WO2024036512A1 - 双目三光望远镜 - Google Patents

双目三光望远镜 Download PDF

Info

Publication number
WO2024036512A1
WO2024036512A1 PCT/CN2022/113061 CN2022113061W WO2024036512A1 WO 2024036512 A1 WO2024036512 A1 WO 2024036512A1 CN 2022113061 W CN2022113061 W CN 2022113061W WO 2024036512 A1 WO2024036512 A1 WO 2024036512A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared
light
lens
visible light
eyepiece
Prior art date
Application number
PCT/CN2022/113061
Other languages
English (en)
French (fr)
Inventor
牟道禄
李静敏
张振学
张骁勇
Original Assignee
烟台艾睿光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 烟台艾睿光电科技有限公司 filed Critical 烟台艾睿光电科技有限公司
Priority to PCT/CN2022/113061 priority Critical patent/WO2024036512A1/zh
Publication of WO2024036512A1 publication Critical patent/WO2024036512A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/12Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices with means for image conversion or intensification
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/16Housings; Caps; Mountings; Supports, e.g. with counterweight
    • G02B23/18Housings; Caps; Mountings; Supports, e.g. with counterweight for binocular arrangements

Definitions

  • the present application relates to the technical field of telescopes, and in particular to a binocular and three-light telescope.
  • a telescope is a visual optical instrument used to observe distant objects. It can magnify the small opening angle of distant objects at a certain magnification, so that they have a larger opening angle in the image space, making it impossible to see clearly with the naked eye or The resolved objects become clear and discernible, and the application fields are numerous and wide-ranging.
  • Telescopes used outdoors are generally used for outdoor viewing and outdoor activities, and are also the most common type in all application fields. During navigation, telescopes with excellent waterproof performance and high sealing are required. Telescopes can be used in forestry to conduct forest fire prevention survey work. With the continuous expansion of the scale of the domestic power grid, ultra-high voltage lines are growing rapidly, and many transmission lines are distributed in high mountains. As a result, traditional manual line inspections are affected by uncertain factors such as terrain environment, personnel quality, weather conditions, etc., and are inefficient and The re-inspection cycle is long and the accuracy of inspection data is not high. Telescopes are also used for power line inspections. In addition, telescopes are also used in the military and police fields to survey terrain and observe enemy dynamics. In addition to the fields covered by most of the above telescopes, telescopes are also used in fields such as water conservancy and railways.
  • this application provides a binocular three-light telescope, which can obtain images with richer information including visible light imaging, infrared photothermal imaging and laser ranging, and meet more stringent usage requirements.
  • the embodiment of the present application provides a binocular three-light telescope, including:
  • Binocular tubes including visible light tubes, infrared tubes and laser windows;
  • the movement component includes a visible light movement group, an infrared movement group and a laser rangefinder.
  • the visible light movement group receives visible light through the visible light lens barrel and generates a visible light image.
  • the infrared movement group passes through the infrared mirror.
  • the barrel receives infrared light and generates an infrared image, and the laser rangefinder receives laser light through the laser window and calculates the ranging result;
  • the system chip board is respectively connected with the signals of the visible light movement group, the infrared movement group and the laser rangefinder, and is used to process and fuse the visible light image and the infrared image, and receive the Ranging results;
  • a housing the front and rear ends of which are respectively connected to the binocular tube and eyepiece system, forming a space for housing the movement components and the system chip board;
  • the eyepiece system includes two eyepieces, each eyepiece is provided with a display screen, and the display screen is signally connected to the system chip board.
  • the system chip board integrates at least one of a battery compartment board, a display power board, a key board, a microphone board, a GPS module, an electronic compass, a WiFi module, and a debugging interface board.
  • both sides of the housing are C-shaped arc holding areas, and the housing is provided with a key area between the two holding areas.
  • the visible light movement core assembly includes a visible light lens and a visible light movement core.
  • the visible light lens corresponds to the visible light lens barrel.
  • the visible light movement core senses the light projected by the visible light lens and generates a visible light image.
  • the infrared movement group includes an infrared lens and an infrared movement.
  • the infrared lens corresponds to the infrared barrel. The infrared movement senses the light projected by the infrared lens and generates an infrared image.
  • the movement component further includes a lens bracket, and the visible light movement and the infrared movement are respectively installed on the lens bracket through a focusing mechanism.
  • the focusing mechanism includes a focusing screw, a focusing screw bracket and a lens flange; the focusing screw is arranged in a direction parallel to the optical axis, and the visible light movement and the infrared movement They are respectively fixedly connected to the corresponding lens flange, one end of the focusing screw bracket is fixedly connected to the lens bracket, and the other end is rotatably connected to the focusing screw; the lens flange is connected to the end of the focusing screw Threaded connection, so that when the focusing screw rotates, the lens flange can move along the optical axis direction relative to the visible light lens or the infrared lens.
  • the focusing mechanism further includes an anti-backlash spring
  • the lens flange is provided with a threaded hole corresponding to the focusing screw
  • the anti-backlash spring is placed in the threaded hole. The end of the focusing screw offsets the anti-backlash spring.
  • the focusing screw bracket is connected to the point where the diameter of the focusing screw decreases, and both ends of the connection point between the focusing screw bracket and the focusing screw are respectively equipped with clips.
  • the circlip at the reduced diameter portion is used to constrain the axial position of the focusing screw at the connection point with the adjusting screw bracket.
  • the lens flange is provided with a positioning guide groove along the corresponding optical axis direction, and a positioning pin is protruding from the lens barrel of the corresponding visible light lens and the infrared lens.
  • the positioning pin The position is limited in the corresponding positioning guide groove, so that the lens flange can move relative to the lens barrel along the corresponding optical axis direction.
  • the visible light lens includes a lens and a dual bandpass filter.
  • the dual bandpass filter allows light in a first band and a second band to pass through.
  • the first band is visible light. band
  • the second band is an infrared light band
  • the visible light movement has an image sensor and an image processing module, and the image processing module is connected to the image sensor to receive the image signal sensed by the image sensor;
  • the binocular three-light telescope has a day mode and a night mode; in the day mode, the image processing module filters the image of the second band of light in the image signal from the image sensor, retaining only the second band. An image of light in one band; in the night mode, the image processing module simultaneously retains the image of light in the first band and the image of light in the second band.
  • the first waveband is 420-660nm, and the second waveband is 930-970nm; the pass rate of the dual-bandpass filter for the light in the first waveband is more than 50%. , the transmittance of light in the second wavelength band is 85% or more.
  • the image processing module determines whether it is the day mode or the night mode through a light sensor that senses changes in light brightness, and when in the day mode, the received image from the The image of the second waveband light in the image signal of the image sensor is filtered out.
  • an infrared flashlight is detachably installed at the bottom of the housing. After being powered on, the infrared flashlight emits infrared light in a direction parallel to the optical axis of the infrared lens.
  • the infrared flashlight is equipped with a battery inside, and the infrared flashlight uses a 940nm infrared emission tube.
  • the infrared flashlight is mounted to the housing through a flashlight mounting bracket.
  • the flashlight mounting bracket includes a hoop and a connecting piece.
  • the hoop is set on the periphery of the infrared flashlight, and the connection piece One end of the piece is fixed to the hoop, and the other end is locked to the shell through a fastener.
  • the eyepiece system further includes a back shell with two eyepiece holes provided on the back shell, and each set of eyepieces is fixed to the corresponding eyepiece hole on the back shell from the outside through an eyepiece flange. , each display screen is fixed to the corresponding eyepiece flange through a screen pressing block.
  • the eyepiece system further includes a pressure ring.
  • the pressure ring is connected to the inner side of the corresponding eyepiece flange through threads. By adjusting the installation position of the pressure ring on the eyepiece flange, , to adjust the tightness between the eyepiece flange and the eyepiece hole.
  • the eyepiece system further includes a guide block, the guide block has a guide hole with the same shape as the eyepiece hole, and the guide hole is arranged inside the eyepiece hole;
  • the eyepiece method A baffle extends outward in the circumferential direction of the orchid, and the baffle is larger than the eyepiece hole and abuts against the outside of the rear housing to block the eyepiece hole from the outside and constrain the position of the eyepiece flange,
  • the eyepiece flange is provided with a connecting end.
  • the connecting end passes through the eyepiece hole and the guide hole and is threadedly connected to the pressure ring.
  • the rear end surface of the pressure ring is in contact with the corresponding guide hole.
  • the front faces of the blocks are in contact.
  • the guide block is made of self-lubricating and wear-resistant material, and a locking hole is provided on the side wall of the pressure ring for a locking pin to be inserted into the locking hole and against the The wall surface of the connecting end.
  • a scale mark is provided on the outside of the back shell, the scale mark is located between the two eyepiece holes, and adjacent scale marks of the scale mark are equally spaced. To indicate the distance that the eyepiece flange and the eyepiece move relative to the rear case.
  • the binocular three-light telescope provided by the embodiments of the present application has at least the following beneficial effects:
  • the present application provides a binocular three-light telescope that integrates visible light imaging, high-sensitivity infrared photothermal imaging and laser ranging, and can obtain fused images containing richer information. , to meet more stringent usage requirements, and can be used as a portable binocular three-light handheld telescope suitable for all scenarios such as outdoor adventures, hunting, and wild safety protection.
  • the binocular three-light telescope of the present application has a manual focusing function for visible light and infrared objective lenses.
  • the focusing function is realized by adjusting the relative position of the movement (visible light movement, infrared movement) and the lens (visible light lens, infrared lens). Use your fingers to adjust the focus function.
  • the knob When you move the knob, the focusing screw will rotate together. The rotation of the focusing screw will drive the lens flange and the movement relative to the lens, thereby adjusting the focus.
  • the elimination of the internal focus adjustment of the lens simplifies the lens structure and reduces the weight.
  • the entire functional structure does not require additional space for the whole machine.
  • the parts that need to be sealed on the functional mechanism only need ordinary sealing rings; during use of the whole machine, Focusing can be accomplished with just one finger, which is very convenient.
  • the binocular three-light telescope of the present application has an adjustable interpupillary distance function.
  • the interpupillary distance can be adjusted.
  • the tightness of the interpupillary distance can be adjusted through the guide block pressure ring.
  • the structure is simple to assemble, no screws are required, and there are no complicated parts.
  • the appearance of the whole machine is not restricted and different shapes can be designed without affecting the internal space layout of the product, leaving more space to add other functional components.
  • a sealing ring on the eyepiece flange, the entire machine can be sealed, providing a higher sealing level.
  • the binocular three-light telescope of this application has day and night functions. It uses dual bandpass filters to replace the IR-CUT dual filter switcher.
  • the day mode image processing module filters out infrared light images to obtain clear images. In night mode, it can sense infrared light to obtain lower illumination. It has the characteristics of high cost performance, small size, simple structure and high stability. It can improve the effect of color imaging at night and ensure the quality of optical imaging. In order to improve the color imaging effect at night, you can use an infrared flashlight to enhance the light illumination, and then use image processing algorithms to optimize the visible light imaging effect, improve the effect of visible light color imaging at night, and ensure the quality of optical imaging.
  • Figure 1 is a schematic three-dimensional structural diagram of a binocular three-light telescope according to an embodiment of the present application
  • Figure 2 is a schematic three-dimensional structural diagram of the binocular three-light telescope in Figure 1 from another angle;
  • Figure 3 is a schematic diagram of the exploded structure of the binocular three-light telescope in Figure 1;
  • Figure 4 is a schematic diagram of the connection relationship of the system chip board in Figure 3;
  • Figure 5 is a schematic three-dimensional structural diagram from another angle of the movement component in Figure 3 with the laser rangefinder removed;
  • Figure 6 is an enlarged view of part I in Figure 5;
  • Figure 7 is an enlarged view of part II in Figure 5;
  • Figure 8 is an exploded structural diagram of the movement component in Figure 5;
  • Figure 9 is a schematic view of the main structure of the eyepiece system in Figure 3.
  • Figure 10 is a schematic rear view structural diagram of the eyepiece system in Figure 3;
  • Figure 11 is an exploded structural diagram of the eyepiece system in Figure 9;
  • Figure 12 is an axial cross-sectional view of the visible light lens in Figure 8.
  • Figure 13 is a bandpass schematic diagram of the dual bandpass filter in Figure 12;
  • Figure 14 is a schematic three-dimensional structural diagram of a binocular three-light telescope according to another embodiment of the present application.
  • Figure 15 is a schematic rear view structural diagram of the binocular three-light telescope in Figure 14.
  • Binocular lens tube 10 (including visible light lens tube 11, infrared lens tube 12, connecting plate 13, laser window 14);
  • Movement component 20 (including visible light lens 21, infrared lens 22, visible light movement 23, infrared movement 24, laser rangefinder 25, lens bracket 26, focusing mechanism 27; lens barrel 211, lens 212, dual band pass Filter 213, spacer ring 214, sealing ring 215, pressure ring 216; positioning pin 2111; knob 271, focusing screw 272, focusing screw bracket 273, lens flange 274, anti-backlash spring 275, circlip 276; positioning Guide groove 2741);
  • System chip board 30 (including battery compartment board 31, display power board 32, key board 33, microphone board 34, GPS module 35, electronic compass 36, WiFi module 37, debugging interface board 38, interface 39);
  • Shell 40 (including grip area 41 and key area 42);
  • Eyepiece system 50 (including rear shell 51, eyepiece 52, eyepiece flange 53, sealing ring 54, display screen 55, screen pressure block 56, guide block 57, pressure ring 58; eyepiece hole 511, scale mark 512; blocking piece 531, connecting end 532; guide hole 571);
  • Flashlight mounting bracket 80 (including hoop 81 and connecting piece 82);
  • connection should be understood in a broad sense.
  • connection or integral connection; it can be directly connected, or indirectly connected through an intermediary, or it can be internal connection between two components.
  • connection or integral connection; it can be directly connected, or indirectly connected through an intermediary, or it can be internal connection between two components.
  • Infrared detectors can not only obtain target information in the scene, but also display hidden thermal targets well. They are not affected by day or night or bad weather, but are affected by the radiation characteristics of the scene itself, the system operating wavelength, and transmission. Affected by factors such as distance and atmospheric attenuation, the contrast of infrared images is low, the spatial correlation is strong, and the ability to reflect target details is also relatively poor.
  • the visible light detector can just make up for the shortcomings of the infrared detector's low output image contrast and poor target detail reflection ability.
  • the CCD (charge coupled device) detector usually "passively" acquires the target information in the scene, and in the dark night or In bad weather conditions, the image quality obtained will be very poor. For these shortcomings of visible light images, infrared images can just make up for it.
  • this application provides a binocular three-light telescope that uses visible light imaging and infrared imaging to obtain a fused image, and simultaneously provides laser ranging.
  • the final obtained comprehensive image includes visible light information, infrared information and laser ranging information.
  • Infrared and visible light image fusion combines the information of the infrared image and visible light image of the same scene into a fused image.
  • After combining the ranging information a comprehensive image containing more information is obtained, which is more suitable for human visual observation and computer Extract information after reading.
  • FIG. 1 , FIG. 2 and FIG. 3 is a schematic structural diagram of a binocular three-light telescope 100 provided by an embodiment of the present application.
  • the binocular three-light telescope 100 includes a binocular tube 10, a movement component 20, a system chip board 30, a housing 40 and an eyepiece system 50.
  • the binocular tube 10, the housing 40 and the eyepiece system 50 are fixedly connected in sequence to the movement component 20
  • the system chip board 30 is fixed in the formed space.
  • the binocular lens tube 10 includes a visible light lens tube 11 and an infrared lens tube 12.
  • the visible light lens tube 11 and the infrared lens tube 12 are connected into one body by a connecting plate 13.
  • a laser window 14 is provided on the connecting plate 13 for outward emission. and receive reflected ranging laser; wherein, the laser window 14 can be set between the visible light lens barrel 11 and the infrared lens barrel 12, using the space between the visible light lens barrel 11 and the infrared lens barrel 12 to make the overall structure more compact.
  • the movement component 20 includes a visible light lens 21 , an infrared lens 22 , a visible light movement 23 , an infrared movement 24 , a laser rangefinder 25 and a lens bracket 26 .
  • the visible light lens 21 and the infrared lens 22 are fixed to the lens bracket 26, and the lens bracket 26 is fixed in the housing 40, so that the visible light lens 21 and the infrared lens 22 respectively correspond to the visible light lens barrel 11 and the infrared lens barrel 12 on the binocular tube 10.
  • the laser rangefinder 25 is installed on the lens bracket 26 between the visible light lens 21 and the infrared lens 22, so that the laser emission of the laser rangefinder 25 is facing the laser window 14 on the binocular tube 10, so that the measurement can be emitted outward. away from the laser and receives the reflected feedback laser.
  • a visible light movement core 23 is installed on the lens holder 26 through a focusing mechanism 27; corresponding to the infrared lens 22, an infrared movement core 24 is installed on the lens holder 26 through a focusing mechanism 27.
  • the visible light movement 23 is used to sense the visible light focused here through the visible light lens 21 and generate a visible light image; the infrared movement core 24 is used to sense the infrared light focused here through the infrared lens 22 and generate an infrared image.
  • the system chip board 30 includes a SOC (System on Chip, system-on-chip), which is used to centrally control the electronic components in the binocular tri-optical telescope 100. It is the carrier of the software functions of the whole machine and communicates with the movement component 20 through FPC. Soft cable connection. There is an image processing chip on the system chip board 30.
  • the visible light movement 23, the infrared movement 24 and the infrared rangefinder 25 are signally connected to the system chip board 30.
  • the system chip board 30 fuses the visible light image and the infrared image to obtain a fused image, and combines the visible light image and the infrared image.
  • the ranging result obtains a comprehensive image containing visible light information, infrared information and ranging information.
  • the system chip board 30 outputs a comprehensive image obtained by superimposing the laser ranging result and the visible light image, the infrared image or the fused image to the display screen 55 for display. Menus and other software functions can be further superimposed with the comprehensive image on the system chip board 30 and then output to the display screen 55 for display.
  • the binocular three-light telescope 100 has three image modes: visible light image, infrared image, and fused image.
  • the visible light mode is used during the day
  • the infrared mode is used in the pure black night
  • the fusion mode is used all-weather, which can solve the problem of a single type of telescope. Insufficient functionality.
  • the system chip board 30 can provide a wealth of external interfaces, and is integrated with a battery compartment board 31, a display power board 32, a key board 33, a microphone board 34, a GPS module 35, an electronic compass 36, and a WiFi module 37. and debugging interface board 38.
  • the battery compartment plate 31 is connected to the battery compartment group 60 and is used to control the charge and discharge of the battery compartment group 60;
  • the display power board 32 is connected to the display screen 55 in the eyepiece system 50 and is used to control the information displayed on the display screen 55;
  • the key board 33 can realize the human-computer interaction function.
  • corresponding to the two key areas 42 on the housing 40 there are two left and right key boards with a total of 6 keys.
  • the left key board 33 includes a power button, a laser key, The camera key, the right button board 33 includes a menu key and two direction keys;
  • the microphone board 34 is connected to the microphone (not shown) and is used to process the sound signal picked up by the microphone;
  • the GPS module 35 provides GPS navigation for the binocular tripod telescope 100 Orientation function;
  • the electronic compass 36 can provide north-south direction pointing function, providing convenience for outdoor use;
  • the WiFi module 37 provides wireless signal transmitting and receiving functions, and can be viewed remotely through WiFi interconnection functions at a certain distance through mobile APP and other interconnection functions; debugging
  • the interface board 38 is used to provide an interface for connecting to external devices.
  • the debugging interface board 38 can be connected to the interface 39, and the interface 39 is connected to the data line of the corresponding interface type (such as Type-C, MiniUSB, etc.) for power supply, data export, and firmware update.
  • the corresponding interface type such as Type-C, MiniUSB, etc.
  • PAL video output and other functions reduce the difficulty of use for users.
  • the binocular tri-optical telescope 100 can implement many software functions and provide a convenient and rich user experience.
  • the functions that the binocular three-light telescope 100 can realize through the system chip board 30 include but are not limited to: power on and off; image mode switching function (visible light image, infrared image, fusion image); screen brightness adjustment; visible light and infrared image brightness and contrast adjustment; Picture-in-picture function; infrared hot spot tracking function; infrared image polarity adjustment function; infrared image enhancement function; infrared image correction function; status icon display function; visible light and infrared image, fusion image electronic zoom; electronic compass, GPS positioning and navigation function ; Laser ranging information display; photography, video recording and file management, playback and deletion; memory card formatting WiFi real-time transmission; mobile APP interconnection; power display and undervoltage indication; system time display and setting; recording; restoring system settings; system Information view.
  • the focusing mechanism 27 includes a knob 271 , a focusing screw 272 , a focusing screw bracket 273 and a lens flange 274 .
  • the lens flange 274 can move along the optical axis direction relative to the corresponding visible light lens 21 and infrared lens 22 .
  • the visible light movement 23 and the infrared movement 24 are installed in the lens flange 274 and are fixedly connected to the corresponding lens flange 274 respectively.
  • the focusing screw 272 is arranged in a direction parallel to the optical axis, with one end rotatably mounted on the rear housing 51 of the eyepiece system 50 fixedly connected to the housing 40 , and the other end rotatably mounted on the focusing screw fixed on the lens bracket 26
  • the bracket 273 is used to rotatably install the focusing screw 272 in the housing 40 .
  • the knob 271 is fixedly connected to the end of the focusing screw 272 protruding from the rear housing 51 , and the lens flange 274 is threadedly connected to the other end of the focusing screw 272 .
  • the focusing screw bracket 273 is connected to the place where the diameter of the focusing screw 272 decreases, and circlips 276 are installed at both ends for limiting.
  • the two circlips 276 cooperate with the focusing screw bracket 273 to limit the movement of the focusing screw 272, constraining the focusing screw 272 at the connection with the adjusting screw bracket 273, so that the focusing screw 272 rotates No axial movement occurs.
  • the focusing mechanism 27 also includes an anti-backlash spring 275.
  • the lens flange 274 is provided with a threaded hole corresponding to the focusing screw 272.
  • the anti-backlash spring 275 is placed in the threaded hole, and the front end of the focusing screw 272 offsets the anti-backlash spring 275. .
  • the gap between the internal and external threads is eliminated by the anti-backlash spring 275, and the elastic force of the anti-backlash spring 275 controls the displacement of the lens flange 274 relative to the focusing screw 272. Adjust to ensure the accuracy of focusing.
  • the focusing screw 272 will rotate together with the knob 271.
  • the rotation of the focusing screw 272 will drive the lens flange 274 threadedly connected to the focusing screw 272 to move along the opposite edge.
  • the focusing screw 272 moves, and the visible light movement 23 moves along the focusing screw 272 along with the lens flange 274, and the distance in the optical axis direction between the visible light movement 23 and the visible light lens 21 changes, thereby adjusting the focus.
  • the lens barrel 211 of the visible light lens 21 is protruding with three positioning pins 2111 at the connection point with the lens flange 274 (three are evenly distributed in the entire circle), and the three positioning pins 2111 are limited to the corresponding three
  • the guide groove 2741 is set along the optical axis direction to guide the moving direction of the lens flange 274, thereby ensuring that the infrared movement core 24 can only move only under the guidance and limiting function of the guide groove 2741 relative to the visible light lens 21. It can move parallel to the optical axis without rotating.
  • the housing 40 is designed to hold the body in a C-shaped arc, imitating the way a human hand holds it. That is, the holding areas 41 on both sides of the housing 40 are in a C-shaped arc to facilitate holding.
  • the human hand When the human hand is relaxed normally, it roughly appears as a C-shape.
  • the median position is the natural position of the hand. In this position, the wrist The best stress-bearing condition.
  • the C-shaped arc holding method ensures that the hand, product and key area 42 are kept in the middle, ensuring that the wrist is in a straight state and avoiding pressure on the palm tissue.
  • the height of the keys in the key area 42 conforms to the curvature of the human body's holding gesture, and the size and shape of the keys are close to the shape of the user's fingers, so they feel comfortable and are not prone to misoperation.
  • the gripping area 41 can be provided with a textured hand glue to increase the friction between the palm and the product, thereby achieving an anti-slip effect.
  • the eyepiece system 50 includes a back shell 51 fixedly connected to the housing 40. Two sets of eyepieces 52 are installed on the back shell 51. Each set of eyepieces 52 is installed from the outside through the eyepiece flange 53 and the sealing ring 54. The inner side of the eyepiece flange 53 is locked and fixed through the guide block 57 and the pressure ring 58 into the corresponding eyepiece hole 511 on the rear case 51 .
  • the display screen 55 corresponding to each set of eyepieces 52 is fixed to the eyepiece flange 53 through a screen pressing block 56 and is located in front of the eyepiece 52 .
  • the eyepiece flange 53 extends outward with a blocking piece 531 in the circumferential direction.
  • the blocking piece 531 is larger than the eyepiece hole 511 and abuts against the outside of the rear case 51 , thereby blocking the eyepiece hole 511 and constraining the eyepiece flange 53 in the front-to-back direction. s position.
  • the guide block 57 has a guide hole 571 with the same shape as the eyepiece hole 511 and is arranged inside the eyepiece hole 511 .
  • the connecting end 532 at the front end of the eyepiece flange 53 passes through the eyepiece hole 511 and the guide hole 571 and is connected with the pressure ring 58 Through threaded connection, the rear end surface of the pressure ring 58 is in contact with the front end surface of the guide block 57. Since the blocking piece 531 of the eyepiece flange 53 and the pressure ring 58 are respectively located on the inner and outer sides of the rear housing 51, the pressure ring 58 can be adjusted through the threads. At the position where the eyepiece flange 53 is installed, the tightness between the eyepiece flange 53 and the back shell 51 can be adjusted, so that the eyepiece flange 53 can drive the eyepiece 52 to move in the eyepiece hole 511 to adjust the interpupillary distance.
  • a locking hole can also be provided on the side wall of the pressing ring 58, and a locking pin is inserted into the locking hole to push against the wall of the connecting end 532.
  • the pressing ring 58 cannot rotate and is locked in position on the connecting end 532. , used to lock to prevent loosening after the interpupillary distance adjustment is completed.
  • a scale mark 512 is provided on the outside of the rear shell 51. The scale mark 512 is located between the two eyepiece holes 511 and is used to indicate the current position and movement distance of the eyepiece flange 53 (and the eyepiece 52 therein).
  • the interval between adjacent scale marks of the scale mark 512 can be set to 1 mm, and the eyepiece flange 53 is moved in the direction of the arrow so that the eyepiece 52 moves 1 mm for each scale mark moved as a reference to adjust the two sets of eyepieces 52 distance between each other, so that it can adapt to users with different interpupillary distances, allowing users to obtain the best visual effects.
  • the eyepiece 52 and the corresponding display screen 57 are installed on the eyepiece flange 53 together, when the distance between the two eyepieces 52 is adjusted by moving the eyepiece flange 53, the eyepiece flange 53 drives the display screen 55 together along the guide holes 571. By moving, it can be ensured that the center of the screen of the display screen 55 is always consistent with the optical axis of the eyepiece 52, and the image will not go beyond the observation range of the eyepiece due to interpupillary distance adjustment.
  • the guide block 57 can be made of material such as PTFE (polytetrafluoroethylene), which has wear-resistant, self-lubricating and other properties to ensure product reliability.
  • PTFE polytetrafluoroethylene
  • the tightness of the interpupillary distance can be adjusted through the guide block 57 and the pressure ring 58, and the structure is simple to assemble.
  • Batteries are installed in the battery compartment group 60 to power the entire machine.
  • two 18650mAh batteries are installed in the battery compartment group 60.
  • the binocular three-light telescope 100 can also be powered by an external data line through the interface 39 .
  • the type of the interface 39 is not limited to the Type-C and MiniUSB examples mentioned above. Two or more interfaces can also be provided at the same time according to the needs, and there is no limitation on this.
  • IR-CUT dual filters are usually used. A set of filters is built into the camera lens set. When the infrared sensing point outside the lens detects the change in light intensity, the built-in IR-CUT dual filter switch can It automatically switches according to the intensity of external light, so that the visible light image can achieve the best effect.
  • the visible light lens 21 includes a lens barrel 211 and a lens 212 and a dual bandpass filter 213 disposed in the lens barrel 211 .
  • a plurality of lenses 212 and dual bandpass filters 213 are arranged along the optical axis.
  • a spacer ring 214 is provided between adjacent lenses 212 and between the lenses 212 and the dual bandpass filter 213 to isolate adjacent lenses.
  • the frontmost lens 212 is provided with a sealing ring 215 and a pressure ring 216 to seal the lens 212 within the lens barrel 211 .
  • a plurality of lenses 212 form a lens group to focus light and transmit it through the lens.
  • the dual bandpass filter 213 filters the light from the front lens 212 and then emits it to the visible light movement core 23 .
  • the dual-bandpass filter 213 is a single filter with two bandpasses. Only one filter is used to intercept two specific wavebands, and the wavebands in two or more areas can be selected to pass. Please refer to FIG. 13 in conjunction with FIG. 13 .
  • the dual bandpass filter 213 allows part of the visible light band (first waveband) and part of the infrared light band (second waveband) to pass.
  • the first band is the visible light band 420-660nm, with a pass rate T of more than 50%;
  • the second band is the infrared light band 930-970 nm, with a pass rate T of more than 85%.
  • the dual bandpass filter 213 achieves dual bandpass through coating. The detailed parameters of the coating requirements of the dual bandpass filter 213 are as follows:
  • the dual bandpass filter 213 filters the light entering the visible light movement 23 to allow visible light and infrared light in specific wavelength bands to pass.
  • the visible light movement 23 has an image sensor and an image processing module.
  • the image processing module receives the image signal output by the image sensor in real time and processes the image signal transmitted from the image sensor, such as white balance processing, exposure processing, color correction, etc.
  • the dual bandpass filter 213 and the image processing module in the visible light movement core can realize dual bandpass switching to adapt to day mode and night mode.
  • the image processing module will filter out the second band of light through an image algorithm, retaining only the first band of light image to prevent the second band of light from affecting the color restoration of the image; in night mode (nighttime) When in use), there is almost no light in the first wave band at night, and basically only the light in the second wave band passes through the dual bandpass filter 213.
  • the image processing module does not filter the light in the first wave band when processing the received image signal. .
  • the image processing module can sense changes in light and darkness of the external scene through the light sensor to determine whether the external scene is a day scene or a night scene, thereby determining whether it is necessary to filter out the second band of light in the image signal received from the image sensor.
  • the light illumination can be enhanced by adding an infrared light source.
  • the binocular tripartite telescope 100 can detachably install an infrared flashlight 70 on the housing 40 .
  • the infrared flashlight 70 is mounted to the bottom of the housing 40 through the flashlight mounting bracket 80 .
  • the flashlight mounting bracket 80 includes a hoop 81 and a connecting piece 82.
  • the hoop 81 can be placed on the periphery of the infrared flashlight 70.
  • the infrared flashlight 70 is fixed to the hoop 81 by locking the hoop 81.
  • One end of the connecting piece 82 is connected to the hoop 81. 81 is fixed, and the other end can be locked to the bottom of the housing 40 through a fastener.
  • the infrared flashlight 70 can use an IR 940nm fill-in flashlight, which emits 940nm infrared light after being powered on.
  • the infrared flashlight 70 is installed at the bottom of the housing 40 and is located below the infrared barrel 12 and the infrared lens 22 . After being powered on, 940 nm infrared light is emitted toward the target direction along the optical axis direction parallel to the infrared lens 22 to enhance the light illumination when used at night.
  • the infrared flashlight 70 is an independent component/accessory that can use its own power source and does not occupy the power supply of the internal battery compartment 60 and does not affect battery life. Moreover, the infrared flashlight 70 can be detached from the housing 40, does not occupy internal space, and can also be detached when not in use to reduce weight.
  • an infrared flashlight 70 can be installed to enhance the illumination, so that clear color images can be observed.
  • the infrared flashlight 70 can also be disassembled and replaced by infrared flashlights with different power consumption by itself.
  • the irradiation distance is different to adapt to different scenes, improve the effect of visible light color imaging at night, and ensure the quality of optical imaging.
  • the working process of the above-mentioned binocular three-light telescope 100 is as follows: the light incident from the binocular tube 10 is respectively focused through the visible light lens 21 and the infrared lens 22 and then projected to the visible light movement 23 and the infrared movement 24; the visible light movement 23 and the infrared movement
  • the visible light image and infrared image obtained by induction imaging of the movement core 24 are input to the image processing chip of the system chip board 30 for data processing;
  • the laser rangefinder 25 emits and receives laser through the laser window 14, and in the laser
  • the rangefinder 25 performs data processing to obtain measurement results; the final data are output to the display screen 55 of the eyepiece system 50 . Human eyes can see the image information and interface information on the display screen 55 through the eyecup of the eyepiece system 50 .
  • visible light imaging and infrared imaging can be respectively adjusted and focused by adjusting the focusing mechanism 27; the observed image effect can be adjusted by adjusting the eyepiece diopter and interpupillary distance of the eyepiece system 50; and the flashlight connecting bracket 80 is connected Install an infrared flashlight 70, which can be used to enhance the visible light imaging effect when the lighting effect is poor at night.
  • This application provides a binocular three-light telescope that integrates visible light imaging, high-sensitivity infrared thermal imaging and laser ranging. It can be used as a portable binocular three-light handheld telescope suitable for all scenarios such as outdoor exploration, hunting, and wild safety protection.
  • the binocular three-light telescope of the present application has a manual focusing function for visible light and infrared objective lenses.
  • the focusing function is realized by adjusting the relative position of the movement (visible light movement, infrared movement) and the lens (visible light lens, infrared lens). Use your fingers to adjust the focus function.
  • the knob When you move the knob, the focusing screw will rotate together. The rotation of the focusing screw will drive the lens flange and the movement relative to the lens, thereby adjusting the focus.
  • the elimination of the internal focus adjustment of the lens simplifies the lens structure and reduces the weight.
  • the entire functional structure does not require additional space for the whole machine.
  • the parts that need to be sealed on the functional mechanism only need ordinary sealing rings; during use of the whole machine, Focusing can be accomplished with just one finger, which is very convenient.
  • the binocular three-light telescope of the present application has an adjustable interpupillary distance function.
  • the interpupillary distance can be adjusted.
  • the tightness of the interpupillary distance can be adjusted through the guide block pressure ring.
  • the structure is simple to assemble, no screws are required, and there are no complicated parts.
  • the appearance of the whole machine is not limited and different shapes can be designed without affecting the internal space layout of the product, leaving more space to add other functional components.
  • a sealing ring on the eyepiece flange, the entire machine can be sealed, providing a higher sealing level.
  • the binocular three-light telescope of this application has day and night functions. It uses dual bandpass filters to replace the IR-CUT dual filter switcher.
  • the day mode image processing module filters out infrared light images to obtain clear images. In night mode, it can sense infrared light to obtain lower illumination. It has the characteristics of high cost performance, small size, simple structure and high stability. It can improve the effect of color imaging at night and ensure the quality of optical imaging. In order to improve the color imaging effect at night, you can use an infrared flashlight to enhance the light illumination, and then use image processing algorithms to optimize the visible light imaging effect, improve the effect of visible light color imaging at night, and ensure the quality of optical imaging.

Landscapes

  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Telescopes (AREA)

Abstract

本申请实施例提供一种双目三光望远镜,包括:双目镜筒,包括可见光镜筒、红外镜筒和激光窗口;机芯组件,包括可见光机芯组、红外机芯组和激光测距仪,可见光机芯组通过可见光镜筒接收可见光并产生可见光图像,红外机芯组通过红外镜筒接收红外光并产生红外图像,激光测距仪通过激光窗口接收激光并计算得到测距结果;系统芯片板,分别与可见光机芯组、红外机芯组及激光测距仪信号连接;外壳,两端分别与双目镜筒和目镜系统连接;目镜系统,包括两个目镜,每个目镜对应设有显示屏,显示屏与系统芯片板信号连接。本申请集成可见光成像、高灵敏度红外热成像与激光测距,能够得到包含更加丰富信息的融合图像,满足更加严苛的使用要求。

Description

双目三光望远镜 技术领域
本申请涉及望远镜技术领域,尤其是涉及一种双目三光望远镜。
背景技术
望远镜是一种用于观察远距离物体的目视光学仪器,能把远物很小的张角按一定倍率放大,使之在像空间具有较大的张角,使本来无法用肉眼看清或分辨的物体变清晰可辨,应用领域众多且范围广泛。
用于户外的望远镜,一般用来室外观景和户外活动,也是所有应用领域中最常见的一种。航海过程中需要使用到防水性能优秀以及高密封的望远镜。林业可应用望远镜来做森林防火勘察工作的。随着国内电网规模的不断扩大,超高压线路增长迅速,而很多输电线路分布在崇山峻岭之中,导致传统的人工巡线受地形环境、人员素质、天气状况等不确定因素的影响,效率低下、复巡周期长、巡检数据准确率不高,望远镜也被应用于电力巡线。此外,望远镜在军警领域也有应用,勘察地形切入,观察敌军动态。除以上大部分望远镜涉及的领域外,水利、铁路等领域也会用到望远镜。
目前市面上的望远镜光谱大多数为:单红外、单可见光、红外+激光的组合方式。由于望远镜的诸多应用场合,如前文所列举的应用领域,现有的单光谱或单光谱结合测距的产品已无法满足望远镜的各种极端、严苛的应用场合和时机。
技术问题
为解决现有存在的技术问题,本申请提供一种双目三光望远镜,能够得到包含可见光成像、红外光热成像及激光测距在内的更加丰富信息的图像,满足更加严苛的使用要求。
技术解决方案
为达到上述目的,本申请实施例的技术方案是这样实现的:
本申请实施例提供一种双目三光望远镜,包括:
双目镜筒,包括可见光镜筒、红外镜筒和激光窗口;
机芯组件,包括可见光机芯组、红外机芯组和激光测距仪,所述可见光机芯组通过所述可见光镜筒接收可见光并产生可见光图像,所述红外机芯组通过所述红外镜筒接收红外光并产生红外图像,所述激光测距仪通过所述激光窗口接收激光并计算得到测距结果;
系统芯片板,分别与所述可见光机芯组、所述红外机芯组及所述激光测距仪信号连接,用于对所述可见光图像和所述红外图像进行处理、融合,并接收所述测距结果;
外壳,其前后两端分别与所述双目镜筒和目镜系统连接,形成用于收容所述机芯组件及所述系统芯片板的空间;
目镜系统,包括两个目镜,每个所述目镜对应设有显示屏,所述显示屏与所述系统芯片板信号连接。
在其中一实施例中,所述系统芯片板上集成有电池仓板、显示屏电源板、按键板、麦克风板、GPS模块、电子罗盘、WiFi模块、调试接口板其中至少一个。
在其中一实施例中,所述外壳的两侧分别为呈C字形弧线的握持区,所述外壳在两个所述握持区之间设有按键区。
在其中一实施例中,所述可见光机芯组包括可见光镜头及可见光机芯,所述可见光镜头对应于所述可见光镜筒,所述可见光机芯感应所述可见光镜头投射的光并产生可见光图像;所述红外机芯组包括红外镜头及红外机芯,所述红外镜头对应于所述红外镜筒,所述红外机芯感应所述红外镜头投射的光并产生红外图像。
在其中一实施例中,所述机芯组件还包括镜头支架,所述可见光机芯、所述红外机芯分别通过调焦机构安装到所述镜头支架上。
在其中一实施例中,所述调焦机构包括调焦螺杆、调焦螺杆支架及镜头法兰;所述调焦螺杆沿平行于光轴方向设置,所述可见光机芯、所述红外机芯分别与对应的镜头法兰固定连接,所述调焦螺杆支架的一端与所述镜头支架固定连接,另一端与所述调焦螺杆可转动连接;所述镜头法兰与述调焦螺杆的末端螺纹连接,使得当所述调焦螺杆转动时,所述镜头法兰可相对所述可见光镜头或所述红外镜头沿光轴方向移动。
在其中一实施例中,所述调焦机构还包括消隙弹簧,所述镜头法兰上设有与所述调焦螺杆对应的螺纹孔,所述消隙弹簧放置在所述螺纹孔内,所述调焦 螺杆的末端与所述消隙弹簧相抵。
在其中一实施例中,所述调焦螺杆支架连接于所述调焦螺杆的直径减小处,且所述调焦螺杆支架与所述调焦螺杆连接处的两端分别装有卡在所述直径减小处的卡簧,以将所述调焦螺杆的轴向位置约束在与所述调节螺杆支架连接处。
在其中一实施例中,所述镜头法兰上沿对应的光轴方向开设有定位导向槽,对应的所述可见光镜头、所述红外镜头的镜头筒上凸设定位销钉,所述定位销钉限位在对应的所述定位导向槽内,以使所述镜头法兰可相对镜筒沿对应的光轴方向移动。
在其中一实施例中,所述可见光镜头包括透镜和双带通滤光片,所述双带通滤光片允许第一波段的光和第二波段的光通过,所述第一波段为可见光波段,所述第二波段为红外光波段;所述可见光机芯中具有图像传感器及图像处理模块,所述图像处理模块与所述图像传感器连接以接收所述图像传感器感应得到的图像信号;
其中,所述双目三光望远镜具有日间模式和夜间模式;在所述日间模式下,所述图像处理模块过滤来自所述图像传感器的图像信号中第二波段的光的图像,仅保留第一波段的光的图像;在所述夜间模式下,所述图像处理模块同时保留第一波段的光的图像和第二波段光的图像。
在其中一实施例中,所述第一波段为420~660nm,所述第二波段为930~970nm;所述双带通滤光片对所述第一波段的光的通过率为50%以上,对所述第二波段的光的通过率为85%以上。
在其中一实施例中,所述图像处理模块通过感测光线明暗变化的光传感器判断为所述日间模式或所述夜间模式,并在处于所述日间模式时将接收到的来自所述图像传感器的图像信号中的所述第二波段的光的图像过滤掉。
在其中一实施例中,所述外壳底部可拆卸地安装有红外手电筒,所述红外手电筒在通电后沿平行于所述红外镜头的光轴方向发出红外光。
在其中一实施例中,所述红外手电筒内部设有电池,所述红外手电筒采用940nm的红外发射管。
在其中一实施例中,所述红外手电筒通过手电筒安装架安装至所述外壳,所述手电筒安装架包括抱箍及连接片,所述抱箍套设于所述红外手电筒的外围,所述连接片一端与所述抱箍固定,另一端通过紧固件锁紧至所述外壳。
在其中一实施例中,所述目镜系统还包括后壳,所述后壳上开设有两个目 镜孔,每套所述目镜通过目镜法兰从外侧固定到所述后壳上对应的目镜孔中,每个所述显示屏通过屏幕压块固定到对应的所述目镜法兰上。
在其中一实施例中,所述目镜系统还包括压环,所述压环通过螺纹与对应的所述目镜法兰的内侧连接,通过调节所述压环在所述目镜法兰上安装的位置,以实现所述目镜法兰与所述目镜孔之间松紧度调节。
在其中一实施例中,所述目镜系统还包括导向块,所述导向块具有与所述目镜孔形状相同的导向孔,且所述导向孔设置在所述目镜孔的内侧;所述目镜法兰的周向向外延伸出挡片,所述挡片大于所述目镜孔且抵靠在所述后壳的外侧,以将所述目镜孔从外侧遮挡并约束所述目镜法兰的位置,所述目镜法兰设有连接端,所述连接端从所述目镜孔、所述导向孔中穿过并与所述压环通过螺纹连接,所述压环的后端面与对应的所述导向块的前端面相接触。
在其中一实施例中,所述导向块为自润滑耐磨材质制成,所述压环的侧壁上开设有锁紧孔,以供锁紧销插入所述锁紧孔内并顶抵所述连接端的壁面。
在其中一实施例中,所述后壳的外侧上设有刻度标线,所述刻度标线位于两所述目镜孔之间,且所述刻度标线的相邻刻度线之间等间隔,以标示所述目镜法兰和所述目镜相对所述后壳移动的距离。
有益效果
本申请实施例提供的双目三光望远镜至少具有以下有益效果:本申请提供一种双目三光望远镜,集成可见光成像、高灵敏度红外光热成像与激光测距,能够得到包含更加丰富信息的融合图像,满足更加严苛的使用要求,可作为适用于户外探险、狩猎、野外安全防护等所有场景的便携式双目三光手持望远镜。
本申请的双目三光望远镜具有可见光、红外物镜手动调焦功能,通过调整机芯(可见光机芯、红外机芯)与镜头(可见光镜头、红外镜头)的相对位置来实现对焦功能,用手指拨动旋钮,调焦螺杆会一起转动,调焦螺杆转动会带动镜头法兰及机芯相对镜头移动,从而起到调焦对焦的作用。因取消镜头内部调焦从而使镜头结构简化,重量减轻,整个功能结构不需要额外增加整机空间,功能机构上需要密封的位置只需要普通的密封圈即可实现;整机在使用过程中,对焦只要单个手指即可完成,非常方便。
本申请的双目三光望远镜具有瞳距可调功能,通过将目镜固定目镜法兰上,增加导向块实现瞳距可调,调节瞳距的松紧可以通过导向块压环调整。结构装配简单,不需要螺丝锁付,没有复杂的零件,整机外形不受限制,可设计不同 的外形,不影响产品内部空间布局,有更多的空间增加其他功能组件。目镜法兰上通过安装密封圈,可实现整机密封,提供较高的密封等级。
本申请的双目三光望远镜具有日夜两用功能,采用双带通滤光片来替换IR-CUT双滤光片切换器,日间模式图像处理模块滤掉红外光的图像以获得清晰的图像,夜间模式下可感应红外光得到更低的照度,具有性价比高、体积小、结构简单、稳定性高的特点,能够提高夜间彩色成像的效果,保证光学成像质量。为了提升夜间彩色成像效果,可同时使用红外手电筒来增强光线照度,再使用图像处理算法来使可见光成像效果最佳,提高可见光夜间彩色成像的效果,保证光学成像质量。
附图说明
图1为本申请一实施例的双目三光望远镜的立体结构示意图;
图2为图1中的双目三光望远镜另一角度的立体结构示意图;
图3为图1中的双目三光望远镜的分解结构示意图;
图4为图3中的系统芯片板的连接关系示意图;
图5为图3中的机芯组件去掉激光测距仪后另一角度的立体结构示意图;
图6为图5中I部分的放大图;
图7为图5中II部分的放大图;
图8为图5中的机芯组件的分解结构示意图;
图9为图3中的目镜系统的主视结构示意图;
图10为图3中的目镜系统的后视结构示意图;
图11为图9中的目镜系统的分解结构示意图;
图12为图8中的可见光镜头的轴向剖视图;
图13为图12中的双带通滤光片的带通示意图;
图14为本申请另一实施例的双目三光望远镜的立体结构示意图;
图15为图14中的双目三光望远镜的后视结构示意图。
图中各元件标号如下:
双目镜筒10(其中,可见光镜筒11、红外镜筒12、连接板13、激光窗口14);
机芯组件20(其中,可见光镜头21、红外镜头22、可见光机芯23、红外机芯24、激光测距仪25、镜头支架26、调焦机构27;镜头筒211、透镜212、双带通滤光片213、隔圈214、密封圈215、压圈216;定位销钉2111;旋钮271、调焦螺杆272、调焦螺杆支架273、镜头法兰274、消隙弹簧275、卡簧276;定位导向槽2741);
系统芯片板30(其中,电池仓板31、显示屏电源板32、按键板33、麦克风板34、GPS模块35、电子罗盘36、WiFi模块37、调试接口板38、接口39);
外壳40(其中,握持区41、按键区42);
目镜系统50(其中,后壳51、目镜52、目镜法兰53、密封圈54、显示屏55、屏幕压块56、导向块57、压环58;目镜孔511、刻度标线512;挡片531、连接端532;导向孔571);
电池仓组60;
红外手电筒70;
手电筒安装架80(其中,抱箍81、连接片82);
双目三光望远镜100。
本发明的实施方式
以下结合说明书附图及具体实施例对本申请技术方案做进一步的详细阐述。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请的实现方式。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
在本申请的描述中,需要理解的是,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸 连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
红外探测器不仅可以获取场景中的目标信息,并且能够很好地显示隐藏的热目标,不受白天或者黑夜的影响,不受恶劣天气的影响,但是受景物自身辐射特性、系统工作波长、传输距离、大气衰减等因素的影响,红外图像对比度较低,空间相关性强,目标细节的反映能力也比较差。而可见光探测器恰恰可以弥补红外探测器输出图像对比度低,目标细节反映能力差的缺点,但是CCD(电荷耦合器件)探测器通常是“被动”地获取场景中的目标信息,并且在黑夜或者是恶劣的天气情况下,所获得的图像质量会很差,对于可见光图像的这些缺点,红外图像恰好可以弥补。
基于上述研究结果,本申请提供一种双目三光望远镜,采用可见光成像、红外成像得到融合图像,并同时提供激光测距,最终得到的包含可见光信息、红外信息及激光测距信息的综合图像。红外光与可见光图像融合将同一场景的红外图像与可见光图像的信息合并成一幅融合图像,结合测距信息后得到一幅包含更多的信息量的综合图像,从而更适合人眼视觉观察和计算机读取后提取信息。
请结合参阅图1、图2和图3,其为本申请实施例提供的双目三光望远镜100的结构示意图。双目三光望远镜100包括双目镜筒10、机芯组件20、系统芯片板30、外壳40及目镜系统50,双目镜筒10、外壳40及目镜系统50顺次固定连接将机芯组件20及系统芯片板30固定在所形成的空间内。
双目镜筒10包括可见光镜筒11、红外镜筒12,可见光镜筒11、红外镜筒12之间用连接板13连接成一体,连接板13上开设有激光窗口14,以供向外发射和接收反射测距激光;其中,激光窗口14可设于可见光镜筒11和红外镜筒12之间,利用可见光镜筒11和红外镜筒12之间空间,使得整体结构更加紧凑。
机芯组件20包括可见光镜头21、红外镜头22、可见光机芯23、红外机芯24、激光测距仪25及镜头支架26。可见光镜头21、红外镜头22固定于镜头支架26,镜头支架26固定于外壳40内,使可见光镜头21、红外镜头22分别对应于双目镜筒10上的可见光镜筒11、红外镜筒12。激光测距仪25安装在可见光镜头21、红外镜头22之间的镜头支架26上,使激光测距仪25的激光发射正对双目镜筒10上的激光窗口14,从而可向外发射测距激光并接收反射的反馈激光。
对应于可见光镜头21,镜头支架26上通过调焦机构27安装有可见光机芯23;对应于红外镜头22,镜头支架26上通过调焦机构27安装有红外机芯24。可见光机芯23用于感应通过可见光镜头21聚焦于此的可见光,并产生可见光图像;红外机芯24用于感应通过红外镜头22聚焦于此的红外光,并产生红外图像。
系统芯片板30包括SOC(System on Chip,系统级芯片),用于对双目三光望远镜100内的电子元器件进行集中控制,为整机软件功能的载体,与机芯组件20之间通过FPC软排线连接。系统芯片板30上有图像处理芯片,可见光机芯23、红外机芯24及红外测距仪25与系统芯片板30信号连接,系统芯片板30将可见光图像、红外图像融合得到融合图像,并结合测距结果得到包含可见光信息、红外信息及测距信息的综合图像。系统芯片板30将激光测距结果与可见光图像、红外图像或融合图像叠加后的综合图像,输出到显示屏55上进行显示。菜单和其它软件功能在系统芯片板30上可与综合图像进一步叠加后,输出到显示屏55上进行显示。
通过系统芯片板30,双目三光望远镜100具有可见光图像、红外图像、融合图像3种图像模式,在白天使用可见光模式,在纯黑的夜晚使用红外模式,全天候使用融合模式,可解决单一类型望远镜功能不足的缺陷。
请参阅图4,系统芯片板30可提供丰富的对外接口,其上集成有电池仓板31、显示屏电源板32、按键板33、麦克风板34、GPS模块35、电子罗盘36、WiFi模块37及调试接口板38。其中,电池仓板31连接电池仓组60,并用于控制电池仓组60的充放电;显示屏电源板32连接至目镜系统50中的显示屏55,并用于控制显示屏55上显示的信息;按键板33可实现人机交互功能,图示实施例中,对应于外壳40上两个按键区42,设有左右两个按键板共计6个按键,左按键板33包括开机键、激光键、拍照键,右按键板33上包括菜单键和2个方向键;麦克风板34连接至麦克风(图未示),用于处理麦克风拾取的声音信号;GPS模块35为双目三光望远镜100提供GPS导航定向功能;电子罗盘36可提供南北方向指向功能,为户外使用提供便利;WiFi模块37提供无线信号发射和接收功能,通过手机APP等互联功能,可以在一定的距离通过WiFi互联功能远程观看;调试接口板38用于提供与外部设备连接的接口,例如,调试接口板38可连接接口39,通过接口39连接对应接口类型(例如Type-C、MiniUSB等)的数据线供电、数据导出、固件更新、PAL视频输出等功能,降低了用户的使用难度。
基于系统芯片板30及内部的硬件,双目三光望远镜100可以实现很多软件功能,提供便捷、丰富的用户体验。双目三光望远镜100通过系统芯片板30可实现的功能包括但不限于:开关机;图像模式切换功能(可见光图像、红外图像、融合图像);屏幕亮度调节;可见光和红外图像亮度、对比度调节;画中画功能;红外热点追踪功能;红外图像极性调节功能;红外图像增强功能;红外图像校正功能;状态图标显示功能;可见光和红外图像、融合图像电子变倍;电子罗盘、GPS定位导航功能;激光测距信息显示;拍照、录像和文件管理、播放和删除;存储卡格式化WiFi实时传输;手机APP互联;电量显示和欠压指示;系统时间显示和设置;录音;恢复系统设置;系统信息查看。
请结合参阅图5至图8,调焦机构27包括旋钮271、调焦螺杆272、调焦螺杆支架273及镜头法兰274。镜头法兰274可相对对应的可见光镜头21、红外镜头22沿光轴方向移动。可见光机芯23、红外机芯24安装在镜头法兰274中,分别与对应的镜头法兰274固定连接。调焦螺杆272沿平行于光轴方向设置,一端可转动地安装在与外壳40固定连接的目镜系统50的后壳51上,另一端可转动地安装于固定在镜头支架26上的调焦螺杆支架273,从而将调焦螺杆272可转动地安装于外壳40内。旋钮271固定连接于调焦螺杆272凸伸出后壳51的末端,镜头法兰274通过螺纹连接至调焦螺杆272的另一末端。
如图6中所示,调焦螺杆支架273连接于调焦螺杆272直径减小处,且两端装有卡簧276进行限位。2个卡簧276与调焦螺杆支架273配合在一起对调焦螺杆272的移动起限位作用,将调焦螺杆272约束在与调节螺杆支架273连接处,使调焦螺杆272在转动的时候不会发生轴向移动。
调焦机构27还包括消隙弹簧275,镜头法兰274上设有与调焦螺杆272对应的螺纹孔,消隙弹簧275放置在螺纹孔内,调焦螺杆272的前端与消隙弹簧275相抵。调焦螺杆272的外螺纹与镜头法兰274的内螺纹配合时,内外螺纹之间的间隙通过消隙弹簧275消除,消隙弹簧275的弹力对镜头法兰274相对调焦螺杆272的位移进行调节,保证调焦的精确性。以对可见光镜头21进行调焦为例,用手指拨动旋钮271,调焦螺杆272会随旋钮271一起转动,调焦螺杆272转动会带动与调焦螺杆272螺纹连接的镜头法兰274相对沿调焦螺杆272移动,可见光机芯23则随同镜头法兰274沿调焦螺杆272移动,与可见光镜头21之间在光轴方向上的距离发生变化,从而起到调焦对焦的作用。如图7中所示,可见光镜头21的镜头筒211在与镜头法兰274连接处凸设3个定位销钉2111(整圈均布3个),3个定位销钉2111限位在对应的3条定位导向槽2741 内,导向槽2741沿光轴方向设置以导引镜头法兰274的移动方向,从而保证红外机芯24相对于可见光镜头21只能在导向槽2741的导向和限位作用下只能沿光轴平行移动而不会转动。
同理,用手指拨动对应与红外镜头22、红外机芯24的旋钮271,调焦螺杆272一同转动带动镜头法兰274和可见光机芯24移动,从而起到调焦对焦的作用。
外壳40仿照人手握持方式,设计为C字形弧线握持机身,即外壳40两侧的握持区41呈C字形弧线,以方便握持。人手正常放松情况下,大致呈现为C字形手的基本位置有正中、尺侧偏、挠侧偏、背侧偏和掌测屈五种,正中位置是手的自然位置,在此位置,手腕的受力状态最佳。C字形弧线握持方式,保证了手和产品以及按键区42均保持在中部,保证手腕处于顺直状态,避免掌部组织受压力。且按键区42中的按键的高度符合人体握持手势的弧度,以及按键的大小、外形贴近用户手指形状,手感舒适,且不容易出现误操作。握持区41可设咬花面手胶来增加手掌与产品的摩擦力,从而达到防滑效果。
请结合参阅图9至图11,目镜系统50包括与外壳40固定连接的后壳51,后壳51上安装有两套目镜52,每套目镜52通过目镜法兰53及密封圈54从外侧安装到后壳51上对应的目镜孔511中,目镜法兰53的内侧通过导向块57和压环58锁紧固定。每套目镜52对应的显示屏55通过屏幕压块56固定到目镜法兰53上且位于目镜52前方。
具体地,目镜法兰53的周向向外延伸出挡片531,挡片531大于目镜孔511且抵靠在后壳51的外侧,从而将目镜孔511遮挡并约束目镜法兰53在前后方向的位置。导向块57上具有与目镜孔511形状相同的导向孔571且设置在目镜孔511的内侧,目镜法兰53前端的连接端532从目镜孔511、导向孔571中穿过,并与压环58通过螺纹连接,压环58的后端面与导向块57的前端面相接触,由于目镜法兰53的挡片531与压环58分别位于后壳51的内外两侧,因此可通过螺纹调节压环58在目镜法兰53上安装的位置,实现对目镜法兰53与后壳51之间的松紧度进行调节,从而使目镜法兰53可带动目镜52在目镜孔511内移动,实现对瞳距进行调节,保证瞳距调节后的视觉效果。压环58的侧壁上还可开设锁紧孔,通过锁紧销插入锁紧孔内顶抵连接端532的壁面,压环58无法旋动,从而且在连接端532上的位置进行锁紧,用于瞳距调整完成后锁紧防止松动。后壳51的外侧设有刻度标线512,刻度标线512位于两个目镜孔511之间,用于指示目镜法兰53(及其内的目镜52)当前位置及移动距离。例如,刻 度标线512的相邻刻度线之间的间隔可设为1mm,按箭头方向移动目镜法兰53以每移动一个刻度线则目镜52的移动1mm来作为参照来调节两套目镜52之间的距离,从而可适配不同瞳距的用户,让用户获得最佳视觉效果。由于目镜52和对应的显示屏57一同安装在目镜法兰53上,当通过移动目镜法兰53调节两目镜52之间的距离时,目镜法兰53带动显示屏55分别沿着导向孔571一起移动,可以保证显示屏55的屏幕中心一直与目镜52的光轴保持一致,不会因为瞳距调节使画面超出目镜观察范围。
导向块57可采用如PTFE(聚四氟乙烯)材质,具有耐磨、自润滑等特性,保证产品可靠性。调节瞳距的松紧可以通过导向块57、压环58调整,结构装配简单。
电池仓组60内安装电池为整机供电,图示实施中,电池仓组60内安装2节18650mAh电池。此外,双目三光望远镜100也可以通过接口39外接数据线来进行供电。接口39的类型不限于前文例举的Type-C、MiniUSB,亦可根据需要同时设置两种或辆以上的接口,对此不作限定。为获得更低的照度,除摄取可见光外,可见光机芯23也需要摄取一些红外光,而不同波长的红外光都被摄取会对可见光成像造成一定的影响,所以要采用可滤除不需要的红外光而保留需要的红外光的滤光片。通常采用IR-CUT双滤镜,在摄像头镜头组里内置了一组滤镜,当镜头外的红外感应点侦测到光线的强弱变化后,内置的IR-CUT双滤光片切换器能够根据外部光线的强弱随之自动切换,使可见光图像达到最佳效果。由于IR-CUT双滤光片切换器的实现需要一个微电子电机驱动电路机构以及两片或多片滤光片,而且在实现上难度较大价格也更高,所以会导致产品的体积、重量、功耗以及性价比有所增加。请参阅图12和图13,可见光镜头21包括镜头筒211以及设置在镜头筒211内的透镜212和双带通滤光片213,多个透镜212和双带通滤光片213沿光轴布置,相邻的透镜212之间、透镜212与双带通滤光片213之间设有隔圈214,以将相邻的镜片隔离。最前端的透镜212设有密封圈215和压圈216,将透镜212密封在镜头筒211内。多个透镜212形成透镜组将光线进行聚焦并经镜片透射。双带通滤光片213对来自前端透镜212的光进行过滤后射向可见光机芯23。
双带通滤光片213为具备两个带通的单个滤光片,只用一片滤光片实现两个特定波段的截取,能够选择两个或以上区域范围内的波段通过。请结合参阅图13,双带通滤光片213允许部分可见光波段(第一波段)以及部分红外光波段(第二波段)通过。第一波段为可见光波段420~660nm,通过率T为50%以 上;第二波段为红外光波段930~970nm,通过率T为85%以上。双带通滤光片213通过镀膜实现双带通,双带通滤光片213的镀膜要求详细参数如下:
420~620nm:最小通过率Tmin≥85%,平均通过率Tave≥90%;
650±10nm:通过率T=50%;
700~850nm:通过率T<3%;
930~970nm:通过率T>85%;
1100~1200nm:最大通过率Tmax≤4%。
双带通滤光片213对进入可见光机芯23的光线进行滤光使特定波段的可见光和红外光通过。
可见光机芯23中具有图像传感器及图像处理模块,图像处理模块实时接收图像传感器输出的图像信号并对图像传感器传输过来的图像信号进行处理,例如白平衡处理、曝光处理以及颜色校正等。双带通滤光片213与可见光机芯汇中的图像处理模块一同可实现双带通切换,以适应日间模式与夜间模式。
具体地,在日间模式下(日间使用时),第一波段(650nm波段范围)和第二波段(940nm波段范围)的光都会通过双带通滤光片213,被图像传感器感测,图像处理模块收到图像信号后通过图像算法会把第二波段的光滤掉,仅保留第一波段的光的图像,避免第二波段的光影响图像的色彩还原度;在夜间模式下(夜间使用时),第一波段的光在夜间几乎没有,通过双带通滤光片213的基本只有第二波段的光,图像处理模块在处理收到图像信号时不过滤第一波段的光的图像。
图像处理模块可通过光传感器感应外部场景的光线明暗变化判断外部场景是属于日间场景还是夜间场景,从而判断是否需要将收到的来自图像传感器的图像信号中的第二波段的光滤掉。
为了提升双目三光望远镜100的夜间彩色成像效果,可通过增加红外光源来增强光线照度。具体地,请参阅图14和图15,双目三光望远镜100可在外壳40上可拆卸地安装红外手电筒70。红外手电筒70通过手电筒安装架80安装至外壳40的底部。
手电筒安装架80包括抱箍81及连接片82,抱箍81可套设于红外手电筒70的外围,通过锁紧抱箍81将红外手电筒70固定到抱箍81上,连接片82一端与抱箍81固定,另一端可通过紧固件锁紧至外壳40的底部。
红外手电筒70可采用IR 940nm补光手电筒,在通电后发出940nm的红外光。红外手电筒70安装在外壳40的底部且位于红外镜筒12、红外镜头22的下方。在通电后沿平行于红外镜头22的光轴方向向目标方向发出940nm的红外光,增强夜间使用时的光线照度。红外手电筒70为独立部件/配件,可使用自身的电源,不占用内部的电池仓组60的电源供电,不影响续航能力。而且,红外手电筒70可从外壳40上拆卸,不占用内部的空间,也能在不需要使用时拆下以减轻重量。
在夜间照明不足的情况下,可以安装上红外手电筒70增强照度,从而观察到清晰的彩色图像。红外手电筒70也可以通过自行拆装更换不同功耗的红外手电筒,通过照射距离不同以适应不同的场景使用,提高可见光夜间彩色成像的效果,保证光学成像质量。
上述双目三光望远镜100的工作过程如下:从双目镜筒10射入的光线分别通过可见光镜头21和红外镜头22聚焦后投射到可见光机芯23和红外机芯24;可见光机芯23和红外机芯24感应成像得到的可见光图像和红外图像;可见光图像和红外图像的图像数据输入到系统芯片板30图像处理芯片进行数据处理;激光测距仪25通过激光窗口14发射和接收激光,在激光测距仪25进行数据处理得到测量结果;最终数据都输出到目镜系统50的显示屏55上。人眼通过目镜系统50的眼罩,可以看到显示屏55上的图像信息和界面信息等。
在使用过程中,通过调节调焦机构27可分别对可见光成像、红外成像进行调焦对焦;通过调节目镜系统50的目镜视度和瞳距,来调整观察的图像效果;通过手电筒连接架80连接安装红外手电筒70,在夜间照明效果不良时可以使用增强可见光成像效果。
本申请提供一种双目三光望远镜,集成可见光成像、高灵敏度红外热成像与激光测距,可作为适用于户外探险、狩猎、野外安全防护等所有场景的便携式双目三光手持望远镜。
本申请的双目三光望远镜具有可见光、红外物镜手动调焦功能,通过调整机芯(可见光机芯、红外机芯)与镜头(可见光镜头、红外镜头)的相对位置来实现对焦功能,用手指拨动旋钮,调焦螺杆会一起转动,调焦螺杆转动会带动镜头法兰及机芯相对镜头移动,从而起到调焦对焦的作用。因取消镜头内部调焦从而使镜头结构简化,重量减轻,整个功能结构不需要额外增加整机空间,功能机构上需要密封的位置只需要普通的密封圈即可实现;整机在使用过程中,对焦只要单个手指即可完成,非常方便。
本申请的双目三光望远镜具有瞳距可调功能,通过将目镜固定目镜法兰上,增加导向块实现瞳距可调,调节瞳距的松紧可以通过导向块压环调整。结构装配简单,不需要螺丝锁付,没有复杂的零件,整机外形不受限制,可设计不同的外形,不影响产品内部空间布局,有更多的空间增加其他功能组件。目镜法兰上通过安装密封圈,可实现整机密封,提供较高的密封等级。
本申请的双目三光望远镜具有日夜两用功能,采用双带通滤光片来替换IR-CUT双滤光片切换器,日间模式图像处理模块滤掉红外光的图像以获得清晰的图像,夜间模式下可感应红外光得到更低的照度,具有性价比高、体积小、结构简单、稳定性高的特点,能够提高夜间彩色成像的效果,保证光学成像质量。为了提升夜间彩色成像效果,可同时使用红外手电筒来增强光线照度,再使用图像处理算法来使可见光成像效果最佳,提高可见光夜间彩色成像的效果,保证光学成像质量。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围之内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种双目三光望远镜,其特征在于,包括:
    双目镜筒(10),包括可见光镜筒(11)、红外镜筒(12)和激光窗口(14);
    机芯组件(20),包括可见光机芯组、红外机芯组和激光测距仪(25),所述可见光机芯组通过所述可见光镜筒(11)接收可见光并产生可见光图像,所述红外机芯组通过所述红外镜筒(12)接收红外光并产生红外图像,所述激光测距仪(25)通过所述激光窗口(14)接收激光并计算得到测距结果;
    系统芯片板(30),分别与所述可见光机芯组、所述红外机芯组及所述激光测距仪(25)信号连接,用于对所述可见光图像和所述红外图像进行处理、融合,并接收所述测距结果;
    外壳(40),其前后两端分别与所述双目镜筒(10)和目镜系统(50)连接,形成用于收容所述机芯组件(20)及所述系统芯片板(30)的空间;
    目镜系统(50),包括两个目镜(52),每个所述目镜(52)对应设有显示屏(55),所述显示屏(55)与所述系统芯片板(30)信号连接。
  2. 根据权利要求1所述的双目三光望远镜,其特征在于,所述系统芯片板(30)上集成有电池仓板(31)、显示屏电源板(32)、按键板(33)、麦克风板(34)、GPS模块(35)、电子罗盘(36)、WiFi模块(37)、调试接口板(38)其中至少一个。
  3. 根据权利要求1所述的双目三光望远镜,其特征在于,所述外壳(40)的两侧分别为呈C字形弧线的握持区(41),所述外壳(40)在两个所述握持区(41)之间设有按键区(42)。
  4. 根据权利要求1所述的双目三光望远镜,其特征在于,所述可见光机芯组包括可见光镜头(21)及可见光机芯(23),所述可见光镜头(21)对应于所述可见光镜筒(11),所述可见光机芯(23)感应所述可见光镜头(21)投射的光并产生可见光图像;所述红外机芯组包括红外镜头(22)及红外机芯(24),所述红外镜头(22)对应于所述红外镜筒(12),所述红外机芯(24)感应所述红外镜头(22)投射的光并产生红外图像。
  5. 根据权利要求4所述的双目三光望远镜,其特征在于,所述机芯组件(20)还包括镜头支架(26),所述可见光机芯(23)、所述红外机芯(24)分别通过调焦机构(27)安装到所述镜头支架(26)上。
  6. 根据权利要求4所述的双目三光望远镜,其特征在于,所述调焦机构(27)包括调焦螺杆(272)、调焦螺杆支架(273)及镜头法兰(274);所述调焦螺杆(272)沿平行于光轴方向设置,所述可见光机芯(23)、所述红外机芯(24)分别与对应的镜头法兰(274)固定连接,所述调焦螺杆支架(273)的一端与所述镜头支架(26)固定连接,另一端与所述调焦螺杆(272)可转动连接;所述镜头法兰(274)与所述调焦螺杆(272)的末端螺纹连接,使得当所述调焦螺杆(272)转动时,所述镜头法兰(274)可相对所述可见光镜头(21)或所述红外镜头(22)沿光轴方向移动。
  7. 根据权利要求6所述的双目三光望远镜,其特征在于,所述调焦机构(27)还包括消隙弹簧(275),所述镜头法兰(274)上设有与所述调焦螺杆(272)对应的螺纹孔,所述消隙弹簧(275)放置在所述螺纹孔内,所述调焦螺杆(272)的末端与所述消隙弹簧(275)相抵。
  8. 根据权利要求6所述的双目三光望远镜,其特征在于,所述调焦螺杆支架(273)连接于所述调焦螺杆(272)的直径减小处,且所述调焦螺杆支架(273)与所述调焦螺杆(272)连接处的两端分别装有卡在所述直径减小处的卡簧(276),以将所述调焦螺杆(272)的轴向位置约束在与所述调节螺杆支架(273)连接处。
  9. 根据权利要求6所述的双目三光望远镜,其特征在于,所述镜头法兰(274)上沿对应的光轴方向开设有定位导向槽(2741),对应的所述可见光镜头(21)、所述红外镜头(22)的镜头筒上凸设定位销钉,所述定位销钉限位在对应的所述定位导向槽(2741)内,以使所述镜头法兰(274)可相对镜筒沿对应的光轴方向移动。
  10. 根据权利要求4所述的双目三光望远镜,其特征在于,所述可见光镜头(21)包括透镜(212)和双带通滤光片(213),所述双带通滤光片(213)允许第一波段的光和第二波段的光通过,所述第一波段为可见光波段,所述第二波段为红外光波段;所述可见光机芯(23)中具有图像传感器及图像处理模块,所述图像处理模块与所述图像传感器连接以接收所述图像传感器感应得到的图像信号;
    其中,所述双目三光望远镜具有日间模式和夜间模式;在所述日间模式下,所述图像处理模块过滤来自所述图像传感器的图像信号中第二波段的光的图像,仅保留第一波段的光的图像;在所述夜间模式下,所述图像处理模块同时保留 第一波段的光的图像和第二波段光的图像。
  11. 根据权利要求10所述的双目三光望远镜,其特征在于,所述第一波段为420~660nm,所述第二波段为930~970nm;所述双带通滤光片(213)对所述第一波段的光的通过率为50%以上,对所述第二波段的光的通过率为85%以上。
  12. 根据权利要求10所述的双目三光望远镜,其特征在于,所述图像处理模块通过感测光线明暗变化的光传感器判断为所述日间模式或所述夜间模式,并在处于所述日间模式时将接收到的来自所述图像传感器的图像信号中的所述第二波段的光的图像过滤掉。
  13. 根据权利要求10所述的双目三光望远镜,其特征在于,所述外壳(40)底部可拆卸地安装有红外手电筒(70),所述红外手电筒(70)在通电后沿平行于所述红外镜头(22)的光轴方向发出红外光。
  14. 根据权利要求13所述的双目三光望远镜,其特征在于,所述红外手电筒(50)内部设有电池,所述红外手电筒(50)采用940nm的红外发射管。
  15. 根据权利要求13所述的双目三光望远镜,其特征在于,所述红外手电筒(70)通过手电筒安装架(80)安装至所述外壳(40),所述手电筒安装架(80)包括抱箍(81)及连接片(82),所述抱箍(81)套设于所述红外手电筒(70)的外围,所述连接片(82)一端与所述抱箍(81)固定,另一端通过紧固件锁紧至所述外壳(40)。
  16. 根据权利要求1所述的双目三光望远镜,其特征在于,所述目镜系统(50)还包括后壳(51),所述后壳(51)上开设有两个目镜孔(511),每套所述目镜(52)通过目镜法兰(53)从外侧固定到所述后壳(51)上对应的目镜孔(511)中,每个所述显示屏(55)固定到对应的所述目镜法兰(53)上。
  17. 根据权利要求16所述的双目三光望远镜,其特征在于,所述目镜系统(50)还包括压环(58),所述压环(58)通过螺纹与对应的所述目镜法兰(53)的内侧连接,通过调节所述压环(58)在所述目镜法兰(53)上安装的位置,以实现所述目镜法兰(53)与所述目镜孔(511)之间松紧度的调节。
  18. 根据权利要求17所述的双目三光望远镜,其特征在于,所述目镜系统(50)还包括导向块(57),所述导向块(57)具有与所述目镜孔(511)形状相同的导向孔(571),且所述导向块(57)设置在所述目镜孔(511)的内侧; 所述目镜法兰(53)的周向向外延伸出挡片(531),所述挡片(531)大于所述目镜孔(511)且抵靠在所述后壳(51)的外侧,以将所述目镜孔(511)从外侧遮挡并约束所述目镜法兰(53)的位置,所述目镜法兰(53)设有连接端(532),所述连接端(532)从所述目镜孔(511)、所述导向孔(571)中穿过并与所述压环(58)通过螺纹连接,所述压环(58)的后端面与对应的所述导向块(57)的前端面相接触。
  19. 根据权利要求18所述的双目三光望远镜,其特征在于,所述导向块(57)为自润滑耐磨材质制成,所述压环(58)的侧壁上开设有锁紧孔,以供锁紧销插入所述锁紧孔内并顶抵所述连接端(532)的壁面。
  20. 根据权利要求16所述的双目三光望远镜,其特征在于,所述后壳(51)的外侧设有刻度标线(512),所述刻度标线(512)位于两所述目镜孔(511)之间,且所述刻度标线(512)的相邻刻度线之间等间隔,以标示所述目镜法兰(53)和所述目镜(52)相对所述后壳(51)移动的距离。
PCT/CN2022/113061 2022-08-17 2022-08-17 双目三光望远镜 WO2024036512A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/113061 WO2024036512A1 (zh) 2022-08-17 2022-08-17 双目三光望远镜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/113061 WO2024036512A1 (zh) 2022-08-17 2022-08-17 双目三光望远镜

Publications (1)

Publication Number Publication Date
WO2024036512A1 true WO2024036512A1 (zh) 2024-02-22

Family

ID=89940406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/113061 WO2024036512A1 (zh) 2022-08-17 2022-08-17 双目三光望远镜

Country Status (1)

Country Link
WO (1) WO2024036512A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6646799B1 (en) * 2000-08-30 2003-11-11 Science Applications International Corporation System and method for combining multiple energy bands to improve scene viewing
CN203587883U (zh) * 2010-10-22 2014-05-07 前视红外系统公司 红外双筒望远镜系统
CN103926010A (zh) * 2014-04-18 2014-07-16 山东神戎电子股份有限公司 一种多功能双光谱便携式观测仪
CN106291902A (zh) * 2016-08-18 2017-01-04 河北汉光重工有限责任公司 一种具有图像融合功能的昼夜合一望远镜
CN110632751A (zh) * 2019-11-04 2019-12-31 合肥英睿系统技术有限公司 一种望远镜及头戴设备
CN110741303A (zh) * 2017-12-12 2020-01-31 株式会社腾龙 双目望远镜及其制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6646799B1 (en) * 2000-08-30 2003-11-11 Science Applications International Corporation System and method for combining multiple energy bands to improve scene viewing
CN203587883U (zh) * 2010-10-22 2014-05-07 前视红外系统公司 红外双筒望远镜系统
CN103926010A (zh) * 2014-04-18 2014-07-16 山东神戎电子股份有限公司 一种多功能双光谱便携式观测仪
CN106291902A (zh) * 2016-08-18 2017-01-04 河北汉光重工有限责任公司 一种具有图像融合功能的昼夜合一望远镜
CN110741303A (zh) * 2017-12-12 2020-01-31 株式会社腾龙 双目望远镜及其制造方法
CN110632751A (zh) * 2019-11-04 2019-12-31 合肥英睿系统技术有限公司 一种望远镜及头戴设备

Similar Documents

Publication Publication Date Title
CN203587883U (zh) 红外双筒望远镜系统
US7173237B2 (en) Ruggedized digital low-light viewing device
CA2806721C (en) Fused optic
US7581852B2 (en) Portable device for viewing and imaging
WO2023134158A1 (zh) 多模式瞄准装置
US7746551B2 (en) Vision system with eye dominance forced to fusion channel
JPH09509257A (ja) 単眼暗視装置
WO2023134102A1 (zh) 分划调节结构、多模式瞄准装置及其分划调节方法
KR20190102535A (ko) 웨어러블 글래스 장치
WO2023124163A1 (zh) 多光融合瞄准镜以及多光融合方法
CN216717147U (zh) 多模式瞄准装置
CN101881665B (zh) 刑侦或夜间搜救的侦察装置
KR20110028624A (ko) 다중 동작 모드 광학 기구
CN113758371A (zh) 一种新型三光融合枪瞄
WO2024036512A1 (zh) 双目三光望远镜
CN104344898B (zh) 一种潜望式双目热像仪
KR200410513Y1 (ko) 군용 원격 정밀 관측장치
CN115235292A (zh) 一种具有热成像功能的瞄准器
RU2289834C1 (ru) Устройство обнаружения оптоэлектронных объектов (варианты)
CN217953275U (zh) 一种具有热成像功能的瞄准器
US20240184092A1 (en) Weapon sight systems
CN212873223U (zh) 具有显微摄影功能的智能手表
KR20190102536A (ko) 웨어러블 글래스 장치
CN217063820U (zh) 一种基于长焦镜头的多功能便携侦察相机
CN217133467U (zh) 一种具有夜视功能的单目望远镜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22955294

Country of ref document: EP

Kind code of ref document: A1