WO2024035057A1 - Emission treatment catalyst comprising zeolite and metal oxide - Google Patents

Emission treatment catalyst comprising zeolite and metal oxide Download PDF

Info

Publication number
WO2024035057A1
WO2024035057A1 PCT/KR2023/011649 KR2023011649W WO2024035057A1 WO 2024035057 A1 WO2024035057 A1 WO 2024035057A1 KR 2023011649 W KR2023011649 W KR 2023011649W WO 2024035057 A1 WO2024035057 A1 WO 2024035057A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
emission treatment
reactor
zeolite
ammonia
Prior art date
Application number
PCT/KR2023/011649
Other languages
French (fr)
Korean (ko)
Inventor
김기왕
김진홍
안지혜
김동우
김정배
Original Assignee
주식회사 에코프로에이치엔
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에코프로에이치엔 filed Critical 주식회사 에코프로에이치엔
Publication of WO2024035057A1 publication Critical patent/WO2024035057A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/763CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/10Magnesium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J35/56
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0228Coating in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • B01D2255/2047Magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20753Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • B01D2255/502Beta zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • B01D2255/504ZSM 5 zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s

Definitions

  • the present invention relates to effluent treatment catalysts comprising zeolites and metal oxides. Specifically, the present invention relates to an exhaust treatment catalyst comprising a first catalyst and a second catalyst, wherein the first catalyst is a zeolite catalyst and the second catalyst is a catalyst obtained by adding nickel and magnesium to alumina.
  • process emissions mainly include volatile organic compounds (VOC) and odor-causing compounds.
  • VOC volatile organic compounds
  • Process emissions containing organic volatile substances and odor-causing substances are a cause of air pollution, and therefore treatment technologies for organic volatile substances and odor-causing substances are required.
  • organic volatile substances are treated by means such as regenerative thermal oxidation or regenerative catalytic oxidation.
  • Low concentrations of organic volatile substances are concentrated and then treated using a concentrator (e.g., a rotating rotor containing an adsorbent) to increase treatment efficiency.
  • a concentrator e.g., a rotating rotor containing an adsorbent
  • the regenerative thermal oxidation method can be an economical method, but when the reaction temperature is too high to increase treatment efficiency, there is a problem in that NO x is generated and secondary pollutants are emitted.
  • ammonia among odor-causing substances, is easily soluble in water, so exhaust gas containing ammonia is treated by washing with water.
  • ammonia can be treated by dissolving it in water or an aqueous solution containing specific chemicals designed to increase the solubility of ammonia, but considering that regulations on total nitrogen content are becoming stricter in terms of water quality environment, inside the workplace Alternatively, secondary treatment is required externally, such as wet oxidation.
  • nitrogen oxides for example, NO A reducing agent such as urea solution must be additionally used. At this time, a separate de- NO
  • organic volatile substances substances soluble in water (e.g., alcohols, ketones, aldehydes, etc.) can be removed by washing with water and using a wet oxidation method.
  • wet oxidation methods are used. It can be treated by dissolving it in water or an aqueous solution containing chemicals to increase the solubility of water-soluble organic volatile substances and ammonia, but secondary pollution sources may occur.
  • wet abatement methods e.g., wet scrubbers
  • wastewater treatment e.g., wet oxidation
  • the present inventor completed the present invention after continuous research on a catalyst that can effectively treat not only primary pollutants such as organic volatile substances and odor-causing substances but also secondary pollutants such as nitrogen oxides through oxidation or reduction reactions.
  • Patent Document 1 Republic of Korea Patent Publication No. 10-2020-0130845
  • Patent Document 2 Republic of Korea Patent Publication No. 10-2022-0057376
  • the present invention provides an emission treatment catalyst that has high durability in treating emissions such as organic volatile substances and odor-causing substances and has high selectivity in converting pollutants into an emissible form such as nitrogen and carbon dioxide.
  • the present invention provides an exhaust treatment catalyst in which a first catalyst and a second catalyst are introduced on a support, wherein the first catalyst is a zeolite catalyst and the second catalyst is a catalyst obtained by adding nickel and magnesium to alumina. do.
  • the support is a honeycomb structure made of ceramic material, and the ceramic material includes at least one of cordierite, silica, and titania.
  • the zeolite catalyst is ZSM-5, ZSM-11, ZSM-12, ZSM-18, ZSM-23, MCM-zeolite, mordenite, posersite, ferrierite, zeolite beta, It is selected from the group consisting of chabazite and mixtures thereof.
  • the zeolite catalyst is a metal ion-exchanged zeolite catalyst, and the metal ion is Fe, Cu, or a combination thereof.
  • the total content of nickel and magnesium in the second catalyst is 20 to 40 parts by weight based on 100 parts by weight of alumina.
  • the weight ratio of nickel and magnesium in the second catalyst is 5:1 to 15:1.
  • the weight ratio of the first catalyst and the second catalyst in the exhaust treatment catalyst is 1:1 to 9:1.
  • the first catalyst and the second catalyst are mixed and introduced into one or more coating layers.
  • the first catalyst and the second catalyst are introduced separately as separate coating layers.
  • the exhaust treatment catalyst includes a structure in which a first coating layer including a first catalyst is coated on a support, and a second coating layer including a second catalyst is coated on the first coating layer. do.
  • the first catalyst is introduced in an amount of 50 g/L to 150 g/L based on the total exhaust treatment catalyst.
  • the second catalyst is introduced in an amount of 20 g/L to 80 g/L based on the total exhaust treatment catalyst.
  • the emission treatment catalyst according to the present invention includes a zeolite catalyst as a first catalyst and a catalyst obtained by adding nickel and magnesium to alumina as a second catalyst, thereby treating emissions of various components such as organic volatile substances, odor-causing substances, etc. It has a long lifespan due to the excellent durability of the catalyst, and has high utility value in related industrial fields due to its high selectivity in converting pollutants into exudable forms such as nitrogen and carbon dioxide.
  • Figure 1a is a diagram schematically showing the structure of an emission treatment catalyst according to an embodiment of the present invention.
  • Figure 1b is a diagram schematically showing the structure of an emission treatment catalyst according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of an exemplary process in which an effluent treatment catalyst according to one embodiment of the present invention may be utilized.
  • Figure 3a is an overall SEM image of the catalyst of Example 1 according to Experimental Example 1
  • Figure 3b is an SEM image of each component of a portion of Figure 3a.
  • Figure 4a is an overall SEM image of the catalyst of Example 2 according to Experimental Example 1
  • Figure 4b is an SEM image of each component of a portion of Figure 4a.
  • Figure 5a is an overall SEM image of the catalyst of Example 3 according to Experimental Example 1
  • Figure 5b is an SEM image of each component of a portion of Figure 5a.
  • Figure 6a is an overall SEM image of the catalyst of Example 4 according to Experimental Example 1
  • Figure 6b is an SEM image of each component of a portion of Figure 6a.
  • Figure 7a is a graph showing the results of measuring the emissions (ppm) of isopropanol and CO for the catalyst of Comparative Example 2 according to Experimental Example 2.
  • Figure 7b is a graph showing the results of measuring the emissions (ppm) of isopropanol and CO for the catalyst of Comparative Example 3 according to Experimental Example 2.
  • Figure 8 is a graph showing the results of measuring catalyst durability (k/k 0 value) for each of the catalyst of Comparative Example 1, the catalyst of Example 1, and the catalyst of Example 2 according to Experimental Example 3.
  • Figure 9a is a graph showing the concentration of each component by day in flow c of Experimental Example 5.
  • Figure 9b is a graph showing the concentration of each component by day in flow d of Experimental Example 5.
  • the present invention provides an exhaust treatment catalyst incorporating a first catalyst and a second catalyst on a support.
  • the catalyst is a catalyst that can be used in general oxidation or reduction reactions of organic or inorganic compounds. Specifically, it oxidizes or reduces process emissions of organic or inorganic compounds emitted from specific industrial fields such as semiconductor and display processes to water, nitrogen, etc. And it can be used in the process of processing it into an emissible form such as carbon dioxide. These emissions include primary pollutants such as organic volatile substances and odor-causing substances, and the catalyst can be suitably used to oxidize or reduce these primary pollutants. In addition, the catalyst can be suitably used to oxidize or reduce secondary pollutants that may be generated during the treatment of primary pollutants as well as the treatment of primary pollutants.
  • the primary or secondary pollutants include, for example, ammonia (NH 3 ), nitrogen oxides (for example, NO x (NO, NO 2 ) or N 2 O, etc.), or organic volatiles such as isopropanol (IPA). It can be a substance.
  • the catalyst is used for a simultaneous oxidation reaction of ammonia and organic volatile substances, or a selective reduction reaction of nitrogen oxides, etc.
  • the emission treatment catalyst according to the present invention may be in the form of a first catalyst and a second catalyst introduced onto a support.
  • the support has the function of supporting and fixing the first catalyst and the second catalyst, and is not particularly limited as long as it is a material commonly used in the relevant technical field.
  • the support may have a honeycomb structure and may be made of a ceramic material containing at least one of cordierite, silica, and titania. Specifically, the ceramic material may be cordierite.
  • the first catalyst introduced into the support is a substance that affects the reaction rate during the oxidation or reduction of primary pollutants included in the discharge or secondary pollutants that may be generated during the treatment of the primary pollutants. It helps secondary pollutants to ultimately be converted into non-emissionable non-pollutants such as water, nitrogen, and carbon dioxide.
  • the first catalyst is not particularly limited as long as it is a material having the above-described functionality.
  • the first catalyst is a zeolite catalyst.
  • the zeolites include ZSM-5, ZSM-11, ZSM-12, ZSM-18, ZSM-23, MCM-zeolite, mordenite, faujasite, ferrierite, and beta.
  • the first catalyst has a ratio of 500 m2/g to 800 m2/g, specifically 525 m2/g to 750 m2/g, more specifically 550 m2/g to 700 m2/g. It has a surface area. The specific surface area is measured by the BET method.
  • the zeolite catalyst is a metal ion-exchanged zeolite catalyst.
  • the type of the metal ion is not particularly limited as long as it is a metal ion that can be generally introduced into zeolite catalysts in the relevant technical field.
  • the metal ion is Fe, Cu, or a combination thereof.
  • the metal ion is 0.1% by weight to 10% by weight, specifically 0.5% by weight to 7.5% by weight, more specifically 1% by weight to 5% by weight based on the total weight of the catalyst. is introduced in
  • the second catalyst introduced into the support is a substance that affects the reaction rate when oxidizing or reducing primary pollutants included in the discharge or secondary pollutants that may be generated during the treatment of the primary pollutants. , helps primary or secondary pollutants to be finally converted into non-polluting sources that can be discharged, such as water, nitrogen, and carbon dioxide.
  • the second catalyst is not particularly limited as long as it is a material having the above-mentioned functionality.
  • the second catalyst is a catalyst obtained by adding nickel (Ni) and magnesium (Mg) to alumina (Al 2 O 3 ).
  • the second catalyst has a ratio of 50 m2/g to 250 m2/g, specifically 75 m2/g to 200 m2/g, more specifically 100 m2/g to 150 m2/g. It has a surface area. The specific surface area is measured by the BET method.
  • the first catalyst and the second catalyst individually have excellent functionality in treating effluents, but when the types of pollutants vary, the functionality of the first catalyst or the second catalyst deteriorates, which reduces the functionality of the entire catalyst. may lead to degradation.
  • the first catalyst and the second catalyst are selected as a combination that does not deteriorate the functionality of the overall catalyst even if there are various types of contaminants.
  • the emission treatment catalyst according to the present invention can be preferably used for the simultaneous treatment of ammonia and organic volatile substances as well as the treatment of nitrogen oxides.
  • the first catalyst is 50 g/L to 150 g/L, specifically 65 g/L to 135 g/L, more specifically 80 g/L, based on the total effluent treatment catalyst.
  • the second catalyst is 20 g/L to 80 g/L, specifically 25 g/L to 75 g/L, more specifically 30 g/L, based on the total effluent treatment catalyst. to 70 g/L are introduced.
  • the weight ratio of the first catalyst and the second catalyst in the exhaust treatment catalyst is 1:1 to 9:1, specifically 1:1 to 6:1, more specifically 1:1 to 4. :1. Within the above-mentioned range, the effect of using the first catalyst and the second catalyst in combination may be more highlighted.
  • the zeolite catalyst used as the first catalyst is selective for ammonia (SCO reaction) and partially oxidized nitrogen oxides (NO x ) and ammonia. It may be suitable for catalytic reduction reaction (SCR reaction), and the catalyst with nickel and magnesium added to alumina used as a second catalyst is suitable for the production of nitrogen oxides by partial oxidation of ammonia and the oxidation reaction of organic volatile substances such as isopropanol. can do.
  • the second catalyst has resistance to coke, so the performance of the catalyst can be maintained for a long time when treating organic volatile substances.
  • the oxidizing power of the catalyst may be insufficient.
  • the oxidizing power of the catalyst is increased by mixing noble metals such as palladium (Pd) and platinum (Pt).
  • Pd palladium
  • Pt platinum
  • a complete oxidation reaction may occur for organic volatile substances, but for ammonia, the selectivity (or conversion rate) to nitrogen may be significantly reduced, which may be undesirable.
  • the second catalyst a catalyst in which nickel and magnesium are added to alumina, is used alone, it may be possible to use it alone, but it is preferable because the selectivity (or conversion rate) for ammonia to nitrogen is not high compared to the zeolite catalyst. You may not.
  • the second catalyst is basically an alumina-based catalyst and contains both nickel and magnesium as essential components.
  • nickel and magnesium may exhibit oxidizing properties
  • magnesium may exhibit reducing properties.
  • nickel can be decomposed by oxidizing isopropanol adsorbed on the catalyst surface. In this case, the formation of coke on the catalyst surface due to incomplete oxidation can be prevented through the reducing properties of magnesium.
  • NH 3 can generate some NO x by NiMg-Al 2 O 3 , and at this time , the generated NO It can be converted to 2 .
  • the total content of nickel and magnesium in the second catalyst is 20 parts by weight to 40 parts by weight, specifically 23 parts by weight to 36 parts by weight, more specifically 26 parts by weight, based on 100 parts by weight of alumina. to 32 parts by weight.
  • the effects of adding nickel and magnesium may be more prominent.
  • nickel can be added to alumina in a much larger amount than magnesium.
  • the weight ratio of nickel and magnesium in the second catalyst is 5:1 to 15:1, specifically 6.5:1 to 13.5:1, and more specifically 8:1 to 12:1. Within the above-mentioned range, the effects of adding nickel and magnesium may be more prominent.
  • FIG. 1A and 1B show a schematic structure of an exhaust treatment catalyst according to one embodiment of the present invention.
  • Figures 1a and 1b are intended to briefly explain the structure into which the first and second catalysts are introduced, focusing on the surface of the support, and the structures shown in Figures 1a and 1b do not represent the entire structure of the catalyst. .
  • the first catalyst and the second catalyst are mixed and introduced into one or more coating layers, and the structure of the catalyst follows FIG. 1A.
  • the first catalyst and the second catalyst are introduced separately as separate coating layers, and the structure of these catalysts follows Figure 1b.
  • the order of the coating layer containing the first catalyst and the coating layer containing the second catalyst is not particularly limited, but after coating the first coating layer containing the first catalyst on the support, the second coating layer containing the second catalyst is applied. When coated, the durability of the catalyst against coke generated when treating carbon-based compounds such as organic volatile substances increases, which may be advantageous for its lifespan.
  • the exemplary process is a simultaneous reduction of isopropanol and ammonia, the process comprising: (1) supplying industrial exhaust gas containing isopropanol and ammonia to a first reactor; (2) oxidizing isopropanol and ammonia in the first reactor; (3) supplying the discharge from the first reactor to a second reactor; (4) producing nitrogen, carbon dioxide, and water in the second reactor; and (5) discharging the effluent from the second reactor.
  • step (1) industrial exhaust gas containing isopropanol and ammonia is first supplied to the first reactor.
  • concentration of isopropanol and ammonia in industrial exhaust gas it is desirable for the concentration of isopropanol and ammonia in industrial exhaust gas to be above a certain level.
  • the sum of the concentrations of isopropanol and ammonia in industrial exhaust gas is 100 ppm to 10,000 ppm, specifically 2,000 ppm to 9,000 ppm, more specifically 4,000 ppm to 8,000 ppm, and the concentration of isopropanol is 10% based on the concentration of ammonia.
  • the concentrations of isopropanol and ammonia may each be 100 ppm or more, specifically 1,000 ppm or more, and more specifically 2,000 ppm or more. If the concentration of either isopropanol or ammonia is too low, the interference between the two components is minimal, and a similar effect can be achieved through an invention designed to remove either component, which may reduce the effectiveness of the process alone. there is. On the contrary, if the concentration of either isopropanol or ammonia is too high, excellent effects cannot be achieved through the process, and the effectiveness of the process may be reduced.
  • the process includes a selective oxidation reaction of ammonia (i.e., a reaction in which ammonia is selectively oxidized to nitrogen (N 2 ) and water (H 2 O) under specific conditions or on a catalyst), where the concentration of isopropanol is excessive.
  • a selective oxidation reaction of ammonia i.e., a reaction in which ammonia is selectively oxidized to nitrogen (N 2 ) and water (H 2 O) under specific conditions or on a catalyst
  • the concentration of isopropanol is excessive.
  • the concentration of isopropanol is too high, the reaction heat generated during the oxidation treatment of isopropanol can cause ammonia to be removed.
  • the oxidation reaction is also activated and a large amount of NO x (i.e. NO or NO 2 ) is generated, the purpose of the process cannot be achieved without a separate reducing agent supply step.
  • the sum of the concentrations of isopropanol and ammonia described above is at a level that can increase treatment efficiency when applied to actual industrial fields. If the concentration of isopropanol and ammonia in the supplied industrial exhaust gas is low, a concentrator capable of adsorbing isopropanol and ammonia can be used to control the concentration of isopropanol and ammonia before feeding it to the first reactor.
  • the supply flow rate is separated into a first flow rate and a second flow rate, and the first flow rate is supplied to the first reactor, and the second flow rate is supplied to the first reactor.
  • the flow rate may be mixed with the effluent from the first reactor.
  • the ammonia contained in the second flow rate in the second reactor decomposes NO x or N 2 O. It can be used as a reducing agent to increase reaction efficiency.
  • the distribution of the first flow rate and the second flow rate can be determined by the following calculation equation 1.
  • Q a means the supply flow rate before distribution
  • Q a2 means the second flow rate
  • f is related to the amount of NO x discharged from the first reactor (c ) , the amount of ammonia required to completely remove the equivalent amount of NO It can be defined as the amount (a) of ammonia that must be introduced into the second reactor to remove NO there is. This is summarized in the following calculation formula 2.
  • a is calculated by c ⁇ d ⁇ x.
  • c refers to the amount of NO x discharged from the first reactor, and is determined by adding the amount of NO (c 1 ) and the amount of NO 2 (c 2 ).
  • d means the equivalent amount of ammonia required to completely remove 1 equivalent amount of NO x refers to the desired removal efficiency of NO x , and is determined in advance taking into account the concentrations of isopropanol, ammonia, and NO x can be set to 0.5 to 1.5, specifically 0.6 to 1.4, and more specifically 0.7 to 1.3. If the x value is smaller than the above range, the reduction efficiency of NO This may deteriorate.
  • emissions of secondary pollutants such as NO x and N 2 O can be minimized.
  • the feed flow of industrial exhaust gases (if separated, the first flow) is fed to a first reactor, in which isopropanol and ammonia are oxidized.
  • Oxidation of isopropanol and ammonia is the reaction of isopropanol and ammonia with oxygen, respectively, whereby the following reactions can be performed.
  • Schemes 1 and 2 are the main reactions targeted in the first reactor, and Schemes 3 to 8 are side reactions that may occur during the actual reaction.
  • isopropanol and ammonia are oxidized at the same time, since the reaction cannot be performed under optimal conditions for each reactant, a certain level of side reactions are inevitably accompanied. To remove secondary contaminants caused by these side reactions, additional reactions are required.
  • Oxygen which is a reactant other than isopropanol and ammonia, is generally contained in a sufficient amount in the exhaust gas, but additional air can be supplied to the reactor as needed.
  • isopropanol and ammonia may be oxidized by a catalyst.
  • Figure 2 shows an exemplary process diagram when the first reactor is a catalytic oxidation reactor.
  • the first reactor is equipped with a catalyst in the form of a fixed bed catalytic reactor. At this time, it may be desirable to select a catalyst that has oxidation reaction performance and is effective in the selective oxidation reaction of NH 3 and NH 3 -deNO x reaction, and is not particularly limited as long as the catalyst has such functionality.
  • the effluent treatment catalyst according to the present invention can be preferably applied to the first reactor.
  • the first reactor which is a catalytic oxidation reactor, may be operated under temperature conditions of 100°C to 650°C, specifically 200°C to 600°C, and more specifically 300°C to 550°C. If the temperature is lower than the corresponding range, the overall oxidation reaction does not proceed actively, which is undesirable, and if the temperature is higher than the corresponding range, excessive NO x is generated, which is undesirable.
  • the first reactor may be operated under pressure conditions of atmospheric pressure to 10 atmospheres, specifically atmospheric pressure to 7 atmospheres, and more specifically atmospheric pressure to 5 atmospheres. At high pressures, device costs may increase because pressure-resistant vessels must be adopted.
  • the first reactor may be operated under gas space velocity (GHSV) conditions of 200hr -1 to 20,000hr -1 , specifically, 500hr -1 to 10,000hr -1 , and more specifically 1,000hr -1 to 5,000hr -1 there is. If the gas space velocity is lower than the corresponding range, it is undesirable because the device must be enlarged, and if the gas space velocity is higher than the corresponding range, it is undesirable because the efficiency and selectivity of the reaction decreases.
  • GHSV gas space velocity
  • the catalytic oxidation reactor may be designed so that the ratio of ammonia in the reactant converted to nitrogen oxides ( NO there is.
  • the discharge from the first reactor is fed to the second reactor.
  • the second flow rate is mixed with the discharge from the first reactor and supplied to the second reactor.
  • Nitrogen, carbon dioxide and water are mainly produced in the second reactor.
  • the following reactions can mainly be performed in the second reactor.
  • Schemes 9 to 11 are the main reactions targeted in the second reactor, and Schemes 12 to 14 are side reactions that may occur during the actual reaction.
  • the NO x component generated in the first reaction reacts with ammonia and is decomposed into nitrogen and water.
  • the NO it may be desirable to select a catalyst that has oxidation reaction performance and is effective in NH 3 -deN 2 O and NH 3 -deNO x reactions, and is not particularly limited as long as the catalyst has such functionality.
  • the effluent treatment catalyst according to the present invention can be preferably applied to the second reactor.
  • the second reactor may be operated under temperature conditions of 100°C to 650°C, specifically 150°C to 600°C, and more specifically 200°C to 550°C. If the temperature is lower than that range, it is not desirable because the overall oxidation reaction does not proceed actively, and if the temperature is higher than that range, the oxidation reaction of ammonia proceeds competitively with the de-NO x reaction, resulting in excessive NO x generation. Therefore, it is not desirable.
  • the first reactor may be operated under pressure conditions of atmospheric pressure to 10 atmospheres, specifically atmospheric pressure to 7 atmospheres, and more specifically atmospheric pressure to 5 atmospheres. At high pressures, device costs may increase because pressure-resistant vessels must be adopted.
  • the second reactor may be operated under gas space velocity (GHSV) conditions of 200hr -1 to 20,000hr -1 , specifically 500hr -1 to 15,000hr -1 , and more specifically 1,000hr -1 to 10,000hr -1 . If the gas space velocity is lower than the corresponding range, it is undesirable because the device must be enlarged, and if the gas space velocity is higher than the corresponding range, it is undesirable because the efficiency and selectivity of the reaction decreases.
  • GHSV gas space velocity
  • NiMg-Al 2 O 3 (name) was prepared.
  • the specific components of the catalyst are shown in Table 1 below.
  • NiMg-Al 2 O 3 is a catalyst in which nickel and magnesium are added to alumina, and the contents of the added nickel and magnesium are according to Table 1 below.
  • catalyst 1 catalyst 2 catalyst 3 Cu content (wt%) 3 ⁇ 4 - - Fe content (wt%) - 1 ⁇ 2 - Ni content (wt%) - - 20 Mg content (wt%) - - 2 SiO 2 content (wt%) 86.4 92.8 - Al 2 O 3 content (wt %) 9.9 5.1 78 SiO 2 /Al 2 O 3 15 ⁇ 18 30 ⁇ 40 - Specific surface area (m2/g) 500 ⁇ 650 550 ⁇ 700 100 ⁇ 150
  • Pt-Al 2 O 3 (hereinafter referred to as 'Catalyst 4'), Pd-Al 2 O 3 (hereinafter referred to as 'Catalyst 5'), and Pt/Fe_beta zeolite (hereinafter referred to as 'Catalyst 5') (referred to as 'Catalyst 6') was prepared.
  • the specific components of the catalyst are shown in Table 1 below.
  • Pt-Al 2 O 3 is a catalyst in which platinum is added to alumina
  • Pd-Al 2 O 3 is a catalyst in which palladium is added to alumina
  • Pt/Fe_beta zeolite is a catalyst in which platinum is added to Fe_beta zeolite. It is an added catalyst.
  • the content of added platinum or palladium follows Table 2 below.
  • a mixture was prepared by mixing the first catalyst, Catalyst 1 (Cu_chabazite), and the second catalyst, Catalyst 3 (NiMg-Al 2 O 3 ) in a 1:1 weight ratio, and then placed on a honeycomb-structured cordierite support. The mixture was coated at approximately 150 g/L per volume of cordierite. Afterwards, the catalyst was finally prepared by calcining at 550°C for 4 hours.
  • Catalyst 1 Cu_chabazite
  • Catalyst 3 NiMg-Al 2 O 3
  • Catalyst 2 Fe_beta zeolite
  • Catalyst 3 NiMg-Al 2 O 3
  • Catalyst 1 (Cu_chabazite) was used as is.
  • Catalyst 2 (Fe_beta zeolite) was used as is.
  • Catalyst 3 (NiMg-Al 2 O 3 ) was used as is.
  • Catalyst 4 (Pt-Al 2 O 3 ) was used as is.
  • Catalyst 5 (Pd-Al 2 O 3 ) was used as is.
  • Catalyst 6 (Pt/Fe_beta zeolite) was used as is.
  • Figures 3a and 3b are SEM images of the catalyst of Example 1. According to Figures 3a and 3b, it can be seen that Cu and Si are coated on the inside, and Ni, Mg, and Al are coated on the outside.
  • Figures 4a and 4b are SEM images of the catalyst of Example 2. According to Figures 4a and 4b, it can be seen that Ni, Cu, etc. are mixed and coated.
  • Figures 5a and 5b are SEM images of the catalyst of Example 3. According to Figures 5a and 5b, it can be seen that Fe and Si are coated on the inside, and Ni, Mg, and Al are coated on the outside.
  • Figures 6a and 6b are SEM images of the catalyst of Example 4. According to Figures 6a and 6b, it can be seen that Ni, Fe, etc. are mixed and coated.
  • Stream a passing through the concentrator 20 had a total flow rate of 1 L/min, where isopropanol and ammonia each had a concentration of 3,000 ppm.
  • the stream a was supplied to the first reactor without a separate bypass stream (a2).
  • the first reactor was a fixed bed catalyst reactor, and the temperature was changed while the pressure of 1.5 atm and gas space velocity (GHSV) of 15,000 hr -1 were fixed, and the degree of oxidation of isopropanol was evaluated.
  • GHSV gas space velocity
  • Stream a passing through the concentrator 20 had a total flow rate of 1 L/min, where isopropanol and ammonia each had a concentration of 3,000 ppm.
  • the stream a was supplied to the first reactor without a separate bypass stream (a2).
  • the first reactor was a fixed bed catalytic reactor operated at a pressure of 1.5 atm, a gas space velocity (GHSV) of 15,000 hr -1 , and a reaction temperature of 530°C.
  • GHSV gas space velocity
  • Stream a passing through concentrator 20 had a total flow rate of 5 L/min, where isopropanol and ammonia each had a concentration of 3,000 ppm.
  • the flow a was divided into flow a 1 with a flow rate of 0.85 L/min and flow a 2 with a flow rate of 0.15 L/min, and flow a 1 was supplied to the first reactor.
  • the first reactor was a fixed bed catalytic reactor and was operated while changing the temperature while maintaining a fixed pressure of 1.5 atm and a gas space velocity (GHSV) of 3,000 hr -1 .
  • the catalysts used were the catalyst of Example 1, the catalyst of Example 2, the catalyst of Example 3, the catalyst of Example 4, the catalyst of Comparative Example 3, the catalyst of Comparative Example 4, the catalyst of Comparative Example 5, and the catalyst of Comparative Example 6. Each was charged.
  • the stream b joined the distributed stream a2 before being fed to the first reactor and stream c was fed to the second reactor.
  • the second reactor was a fixed bed catalytic reactor operated at a pressure of 1.5 atm, a gas space velocity (GHSV) of 6,000 hr -1 and a reaction temperature of 450°C.
  • the catalyst was first coated with Fe-BEA catalyst powder, in which 2% Fe was ion-exchanged to BEA ( ⁇ -zeolite), on a 100cpsi (cells per square inch) honeycomb support made of cordierite, and 1.5% by weight of Cobalt-magnesium-alumina catalyst powder containing cobalt and 2% by weight of magnesium was secondarily coated.
  • the weight ratio of the Fe-BEA catalyst and the cobalt-magnesium-alumina catalyst was adjusted to be 9:1, and the sum of the coating amounts of each catalyst was adjusted to be 150 g/L.
  • Example 1 Temperature (°C) Conversion rate of NH 3 (%) Conversion rate of NH 3 to N 2 (%) IPA conversion rate (%) CO concentration (ppm) 400 100.0 94.8 99.90 141 430 100.0 91.5 99.97 74 450 100.0 90.3 99.97 51 500 100.0 81.8 99.98 38
  • Example 1 the catalyst of Example 1 or the catalyst of Example 2, which introduced Catalyst 1 (Cu_chabazite) and Catalyst 3 (NiMg-Al 2 O 3 ) on cortierite, was used.
  • Catalyst 1 Cu_chabazite
  • Catalyst 3 NiMg-Al 2 O 3
  • CO concentration it can be seen that both catalysts of Examples 1 and 2 begin to drop below 100 ppm around 430°C.
  • flow c supplied to the second reactor had a total flow rate of 1 L/min, and each component had the same concentration as shown in Figure 9a for each day.
  • the second reactor was a fixed bed catalytic reactor operated at a pressure of 1.5 atm, a gas space velocity (GHSV) of 6,000 hr -1 and a reaction temperature of 450°C.
  • the catalyst of Example 1 was charged as a catalyst.
  • the concentration of each component of the stream d discharged from the second reactor is shown in Figure 9b.
  • 1B Single coating layer of first or second catalyst (including a different catalyst than 1A)

Abstract

The present invention relates to an emission treatment catalyst in which a first catalyst and a second catalyst are introduced on a support. The first catalyst is a zeolite catalyst, and the second catalyst is a catalyst in which nickel and magnesium are added to alumina. The first catalyst and the second catalyst may be mixed and introduced as one or more coating layers, or may also be introduced as separate respective coating layers. By comprising the first catalyst and the second catalyst, the emission treatment catalyst according to the present invention has a long lifespan due to excellent durability thereof even when used to treat emissions of various components, such as volatile organic compounds and odor-causing compounds, and has high selectivity for converting pollutants into a form that can be emitted, such as nitrogen, carbon dioxide, or the like, and thus is highly effectively used in related industries.

Description

제올라이트 및 금속 산화물을 포함하는 배출물 처리 촉매Emission treatment catalyst comprising zeolites and metal oxides
본 발명은 제올라이트 및 금속 산화물을 포함하는 배출물 처리 촉매에 관한 것이다. 구체적으로, 본 발명은 제1 촉매 및 제2 촉매를 포함하는 배출물 처리 촉매에 관한 것으로, 상기 제1 촉매는 제올라이트 촉매이고, 상기 제2 촉매는 알루미나에 니켈 및 마그네슘을 첨가한 촉매이다.The present invention relates to effluent treatment catalysts comprising zeolites and metal oxides. Specifically, the present invention relates to an exhaust treatment catalyst comprising a first catalyst and a second catalyst, wherein the first catalyst is a zeolite catalyst and the second catalyst is a catalyst obtained by adding nickel and magnesium to alumina.
본 출원은 2022년 8월 9일자 한국 특허 출원 제10-2022-0099316호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용을 본 명세서의 일부로서 포함한다.This application claims the benefit of priority based on Korean Patent Application No. 10-2022-0099316, dated August 9, 2022, and includes all contents disclosed in the document of the Korean Patent Application as part of this specification.
반도체, 디스플레이 공정 등과 같은 특정 산업 분야에서는 공정 배출물로 주로 유기 휘발 물질(Volatile Organic Compounds, VOC)와 냄새 유발 물질(Oder Causing Compound)을 포함한다. 유기 휘발 물질과 냄새 유발 물질을 포함하는 공정 배출물은 대기오염의 원인물질이며, 따라서 유기 휘발 물질과 냄새 유발 물질의 처리기술이 요구된다.In certain industrial fields such as semiconductor and display processes, process emissions mainly include volatile organic compounds (VOC) and odor-causing compounds. Process emissions containing organic volatile substances and odor-causing substances are a cause of air pollution, and therefore treatment technologies for organic volatile substances and odor-causing substances are required.
종래의 방법에 따르면, 유기 휘발 물질은 축열식 열 산화(Regenerative Thermal Oxidation) 또는 축열식 촉매 산화(Regenerative Catalytic Oxidation) 등의 수단으로 처리된다. 저농도의 유기 휘발 물질은 처리 효율을 높이기 위해 농축기(예를 들면, 흡착제를 포함한 회전식 로터)를 사용하여 농축한 후 처리된다. 배기가스의 유량이 큰 경우에는 축열식 열 산화 방식이 경제적인 수단이 될 수 있지만, 처리 효율을 높이기 위해 반응온도가 지나치게 높을 경우에는 NOx가 발생하여 2차 오염원이 배출되는 문제점이 있다.According to conventional methods, organic volatile substances are treated by means such as regenerative thermal oxidation or regenerative catalytic oxidation. Low concentrations of organic volatile substances are concentrated and then treated using a concentrator (e.g., a rotating rotor containing an adsorbent) to increase treatment efficiency. When the flow rate of exhaust gas is large, the regenerative thermal oxidation method can be an economical method, but when the reaction temperature is too high to increase treatment efficiency, there is a problem in that NO x is generated and secondary pollutants are emitted.
또한, 냄새 유발 물질 중 암모니아는 물에 쉽게 용해되기 때문에 암모니아가 포함된 배기가스를 수세하여 처리한다. 구체적으로, 물, 또는 암모니아의 용해도를 높이기 위해 고안된 특정 화학물질을 포함하는 수용액에 암모니아를 용해시켜 처리할 수 있으나, 수질 환경적 측면에서 총 질소 함량 규제가 엄격해지고 있다는 점을 고려하면, 작업장 내부 또는 외부에서 습식 산화 등으로 2차 처리가 요구된다. 암모니아 그 자체는 산화될 경우에 질소 산화물(예를 들면, NOx(NO, NO2) 또는 N2O 등)이 2차 오염원으로 배출될 수 있으므로, 이들 질소 산화물을 저감하기 위해서는 탄화수소, 암모니아, 요소 용액과 같은 환원제가 추가적으로 사용되어야 한다. 이 때, 별도의 de-NOx 반응기가 필요하고, 환원제의 저장탱크, 공급장치 등도 필요하게 되어 장치가 복잡하고 대형화될 수 있다.In addition, ammonia, among odor-causing substances, is easily soluble in water, so exhaust gas containing ammonia is treated by washing with water. Specifically, ammonia can be treated by dissolving it in water or an aqueous solution containing specific chemicals designed to increase the solubility of ammonia, but considering that regulations on total nitrogen content are becoming stricter in terms of water quality environment, inside the workplace Alternatively, secondary treatment is required externally, such as wet oxidation. When ammonia itself is oxidized, nitrogen oxides ( for example, NO A reducing agent such as urea solution must be additionally used. At this time, a separate de- NO
유기 휘발 물질 중 물에 용해되는 물질(예를 들면, 알코올류, 케톤류, 알데히드류 등”은 수세하여 습식 산화 방법으로 제거할 수 있다. 수용성 유기 휘발 물질과 암모니아가 동시에 배출되는 사업장의 경우, 습식 방법으로 물, 또는 수용성 유기 휘발 물질과 암모니아의 용해도를 높이기 위한 화학물질을 함유한 수용액에 용해시켜 처리할 수 있으나, 2차 오염원이 발생할 수 있다.Among organic volatile substances, substances soluble in water (e.g., alcohols, ketones, aldehydes, etc.) can be removed by washing with water and using a wet oxidation method. In the case of workplaces where water-soluble organic volatile substances and ammonia are discharged simultaneously, wet oxidation methods are used. It can be treated by dissolving it in water or an aqueous solution containing chemicals to increase the solubility of water-soluble organic volatile substances and ammonia, but secondary pollution sources may occur.
특히, 최근에는 환경규제 강화로 폐수 처리(예를 들면, 습식 산화)가 필요한 기존 습식 방식의 저감 수단(예를 들면, 습식 스크러버)은 사용이 어려워 1차 오염원 그 자체와 2차 오염원의 발생도 최소화된 건식 저감 수단으로의 대체가 요구되고 있는 상황이다.In particular, in recent years, due to the strengthening of environmental regulations, existing wet abatement methods (e.g., wet scrubbers) that require wastewater treatment (e.g., wet oxidation) have become difficult to use, and the occurrence of both the primary and secondary pollutants has increased. There is a need for replacement with minimized dry abatement methods.
이에 본 발명자는 유기 휘발 물질 및 냄새 유발 물질과 같은 1차 오염원 뿐만 아니라 질소 산화물과 같은 2차 오염원도 산화 또는 환원 반응으로 효과적으로 처리할 수 있는 촉매에 대해서 지속적인 연구 끝에 본 발명을 완성하였다.Accordingly, the present inventor completed the present invention after continuous research on a catalyst that can effectively treat not only primary pollutants such as organic volatile substances and odor-causing substances but also secondary pollutants such as nitrogen oxides through oxidation or reduction reactions.
[선행기술문헌][Prior art literature]
[특허문헌][Patent Document]
(특허문헌 1) 대한민국 공개특허공보 제10-2020-0130845호(Patent Document 1) Republic of Korea Patent Publication No. 10-2020-0130845
(특허문헌 2) 대한민국 공개특허공보 제10-2022-0057376호(Patent Document 2) Republic of Korea Patent Publication No. 10-2022-0057376
본 발명은 유기 휘발 물질, 냄새 유발 물질 등과 같은 배출물을 처리함에 있어서 촉매의 내구성이 높고, 오염원을 질소, 이산화탄소 등의 배출 가능한 형태로 전환하는 선택성이 높은 배출물 처리 촉매를 제공한다.The present invention provides an emission treatment catalyst that has high durability in treating emissions such as organic volatile substances and odor-causing substances and has high selectivity in converting pollutants into an emissible form such as nitrogen and carbon dioxide.
본 발명의 제1 측면에 따르면,According to the first aspect of the present invention,
본 발명은 지지체 상에 제1 촉매 및 제2 촉매가 도입된 배출물 처리 촉매로서, 상기 제1 촉매는 제올라이트 촉매이고, 상기 제2 촉매는 알루미나에 니켈 및 마그네슘을 첨가한 촉매인 배출물 처리 촉매를 제공한다.The present invention provides an exhaust treatment catalyst in which a first catalyst and a second catalyst are introduced on a support, wherein the first catalyst is a zeolite catalyst and the second catalyst is a catalyst obtained by adding nickel and magnesium to alumina. do.
본 발명의 일 구체예에 있어서, 상기 지지체는 세라믹 소재의 허니컴 구조체이고, 상기 세라믹 소재는 코디어라이트, 실리카 및 티타니아 중 적어도 하나 이상을 포함한다.In one embodiment of the present invention, the support is a honeycomb structure made of ceramic material, and the ceramic material includes at least one of cordierite, silica, and titania.
본 발명의 일 구체예에 있어서, 상기 제올라이트 촉매는 ZSM-5, ZSM-11, ZSM-12, ZSM-18, ZSM-23, MCM-제올라이트, 모데나이트, 포저사이트, 페리어라이트, 제올라이트 베타, 차바자이트 및 이들의 혼합물로 이루어진 군으로부터 선택된다.In one embodiment of the present invention, the zeolite catalyst is ZSM-5, ZSM-11, ZSM-12, ZSM-18, ZSM-23, MCM-zeolite, mordenite, posersite, ferrierite, zeolite beta, It is selected from the group consisting of chabazite and mixtures thereof.
본 발명의 일 구체예에 있어서, 상기 제올라이트 촉매는 금속 이온-교환된 제올라이트 촉매이고, 상기 금속 이온은 Fe, Cu 또는 이의 조합이다.In one embodiment of the present invention, the zeolite catalyst is a metal ion-exchanged zeolite catalyst, and the metal ion is Fe, Cu, or a combination thereof.
본 발명의 일 구체예에 있어서, 상기 제2 촉매에서 니켈 및 마그네슘의 총 함량은 알루미나 100 중량부를 기준으로 20 중량부 내지 40 중량부이다.In one embodiment of the present invention, the total content of nickel and magnesium in the second catalyst is 20 to 40 parts by weight based on 100 parts by weight of alumina.
본 발명의 일 구체예에 있어서, 상기 제2 촉매에서 니켈과 마그네슘의 중량비는 5:1 내지 15:1이다.In one embodiment of the present invention, the weight ratio of nickel and magnesium in the second catalyst is 5:1 to 15:1.
본 발명의 일 구체예에 있어서, 상기 배출물 처리 촉매에서 제1 촉매 및 제2 촉매의 중량비는 1:1 내지 9:1이다.In one embodiment of the present invention, the weight ratio of the first catalyst and the second catalyst in the exhaust treatment catalyst is 1:1 to 9:1.
본 발명의 일 구체예에 있어서, 상기 제1 촉매 및 제2 촉매는 혼합되어 하나 이상의 코팅층에 도입된다.In one embodiment of the present invention, the first catalyst and the second catalyst are mixed and introduced into one or more coating layers.
본 발명의 일 구체예에 있어서, 상기 제1 촉매 및 제2 촉매는 각각 별개의 코팅층으로 분리되어 도입된다.In one embodiment of the present invention, the first catalyst and the second catalyst are introduced separately as separate coating layers.
본 발명의 일 구체예에 있어서, 상기 배출물 처리 촉매는 지지체 상에 제1 촉매를 포함하는 제1 코팅층이 코팅되고, 제1 코팅층 상에 제2 촉매를 포함하는 제2 코팅층이 코팅된 구조를 포함한다.In one embodiment of the present invention, the exhaust treatment catalyst includes a structure in which a first coating layer including a first catalyst is coated on a support, and a second coating layer including a second catalyst is coated on the first coating layer. do.
본 발명의 일 구체예에 있어서, 상기 제1 촉매는 전체 배출물 처리 촉매를 기준으로 50 g/L 내지 150 g/L가 도입된다.In one embodiment of the present invention, the first catalyst is introduced in an amount of 50 g/L to 150 g/L based on the total exhaust treatment catalyst.
본 발명의 일 구체예에 있어서, 상기 제2 촉매는 전체 배출물 처리 촉매를 기준으로 20 g/L 내지 80 g/L가 도입된다.In one embodiment of the present invention, the second catalyst is introduced in an amount of 20 g/L to 80 g/L based on the total exhaust treatment catalyst.
본 발명에 따른 배출물 처리 촉매는 제1 촉매로서 제올라이트 촉매를 포함하고, 제2 촉매로서 알루미나에 니켈 및 마그네슘을 첨가한 촉매를 포함함으로써, 유기 휘발 물질, 냄새 유발 물질 등과 같은 다양한 성분의 배출물을 처리 시에도 촉매의 우수한 내구성으로 수명이 길고, 오염원을 질소, 이산화탄소 등의 배출 가능한 형태로 전환하는 선택성이 높아 관련 산업 분야에서 효용 가치가 높다.The emission treatment catalyst according to the present invention includes a zeolite catalyst as a first catalyst and a catalyst obtained by adding nickel and magnesium to alumina as a second catalyst, thereby treating emissions of various components such as organic volatile substances, odor-causing substances, etc. It has a long lifespan due to the excellent durability of the catalyst, and has high utility value in related industrial fields due to its high selectivity in converting pollutants into exudable forms such as nitrogen and carbon dioxide.
도 1a는 본 발명의 일 구체예에 따른 배출물 처리 촉매의 구조를 개략적으로 나타낸 도면이다.Figure 1a is a diagram schematically showing the structure of an emission treatment catalyst according to an embodiment of the present invention.
도 1b는 본 발명의 일 구체예에 따른 배출물 처리 촉매의 구조를 개략적으로 나타낸 도면이다.Figure 1b is a diagram schematically showing the structure of an emission treatment catalyst according to an embodiment of the present invention.
도 2는 본 발명의 일 구체예에 따른 배출물 처리 촉매가 활용될 수 있는 예시적인 공정을 개략적으로 나타낸 도면이다.2 is a schematic diagram of an exemplary process in which an effluent treatment catalyst according to one embodiment of the present invention may be utilized.
도 3a는 실험예 1에 따라 실시예 1의 촉매에 대한 전체 SEM 이미지이고, 도 3b는 도 3a의 일 부분에 대한 성분별 SEM 이미지이다.Figure 3a is an overall SEM image of the catalyst of Example 1 according to Experimental Example 1, and Figure 3b is an SEM image of each component of a portion of Figure 3a.
도 4a는 실험예 1에 따라 실시예 2의 촉매에 대한 전체 SEM 이미지이고, 도 4b는 도 4a의 일 부분에 대한 성분별 SEM 이미지이다.Figure 4a is an overall SEM image of the catalyst of Example 2 according to Experimental Example 1, and Figure 4b is an SEM image of each component of a portion of Figure 4a.
도 5a는 실험예 1에 따라 실시예 3의 촉매에 대한 전체 SEM 이미지이고, 도 5b는 도 5a의 일 부분에 대한 성분별 SEM 이미지이다.Figure 5a is an overall SEM image of the catalyst of Example 3 according to Experimental Example 1, and Figure 5b is an SEM image of each component of a portion of Figure 5a.
도 6a는 실험예 1에 따라 실시예 4의 촉매에 대한 전체 SEM 이미지이고, 도 6b는 도 6a의 일 부분에 대한 성분별 SEM 이미지이다.Figure 6a is an overall SEM image of the catalyst of Example 4 according to Experimental Example 1, and Figure 6b is an SEM image of each component of a portion of Figure 6a.
도 7a는 실험예 2에 따라 비교예 2의 촉매에 대한 이소프로판올 및 CO의 배출량(ppm)을 측정한 결과를 나타낸 그래프이다.Figure 7a is a graph showing the results of measuring the emissions (ppm) of isopropanol and CO for the catalyst of Comparative Example 2 according to Experimental Example 2.
도 7b는 실험예 2에 따라 비교예 3의 촉매에 대한 이소프로판올 및 CO의 배출량(ppm)을 측정한 결과를 나타낸 그래프이다.Figure 7b is a graph showing the results of measuring the emissions (ppm) of isopropanol and CO for the catalyst of Comparative Example 3 according to Experimental Example 2.
도 8는 실험예 3에 따라 비교예 1의 촉매, 실시예 1의 촉매 및 실시예 2의 촉매 각각에 대한 촉매의 내구성(k/k0 값)을 측정한 결과를 나타낸 그래프이다.Figure 8 is a graph showing the results of measuring catalyst durability (k/k 0 value) for each of the catalyst of Comparative Example 1, the catalyst of Example 1, and the catalyst of Example 2 according to Experimental Example 3.
도 9a는 실험예 5의 흐름 c에서 각 성분의 날짜별 농도를 나타낸 그래프이다.Figure 9a is a graph showing the concentration of each component by day in flow c of Experimental Example 5.
도 9b는 실험예 5의 흐름 d에서 각 성분의 날짜별 농도를 나타낸 그래프이다.Figure 9b is a graph showing the concentration of each component by day in flow d of Experimental Example 5.
본 발명은 첨부된 도면을 참고로 하여 하기의 설명에 의하여 모두 달성될 수 있다. 하기의 설명은 본 발명의 바람직한 구체 예를 기술하는 것으로 이해되어야 하며, 본 발명이 반드시 이에 한정되는 것은 아니다.The present invention can be achieved by the following description with reference to the attached drawings. The following description should be understood as describing preferred embodiments of the present invention, but the present invention is not necessarily limited thereto.
본 발명은 지지체 상에 제1 촉매 및 제2 촉매가 도입된 배출물 처리 촉매를 제공한다. 상기 촉매는 유기 또는 무기 화합물의 일반적인 산화 또는 환원 반응에 사용될 수 있는 촉매로서, 구체적으로, 반도체, 디스플레이 공정 등과 같은 특정 산업 분야에서 배출되는 유기 또는 무기 화합물의 공정 배출물을 산화 또는 환원하여 물, 질소 및 이산화탄소와 같이 배출 가능한 형태로 처리하는 과정에서 활용될 수 있다. 이러한 배출물은 유기 휘발 물질 및 냄새 유발 물질 등과 같은 1차 오염원을 포함하고, 상기 촉매는 이러한 1차 오염원을 산화 또는 환원하는데 적합하게 활용될 수 있다. 또한, 상기 촉매는 1차 오염원의 처리 뿐만 아니라 1차 오염원의 처리 과정에서 생성될 수 있는 2차 오염원을 산화 또는 환원하는데 적합하게 활용될 수 있다. 상기 1차 오염원 또는 2차 오염원은 예를 들면, 암모니아(NH3), 질소 산화물(예를 들면, NOx(NO, NO2) 또는 N2O 등), 또는 이소프로판올(IPA) 등과 같은 유기 휘발 물질일 수 있다. 본 발명의 일 구체예에 따르면, 상기 촉매는 암모니아 및 유기 휘발 물질의 동시 산화 반응, 또는 질소 산화물 등의 선택적 환원 반응에 활용된다.The present invention provides an exhaust treatment catalyst incorporating a first catalyst and a second catalyst on a support. The catalyst is a catalyst that can be used in general oxidation or reduction reactions of organic or inorganic compounds. Specifically, it oxidizes or reduces process emissions of organic or inorganic compounds emitted from specific industrial fields such as semiconductor and display processes to water, nitrogen, etc. And it can be used in the process of processing it into an emissible form such as carbon dioxide. These emissions include primary pollutants such as organic volatile substances and odor-causing substances, and the catalyst can be suitably used to oxidize or reduce these primary pollutants. In addition, the catalyst can be suitably used to oxidize or reduce secondary pollutants that may be generated during the treatment of primary pollutants as well as the treatment of primary pollutants. The primary or secondary pollutants include, for example, ammonia (NH 3 ), nitrogen oxides (for example, NO x (NO, NO 2 ) or N 2 O, etc.), or organic volatiles such as isopropanol (IPA). It can be a substance. According to one embodiment of the present invention, the catalyst is used for a simultaneous oxidation reaction of ammonia and organic volatile substances, or a selective reduction reaction of nitrogen oxides, etc.
본 발명에 따른 배출물 처리 촉매는 지지체 상에 제1 촉매 및 제2 촉매가 도입된 형태일 수 있다. 상기 지지체는 제1 촉매와 제2 촉매를 지지하여 고정하기 위한 기능을 가진 것으로, 해당 기술분야에서 일반적으로 사용되는 물질이면 특별히 한정되지 않는다. 본 발명의 일 구체예 따르면, 상기 지지체는 허니컴(honeycomb) 구조의 형상을 가질 수 있으며, 코디어라이트(cordierite), 실리카 및 티타니아 중 적어도 하나 이상을 포함하는 세라믹 재료로 구성될 수 있다. 구체적으로, 상기 세라믹 재료는 코디어라이트일 수 있다.The emission treatment catalyst according to the present invention may be in the form of a first catalyst and a second catalyst introduced onto a support. The support has the function of supporting and fixing the first catalyst and the second catalyst, and is not particularly limited as long as it is a material commonly used in the relevant technical field. According to one embodiment of the present invention, the support may have a honeycomb structure and may be made of a ceramic material containing at least one of cordierite, silica, and titania. Specifically, the ceramic material may be cordierite.
상기 지지체에 도입된 제1 촉매는 배출물에 포함되는 1차 오염원이나 1차 오염원의 처리 과정에서 생성될 수 있는 2차 오염원의 산화 또는 환원 시, 반응 속도에 영향을 주는 물질로, 1차 오염원이나 2차 오염원이 최종적으로 물, 질소 및 이산화탄소와 같은 배출 가능한 비오염원으로 변환될 수 있도록 돕는다. 상기 제1 촉매는 상술한 기능성을 가진 물질이면, 특별히 한정되지 않는다. 본 발명의 일 구체예에 따르면, 상기 제1 촉매는 제올라이트 촉매이다. 구체적으로, 상기 제올라이트는 ZSM-5, ZSM-11, ZSM-12, ZSM-18, ZSM-23, MCM-제올라이트, 모데나이트(mordenite), 포저사이트(faujasite), 페리어라이트(ferrierite), 베타 제올라이트, 차바자이트(chabazite) 및 이들의 혼합물로 이루어진 군으로부터 선택될 수 있고, 보다 구체적으로 상기 제올라이트는 차바자이트 또는 베타 제올라이트일 수 있다. 본 발명의 일 구체예에 따르면, 상기 제1 촉매는 500 ㎡/g 내지 800 ㎡/g, 구체적으로 525 ㎡/g 내지 750 ㎡/g, 더 구체적으로 550 ㎡/g 내지 700 ㎡/g의 비표면적을 가진다. 상기 비표면적은 BET 법에 의해 측정된다.The first catalyst introduced into the support is a substance that affects the reaction rate during the oxidation or reduction of primary pollutants included in the discharge or secondary pollutants that may be generated during the treatment of the primary pollutants. It helps secondary pollutants to ultimately be converted into non-emissionable non-pollutants such as water, nitrogen, and carbon dioxide. The first catalyst is not particularly limited as long as it is a material having the above-described functionality. According to one embodiment of the present invention, the first catalyst is a zeolite catalyst. Specifically, the zeolites include ZSM-5, ZSM-11, ZSM-12, ZSM-18, ZSM-23, MCM-zeolite, mordenite, faujasite, ferrierite, and beta. It may be selected from the group consisting of zeolite, chabazite, and mixtures thereof, and more specifically, the zeolite may be chabazite or beta zeolite. According to one embodiment of the present invention, the first catalyst has a ratio of 500 ㎡/g to 800 ㎡/g, specifically 525 ㎡/g to 750 ㎡/g, more specifically 550 ㎡/g to 700 ㎡/g. It has a surface area. The specific surface area is measured by the BET method.
본 발명의 일 구체예에 따르면, 상기 제올라이트 촉매는 금속 이온-교환된 제올라이트 촉매이다. 상기 금속 이온은 해당 기술분야에서 제올라이트 촉매에 일반적으로 도입될 수 있는 금속 이온이라면 그 종류는 특별히 제한되지 않는다. 본 발명의 일 구체예에 따르면, 상기 금속 이온은 Fe, Cu 또는 이의 조합이다. 본 발명의 일 구체예에 따르면, 상기 금속 이온은 촉매의 총 중량을 기준으로 0.1 중량% 내지 10 중량%, 구체적으로 0.5 중량% 내지 7.5 중량%, 더 구체적으로 1 중량% 내지 5 중량%가 촉매에 도입된다.According to one embodiment of the present invention, the zeolite catalyst is a metal ion-exchanged zeolite catalyst. The type of the metal ion is not particularly limited as long as it is a metal ion that can be generally introduced into zeolite catalysts in the relevant technical field. According to one embodiment of the present invention, the metal ion is Fe, Cu, or a combination thereof. According to one embodiment of the present invention, the metal ion is 0.1% by weight to 10% by weight, specifically 0.5% by weight to 7.5% by weight, more specifically 1% by weight to 5% by weight based on the total weight of the catalyst. is introduced in
상기 지지체에 도입된 제2 촉매는 제1 촉매와 마찬가지로 배출물에 포함되는 1차 오염원이나 1차 오염원의 처리 과정에서 생성될 수 있는 2차 오염원의 산화 또는 환원 시, 반응 속도에 영향을 주는 물질로, 1차 오염원이나 2차 오염원이 최종적으로 물, 질소 및 이산화탄소와 같은 배출 가능한 비오염원으로 변환될 수 있도록 돕는다. 상기 제2 촉매는 상술한 기능성을 가진 물질이면, 특별히 한정되지 않는다. 본 발명의 일 구체예에 따르면, 제2 촉매는 알루미나(Al2O3)에 니켈(Ni) 및 마그네슘(Mg)을 첨가한 촉매이다. 본 발명의 일 구체예에 따르면, 상기 제2 촉매는 50 ㎡/g 내지 250 ㎡/g, 구체적으로 75 ㎡/g 내지 200 ㎡/g, 더 구체적으로 100 ㎡/g 내지 150 ㎡/g의 비표면적을 가진다. 상기 비표면적은 BET 법에 의해 측정된다.The second catalyst introduced into the support, like the first catalyst, is a substance that affects the reaction rate when oxidizing or reducing primary pollutants included in the discharge or secondary pollutants that may be generated during the treatment of the primary pollutants. , helps primary or secondary pollutants to be finally converted into non-polluting sources that can be discharged, such as water, nitrogen, and carbon dioxide. The second catalyst is not particularly limited as long as it is a material having the above-mentioned functionality. According to one embodiment of the present invention, the second catalyst is a catalyst obtained by adding nickel (Ni) and magnesium (Mg) to alumina (Al 2 O 3 ). According to one embodiment of the present invention, the second catalyst has a ratio of 50 ㎡/g to 250 ㎡/g, specifically 75 ㎡/g to 200 ㎡/g, more specifically 100 ㎡/g to 150 ㎡/g. It has a surface area. The specific surface area is measured by the BET method.
상기 제1 촉매와 제2 촉매는 각각 개별적으로도 배출물 처리에 있어서, 탁월한 기능성을 가지지만, 오염원의 종류가 다양해지는 경우, 제1 촉매 또는 제2 촉매의 기능성이 저하되고, 이는 전체 촉매의 기능성 저하로 이어질 수 있다. 본 발명에서 제1 촉매와 제2 촉매는 오염원의 종류가 다양해도 전체 촉매로서의 기능성이 저하되지 않는 조합으로 선택된다. 본 발명에 따른 배출물 처리 촉매는 질소 산화물의 처리 뿐만 아니라 암모니아와 유기 휘발 물질의 동시 처리에 바람직하게 활용될 수 있다. 본 발명의 일 구체예에 따르면, 상기 제1 촉매는 전체 배출물 처리 촉매를 기준으로 50 g/L 내지 150 g/L, 구체적으로 65 g/L 내지 135 g/L, 더 구체적으로 80 g/L 내지 120 g/L가 도입된다. 본 발명의 일 구체예에 따르면, 상기 제2 촉매는 전체 배출물 처리 촉매를 기준으로 20 g/L 내지 80 g/L, 구체적으로 25 g/L 내지 75 g/L, 더 구체적으로 30 g/L 내지 70 g/L가 도입된다.The first catalyst and the second catalyst individually have excellent functionality in treating effluents, but when the types of pollutants vary, the functionality of the first catalyst or the second catalyst deteriorates, which reduces the functionality of the entire catalyst. may lead to degradation. In the present invention, the first catalyst and the second catalyst are selected as a combination that does not deteriorate the functionality of the overall catalyst even if there are various types of contaminants. The emission treatment catalyst according to the present invention can be preferably used for the simultaneous treatment of ammonia and organic volatile substances as well as the treatment of nitrogen oxides. According to one embodiment of the present invention, the first catalyst is 50 g/L to 150 g/L, specifically 65 g/L to 135 g/L, more specifically 80 g/L, based on the total effluent treatment catalyst. to 120 g/L is introduced. According to one embodiment of the present invention, the second catalyst is 20 g/L to 80 g/L, specifically 25 g/L to 75 g/L, more specifically 30 g/L, based on the total effluent treatment catalyst. to 70 g/L are introduced.
본 발명의 일 구체예에 따르면, 상기 배출물 처리 촉매에서 제1 촉매 및 제2 촉매의 중량비는 1:1 내지 9:1, 구체적으로 1:1 내지 6:1, 더 구체적으로 1:1 내지 4:1이다. 상술한 범위 내에서 제1 촉매와 제2 촉매의 조합 사용에 따른 효과가 더 부각될 수 있다.According to one embodiment of the present invention, the weight ratio of the first catalyst and the second catalyst in the exhaust treatment catalyst is 1:1 to 9:1, specifically 1:1 to 6:1, more specifically 1:1 to 4. :1. Within the above-mentioned range, the effect of using the first catalyst and the second catalyst in combination may be more highlighted.
예시적으로, 암모니아와 유기 휘발 물질을 동시에 처리함에 있어서, 제1 촉매로 사용된 제올라이트 촉매는 암모니아에 대해서 선택적 촉매 산화 반응(SCO 반응)과 일부 산화된 질소 산화물(NOx)와 암모니아에 대해서 선택적 촉매 환원 반응(SCR 반응)에 적합할 수 있으며, 제2 촉매로 사용된 알루미나에 니켈 및 마그네슘을 첨가한 촉매는 암모니아의 일부 산화에 의한 질소 산화물 생성 및 이소프로판올 등의 유기 휘발 물질의 산화 반응에 적합할 수 있다. 또한, 상기 제2 촉매는 코크스(Coke)에 대한 내성을 지니고 있어 유기 휘발 물질의 처리 시 오랜 시간 동안 촉매의 성능이 유지될 수 있다. 반면에, 상기 제1 촉매인 제올라이트 촉매를 단독으로 사용하는 경우, 촉매의 산화력이 부족할 수 있는데, 이를 보완하기 위해 팔라듐(Pd), 백금(Pt) 등과 같은 귀금속을 혼합하여 촉매의 산화력을 증가시키면, 유기 휘발 물질에 대해서는 완전 산화 반응이 나타날 수는 있으나, 암모니아에 대해서는 질소로의 선택성(또는 전환율)이 현저하게 감소할 수 있어 바람직하지 않을 수 있다. 상기 제2 촉매인 알루미나에 니켈 및 마그네슘을 첨가한 촉매를 단독으로 사용하는 경우, 단독으로 사용이 가능할 수 있으나, 제올라이트 촉매와 비교하여 암모니아에 대해서는 질소로의 선택성(또는 전환율)이 높지는 않아 바람직하지 않을 수 있다.For example, in simultaneously treating ammonia and organic volatile substances, the zeolite catalyst used as the first catalyst is selective for ammonia (SCO reaction) and partially oxidized nitrogen oxides (NO x ) and ammonia. It may be suitable for catalytic reduction reaction (SCR reaction), and the catalyst with nickel and magnesium added to alumina used as a second catalyst is suitable for the production of nitrogen oxides by partial oxidation of ammonia and the oxidation reaction of organic volatile substances such as isopropanol. can do. In addition, the second catalyst has resistance to coke, so the performance of the catalyst can be maintained for a long time when treating organic volatile substances. On the other hand, when the first catalyst, the zeolite catalyst, is used alone, the oxidizing power of the catalyst may be insufficient. To compensate for this, the oxidizing power of the catalyst is increased by mixing noble metals such as palladium (Pd) and platinum (Pt). , a complete oxidation reaction may occur for organic volatile substances, but for ammonia, the selectivity (or conversion rate) to nitrogen may be significantly reduced, which may be undesirable. When the second catalyst, a catalyst in which nickel and magnesium are added to alumina, is used alone, it may be possible to use it alone, but it is preferable because the selectivity (or conversion rate) for ammonia to nitrogen is not high compared to the zeolite catalyst. You may not.
상기 제2 촉매는 기본적으로 알루미나 베이스의 촉매이며, 필수 성분으로 니켈과 마그네슘을 동시에 포함한다. 상기 니켈과 마그네슘의 첨가를 통해서, 촉매의 산화력이 향상될 뿐만 아니라, 코크스와 같은 부산물에 대한 내성도 향상될 수 있다. 구체적으로, 상기 니켈은 산화성을 나타내고, 마그네슘은 환원성을 나타낼 수 있다. 예를 들어, 니켈은 촉매 표면에 흡착이 되는 이소프로판올을 산화시켜 분해할 수 있는데, 이때 불완전 산화에 의해 촉매 표면에 코크스가 생성되는 것을 마그네슘의 환원성을 통해 방지할 수 있다. 또한, NiMg-Al2O3에 의하여 NH3가 일부 NOx를 생성할 수 있는데, 이 때 생성된 NOx는 제올라이트 상에서 SCR 반응 및 NH3-SCO 반응을 통하여 NH3 및 이소프로판올을 N2 및 CO2로 전환시킬 수 있다.The second catalyst is basically an alumina-based catalyst and contains both nickel and magnesium as essential components. Through the addition of nickel and magnesium, not only the oxidizing power of the catalyst can be improved, but also resistance to by-products such as coke can be improved. Specifically, nickel may exhibit oxidizing properties, and magnesium may exhibit reducing properties. For example, nickel can be decomposed by oxidizing isopropanol adsorbed on the catalyst surface. In this case, the formation of coke on the catalyst surface due to incomplete oxidation can be prevented through the reducing properties of magnesium. In addition, NH 3 can generate some NO x by NiMg-Al 2 O 3 , and at this time , the generated NO It can be converted to 2 .
본 발명의 일 구체예 따르면, 상기 제2 촉매에서 니켈 및 마그네슘의 총 함량은 알루미나 100 중량부를 기준으로 20 중량부 내지 40 중량부, 구체적으로 23 중량부 내지 36 중량부, 더 구체적으로 26 중량부 내지 32 중량부이다. 상술한 범위 내에서 니켈과 마그네슘 첨가에 따른 효과가 더 부각될 수 있다.According to one embodiment of the present invention, the total content of nickel and magnesium in the second catalyst is 20 parts by weight to 40 parts by weight, specifically 23 parts by weight to 36 parts by weight, more specifically 26 parts by weight, based on 100 parts by weight of alumina. to 32 parts by weight. Within the above-mentioned range, the effects of adding nickel and magnesium may be more prominent.
상술한 제2 촉매의 기능성을 고려하여, 니켈은 마그네슘에 비해 훨씬 다량이 알루미나에 첨가될 수 있다. 본 발명의 일 구체예에 따르면, 상기 제2 촉매에서 니켈과 마그네슘의 중량비는 5:1 내지 15:1, 구체적으로 6.5:1 내지 13.5:1, 보다 구체적으로 8:1 내지 12:1이다. 상술한 범위 내에서 니켈과 마그네슘 첨가에 따른 효과가 더 부각될 수 있다.Considering the functionality of the second catalyst described above, nickel can be added to alumina in a much larger amount than magnesium. According to one embodiment of the present invention, the weight ratio of nickel and magnesium in the second catalyst is 5:1 to 15:1, specifically 6.5:1 to 13.5:1, and more specifically 8:1 to 12:1. Within the above-mentioned range, the effects of adding nickel and magnesium may be more prominent.
도 1a 및 도 1b는 본 발명의 일 구체예에 따른 배출물 처리 촉매의 개략적인 구조를 나타낸다. 도 1a 및 도 1b는 지지체의 표면을 중심으로, 제1 촉매와 제2 촉매가 도입된 구조를 간략하게 설명하기 위한 것으로, 도 1a 및 도 1b에서 도시된 구조가 촉매 전체의 구조를 나타내는 것은 아니다.1A and 1B show a schematic structure of an exhaust treatment catalyst according to one embodiment of the present invention. Figures 1a and 1b are intended to briefly explain the structure into which the first and second catalysts are introduced, focusing on the surface of the support, and the structures shown in Figures 1a and 1b do not represent the entire structure of the catalyst. .
본 발명의 일 구체예에 따르면, 상기 제1 촉매 및 제2 촉매는 혼합되어 하나 이상의 코팅층에 도입되며, 이러한 촉매의 구조는 도 1a를 따른다. 본 발명의 일 구체예에 따르면, 상기 제1 촉매 및 제2 촉매는 각각 별개의 코팅층으로 분리되어 도입되며, 이러한 촉매의 구조는 도 1b를 따른다. 제1 촉매를 포함하는 코팅층과 제2 촉매를 포함하는 코팅층의 순서는 특별히 한정되는 것은 아니나, 지지체 상에 제1 촉매를 포함하는 제1 코팅층을 코팅한 후, 제2 촉매를 포함하는 제2 코팅층을 코팅하는 경우, 유기 휘발 물질과 같은 탄소계 화합물을 처리 시 발생하는 코크스에 대한 촉매의 내구성이 높아져 수명에 유리할 수 있다.According to one embodiment of the present invention, the first catalyst and the second catalyst are mixed and introduced into one or more coating layers, and the structure of the catalyst follows FIG. 1A. According to one embodiment of the present invention, the first catalyst and the second catalyst are introduced separately as separate coating layers, and the structure of these catalysts follows Figure 1b. The order of the coating layer containing the first catalyst and the coating layer containing the second catalyst is not particularly limited, but after coating the first coating layer containing the first catalyst on the support, the second coating layer containing the second catalyst is applied. When coated, the durability of the catalyst against coke generated when treating carbon-based compounds such as organic volatile substances increases, which may be advantageous for its lifespan.
이하에서는 상술한 촉매가 활용될 수 있는 예시적인 공정에 대해서 구체적으로 설명한다.Below, an exemplary process in which the above-described catalyst can be utilized will be described in detail.
상기 예시적인 공정은 이소프로판올 및 암모니아의 동시 저감 공정으로서, 상기 공정은 (1) 이소프로판올 및 암모니아를 포함하는 산업 배기가스를 제1 반응기에 공급하는 단계; (2) 상기 제1 반응기에서 이소프로판올 및 암모니아를 산화하는 단계; (3) 상기 제1 반응기의 배출물을 제2 반응기에 공급하는 단계; (4) 상기 제2 반응기에서 질소, 이산화탄소 및 물을 생성하는 단계; 및 (5) 상기 제2 반응기의 배출물을 배출하는 단계를 포함한다.The exemplary process is a simultaneous reduction of isopropanol and ammonia, the process comprising: (1) supplying industrial exhaust gas containing isopropanol and ammonia to a first reactor; (2) oxidizing isopropanol and ammonia in the first reactor; (3) supplying the discharge from the first reactor to a second reactor; (4) producing nitrogen, carbon dioxide, and water in the second reactor; and (5) discharging the effluent from the second reactor.
상기 (1) 단계에서, 이소프로판올 및 암모니아를 포함하는 산업 배기가스는 먼저 제1 반응기에 공급된다. 해당 공정의 효율을 높이기 위해서는, 산업 배기가스에서 이소프로판올 및 암모니아의 농도가 일정 수준 이상이 되는 것이 바람직하다. 일 구체예로서, 산업 배기가스에서 이소프로판올 및 암모니아의 농도 합은 100ppm 내지 10,000ppm, 구체적으로 2,000ppm 내지 9,000ppm, 더 구체적으로 4,000ppm 내지 8,000ppm이고, 이소프로판올의 농도는 암모니아의 농도를 기준으로 10% 내지 5,000%, 구체적으로 30 내지 3,000%, 더 구체적으로 50 내지 1,000%이며, 이소프로판올 및 암모니아의 농도는 각각 100ppm 이상, 구체적으로 1,000ppm 이상, 더 구체적으로 2,000ppm 이상일 수 있다. 이소프로판올 및 암모니아 중 어느 한 성분의 농도가 지나치게 낮은 경우, 두 성분 간의 간섭 작용이 미미하여, 어느 한 성분을 제거하는 목적으로 고안된 발명을 통해서도 유사한 효과를 달성할 수 있어, 해당 공정만의 효용성이 떨어질 수 있다. 이와 반대로, 이소프로판올 및 암모니아 중 어느 한 성분의 농도가 지나치게 높은 경우, 해당 공정을 통해서도 우수한 효과를 발현할 수 없어, 해당 공정의 효용성이 떨어질 수 있다. 일례로, 상기 공정은 암모니아의 선택 산화 반응(즉, 암모니아가 특정한 조건 또는 촉매 상에서 질소(N2)와 물(H2O)로 선택적으로 산화되는 반응)을 포함하는 데, 이소프로판올의 농도가 지나치게 낮은 경우에는 암모니아의 선택 산화 반응과 종래기술의 조합으로도 이소프로판올과 암모니아의 처리 목적을 달성할 수 있고, 이와는 반대로, 이소프로판올의 농도가 지나치게 높은 경우에는 이소프로판올의 산화 처리 중 발생하는 반응열로 인해 암모니아의 산화 반응도 활성화되어 NOx(즉, NO 또는 NO2)가 다량 발생하게 됨에 따라 별도의 환원제 공급 단계가 없이는 해당 공정의 목적을 달성할 수 없다.In step (1), industrial exhaust gas containing isopropanol and ammonia is first supplied to the first reactor. In order to increase the efficiency of the process, it is desirable for the concentration of isopropanol and ammonia in industrial exhaust gas to be above a certain level. As an embodiment, the sum of the concentrations of isopropanol and ammonia in industrial exhaust gas is 100 ppm to 10,000 ppm, specifically 2,000 ppm to 9,000 ppm, more specifically 4,000 ppm to 8,000 ppm, and the concentration of isopropanol is 10% based on the concentration of ammonia. % to 5,000%, specifically 30 to 3,000%, more specifically 50 to 1,000%, and the concentrations of isopropanol and ammonia may each be 100 ppm or more, specifically 1,000 ppm or more, and more specifically 2,000 ppm or more. If the concentration of either isopropanol or ammonia is too low, the interference between the two components is minimal, and a similar effect can be achieved through an invention designed to remove either component, which may reduce the effectiveness of the process alone. there is. On the contrary, if the concentration of either isopropanol or ammonia is too high, excellent effects cannot be achieved through the process, and the effectiveness of the process may be reduced. As an example, the process includes a selective oxidation reaction of ammonia (i.e., a reaction in which ammonia is selectively oxidized to nitrogen (N 2 ) and water (H 2 O) under specific conditions or on a catalyst), where the concentration of isopropanol is excessive. In low cases, the purpose of treating isopropanol and ammonia can be achieved by combining the selective oxidation reaction of ammonia with the prior art. Conversely, if the concentration of isopropanol is too high, the reaction heat generated during the oxidation treatment of isopropanol can cause ammonia to be removed. As the oxidation reaction is also activated and a large amount of NO x (i.e. NO or NO 2 ) is generated, the purpose of the process cannot be achieved without a separate reducing agent supply step.
상술한 이소프로판올 및 암모니아의 농도 합은 실제 산업분야에 적용하여 처리효율을 높일 수 있는 수준이다. 공급된 산업 배기가스에서 이소프로판올 및 암모니아의 농도가 낮은 경우, 이소프로판올 및 암모니아를 흡착할 수 있는 농축기를 사용하여, 제1 반응기에 공급하기 전에 이소프로판올 및 암모니아의 농도를 조절할 수 있다.The sum of the concentrations of isopropanol and ammonia described above is at a level that can increase treatment efficiency when applied to actual industrial fields. If the concentration of isopropanol and ammonia in the supplied industrial exhaust gas is low, a concentrator capable of adsorbing isopropanol and ammonia can be used to control the concentration of isopropanol and ammonia before feeding it to the first reactor.
상술한 이소프로판올 및 암모니아의 농도를 만족하는 산업 배기가스는 제1 반응기에 공급하기 전, 공급 유량을 제1 유량과 제2 유량으로 분리하여, 상기 제1 유량은 제1 반응기에 공급되고, 제2 유량은 제1 반응기의 배출물과 혼합될 수 있다. 공급 유량을 제1 유량과 제2 유량으로 분리한 후, 제2 유량을 제1 반응기의 배출물과 혼합하는 경우, 제2 반응기에서 제2 유량에 포함된 암모니아가 NOx 또는 N2O를 분해하기 위한 환원제로 사용될 수 있어, 반응 효율을 높일 수 있다. 제1 유량과 제2 유량의 분배는 하기 계산식 1에 의해 결정될 수 있다.Before supplying the industrial exhaust gas satisfying the above-described concentrations of isopropanol and ammonia to the first reactor, the supply flow rate is separated into a first flow rate and a second flow rate, and the first flow rate is supplied to the first reactor, and the second flow rate is supplied to the first reactor. The flow rate may be mixed with the effluent from the first reactor. After separating the supply flow rate into a first flow rate and a second flow rate, when the second flow rate is mixed with the discharge from the first reactor, the ammonia contained in the second flow rate in the second reactor decomposes NO x or N 2 O. It can be used as a reducing agent to increase reaction efficiency. The distribution of the first flow rate and the second flow rate can be determined by the following calculation equation 1.
[계산식 1][Calculation Formula 1]
Figure PCTKR2023011649-appb-img-000001
Figure PCTKR2023011649-appb-img-000001
여기서, Qa는 분배 전 공급 유량을 의미하고, Qa2는 제2 유량을 의미하며, 해당 부호는 도 2를 참고한다. f는 제1 반응기에서 배출되는 NOx의 양(c), NOx 1 상당량을 완전히 제거하기 위해 필요한 암모니아의 상당량(d), 제2 반응기에서 목적하는 NOx의 제거 효율(x)과 관계가 있으며, 이들로부터 결정되어지는 NOx를 제거하기 위해 제2 반응기에 도입되어야 하는 암모니아의 양(a)를 시스템에 도입되는 배기가스에 포함된 암모니아의 총 양(b)로 나눈 값으로 정의할 수 있다. 이는 다음과 같은 계산식 2로 정리된다.Here, Q a means the supply flow rate before distribution, Q a2 means the second flow rate, and the corresponding symbols refer to FIG. 2. f is related to the amount of NO x discharged from the first reactor (c ) , the amount of ammonia required to completely remove the equivalent amount of NO It can be defined as the amount (a) of ammonia that must be introduced into the second reactor to remove NO there is. This is summarized in the following calculation formula 2.
[계산식 2][Calculation Formula 2]
Figure PCTKR2023011649-appb-img-000002
Figure PCTKR2023011649-appb-img-000002
여기서, a는 c×d×x에 의해 계산된다. c는 제1 반응기에서 배출되는 NOx의 양을 의미하며, NO의 양(c1)과 NO2의 양(c2)을 합하여 결정된다. d는 NOx의 1 상당량을 완전히 제거하기 위해 필요한 암모니아의 상당량을 의미하며, NO의 양과 NO2의 양으로 계산 시에 하기 계산식 3에 따라 그 값이 결정된다. x는 목적하는 NOx의 제거 효율을 의미하며, 본 발명의 실행 단계에서 최종 처리된 배출가스 중 이소프로판올, 암모니아, NOx의 농도를 감안하여 사전에 정하게 된다. x는 0.5 내지 1.5, 구체적으로 0.6 내지 1.4, 더 구체적으로 0.7 내지 1.3으로 정할 수 있다. 상기 범위보다 x 값이 작은 경우에는 암모니아의 선택적 환원 작용에 의한 NOx의 저감 효율이 낮아질 수 있으며, 상기 범위보다 x 값이 큰 경우에는 촉매에 부과되는 부담이 증가하여 이소프로판올과 암모니아의 산화 반응 효율이 저하될 수 있다.Here, a is calculated by c×d×x. c refers to the amount of NO x discharged from the first reactor, and is determined by adding the amount of NO (c 1 ) and the amount of NO 2 (c 2 ). d means the equivalent amount of ammonia required to completely remove 1 equivalent amount of NO x refers to the desired removal efficiency of NO x , and is determined in advance taking into account the concentrations of isopropanol, ammonia, and NO x can be set to 0.5 to 1.5, specifically 0.6 to 1.4, and more specifically 0.7 to 1.3. If the x value is smaller than the above range, the reduction efficiency of NO This may deteriorate.
[계산식 3][Calculation Formula 3]
Figure PCTKR2023011649-appb-img-000003
Figure PCTKR2023011649-appb-img-000003
일 구체예에 따르면, 제2 유량은 제1 유량 및 제2 유량을 합친 공급 유량을 기준으로 1%(f=0.01) 초과, 5%(f=0.05) 이상, 10%(f=0.1) 이상이고, 40%(f=0.4) 미만, 30%(f=0.3) 이하, 20%(f=0.2) 이하, 15%(f=0.15) 이하일 수 있고, 일례로 5% 내지 30%일 수 있다. 제2 유량이 상기 범위를 만족할 때, NOx, N2O과 같은 2차 오염원의 배출을 최소화할 수 있다.According to one embodiment, the second flow rate is more than 1% (f=0.01), more than 5% (f=0.05), and more than 10% (f=0.1) based on the supply flow rate of the first flow rate and the second flow rate combined. and may be less than 40% (f=0.4), less than 30% (f=0.3), less than 20% (f=0.2), less than 15% (f=0.15), and for example, may be 5% to 30%. . When the second flow rate satisfies the above range, emissions of secondary pollutants such as NO x and N 2 O can be minimized.
산업 배기가스의 공급 유량(분리된 경우, 제1 유량)은 제1 반응기에 공급되며, 제1 반응기에서 이소프로판올 및 암모니아는 산화된다. 이소프로판올 및 암모니아의 산화는 이소프로판올 및 암모니아가 각각 산소와 반응하는 것이며, 이에 의해 다음의 반응이 수행될 수 있다.The feed flow of industrial exhaust gases (if separated, the first flow) is fed to a first reactor, in which isopropanol and ammonia are oxidized. Oxidation of isopropanol and ammonia is the reaction of isopropanol and ammonia with oxygen, respectively, whereby the following reactions can be performed.
[반응식 1][Scheme 1]
C3H8O + 4.5O2 → 3CO2 + 4H2OC 3 H 8 O + 4.5O 2 → 3CO 2 + 4H 2 O
[반응식 2][Scheme 2]
2NH3 + 1.5O2 → N2 + 3H2O2NH 3 + 1.5O 2 → N 2 + 3H 2 O
[반응식 3][Scheme 3]
C3H8O + 2O2 → 2C + CO + 4H2OC 3 H 8 O + 2O 2 → 2C + CO + 4H 2 O
[반응식 4][Scheme 4]
C3H8O + 3O2 → 3CO + 4H2O C 3 H 8 O + 3O 2 → 3CO + 4H 2 O
[반응식 5][Scheme 5]
2NH3 + 2.5O2 → 2NO + 3H2O2NH 3 + 2.5O 2 → 2NO + 3H 2 O
[반응식 6][Scheme 6]
2NH3 + 3.5O2 → 2NO2 + 3H2O2NH 3 + 3.5O 2 → 2NO 2 + 3H 2 O
[반응식 7][Scheme 7]
4NH3 + 4NO + O2 → 4N2 + 6H2O4NH 3 + 4NO + O 2 → 4N 2 + 6H 2 O
[반응식 8][Scheme 8]
8NH3 + 6NO2 → 7N2 + 12H2O8NH 3 + 6NO 2 → 7N 2 + 12H 2 O
반응식 1 및 2는 제1 반응기에서 목적하는 주반응이며, 반응식 3 내지 8은 실제 반응 진행 시 발생할 수 있는 부반응이다. 이소프로판올 및 암모니아를 동시에 산화하는 경우, 각각의 반응물에 대하여 최적의 조건에서 반응을 수행할 수 없기 때문에, 일정 수준 이상의 부반응이 필연적으로 동반된다. 이러한 부반응에 의한 2차 오염원을 제거하기 위해, 추가적인 반응이 요구된다. 이소프로판올 및 암모니아 외의 반응물인 산소는 일반적으로 배기가스에 충분한 양이 포함되어 있으나, 필요에 따라서 반응기에 공기를 추가 공급할 수 있다. Schemes 1 and 2 are the main reactions targeted in the first reactor, and Schemes 3 to 8 are side reactions that may occur during the actual reaction. When isopropanol and ammonia are oxidized at the same time, since the reaction cannot be performed under optimal conditions for each reactant, a certain level of side reactions are inevitably accompanied. To remove secondary contaminants caused by these side reactions, additional reactions are required. Oxygen, which is a reactant other than isopropanol and ammonia, is generally contained in a sufficient amount in the exhaust gas, but additional air can be supplied to the reactor as needed.
상기 제1 반응기에서 이소프로판올 및 암모니아는 촉매에 의해 산화될 수 있다. 도 2는 제1 반응기가 촉매 산화 반응기인 경우의 예시적인 공정도를 나타낸다. 상기 제1 반응기는 고정 베드 촉매 반응기(fixed bed catalytic reactor)의 형태로 촉매를 구비한다. 이 때, 촉매는 산화 반응 성능을 가지면서도 NH3의 선택 산화 반응과 NH3-deNOx 반응에 효과적인 촉매를 선택하는 것이 바람직할 수 있으며, 촉매가 이러한 기능성을 갖는다면 특별히 제한되지 않는다. 본 발명에 따른 배출물 처리 촉매는 상기 제1 반응기에 바람직하게 적용될 수 있다.In the first reactor, isopropanol and ammonia may be oxidized by a catalyst. Figure 2 shows an exemplary process diagram when the first reactor is a catalytic oxidation reactor. The first reactor is equipped with a catalyst in the form of a fixed bed catalytic reactor. At this time, it may be desirable to select a catalyst that has oxidation reaction performance and is effective in the selective oxidation reaction of NH 3 and NH 3 -deNO x reaction, and is not particularly limited as long as the catalyst has such functionality. The effluent treatment catalyst according to the present invention can be preferably applied to the first reactor.
촉매 산화 반응기인 제1 반응기는 100℃ 내지 650℃, 구체적으로 200℃ 내지 600℃, 더 구체적으로 300℃ 내지 550℃의 온도 조건 하에서 구동될 수 있다. 해당 범위보다 온도가 낮은 경우에는 전체적으로 산화 반응이 활발하게 진행되지 않아 바람직하지 않고, 해당 범위보다 온도가 높은 경우에는 NOx가 과다 발생하여 바람직하지 않다. 상기 제1 반응기는 상압 내지 10기압, 구체적으로 상압 내지 7기압, 더 구체적으로 상압 내지 5기압의 압력 조건 하에서 구동될 수 있다. 고압에서는 내압 용기를 채택해야 하기 때문에 장치 비용이 상승할 수 있다. 상기 제1 반응기는 200hr-1 내지 20,000hr-1, 구체적으로, 500hr-1 내지 10,000hr-1, 더 구체적으로 1,000hr-1 내지 5,000hr-1의 기체 공간 속도(GHSV) 조건 하에서 구동 될 수 있다. 해당 범위보다 기체 공간 속도가 낮은 경우에는 장치가 대형화되어야 하기 때문에 바람직하지 않고, 해당 범위보다 기체 공간 속도가 높은 경우에는 반응의 효율과 선택도가 감소하기 때문에 바람직하지 않다.The first reactor, which is a catalytic oxidation reactor, may be operated under temperature conditions of 100°C to 650°C, specifically 200°C to 600°C, and more specifically 300°C to 550°C. If the temperature is lower than the corresponding range, the overall oxidation reaction does not proceed actively, which is undesirable, and if the temperature is higher than the corresponding range, excessive NO x is generated, which is undesirable. The first reactor may be operated under pressure conditions of atmospheric pressure to 10 atmospheres, specifically atmospheric pressure to 7 atmospheres, and more specifically atmospheric pressure to 5 atmospheres. At high pressures, device costs may increase because pressure-resistant vessels must be adopted. The first reactor may be operated under gas space velocity (GHSV) conditions of 200hr -1 to 20,000hr -1 , specifically, 500hr -1 to 10,000hr -1 , and more specifically 1,000hr -1 to 5,000hr -1 there is. If the gas space velocity is lower than the corresponding range, it is undesirable because the device must be enlarged, and if the gas space velocity is higher than the corresponding range, it is undesirable because the efficiency and selectivity of the reaction decreases.
상기 촉매 산화 반응기는 목적을 달성하기 위해 반응물의 암모니아 중 질소산화물(NOx+N2O)로 전환된 비율이 50% 이하가 되고, N2O/총 질소산화물이 0.2 이하가 되도록 설계될 수 있다.In order to achieve the purpose , the catalytic oxidation reactor may be designed so that the ratio of ammonia in the reactant converted to nitrogen oxides ( NO there is.
상기 제1 반응기의 배출물은 제2 반응기에 공급된다. 제1 반응기에 공급되기 전에 공급 유량을 제1 유량과 제2 유량으로 분리한 경우에는 제2 유량이 제1 반응기의 배출물과 혼합되어 제2 반응기에 공급된다. 상기 제2 반응기에서 주로 질소, 이산화탄소 및 물이 생성된다. 상기 제2 반응기에서는 주로 다음의 반응이 수행될 수 있다.The discharge from the first reactor is fed to the second reactor. When the supply flow rate is separated into a first flow rate and a second flow rate before being supplied to the first reactor, the second flow rate is mixed with the discharge from the first reactor and supplied to the second reactor. Nitrogen, carbon dioxide and water are mainly produced in the second reactor. The following reactions can mainly be performed in the second reactor.
[반응식 9][Scheme 9]
C3H8O + 4.5O2 → 3CO2 + 4H2OC 3 H 8 O + 4.5O 2 → 3CO 2 + 4H 2 O
[반응식 10][Scheme 10]
4NH3 + 4NO + O2 → 4N2 + 6H2O4NH 3 + 4NO + O 2 → 4N 2 + 6H 2 O
[반응식 11][Scheme 11]
8NH3 + 6NO2 → 7N2 + 12H2O8NH 3 + 6NO 2 → 7N 2 + 12H 2 O
[반응식 12][Scheme 12]
C3H8O + 2.5O2 → 2C + CO2 + 4H2OC 3 H 8 O + 2.5O 2 → 2C + CO 2 + 4H 2 O
[반응식 13][Scheme 13]
C3H8O + 3O2 → 3CO + 4H2O C 3 H 8 O + 3O 2 → 3CO + 4H 2 O
[반응식 14][Scheme 14]
2NH3 + 1.5O2 → N2 + 3H2O2NH 3 + 1.5O 2 → N 2 + 3H 2 O
반응식 9 내지 11이 제2 반응기에서 목적하는 주반응이며, 반응식 12 내지 14는 실제 반응 진행 시 발생할 수 있는 부반응이다. 제1 반응기와 비교한다면, 주반응으로 이소프로판올이 산화되는 것은 큰 차이가 없으나, 암모니아의 경우에는 제1 반응에서 발생한 NOx 성분이 암모니아와 반응하여 질소와 물로 분해된다. Schemes 9 to 11 are the main reactions targeted in the second reactor, and Schemes 12 to 14 are side reactions that may occur during the actual reaction. Compared to the first reactor, there is no significant difference in the oxidation of isopropanol as the main reaction, but in the case of ammonia, the NO x component generated in the first reaction reacts with ammonia and is decomposed into nitrogen and water.
제2 반응기에서 NOx 성분은 환원되기는 하지만, 이소프로판올과 암모니아를 기준으로 본다면, 제1 반응기와 마찬가지로 제2 반응기는 촉매 산화 반응기로 구분될 수 있고, 고정 베드 촉매 반응기의 형태로 촉매를 구비한다. 이 때, 촉매는 산화 반응 성능을 가지면서도 NH3-deN2O 및 NH3-deNOx 반응에 효과적인 촉매를 선택하는 것이 바람직할 수 있으며, 촉매가 이러한 기능성을 갖는다면 특별히 제한되지 않는다. 본 발명에 따른 배출물 처리 촉매는 상기 제2 반응기에 바람직하게 적용될 수 있다.In the second reactor, the NO At this time, it may be desirable to select a catalyst that has oxidation reaction performance and is effective in NH 3 -deN 2 O and NH 3 -deNO x reactions, and is not particularly limited as long as the catalyst has such functionality. The effluent treatment catalyst according to the present invention can be preferably applied to the second reactor.
제2 반응기는 100℃ 내지 650℃, 구체적으로 150℃ 내지 600℃, 더 구체적으로 200℃ 내지 550℃의 온도 조건 하에서 구동될 수 있다. 해당 범위보다 온도가 낮은 경우에는 전체적으로 산화 반응이 활발하게 진행되지 않아 바람직하지 않고, 해당 범위보다 온도가 높은 경우에는 암모니아의 산화반응이 de-NOx 반응과 경쟁적으로 진행되어 NOx가 과다하게 발생하여 바람직하지 않다. 상기 제1 반응기는 상압 내지 10기압, 구체적으로 상압 내지 7기압, 더 구체적으로 상압 내지 5기압의 압력 조건 하에서 구동될 수 있다. 고압에서는 내압 용기를 채택해야 하기 때문에 장치 비용이 상승할 수 있다. 상기 제2 반응기는 200hr-1 내지 20,000hr-1, 구체적으로 500hr-1 내지 15,000hr-1, 더 구체적으로 1,000hr-1 내지 10,000hr-1의 기체 공간 속도(GHSV) 조건 하에서 구동 될 수 있다. 해당 범위보다 기체 공간 속도가 낮은 경우에는 장치가 대형화되어야 하기 때문에 바람직하지 않고, 해당 범위보다 기체 공간 속도가 높은 경우에는 반응의 효율과 선택도가 감소하기 때문에 바람직하지 않다.The second reactor may be operated under temperature conditions of 100°C to 650°C, specifically 150°C to 600°C, and more specifically 200°C to 550°C. If the temperature is lower than that range, it is not desirable because the overall oxidation reaction does not proceed actively, and if the temperature is higher than that range, the oxidation reaction of ammonia proceeds competitively with the de-NO x reaction, resulting in excessive NO x generation. Therefore, it is not desirable. The first reactor may be operated under pressure conditions of atmospheric pressure to 10 atmospheres, specifically atmospheric pressure to 7 atmospheres, and more specifically atmospheric pressure to 5 atmospheres. At high pressures, device costs may increase because pressure-resistant vessels must be adopted. The second reactor may be operated under gas space velocity (GHSV) conditions of 200hr -1 to 20,000hr -1 , specifically 500hr -1 to 15,000hr -1 , and more specifically 1,000hr -1 to 10,000hr -1 . If the gas space velocity is lower than the corresponding range, it is undesirable because the device must be enlarged, and if the gas space velocity is higher than the corresponding range, it is undesirable because the efficiency and selectivity of the reaction decreases.
이하, 본 발명의 이해를 돕기 위해 바람직한 실시예를 제시하지만, 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐 본 발명이 이에 한정되는 것은 아니다.Hereinafter, preferred examples are presented to aid understanding of the present invention, but the following examples are provided to facilitate understanding of the present invention and do not limit the present invention thereto.
실시예Example
촉매의 준비Preparation of catalyst
Cu_차바자이트(Cu_chabazite, 이하에서 '촉매 1'로 칭함), Fe_베타 제올라이트(Fe_beta zeolite, 이하에서 '촉매 2'로 칭함) 및 NiMg-Al2O3(이하에서 '촉매 3'으로 칭함)을 준비하였다. 상기 촉매의 구체적인 성분은 하기 표 1과 같다. 참고적으로, NiMg-Al2O3는 알루미나에 니켈 및 마그네슘이 첨가된 촉매이며, 첨가된 니켈 및 마그네슘의 함량은 하기 표 1에 따른다.Cu_chabazite (hereinafter referred to as 'catalyst 1'), Fe_beta zeolite (hereinafter referred to as 'catalyst 2'), and NiMg-Al 2 O 3 (hereinafter referred to as 'catalyst 3') (name) was prepared. The specific components of the catalyst are shown in Table 1 below. For reference, NiMg-Al 2 O 3 is a catalyst in which nickel and magnesium are added to alumina, and the contents of the added nickel and magnesium are according to Table 1 below.
촉매 1 catalyst 1 촉매 2 catalyst 2 촉매 3 catalyst 3
Cu 함량(wt %)Cu content (wt%) 3~43~4 -- --
Fe 함량(wt %)Fe content (wt%) -- 1~21~2 --
Ni 함량(wt %)Ni content (wt%) -- -- 2020
Mg 함량(wt %)Mg content (wt%) -- -- 22
SiO2 함량(wt %)SiO 2 content (wt%) 86.486.4 92.892.8 --
Al2O3 함량(wt %)Al 2 O 3 content (wt %) 9.99.9 5.15.1 7878
SiO2/Al2O3 SiO 2 /Al 2 O 3 15~1815~18 30~4030~40 --
비표면적(㎡/g)Specific surface area (㎡/g) 500~650500~650 550~700550~700 100~150100~150
또한, Pt-Al2O3(이하에서 '촉매 4'으로 칭함), Pd-Al2O3(이하에서 '촉매 5'으로 칭함) 및 Pt/Fe_베타 제올라이트(Pt/Fe_beta zeolite, 이하에서 '촉매 6'로 칭함)을 준비하였다. 상기 촉매의 구체적인 성분은 하기 표 1과 같다. 참고적으로, Pt-Al2O3는 알루미나에 백금이 첨가된 촉매이고, Pd-Al2O3는 알루미나에 팔라듐이 첨가된 촉매이며, Pt/Fe_베타 제올라이트는 Fe_베타 제올라이트에 백금이 첨가된 촉매이다. 첨가된 백금 또는 팔라듐의 함량은 하기 표 2를 따른다.In addition, Pt-Al 2 O 3 (hereinafter referred to as 'Catalyst 4'), Pd-Al 2 O 3 (hereinafter referred to as 'Catalyst 5'), and Pt/Fe_beta zeolite (hereinafter referred to as 'Catalyst 5') (referred to as 'Catalyst 6') was prepared. The specific components of the catalyst are shown in Table 1 below. For reference, Pt-Al 2 O 3 is a catalyst in which platinum is added to alumina, Pd-Al 2 O 3 is a catalyst in which palladium is added to alumina, and Pt/Fe_beta zeolite is a catalyst in which platinum is added to Fe_beta zeolite. It is an added catalyst. The content of added platinum or palladium follows Table 2 below.
촉매 4 catalyst 4 촉매 5 catalyst 5 촉매 6 catalyst 6
Pt 함량(wt %)Pt content (wt%) 0.30.3 -- 0.30.3
Pd 함량(wt %)Pd content (wt%) -- 0.30.3 --
Fe 함량(wt %)Fe content (wt%) -- -- 1~21~2
SiO2 함량(wt %)SiO 2 content (wt%) -- -- 92.692.6
Al2O3 함량(wt %)Al 2 O 3 content (wt %) 99.799.7 99.799.7 5.15.1
SiO2/Al2O3 SiO 2 /Al 2 O 3 -- -- 30~4030~40
비표면적(㎡/g)Specific surface area (㎡/g) 100~150100~150 100~150100~150 550~700550~700
실시예 1Example 1
허니컴 구조의 코디어라이트 지지체에 1차적으로 제1 촉매인 촉매 1(Cu_차바자이트)를 코디어라이트 부피당 약 120 g/L 코팅한 후, 2차적으로 제2 촉매인 촉매 3(NiMg-Al2O3)을 코디어라이트 부피당 약 30 g/L 코팅하였다. 이후에 550℃에서 4시간 동안 소성하여 최종적으로 촉매를 제조하였다.About 120 g/L per volume of cordierite was first coated with Catalyst 1 (Cu_chabazite), the first catalyst, on the honeycomb-structured cordierite support, and then secondarily coated with Catalyst 3 (NiMg-), the second catalyst. Al 2 O 3 ) was coated at about 30 g/L per volume of cordierite. Afterwards, the catalyst was finally prepared by calcining at 550°C for 4 hours.
실시예 2Example 2
제1 촉매인 촉매 1(Cu_차바자이트)와 제2 촉매인 촉매 3(NiMg-Al2O3)를 1:1 중량비로 혼합하여 혼합물을 제조한 후, 허니컴 구조의 코디어라이트 지지체에 상기 혼합물을 코디어라이트 부피당 약 150 g/L 코팅하였다. 이후에 550℃에서 4시간 동안 소성하여 최종적으로 촉매를 제조하였다.A mixture was prepared by mixing the first catalyst, Catalyst 1 (Cu_chabazite), and the second catalyst, Catalyst 3 (NiMg-Al 2 O 3 ) in a 1:1 weight ratio, and then placed on a honeycomb-structured cordierite support. The mixture was coated at approximately 150 g/L per volume of cordierite. Afterwards, the catalyst was finally prepared by calcining at 550°C for 4 hours.
실시예 3Example 3
허니컴 구조의 코디어라이트 지지체에 1차적으로 제1 촉매인 촉매 2(Fe_베타 제올라이트)를 코디어라이트 부피당 약 120 g/L 코팅한 후, 2차적으로 제2 촉매인 촉매 3(NiMg-Al2O3)을 코디어라이트 부피당 약 30 g/L 코팅하였다. 이후에 550℃에서 4시간 동안 소성하여 최종적으로 촉매를 제조하였다.About 120 g/L per volume of cordierite was first coated with Catalyst 2 (Fe_beta zeolite), the first catalyst, on the honeycomb-structured cordierite support, and then secondarily coated with Catalyst 3 (NiMg-Al), the second catalyst. 2 O 3 ) was coated at about 30 g/L per volume of cordierite. Afterwards, the catalyst was finally prepared by calcining at 550°C for 4 hours.
실시예 4Example 4
제1 촉매인 촉매 2(Fe_베타 제올라이트)와 제2 촉매인 촉매 3(NiMg-Al2O3)를 1:1 중량비로 혼합하여 혼합물을 제조한 후, 허니컴 구조의 코디어라이트 지지체에 상기 혼합물을 코디어라이트 부피당 약 150 g/L 코팅하였다. 이후에 550℃에서 4시간 동안 소성하여 최종적으로 촉매를 제조하였다.After preparing a mixture by mixing the first catalyst, Catalyst 2 (Fe_beta zeolite), and the second catalyst, Catalyst 3 (NiMg-Al 2 O 3 ) in a 1:1 weight ratio, the above catalyst was placed on a honeycomb-structured cordierite support. The mixture was coated at approximately 150 g/L per volume of cordierite. Afterwards, the catalyst was finally prepared by calcining at 550°C for 4 hours.
비교예 1Comparative Example 1
촉매 1(Cu_차바자이트)을 그대로 사용하였다.Catalyst 1 (Cu_chabazite) was used as is.
비교예 2Comparative Example 2
촉매 2(Fe_베타 제올라이트)를 그대로 사용하였다.Catalyst 2 (Fe_beta zeolite) was used as is.
비교예 3Comparative Example 3
촉매 3(NiMg-Al2O3)을 그대로 사용하였다.Catalyst 3 (NiMg-Al 2 O 3 ) was used as is.
비교예 4Comparative Example 4
촉매 4(Pt-Al2O3)를 그대로 사용하였다.Catalyst 4 (Pt-Al 2 O 3 ) was used as is.
비교예 5Comparative Example 5
촉매 5(Pd-Al2O3)를 그대로 사용하였다.Catalyst 5 (Pd-Al 2 O 3 ) was used as is.
비교예 6Comparative Example 6
촉매 6(Pt/Fe_베타 제올라이트)을 그대로 사용하였다.Catalyst 6 (Pt/Fe_beta zeolite) was used as is.
실험예Experiment example
실험예 1Experimental Example 1
실시예 1의 촉매, 실시예 2의 촉매, 실시예 3의 촉매 및 실시예 4의 촉매에 대한 SEM(Scanning Electron Microscope) 이미지를 도 3 내지 도 6에 나타내었다. 도 3 내지 도 6에서 a 부분은 전체 SEM 이미지에 대한 것이며, b 부분은 구체적인 성분별 SEM 이미지에 대한 것이다.Scanning Electron Microscope (SEM) images for the catalyst of Example 1, the catalyst of Example 2, the catalyst of Example 3, and the catalyst of Example 4 are shown in Figures 3 to 6. In Figures 3 to 6, part a is for the entire SEM image, and part b is for the SEM image for each specific component.
도 3a 및 도 3b는 실시예 1의 촉매에 대한 SEM 이미지이다. 도 3a 및 도 3b에 따르면, Cu 및 Si가 안쪽으로 코팅되어 있고, Ni, Mg, Al이 바깥쪽으로 코팅되어 있는 것을 확인할 수 있다.Figures 3a and 3b are SEM images of the catalyst of Example 1. According to Figures 3a and 3b, it can be seen that Cu and Si are coated on the inside, and Ni, Mg, and Al are coated on the outside.
도 4a 및 도 4b는 실시예 2의 촉매에 대한 SEM 이미지이다. 도 4a 및 도 4b에 따르면, Ni, Cu 등이 혼합되어 코팅되어 있는 것을 확인할 수 있다.Figures 4a and 4b are SEM images of the catalyst of Example 2. According to Figures 4a and 4b, it can be seen that Ni, Cu, etc. are mixed and coated.
도 5a 및 도 5b는 실시예 3의 촉매에 대한 SEM 이미지이다. 도 5a 및 도 5b에 따르면, Fe 및 Si가 안쪽으로 코팅되어 있고, Ni, Mg, Al이 바깥쪽으로 코팅되어 있는 것을 확인할 수 있다.Figures 5a and 5b are SEM images of the catalyst of Example 3. According to Figures 5a and 5b, it can be seen that Fe and Si are coated on the inside, and Ni, Mg, and Al are coated on the outside.
도 6a 및 도 6b는 실시예 4의 촉매에 대한 SEM 이미지이다. 도 6a 및 도 6b에 따르면, Ni, Fe 등이 혼합되어 코팅되어 있는 것을 확인할 수 있다.Figures 6a and 6b are SEM images of the catalyst of Example 4. According to Figures 6a and 6b, it can be seen that Ni, Fe, etc. are mixed and coated.
실험예 2Experimental Example 2
농축기(20)을 통과한 흐름 a는 총 유량이 1L/min이고, 여기서, 이소프로판올 및 암모니아는 각각 3,000ppm의 농도를 가졌다. 별도의 우회 흐름(a2) 없이 상기 흐름 a를 제1 반응기에 공급하였다. 상기 제1 반응기는 고정 베드 촉매 반응기로 1.5 기압의 압력 및 15,000hr-1의 기체 공간 속도(GHSV)의 조건은 고정한 상태로 온도를 변화시키며, 이소프로판올을 산화 정도를 평가하였다.Stream a passing through the concentrator 20 had a total flow rate of 1 L/min, where isopropanol and ammonia each had a concentration of 3,000 ppm. The stream a was supplied to the first reactor without a separate bypass stream (a2). The first reactor was a fixed bed catalyst reactor, and the temperature was changed while the pressure of 1.5 atm and gas space velocity (GHSV) of 15,000 hr -1 were fixed, and the degree of oxidation of isopropanol was evaluated.
실험예 2에서는 제1 반응기에 비교예 2의 촉매와 비교예 3의 촉매를 각각 충전하여 온도에 따라 이소프로판올 및 CO의 배출량(ppm)을 측정하여 도 7a 및 도 7b에 나타내었다. 여기서, 도 7a는 비교예 2의 촉매를 500℃ 내지 700℃의 범위 내에서 평가한 결과이고, 도 7b는 비교예 3의 촉매를 360℃ 내지 560℃의 범위 내에서 평가한 결과이다.In Experimental Example 2, the first reactor was charged with the catalyst of Comparative Example 2 and the catalyst of Comparative Example 3, respectively, and the emissions (ppm) of isopropanol and CO according to temperature were measured and shown in FIGS. 7A and 7B. Here, Figure 7a shows the results of evaluating the catalyst of Comparative Example 2 within the range of 500°C to 700°C, and Figure 7b shows the results of evaluating the catalyst of Comparative Example 3 within the range of 360°C to 560°C.
도 7a에 따르면, 비교예 2의 촉매 2(Fe_베타 제올라이트)의 경우에는 700℃ 이상의 고온에서도 이소프로판올은 완전히 산화되지 않는 것을 확인할 수 있다. 또한, 도 7b에 따르면, 비교예 3의 촉매 3(NiMg-Al2O3)의 경우에는 비교예 2의 촉매 2(Fe_베타 제올라이트)와 달리 400℃ 부근에서 이소프로판올이 거의 완전히 산화되는 것을 확인할 수 있다. 따라서, 암모니아와 이소프로판올을 동시에 처리함에 있어서 촉매 2(Fe_베타 제올라이트) 및 촉매 3(NiMg-Al2O3)의 적절한 조합이 요구된다.According to Figure 7a, it can be seen that in the case of Catalyst 2 (Fe_beta zeolite) of Comparative Example 2, isopropanol is not completely oxidized even at a high temperature of 700°C or higher. Additionally, according to Figure 7b, it can be seen that in the case of Catalyst 3 (NiMg-Al 2 O 3 ) of Comparative Example 3, isopropanol is almost completely oxidized at around 400°C, unlike Catalyst 2 (Fe_beta zeolite) of Comparative Example 2. You can. Therefore, when treating ammonia and isopropanol simultaneously, an appropriate combination of catalyst 2 (Fe_beta zeolite) and catalyst 3 (NiMg-Al 2 O 3 ) is required.
실험예 3Experimental Example 3
농축기(20)을 통과한 흐름 a는 총 유량이 1L/min이고, 여기서, 이소프로판올 및 암모니아는 각각 3,000ppm의 농도를 가졌다. 별도의 우회 흐름(a2) 없이 상기 흐름 a를 제1 반응기에 공급하였다. 상기 제1 반응기는 고정 베드 촉매 반응기로 1.5 기압의 압력 및 15,000hr-1의 기체 공간 속도(GHSV) 및 530℃의 반응온도 조건으로 구동되었다.Stream a passing through the concentrator 20 had a total flow rate of 1 L/min, where isopropanol and ammonia each had a concentration of 3,000 ppm. The stream a was supplied to the first reactor without a separate bypass stream (a2). The first reactor was a fixed bed catalytic reactor operated at a pressure of 1.5 atm, a gas space velocity (GHSV) of 15,000 hr -1 , and a reaction temperature of 530°C.
실험예 2에서는 제1 반응기에 비교예 1의 촉매, 실시예 1의 촉매 및 실시예 2의 촉매를 각각 충전하여 날짜에 따른 촉매의 내구성을 평가하였다. 상기 촉매의 내구성 평가는 초기의 반응속도를 k0로 나타내고, 해당 날짜의 반응속도를 k로 나타내었을 때, k/k0(현재효율/초기효율) 값을 통해 평가하였으며, 그 값을 도 8에 나타내었다.In Experimental Example 2, the first reactor was charged with the catalyst of Comparative Example 1, the catalyst of Example 1, and the catalyst of Example 2, respectively, and the durability of the catalyst over time was evaluated. The durability of the catalyst was evaluated using the k/k 0 (current efficiency/initial efficiency) value when the initial reaction rate was expressed as k 0 and the reaction rate on the relevant day was expressed as k, and the values are shown in Figure 8 shown in
도 8에 따르면, 비교예 1의 촉매의 경우에는 실시예 1 및 2의 촉매와 비교하여 처음부터 반응속도가 서서히 저하되다가 5일이 넘어가면서 반응속도가 현저히 저하되는 것을 확인할 수 있다. 이는 비교예 1의 촉매 1(Cu_차바자이트 단독)의 경우에 IPA를 완전히 산화시키지 못하여 생성된 코크스가 촉매의 내구성을 저하시킨 것으로 예상된다.According to Figure 8, in the case of the catalyst of Comparative Example 1, compared to the catalysts of Examples 1 and 2, the reaction rate gradually decreased from the beginning, and it can be seen that the reaction rate decreased significantly after 5 days. This is expected to be because in the case of Catalyst 1 (Cu_chabazite only) of Comparative Example 1, IPA was not completely oxidized, and the coke produced decreased the durability of the catalyst.
실험예 4Experimental Example 4
농축기(20)을 통과한 흐름 a는 총 유량이 5L/min이고, 여기서, 이소프로판올 및 암모니아는 각각 3,000ppm의 농도를 가졌다. 상기 흐름 a는 유량이 0.85L/min인 흐름 a1과 유량이 0.15L/min인 흐름 a2로 분배되어 흐름 a1이 제1 반응기에 공급되었다.Stream a passing through concentrator 20 had a total flow rate of 5 L/min, where isopropanol and ammonia each had a concentration of 3,000 ppm. The flow a was divided into flow a 1 with a flow rate of 0.85 L/min and flow a 2 with a flow rate of 0.15 L/min, and flow a 1 was supplied to the first reactor.
상기 제1 반응기는 고정 베드 촉매 반응기로 1.5 기압의 압력, 3,000hr-1의 기체 공간 속도(GHSV)의 조건은 고정한 상태로 온도를 변화시키며 구동하였다. 촉매로 실시예 1의 촉매, 실시예 2의 촉매, 실시예 3의 촉매, 실시예 4의 촉매, 비교예 3의 촉매, 비교예 4의 촉매, 비교예 5의 촉매 및 비교예 6의 촉매를 각각 충전하였다.The first reactor was a fixed bed catalytic reactor and was operated while changing the temperature while maintaining a fixed pressure of 1.5 atm and a gas space velocity (GHSV) of 3,000 hr -1 . The catalysts used were the catalyst of Example 1, the catalyst of Example 2, the catalyst of Example 3, the catalyst of Example 4, the catalyst of Comparative Example 3, the catalyst of Comparative Example 4, the catalyst of Comparative Example 5, and the catalyst of Comparative Example 6. Each was charged.
상기 흐름 b는 제1 반응기에 공급되기 전에 분배된 흐름 a2와 합류하여 흐름 c가 제2 반응기에 공급되었다.The stream b joined the distributed stream a2 before being fed to the first reactor and stream c was fed to the second reactor.
상기 제2 반응기는 고정 베드 촉매 반응기로 1.5 기압의 압력, 6,000hr-1의 기체 공간 속도(GHSV) 및 450℃의 반응온도 조건으로 구동되었다. 촉매는 BEA(β-제올라이트)에 Fe가 2% 이온 교환된 Fe-BEA 촉매 분말을 코디어라이트(Cordierite) 재질의 100cpsi(cells per square inch) 허니컴 지지체에 1차적으로 코팅하고, 1.5 중량%의 코발트와 2 중량%의 마그네슘을 포함한 코발트-마그네슘-알루미나 촉매의 분말을 2차적으로 코팅하였다. 이 때, Fe-BEA 촉매와 코발트-마그네슘-알루미나 촉매의 중량비는 9:1이 되도록 조절되며, 각각 촉매의 코팅양의 합은 150g/L가 되도록 조절되었다.The second reactor was a fixed bed catalytic reactor operated at a pressure of 1.5 atm, a gas space velocity (GHSV) of 6,000 hr -1 and a reaction temperature of 450°C. The catalyst was first coated with Fe-BEA catalyst powder, in which 2% Fe was ion-exchanged to BEA (β-zeolite), on a 100cpsi (cells per square inch) honeycomb support made of cordierite, and 1.5% by weight of Cobalt-magnesium-alumina catalyst powder containing cobalt and 2% by weight of magnesium was secondarily coated. At this time, the weight ratio of the Fe-BEA catalyst and the cobalt-magnesium-alumina catalyst was adjusted to be 9:1, and the sum of the coating amounts of each catalyst was adjusted to be 150 g/L.
제2 반응기를 거친 최종 생성물에서의 NH3의 전환율(%), NH3에서 N2로의 전환율(%), IPA의 전환율(%) 및 CO 농도(ppm)를 확인하여, 표 3 내지 표 10에 나타내었다.The conversion rate of NH 3 (%), conversion rate from NH 3 to N 2 (%), conversion rate of IPA (%), and CO concentration (ppm) in the final product that passed through the second reactor were confirmed, and are shown in Tables 3 to 10. indicated.
실시예 1의 촉매Catalyst of Example 1
온도(℃)Temperature (℃) NH3의 전환율(%)Conversion rate of NH 3 (%) NH3에서 N2로의 전환율(%)Conversion rate of NH 3 to N 2 (%) IPA의 전환율(%)IPA conversion rate (%) CO 농도(ppm)CO concentration (ppm)
400400 100.0 100.0 94.8 94.8 99.9099.90 141141
430430 100.0 100.0 91.5 91.5 99.9799.97 7474
450450 100.0 100.0 90.3 90.3 99.9799.97 5151
500500 100.0 100.0 81.8 81.8 99.9899.98 3838
실시예 2의 촉매Catalyst of Example 2
온도(℃)Temperature (℃) NH3의 전환율(%)Conversion rate of NH 3 (%) NH3에서 N2로의 전환율(%)Conversion rate of NH 3 to N 2 (%) IPA의 전환율(%)IPA conversion rate (%) CO 농도(ppm)CO concentration (ppm)
400400 100.0 100.0 89.789.7 99.9799.97 292292
430430 100.0 100.0 87.987.9 99.9799.97 9595
450450 100.0 100.0 85.485.4 99.9799.97 3737
500500 100.0 100.0 81.381.3 99.9799.97 2929
실시예 3의 촉매Catalyst of Example 3
온도(℃)Temperature (℃) NH3의 전환율(%)Conversion rate of NH 3 (%) NH3에서 N2로의 전환율(%)Conversion rate of NH 3 to N 2 (%) IPA의 전환율(%)IPA conversion rate (%) CO 농도(ppm)CO concentration (ppm)
450450 99.899.8 91.791.7 99.3399.33 3,0003,000
480480 99.999.9 85.585.5 99.7899.78 1,0001,000
500500 99.999.9 82.482.4 99.8499.84 546546
530530 100.0100.0 7878 99.999.9 101101
550550 100.0100.0 77.977.9 99.999.9 3131
580580 100.0100.0 77.677.6 99.999.9 1111
실시예 4의 촉매Catalyst of Example 4
온도(℃)Temperature (℃) NH3의 전환율(%)Conversion rate of NH 3 (%) NH3에서 N2로의 전환율(%)Conversion rate of NH 3 to N 2 (%) IPA의 전환율(%)IPA conversion rate (%) CO 농도(ppm)CO concentration (ppm)
400400 100.0100.0 82.682.6 99.8799.87 4,0684,068
430430 100.0100.0 88.788.7 99.9899.98 968968
450450 100.0100.0 94.894.8 99.9899.98 206206
500500 100.0100.0 88.888.8 99.9899.98 2323
530530 100.0100.0 83.683.6 99.9899.98 2222
비교예 3의 촉매Catalyst of Comparative Example 3
온도(℃)Temperature (℃) NH3의 전환율(%)Conversion rate of NH 3 (%) NH3에서 N2로의 전환율(%)Conversion rate of NH 3 to N 2 (%) IPA의 전환율(%)IPA conversion rate (%) CO 농도(ppm)CO concentration (ppm)
350350 66.7 66.7 54.0 54.0 57.9057.90 2,3572,357
380380 90.0 90.0 74.5 74.5 90.6090.60 7,8007,800
400400 99.7 99.7 78.3 78.3 98.0398.03 169169
500500 100.0 100.0 68.7 68.7 98.9398.93 5252
560560 100.0 100.0 62.4 62.4 99.2699.26 88
비교예 4의 촉매Catalyst of Comparative Example 4
온도(℃)Temperature (℃) NH3의 전환율(%)Conversion rate of NH 3 (%) NH3에서 N2로의 전환율(%)Conversion rate of NH 3 to N 2 (%) IPA의 전환율(%)IPA conversion rate (%) CO 농도(ppm)CO concentration (ppm)
200200 13.3 13.3 13.3 13.3 0.490.49 99
230230 34.3 34.3 34.3 34.3 1.141.14 1414
250250 39.3 39.3 39.3 39.3 6.896.89 6868
280280 55.8 55.8 54.9 54.9 39.8439.84 638638
300300 64.0 64.0 25.2 25.2 47.3447.34 850850
330330 99.8 99.8 29.2 29.2 100.00100.00 00
비교예 5의 촉매Catalyst of Comparative Example 5
온도(℃)Temperature (℃) NH3의 전환율(%)Conversion rate of NH 3 (%) NH3에서 N2로의 전환율(%)Conversion rate of NH 3 to N 2 (%) IPA의 전환율(%)IPA conversion rate (%) CO 농도(ppm)CO concentration (ppm)
200200 6.7 6.7 6.6 6.6 1.801.80 1818
230230 38.6 38.6 38.5 38.5 2.492.49 2424
250250 100.0 100.0 54.4 54.4 100.00100.00 00
비교예 6의 촉매Catalyst of Comparative Example 6
온도(℃)Temperature (℃) NH3의 전환율(%)Conversion rate of NH 3 (%) NH3에서 N2로의 전환율(%)Conversion rate of NH 3 to N 2 (%) IPA의 전환율(%)IPA conversion rate (%) CO 농도(ppm)CO concentration (ppm)
150150 4.1 4.1 4.1 4.1 0.080.08 77
180180 8.7 8.7 8.7 8.7 0.090.09 88
200200 12.2 12.2 12.2 12.2 1.431.43 1212
230230 13.9 13.9 13.9 13.9 2.802.80 2626
250250 22.3 22.3 22.3 22.3 3.833.83 3636
300300 42.3 42.3 38.1 38.1 7.997.99 129129
330330 59.8 59.8 49.2 49.2 53.1653.16 178178
350350 61.3 61.3 50.0 50.0 75.9975.99 209209
380380 99.9 99.9 57.0 57.0 100.00100.00 00
400400 100.0 100.0 54.4 54.4 100.00100.00 00
상기 표 3 및 표 4에 따르면, 코티어라이트 상에 촉매 1(Cu_차바자이트) 및 촉매 3(NiMg-Al2O3)을 도입한 실시예 1의 촉매 또는 실시예 2의 촉매를 사용하는 경우, 400℃ 내지 500℃ 부근에서 NH3의 전환율과 IPA의 전환율 뿐만 아니라 NH3에서 N2로의 전환율 또한 현저하게 높게 나오는 것을 확인할 수 있다. 또한, CO 농도와 관련해서는, 실시예 1 및 2의 촉매 모두 약 430℃ 부근에서 100ppm 이하로 떨어지기 시작하는 것을 확인할 수 있다.According to Tables 3 and 4, the catalyst of Example 1 or the catalyst of Example 2, which introduced Catalyst 1 (Cu_chabazite) and Catalyst 3 (NiMg-Al 2 O 3 ) on cortierite, was used. In this case, it can be seen that not only the conversion rate of NH 3 and IPA but also the conversion rate from NH 3 to N 2 is significantly high around 400°C to 500°C. Additionally, with regard to CO concentration, it can be seen that both catalysts of Examples 1 and 2 begin to drop below 100 ppm around 430°C.
상기 표 5 및 표 6에 따르면, 코티어라이트 상에 촉매 2(Fe_베타 제올라이트) 및 촉매 3(NiMg-Al2O3)을 도입한 실시예 3의 촉매 또는 실시예 4의 촉매를 사용하는 경우, 실시예 1의 촉매 또는 실시예 2의 촉매를 사용하는 경우와 마찬가지로 400℃ 내지 500℃ 부근에서 NH3의 전환율과 IPA의 전환율 뿐만 아니라 NH3에서 N2로의 전환율 또한 현저하게 높게 나오는 것을 확인할 수 있다. 또한, CO 농도와 관련해서는, 실시예 3의 촉매는 약 530℃ 부근에서 100ppm 이하로 떨어지기 시작하고, 실시예 4의 촉매는 약 500℃ 부근에서 이하로 떨어지기 시작하는 것을 확인할 수 있었다.According to Table 5 and Table 6, using the catalyst of Example 3 or the catalyst of Example 4 in which catalyst 2 (Fe_beta zeolite) and catalyst 3 (NiMg-Al 2 O 3 ) were introduced onto cortierite. In this case, as in the case of using the catalyst of Example 1 or Example 2, it can be seen that not only the conversion rate of NH 3 and IPA but also the conversion rate of NH 3 to N 2 is significantly high around 400°C to 500°C. You can. Additionally, with regard to CO concentration, it was confirmed that the catalyst of Example 3 began to drop below 100 ppm around about 530°C, and the catalyst of Example 4 began to fall below around about 500°C.
상기 표 7에 따르면, 촉매 3(NiMg-Al2O3)인 비교예 3의 촉매를 사용하는 경우, 400℃ 내지 560℃ 부근에서 NH3의 전환율과 IPA의 전환율은 높게 나왔지만, 500℃가 넘어가면서 NH3에서 N2로의 전환율은 80% 미만으로 떨어지기 시작하는 것을 확인할 수 있다.According to Table 7, when using the catalyst of Comparative Example 3 (NiMg-Al 2 O 3 ), the conversion rate of NH 3 and IPA was high at around 400°C to 560°C, but above 500°C. It can be seen that the conversion rate from NH 3 to N 2 begins to fall below 80%.
상기 표 8 및 표 9에 따르면, 촉매 4(Pt-Al2O3)인 비교예 4의 촉매와 촉매 5(Pd-Al2O3)인 비교예 5의 촉매를 사용하는 경우, 각각 약 330℃ 부근 및 약 250℃ 부근에서 NH3의 전환율과 IPA의 전환율은 높게 나왔지만, NH3에서 N2로의 전환율은 60%에도 미치지 못하는 것을 확인할 수 있다.According to Tables 8 and 9, when using the catalyst of Comparative Example 4, which is Catalyst 4 (Pt-Al 2 O 3 ), and the catalyst of Comparative Example 5, which is Catalyst 5 (Pd-Al 2 O 3 ), the catalyst is about 330, respectively. It can be seen that the conversion rate of NH 3 and IPA was high at around ℃ and around 250 ℃, but the conversion rate from NH 3 to N 2 was less than 60%.
상기 표 10에 따르면, 촉매 6(Pt/Fe_베타 제올라이트)인 비교예 6의 촉매를 사용하는 경우, 380℃ 내지 400℃ 부근에서 NH3의 전환율과 IPA의 전환율은 높게 나왔지만, 비교예 4의 촉매 및 비교예 5의 촉매와 마찬가지로 NH3에서 N2로의 전환율은 60%에도 미치지 못하는 것을 확인할 수 있다.According to Table 10, when using the catalyst of Comparative Example 6, which is Catalyst 6 (Pt/Fe_beta zeolite), the conversion rate of NH 3 and IPA was high at around 380°C to 400°C, but the conversion rate of Comparative Example 4 was high. As with the catalyst and the catalyst of Comparative Example 5, it can be seen that the conversion rate from NH 3 to N 2 is less than 60%.
실험예 5Experimental Example 5
도 2와 같은 공정에서 제2 반응기에 공급되는 흐름 c는 총 유량이 1L/min이고, 각 성분들이 날짜별로 도 9a와 같은 농도를 가졌다.In the process shown in Figure 2, flow c supplied to the second reactor had a total flow rate of 1 L/min, and each component had the same concentration as shown in Figure 9a for each day.
상기 제2 반응기는 고정 베드 촉매 반응기로 1.5 기압의 압력, 6,000hr-1의 기체 공간 속도(GHSV) 및 450℃의 반응온도 조건으로 구동되었다. 촉매로 실시예 1의 촉매가 충전하였다. 제2 반응기에서 배출되는 흐름 d의 각 성분들의 농도를 도 9b에 나타내었다.The second reactor was a fixed bed catalytic reactor operated at a pressure of 1.5 atm, a gas space velocity (GHSV) of 6,000 hr -1 and a reaction temperature of 450°C. The catalyst of Example 1 was charged as a catalyst. The concentration of each component of the stream d discharged from the second reactor is shown in Figure 9b.
도 9a 및 도 9b에 따르면, 제2 반응기에 공급될 때는 NO 또는 NO2의 NOx 성분이 다량 포함되었는데, 제2 반응기에서 배출될 때는 이러한 NO 또는 NO2의 NOx 성분이 현저하게 감소하는 것을 확인할 수 있다. 이는 코티어라이트 상에 촉매 1(Cu_차바자이트) 및 촉매 3(NiMg-Al2O3)을 도입한 실시예 1의 촉매 또는 실시예 2의 촉매가 NOx 성분 처리하는 선택적 촉매 환원(SCR) 반응에도 적합하게 활용될 수 있음을 의미한다.According to FIGS. 9A and 9B, when supplied to the second reactor, a large amount of NO x component of NO or NO 2 was contained, but when discharged from the second reactor, the NO x component of NO or NO 2 was significantly reduced. You can check it. This is a selective catalytic reduction in which the catalyst of Example 1 (Cu_chabazite) and Catalyst 3 (NiMg-Al 2 O 3 ) were introduced onto cortierite or the catalyst of Example 2 treats NO x component ( This means that it can also be used appropriately for SCR) reactions.
본 발명의 단순한 변형 내지 변경은 모두 본 발명의 영역에 속하는 것이며, 본 발명의 구체적인 보호 범위는 첨부된 특허청구범위에 의하여 명확해질 것이다.All simple modifications or changes of the present invention fall within the scope of the present invention, and the specific scope of protection of the present invention will be made clear by the appended claims.
[부호의 설명][Explanation of symbols]
1: 제1 촉매와 제2 촉매의 혼합 코팅층1: Mixed coating layer of first catalyst and second catalyst
1A: 제1 촉매 또는 제2 촉매의 단일 코팅층(1B와 상이한 촉매 포함)1A: Single coating layer of first or second catalyst (including a different catalyst than 1B)
1B: 제1 촉매 또는 제2 촉매의 단일 코팅층(1A와 상이한 촉매 포함)1B: Single coating layer of first or second catalyst (including a different catalyst than 1A)
2: 지지체2: Support
10: 공급기10: feeder
20: 농축기20: Concentrator
30: 유량 분배 밸브30: flow distribution valve
40: 열교환기40: heat exchanger
50: 제1 반응기50: first reactor
60: 흐름 a2와 흐름 b의 합류지점60: Confluence point of flow a 2 and flow b
70: 제2 반응기70: second reactor

Claims (12)

  1. 지지체 상에 제1 촉매 및 제2 촉매가 도입된 배출물 처리 촉매로서,An emission treatment catalyst comprising a first catalyst and a second catalyst introduced on a support,
    상기 제1 촉매는 제올라이트 촉매이고,The first catalyst is a zeolite catalyst,
    상기 제2 촉매는 알루미나에 니켈 및 마그네슘을 첨가한 촉매인 배출물 처리 촉매.The second catalyst is an emission treatment catalyst that is a catalyst obtained by adding nickel and magnesium to alumina.
  2. 청구항 1에 있어서,In claim 1,
    상기 지지체는 세라믹 소재의 허니컴 구조체이고,The support is a honeycomb structure made of ceramic material,
    상기 세라믹 소재는 코디어라이트, 실리카 및 티타니아 중 적어도 하나 이상을 포함하는 것을 특징으로 하는 배출물 처리 촉매.An emission treatment catalyst, wherein the ceramic material includes at least one of cordierite, silica, and titania.
  3. 청구항 1에 있어서,In claim 1,
    상기 제올라이트 촉매는 ZSM-5, ZSM-11, ZSM-12, ZSM-18, ZSM-23, MCM-제올라이트, 모데나이트, 포저사이트, 페리어라이트, 베타 제올라이트, 차바자이트 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것을 특징으로 하는 배출물 처리 촉매.The zeolite catalyst consists of ZSM-5, ZSM-11, ZSM-12, ZSM-18, ZSM-23, MCM-zeolite, mordenite, posersite, ferrierite, beta zeolite, chabazite, and mixtures thereof. An emission treatment catalyst selected from the group.
  4. 청구항 3에 있어서,In claim 3,
    상기 제올라이트 촉매는 금속 이온-교환된 제올라이트 촉매이고, 상기 금속 이온은 Fe, Cu 또는 이의 조합인 것을 특징으로 하는 배출물 처리 촉매.The zeolite catalyst is a metal ion-exchanged zeolite catalyst, and the metal ion is Fe, Cu, or a combination thereof.
  5. 청구항 1에 있어서,In claim 1,
    상기 제2 촉매에서 니켈 및 마그네슘의 총 함량은 알루미나 100 중량부를 기준으로 20 중량부 내지 40 중량부인 것을 특징으로 하는 배출물 처리 촉매.An emission treatment catalyst, characterized in that the total content of nickel and magnesium in the second catalyst is 20 to 40 parts by weight based on 100 parts by weight of alumina.
  6. 청구항 5에 있어서,In claim 5,
    상기 제2 촉매에서 니켈과 마그네슘의 중량비는 5:1 내지 15:1인 것을 특징으로 하는 배출물 처리 촉매.An emission treatment catalyst, characterized in that the weight ratio of nickel and magnesium in the second catalyst is 5:1 to 15:1.
  7. 청구항 1에 있어서,In claim 1,
    상기 배출물 처리 촉매에서 제1 촉매 및 제2 촉매의 중량비는 1:1 내지 9:1인 것을 특징으로 하는 배출물 처리 촉매.An emission treatment catalyst, characterized in that the weight ratio of the first catalyst and the second catalyst in the emission treatment catalyst is 1:1 to 9:1.
  8. 청구항 1에 있어서,In claim 1,
    상기 제1 촉매 및 제2 촉매는 혼합되어 하나 이상의 코팅층에 도입되는 것을 특징으로 하는 배출물 처리 촉매.An emission treatment catalyst, characterized in that the first catalyst and the second catalyst are mixed and introduced into one or more coating layers.
  9. 청구항 1에 있어서,In claim 1,
    상기 제1 촉매 및 제2 촉매는 각각 별개의 코팅층으로 분리되어 도입되는 것을 특징으로 하는 배출물 처리 촉매.An emission treatment catalyst, characterized in that the first catalyst and the second catalyst are introduced separately as separate coating layers.
  10. 청구항 9에 있어서,In claim 9,
    상기 배출물 처리 촉매는 지지체 상에 제1 촉매를 포함하는 제1 코팅층이 코팅되고, 제1 코팅층 상에 제2 촉매를 포함하는 제2 코팅층이 코팅된 구조를 포함하는 것을 특징으로 하는 배출물 처리 촉매.The emission treatment catalyst is characterized in that it comprises a structure in which a first coating layer containing a first catalyst is coated on a support, and a second coating layer containing a second catalyst is coated on the first coating layer.
  11. 청구항 1에 있어서,In claim 1,
    상기 제1 촉매는 전체 배출물 처리 촉매를 기준으로 50 g/L 내지 150 g/L가 도입되는 것을 특징으로 하는 배출물 처리 촉매.The first catalyst is an emission treatment catalyst, characterized in that 50 g/L to 150 g/L is introduced based on the total emission treatment catalyst.
  12. 청구항 1에 있어서,In claim 1,
    상기 제2 촉매는 전체 배출물 처리 촉매를 기준으로 20 g/L 내지 80 g/L가 도입되는 것을 특징으로 하는 배출물 처리 촉매.The second catalyst is an emission treatment catalyst, characterized in that 20 g/L to 80 g/L is introduced based on the total emission treatment catalyst.
PCT/KR2023/011649 2022-08-09 2023-08-08 Emission treatment catalyst comprising zeolite and metal oxide WO2024035057A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0099316 2022-08-09
KR1020220099316A KR20240021345A (en) 2022-08-09 2022-08-09 Emission treatment catalyst comprising zeolite and metal oxide

Publications (1)

Publication Number Publication Date
WO2024035057A1 true WO2024035057A1 (en) 2024-02-15

Family

ID=89852005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/011649 WO2024035057A1 (en) 2022-08-09 2023-08-08 Emission treatment catalyst comprising zeolite and metal oxide

Country Status (2)

Country Link
KR (1) KR20240021345A (en)
WO (1) WO2024035057A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015166083A (en) * 2007-02-27 2015-09-24 ビーエーエスエフ コーポレーション Bifunction catalyst for selective oxidation of ammonia
KR20190122844A (en) * 2017-03-20 2019-10-30 바스프 코포레이션 Selective contact reduction articles and systems
JP2020073267A (en) * 2014-06-04 2020-05-14 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company Non-PGM ammonia slip catalyst
KR102247197B1 (en) * 2020-06-24 2021-05-04 (주)원익머트리얼즈 Ammonia reformer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200130845A (en) 2018-04-11 2020-11-20 바스프 코포레이션 SCR catalyst containing mixed zeolite
KR20220057376A (en) 2020-10-29 2022-05-09 한국화학연구원 Non-platinum metal oxide catalyst for selective oxidation of ammonia and process for selective oxidation of ammonia using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015166083A (en) * 2007-02-27 2015-09-24 ビーエーエスエフ コーポレーション Bifunction catalyst for selective oxidation of ammonia
JP2020073267A (en) * 2014-06-04 2020-05-14 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company Non-PGM ammonia slip catalyst
KR20190122844A (en) * 2017-03-20 2019-10-30 바스프 코포레이션 Selective contact reduction articles and systems
KR102247197B1 (en) * 2020-06-24 2021-05-04 (주)원익머트리얼즈 Ammonia reformer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
L.I. DARVELL, K. HEISKANEN, J.M. JONES, A.B. ROSS, P. SIMELL, A. WILLIAMS: "An investigation of alumina-supported catalysts for the selective catalytic oxidation of ammonia in biomass gasification", CATALYSIS TODAY, ELSEVIER, vol. 81, no. 4, 1 July 2003 (2003-07-01), pages 681 - 692, XP055149183, ISSN: 09205861, DOI: 10.1016/S0920-5861(03)00166-4 *

Also Published As

Publication number Publication date
KR20240021345A (en) 2024-02-19

Similar Documents

Publication Publication Date Title
EP1374977B1 (en) Desulfurizer and method of desulfurization
KR100785645B1 (en) A device and method for the reduction of NOX and N2O content
KR940016447A (en) Processing equipment
WO2020141654A1 (en) Nox reduction catatalyst regenerable at low temperature
WO2024035057A1 (en) Emission treatment catalyst comprising zeolite and metal oxide
US20020111268A1 (en) Catalyst for removing dioxin and preparation method thereof
WO2020251194A1 (en) Ship exhaust gas purification apparatus and method
KR20190080039A (en) Apparatus for decomposition of volatile organic compounds and decomposing method using it
WO2021049811A1 (en) Titanium dioxide composite, method for preparing same, and photocatalyst comprising same
WO2011062390A2 (en) Catalyst for selective oxidation of nh3 to n2 and method for preparing the same
KR102016751B1 (en) Catalytic removal method of NOx and N2O from semiconductor exhausted gas with various pollutants
CY1107597T1 (en) METHOD OF CLEANING THE COPPER
WO2022245078A1 (en) Process for simultaneously reducing isopropanol and ammonia
JP2019534771A (en) Method for cryogenic gas purification and catalyst for use in the method
WO2020005026A1 (en) Denox catalyst having improved nox reduction performance, method for producing same, and nox reduction method
KR20070092114A (en) Treating method of air containing organic solvent
CN1283343C (en) Method and apparatus for cleaning exhaust gas and dust collector used for its apparatus
WO2018182102A1 (en) Metal selenide-supported catalyst, preparation method therefor, and urethane preparation method using same
WO2021172829A1 (en) Method for removing residual chlorine, scr catalyst for reducing nitrogen oxide by same method, and preparation method therefor
WO2023075011A1 (en) Simultaneous process for treating nitrogen oxides in flue gas and producing high-purity hydrogen
WO2020171615A1 (en) System for reducing voc and nitrogen oxide and method for reducing same
WO2021066463A1 (en) Scr catalyst having excellent sulfur tolerance
WO2024005612A1 (en) Catalyst for removing nitrogen oxide generated at on/off and during normal operation in gas turbine combined cycle power plant
WO2018182211A1 (en) Air purification method for survival in atmosphere-blocked space, method for producing purified air and fresh water using same, and system therefor
WO2019066387A1 (en) Catalyst for decreasing nitrogen oxide, and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23852933

Country of ref document: EP

Kind code of ref document: A1