WO2021049811A1 - Titanium dioxide composite, method for preparing same, and photocatalyst comprising same - Google Patents

Titanium dioxide composite, method for preparing same, and photocatalyst comprising same Download PDF

Info

Publication number
WO2021049811A1
WO2021049811A1 PCT/KR2020/011794 KR2020011794W WO2021049811A1 WO 2021049811 A1 WO2021049811 A1 WO 2021049811A1 KR 2020011794 W KR2020011794 W KR 2020011794W WO 2021049811 A1 WO2021049811 A1 WO 2021049811A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium dioxide
reduced
metal
dioxide composite
metal oxide
Prior art date
Application number
PCT/KR2020/011794
Other languages
French (fr)
Korean (ko)
Inventor
이효영
티킴 챠우 느구엔
Original Assignee
성균관대학교산학협력단
기초과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성균관대학교산학협력단, 기초과학연구원 filed Critical 성균관대학교산학협력단
Publication of WO2021049811A1 publication Critical patent/WO2021049811A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • B01J23/68Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • B01J23/68Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/683Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum or tungsten
    • B01J23/687Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum or tungsten with tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing

Definitions

  • the present application relates to a titanium dioxide composite, a method of manufacturing the same, and a photocatalyst comprising the same.
  • platinum has the best catalytic activity characteristics and has been applied in various ways in the catalytic field, but it is a rare metal and is expensive, causing difficulties in inexpensive operation of the catalyst. Therefore, efforts such as reducing the amount of platinum or developing an alternative catalyst are required.
  • the paper behind the present application (Zhang, Kan, et al. "An Order/Disorder/Water Junction System for Highly Efficient Co-Catalyst-Free Photocatalytic Hydrogen Generation.” Energy & Environmental Science, vol. 9, no. 2, 2016 , pp. 499-503.) is a paper on the method of generating hydrogen with high efficiency through photocatalyst in orderly, disorderly, and water-bonded systems.
  • the paper discloses that P-25, which contains disordered and orderly phases by adding Li-EDA to P-25 TiO 2 , can have high electron-hole separation efficiency and hydrogen generation efficiency, but the TiO 2 It does not disclose a method for further improving the efficiency.
  • the present application is to solve the problems of the prior art described above, and an object thereof is to provide a titanium dioxide composite.
  • an object of the present invention is to provide a method for producing the titanium dioxide composite.
  • an object of the present invention is to provide a photocatalyst comprising the titanium dioxide composite.
  • the first aspect of the present application includes an anatase phase and a rutile phase, and any one of the anatase phase and the rutile phase is reduced.
  • Reduced titanium dioxide (TiO 2 ) provides a titanium dioxide complex comprising a metal oxide combined with the reduced titanium dioxide.
  • the titanium dioxide composite may further include the reduced titanium dioxide or metal nanoparticles formed on the metal oxide, but is not limited thereto.
  • the metal nanoparticle may be less than 10 parts by weight, and the metal oxide may be 30 parts by weight to 70 parts by weight, but is not limited thereto.
  • the metal nanoparticles may supply electrons onto the reduced titanium dioxide, but are not limited thereto.
  • the metal nanoparticle may have a diameter of 1 nm to 10 nm, but is not limited thereto.
  • the metal nanoparticles are Ag, Au, Pt, Ru, Ir, Os, Rh, Pd, W, Mo, Cr, Re, Zn, Mn, Y, Zr, Ni, Cu, Fe , And a metal element selected from the group consisting of combinations thereof, but is not limited thereto.
  • a reduction reaction may occur in the reduced titanium dioxide, and an oxidation reaction may occur in the metal oxide, but the present invention is not limited thereto.
  • a conduction band of the metal oxide may be greater than a valence band of the reduced titanium dioxide and may be smaller than a conduction band of the reduced titanium dioxide, but is limited thereto. It is not.
  • a band gap of the reduced titanium dioxide may be larger than a band gap of the metal oxide, but is not limited thereto.
  • the metal oxide is W, Mo, Cr, Re, Ir, Ta, Hf, Fe, Ni, Cu, Zn, Mn, Y, Zr, Sn, V, Bi, Sr, Ti, It may include a metal element selected from the group consisting of Ca, Nb, K, Na, Li, and combinations thereof, but is not limited thereto.
  • the reduced titanium dioxide may exhibit blue color, but is not limited thereto.
  • the reduced titanium dioxide particles and the metal oxide particles may each independently have a diameter of 10 nm to 100 nm, but are not limited thereto.
  • the diameter of the reduced titanium dioxide particles may be smaller than the diameter of the metal oxide particles, but is not limited thereto.
  • the second aspect of the present application is a step of forming reduced titanium dioxide by selectively reducing any one of the anatase phase and the rutile phase by mixing titanium dioxide (TiO 2) including an anatase phase and a rutile phase with a reducing agent , And dispersing the reduced titanium dioxide and metal oxide in a solvent and then irradiating light to prepare a titanium dioxide composite, it provides a method for producing a titanium dioxide composite.
  • the step of preparing the titanium dioxide composite may further include adding a metal salt including metal nanoparticles to the solvent, but is not limited thereto.
  • the metal salt is Ag, Au, Pt, Ru, Ir, Os, Rh, Pd, W, Mo, Cr, Re, Zn, Mn, Y, Zr, Ni, Cu, Fe, And a metal element selected from the group consisting of combinations thereof, but is not limited thereto.
  • the reducing agent may include a metal and a basic organic solvent, but is not limited thereto.
  • the metal may include a metal selected from the group consisting of Li, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, and combinations thereof. However, it is not limited thereto.
  • the basic organic solvent is an alkyl amine, a dialkyl amine, a cyclic alkyl amine, a dicyclic alkyl amine, and their It may include a material selected from the group consisting of combinations, but is not limited thereto.
  • a third aspect of the present application provides a photocatalyst comprising the titanium dioxide composite according to the first aspect.
  • the titanium dioxide composite according to the present application has a narrow band gap of 2.6 eV or less, and has high stability and charge carrier separation ability, so that it can be used in a nanostructured semiconductor.
  • the process of reducing carbon dioxide tends to produce hydrogen, methane (CH 4 ), and carbon monoxide together.
  • the process of reducing carbon dioxide using the titanium dioxide composite according to the present application can obtain only carbon monoxide without by-products.
  • the titanium dioxide composite according to the present application includes metal oxides and/or metal nanoparticles, so that the catalytic activity is not only performed by ultraviolet rays, but also visible rays and/or infrared rays. Can be activated.
  • the metal nanoparticles are supplied as the conduction band of the metal oxide. Electrons are transferred to the valence band of the reduced titanium dioxide, and the electrons are excited by ultraviolet rays, visible rays, and/or infrared rays to reduce a substance such as carbon dioxide.
  • the titanium dioxide composite according to the present application can repeatedly reduce the material over a long period of time.
  • the titanium dioxide composite according to the present application includes a metal oxide in which metal nanoparticles are formed and reduced titanium dioxide, so that fine dust, nitrogen oxide (NO x ) contained in automobile exhaust gas and/or cigarette smoke, animal powder smell, acetate Organic contamination such as aldehyde, formaldehyde, methylmercaptan, methylene blue, acetic acid, organic solvents, paints and thinners, adhesives, dry cleaning fluids, adhesives, wood preservatives, cleaners and disinfectants, moth repellents, building materials and fixtures, pesticides, etc. Substance can be removed.
  • a metal oxide in which metal nanoparticles are formed and reduced titanium dioxide so that fine dust, nitrogen oxide (NO x ) contained in automobile exhaust gas and/or cigarette smoke, animal powder smell, acetate Organic contamination such as aldehyde, formaldehyde, methylmercaptan, methylene blue, acetic acid, organic solvents, paints and thinners, adhesives, dry cleaning fluids, adhesives,
  • titanium dioxide complex according to the present application is attached to the air purifier filter to remove pollutants in the air, and various fungi, bacteria, and bacteria can be removed.
  • the effect obtainable in the present application is not limited to the above-described effects, and other effects may exist.
  • FIG. 1 is a schematic diagram of a titanium dioxide composite according to an embodiment of the present application.
  • FIG. 2 is a diagram of a band structure of a titanium dioxide and titanium dioxide composite according to an embodiment of the present application.
  • FIG 3 is a flow chart showing a method of manufacturing a titanium dioxide composite according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram showing a method of manufacturing a titanium dioxide composite according to an embodiment of the present application.
  • 5A and 5B are TEM images of a titanium dioxide composite according to an embodiment of the present application.
  • FIG. 6 is an HADDF-STEM and EDS image of a titanium dioxide composite according to an embodiment of the present application.
  • 7A is an XRD analysis of a material according to an example and a comparative example of the present application
  • b and c are an XPS analysis of a material according to a comparative example of the present application
  • d to f are according to an example of the present application. The following material was analyzed by XPS.
  • 8A and 8B are UV-Vis spectra of a material according to an embodiment and a comparative example of the present application
  • c is a Tauc plot of a material according to a comparative example of the present application
  • d is an exemplary embodiment of the present application.
  • the VB-XPS spectrum of the material according to Examples and Comparative Examples e is a PL spectrum
  • f is data on a photoresponse.
  • 9A is a gas chromatography of a material according to an example and a comparative example of the present application, and b to d are graphs of CO generation over time.
  • 10A and 10B are graphs of photocatalytic properties of materials according to Examples and Comparative Examples of the present application.
  • 11 a and b are graphs of the PL spectrum and intensity of a material according to a comparative example of the present application
  • c and d are graphs of a band structure of a material according to a comparative example of the present application.
  • FIG. 12 is a graph showing the decomposition of cigarette smoke of the titanium dioxide composite according to an embodiment of the present application.
  • the term "combination of these" included in the expression of the Makushi format refers to one or more mixtures or combinations selected from the group consisting of components described in the expression of the Makushi format, and the constituent elements It means to include one or more selected from the group consisting of.
  • the first aspect of the present application includes an anatase phase and a rutile phase, and any one of the anatase phase and the rutile phase is reduced.
  • Reduced titanium dioxide (TiO 2 ) provides a titanium dioxide complex comprising a metal oxide combined with the reduced titanium dioxide.
  • Titanium dioxide according to the present application is a material that can have various uses, such as a photovoltaic device, as well as a catalyst for a hydrogen generation reaction. Titanium dioxide existing in nature may largely include two phases of an anatase phase and/or a rutile phase, and physical properties may be changed by various reasons such as the ratio of the two phases. Typically, the band gap of the titanium dioxide is about 3.1 eV.
  • titanium dioxide including the rutile phase and the anatase phase and in which neither the anatase phase nor the rutile phase is reduced may be expressed as P25.
  • the rutile phase according to the present application is also known as rutile, and titanium dioxide in nature mostly has a rutile phase.
  • the rutile phase is superior to the anatase phase in weather resistance, hiding power, white luminance, and dielectric constant.
  • the anatase phase according to the present application has excellent photocatalytic activity for decomposing contaminants present in water or air, and abrasion resistance may be improved when the anatase-phase titanium dioxide is coated on another material.
  • titanium dioxide including the rutile phase and/or the anatase phase When the titanium dioxide including the rutile phase and/or the anatase phase is irradiated with light, it can be used for various purposes such as photocatalyst, solar cell, organic material removal.
  • titanium dioxide in its natural state is simply used without any process, there is a disadvantage that it is difficult to commercialize it, such as having relatively low efficiency and reacting only to light of a specific wavelength.
  • reduced titanium dioxide in which only at least one of the rutile phase and/or anatase phase of the titanium dioxide is reduced is disclosed.
  • the reduced titanium dioxide is used as the metal. By combining it with an oxide, it can have better physical properties and effects.
  • the reduced titanium dioxide according to the present application is obtained by reducing at least one of the rutile phase and the anatase phase, and the other refers to a material that is not reduced.
  • the reduced titanium dioxide may include a reduced rutile phase and an unreduced anatase phase, or may include a reduced anatase phase and an unreduced rutile phase, but is not limited thereto.
  • the reduced rutile phase or anatase phase may have amorphousness, and the unreduced rutile phase or anatase phase may have crystallinity, but is not limited thereto.
  • the reduced titanium dioxide may have the form of nanoparticles, but is not limited thereto.
  • the reduced titanium dioxide particles may be combined with the metal oxide particles and the metal nanoparticles to form the titanium dioxide composite.
  • the reduced phase may include a substituent selected from the group consisting of -OH group, -COOH group, -SO 3 group, and combinations thereof, but is not limited thereto.
  • the reduced titanium dioxide may exhibit blue color, but is not limited thereto.
  • the reduced titanium dioxide including the reduced anatase phase and the unreduced rutile phase may exhibit blue color.
  • the rutile phase has a dark blue color when reduced and the anatase phase is white when not reduced, the reduced titanium dioxide including the reduced rutile phase and the unreduced anatase phase may exhibit blue color.
  • BT may mean reduced titanium dioxide having a blue color.
  • the titanium dioxide composite according to the present application includes the reduced titanium dioxide and a metal oxide.
  • the metal oxide may exist in a bonded state surrounded by the reduced titanium dioxide, or may exist in a bonded state surrounded by the reduced titanium dioxide.
  • the reduced titanium dioxide particles may be surrounded by the metal oxide particles to form the titanium dioxide complex, but the present invention is not limited thereto.
  • a reduction reaction may occur in the reduced titanium dioxide, and an oxidation reaction may occur in the metal oxide, but the present invention is not limited thereto.
  • the titanium dioxide composite may further include the reduced titanium dioxide or metal nanoparticles formed on the metal oxide, but is not limited thereto.
  • FIG. 1 is a schematic diagram of a titanium dioxide composite according to an embodiment of the present application.
  • the metal nanoparticles are formed on the reduced titanium dioxide and/or the metal oxide, and the reduced titanium dioxide may exist in a state surrounding the metal oxide, but is not limited thereto. .
  • the metal nanoparticles may supply electrons onto the reduced titanium dioxide, but are not limited thereto.
  • the electrons on the metal nanoparticles are vibrated by a localized surface plasmon resonance phenomenon, so that the electrons are transferred onto the valence band of the reduced titanium dioxide or the conduction band of the metal oxide. I can.
  • the local surface plasmon resonance phenomenon according to the present application is when light of a certain wavelength is irradiated onto the nanostructured surface of a metal having a size less than or equal to the certain wavelength, the surface of the metal and the dielectric, for example, the metal oxide or the reduced It refers to a phenomenon in which electrons vibrate at the boundary of titanium dioxide.
  • the metal nanoparticles have a diameter of 1 nm to 10 nm, and the wavelength of light irradiated to increase the catalytic activity of the titanium dioxide complex or the photocatalyst including the titanium dioxide complex is 200 nm to 1500 nm, A local surface plasmon resonance phenomenon occurs on the surface of the metal nanoparticles, and electrons may be transferred to the reduced titanium dioxide or the metal oxide.
  • the reduced titanium dioxide may be combined with the metal oxide or doped with the metal nanoparticles, thereby further forming a trap site between the band gaps of the reduced titanium dioxide.
  • the difference in the band gap between the reduced phase and the non-reduced phase increases, and between the band gaps A new trap site is formed.
  • a new trap site may be additionally formed between the band gaps, which is By improving the separation efficiency of electron-hole pairs, activation energy required for photo-excitation is lowered, so that light in the ultraviolet, visible, and/or infrared regions can be effectively absorbed.
  • the metal oxide and the reduced titanium dioxide may be Z-scheme heterojunction, but is not limited thereto.
  • the two substances When different materials are electrically heterozygous, they can be divided into several types according to the size of the valence band and the conduction band of the two materials. For example, if the valence band of substance A is larger than that of substance B and the conduction band of substance A is smaller than that of substance B, the two substances are straddling heterojunction (type I). It may have been.
  • the valence band of material A exists between the valence band and the conduction band of material B, and the conduction band of material A is larger than the conduction band of material B, it is a staggered heterojunction (type II). I can.
  • Z-scheme heterojunction according to the present application is a kind of staggered heterozygous, and can be confirmed in Fig. 11 to be described later, but in the staggered heterozygous titanium dioxide composite, the conduction band of the reduced titanium dioxide band), and electrons excited by light move to the conduction band of the metal oxide, and holes present on the valence band of the metal oxide become the valence band of the reduced titanium dioxide. It is to move.
  • the titanium dioxide complex according to the present application is a Z-scheme heterojunction, and electrons excited by light into the conduction band of the metal oxide may move to the valence band of the reduced titanium dioxide.
  • the electrons transferred to the valence band of the reduced titanium dioxide are again excited by light as a conduction band of the reduced titanium dioxide, and the electrons can reduce carbon dioxide to carbon monoxide or remove organic substances.
  • the titanium dioxide complex may be used in a process of obtaining carbon monoxide, methane (CH 4 ), and hydrogen by reducing a material, and a process of removing organic materials contained in cigarette smoke and the like.
  • the metal nanoparticles are Ag, Au, Pt, Ru, Ir, Os, Rh, Pd, W, Mo, Cr, Re, Zn, Mn, Y, Zr, Ni, Cu, Fe , And a metal element selected from the group consisting of combinations thereof, but is not limited thereto.
  • the metal nanoparticles may be Ag, but are not limited thereto.
  • the metal nanoparticle may be less than 10 parts by weight, and the metal oxide may be 30 parts by weight to 70 parts by weight, but is not limited thereto.
  • the frequency of the local surface plasmon resonance phenomenon increases, thereby increasing the catalytic activity of the titanium dioxide composite.
  • the metal nanoparticles are 10 parts by weight or more, the light irradiated onto the reduced titanium dioxide or the metal oxide may decrease, thereby lowering the catalytic activity of the titanium dioxide composite. have.
  • the metal oxide is about 30 parts by weight to about 70 parts by weight, about 30 parts by weight to about 60 parts by weight, about 30 parts by weight to about 50 parts by weight, about 30 parts by weight to about 40 parts by weight, about 40 parts by weight to about 70 parts by weight, about 50 parts by weight to about 70 parts by weight, about 60 parts by weight to about 70 parts by weight, about 40 parts by weight to about 60 parts by weight, or It may be about 45 parts by weight to about 55 parts by weight, but is not limited thereto.
  • the ratio by weight of the reduced titanium dioxide and the metal oxide is 1: 9 to 9: 1, 2: 8 to 8: 2, 7: 3 to 3 : 7, 4: 6 to 6: 4, or may be 5: 5, but is not limited thereto.
  • the metal nanoparticles are less than 2 parts by weight, and the ratio by weight of the reduced titanium dioxide and the metal oxide may be, for example, 1:1. , But is not limited thereto.
  • the ratio by weight of the reduced titanium dioxide and the metal oxide is greater than or less than 1:1, the ratio of the metal oxide on the titanium dioxide composite is insufficient or excessive, due to the local surface plasmon resonance phenomenon. It cannot act as a recombination center for generated or transferred electrons.
  • a reduction reaction may occur in the reduced titanium dioxide, and an oxidation reaction may occur in the metal oxide, but the present invention is not limited thereto.
  • a band gap of the reduced titanium dioxide may be larger than a band gap of the metal oxide, but is not limited thereto.
  • a conduction band of the metal oxide may be greater than a valence band of the reduced titanium dioxide and may be smaller than a conduction band of the reduced titanium dioxide, but is limited thereto. It is not.
  • FIG. 2 is a diagram of a band structure of a titanium dioxide and titanium dioxide composite according to an embodiment of the present application.
  • the band gap of unreduced titanium dioxide is 3.10 eV, which is larger than the band gap of the reduced titanium dioxide and the metal oxide, for example WO 3.
  • the conduction band of WO 3 is higher than the valence band of the reduced titanium dioxide and lower than the conduction band, and electrons excited by light are the reduced dioxide through the WO 3 phase according to the Z-scheme. It moves to the valence band of titanium and can be excited again by light into an electron band.
  • the reduced titanium dioxide and the Ag nanoparticles formed on the WO 3 receive light to generate a local surface plasmon resonance phenomenon to generate electrons.
  • the reduced titanium dioxide and electrons formed in the conductive band of WO 3 by the surface plasmon resonance phenomenon may reduce carbon dioxide to carbon monoxide in Ag nanoparticles.
  • the titanium dioxide complex includes an ordered phase (non-reduced phase) and an orderly phase (reduced phase), and the catalytic activity is activated when light is received even in a state impregnated in a solvent phase.
  • the region where the redox process occurs can be efficiently separated.
  • electrons transferred from the metal nanoparticles may have various uses, such as reduction of substances, removal of organic substances, generation of hydrogen, etc. without being easily bonded to holes on the metal oxide or the reduced titanium dioxide.
  • the metal nanoparticle may have a diameter of 1 nm to 10 nm, but is not limited thereto.
  • the metal nanoparticles are about 1 nm to about 10 nm, about 1 nm to about 9 nm, about 1 nm to about 8 nm, about 1 nm to about 7 nm, about 1 nm to about 6 nm, about 1 nm to about 5 nm, about 1 nm to about 4 nm, about 1 nm to about 3 nm, about 1 nm to about 2 nm, about 2 nm to about 10 nm, about 3 nm to about 10 nm, about 4 nm To about 10 nm, about 5 nm to about 10 nm, about 6 nm to about 10 nm, about 7 nm to about 10 nm, about 8 nm to about 10 nm, about 9 nm to about 10 nm, about 2 nm to about 9 nm, about 3 nm to about 8 nm, about 4 nm to about 7 nm, or about 5 nm to
  • the metal nanoparticles may be about 5 nm to about 8 nm, but are not limited thereto.
  • the reduced titanium dioxide particles and the metal oxide particles may each independently have a diameter of 10 nm to 100 nm, but are not limited thereto.
  • the reduced titanium dioxide particles and the metal oxide particles are each independently about 10 nm to about 100 nm, about 20 nm to about 100 nm, about 30 nm to about 100 nm, about 40 nm to about 100 nm , About 50 nm to about 100 nm, about 60 nm to about 100 nm, about 70 nm to about 100 nm, about 80 nm to about 100 nm, about 90 nm to about 100 nm, about 10 nm to about 90 nm, about 10 nm to about 80 nm, about 10 nm to about 70 nm, about 10 nm to about 60 nm, about 10 nm to about 50 nm, about 10 nm to about 40 nm, about 10 nm to about 30 nm, about 10 nm To about 20 nm, about 20 nm to about 90 nm, about 20 nm to about 80 nm, about 20 nm to about 70 nm,
  • the diameter of the reduced titanium dioxide particles may be smaller than the diameter of the metal oxide particles, but is not limited thereto.
  • the diameter of the reduced titanium dioxide particles may be about 20 nm to about 40 nm, and the diameter of the metal oxide particles may be about 50 nm to about 80 nm, but is not limited thereto.
  • the metal oxide is W, Mo, Cr, Re, Ir, Ta, Hf, Fe, Ni, Cu, Zn, Mn, Y, Zr, Sn, V, Bi, Sr, Ti, It may include a metal element selected from the group consisting of Ca, Nb, K, Na, Li, and combinations thereof, but is not limited thereto.
  • the second aspect of the present application is a step of forming reduced titanium dioxide by selectively reducing any one of the anatase phase and the rutile phase by mixing titanium dioxide (TiO 2) including an anatase phase and a rutile phase with a reducing agent , And dispersing the reduced titanium dioxide and metal oxide in a solvent and then irradiating light to prepare a titanium dioxide composite.
  • TiO 2 titanium dioxide
  • FIG 3 is a flow chart showing a method of manufacturing a titanium dioxide composite according to an embodiment of the present application.
  • titanium dioxide (TiO 2 ) including an anatase phase and a rutile phase is first mixed with a reducing agent to selectively reduce any one of the anatase phase and the rutile phase, thereby reducing titanium dioxide.
  • a reducing agent to selectively reduce any one of the anatase phase and the rutile phase, thereby reducing titanium dioxide.
  • the reducing agent may include a metal and a basic organic solvent, but is not limited thereto.
  • the metal may include a metal selected from the group consisting of Li, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, and combinations thereof. However, it is not limited thereto.
  • the basic organic solvent is an alkyl amine, a dialkyl amine, a cyclic alkyl amine, a dicyclic alkyl amine, and their It may include a material selected from the group consisting of combinations, but is not limited thereto.
  • the reducing agent may include any one of sodium in ethlenediamine (Na-EDA), K-EDA, and Li-EDA, but is not limited thereto.
  • the reduced titanium dioxide may be a material in which the anatase phase is selectively reduced.
  • the reduced titanium dioxide may be a material in which the rutile phase is selectively reduced.
  • the reduction may be performed in a sealed and anhydrous state at room temperature, but is not limited thereto.
  • titanium dioxide when the reduced titanium dioxide is manufactured through the method according to the present application, titanium dioxide can be reduced by a cheaper and simpler process compared to the conventional process of reducing titanium dioxide under high temperature and high pressure conditions.
  • the reduced titanium dioxide and metal oxide are dispersed in a solvent and then irradiated with light to prepare a titanium dioxide composite (S200).
  • the solvent may include a polar organic solvent consisting of methanol, a reducing agent including the basic organic solvent, H 2 O, ethanol, acetone, and combinations thereof, but is limited thereto. no.
  • the step of preparing the titanium dioxide composite may further include adding a metal salt including metal nanoparticles to the solvent, but is not limited thereto.
  • the metal salt releases metal ions in the solvent, and the metal ions may be attached to the reduced titanium dioxide and/or the metal oxide in the form of nanoparticles.
  • the metal particles are Ag, Au, Pt, Ru, Ir, Os, Rh, Pd, W, Mo, Cr, Re, Zn, Mn, Y, Zr, Ni, Cu, Fe, And a metal element selected from the group consisting of combinations thereof, but is not limited thereto.
  • the wavelength of the irradiated light may be 300 nm to 400 nm, but is not limited thereto.
  • the wavelength of the irradiated light is about 365 nm.
  • a third aspect of the present application provides a photocatalyst comprising the titanium dioxide composite according to the first aspect.
  • the photocatalyst may be activated by receiving light in the solvent, but the catalytic activity is not limited thereto.
  • the photocatalyst may be activated as a catalyst by light having a wavelength of 300 nm to 1500 nm, but is not limited thereto.
  • the photocatalyst may be for generating hydrogen, reducing substances, or removing fine dust or organic pollutants in an aqueous solution, but is not limited thereto.
  • the titanium dioxide composite on the photocatalyst is combined with the ordered phase (non-reduced phase), the disordered phase (reduced phase), and water to form order/disorder/water junction (order/ disorder/water junction), but is not limited thereto.
  • the photocatalyst may have very high hydrogen generation efficiency without the presence of a cocatalyst.
  • the photocatalyst according to the present invention can be used for the removal of organic substances contained in the carbon monoxide production process, cigarette smoke, etc. by catalytic activity is activated by ultraviolet, visible light, and/or light in the infrared region.
  • the photocatalyst includes the titanium dioxide complex, and electrons produced from the metal nanoparticles formed on the metal oxide are transferred to the metal nanoparticles formed on the reduced titanium dioxide to reduce various substances, or It can be used for various purposes such as removal of fine dust and organic substances.
  • titanium dioxide or the reduced titanium dioxide When conventional titanium dioxide or the reduced titanium dioxide is used in combination with a hydrogen generation catalyst such as Pt as a photocatalyst for hydrogen generation, it may have a hydrogen generation rate of about 14 mmol h -1 g -1, and when used alone It may have a hydrogen generation rate of 3.46 mmol h -1 g -1.
  • a hydrogen generation catalyst such as Pt as a photocatalyst for hydrogen generation
  • the conventional photocatalyst for generating hydrogen is advantageously bonded by the straddling release bonding.
  • the photocatalyst for generating hydrogen may have a high rate of hydrogen generation due to separation of electrons and holes of the titanium dioxide composite, localization of electrons and holes, and excitation by light of various wavelengths.
  • the diameter of the fine dust may be 1 ⁇ m to 100 ⁇ m, but is not limited thereto.
  • the diameter of the fine dust is about 1 ⁇ m to about 100 ⁇ m, about 10 ⁇ m to about 100 ⁇ m, about 20 ⁇ m to about 100 ⁇ m, about 30 ⁇ m to about 100 ⁇ m, about 40 ⁇ m to about 100 ⁇ m, About 50 ⁇ m to about 100 ⁇ m, about 60 ⁇ m to about 100 ⁇ m, about 70 ⁇ m to about 100 ⁇ m, about 80 ⁇ m to about 100 ⁇ m, about 90 ⁇ m to about 100 ⁇ m, about 1 ⁇ m to about 90 ⁇ m, about 1 ⁇ m to about 80 ⁇ m, about 1 ⁇ m to about 70 ⁇ m, about 1 ⁇ m to about 60 ⁇ m, about 1 ⁇ m to about 50 ⁇ m, about 1 ⁇ m to about 40 ⁇ m, about 1 ⁇ m to about 30 ⁇ m, about 1 ⁇ m to About 20 ⁇ m, about 1 ⁇ m to about 10 ⁇ m, about 10 ⁇ m to about 90 ⁇ m, about 20 ⁇ m, about
  • the photocatalyst according to the present application can effectively remove PM10, that is, fine dust having a diameter of less than 10 ⁇ m.
  • the organic pollutants are methylene blue, nitrogen oxides (NO x ), ammonia (NH 3 ), methyl mercaptan, formaldehyde, and acetaldehyde. ), and combinations thereof, but are not limited thereto.
  • the organic pollutants may generally refer to substances contained in cigarette smoke, but are also contained in various products used in modern society such as cosmetics, dyes, and adhesives.
  • cosmetics, dyes, and adhesives By using the photocatalyst according to the present application, it is possible to remove the organic contaminants that may adversely affect the human body or the natural environment.
  • FIG. 4 is a schematic diagram showing a method of manufacturing a titanium dioxide composite according to an embodiment of the present application.
  • the reduced titanium dioxide, WO 3 and silver nitrate (AgNO 3 ) were mixed in DI water, and then irradiated with ultraviolet rays of 365 nm wavelength at room temperature for 3 hours to obtain a titanium dioxide composite 7BT/W1- Az was prepared (however, z is 0.5 to 2.0).
  • x is the time taken when selectively reducing blue titanium dioxide (BT)
  • y is the ratio of WO 3 to the BT
  • z is titanium dioxide It represents parts by weight of Ag particles per 100 parts by weight of the composite.
  • the ratio between the mass part of the reduced titanium dioxide and the mass part of WO 3 with respect to 100 parts by weight of the titanium dioxide composite is 1:1.
  • FIG. 5A and 5B are TEM images of the titanium dioxide composite according to Example 1
  • FIG. 6 is an HADDF-STEM and EDS image according to Example 1.
  • 7BT of the 7BT/W1-A1 has an anatase phase as (101) crystalline, WO 3 has (100) crystal, and Ag has (111) crystal.
  • the interlayer spacing d of the crystal was measured as 7BT 0.351 nm, Ag 0.242 nm, and WO 3 0.392 nm.
  • Example 2 In the process of Example 1, 1.1 g of Na was added instead of 0.8 g of Li to prepare blue titanium dioxide with reduced anatase phase, and then reacted with WO 3 and AgNO 3 to obtain a titanium dioxide complex.
  • the step of irradiating the UV100 illumination may be omitted.
  • the third embodiment of the Blue TiO 2 / WO 3 5 g was dispersed in 25 ml of ethanol, NiCl 2 ⁇ 6H 2 O 4.46 mg and dispersed to the deionized water 100 ml three cars. Subsequently, the ethanol and the tertiary deionized water were mixed, sonicated for 1 hour, and then the pH was adjusted to 8 using a 0.1 M NaOH solution.
  • Comparative examples according to the present application include only some of the materials used in the above examples, such as P25, 7BT, Ag nanoparticles, WO 3 , 7BT/W1, W1-A1, 7BT-A1, or performing a process without a specific material. Means substances.
  • Example 7A is an XRD analysis of the material according to Example 1 and Comparative Example
  • b and c are XPS analysis of the material according to the comparative example
  • d to f are XPS analysis of the material according to Example 1 It was analyzed.
  • 7BT/W1-A1 includes all of Ag nanoparticles (JCPDS 1-1164 Ag), 7BT, and WO 3.
  • the Ti 2p and O1s core-level XPS spectra of 7BT show a peak shift to low binding energy, it can be confirmed that the 7BT transfers electrons to form Ti 3+ and oxygen defects.
  • the 7BT/W1-A1 showed correct peak splitting (2.2 eV) between the 4f 7/2 and 4f 5/2 double peaks, including W 6+ , and two weak peaks for Ag 2 O formation (3d 5/2 ) is observed, and it can be confirmed that Ti-O, OW, and OH bonds are present.
  • 8A and 8B are UV-Vis spectra of materials according to the Examples and Comparative Examples
  • c is a Tauc plot of the material according to the Comparative Example
  • d is The VB-XPS spectrum of the material
  • e is the PL spectrum
  • f is the photoresponse data.
  • 1, 2, and 3 in c and d of FIG. 8 mean the x-intercepts of the WO 3 pure tangent, the 7BT tangent, and the P25 tangent, respectively.
  • 1, 2, and 3 of Fig. 8 c mean 2.58 eV, 2.69 eV, and 3.10 eV, respectively, and 1, 2, and 3 of Fig. 8 d mean 3.32 eV, 1.14 eV, and 2.25 eV, respectively do.
  • 7BT-A1 can evenly absorb light of 300 nm to 800 nm, and 7BT/W1-A1 can absorb more light of about 550 nm or less than that of 7BT-A1. Was observed to be. Therefore, it can be seen that more light is absorbed by Ag nanoparticles formed after combining 7BT with WO 3 than simply forming Ag nanoparticles on 7BT. As will be described later, the 7BT-A1 only absorbs a lot of light, and the production of carbon monoxide is small and the photocatalytic electron reaction rate is low, so it is preferable to use the 7BT/W1-A1 in order to produce carbon monoxide.
  • 7BT/W1-A1 had a very high photocurrent measured and the intensity of the spectrum was constant. It can be seen that the and holes are efficiently separated.
  • 9A is a gas chromatography of the materials according to Example 1 and Comparative Example, and b to d are graphs of CO generation over time.
  • 7BT/W1-A1 and 7BT-A1 can selectively generate only carbon monoxide, unlike 7BT and 7BT/W1. It was found to be excellent.
  • the 7BT/W1-A1 can produce carbon monoxide constantly even if it is used 5 times, so it can be recycled, and it can generate more carbon monoxide than the 7BT or 7BT/Wy.
  • 10A and 10B are graphs of photocatalytic properties of materials according to Example 1 and Comparative Example.
  • 7BT/W1-A1 may have a higher photocatalytic electron reaction rate (2333.44 ⁇ mol g -1 h -1 ) and higher selectivity for carbon monoxide production compared to 7BT/W1, which is 7BT/W1- This is because when A1 is irradiated with light, electrons are generated by Ag, and efficient electron-hole separation occurs.
  • the photocatalytic electron reaction rate can be obtained as 2[H 2 ]+8[CH 4 ]+2[CO], and the selectivity is [H 2 ], [CH] in the photocatalytic electron reaction rate. 4 ], and [CO].
  • 7BT/W1-A1 can selectively produce only CO and a photocatalytic electron reaction rate that is far superior to other materials.
  • 11A and 11B are graphs of the PL spectrum and intensity of the material according to the comparative example, and c and d are graphs of the band structure of the material according to the comparative example.
  • the PL intensity of the photocatalyst according to the present application is proportional to the amount of OH-radicals.
  • a and b of FIG. 11 it can be seen that the formation of OH- radicals hardly occurs because the peak of 7BT is not observed, and the peak of 7BT/W1 at 488 nm is much higher than the peak of WO 3 Therefore, it can be confirmed that the holes of the 7BT/W1 photocatalyst are generated faster than that of WO 3.
  • the movement of electrons in 7BT/W1 may be performed in a form such as a Z-scheme, not a type II (c in FIG. 11).
  • FIG. 12 is a graph showing the decomposition of tobacco smoke of a material according to the embodiment.
  • the photocatalyst including 7BT/W1-A1 removes fine dust with a diameter of 2.5 ⁇ m or less over time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

The present application relates to a titanium dioxide composite comprising: reduced titanium dioxide (TiO2) comprising an anatase phase and a rutile phase, wherein any one of the anatase phase and the rutile phase is reduced; and a metal oxide bound to the reduced titanium dioxide.

Description

이산화티타늄 복합체, 이의 제조 방법, 및 이를 포함하는 광촉매Titanium dioxide composite, manufacturing method thereof, and photocatalyst comprising same
본원은 이산화티타늄 복합체, 이의 제조 방법, 및 이를 포함하는 광촉매에 관한 것이다.The present application relates to a titanium dioxide composite, a method of manufacturing the same, and a photocatalyst comprising the same.
각종 산업분야에서 사용되는 유기 용제의 배출은 산업발전과 동시에 대기, 수질, 토양, 해양 등에 많은 문제를 야기시키고 있는데, 특히 휘발성 유기물질로 분류되는 유기화합물들이 다양한 형태로 대기 중에 존재하면서 심각한 환경문제를 유발시키고 있다. 이러한 환경문제가 인류 최대의 중점과제로 떠오르면서, 1980 년대 후반에 들어서는 미국과 일본을 비롯한 선진국을 중심으로 반도체 금속 산화물을 광촉매로 이용하여 이들 유기물질을 환경 친화적으로 처리하고자 하는 움직임들이 활발히 일어나고 있다. The emission of organic solvents used in various industrial fields causes many problems in the atmosphere, water quality, soil, and the ocean at the same time as industrial development. In particular, organic compounds classified as volatile organic substances exist in the atmosphere in various forms, which is a serious environmental problem. Is causing. As such environmental issues emerged as humanity's greatest priority, in the late 1980s, in advanced countries including the United States and Japan, there are active movements to treat these organic materials in an environmentally friendly manner using semiconductor metal oxides as photocatalysts. .
이러한 연구들 중에는 이산화티타늄(TiO2)을 이용한 광촉매 분야가 최근 주목을 받고 있으며, 그 성능 또한 기존의 활성탄 흡착, 화학처리, 오존분해, 소각 등의 환경처리 방법과 비교하여 환경 친화적이며 경제성 등이 뛰어난 장점을 지니고 있어 현재 많은 연구가 진행 중이다.Among these studies, the field of photocatalyst using titanium dioxide (TiO 2 ) is attracting attention recently, and its performance is also environmentally friendly and economical compared to the existing environmental treatment methods such as activated carbon adsorption, chemical treatment, ozone decomposition, and incineration. Due to its outstanding advantages, many studies are currently underway.
태양광 하에서 TiO2의 흡수를 극대화하기 위해 금속, 무기 성분, 및 Ti3+ 종으로 도핑하여 TiO2의 조성을 바꾸는 연구가 진행중이다. 도핑을 통해, TiO2 의 빛 흡수 특성이 향상되었지만, 질소-도핑된 TiO2는 태양 조사에 반응할 뿐, 가시광 및 적외선에서의 흡수가 여전히 부족하다.In order to maximize the absorption of TiO 2 under sunlight, research is underway to change the composition of TiO 2 by doping with metals, inorganic components, and Ti 3+ species. Through doping, the light absorption property of TiO 2 is improved, but nitrogen-doped TiO 2 only reacts to solar irradiation, and absorption in visible and infrared light is still insufficient.
한편, 백금은 촉매활성 특성이 가장 우수하여 촉매 분야에서 다양하게 응용되고 있으나, 희소 금속으로 가격이 비싸 촉매의 저렴한 운용에 어려움을 초래하고 있다. 따라서 백금의 양을 줄이거나 대체 촉매를 개발하는 등의 노력이 필요하다.On the other hand, platinum has the best catalytic activity characteristics and has been applied in various ways in the catalytic field, but it is a rare metal and is expensive, causing difficulties in inexpensive operation of the catalyst. Therefore, efforts such as reducing the amount of platinum or developing an alternative catalyst are required.
본원의 배경이 되는 논문(Zhang, Kan, et al. "An Order/Disorder/Water Junction System for Highly Efficient Co-Catalyst-Free Photocatalytic Hydrogen Generation." Energy & Environmental Science, vol. 9, no. 2, 2016, pp. 499-503.)은 질서상, 무질서상, 및 물 접합이 이루어진 시스템에서 광촉매를 통해 수소를 고효율로 생성하는 방법에 대한 논문이다. 상기 논문은 P-25 TiO2 에 Li-EDA 를 첨가하여 무질서상 및 질서상을 포함하는 P-25 는 높은 전자-정공 분리 효율 및 수소 생성 효율을 가질 수 있음을 개시하고 있으나, 상기 TiO2 의 효율을 추가로 향상시키기 위한 방법에 대해서는 개시하고 있지 않다.The paper behind the present application (Zhang, Kan, et al. "An Order/Disorder/Water Junction System for Highly Efficient Co-Catalyst-Free Photocatalytic Hydrogen Generation." Energy & Environmental Science, vol. 9, no. 2, 2016 , pp. 499-503.) is a paper on the method of generating hydrogen with high efficiency through photocatalyst in orderly, disorderly, and water-bonded systems. The paper discloses that P-25, which contains disordered and orderly phases by adding Li-EDA to P-25 TiO 2 , can have high electron-hole separation efficiency and hydrogen generation efficiency, but the TiO 2 It does not disclose a method for further improving the efficiency.
본원은 전술한 종래 기술의 문제점을 해결하기 위한 것으로서, 이산화티타늄 복합체를 제공하는 것을 목적으로 한다. The present application is to solve the problems of the prior art described above, and an object thereof is to provide a titanium dioxide composite.
또한, 상기 이산화티타늄 복합체의 제조 방법을 제공하는 것을 목적으로 한다.In addition, an object of the present invention is to provide a method for producing the titanium dioxide composite.
또한, 상기 이산화티타늄 복합체를 포함하는 광촉매를 제공하는 것을 목적으로 한다.In addition, an object of the present invention is to provide a photocatalyst comprising the titanium dioxide composite.
다만, 본원의 실시예가 이루고자 하는 기술적 과제는 상기된 바와 같은 기술적 과제들로 한정되지 않으며, 또 다른 기술적 과제들이 존재할 수 있다.However, the technical problem to be achieved by the embodiments of the present application is not limited to the technical problems as described above, and other technical problems may exist.
상기한 기술적 과제를 달성하기 위한 기술적 수단으로서, 본원의 제 1 측면은 아나타제상 및 루타일상을 포함하고, 상기 아나타제상 및 상기 루타일상 중 어느 하나는 환원된 것인 환원된 이산화티타늄(TiO2), 및 상기 환원된 이산화티타늄과 결합한 금속 산화물을 포함하는, 이산화티타늄 복합체를 제공한다.As a technical means for achieving the above technical problem, the first aspect of the present application includes an anatase phase and a rutile phase, and any one of the anatase phase and the rutile phase is reduced. Reduced titanium dioxide (TiO 2 ) , And it provides a titanium dioxide complex comprising a metal oxide combined with the reduced titanium dioxide.
본원의 일 구현예에 따르면, 상기 이산화티타늄 복합체는 상기 환원된 이산화티타늄 또는 상기 금속 산화물 상에 형성된 금속 나노 입자를 추가 포함할 수 있으나, 이에 제한되는 것은 아니다.According to the exemplary embodiment of the present disclosure, the titanium dioxide composite may further include the reduced titanium dioxide or metal nanoparticles formed on the metal oxide, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 이산화티타늄 복합체 100 중량부에 대하여, 상기 금속 나노 입자는 10 중량부 미만이고, 상기 금속 산화물은 30 중량부 내지 70 중량부일 수 있으나, 이에 제한되는 것은 아니다. According to the exemplary embodiment of the present disclosure, based on 100 parts by weight of the titanium dioxide composite, the metal nanoparticle may be less than 10 parts by weight, and the metal oxide may be 30 parts by weight to 70 parts by weight, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 금속 나노 입자는 상기 환원된 이산화티타늄 상에 전자를 공급할 수 있으나, 이에 제한되는 것은 아니다. According to the exemplary embodiment of the present disclosure, the metal nanoparticles may supply electrons onto the reduced titanium dioxide, but are not limited thereto.
본원의 일 구현예에 따르면, 상기 금속 나노 입자는 1 nm 내지 10 nm 의 직경을 가질 수 있으나, 이에 제한되는 것은 아니다. According to the exemplary embodiment of the present disclosure, the metal nanoparticle may have a diameter of 1 nm to 10 nm, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 금속 나노 입자는 Ag, Au, Pt, Ru, Ir, Os, Rh, Pd, W, Mo, Cr, Re, Zn, Mn, Y, Zr, Ni, Cu, Fe, 및 이들의 조합들로 이루어진 군에서 선택된 금속 원소를 포함할 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, the metal nanoparticles are Ag, Au, Pt, Ru, Ir, Os, Rh, Pd, W, Mo, Cr, Re, Zn, Mn, Y, Zr, Ni, Cu, Fe , And a metal element selected from the group consisting of combinations thereof, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 환원된 이산화티타늄에서는 환원 반응이 발생하고, 상기 금속 산화물에서는 산화 반응이 발생할 수 있으나, 이에 제한되는 것은 아니다.According to the exemplary embodiment of the present disclosure, a reduction reaction may occur in the reduced titanium dioxide, and an oxidation reaction may occur in the metal oxide, but the present invention is not limited thereto.
본원의 일 구현예에 따르면, 상기 금속 산화물의 전도띠(conduction band)는 상기 환원된 이산화티타늄의 원자가띠(valence band)보다 크고, 상기 환원된 이산화티타늄의 전도띠보다 작을 수 있으나, 이에 제한되는 것은 아니다.According to the exemplary embodiment of the present disclosure, a conduction band of the metal oxide may be greater than a valence band of the reduced titanium dioxide and may be smaller than a conduction band of the reduced titanium dioxide, but is limited thereto. It is not.
본원의 일 구현예에 따르면, 상기 환원된 이산화티타늄의 밴드갭(band gap)은 상기 금속 산화물의 밴드갭(band gap)보다 클 수 있으나, 이에 제한되는 것은 아니다.According to the exemplary embodiment of the present disclosure, a band gap of the reduced titanium dioxide may be larger than a band gap of the metal oxide, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 금속 산화물은 W, Mo, Cr, Re, Ir, Ta, Hf, Fe, Ni, Cu, Zn, Mn, Y, Zr, Sn, V, Bi, Sr, Ti, Ca, Nb, K, Na, Li, 및 이들의 조합들로 이루어진 군에서 선택된 금속 원소를 포함할 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, the metal oxide is W, Mo, Cr, Re, Ir, Ta, Hf, Fe, Ni, Cu, Zn, Mn, Y, Zr, Sn, V, Bi, Sr, Ti, It may include a metal element selected from the group consisting of Ca, Nb, K, Na, Li, and combinations thereof, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 환원된 이산화티타늄은 청색을 나타낼 수 있으나, 이에 제한되는 것은 아니다.According to the exemplary embodiment of the present disclosure, the reduced titanium dioxide may exhibit blue color, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 환원된 이산화티타늄 입자 및 상기 금속 산화물 입자는 각각 독립적으로 10 nm 내지 100 nm 의 직경을 가질 수 있으나, 이에 제한되는 것은 아니다.According to the exemplary embodiment of the present disclosure, the reduced titanium dioxide particles and the metal oxide particles may each independently have a diameter of 10 nm to 100 nm, but are not limited thereto.
본원의 일 구현예에 따르면, 상기 환원된 이산화티타늄 입자의 직경은 상기 금속 산화물 입자의 직경보다 작을 수 있으나, 이에 제한되는 것은 아니다.According to the exemplary embodiment of the present disclosure, the diameter of the reduced titanium dioxide particles may be smaller than the diameter of the metal oxide particles, but is not limited thereto.
또한, 본원의 제 2 측면은 아나타제상 및 루타일상을 포함하는 이산화티타늄(TiO2)을 환원제와 혼합하여 상기 아나타제상 및 상기 루타일상 중 어느 하나를 선택적으로 환원시켜 환원된 이산화티타늄을 형성하는 단계, 및 상기 환원된 이산화티타늄 및 금속 산화물을 용매 상에 분산시킨 후 광을 조사하여 이산화티타늄 복합체를 제조하는 단계를 포함하는, 이산화티타늄 복합체의 제조 방법 을 제공한다.In addition, the second aspect of the present application is a step of forming reduced titanium dioxide by selectively reducing any one of the anatase phase and the rutile phase by mixing titanium dioxide (TiO 2) including an anatase phase and a rutile phase with a reducing agent , And dispersing the reduced titanium dioxide and metal oxide in a solvent and then irradiating light to prepare a titanium dioxide composite, it provides a method for producing a titanium dioxide composite.
본원의 일 구현예에 따르면, 상기 이산화티타늄 복합체를 제조하는 단계는 상기 용매 상에 금속 나노 입자를 포함하는 금속 염을 투입하는 단계를 추가 포함할 수 있으나, 이에 제한되는 것은 아니다.According to the exemplary embodiment of the present disclosure, the step of preparing the titanium dioxide composite may further include adding a metal salt including metal nanoparticles to the solvent, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 금속 염은 Ag, Au, Pt, Ru, Ir, Os, Rh, Pd, W, Mo, Cr, Re, Zn, Mn, Y, Zr, Ni, Cu, Fe,및 이들의 조합들로 이루어진 군에서 선택된 금속 원소를 포함할 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, the metal salt is Ag, Au, Pt, Ru, Ir, Os, Rh, Pd, W, Mo, Cr, Re, Zn, Mn, Y, Zr, Ni, Cu, Fe, And a metal element selected from the group consisting of combinations thereof, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 환원제는 금속 및 염기성 유기 용매를 포함할 수 있으나, 이에 제한되는 것은 아니다.According to the exemplary embodiment of the present disclosure, the reducing agent may include a metal and a basic organic solvent, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 금속은 Li, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, 및 이들의 조합들로 이루어진 군으로부터 선택되는 금속을 포함할 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, the metal may include a metal selected from the group consisting of Li, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, and combinations thereof. However, it is not limited thereto.
본원의 일 구현예에 따르면, 상기 염기성 유기 용매는 알킬아민 (alkyl amine), 디알킬아민 (dialkyl amine), 사이클릭알킬아민 (cyclicalkyl amine), 디사이클릭알킬아민 (dicyclicalkyl amine), 및 이들의 조합들로 이루어진 군에서 선택된 물질을 포함할 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, the basic organic solvent is an alkyl amine, a dialkyl amine, a cyclic alkyl amine, a dicyclic alkyl amine, and their It may include a material selected from the group consisting of combinations, but is not limited thereto.
또한, 본원의 제 3 측면은 상기 제 1 측면에 따른 이산화티타늄 복합체를 포함하는 광촉매를 제공한다.In addition, a third aspect of the present application provides a photocatalyst comprising the titanium dioxide composite according to the first aspect.
상술한 과제 해결 수단은 단지 예시적인 것으로서, 본원을 제한하려는 의도로 해석되지 않아야 한다. 상술한 예시적인 실시예 외에도, 도면 및 발명의 상세한 설명에 추가적인 실시예가 존재할 수 있다.The above-described problem solving means are merely exemplary and should not be construed as limiting the present application. In addition to the above-described exemplary embodiments, additional embodiments may exist in the drawings and detailed description of the invention.
전술한 과제의 해결 수단에 따르면, 본원에 따른 이산화티타늄 복합체는 2.6 eV 이하의 좁은 밴드 갭을 갖고, 높은 안정성 및 전하 운반체 분리능력을 가져 나노 구조화된 반도체에 사용될 수 있다.According to the solution to the above-described problem, the titanium dioxide composite according to the present application has a narrow band gap of 2.6 eV or less, and has high stability and charge carrier separation ability, so that it can be used in a nanostructured semiconductor.
일반적으로, 이산화탄소를 환원시키는 공정은 수소, 메탄(CH4), 및 일산화탄소가 함께 생성되는 경향이 있다. 이와 관련하여, 본원에 따른 이산화티타늄 복합체를 사용하여 이산화탄소를 환원시키는 공정은 부산물 없이 일산화탄소만을 수득할 수 있다.In general, the process of reducing carbon dioxide tends to produce hydrogen, methane (CH 4 ), and carbon monoxide together. In this regard, the process of reducing carbon dioxide using the titanium dioxide composite according to the present application can obtain only carbon monoxide without by-products.
또한, 자외선에 의해 촉매능이 활성화되는 종래의 이산화티타늄 물질과 달리, 본원에 따른 이산화티타늄 복합체는 금속 산화물 및/또는 금속 나노 입자를 포함하기 때문에, 자외선 뿐만 아니라 가시광선 및/또는 적외선에 의해 촉매능이 활성화될 수 있다.In addition, unlike conventional titanium dioxide materials whose catalytic activity is activated by ultraviolet rays, the titanium dioxide composite according to the present application includes metal oxides and/or metal nanoparticles, so that the catalytic activity is not only performed by ultraviolet rays, but also visible rays and/or infrared rays. Can be activated.
구체적으로, 상기 이산화티타늄 복합체의 상기 금속 산화물의 전도띠(conduction band)는 상기 환원된 이산화티타늄의 원자가띠(valence band)에 비해 소폭 크기 때문에, 상기 금속 나노 입자에서 상기 금속 산화물의 전도띠로 공급된 전자는 상기 환원된 이산화티타늄의 원자가띠로 전달되며, 상기 전자는 자외선, 가시 광선, 및/또는 적외선에 의해 여기되어 이산화탄소와 같은 물질을 환원시킬 수 있다. Specifically, since the conduction band of the metal oxide of the titanium dioxide composite is slightly larger than the valence band of the reduced titanium dioxide, the metal nanoparticles are supplied as the conduction band of the metal oxide. Electrons are transferred to the valence band of the reduced titanium dioxide, and the electrons are excited by ultraviolet rays, visible rays, and/or infrared rays to reduce a substance such as carbon dioxide.
또한, 본원에 따른 이산화티타늄 복합체는 장시간에 걸쳐 반복적으로 물질을 환원시킬 수 있다.In addition, the titanium dioxide composite according to the present application can repeatedly reduce the material over a long period of time.
또한, 본원에 따른 이산화티타늄 복합체는 금속 나노 입자가 형성된 금속 산화물 및 환원된 이산화티타늄을 포함함으로써 미세먼지, 자동차 배기가스에 포함된 질소 산화물(NOx) 및/또는 담배연기, 가축분묘냄새, 아세트알데하이드, 포름알데하이드, 메칠머캡탄, 메칠렌블루, 초산, 유기용제, 페인트와 신나, 접착제, 드라이 클리닝 유체, 접착제, 목재 방부제, 세정제 및 소독제, 나방 기피제, 건축 자재 및 비품, 살충제 등의 유기 오염 물질을 제거할 수 있다.In addition, the titanium dioxide composite according to the present application includes a metal oxide in which metal nanoparticles are formed and reduced titanium dioxide, so that fine dust, nitrogen oxide (NO x ) contained in automobile exhaust gas and/or cigarette smoke, animal powder smell, acetate Organic contamination such as aldehyde, formaldehyde, methylmercaptan, methylene blue, acetic acid, organic solvents, paints and thinners, adhesives, dry cleaning fluids, adhesives, wood preservatives, cleaners and disinfectants, moth repellents, building materials and fixtures, pesticides, etc. Substance can be removed.
또한, 본원에 따른 이산화티타늄 복합체는 공기청정기 필터에 부착되어 대기 중 오염 물질을 제거할 수 있고, 각종 곰팡이균, 세균, 및 박테리아 등을 제거할 수 있다. In addition, the titanium dioxide complex according to the present application is attached to the air purifier filter to remove pollutants in the air, and various fungi, bacteria, and bacteria can be removed.
다만, 본원에서 얻을 수 있는 효과는 상기된 바와 같은 효과들로 한정되지 않으며, 또 다른 효과들이 존재할 수 있다.However, the effect obtainable in the present application is not limited to the above-described effects, and other effects may exist.
도 1 은 본원의 일 구현예에 따른 이산화티타늄 복합체의 모식도이다.1 is a schematic diagram of a titanium dioxide composite according to an embodiment of the present application.
도 2 는 본원의 일 구현예에 따른 이산화티타늄 및 이산화티타늄 복합체의 밴드 구조에 대한 그림이다.2 is a diagram of a band structure of a titanium dioxide and titanium dioxide composite according to an embodiment of the present application.
도 3 은 본원의 일 구현예에 따른 이산화티타늄 복합체의 제조 방법을 나타낸 순서도이다. 3 is a flow chart showing a method of manufacturing a titanium dioxide composite according to an embodiment of the present application.
도 4 는 본원의 일 실시예에 따른 이산화티타늄 복합체의 제조 방법을 나타낸 모식도이다.4 is a schematic diagram showing a method of manufacturing a titanium dioxide composite according to an embodiment of the present application.
도 5 의 (a) 및 (b) 는 본원의 일 실시예에 따른 이산화티타늄 복합체의 TEM 이미지이다.5A and 5B are TEM images of a titanium dioxide composite according to an embodiment of the present application.
도 6 은 본원의 일 실시예에 따른 이산화티타늄 복합체의 HADDF-STEM 및 EDS 이미지이다.6 is an HADDF-STEM and EDS image of a titanium dioxide composite according to an embodiment of the present application.
도 7 의 a 는 본원의 일 실시예 및 비교예에 따른 물질을 XRD 분석한 것이고, b 및 c 는 본원의 일 비교예에 따른 물질을 XPS 분석한 것이며, d 내지 f 는 본원의 일 실시예에 따른 물질을 XPS 분석한 것이다.7A is an XRD analysis of a material according to an example and a comparative example of the present application, b and c are an XPS analysis of a material according to a comparative example of the present application, and d to f are according to an example of the present application. The following material was analyzed by XPS.
도 8 의 a 및 b 는 본원의 일 실시예 및 비교예에 따른 물질의 UV-Vis 스펙트럼이고, c 는 본원의 일 비교예에 따른 물질의 타우 그래프(Tauc plot)이며, d 는 본원의 일 실시예 및 비교예에 따른 물질의 VB-XPS 스펙트럼이고, e 는 PL 스펙트럼이며, f 는 광반응(photoresponse)에 대한 데이터이다.8A and 8B are UV-Vis spectra of a material according to an embodiment and a comparative example of the present application, c is a Tauc plot of a material according to a comparative example of the present application, and d is an exemplary embodiment of the present application. The VB-XPS spectrum of the material according to Examples and Comparative Examples, e is a PL spectrum, and f is data on a photoresponse.
도 9 의 a 는 본원의 일 실시예 및 비교예에 따른 물질의 가스 크로마토그래피이고, b 내지 d 는 시간에 따른 CO 생성 그래프이다.9A is a gas chromatography of a material according to an example and a comparative example of the present application, and b to d are graphs of CO generation over time.
도 10 의 a 및 b 는 본원의 일 실시예 및 비교예에 따른 물질의 광촉매능에 대한 그래프이다.10A and 10B are graphs of photocatalytic properties of materials according to Examples and Comparative Examples of the present application.
도 11 의 a 및 b 는 본원의 일 비교예에 따른 물질의 PL 스펙트럼 및 강도(intensity)에 대한 그래프이고, c 및 d 는 본원의 일 비교예에 따른 물질의 밴드 구조에 대한 그래프이다.11 a and b are graphs of the PL spectrum and intensity of a material according to a comparative example of the present application, and c and d are graphs of a band structure of a material according to a comparative example of the present application.
도 12 는 본원의 일 실시예에 따른 이산화티타늄 복합체의 담배연기 분해를 나타내는 그래프이다.12 is a graph showing the decomposition of cigarette smoke of the titanium dioxide composite according to an embodiment of the present application.
아래에서는 첨부한 도면을 참조하여 본원이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 실시예를 상세히 설명한다. Hereinafter, embodiments of the present application will be described in detail with reference to the accompanying drawings so that those of ordinary skill in the art may easily implement the present application.
그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본원을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.However, the present application may be implemented in various different forms and is not limited to the embodiments described herein. In addition, in the drawings, parts irrelevant to the description are omitted in order to clearly describe the present application, and similar reference numerals are attached to similar parts throughout the specification.
본원 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우 뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다.Throughout the present specification, when a part is said to be "connected" with another part, this includes not only the case that it is "directly connected", but also the case that it is "electrically connected" with another element interposed therebetween. do.
본원 명세서 전체에서, 어떤 부재가 다른 부재 "상에", "상부에", "상단에", "하에", "하부에", "하단에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.Throughout the present specification, when a member is positioned "on", "upper", "upper", "under", "lower", and "lower" of another member, this means that a member is located on another member. This includes not only the case where they are in contact but also the case where another member exists between the two members.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.In the entire specification of the present application, when a certain part "includes" a certain component, it means that other components may be further included rather than excluding other components unless specifically stated to the contrary.
본 명세서에서 사용되는 정도의 용어 "약", "실질적으로" 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다. 또한, 본원 명세서 전체에서, "~ 하는 단계" 또는 "~의 단계"는 "~를 위한 단계"를 의미하지 않는다. As used herein, the terms "about", "substantially" and the like are used in or close to the numerical value when manufacturing and material tolerances specific to the stated meaning are presented, and to aid understanding of the present application. In order to avoid unreasonable use by unscrupulous infringers of the stated disclosures, either exact or absolute figures are used. In addition, throughout the specification of the present application, "step to" or "step of" does not mean "step for".
본원 명세서 전체에서, 마쿠시 형식의 표현에 포함된 "이들의 조합"의 용어는 마쿠시 형식의 표현에 기재된 구성 요소들로 이루어진 군에서 선택되는 하나 이상의 혼합 또는 조합을 의미하는 것으로서, 상기 구성 요소들로 이루어진 군에서 선택되는 하나 이상을 포함하는 것을 의미한다.In the entire specification of the present application, the term "combination of these" included in the expression of the Makushi format refers to one or more mixtures or combinations selected from the group consisting of components described in the expression of the Makushi format, and the constituent elements It means to include one or more selected from the group consisting of.
본원 명세서 전체에서, "A 및/또는 B" 의 기재는, "A 또는 B, 또는, A 및 B" 를 의미한다.Throughout this specification, the description of "A and/or B" means "A or B, or A and B".
이하에서는 본원의 이산화티타늄 복합체, 이의 제조 방법, 및 이를 포함하는 광촉매에 대하여, 구현예 및 실시예와 도면을 참조하여 구체적으로 설명하도록 한다. 그러나 본원이 이러한 구현예 및 실시예와 도면에 제한되는 것은 아니다.Hereinafter, the titanium dioxide composite of the present application, a method of manufacturing the same, and a photocatalyst including the same will be described in detail with reference to embodiments and examples and the drawings. However, the present application is not limited to these embodiments and examples and drawings.
상기한 기술적 과제를 달성하기 위한 기술적 수단으로서, 본원의 제 1 측면은 아나타제상 및 루타일상을 포함하고, 상기 아나타제상 및 상기 루타일상 중 어느 하나는 환원된 것인 환원된 이산화티타늄(TiO2), 및 상기 환원된 이산화티타늄과 결합한 금속 산화물을 포함하는, 이산화티타늄 복합체를 제공한다.As a technical means for achieving the above technical problem, the first aspect of the present application includes an anatase phase and a rutile phase, and any one of the anatase phase and the rutile phase is reduced. Reduced titanium dioxide (TiO 2 ) , And it provides a titanium dioxide complex comprising a metal oxide combined with the reduced titanium dioxide.
본원에 따른 이산화티타늄은 수소 생성 반응의 촉매 뿐만 아니라, 태양광 소자 등 다양한 용도를 가질 수 있는 물질이다. 자연에 존재하는 이산화티타늄은 크게 아나타제상 및/또는 루타일상의 두 가지 상(phase)를 포함할 수 있으며, 상기 두 상의 비율 등 다양한 원인에 의해 물성이 변화될 수 있다. 일반적으로, 상기 이산화티타늄의 밴드갭은 약 3.1 eV 이다.Titanium dioxide according to the present application is a material that can have various uses, such as a photovoltaic device, as well as a catalyst for a hydrogen generation reaction. Titanium dioxide existing in nature may largely include two phases of an anatase phase and/or a rutile phase, and physical properties may be changed by various reasons such as the ratio of the two phases. Typically, the band gap of the titanium dioxide is about 3.1 eV.
이와 관련하여, 상기 루타일상 및 상기 아나타제상을 포함하고, 상기 아나타제상 및 상기 루타일상 중 어느 하나도 환원되지 않은 이산화티타늄은 P25 로서 표현될 수 있다.In this regard, titanium dioxide including the rutile phase and the anatase phase and in which neither the anatase phase nor the rutile phase is reduced may be expressed as P25.
본원에 따른 루타일상(rutile phase)은 금홍석으로도 알려져 있으며, 자연중의 이산화티타늄은 대부분 루타일상을 갖는다. 상기 루타일상은 상기 아나타제상에 비해 내후성, 은폐력, 백색 휘도, 및 유전율 등이 우수하다.The rutile phase according to the present application is also known as rutile, and titanium dioxide in nature mostly has a rutile phase. The rutile phase is superior to the anatase phase in weather resistance, hiding power, white luminance, and dielectric constant.
본원에 따른 아나타제상(anatase phase)은 물이나 공기 중에 존재하는 오염물질을 분해하기 위한 광촉매 활성이 뛰어나며, 다른 물질 상에 상기 아나타제상의 이산화티타늄을 코팅할 경우 내마모성이 향상될 수 있다.The anatase phase according to the present application has excellent photocatalytic activity for decomposing contaminants present in water or air, and abrasion resistance may be improved when the anatase-phase titanium dioxide is coated on another material.
상기 루타일상 및/또는 상기 아나타제상을 포함하는 이산화티타늄에 빛을 조사하면 광촉매, 태양전지, 유기물질 제거 등 다양한 용도로서 사용될 수 있다. 그러나, 단순히 자연 상태의 이산화티타늄을 어떠한 공정 없이 사용할 경우, 비교적 낮은 효율을 갖고, 특정 파장의 빛에만 반응하는 등 상용화가 어려운 단점이 존재한다.When the titanium dioxide including the rutile phase and/or the anatase phase is irradiated with light, it can be used for various purposes such as photocatalyst, solar cell, organic material removal. However, when titanium dioxide in its natural state is simply used without any process, there is a disadvantage that it is difficult to commercialize it, such as having relatively low efficiency and reacting only to light of a specific wavelength.
본 발명의 발명자가 공지한 종래의 기술에는 상기 이산화티타늄의 루타일상 및/또는 아나타제상 중 적어도 하나의 상만을 환원시킨, 환원된 이산화티타늄이 개시되어 있으나, 본원에서는 상기 환원된 이산화티타늄을 상기 금속 산화물과 결합시킴으로써 보다 나은 물성 및 효과를 가질 수 있다.In the prior art known by the inventors of the present invention, reduced titanium dioxide in which only at least one of the rutile phase and/or anatase phase of the titanium dioxide is reduced is disclosed. However, in the present application, the reduced titanium dioxide is used as the metal. By combining it with an oxide, it can have better physical properties and effects.
본원에 따른 환원된 이산화티타늄은 상기 루타일상 및 상기 아나타제상 중 적어도 하나를 환원한 것이고, 다른 하나는 환원시키지 않은 물질을 의미한다. 예를 들어, 상기 환원된 이산화티타늄은 환원된 루타일상 및 환원되지 않은 아나타제상을 포함하거나, 또는 환원된 아나타제상 및 환원되지 않은 루타일상을 포함할 수 있으나, 이에 제한되는 것은 아니다.The reduced titanium dioxide according to the present application is obtained by reducing at least one of the rutile phase and the anatase phase, and the other refers to a material that is not reduced. For example, the reduced titanium dioxide may include a reduced rutile phase and an unreduced anatase phase, or may include a reduced anatase phase and an unreduced rutile phase, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 환원된 루타일상 또는 아나타제상은 비결정성을 갖고, 상기 환원되지 않은 루타일상 또는 아나타제상은 결정성을 가질 수 있으나, 이에 제한되는 것은 아니다.According to the exemplary embodiment of the present disclosure, the reduced rutile phase or anatase phase may have amorphousness, and the unreduced rutile phase or anatase phase may have crystallinity, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 환원된 이산화티타늄은 나노 입자의 형태를 가질 수 있으나, 이에 제한되는 것은 아니다. 후술하겠지만, 상기 환원된 이산화티타늄의 입자는 상기 금속 산화물의 입자 및 상기 금속 나노 입자와 결합하여 상기 이산화티타늄 복합체를 형성할 수 있다.According to the exemplary embodiment of the present disclosure, the reduced titanium dioxide may have the form of nanoparticles, but is not limited thereto. As will be described later, the reduced titanium dioxide particles may be combined with the metal oxide particles and the metal nanoparticles to form the titanium dioxide composite.
본원의 일 구현예에 따르면, 상기 환원된 상은 -OH 기, -COOH 기, -SO3 기, 및 이들의 조합들로 이루어진 군에서 선택된 치환기를 포함할 수 있으나, 이에 제한되는 것은 아니다.According to the exemplary embodiment of the present disclosure, the reduced phase may include a substituent selected from the group consisting of -OH group, -COOH group, -SO 3 group, and combinations thereof, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 환원된 이산화티타늄은 청색을 나타낼 수 있으나, 이에 제한되는 것은 아니다. According to the exemplary embodiment of the present disclosure, the reduced titanium dioxide may exhibit blue color, but is not limited thereto.
구체적으로, 상기 아나타제상은 환원되면 검푸른색을 띄고, 상기 루타일상은 환원되지 않으면 흰색을 띄기 때문에, 환원된 아나타제상 및 환원되지 않은 루타일상을 포함하는 상기 환원된 이산화티타늄은 청색을 나타낼 수 있다. 또한, 상기 루타일상은 환원되면 검푸른색을 띄고, 상기 아나타제상은 환원되지 않으면 흰색을 띄기 때문에, 환원된 루타일상 및 환원되지 않은 아나타제상을 포함하는 상기 환원된 이산화티타늄은 청색을 나타낼 수 있다.Specifically, since the anatase phase exhibits a dark blue color when reduced, and the rutile phase becomes white when not reduced, the reduced titanium dioxide including the reduced anatase phase and the unreduced rutile phase may exhibit blue color. In addition, since the rutile phase has a dark blue color when reduced and the anatase phase is white when not reduced, the reduced titanium dioxide including the reduced rutile phase and the unreduced anatase phase may exhibit blue color.
이하의 구현예, 실시예, 실험예, 및 도면에서, BT 라는 용어는 청색을 갖는 환원된 이산화티타늄을 의미할 수 있다.In the following embodiments, examples, experimental examples, and drawings, the term BT may mean reduced titanium dioxide having a blue color.
본원에 따른 이산화티타늄 복합체는 상기 환원된 이산화티타늄 및 금속 산화물을 포함한다. 이와 관련하여, 상기 금속 산화물은 상기 환원된 이산화티타늄을 포위하며 결합한 상태로 존재하거나, 상기 환원된 이산화티타늄에 의해 포위되며 결합한 상태로 존재할 수 있다.The titanium dioxide composite according to the present application includes the reduced titanium dioxide and a metal oxide. In this regard, the metal oxide may exist in a bonded state surrounded by the reduced titanium dioxide, or may exist in a bonded state surrounded by the reduced titanium dioxide.
후술하겠지만, 바람직하게는 상기 환원된 이산화티타늄의 입자는 상기 금속 산화물의 입자에 의해 포위되어 상기 이산화티타늄 복합체를 형성할 수 있으나, 이에 제한되는 것은 아니다.As will be described later, preferably, the reduced titanium dioxide particles may be surrounded by the metal oxide particles to form the titanium dioxide complex, but the present invention is not limited thereto.
본원의 일 구현예에 따르면, 상기 환원된 이산화티타늄에서는 환원 반응이 발생하고, 상기 금속 산화물에서는 산화 반응이 발생할 수 있으나, 이에 제한되는 것은 아니다.According to the exemplary embodiment of the present disclosure, a reduction reaction may occur in the reduced titanium dioxide, and an oxidation reaction may occur in the metal oxide, but the present invention is not limited thereto.
본원의 일 구현예에 따르면, 상기 이산화티타늄 복합체는 상기 환원된 이산화티타늄 또는 상기 금속 산화물 상에 형성된 금속 나노 입자를 추가 포함할 수 있으나, 이에 제한되는 것은 아니다.According to the exemplary embodiment of the present disclosure, the titanium dioxide composite may further include the reduced titanium dioxide or metal nanoparticles formed on the metal oxide, but is not limited thereto.
도 1 은 본원의 일 구현예에 따른 이산화티타늄 복합체의 모식도이다.1 is a schematic diagram of a titanium dioxide composite according to an embodiment of the present application.
도 1 을 참조하면, 상기 금속 나노 입자는 상기 환원된 이산화티타늄 및/또는 상기 금속 산화물 상에 형성되고, 상기 환원된 이산화티타늄은 상기 금속 산화물을 포위한 상태로 존재할 수 있으나, 이에 제한되는 것은 아니다.Referring to FIG. 1, the metal nanoparticles are formed on the reduced titanium dioxide and/or the metal oxide, and the reduced titanium dioxide may exist in a state surrounding the metal oxide, but is not limited thereto. .
본원의 일 구현예에 따르면, 상기 금속 나노 입자는 상기 환원된 이산화티타늄 상에 전자를 공급할 수 있으나, 이에 제한되는 것은 아니다. According to the exemplary embodiment of the present disclosure, the metal nanoparticles may supply electrons onto the reduced titanium dioxide, but are not limited thereto.
상기 금속 나노 입자 상의 전자는 국소 표면 플라즈몬 공명 현상(Localized Surface Plasmon Resonance)에 의해 진동함으로써, 상기 환원된 이산화티타늄의 원자가띠(valence band) 또는 상기 금속 산화물의 전도띠(conduction band) 상에 전달될 수 있다.The electrons on the metal nanoparticles are vibrated by a localized surface plasmon resonance phenomenon, so that the electrons are transferred onto the valence band of the reduced titanium dioxide or the conduction band of the metal oxide. I can.
본원에 따른 국소 표면 플라즈몬 공명 현상은 일정 파장의 빛이 상기 일정 파장 이하의 크기를 갖는 금속의 나노 구조 표면 상에 조사될 때, 상기 금속의 표면 및 유전체, 예를 들어 상기 금속 산화물 또는 상기 환원된 이산화티타늄의 경계에서 전자들이 진동하는 현상을 의미한다.The local surface plasmon resonance phenomenon according to the present application is when light of a certain wavelength is irradiated onto the nanostructured surface of a metal having a size less than or equal to the certain wavelength, the surface of the metal and the dielectric, for example, the metal oxide or the reduced It refers to a phenomenon in which electrons vibrate at the boundary of titanium dioxide.
후술하겠지만, 상기 금속 나노 입자는 1 nm 내지 10 nm 의 직경을 갖고, 상기 이산화티타늄 복합체 또는 상기 이산화티타늄 복합체를 포함하는 광촉매의 촉매 활성을 높이기 위해 조사되는 빛의 파장은 200 nm 내지 1500 nm 이므로, 상기 금속 나노 입자의 표면에서는 국소 표면 플라즈몬 공명 현상이 발생하여 상기 환원된 이산화티타늄 또는 상기 금속 산화물로 전자를 전달할 수 있다.As will be described later, the metal nanoparticles have a diameter of 1 nm to 10 nm, and the wavelength of light irradiated to increase the catalytic activity of the titanium dioxide complex or the photocatalyst including the titanium dioxide complex is 200 nm to 1500 nm, A local surface plasmon resonance phenomenon occurs on the surface of the metal nanoparticles, and electrons may be transferred to the reduced titanium dioxide or the metal oxide.
본원의 일 구현예에 따르면, 상기 환원된 이산화티타늄은 상기 금속 산화물과 결합되거나, 또는 상기 금속 나노 입자가 도핑됨으로써, 상기 환원된 이산화티타늄의 밴드갭 사이에 트랩사이트가 추가로 형성될 수 있다.According to the exemplary embodiment of the present disclosure, the reduced titanium dioxide may be combined with the metal oxide or doped with the metal nanoparticles, thereby further forming a trap site between the band gaps of the reduced titanium dioxide.
구체적으로, 상기 아나타제상 또는 상기 루타일상 중 어느 하나가 환원되고, 어느 하나가 환원되지 않은 경우, 상기 환원된 상과 환원되지 않은 상 사이의 밴드갭의 차이는 커지게 되고, 상기 밴드갭 사이에 새로운 트랩 사이트가 형성된다. 여기에 추가적으로, 상기 환원된 이산화티타늄이 상기 금속 산화물과 결합하거나, 상기 금속 나노 입자에 의해 도핑될 경우, 상기 밴드갭 사이에 새로운 트랩 사이트가 추가로 형성될 수 있고, 이는 상기 환원된 이산화티타늄의 전자-정공 쌍의 분리 효율을 향상시켜 광여기(photo-excitation)에 필요한 활성화 에너지를 낮춰 자외선, 가시광선, 및/또는 적외선 영역의 빛을 효과적으로 흡수할 수 있다.Specifically, when either the anatase phase or the rutile phase is reduced and either is not reduced, the difference in the band gap between the reduced phase and the non-reduced phase increases, and between the band gaps A new trap site is formed. In addition, when the reduced titanium dioxide is bonded to the metal oxide or is doped by the metal nanoparticles, a new trap site may be additionally formed between the band gaps, which is By improving the separation efficiency of electron-hole pairs, activation energy required for photo-excitation is lowered, so that light in the ultraviolet, visible, and/or infrared regions can be effectively absorbed.
본원의 일 구현예에 따르면, 상기 금속 산화물 및 상기 환원된 이산화티타늄은 Z-스킴(Z-scheme) 이형 접합(heterojunction)된 것일 수 있으나, 이에 제한되는 것은 아니다.According to the exemplary embodiment of the present disclosure, the metal oxide and the reduced titanium dioxide may be Z-scheme heterojunction, but is not limited thereto.
서로 다른 물질이 전기적으로 이형 접합이 되는 경우, 두 물질의 원자가띠(valence band) 및 전도띠(conduction band)의 크기에 따라 여러 타입으로 나뉠 수 있다. 예를 들어, 물질 A 의 원자가띠가 물질 B 의 원자가띠보다 크고, 물질 A 의 전도띠가 물질 B 의 전도띠보다 작을 경우의, 두 물질은 스트래들링 이형 접합(straddling heterojunction, type I)된 것일 수 있다.When different materials are electrically heterozygous, they can be divided into several types according to the size of the valence band and the conduction band of the two materials. For example, if the valence band of substance A is larger than that of substance B and the conduction band of substance A is smaller than that of substance B, the two substances are straddling heterojunction (type I). It may have been.
또한, 물질 A 의 원자가띠가 물질 B 의 원자가띠 및 전도띠 사이에 존재하고, 물질 A 의 전도띠가 물질 B 의 전도띠보다 클 경우, 스태거드 이형 접합(staggered heterojunction, type II)된 것일 수 있다.In addition, if the valence band of material A exists between the valence band and the conduction band of material B, and the conduction band of material A is larger than the conduction band of material B, it is a staggered heterojunction (type II). I can.
본원에 따른 Z-스킴 이형 접합은 상기 스태거드 이형 접합의 일종으로서, 후술할 도 11 에서도 확인이 가능하지만, 상기 스태거드 이형 접합된 이산화티타늄 복합체에서는 상기 환원된 이산화티타늄의 전도띠 (conduction band) 상에 존재하고, 빛에 의해 여기된 전자가 상기 금속 산화물의 전도띠로 이동하고, 상기 금속 산화물의 원자가띠 (valence band) 상에 존재하는 정공 (hole) 은 상기 환원된 이산화티타늄의 원자가띠로 이동하는 것이다.Z-scheme heterojunction according to the present application is a kind of staggered heterozygous, and can be confirmed in Fig. 11 to be described later, but in the staggered heterozygous titanium dioxide composite, the conduction band of the reduced titanium dioxide band), and electrons excited by light move to the conduction band of the metal oxide, and holes present on the valence band of the metal oxide become the valence band of the reduced titanium dioxide. It is to move.
그러나, 본원에 따른 이산화티타늄 복합체는 Z-스킴 이형 접합된 것으로서, 빛에 의해 상기 금속 산화물의 전도띠로 여기된 전자가 상기 환원된 이산화티타늄의 원자가띠로 이동할 수 있다. 상기 환원된 이산화티타늄의 원자가띠로 전달된 전자는 다시 빛에 의해 상기 환원된 이산화티타늄의 전도띠로 여기되고, 상기 전자는 이산화탄소를 일산화탄소로 환원시키거나 유기물질 등을 제거할 수 있다. However, the titanium dioxide complex according to the present application is a Z-scheme heterojunction, and electrons excited by light into the conduction band of the metal oxide may move to the valence band of the reduced titanium dioxide. The electrons transferred to the valence band of the reduced titanium dioxide are again excited by light as a conduction band of the reduced titanium dioxide, and the electrons can reduce carbon dioxide to carbon monoxide or remove organic substances.
후술하겠지만, 상기 이산화티타늄 복합체는 물질을 환원시킴으로써 일산화탄소, 메탄(CH4), 및 수소를 수득하는 공정, 및 담배 연기 등에 함유된 유기 물질을 제거하는 공정 등에 사용될 수 있다.As will be described later, the titanium dioxide complex may be used in a process of obtaining carbon monoxide, methane (CH 4 ), and hydrogen by reducing a material, and a process of removing organic materials contained in cigarette smoke and the like.
본원의 일 구현예에 따르면, 상기 금속 나노 입자는 Ag, Au, Pt, Ru, Ir, Os, Rh, Pd, W, Mo, Cr, Re, Zn, Mn, Y, Zr, Ni, Cu, Fe, 및 이들의 조합들로 이루어진 군에서 선택된 금속 원소를 포함할 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, the metal nanoparticles are Ag, Au, Pt, Ru, Ir, Os, Rh, Pd, W, Mo, Cr, Re, Zn, Mn, Y, Zr, Ni, Cu, Fe , And a metal element selected from the group consisting of combinations thereof, but is not limited thereto.
바람직하게는, 상기 금속 나노 입자는 Ag 일 수 있으나, 이에 제한되는 것은 아니다.Preferably, the metal nanoparticles may be Ag, but are not limited thereto.
본원의 일 구현예에 따르면, 상기 이산화티타늄 복합체 100 중량부에 대하여, 상기 금속 나노 입자는 10 중량부 미만이고, 상기 금속 산화물은 30 중량부 내지 70 중량부일 수 있으나, 이에 제한되는 것은 아니다. According to the exemplary embodiment of the present disclosure, based on 100 parts by weight of the titanium dioxide composite, the metal nanoparticle may be less than 10 parts by weight, and the metal oxide may be 30 parts by weight to 70 parts by weight, but is not limited thereto.
예를 들어, 상기 이산화티타늄 복합체 100 중량부에 대하여, 상기 금속 나노 입자가 차지하는 중량부가 높을수록 상기 국소 표면 플라즈몬 공명 현상의 빈도가 증가함으로써 상기 이산화티타늄 복합체의 촉매활성이 높아질 수 있다. 그러나, 상기 이산화티타늄 복합체 100 중량부를 기준으로, 상기 금속 나노 입자가 10 중량부 이상일 경우, 상기 환원된 이산화티타늄 또는 상기 금속 산화물 상에 조사되는 빛이 감소하여 상기 이산화티타늄 복합체의 촉매 활성이 낮아질 수 있다.For example, with respect to 100 parts by weight of the titanium dioxide composite, as the weight part occupied by the metal nanoparticles increases, the frequency of the local surface plasmon resonance phenomenon increases, thereby increasing the catalytic activity of the titanium dioxide composite. However, based on 100 parts by weight of the titanium dioxide composite, when the metal nanoparticles are 10 parts by weight or more, the light irradiated onto the reduced titanium dioxide or the metal oxide may decrease, thereby lowering the catalytic activity of the titanium dioxide composite. have.
또한, 예를 들어 상기 이산화티타늄 복합체 100 중량부에 대하여, 상기 금속 산화물은 약 30 중량부 내지 약 70 중량부, 약 30 중량부 내지 약 60 중량부, 약 30 중량부 내지 약 50 중량부, 약 30 중량부 내지 약 40 중량부, 약 40 중량부 내지 약 70 중량부, 약 50 중량부 내지 약 70 중량부, 약 60 중량부 내지 약 70 중량부, 약 40 중량부 내지 약 60 중량부, 또는 약 45 중량부 내지 약 55 중량부일 수 있으나, 이에 제한되는 것은 아니다. In addition, for example, based on 100 parts by weight of the titanium dioxide composite, the metal oxide is about 30 parts by weight to about 70 parts by weight, about 30 parts by weight to about 60 parts by weight, about 30 parts by weight to about 50 parts by weight, about 30 parts by weight to about 40 parts by weight, about 40 parts by weight to about 70 parts by weight, about 50 parts by weight to about 70 parts by weight, about 60 parts by weight to about 70 parts by weight, about 40 parts by weight to about 60 parts by weight, or It may be about 45 parts by weight to about 55 parts by weight, but is not limited thereto.
또한, 상기 이산화티타늄 복합체 100 중량부에 대하여, 상기 환원된 이산화티타늄 및 상기 금속 산화물의 중량부 비율은 1 : 9 의 중량부 내지 9 : 1, 2 : 8 내지 8 : 2, 7 :3 내지 3 : 7, 4: 6 내지 6 : 4, 또는 5 : 5일 수 있으나, 이에 제한되는 것은 아니다.In addition, with respect to 100 parts by weight of the titanium dioxide composite, the ratio by weight of the reduced titanium dioxide and the metal oxide is 1: 9 to 9: 1, 2: 8 to 8: 2, 7: 3 to 3 : 7, 4: 6 to 6: 4, or may be 5: 5, but is not limited thereto.
바람직하게는, 상기 이산화티타늄 복합체 100 중량부에 대하여, 상기 금속 나노 입자는 2 중량부 미만이고, 상기 환원된 이산화티타늄 및 상기 금속 산화물의 중량부 비율은, 예를 들어, 1 : 1일 수 있으나, 이에 제한되는 것은 아니다.Preferably, with respect to 100 parts by weight of the titanium dioxide composite, the metal nanoparticles are less than 2 parts by weight, and the ratio by weight of the reduced titanium dioxide and the metal oxide may be, for example, 1:1. , But is not limited thereto.
예를 들어, 상기 환원된 이산화티타늄 및 상기 금속 산화물의 중량부 비율이 1 : 1 보다 크거나 작을 경우, 상기 이산화티타늄 복합체 상의 상기 금속 산화물의 비율이 부족하거나 과도하여 상기 국소 표면 플라즈몬 공명 현상에 의해 생성 또는 전달된 전자에 대한 재조합 센터의 역할을 할 수 없다.For example, when the ratio by weight of the reduced titanium dioxide and the metal oxide is greater than or less than 1:1, the ratio of the metal oxide on the titanium dioxide composite is insufficient or excessive, due to the local surface plasmon resonance phenomenon. It cannot act as a recombination center for generated or transferred electrons.
본원의 일 구현예에 따르면, 상기 환원된 이산화티타늄에서는 환원 반응이 발생하고, 상기 금속 산화물에서는 산화 반응이 발생할 수 있으나, 이에 제한되는 것은 아니다.According to the exemplary embodiment of the present disclosure, a reduction reaction may occur in the reduced titanium dioxide, and an oxidation reaction may occur in the metal oxide, but the present invention is not limited thereto.
본원의 일 구현예에 따르면, 상기 환원된 이산화티타늄의 밴드갭(band gap)은 상기 금속 산화물의 밴드갭(band gap)보다 클 수 있으나, 이에 제한되는 것은 아니다.According to the exemplary embodiment of the present disclosure, a band gap of the reduced titanium dioxide may be larger than a band gap of the metal oxide, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 금속 산화물의 전도띠(conduction band)는 상기 환원된 이산화티타늄의 원자가띠(valence band)보다 크고, 상기 환원된 이산화티타늄의 전도띠보다 작을 수 있으나, 이에 제한되는 것은 아니다.According to the exemplary embodiment of the present disclosure, a conduction band of the metal oxide may be greater than a valence band of the reduced titanium dioxide and may be smaller than a conduction band of the reduced titanium dioxide, but is limited thereto. It is not.
도 2 는 본원의 일 구현예에 따른 이산화티타늄 및 이산화티타늄 복합체의 밴드 구조에 대한 그림이다.2 is a diagram of a band structure of a titanium dioxide and titanium dioxide composite according to an embodiment of the present application.
도 2 를 참조하면, 환원되지 않은 이산화티타늄의 밴드갭은 3.10 eV 로서, 상기 환원된 이산화티타늄 및 상기 금속 산화물, 예를 들어 WO3 의 밴드갭보다 큰 것을 확인할 수 있다.Referring to FIG. 2, it can be seen that the band gap of unreduced titanium dioxide is 3.10 eV, which is larger than the band gap of the reduced titanium dioxide and the metal oxide, for example WO 3.
또한, 상기 WO3 의 전도띠는 상기 환원된 이산화티타늄의 원자가띠보다 높고 전도띠보다 낮은 것을 확인할 수 있으며, 빛에 의해 여기된 전자들은 Z-스킴에 따라서 상기 WO3 상을 통해 상기 환원된 이산화티타늄의 원자가띠로 이동하고 다시 빛에 의해 전자띠로 여기될 수 있다. 또한 상기 전자의 여기 과정과 동시에 상기 환원된 이산화티타늄 및 상기 WO3 상에 형성된 Ag 나노 입자는 빛을 받아 국소 표면 플라즈몬 공명 현상이 발생하여 전자들을 생성할 수 있다. 상기 표면 플라즈몬 공명 현상에 의해 상기 환원된 이산화티타늄 및 상기 WO3 의 전도띠에 형성된 전자들은 Ag 나노 입자에서 이산화탄소를 일산화탄소로 환원시킬 수 있다.In addition, it can be seen that the conduction band of WO 3 is higher than the valence band of the reduced titanium dioxide and lower than the conduction band, and electrons excited by light are the reduced dioxide through the WO 3 phase according to the Z-scheme. It moves to the valence band of titanium and can be excited again by light into an electron band. In addition, at the same time as the electron excitation process, the reduced titanium dioxide and the Ag nanoparticles formed on the WO 3 receive light to generate a local surface plasmon resonance phenomenon to generate electrons. The reduced titanium dioxide and electrons formed in the conductive band of WO 3 by the surface plasmon resonance phenomenon may reduce carbon dioxide to carbon monoxide in Ag nanoparticles.
후술하겠지만, 상기 이산화티타늄 복합체는 질서한 상(환원되지 않은 상) 및 무질서한 상(환원된 상)을 포함하고, 용매 상에 함침된 상태에서도 빛을 받으면 촉매능이 활성화되기 때문에, 상기 이산화티타늄 복합체는 산화 환원 공정이 발생하는 영역이 효율적으로 분리될 수 있다. 또한 상기 금속 나노 입자로부터 전달된 전자는 상기 금속 산화물 또는 상기 환원된 이산화티타늄 상의 정공과 쉽게 결합되지 않으면서 물질의 환원, 유기 물질 등의 제거, 수소 생성 등 다양한 용도를 가질 수 있다.As will be described later, the titanium dioxide complex includes an ordered phase (non-reduced phase) and an orderly phase (reduced phase), and the catalytic activity is activated when light is received even in a state impregnated in a solvent phase. The region where the redox process occurs can be efficiently separated. In addition, electrons transferred from the metal nanoparticles may have various uses, such as reduction of substances, removal of organic substances, generation of hydrogen, etc. without being easily bonded to holes on the metal oxide or the reduced titanium dioxide.
본원의 일 구현예에 따르면, 상기 금속 나노 입자는 1 nm 내지 10 nm 의 직경을 가질 수 있으나, 이에 제한되는 것은 아니다. According to the exemplary embodiment of the present disclosure, the metal nanoparticle may have a diameter of 1 nm to 10 nm, but is not limited thereto.
예를 들어, 상기 금속 나노 입자는 약 1 nm 내지 약 10 nm, 약 1 nm 내지 약 9 nm, 약 1 nm 내지 약 8 nm, 약 1 nm 내지 약 7 nm, 약 1 nm 내지 약 6 nm, 약 1 nm 내지 약 5 nm, 약 1 nm 내지 약 4 nm, 약 1 nm 내지 약 3 nm, 약 1 nm 내지 약 2 nm, 약 2 nm 내지 약 10 nm, 약 3 nm 내지 약 10 nm, 약 4 nm 내지 약 10 nm, 약 5 nm 내지 약 10 nm, 약 6 nm 내지 약 10 nm, 약 7 nm 내지 약 10 nm, 약 8 nm 내지 약 10 nm, 약 9 nm 내지 약 10 nm, 약 2 nm 내지 약 9 nm, 약 3 nm 내지 약 8 nm, 약 4 nm 내지 약 7 nm, 또는 약 5 nm 내지 약 6 nm 일 수 있으나, 이에 제한되는 것은 아니다.For example, the metal nanoparticles are about 1 nm to about 10 nm, about 1 nm to about 9 nm, about 1 nm to about 8 nm, about 1 nm to about 7 nm, about 1 nm to about 6 nm, about 1 nm to about 5 nm, about 1 nm to about 4 nm, about 1 nm to about 3 nm, about 1 nm to about 2 nm, about 2 nm to about 10 nm, about 3 nm to about 10 nm, about 4 nm To about 10 nm, about 5 nm to about 10 nm, about 6 nm to about 10 nm, about 7 nm to about 10 nm, about 8 nm to about 10 nm, about 9 nm to about 10 nm, about 2 nm to about 9 nm, about 3 nm to about 8 nm, about 4 nm to about 7 nm, or about 5 nm to about 6 nm, but is not limited thereto.
바람직하게는, 상기 금속 나노 입자는 약 5 nm 내지 약 8 nm 일 수 있으나, 이에 제한되는 것은 아니다.Preferably, the metal nanoparticles may be about 5 nm to about 8 nm, but are not limited thereto.
본원의 일 구현예에 따르면, 상기 환원된 이산화티타늄 입자 및 상기 금속 산화물 입자는 각각 독립적으로 10 nm 내지 100 nm 의 직경을 가질 수 있으나, 이에 제한되는 것은 아니다.According to the exemplary embodiment of the present disclosure, the reduced titanium dioxide particles and the metal oxide particles may each independently have a diameter of 10 nm to 100 nm, but are not limited thereto.
예를 들어, 상기 환원된 이산화티타늄 입자 및 상기 금속 산화물 입자는 각각 독립적으로 약 10 nm 내지 약 100 nm, 약 20 nm 내지 약 100 nm, 약 30 nm 내지 약 100 nm, 약 40 nm 내지 약 100 nm, 약 50 nm 내지 약 100 nm, 약 60 nm 내지 약 100 nm, 약 70 nm 내지 약 100 nm, 약 80 nm 내지 약 100 nm, 약 90 nm 내지 약 100 nm, 약 10 nm 내지 약 90 nm, 약 10 nm 내지 약 80 nm, 약 10 nm 내지 약 70 nm, 약 10 nm 내지 약 60 nm, 약 10 nm 내지 약 50 nm, 약 10 nm 내지 약 40 nm, 약 10 nm 내지 약 30 nm, 약 10 nm 내지 약 20 nm, 약 20 nm 내지 약 90 nm, 약 20 nm 내지 약 80 nm, 약 20 nm 내지 약 70 nm, 약 20 nm 내지 약 60 nm, 약 20 nm 내지 약 50 nm, 약 20 nm 내지 약 40 nm, 약 20 nm 내지 약 30 nm, 약 30 nm 내지 약 90 nm, 약 30 nm 내지 약 80 nm, 약 30 nm 내지 약 70 nm, 약 30 nm 내지 약 60 nm, 약 30 nm 내지 약 50 nm, 약 30 nm 내지 약 40 nm, 약 40 nm 내지 약 90 nm, 약 40 nm 내지 약 80 nm, 약 40 nm 내지 약 70 nm, 약 40 nm 내지 약 60 nm, 약 40 nm 내지 약 50 nm, 약 50 nm 내지 약 90 nm, 약 50 nm 내지 약 80 nm, 약 50 nm 내지 약 70 nm, 약 50 nm 내지 약 60 nm, 약 60 nm 내지 약 90 nm, 약 60 nm 내지 약 80 nm, 약 60 nm 내지 약 70 nm, 약 70 nm 내지 약 90 nm, 약 70 nm 내지 약 80 nm, 또는 약 80 nm 일 수 있으나 이에 제한되는 것은 아니다.For example, the reduced titanium dioxide particles and the metal oxide particles are each independently about 10 nm to about 100 nm, about 20 nm to about 100 nm, about 30 nm to about 100 nm, about 40 nm to about 100 nm , About 50 nm to about 100 nm, about 60 nm to about 100 nm, about 70 nm to about 100 nm, about 80 nm to about 100 nm, about 90 nm to about 100 nm, about 10 nm to about 90 nm, about 10 nm to about 80 nm, about 10 nm to about 70 nm, about 10 nm to about 60 nm, about 10 nm to about 50 nm, about 10 nm to about 40 nm, about 10 nm to about 30 nm, about 10 nm To about 20 nm, about 20 nm to about 90 nm, about 20 nm to about 80 nm, about 20 nm to about 70 nm, about 20 nm to about 60 nm, about 20 nm to about 50 nm, about 20 nm to about 40 nm, about 20 nm to about 30 nm, about 30 nm to about 90 nm, about 30 nm to about 80 nm, about 30 nm to about 70 nm, about 30 nm to about 60 nm, about 30 nm to about 50 nm , About 30 nm to about 40 nm, about 40 nm to about 90 nm, about 40 nm to about 80 nm, about 40 nm to about 70 nm, about 40 nm to about 60 nm, about 40 nm to about 50 nm, about 50 nm to about 90 nm, about 50 nm to about 80 nm, about 50 nm to about 70 nm, about 50 nm to about 60 nm, about 60 nm to about 90 nm, about 60 nm to about 80 nm, about 60 nm To about 70 nm, about 70 nm to about 90 nm, about 70 nm to about 80 nm, or about 80 nm, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 환원된 이산화티타늄 입자의 직경은 상기 금속 산화물 입자의 직경보다 작을 수 있으나, 이에 제한되는 것은 아니다.According to the exemplary embodiment of the present disclosure, the diameter of the reduced titanium dioxide particles may be smaller than the diameter of the metal oxide particles, but is not limited thereto.
바람직하게는, 예를 들어 환원된 이산화티타늄 입자의 직경은 약 20 nm 내지 약 40 nm 이고, 상기 금속 산화물 입자의 직경은 약 50 nm 내지 약 80 nm 일 수 있으나, 이에 제한되는 것은 아니다.Preferably, for example, the diameter of the reduced titanium dioxide particles may be about 20 nm to about 40 nm, and the diameter of the metal oxide particles may be about 50 nm to about 80 nm, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 금속 산화물은 W, Mo, Cr, Re, Ir, Ta, Hf, Fe, Ni, Cu, Zn, Mn, Y, Zr, Sn, V, Bi, Sr, Ti, Ca, Nb, K, Na, Li, 및 이들의 조합들로 이루어진 군에서 선택된 금속 원소를 포함할 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, the metal oxide is W, Mo, Cr, Re, Ir, Ta, Hf, Fe, Ni, Cu, Zn, Mn, Y, Zr, Sn, V, Bi, Sr, Ti, It may include a metal element selected from the group consisting of Ca, Nb, K, Na, Li, and combinations thereof, but is not limited thereto.
또한, 본원의 제 2 측면은 아나타제상 및 루타일상을 포함하는 이산화티타늄(TiO2)을 환원제와 혼합하여 상기 아나타제상 및 상기 루타일상 중 어느 하나를 선택적으로 환원시켜 환원된 이산화티타늄을 형성하는 단계, 및 상기 환원된 이산화티타늄 및 금속 산화물을 용매 상에 분산시킨 후 광을 조사하여 이산화티타늄 복합체를 제조하는 단계를 포함하는, 이산화티타늄 복합체의 제조 방법을 제공한다.In addition, the second aspect of the present application is a step of forming reduced titanium dioxide by selectively reducing any one of the anatase phase and the rutile phase by mixing titanium dioxide (TiO 2) including an anatase phase and a rutile phase with a reducing agent , And dispersing the reduced titanium dioxide and metal oxide in a solvent and then irradiating light to prepare a titanium dioxide composite.
도 3 은 본원의 일 구현예에 따른 이산화티타늄 복합체의 제조 방법을 나타낸 순서도이다.3 is a flow chart showing a method of manufacturing a titanium dioxide composite according to an embodiment of the present application.
본원의 제 2 측면에 따른 이산화티타늄 복합체의 제조 방법에 대하여, 본원의 제 1 측면과 중복되는 부분들에 대해서는 상세한 설명을 생략하였으나, 그 설명이 생략되었더라도 본원의 제 1 측면에 기재된 내용은 본원의 제 2 측면에 동일하게 적용될 수 있다.With respect to the method of manufacturing the titanium dioxide composite according to the second aspect of the present application, detailed descriptions of parts overlapping with the first aspect of the present application have been omitted, but even if the description is omitted, the content described in the first aspect of the present application is The same can be applied to the second aspect.
본원에 따른 이산화티타늄 복합체를 제조하기 위하여, 먼저 아나타제상 및 루타일상을 포함하는 이산화티타늄(TiO2)을 환원제와 혼합하여 상기 아나타제상 및 상기 루타일상 중 어느 하나를 선택적으로 환원시켜 환원된 이산화티타늄을 형성한다 (S100).In order to prepare the titanium dioxide complex according to the present application, titanium dioxide (TiO 2 ) including an anatase phase and a rutile phase is first mixed with a reducing agent to selectively reduce any one of the anatase phase and the rutile phase, thereby reducing titanium dioxide. To form (S100).
본원의 일 구현예에 따르면, 상기 환원제는 금속 및 염기성 유기 용매를 포함할 수 있으나, 이에 제한되는 것은 아니다.According to the exemplary embodiment of the present disclosure, the reducing agent may include a metal and a basic organic solvent, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 금속은 Li, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, 및 이들의 조합들로 이루어진 군으로부터 선택되는 금속을 포함할 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, the metal may include a metal selected from the group consisting of Li, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, and combinations thereof. However, it is not limited thereto.
본원의 일 구현예에 따르면, 상기 염기성 유기 용매는 알킬아민 (alkyl amine), 디알킬아민 (dialkyl amine), 사이클릭알킬아민 (cyclicalkyl amine), 디사이클릭알킬아민 (dicyclicalkyl amine), 및 이들의 조합들로 이루어진 군에서 선택된 물질을 포함할 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, the basic organic solvent is an alkyl amine, a dialkyl amine, a cyclic alkyl amine, a dicyclic alkyl amine, and their It may include a material selected from the group consisting of combinations, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 환원제는 Na-EDA(sodium in ethlenediamine), K-EDA, 및 Li-EDA 중 어느 하나를 포함할 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, the reducing agent may include any one of sodium in ethlenediamine (Na-EDA), K-EDA, and Li-EDA, but is not limited thereto.
예를 들어, 상기 환원제가 Na-EDA 또는 K-EDA 일 경우, 상기 환원된 이산화티타늄은 상기 아나타제상이 선택적으로 환원된 물질일 수 있다.For example, when the reducing agent is Na-EDA or K-EDA, the reduced titanium dioxide may be a material in which the anatase phase is selectively reduced.
예를 들어, 상기 환원제가 Li-EDA 일 경우, 상기 환원된 이산화티타늄은 상기 루타일상이 선택적으로 환원된 물질일 수 있다.For example, when the reducing agent is Li-EDA, the reduced titanium dioxide may be a material in which the rutile phase is selectively reduced.
본원의 일 구현예에 따르면, 상기 환원은 상온에서 밀폐 및 무수의 상태에서 수행되는 것일 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, the reduction may be performed in a sealed and anhydrous state at room temperature, but is not limited thereto.
이에 따라, 본원에 따른 방법을 통해 환원된 이산화티타늄을 제조할 경우, 고온 및 고압 조건에서 이산화티타늄을 환원시키는 종래의 공정에 비해 더 저렴하고 간단한 공정으로 이산화티타늄을 환원시킬 수 있다.Accordingly, when the reduced titanium dioxide is manufactured through the method according to the present application, titanium dioxide can be reduced by a cheaper and simpler process compared to the conventional process of reducing titanium dioxide under high temperature and high pressure conditions.
이어서, 상기 환원된 이산화티타늄 및 금속 산화물을 용매 상에 분산시킨 후 광을 조사하여 이산화티타늄 복합체를 제조한다 (S200).Subsequently, the reduced titanium dioxide and metal oxide are dispersed in a solvent and then irradiated with light to prepare a titanium dioxide composite (S200).
본원의 일 구현예에 따르면, 상기 용매는 메탄올, 상기 염기성 유기 용매를 포함하는 환원제, H2O, 에탄올, 아세톤, 및 이들의 조합들로 이루어진 극성 유기 용매를 포함할 수 있으나, 이에 제한되는 것은 아니다.According to the exemplary embodiment of the present application, the solvent may include a polar organic solvent consisting of methanol, a reducing agent including the basic organic solvent, H 2 O, ethanol, acetone, and combinations thereof, but is limited thereto. no.
본원의 일 구현예에 따르면, 상기 이산화티타늄 복합체를 제조하는 단계는 상기 용매 상에 금속 나노 입자를 포함하는 금속 염을 투입하는 단계를 추가 포함할 수 있으나, 이에 제한되는 것은 아니다.According to the exemplary embodiment of the present disclosure, the step of preparing the titanium dioxide composite may further include adding a metal salt including metal nanoparticles to the solvent, but is not limited thereto.
상기 금속 염은 상기 용매 상에서 금속 이온을 방출하고, 상기 금속 이온은 상기 환원된 이산화티타늄 및/또는 상기 금속 산화물 상에 나노 입자의 형태로 부착될 수 있다.The metal salt releases metal ions in the solvent, and the metal ions may be attached to the reduced titanium dioxide and/or the metal oxide in the form of nanoparticles.
본원의 일 구현예에 따르면, 상기 금속 입자는 Ag, Au, Pt, Ru, Ir, Os, Rh, Pd, W, Mo, Cr, Re, Zn, Mn, Y, Zr, Ni, Cu, Fe, 및 이들의 조합들로 이루어진 군에서 선택된 금속 원소를 포함할 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, the metal particles are Ag, Au, Pt, Ru, Ir, Os, Rh, Pd, W, Mo, Cr, Re, Zn, Mn, Y, Zr, Ni, Cu, Fe, And a metal element selected from the group consisting of combinations thereof, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 조사되는 빛의 파장은 300 nm 내지 400 nm 일 수 있으나, 이에 제한되는 것은 아니다. 바람직하게는, 상기 조사되는 빛의 파장은 약 365 nm 이다.According to the exemplary embodiment of the present disclosure, the wavelength of the irradiated light may be 300 nm to 400 nm, but is not limited thereto. Preferably, the wavelength of the irradiated light is about 365 nm.
또한, 본원의 제 3 측면은 상기 제 1 측면에 따른 이산화티타늄 복합체를 포함하는 광촉매를 제공한다.In addition, a third aspect of the present application provides a photocatalyst comprising the titanium dioxide composite according to the first aspect.
본원의 제 3 측면에 따른 광촉매에 대하여, 본원의 제 1 측면 및 제 2 측면과 중복되는 부분들에 대해서는 상세한 설명을 생략하였으나, 그 설명이 생략되었더라도 본원의 제 1 측면 및 제 2 측면에 기재된 내용은 본원의 제 3 측면에 동일하게 적용될 수 있다.With respect to the photocatalyst according to the third aspect of the present application, detailed descriptions of parts overlapping with the first and second aspects of the present application have been omitted, but contents described in the first and second aspects of the present application even if the description is omitted. Is equally applicable to the third aspect of the present application.
본원의 일 구현예에 따르면, 상기 광촉매는 상기 용매 상에서 빛을 받아 촉매능이 활성화될 수 있으나, 이에 제한되는 것은 아니다.According to the exemplary embodiment of the present disclosure, the photocatalyst may be activated by receiving light in the solvent, but the catalytic activity is not limited thereto.
본원의 일 구현예에 따르면, 상기 광촉매는 300 nm 내지 1500 nm 의 파장을 갖는 빛에 의해 촉매로서 활성화될 수 있으나, 이에 제한되는 것은 아니다.According to the exemplary embodiment of the present disclosure, the photocatalyst may be activated as a catalyst by light having a wavelength of 300 nm to 1500 nm, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 광촉매는 수용액 상에서 수소의 생성, 물질의 환원, 또는 미세먼지 또는 유기 오염물을 제거하기 위한 것일 수 있으나, 이에 제한되는 것은 아니다.According to the exemplary embodiment of the present disclosure, the photocatalyst may be for generating hydrogen, reducing substances, or removing fine dust or organic pollutants in an aqueous solution, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 광촉매 상의 상기 이산화티타늄 복합체는 상기 질서한 상(환원되지 않은 상), 상기 무질서한 상(환원된 상), 및 물과 접합하여 질서/무질서/물 접합(order/disorder/water junction)을 형성할 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, the titanium dioxide composite on the photocatalyst is combined with the ordered phase (non-reduced phase), the disordered phase (reduced phase), and water to form order/disorder/water junction (order/ disorder/water junction), but is not limited thereto.
상기 질서/무질서/물 접합을 통해, 상기 광촉매는 보조촉매의 존재 없이 매우 높은 수소 발생 효율을 가질 수 있다.Through the order/disorder/water bonding, the photocatalyst may have very high hydrogen generation efficiency without the presence of a cocatalyst.
본원에 따른 광촉매는 자외선, 가시광선, 및/또는 적외선 영역의 빛에 의해 촉매능이 활성화되어 일산화탄소 생산 공정, 담배 연기 등에 함유된 유기 물질의 제거 등에 사용될 수 있다. 구체적으로, 상기 광촉매는 상기 이산화티타늄 복합체를 포함하고, 상기 금속 산화물 상에 형성된 상기 금속 나노 입자로부터 생산된 전자는 상기 환원된 이산화티타늄 상에 형성된 상기 금속 나노 입자로 전달되어 다양한 물질의 환원, 또는 미세 먼지 및 유기 물질의 제거 등 다양한 용도로 사용될 수 있다.The photocatalyst according to the present invention can be used for the removal of organic substances contained in the carbon monoxide production process, cigarette smoke, etc. by catalytic activity is activated by ultraviolet, visible light, and/or light in the infrared region. Specifically, the photocatalyst includes the titanium dioxide complex, and electrons produced from the metal nanoparticles formed on the metal oxide are transferred to the metal nanoparticles formed on the reduced titanium dioxide to reduce various substances, or It can be used for various purposes such as removal of fine dust and organic substances.
종래의 이산화티타늄, 또는 상기 환원된 이산화티타늄을 수소 발생용 광촉매로서 Pt 와 같은 수소 발생용 촉매와 병용할 경우, 약 14 mmol h-1 g-1 의 수소 생성 속도를 가질 수 있고, 단독으로 사용시 3.46 mmol h-1 g-1 의 수소 생성 속도를 가질 수 있다. When conventional titanium dioxide or the reduced titanium dioxide is used in combination with a hydrogen generation catalyst such as Pt as a photocatalyst for hydrogen generation, it may have a hydrogen generation rate of about 14 mmol h -1 g -1, and when used alone It may have a hydrogen generation rate of 3.46 mmol h -1 g -1.
상기 스태거드 이형 접합된 본원의 광촉매와 달리 종래의 수소 발생용 광촉매는 상기 스트래들링 이형 접합된 것이 유리하다. 이 때, 상기 수소 발생용 광촉매는 상기 이산화티타늄 복합체의 전자 및 정공의 분리, 전자 및 정공의 국부화 및 다양한 파장의 빛에 의한 여기 등에 의해 높은 수소 발생 속도를 가질 수 있다.Unlike the photocatalyst of the present application with the staggered release bonding, the conventional photocatalyst for generating hydrogen is advantageously bonded by the straddling release bonding. In this case, the photocatalyst for generating hydrogen may have a high rate of hydrogen generation due to separation of electrons and holes of the titanium dioxide composite, localization of electrons and holes, and excitation by light of various wavelengths.
본원의 일 구현예에 따르면, 상기 미세먼지의 지름은 1 μm 내지 100 μm 일 수 있으나, 이에 제한되는 것은 아니다.According to the exemplary embodiment of the present disclosure, the diameter of the fine dust may be 1 μm to 100 μm, but is not limited thereto.
예를 들어, 상기 미세먼지의 지름은 약 1 μm 내지 약 100 μm, 약 10 μm 내지 약 100 μm, 약 20 μm 내지 약 100 μm, 약 30 μm 내지 약 100 μm, 약 40 μm 내지 약 100 μm,약 50 μm 내지 약 100 μm, 약 60 μm 내지 약 100 μm, 약 70 μm 내지 약 100 μm, 약 80 μm 내지 약 100 μm, 약 90 μm 내지 약 100 μm, 약 1 μm 내지 약 90 μm, 약 1 μm 내지 약 80 μm, 약 1 μm 내지 약 70 μm, 약 1 μm 내지 약 60 μm, 약 1 μm 내지 약 50 μm, 약 1 μm 내지 약 40 μm, 약 1 μm 내지 약 30 μm, 약 1 μm 내지 약 20 μm, 약 1 μm 내지 약 10 μm, 약 10 μm 내지 약 90 μm, 약 20 μm 내지 약 80 μm, 약 30 μm 내지 약 70 μm, 약 40 μm 내지 약 60 μm, 또는 약 50 μm 일 수 있으나, 이에 제한되는 것은 아니다.For example, the diameter of the fine dust is about 1 μm to about 100 μm, about 10 μm to about 100 μm, about 20 μm to about 100 μm, about 30 μm to about 100 μm, about 40 μm to about 100 μm, About 50 μm to about 100 μm, about 60 μm to about 100 μm, about 70 μm to about 100 μm, about 80 μm to about 100 μm, about 90 μm to about 100 μm, about 1 μm to about 90 μm, about 1 μm to about 80 μm, about 1 μm to about 70 μm, about 1 μm to about 60 μm, about 1 μm to about 50 μm, about 1 μm to about 40 μm, about 1 μm to about 30 μm, about 1 μm to About 20 μm, about 1 μm to about 10 μm, about 10 μm to about 90 μm, about 20 μm to about 80 μm, about 30 μm to about 70 μm, about 40 μm to about 60 μm, or about 50 μm However, it is not limited thereto.
본원에 따른 광촉매는 PM10, 즉 지름이 10 μm 미만인 미세먼지를 효과적으로 제거할 수 있다.The photocatalyst according to the present application can effectively remove PM10, that is, fine dust having a diameter of less than 10 μm.
본원의 일 구현예에 따르면, 상기 유기 오염물은 메틸렌 블루(methylene blue), 질소산화물(NOx), 암모니아(NH3), 메틸메르캅탄(methyl mercaptan), 포름알데히드(formaldehyde), 아세트알데히드(acetaldehyde), 및 이들의 조합들로 이루어진 군에서 선택된 것을 포함할 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, the organic pollutants are methylene blue, nitrogen oxides (NO x ), ammonia (NH 3 ), methyl mercaptan, formaldehyde, and acetaldehyde. ), and combinations thereof, but are not limited thereto.
상기 유기 오염물은 일반적으로 담배 연기에 함유된 물질을 의미할 수 있으나, 이 외에도 화장품, 염료, 접착제 등 현대 사회에서 사용되는 다양한 제품 상에 함유되어 있다. 본원에 따른 광촉매를 사용함으로써 인체 또는 자연 환경에 악영향을 미칠 수 있는 상기 유기 오염물을 제거할 수 있다.The organic pollutants may generally refer to substances contained in cigarette smoke, but are also contained in various products used in modern society such as cosmetics, dyes, and adhesives. By using the photocatalyst according to the present application, it is possible to remove the organic contaminants that may adversely affect the human body or the natural environment.
이하 실시예를 통하여 본 발명을 더욱 상세하게 설명하고자 하나, 하기의 실시예는 단지 설명의 목적을 위한 것이며 본원의 범위를 한정하고자 하는 것은 아니다.The present invention is to be described in more detail through the following examples, but the following examples are for illustrative purposes only and are not intended to limit the scope of the present application.
[실시예 1] [Example 1]
도 4 는 본원의 일 실시예에 따른 이산화티타늄 복합체의 제조 방법을 나타낸 모식도이다.4 is a schematic diagram showing a method of manufacturing a titanium dioxide composite according to an embodiment of the present application.
먼저, 이산화티타늄(P25:DEGUSA 제품, 아나타제상 70%, 루타일상 30%) 0.5 g, 및 Li 0.8 g을 둥근바닥플라스크에 첨가하였다. 이어서, 상기 플라스크 내를 진공상태로 만든 다음 질소를 넣어준 후, 에틸렌디아민(ethylenediamine, EDA) 50 mL(TCI사 제품)를 넣고 7 일에 걸쳐 반응시킴으로써 루타일상이 환원된, 청색 이산화티타늄을 제조하였다 (7 Blue TiO2, 7BT).First, 0.5 g of titanium dioxide (P25: manufactured by DEGUSA, 70% of anatase, 30% of rutile), and 0.8 g of Li were added to a round bottom flask. Subsequently, after making the flask in a vacuum state and adding nitrogen, 50 mL of ethylenediamine (EDA) (manufactured by TCI) was added and reacted over 7 days to produce blue titanium dioxide with reduced rutile phase. (7 Blue TiO 2 , 7BT).
이어서, 도 4 를 참조하면, 상기 환원된 이산화티타늄, WO3 및 질산은(AgNO3) 을 DI 워터에 혼합한 후, 상온에서 365 nm 파장의 자외선을 3 시간 동안 조사하여 이산화티타늄 복합체 7BT/W1-Az 을 제조하였다 (단, z 는 0.5 내지 2.0 임).Next, referring to FIG. 4, the reduced titanium dioxide, WO 3 and silver nitrate (AgNO 3 ) were mixed in DI water, and then irradiated with ultraviolet rays of 365 nm wavelength at room temperature for 3 hours to obtain a titanium dioxide composite 7BT/W1- Az was prepared (however, z is 0.5 to 2.0).
본원 실시예의 "xBT/Wy-Az"의 기재에서, x 는 청색 이산화티타늄(BT)을 선택적으로 환원할 때 소요된 시간, y 는 상기 BT 대비 WO3 의 비율, 및 z 는 이산화티타늄 복합체 100 중량부에 대하여 Ag 입자의 중량부를 나타내는 것이다. In the description of "x BT/W y -A z " of the present example, x is the time taken when selectively reducing blue titanium dioxide (BT), y is the ratio of WO 3 to the BT, and z is titanium dioxide It represents parts by weight of Ag particles per 100 parts by weight of the composite.
이와 관련하여, 상기 이산화티타늄 복합체 100 중량부에 대하여 상기 환원된 이산화티타늄의 질량부 및 WO3의 질량부 사이의 비율은 1 : 1 이다.In this regard, the ratio between the mass part of the reduced titanium dioxide and the mass part of WO 3 with respect to 100 parts by weight of the titanium dioxide composite is 1:1.
도 5 의 (a) 및 (b) 는 상기 실시예 1 에 따른 이산화티타늄 복합체의 TEM 이미지이고, 도 6 은 상기 실시예 1 에 따른 HADDF-STEM 및 EDS 이미지이다.5A and 5B are TEM images of the titanium dioxide composite according to Example 1, and FIG. 6 is an HADDF-STEM and EDS image according to Example 1.
도 5 를 참조하면, 상기 7BT/W1-A1 의 7BT 는 아나타제상이 (101) 결정질로 존재하고, WO3 는 (100) 결정을 가지며, Ag 는 (111) 결정을 갖는다. 또한, 결정의 층간 간격 d 는 7BT 0.351 nm, Ag 0.242 nm, 및 WO3 0.392 nm 로 측정되었다.5, 7BT of the 7BT/W1-A1 has an anatase phase as (101) crystalline, WO 3 has (100) crystal, and Ag has (111) crystal. In addition, the interlayer spacing d of the crystal was measured as 7BT 0.351 nm, Ag 0.242 nm, and WO 3 0.392 nm.
도 6 을 참조하면, 7BT 및 WO3 상에 Ag 가 도핑 또는 접착되었고, 상기 7BT/W1-A1 상에서 Ti, W, O, 및 Ag 이외의 원소는 검색되지 않았다.Referring to FIG. 6 , Ag was doped or adhered on 7BT and WO 3 , and elements other than Ti, W, O, and Ag were not detected on the 7BT/W1-A1.
[실시예 2] [Example 2]
실시예 1 의 공정에서, Na 1.1 g 을 Li 0.8 g 대신 첨가함으로써, 아나타제상이 환원된 청색 이산화티타늄을 제조한 후, WO3, 및 AgNO3 와 반응시켜 이산화티타늄 복합체를 수득하였다.In the process of Example 1, 1.1 g of Na was added instead of 0.8 g of Li to prepare blue titanium dioxide with reduced anatase phase, and then reacted with WO 3 and AgNO 3 to obtain a titanium dioxide complex.
[실시예 3][Example 3]
1.0 g 의 Blue TiO2 를 30mL 탈이온수에 분산시키고, 2.90g의 WO3를 100mL 메탄올에 분산시킨 후 상기 탈이온수 및 상기 메탄올을 초음파 처리하여 충분히 분산시켰다. 이어서, 상기 탈이온수 및 상기 메탄올을 혼합시킨 후 UV100 조명 (λ = 365 nm)을 3 시간동안 조사한 후, 에탄올 및 탈이온수로 여과 및 건조하였다. 1.0 g of Blue TiO 2 was dispersed in 30 mL of deionized water, 2.90 g of WO 3 was dispersed in 100 mL of methanol, and then the deionized water and the methanol were sonicated to sufficiently disperse. Subsequently, after mixing the deionized water and the methanol, UV100 illumination (λ = 365 nm) was irradiated for 3 hours, followed by filtration and drying with ethanol and deionized water.
이와 관련하여, 상기 UV100 조명을 조사하는 단계는 생략될 수 있다.In this regard, the step of irradiating the UV100 illumination may be omitted.
[실시예 4][Example 4]
상기 실시예 3 의 Blue TiO2-WO3 1 g 을 5 ml의 메탄올에 분산시킨 후 교반하면서 N2 가스 흐름으로 1 mg의 AgNO3 을 상기 메탄올에 주입 하였다. 이어서 상기 메탄올을 실온에서 3 시간 동안 UV100 조명 (λ = 365 nm)하에 조사 하였다. 생성 된 용액을 탈이온수, 에탄올 및 아세톤으로 수회 세정 한 후 60 ℃ 진공 오븐에서 1 시간 동안 건조시켜 진한 적색의 Blue TiO2-WO3-Ag 를 수득 하였다. The third embodiment of the Blue TiO 2 -WO 3 1 g to 1 mg of the N 2 gas flow with stirring was dispersed in 5 ml of methanol AgNO 3 was fed to the methanol. Subsequently, the methanol was irradiated at room temperature for 3 hours under UV100 illumination (λ = 365 nm). The resulting solution was washed several times with deionized water, ethanol, and acetone, and then dried in a vacuum oven at 60° C. for 1 hour to obtain a dark red Blue TiO 2 -WO 3 -Ag.
[실시예 5][Example 5]
상기 실시예 3 의 Blue TiO2/WO3 5 g 을 25 ml 의 에탄올에 분산시키고, NiCl2·6H2O 4.46 mg 을 3 차 탈이온수 100 ml 에 분산시켰다. 이어서 상기 에탄올 및 상기 3 차 탈이온수를 혼합하고, 1 시간 동안 초음파처리 한 후, 0.1 M NaOH 용액을 사용하여 pH 를 8 로 조정하였다.The third embodiment of the Blue TiO 2 / WO 3 5 g was dispersed in 25 ml of ethanol, NiCl 2 · 6H 2 O 4.46 mg and dispersed to the deionized water 100 ml three cars. Subsequently, the ethanol and the tertiary deionized water were mixed, sonicated for 1 hour, and then the pH was adjusted to 8 using a 0.1 M NaOH solution.
이어서, 상기 혼합물에 실온의 N2 기체 하에서 3 시간 동안 UV100 조명 (λ = 365 nm)을 조사한 후, 탈이온수, 에탄올 및 아세톤으로 수회 세척 및 60℃ 진공 오븐에서 1 시간 동안 건조시켜 Blue TiO2-WO3-Ni 를 제조하였다.Subsequently, the mixture was irradiated with UV100 illumination (λ = 365 nm) for 3 hours under N 2 gas at room temperature, washed several times with deionized water, ethanol and acetone, and dried in a vacuum oven at 60° C. for 1 hour to Blue TiO 2- WO 3 -Ni was prepared.
[실시예 6][Example 6]
상기 실시예 3 의 Blue TiO2/WO3 1.5 g 을 25 ml 에탄올에 분산시키고, 100 ml 의 0.02 M Cu(NO3)2 용액과 혼합하고 1 시간 동안 초음파 처리하였다. 이어서, 0.1 M NaOH 용액으로 pH 를 9.5 로 조정한 후, 실온의 N2 기체 하에서 3 시간 동안 UV100 조명 (λ = 365 nm)하에 조사하였다. 이어서, 상기 용액을 탈이온수, 에탄올 및 아세톤으로 수회 세척 및 60 ℃ 진공 오븐에서 1 시간 동안 건조시켜 Blue TiO2-WO3-Cu 을 수득 하였다. The third embodiment of the Blue TiO 2 / WO 3 1.5 g was dispersed in 25 ml of ethanol, was mixed with 0.02 M Cu (NO 3) 2 solution in 100 ml and sonicated for 1 hour. Subsequently, after adjusting the pH to 9.5 with a 0.1 M NaOH solution, it was irradiated under UV100 illumination (λ = 365 nm) for 3 hours under N 2 gas at room temperature. Subsequently, the solution was washed several times with deionized water, ethanol and acetone, and dried in a vacuum oven at 60° C. for 1 hour to obtain Blue TiO 2 -WO 3 -Cu.
[실시예 7][Example 7]
상기 실시예 3 의 Blue TiO2/WO3 1.5 g 을 25 ml 에탄올에 분산시키고, 100 ml 의 0.02 M FeCl3 용액과 혼합하고 1 시간 동안 초음파 처리하였다. 이어서, 1 M 의 NaBH4 용액을 첨가한 후, 실온의 N2 기체 하에서 3 시간 동안 UV100 조명 (λ = 365 nm)하에 조사하였다. 이어서, 상기 용액을 탈이온수, 에탄올 및 아세톤으로 수회 세척 및 60 ℃ 진공 오븐에서 1 시간 동안 건조시켜 Blue TiO2-WO3-Fe 를 수득 하였다. The third embodiment of the Blue TiO 2 / WO 3 1.5 g was dispersed in 25 ml of ethanol, was mixed with 100 ml 0.02 M FeCl 3 solution and sonicated for 1 hour. Subsequently, 1 M of NaBH 4 solution was added, followed by irradiation under UV100 illumination (λ = 365 nm) for 3 hours under N 2 gas at room temperature. Subsequently, the solution was washed several times with deionized water, ethanol and acetone, and dried in a vacuum oven at 60° C. for 1 hour to obtain Blue TiO 2 -WO 3 -Fe.
[실시예 8][Example 8]
상기 실시예 3 의 Blue TiO2/WO3 1.5 g 을 25 ml 에탄올에 분산시키고, 100 ml 의 Cu(NO3)2 용액 및 100 ml 의 0.02 M FeCl3 용액과 혼합하고 1 시간 동안 초음파 처리하였다. 이어서, 1 M 의 NaBH4 용액을 첨가한 후, 실온의 N2 기체 하에서 3 시간 동안 UV100 조명 (λ = 365 nm)하에 조사하였다. 이어서, 상기 용액을 탈이온수, 에탄올 및 아세톤으로 수회 세척 및 60 ℃ 진공 오븐에서 1 시간 동안 건조시켜 Blue TiO2-WO3-Fe/Cu 를 수득 하였다. The third embodiment of the Blue TiO 2 / WO 3 1.5 g was dispersed in 25 ml of ethanol, was mixed with 100 ml of the Cu (NO 3) 2 0.02 M FeCl of the solution and 100 ml 3 solution and sonicated for 1 hour. Subsequently, 1 M of NaBH 4 solution was added, followed by irradiation under UV100 illumination (λ = 365 nm) for 3 hours under N 2 gas at room temperature. Subsequently, the solution was washed several times with deionized water, ethanol and acetone, and dried in a vacuum oven at 60° C. for 1 hour to obtain Blue TiO 2 -WO 3 -Fe/Cu.
[비교예] [Comparative Example]
본원에 따른 비교예는 P25, 7BT, Ag 나노 입자, WO3, 7BT/W1, W1-A1, 7BT-A1 등, 상기 실시예에서 사용된 물질의 일부 만을 포함하거나, 특정 물질없이 공정을 수행한 물질들을 의미한다.Comparative examples according to the present application include only some of the materials used in the above examples, such as P25, 7BT, Ag nanoparticles, WO 3 , 7BT/W1, W1-A1, 7BT-A1, or performing a process without a specific material. Means substances.
[실험예 1][Experimental Example 1]
도 7 의 a 는 상기 실시예 1 및 비교예에 따른 물질을 XRD 분석한 것이고, b 및 c 는 상기 비교예에 따른 물질을 XPS 분석한 것이며, d 내지 f 는 상기 실시예 1 에 따른 물질을 XPS 분석한 것이다.7A is an XRD analysis of the material according to Example 1 and Comparative Example, b and c are XPS analysis of the material according to the comparative example, and d to f are XPS analysis of the material according to Example 1 It was analyzed.
도 7 을 참조하면, 7BT/W1-A1 은 Ag 나노 입자(JCPDS 1-1164 Ag), 7BT, 및 WO3 을 모두 포함하는 것을 확인할 수 있다. 또한, P25 와 달리 7BT 는 Ti 2p 및 O1s 코어-레벨 XPS 스펙트럼은 낮은 결합 에너지로의 피크 이동을 보여주기 때문에, 7BT 는 전자가 이동하여 Ti3+ 및 산소 결함을 형성하는 것을 확인할 수 있다. 더욱이, 상기 7BT/W1-A1 은 4f7/2 및 4f5/2 이중 피크 사이의 정확한 피크 분할(2.2 eV)를 보여 W6+ 를 포함하고, Ag2O 형성을 위한 2 개의 약한 피크(3d5/2)가 관측되며, Ti-O, O-W, 및 O-H 결합이 존재하는 것을 확인할 수 있다.Referring to FIG. 7, it can be seen that 7BT/W1-A1 includes all of Ag nanoparticles (JCPDS 1-1164 Ag), 7BT, and WO 3. In addition, unlike P25, since the Ti 2p and O1s core-level XPS spectra of 7BT show a peak shift to low binding energy, it can be confirmed that the 7BT transfers electrons to form Ti 3+ and oxygen defects. Moreover, the 7BT/W1-A1 showed correct peak splitting (2.2 eV) between the 4f 7/2 and 4f 5/2 double peaks, including W 6+ , and two weak peaks for Ag 2 O formation (3d 5/2 ) is observed, and it can be confirmed that Ti-O, OW, and OH bonds are present.
[실험예 2][Experimental Example 2]
도 8 의 a 및 b 는 상기 실시예 및 비교예에 따른 물질의 UV-Vis 스펙트럼이고, c 는 상기 비교예에 따른 물질의 타우 그래프(Tauc plot)이며, d 는 상기 실시예 및 비교예에 따른 물질의 VB-XPS 스펙트럼이고, e 는 PL 스펙트럼이며, f 는 광반응(photoresponse)에 대한 데이터이다. 이와 관련하여, 도 8 의 c 및 d 의 ①, ②, 및 ③ 은 각각 WO3 pure 접선, 7BT 접선, 및 P25 접선의 x 절편을 의미하는 것이다.8A and 8B are UV-Vis spectra of materials according to the Examples and Comparative Examples, c is a Tauc plot of the material according to the Comparative Example, and d is The VB-XPS spectrum of the material, e is the PL spectrum, and f is the photoresponse data. In this regard, ①, ②, and ③ in c and d of FIG. 8 mean the x-intercepts of the WO 3 pure tangent, the 7BT tangent, and the P25 tangent, respectively.
도 8 의 c 의 ①, ②, 및 ③ 은 각각 2.58 eV, 2.69 eV, 및 3.10 eV 를 의미하고, 도 8 의 d 의 ①, ②, 및 ③ 은 각각 3.32 eV, 1.14 eV, 및 2.25 eV 를 의미한다.①, ②, and ③ of Fig. 8 c mean 2.58 eV, 2.69 eV, and 3.10 eV, respectively, and ①, ②, and ③ of Fig. 8 d mean 3.32 eV, 1.14 eV, and 2.25 eV, respectively do.
도 8 의 a 를 참조하면, 7BT-A1 은 300 nm 내지 800 nm 의 빛을 고르게 흡수할 수 있고, 7BT/W1-A1 은 상기 7BT-A1 에 비해 약 550 nm 이하의 빛을 더 많이 흡수할 수 있는 것으로 관측되었다. 따라서, 단순히 7BT 상에 Ag 나노 입자가 형성된 것 보다, 7BT 를 WO3 와 결합한 후 Ag 나노 입자가 형성된 것이 더 많은 빛을 흡수하는 것을 확인할 수 있다. 후술하겠지만, 상기 7BT-A1 은 빛을 많이 흡수하기만 할 뿐, 일산화탄소의 생산량이 적고 광촉매 전자 반응 속도가 낮아 일산화탄소를 생산하기 위해서는 상기 7BT/W1-A1 을 사용하는 것이 바람직하다.Referring to FIG. 8A, 7BT-A1 can evenly absorb light of 300 nm to 800 nm, and 7BT/W1-A1 can absorb more light of about 550 nm or less than that of 7BT-A1. Was observed to be. Therefore, it can be seen that more light is absorbed by Ag nanoparticles formed after combining 7BT with WO 3 than simply forming Ag nanoparticles on 7BT. As will be described later, the 7BT-A1 only absorbs a lot of light, and the production of carbon monoxide is small and the photocatalytic electron reaction rate is low, so it is preferable to use the 7BT/W1-A1 in order to produce carbon monoxide.
또한, 도 8 의 b 내지 d 를 참조하면, 상기 7BT/W1-Az 에서 Ag가 커질수록, LSPR(Localized surface plasmon resonance) 현상이 강하게 발현되어 더 많은 빛을 흡수하는 것이 확인되었다. P25, 7BT, 및 WO3 의 VB-XPS 결과는 각각 2.25 eV, 1.14 eV, 및 3.32 eV (vs. NHE)로 측정되었다.In addition, referring to b to d of FIG. 8, it was confirmed that the greater the Ag in the 7BT/W1-Az, the stronger the localized surface plasmon resonance (LSPR) phenomenon was expressed, thereby absorbing more light. The VB-XPS results of P25, 7BT, and WO 3 were measured as 2.25 eV, 1.14 eV, and 3.32 eV (vs. NHE), respectively.
또한, 도 8 의 e 및 f 를 참조하면, 7BT/W1-A1 은 7BT/W1, WO3, 및 7BT 와 달리 광전류가 매우 높게 측정되면서 스펙트럼의 강도가 일정하였으며, 이는 7BT/W1-A1 에서는 전자와 정공이 효율적으로 분리되는 것을 확인할 수 있다.In addition, referring to e and f of FIG. 8, unlike 7BT/W1, WO 3 , and 7BT, 7BT/W1-A1 had a very high photocurrent measured and the intensity of the spectrum was constant. It can be seen that the and holes are efficiently separated.
[실험예 3][Experimental Example 3]
도 9 의 a 는 상기 실시예 1 및 비교예에 따른 물질의 가스 크로마토그래피이고, b 내지 d 는 시간에 따른 CO 생성 그래프이다.9A is a gas chromatography of the materials according to Example 1 and Comparative Example, and b to d are graphs of CO generation over time.
도 9 를 참조하면, 7BT/W1-A1 및 7BT-A1 은 7BT 및 7BT/W1 과 달리 일산화탄소만을 선택적으로 생성할 수 있으며, 특히 일산화탄소 생성 속도는 상기 7BT/W1-A1 이 상기 7BT-A1 에 비해 우수한 것으로 확인되었다.Referring to FIG. 9, 7BT/W1-A1 and 7BT-A1 can selectively generate only carbon monoxide, unlike 7BT and 7BT/W1. It was found to be excellent.
또한, 상기 7BT/W1-A1 은 5 회 사용하여도 일산화탄소를 일정하게 생산할 수 있어 재활용이 가능하고, 상기 7BT 또는 상기 7BT/Wy 에 비해 더 많은 일산화탄소를 생성할 수 있다.In addition, the 7BT/W1-A1 can produce carbon monoxide constantly even if it is used 5 times, so it can be recycled, and it can generate more carbon monoxide than the 7BT or 7BT/Wy.
도 10 의 a 및 b 는 상기 실시예 1 및 비교예에 따른 물질의 광촉매능에 대한 그래프이다.10A and 10B are graphs of photocatalytic properties of materials according to Example 1 and Comparative Example.
도 10 을 참조하면, 7BT/W1-A1 은 7BT/W1 에 비해 높은 광촉매 전자 반응 속도(2333.44 μmol g-1 h-1) 및 높은 일산화탄소 생산에 대한 선택도를 가질 수 있으며, 이는 7BT/W1-A1 에 빛을 조사하면 Ag 에 의해 전자가 생성되고, 효율적인 전자-정공의 분리가 발생하기 때문이다.Referring to FIG. 10, 7BT/W1-A1 may have a higher photocatalytic electron reaction rate (2333.44 μmol g -1 h -1 ) and higher selectivity for carbon monoxide production compared to 7BT/W1, which is 7BT/W1- This is because when A1 is irradiated with light, electrons are generated by Ag, and efficient electron-hole separation occurs.
구체적으로, 상기 실시예 1 및 비교예의 물질들의 광촉매 전자 반응 속도(reacted electrons' rate) 및 수소, 메탄, 및 일산화탄소의 생산량 및 선택도는 하기의 표 1 과 같이 분석되었다.Specifically, the photocatalytic electrons' rate and the production amount and selectivity of hydrogen, methane, and carbon monoxide of the materials of Example 1 and Comparative Example were analyzed as shown in Table 1 below.
[표 1][Table 1]
Figure PCTKR2020011794-appb-I000001
Figure PCTKR2020011794-appb-I000001
상기 표 1 에서, 상기 광촉매 전자 반응 속도는 2[H2]+8[CH4]+2[CO]로서 얻어질 수 있으며, 상기 선택도는 상기 광촉매 전자 반응 속도에서 [H2], [CH4], 및 [CO] 의 비율을 의미한다.In Table 1, the photocatalytic electron reaction rate can be obtained as 2[H 2 ]+8[CH 4 ]+2[CO], and the selectivity is [H 2 ], [CH] in the photocatalytic electron reaction rate. 4 ], and [CO].
이와 관련하여, 7BT/W1-A1 은 다른 물질에 비해 월등히 뛰어난 광촉매 전자 반응 속도 및 CO 만을 선택적으로 생산할 수 있는 것을 확인할 수 있다.In this regard, it can be seen that 7BT/W1-A1 can selectively produce only CO and a photocatalytic electron reaction rate that is far superior to other materials.
[실험예 4] [Experimental Example 4]
도 11 의 a 및 b 는 상기 비교예에 따른 물질의 PL 스펙트럼 및 강도(intensity)에 대한 그래프이고, c 및 d 는 상기 비교예에 따른 물질의 밴드 구조에 대한 그래프이다.11A and 11B are graphs of the PL spectrum and intensity of the material according to the comparative example, and c and d are graphs of the band structure of the material according to the comparative example.
본원에 따른 광촉매의 PL 강도는 OH- 라디칼의 양에 비례한다. 이 때, 도 11 의 a 및 b 를 참조하면, 7BT 는 피크가 관찰되지 않아 OH- 라디칼의 형성이 거의 일어나지 않는 것을 알 수 있고, 488 nm 에서 7BT/W1 의 피크는 WO3 의 피크보다 훨씬 높기 때문에, 7BT/W1 광촉매의 정공은 WO3 보다 더 빨리 생성되는 것을 확인할 수 있다.The PL intensity of the photocatalyst according to the present application is proportional to the amount of OH-radicals. At this time, referring to a and b of FIG. 11, it can be seen that the formation of OH- radicals hardly occurs because the peak of 7BT is not observed, and the peak of 7BT/W1 at 488 nm is much higher than the peak of WO 3 Therefore, it can be confirmed that the holes of the 7BT/W1 photocatalyst are generated faster than that of WO 3.
따라서, 7BT/W1 에서 전자의 이동은 type II(도 11 의 c)가 아닌, Z-체계(scheme)와 같은 형태로 이루어질 수 있음을 확인할 수 있다.Therefore, it can be seen that the movement of electrons in 7BT/W1 may be performed in a form such as a Z-scheme, not a type II (c in FIG. 11).
[실험예 5][Experimental Example 5]
도 12 는 상기 실시예에 따른 물질의 담배연기 분해를 나타내는 그래프이다.12 is a graph showing the decomposition of tobacco smoke of a material according to the embodiment.
도 12 를 참조하면, 상기 7BT/W1-A1 을 포함하는 광촉매는 직경이 2.5 μm 이하의 미세먼지는 시간의 흐름에 따라 제거하고 있음을 확인할 수 있다.Referring to FIG. 12, it can be seen that the photocatalyst including 7BT/W1-A1 removes fine dust with a diameter of 2.5 μm or less over time.
전술한 본원의 설명은 예시를 위한 것이며, 본원이 속하는 기술분야의 통상의 지식을 가진 자는 본원의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The foregoing description of the present application is for illustrative purposes only, and those of ordinary skill in the art to which the present application pertains will be able to understand that it can be easily modified into other specific forms without changing the technical spirit or essential features of the present application. Therefore, it should be understood that the embodiments described above are illustrative and non-limiting in all respects. For example, each component described as a single type may be implemented in a distributed manner, and similarly, components described as being distributed may also be implemented in a combined form.
본원의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본원의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present application is indicated by the claims to be described later rather than the detailed description, and all changes or modified forms derived from the meaning and scope of the claims and their equivalent concepts should be interpreted as being included in the scope of the present application.

Claims (19)

  1. 아나타제상 및 루타일상을 포함하고, 상기 아나타제상 및 상기 루타일상 중 어느 하나는 환원된 것인 환원된 이산화티타늄(TiO2); 및 A reduced titanium dioxide (TiO 2 ) including an anatase phase and a rutile phase, and any one of the anatase phase and the rutile phase is reduced; And
    상기 환원된 이산화티타늄과 결합한 금속 산화물;A metal oxide combined with the reduced titanium dioxide;
    을 포함하는, Containing,
    이산화티타늄 복합체.Titanium dioxide complex.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 이산화티타늄 복합체는 상기 환원된 이산화티타늄 또는 상기 금속 산화물 상에 형성된 금속 나노 입자를 추가 포함하는 것인, 이산화티타늄 복합체.The titanium dioxide composite further comprises the reduced titanium dioxide or metal nanoparticles formed on the metal oxide, titanium dioxide composite.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 이산화티타늄 복합체 100 중량부에 대하여, 상기 금속 나노 입자는 10 중량부 미만이고, 상기 금속 산화물은 30 중량부 내지 70 중량부인 것인, 이산화티타늄 복합체.With respect to 100 parts by weight of the titanium dioxide composite, the metal nanoparticles are less than 10 parts by weight, and the metal oxide is 30 parts by weight to 70 parts by weight, the titanium dioxide composite.
  4. 제 2 항에 있어서,The method of claim 2,
    상기 금속 나노 입자는 상기 환원된 이산화티타늄 상에 전자를 공급하는 것인, 이산화티타늄 복합체.The metal nanoparticles supply electrons onto the reduced titanium dioxide, a titanium dioxide composite.
  5. 제 2 항에 있어서,The method of claim 2,
    상기 금속 나노 입자는 1 nm 내지 10 nm 의 직경을 갖는 것인, 이산화티타늄 복합체.The metal nanoparticles will have a diameter of 1 nm to 10 nm, titanium dioxide composite.
  6. 제 2 항에 있어서,The method of claim 2,
    상기 금속 나노 입자는 Ag, Au, Pt, Ru, Ir, Os, Rh, Pd, W, Mo, Cr, Re, Zn, Mn, Y, Zr, Ni, Cu, Fe, 및 이들의 조합들로 이루어진 군에서 선택된 금속 원소를 포함하는 것인, 이산화티타늄 복합체.The metal nanoparticles are composed of Ag, Au, Pt, Ru, Ir, Os, Rh, Pd, W, Mo, Cr, Re, Zn, Mn, Y, Zr, Ni, Cu, Fe, and combinations thereof. It will contain a metal element selected from the group, titanium dioxide composite.
  7. 제 1 항에 있어서,The method of claim 1,
    상기 환원된 이산화티타늄에서는 환원 반응이 발생하고, 상기 금속 산화물에서는 산화 반응이 발생하는 것인, 이산화티타늄 복합체.A reduction reaction occurs in the reduced titanium dioxide, and an oxidation reaction occurs in the metal oxide, a titanium dioxide composite.
  8. 제 1 항에 있어서,The method of claim 1,
    상기 금속 산화물의 전도띠(conduction band)는 상기 환원된 이산화티타늄의 원자가띠(valence band)보다 크고, 상기 환원된 이산화티타늄의 전도띠보다 작은 것인, 이산화티타늄 복합체.A conduction band of the metal oxide is greater than a valence band of the reduced titanium dioxide and smaller than a conduction band of the reduced titanium dioxide.
  9. 제 8 항에 있어서,The method of claim 8,
    상기 환원된 이산화티타늄의 밴드갭(band gap)은 상기 금속 산화물의 밴드갭(band gap)보다 큰 것인, 이산화티타늄 복합체.The reduced titanium dioxide band gap (band gap) is greater than the band gap (band gap) of the metal oxide, titanium dioxide composite.
  10. 제 1 항에 있어서, The method of claim 1,
    상기 금속 산화물은 W, Mo, Cr, Re, Ir, Ta, Hf, Fe, Ni, Cu, Zn, Mn, Y, Zr, Sn, V, Bi, Sr, Ti, Ca, Nb, K, Na, Li, 및 이들의 조합들로 이루어진 군에서 선택된 금속 원소를 포함하는 것인, 이산화티타늄 복합체.The metal oxides are W, Mo, Cr, Re, Ir, Ta, Hf, Fe, Ni, Cu, Zn, Mn, Y, Zr, Sn, V, Bi, Sr, Ti, Ca, Nb, K, Na, Li, and a titanium dioxide composite comprising a metal element selected from the group consisting of combinations thereof.
  11. 제 1 항에 있어서,The method of claim 1,
    상기 환원된 이산화티타늄은 청색을 나타내는 것인, 이산화티타늄 복합체.The reduced titanium dioxide will exhibit a blue color, titanium dioxide complex.
  12. 제 1 항에 있어서,The method of claim 1,
    상기 환원된 이산화티타늄 입자 및 상기 금속 산화물 입자는 각각 독립적으로 10 nm 내지 100 nm 의 직경을 갖는 것인, 이산화티타늄 복합체.The reduced titanium dioxide particles and the metal oxide particles each independently have a diameter of 10 nm to 100 nm, titanium dioxide composite.
  13. 아나타제상 및 루타일상을 포함하는 이산화티타늄(TiO2)을 환원제와 혼합하여 상기 아나타제상 및 상기 루타일상 중 어느 하나를 선택적으로 환원시켜 환원된 이산화티타늄을 형성하는 단계; 및 Mixing titanium dioxide (TiO 2 ) including an anatase phase and a rutile phase with a reducing agent to selectively reduce any one of the anatase phase and the rutile phase to form reduced titanium dioxide; And
    상기 환원된 이산화티타늄 및 금속 산화물을 용매 상에 분산시킨 후 광을 조사하여 이산화티타늄 복합체를 제조하는 단계;Dispersing the reduced titanium dioxide and metal oxide in a solvent and then irradiating light to prepare a titanium dioxide composite;
    를 포함하는,Containing,
    이산화티타늄 복합체의 제조 방법.Method for producing a titanium dioxide composite.
  14. 제 13 항에 있어서,The method of claim 13,
    상기 이산화티타늄 복합체를 제조하는 단계는 상기 용매 상에 금속 나노 입자를 포함하는 금속 염을 투입하는 단계를 추가 포함하는 것인, 이산화티타늄 복합체의 제조 방법.The step of preparing the titanium dioxide composite further comprises the step of introducing a metal salt containing metal nanoparticles into the solvent.
  15. 제 14 항에 있어서,The method of claim 14,
    상기 금속 염은 Ag, Au, Pt, Ru, Ir, Os, Rh, Pd, W, Mo, Cr, Re, Zn, Mn, Y, Zr, Ni, Cu, Fe, 및 이들의 조합들로 이루어진 군에서 선택된 금속 원소를 포함하는 것인, 이산화티타늄 복합체의 제조 방법.The metal salt is a group consisting of Ag, Au, Pt, Ru, Ir, Os, Rh, Pd, W, Mo, Cr, Re, Zn, Mn, Y, Zr, Ni, Cu, Fe, and combinations thereof It will contain a metal element selected from, a method for producing a titanium dioxide composite.
  16. 제 13 항에 있어서,The method of claim 13,
    상기 환원제는 금속 및 염기성 유기 용매를 포함하는 것인, 이산화티타늄 복합체의 제조 방법.The reducing agent will contain a metal and a basic organic solvent, a method for producing a titanium dioxide composite.
  17. 제 16 항에 있어서,The method of claim 16,
    상기 금속은 Li, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, 및 이들의 조합들로 이루어진 군으로부터 선택되는 금속을 포함하는 것인, 이산화티타늄 복합체의 제조 방법.The metal comprises a metal selected from the group consisting of Li, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, and combinations thereof. Way.
  18. 제 16 항에 있어서,The method of claim 16,
    상기 염기성 유기 용매는 알킬아민 (alkyl amine), 디알킬아민 (dialkyl amine), 사이클릭알킬아민 (cyclicalkyl amine), 디사이클릭알킬아민 (dicyclicalkyl amine), 및 이들의 조합들로 이루어진 군에서 선택된 물질을 포함하는 것인, 이산화티타늄 복합체의 제조 방법.The basic organic solvent is a material selected from the group consisting of alkyl amine, dialkyl amine, cyclicalkyl amine, dicyclicalkyl amine, and combinations thereof Including that, a method for producing a titanium dioxide composite.
  19. 제 1 항 내지 제 12 항 중 어느 한 항에 따른 이산화티타늄 복합체를 포함하는, 광촉매.A photocatalyst comprising the titanium dioxide complex according to any one of claims 1 to 12.
PCT/KR2020/011794 2019-09-09 2020-09-02 Titanium dioxide composite, method for preparing same, and photocatalyst comprising same WO2021049811A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0111413 2019-09-09
KR1020190111413A KR102257999B1 (en) 2019-09-09 2019-09-09 Titanium dioxide composite, method for manufacturing the same, and photocatalyst including the same

Publications (1)

Publication Number Publication Date
WO2021049811A1 true WO2021049811A1 (en) 2021-03-18

Family

ID=74867259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/011794 WO2021049811A1 (en) 2019-09-09 2020-09-02 Titanium dioxide composite, method for preparing same, and photocatalyst comprising same

Country Status (2)

Country Link
KR (1) KR102257999B1 (en)
WO (1) WO2021049811A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115707657A (en) * 2022-11-30 2023-02-21 上海纳米技术及应用国家工程研究中心有限公司 Preparation method and product application of titanium dioxide nano material

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102515660B1 (en) 2021-04-26 2023-03-30 한림대학교 산학협력단 Method for preparing sulfur-titanium dioxide nanocrystals and nitrogen-titanium dioxide nanocrystals prepared thereby
CN114797814A (en) * 2022-03-14 2022-07-29 哈尔滨工业大学(深圳) Preparation method of modified natural wood material and application of modified natural wood material in sewage treatment
KR20240070263A (en) 2022-11-14 2024-05-21 동국대학교 산학협력단 Method for manufacturing hollow fiber type photocatalyst and the hollow fiber type photocatalyst thereby and photocatalyst filter comprising the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110034146A (en) * 2009-09-28 2011-04-05 재단법인대구경북과학기술원 Polycrystalline titanium dioxide nanorod and method of manufacturing the same
KR20170130315A (en) * 2016-05-18 2017-11-28 성균관대학교산학협력단 Amorphous titanium oxide material, preparing method of the same, and photocatalist including the material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110034146A (en) * 2009-09-28 2011-04-05 재단법인대구경북과학기술원 Polycrystalline titanium dioxide nanorod and method of manufacturing the same
KR20170130315A (en) * 2016-05-18 2017-11-28 성균관대학교산학협력단 Amorphous titanium oxide material, preparing method of the same, and photocatalist including the material

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CUI YUQI, MA QIULING, DENG XIAOYONG, MENG QI, CHENG XIUWEN, XIE MINGZHENG, LI XIAOLI, CHENG QINGFENG, LIU HUILING: "Fabrication of Ag-Ag2O/reduced TiO2 nanophotocatalyst and its enhanced visible light driven photocatalytic performance for degradation of diclofenac solution", APPLIED CATALYSIS B: ENVIRONMENTAL, vol. 206, 5 June 2017 (2017-06-05), pages 136 - 145, XP055792049, ISSN: 0926-3373, DOI: 10.1016/j.apcatb.2017.01.014 *
KARACSONYI E.; BAIA L.; DOMBI A.; DANCIU V.; MOGYOROSI K.; POP L.C.; KOVACS G.; COSCEDIL;OVEANU V.; VULPOI A.; SIMON S.; PAP ZS.: "The photocatalytic activity of TiO2/WO3/noble metal (Au or Pt) nanoarchitectures obtained by selective photodeposition", CATALYSIS TODAY, vol. 208, 21-12-2012, pages 19 - 27, XP028533815, ISSN: 0920-5861, DOI: 10.1016/j.cattod.2012.09.038 *
LI YANG, WU WENJIAN, DAI PENG, ZHANG LILI, SUN ZHAOQI, LI GUANG, WU MINGZAI, CHEN XIAOSHUANG, CHEN CHANGLE: "WO 3 and Ag nanoparticle co-sensitized TiO 2 nanowires: preparation and the enhancement of photocatalytic activity", RSC ADVANCES, vol. 4, no. 45, 19 May 2014 (2014-05-19), pages 23831 - 23837, XP055792051, ISSN: 2046-2069, DOI: 10.1039/C4RA02161D *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115707657A (en) * 2022-11-30 2023-02-21 上海纳米技术及应用国家工程研究中心有限公司 Preparation method and product application of titanium dioxide nano material
CN115707657B (en) * 2022-11-30 2024-03-15 上海纳米技术及应用国家工程研究中心有限公司 Preparation method and productization application of titanium dioxide nano material

Also Published As

Publication number Publication date
KR20210030015A (en) 2021-03-17
KR102257999B1 (en) 2021-05-28

Similar Documents

Publication Publication Date Title
WO2021049811A1 (en) Titanium dioxide composite, method for preparing same, and photocatalyst comprising same
WO2012173400A2 (en) Visible light sensitive photocatalyst, method of producing the same, and electrochemical water decomposition cell, water decomposition system, and organic material decomposition system each including the same
Alam et al. Highly efficient Y and V co-doped ZnO photocatalyst with enhanced dye sensitized visible light photocatalytic activity
Li et al. Synthesis of nanosized nitrogen-containing MOx–ZnO (M= W, V, Fe) composite powders by spray pyrolysis and their visible-light-driven photocatalysis in gas-phase acetaldehyde decomposition
Su et al. Decoration of TiO 2/gC 3 N 4 Z-scheme by carbon dots as a novel photocatalyst with improved visible-light photocatalytic performance for the degradation of enrofloxacin
Kumari et al. Synthesis and characterization of heterogeneous ZnO/CuO hierarchical nanostructures for photocatalytic degradation of organic pollutant
Zhang et al. Preparation and enhanced visible-light photocatalytic activity of graphitic carbon nitride/bismuth niobate heterojunctions
Andronic et al. Photocatalytic activity of cadmium doped TiO2 films for photocatalytic degradation of dyes
Yao et al. Photocatalytic property of bismuth titanate Bi12TiO20 crystals
Ravichandran et al. Cost-effective fabrication of ZnO/g-C3N4 composite film coated stainless steel meshes for visible light responsive photocatalysis
Dai et al. Band structure engineering design of g-C3N4/ZnS/SnS2 ternary heterojunction visible-light photocatalyst with ZnS as electron transport buffer material
WO2017051979A1 (en) Photocatalyst having high visible-light activity
Rhaman et al. Visible-light responsive novel WO3/TiO2 and Au loaded WO3/TiO2 nanocomposite and wastewater remediation: Mechanistic inside and photocatalysis pathway
WO2012052624A1 (en) Photocatalytic material
Onda et al. The electronic structure of methanol covered TiO2 (1 1 0) surfaces
Chang et al. Photocatalytic reduction of o-chloronitrobenzene under visible light irradiation over CdS quantum dot sensitized TiO 2
Chang et al. Binary composites WO3/g-C3N4 in porous morphology: Facile construction, characterization, and reinforced visible light photocatalytic activity
Yu et al. Heterostructured metal oxides-ZnO nanorods films prepared by SPPS route for photodegradation applications
WO2014204200A1 (en) Hydrogen fuel converter provided with photocatalyst and method for preparing hydrogen from methanol using photocatalyst
Al Farraj et al. Facile synthesis and characterization of CeO2-Al2O3 nano-heterostructure for enhanced visible-light photocatalysis and bactericidal applications
Chang et al. The reinforced photocatalytic performance of binary-phased composites Bi-Bi12O17Cl2 fabricated by a facile chemical reduction protocol
Bai et al. Synthesis of Ag@ AgBr/CaTiO 3 composite photocatalyst with enhanced visible light photocatalytic activity
Jang et al. Efficient photocatalytic degradation of acid orange 7 on metal oxide p–n junction composites under visible light
Álvaro et al. Effect of Cu on optical properties of TiO2 nanoparticles
Tang et al. Facile hydrothermal-carbonization preparation of carbon-modified Sb2S3 composites for photocatalytic degradation of methyl orange dyes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20862993

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20862993

Country of ref document: EP

Kind code of ref document: A1