号的相位超前量分别为δ 1和δ 21>δ 2>0)。以天线振子行Ⅳ的馈电信号为基准,天线振子行Ⅴ以及天线振子行Ⅵ的馈电信号的相位超前量分别为δ 3和δ 44>δ 3>0)。
在第一天线阵列与第二天线阵列之间取一个参考面,干扰信号c1与干扰信号c3的相位差
Figure PCTCN2022113340-appb-000029
满足如下公式(7):
Figure PCTCN2022113340-appb-000030
干扰信号c2与干扰信号c3的相位差
Figure PCTCN2022113340-appb-000031
满足如下公式(8):
Figure PCTCN2022113340-appb-000032
基于上述公式(7)以及公式(8),若要使得干扰信号c1与干扰信号c3同相叠加,且与干扰信号c2反向相消,可推导出d 1满足
Figure PCTCN2022113340-appb-000033
以及d 2满足
Figure PCTCN2022113340-appb-000034
基于类似的推导方式,可以得到d 3满足
Figure PCTCN2022113340-appb-000035
以及d 4满足
Figure PCTCN2022113340-appb-000036
Figure PCTCN2022113340-appb-000037
请参阅图16,不难看出,图14所示的天线系统中MT天线以及DU天线之间同样能够获取良好的隔离度。
请参阅图17a,图17a的纵坐标表示图14中的第一天线阵列所对应的增益,0度对应垂直阵面的方向,+5度为第一天线阵列所产生的主波束的最大指向。在相对垂直阵面的方向顺时针偏转90度左右的区域,可以理解为会对第二天线阵列产生影响的干扰区域。类似的,请参阅图17b,图17b的纵坐标表示图14中的第二天线阵列所对应的增益,0度指示为垂直阵面的方向,-5度即为第二天线阵列所产生的主波束的最大指向。在相对垂直阵面的角度逆时针偏转90度左右的区域,可以理解为会对第一天线阵列产生影响的干扰区域。在上述图17a以及图17b中,干扰区域所对应的增益均较低,因此图14所示的天线系统中MT天线以及DU天线之间能够获取良好的隔离度。
请参阅图18,在另外一种具体的设计中,第一天线阵列设置于上侧,第二天线阵列设置于下侧,且第一天线阵列以及第二天线阵列在目标方向上均包括3行天线振子,第一天线阵列的上边缘与第二天线阵列的下边缘距离5.3个波长。第一天线阵列在目标方向上的3行天线振子彼此之间的间距分别为d 1以及d 2,第二天线阵列在目标方向上的3行天线振子彼此之间的间距分别为d 3以及d 4。并且,第一天线阵列所产生的主波束相对于垂直阵面的方向向下侧偏转5度,第二天线阵列所产生的主波束相对于垂直阵面的方向向下侧偏转5度。一种可选的实现方式中,第一天线阵列从上往下的各行天线振子的激励电压幅度的比值可以设置为1:2:1,第二天线阵列从上往下的各行天线振子的激励电压幅度的比值同样为1:2:1。
请参阅图19,图18中从上往下的6行天线振子在图19中依次记为天线振子行I、天线振子行II、天线振子行III、天线振子行Ⅳ、天线振子行Ⅴ以及天线振子行Ⅵ。天线振子行I产生的干扰信号记为c1,天线振子行II产生的干扰信号记为c2,天线振子行III产生的干扰信号记为c3,天线振子行Ⅳ产生的干扰信号记为c6,天线振子行Ⅴ产生的干扰信号记为c5,天线振子行Ⅵ产生的干扰信号记为c4。
以天线振子行III的馈电信号为基准,天线振子行I以及天线振子行II的馈电信号的相位超前量分别为δ 1和δ 21>δ 2>0)。以天线振子行Ⅳ的馈电信号为基准,天线振子行Ⅴ以及天线振子行Ⅵ的馈电信号的相位滞后量分别为δ 3和δ 44>δ 3>0)。
在第一天线阵列与第二天线阵列之间取一个参考面,干扰信号c1与干扰信号c3的相位差
Figure PCTCN2022113340-appb-000038
满足公式(7):
Figure PCTCN2022113340-appb-000039
干扰信号c2与干扰信号c3的相位差
Figure PCTCN2022113340-appb-000040
满足公式(8):
Figure PCTCN2022113340-appb-000041
基于上述公式(7)以及公式(8),若要使得干扰信号c1与干扰信号c3同相叠加,且与干扰信号c2反向相消,可推导出d 1满足
Figure PCTCN2022113340-appb-000042
以及d 2满足
Figure PCTCN2022113340-appb-000043
基于类似的推导方式,可以得到d 3满足
Figure PCTCN2022113340-appb-000044
以及d 4满足
Figure PCTCN2022113340-appb-000045
Figure PCTCN2022113340-appb-000046
请参阅图20,不难看出,图18所示的天线系统中MT天线以及DU天线之间同样能够获取良好的隔离度。
请参阅图21a,图21a的纵坐标表示图18中的第一天线阵列所对应的增益,0度对应垂直阵面的方向,+5度为第一天线阵列所产生的主波束的最大指向。在相对垂直阵面的方向顺时针偏转90度左右的区域,可以理解为会对第二天线阵列产生影响的干扰区域。类似的,请参阅图21b,图21b的纵坐标表示图18中的第二天线阵列所对应的增益,0度指示为垂直阵面的方向,+5度即为第二天线阵列所产生的主波束的最大指向。在相对垂直阵面的角度逆时针偏转90度左右的区域,可以理解为会对第一天线阵列产生影响的干扰区域。在上述图21a以及图21b中,干扰区域所对应的增益均较低,因此图18所示的天线系统中MT天线以及DU天线之间能够获取良好的隔离度。
本申请还提供了一种天线杆站,请参阅图22,该天线杆站包括抱杆2201、安装件2202、档板2203以及天线模块2204,其中抱杆2201与安装件2202固定连接,安装件2202与档板2203以及天线模块2204固定连接,并且档板2203设置于抱杆2201与天线模块2204之间,天线模块2204中设置前述所介绍的天线系统。由于在实际的应用场景中抱杆2201以及安装件2202会将电磁波反射,例如将MT天线产生的电磁波反射至DU天线,从而导致隔离度下降。通过设置档板2203,对MT天线以及DU天线产生的电磁波进行散射或调节,构造的反射径使得反射的范围与零点范围匹配,从而解决上述问题,提高隔离度。请参阅图23,为方便理解上述抱杆2201、档板2203以及天线系统之间的相对位置关系,图23示出了抱杆2301、档板2302以及天线系统2303的三维关系。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统和装置,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。

Claims (25)

  1. 一种天线系统,其特征在于,包括第一天线阵列以及第二天线阵列,所述第一天线阵列设置于第一侧,所述第二天线阵列设置于第二侧;
    所述第一天线阵列在目标方向上的相邻的两行天线振子之间的间距,为根据所述第一天线阵列在所述目标方向上的所述相邻的两行天线振子所馈电的相位差以及波长确定,所述第二天线阵列在所述目标方向上的相邻的两行天线振子之间的间距,为根据所述第二天线阵列在所述目标方向上的所述相邻的两行天线振子所馈电的相位差以及所述波长确定,所述目标方向由所述第一侧指向所述第二侧,所述波长为所述第一天线阵列以及第二天线阵列的工作频段对应的波长。
  2. 根据权利要求1所述的天线系统,其特征在于,若所述第一天线阵列所产生的主波束相对垂直阵面的方向不发生偏转,则所述第一天线阵列在所述目标方向上的所述相邻的两行天线振子之间的间距为半个所述波长。
  3. 根据权利要求1所述的天线系统,其特征在于,若所述第一天线阵列产生的主波束相对垂直阵面的方向偏向所述第一侧,则所述第一天线阵列在所述目标方向上的所述相邻的两行天线振子的间距小于半个所述波长;
    或,
    若所述第一天线阵列产生的主波束相对垂直阵面的方向偏向所述第二侧,则所述第一天线阵列在所述目标方向上的所述相邻的两行天线振子的间距大于半个所述波长。
  4. 根据权利要求3所述的天线系统,其特征在于,若所述第一天线阵列产生的主波束相对垂直阵面的方向偏向所述第一侧,则所述第一天线阵列在所述目标方向上的所述相邻的两行天线振子的间距d a满足
    Figure PCTCN2022113340-appb-100001
    其中δ a为所述第一天线阵列在所述目标方向上的所述相邻的两行天线振子所馈电的相位差,λ为所述波长;
    或,
    若且所述第一天线阵列产生的主波束偏向所述第二侧,则所述d a满足
    Figure PCTCN2022113340-appb-100002
    Figure PCTCN2022113340-appb-100003
  5. 根据权利要求1至4中任一项所述的天线系统,其特征在于,若所述第二天线阵列所产生的主波束相对垂直阵面的方向不发生偏转,则所述第二天线阵列在所述目标方向上的所述相邻的两行天线振子之间的间距为半个所述波长。
  6. 根据权利要求1至4中任一项所述的天线系统,其特征在于,若所述第二天线阵列产生的主波束相对垂直阵面的方向偏向所述第一侧,则所述第二天线阵列在所述目标方向上的所述相邻的两行天线振子的间距大于一半的所述波长;
    或,
    若所述第二天线阵列产生的主波束相对垂直阵面的方向偏向所述第二侧,则所述第二天线阵列在所述目标方向上的所述相邻的两行天线振子的间距小于一半的所述波长。
  7. 根据权利要求6所述的天线系统,其特征在于,若所述第二天线阵列产生的主波束相对垂直阵面的方向偏向所述第一侧,则所述第二天线阵列在所述目标方向上的所述相邻的两行天线振子的间距d b满足
    Figure PCTCN2022113340-appb-100004
    其中δ b为所述第二天线阵列在所述目 标方向上的所述相邻的两行天线振子所馈电的相位差;
    或,
    若所述第二天线阵列产生的主波束相对垂直阵面的方向偏向所述第二侧,则所述第二天线阵列在所述目标方向上的所述相邻的两行天线振子的间距d b满足
    Figure PCTCN2022113340-appb-100005
  8. 根据权利要求1至7中任一项所述的天线系统,其特征在于,若所述第一天线阵列在所述目标方向上包括M行天线振子,则所述M行天线振子的激励电压幅度在所述目标方向上先增大后减小,若所述第二天线阵列在所述目标方向上包括N行天线振子,则所述N行天线振子的激励电压幅度在所述目标方向上先增大后减小。
  9. 根据权利要求8所述的天线系统,其特征在于,所述第一天线阵列中的所述M行天线振子的激励电压幅度的比值在所述目标方向上依次为
    Figure PCTCN2022113340-appb-100006
    所述第二天线阵列中的所述N行天线振子的激励电压幅度的比值在所述目标方向上依次为
    Figure PCTCN2022113340-appb-100007
  10. 根据权利要求1至8中任一项所述的天线系统,其特征在于,若所述第一天线阵列在所述目标方向上包括M行天线振子,则所述M行天线振子中的奇数行的天线振子的激励电压幅度的总和,等于所述M行天线振子中的偶数行的天线振子的激励电压幅度的总和,若所述第二天线阵列在所述目标方向上包括N行天线振子,则所述N行天线振子中的奇数行的天线振子的激励电压幅度的总和,等于所述N行天线振子中的偶数行的天线振子的激励电压幅度的总和。
  11. 根据权利要求1至10中任一项所述的天线系统,其特征在于,所述第一侧为上侧,所述第二侧为下侧;
    或,所述第一侧为左侧,所述第二侧为右侧。
  12. 根据权利要求1至11中任一项所述的天线系统,其特征在于,所述第一天线阵列以及所述第二天线阵列中至少存在一个目标天线阵列,所述目标天线阵列在所述目标方向上包括至少3行天线振子。
  13. 一种天线系统,其特征在于,包括第一天线阵列以及第二天线阵列,所述第一天线阵列以及所述第二天线阵列分别设置于第一侧以及第二侧;
    所述第一天线阵列在目标方向上包括一行天线振子,所述第二天线阵列在所述目标方向上的相邻的两行天线振子之间的间距,为根据所述第二天线阵列在所述目标方向上的所述相邻的两行天线振子所馈电的相位差以及所述波长确定,所述目标方向由所述第一侧指向所述第二侧,所述波长为所述第一天线阵列以及第二天线阵列的工作频段对应的波长。
  14. 根据权利要求13所述的天线系统,其特征在于,若所述第二天线阵列所产生的主波束相对垂直阵面的方向不发生偏转,则所述第二天线阵列在所述目标方向上的所述相邻的两行天线振子之间的间距为半个所述波长。
  15. 根据权利要求13所述的天线系统,其特征在于,若所述第二天线阵列设置于所述第一侧,且所述第二天线阵列产生的主波束相对垂直阵面的方向偏向所述第一侧,则所述第二天线阵列在所述目标方向上的所述相邻的两行天线振子的间距小于半个所述波长;
    或,
    若所述第二天线阵列设置于所述第一侧,且所述第二天线阵列产生的主波束相对垂直 阵面的方向偏向所述第二侧,则所述第二天线阵列在所述目标方向上的所述相邻的两行天线振子的间距大于半个所述波长。
  16. 根据权利要求13所述的天线系统,其特征在于,若所述第二天线阵列设置于所述第二侧,且所述第二天线阵列产生的主波束相对垂直阵面的方向偏向所述第一侧,则所述第二天线阵列在所述目标方向上的所述相邻的两行天线振子的间距大于一半的所述波长;
    或,
    若所述第二天线阵列设置于所述第二侧,且所述第二天线阵列产生的主波束相对垂直阵面的方向偏向所述第二侧,则所述第二天线阵列在所述目标方向上的所述相邻的两行天线振子的间距小于一半的所述波长。
  17. 根据权利要求15所述的天线系统,其特征在于,若所述第二天线阵列设置于所述第一侧,且所述第二天线阵列产生的主波束相对垂直阵面的方向偏向所述第一侧,则所述第二天线阵列在所述目标方向上的所述相邻的两行天线振子的间距d a满足
    Figure PCTCN2022113340-appb-100008
    Figure PCTCN2022113340-appb-100009
    其中δ a为所述第二天线阵列在所述目标方向上的所述相邻的两行天线振子所馈电的相位差,λ为所述波长;
    或,
    若所述第二天线阵列设置于所述第一侧,且所述第二天线阵列产生的主波束偏向所述第二侧,则所述d a满足
    Figure PCTCN2022113340-appb-100010
  18. 根据权利要求16所述的天线系统,其特征在于,若所述第二天线阵列设置于所述第二侧,且所述第二天线阵列产生的主波束相对垂直阵面的方向偏向所述第一侧,则所述第二天线阵列在所述目标方向上的所述相邻的两行天线振子的间距d b满足
    Figure PCTCN2022113340-appb-100011
    Figure PCTCN2022113340-appb-100012
    其中δ b为所述第二天线阵列在所述目标方向上的所述相邻的两行天线振子所馈电的相位差;
    或,
    若所述第二天线阵列设置于所述第二侧,且所述第二天线阵列产生的主波束相对垂直阵面的方向偏向所述第二侧,则所述第二天线阵列在所述目标方向上的所述相邻的两行天线振子的间距d b满足
    Figure PCTCN2022113340-appb-100013
  19. 根据权利要求13至18中任一项所述的天线系统,其特征在于,若所述第二天线阵列在所述目标方向上包括M行天线振子,则所述M行天线振子的激励电压幅度在所述目标方向上先增大后减小。
  20. 根据权利要求19所述的天线系统,其特征在于,所述第二天线阵列的所述M行天线振子的激励电压幅度的比值在所述目标方向上依次为
    Figure PCTCN2022113340-appb-100014
  21. 根据权利要求13至19中任一项所述的天线系统,其特征在于,若所述第二天线阵列在所述目标方向上包括M行天线振子,则所述M行天线振子中的奇数行的天线振子的激励电压幅度的总和,等于所述M行天线振子中的偶数行的天线振子的激励电压幅度的总和。
  22. 根据权利要求13至21中任一项所述的天线系统,其特征在于,所述第一侧为上侧,所述第二侧为下侧;
    或,所述第一侧为左侧,所述第二侧为右侧。
  23. 根据权利要求13至22中任一项所述的天线系统,其特征在于,所述第二天线阵列在所述目标方向上包括至少3行天线振子。
  24. 一种天线杆站,其特征在于,包括抱杆、安装件、挡板以及天线模块,所述天线模块中设置如权利要求1至23中任一项所述的天线系统;
    所述安装件与所述抱杆固定连接;
    所述挡板以及所述天线模块与所述安装件固定连接,所述挡板设置于所述抱杆以及所述天线模块之间。
  25. 根据权利要求24所述的天线杆站,其特征在于,所述挡板的形状为矩形或曲面。
PCT/CN2022/113340 2022-08-18 2022-08-18 一种天线系统 WO2024036566A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/113340 WO2024036566A1 (zh) 2022-08-18 2022-08-18 一种天线系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/113340 WO2024036566A1 (zh) 2022-08-18 2022-08-18 一种天线系统

Publications (1)

Publication Number Publication Date
WO2024036566A1 true WO2024036566A1 (zh) 2024-02-22

Family

ID=89940376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/113340 WO2024036566A1 (zh) 2022-08-18 2022-08-18 一种天线系统

Country Status (1)

Country Link
WO (1) WO2024036566A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002023670A1 (en) * 2000-09-13 2002-03-21 Nokia Corporation Method of generating directional antenna beams, and radio transmitter
US20030073465A1 (en) * 2001-07-27 2003-04-17 Shidong Li Method for constructing mobile wireless antenna systems
CN105577226A (zh) * 2015-12-18 2016-05-11 西安电子科技大学 一种宽带全双工系统的二维多天线对消方法
CN105991170A (zh) * 2015-02-06 2016-10-05 电信科学技术研究院 一种信号发射方法及装置
CN110098856A (zh) * 2018-01-31 2019-08-06 华为技术有限公司 一种天线装置及相关设备
CN113708849A (zh) * 2020-05-22 2021-11-26 北京三星通信技术研究有限公司 一种电磁隔离设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002023670A1 (en) * 2000-09-13 2002-03-21 Nokia Corporation Method of generating directional antenna beams, and radio transmitter
US20030073465A1 (en) * 2001-07-27 2003-04-17 Shidong Li Method for constructing mobile wireless antenna systems
CN105991170A (zh) * 2015-02-06 2016-10-05 电信科学技术研究院 一种信号发射方法及装置
CN105577226A (zh) * 2015-12-18 2016-05-11 西安电子科技大学 一种宽带全双工系统的二维多天线对消方法
CN110098856A (zh) * 2018-01-31 2019-08-06 华为技术有限公司 一种天线装置及相关设备
CN113708849A (zh) * 2020-05-22 2021-11-26 北京三星通信技术研究有限公司 一种电磁隔离设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BISHNU A.; HOLM M.; RATNARAJAH T.: "Performance Evaluation of Full-Duplex IAB Multi-Cell and Multi-User Network for FR2 Band", IEEE ACCESS, IEEE, USA, vol. 9, 14 May 2021 (2021-05-14), USA , pages 72269 - 72283, XP011854776, DOI: 10.1109/ACCESS.2021.3080307 *

Similar Documents

Publication Publication Date Title
US6747605B2 (en) Planar high-frequency antenna
TWI648909B (zh) 多模式複合式天線
US20180108985A1 (en) Antenna array and network device
EP3379648B1 (en) Planar array antenna and communication device
CN106935962B (zh) 终端设备及天线
US20190273324A1 (en) Leaky-wave antenna
KR101400537B1 (ko) 450 MHz 도너 안테나
CN111656611B (zh) 包含内置的差分馈电方案的高增益和大带宽天线
EP3567677A1 (en) Antenna array and communication device
JP2010154519A (ja) 移動通信用基地局アンテナ
WO2018130097A1 (zh) 一种天线结构及应用于该天线结构的赋形方法
US20070273603A1 (en) Scanable Sparse Antenna Array
EP3975336A1 (en) Antenna unit and electronic device
WO2022221468A1 (en) Passive intermodulation interference optimized antenna configuration
EP4287402A1 (en) Antenna for forming two beams, and hybrid antenna comprising same
CN110650525A (zh) 一种多波束分配功率mac协议通信方法
WO2022140999A1 (zh) 基站天线
US11276941B2 (en) Broadband antenna
WO2024036566A1 (zh) 一种天线系统
Yeom et al. Wide and dual-band MIMO antenna with omnidirectional and directional radiation patterns for indoor access points
JP2013048343A (ja) マルチビームリフレクトアレイ
CN206850028U (zh) 宽带高增益垂直极化全向天线
US11133916B2 (en) Wireless communication system
EP4235970A1 (en) Base station antenna and base station
CN112103625B (zh) 一种高隔离、低副瓣MassiveMIMO天线阵列及组阵方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22955346

Country of ref document: EP

Kind code of ref document: A1