WO2024034585A1 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
WO2024034585A1
WO2024034585A1 PCT/JP2023/028823 JP2023028823W WO2024034585A1 WO 2024034585 A1 WO2024034585 A1 WO 2024034585A1 JP 2023028823 W JP2023028823 W JP 2023028823W WO 2024034585 A1 WO2024034585 A1 WO 2024034585A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
fin
collar
space
fins
Prior art date
Application number
PCT/JP2023/028823
Other languages
French (fr)
Japanese (ja)
Inventor
文 奥野
寛之 中野
圭介 今津
健太郎 安重
健太 久本
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2024034585A1 publication Critical patent/WO2024034585A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements

Definitions

  • a heat exchanger such as an air conditioner includes a fin having a collar portion.
  • the collar portion 10 shown in FIG. 1 of Patent Document 1 has a dish-shaped seat portion 11, a vertical cylindrical portion 12 above the seat portion 11, and a flared portion 13 above the seat portion 11.
  • the inventor of the present invention discovered that when the fins 1 shown in FIG. The problem was discovered that water easily enters the recess and accumulates in the convex space formed within the recess.
  • the heat exchanger of the first aspect includes a heat exchanger tube and a plurality of fins.
  • the heat exchanger tube extends in the first direction.
  • the plurality of fins are stacked in the first direction.
  • the plurality of fins include a main body portion and a collar portion.
  • the main body extends in a second direction intersecting the first direction.
  • the heat exchanger tube is passed through the collar part.
  • the collar part has a first part, a second part, and a third part.
  • the first portion extends in a first direction from the main body.
  • the second part extends from the first part toward the heat transfer tube.
  • the third part extends from the second part in the first direction along the heat exchanger tube.
  • the second portion of the first fin contacts the tip of the collar portion of the adjacent second fin.
  • the fins are provided with drainage ribs.
  • the drainage rib extends from a convex space formed by the first and second parts of the first fin and the tip of the collar part of the
  • the heat exchanger of the second aspect is the heat exchanger of the first aspect, and the collar part further includes a fourth part.
  • the fourth part extends toward the outer circumference from the third part.
  • the second portion of the first fin contacts the fourth portion of the adjacent second fin.
  • the fourth part allows the plurality of fins to be easily stacked in the first direction.
  • the heat exchanger of the third aspect is the heat exchanger of the first aspect or the second aspect, and the drainage rib is provided in the main body.
  • the drainage rib protrudes in the first direction to the second portion.
  • water in the convex space can be easily guided to the drainage ribs.
  • the heat exchanger according to the fourth aspect is the heat exchanger according to any one of the first to third aspects, and the fin includes a plurality of collar parts.
  • the drainage rib extends in the second direction from the first collar to the lower collar.
  • water in the convex space of the upper collar part can be guided to the convex space of the lower collar part through the drainage rib.
  • the heat exchanger according to the fifth aspect is the heat exchanger according to any one of the first to fourth aspects, and the convex space has an annular space when viewed from the first direction.
  • the annular space allows water accumulated around the entire circumference of this space to be guided to the drainage rib.
  • the heat exchanger according to the sixth aspect is the heat exchanger according to the fifth aspect, and the convex space further includes a triangular space when viewed from the first direction.
  • the triangular space is connected to the toroidal space.
  • a drainage rib extends from the triangular space.
  • water accumulated in the convex space can be moved to the triangular space and guided from the triangular space to the drainage rib.
  • the heat exchanger according to the seventh aspect is the heat exchanger according to any one of the first to sixth aspects, and is included in the indoor unit of the air conditioner.
  • the heat exchanger of the seventh aspect can be applied to a heat exchanger of an indoor unit of an air conditioner.
  • FIG. 1 is a schematic configuration diagram of an air conditioner including a heat exchanger according to an embodiment of the present disclosure.
  • FIG. 1 is a cross-sectional view of a heat exchanger according to an embodiment of the present disclosure. It is a perspective view when the fin which constitutes a heat exchanger is seen from the front.
  • FIG. 3 is a plan view of fins constituting the heat exchanger, viewed from the rear.
  • FIG. 3 is a plan view of the vicinity of one collar portion of the heat exchanger, viewed from the front.
  • the third part and the fourth part are omitted, and the second part is shaded.
  • 6 is a sectional view taken along line VII-VII in FIG. 5.
  • FIG. 6 is a sectional view taken along line VIII-VIII in FIG. 5.
  • FIG. 1 is a cross-sectional view of a heat exchanger according to an embodiment of the present disclosure. It is a perspective view when the fin which constitutes a heat exchanger is seen from the front.
  • FIG. 3
  • FIG. 6 is a sectional view taken along line IX-IX in FIG. 5.
  • FIG. It is a bottom view when the fin which constitutes a heat exchanger is seen from below.
  • FIG. 4 is a diagram showing the flow of water. This is a photograph of the vicinity of the conventional collar section viewed from the front. This is a photograph of the vicinity of a plurality of conventional color sections viewed from the right side.
  • FIG. 7 is a plan view of the vicinity of one collar portion of a heat exchanger according to a modified example, when viewed from the front.
  • FIG. 7 is a plan view of the vicinity of one collar portion of a heat exchanger according to another modification as viewed from the front.
  • Air conditioner 200 An air conditioner including a heat exchanger according to an embodiment of the present disclosure will be described with reference to FIG. 1.
  • the air conditioner 200 is a device used for heating and cooling indoor rooms such as buildings by performing vapor compression type refrigeration cycle operation.
  • the air conditioner 200 mainly includes an outdoor unit 220, an indoor unit 230, and a liquid refrigerant communication pipe 240 and a gas refrigerant communication pipe 250 that connect the outdoor unit 220 and the indoor unit 230.
  • the vapor compression type refrigerant circuit 210 of the air conditioner 200 is configured by connecting an outdoor unit 220 and an indoor unit 230 via a liquid refrigerant communication pipe 240 and a gas refrigerant communication pipe 250.
  • Outdoor unit 220 is installed outdoors.
  • the outdoor unit 220 mainly includes a compressor 221, a flow path switching mechanism 222, an outdoor heat exchanger 223, and an expansion mechanism 224.
  • the compressor 221 is a mechanism that compresses the low pressure refrigerant in the refrigeration cycle until it becomes high pressure.
  • the flow path switching mechanism 222 is a mechanism that switches the direction of refrigerant flow when switching between cooling operation and heating operation. During cooling operation, the flow path switching mechanism 222 connects the discharge side of the compressor 221 to the gas side of the outdoor heat exchanger 223, and connects the gas side of the indoor heat exchanger 231 (described later) via the gas refrigerant communication pipe 250. and the suction side of the compressor 221 (see the solid line of the flow path switching mechanism 222 in FIG. 1). Further, during heating operation, the flow path switching mechanism 222 connects the discharge side of the compressor 221 and the gas side of the indoor heat exchanger 231 via the gas refrigerant communication pipe 250, and also connects the gas side of the outdoor heat exchanger 223. and the suction side of the compressor 221 (see the broken line of the flow path switching mechanism 222 in FIG. 1).
  • the outdoor heat exchanger 223 is a heat exchanger that functions as a radiator for refrigerant during cooling operation and as an evaporator for refrigerant during heating operation.
  • the outdoor heat exchanger 223 has its liquid side connected to the expansion mechanism 224 and its gas side connected to the flow path switching mechanism 222.
  • the expansion mechanism 224 reduces the pressure of the high-pressure liquid refrigerant that has radiated heat in the outdoor heat exchanger 223 before sending it to the indoor heat exchanger 231, and during heating operation, it reduces the pressure of the high-pressure liquid refrigerant that has radiated heat in the indoor heat exchanger 231 to the outside. This is a mechanism that reduces the pressure before sending it to the heat exchanger 223.
  • the outdoor unit 220 is provided with an outdoor fan 225 for sucking outdoor air into the outdoor unit 220, supplying the outdoor air to the outdoor heat exchanger 223, and then discharging it outside the outdoor unit 220. .
  • the indoor unit 230 is installed indoors.
  • the indoor unit 230 mainly includes an indoor heat exchanger 231 and an indoor fan 232.
  • the indoor heat exchanger 231 is a heat exchanger that functions as a refrigerant evaporator during cooling operation and as a refrigerant radiator during heating operation.
  • the indoor heat exchanger 231 has a liquid side connected to a liquid refrigerant communication pipe 240 and a gas side connected to a gas refrigerant communication pipe 250.
  • the indoor unit 230 is provided with an indoor fan 232 for sucking indoor air into the indoor unit 230, supplying the indoor air to the indoor heat exchanger 231, and then discharging it outside the indoor unit 230. .
  • the low-pressure refrigerant whose pressure has been reduced in the expansion mechanism 224 is sent to the indoor heat exchanger 231 through the liquid refrigerant communication pipe 240.
  • the low-pressure refrigerant sent to the indoor heat exchanger 231 exchanges heat with indoor air supplied by the indoor fan 232 in the indoor heat exchanger 231 and evaporates. As a result, the indoor air is cooled and blown into the room.
  • the low-pressure refrigerant evaporated in the indoor heat exchanger 231 is sucked into the compressor 221 again through the gas refrigerant communication pipe 250 and the flow path switching mechanism 222.
  • (1-3-2) Heating Operation When the air conditioner 200 performs a heating operation, the low-pressure refrigerant in the refrigeration cycle is sucked into the compressor 221, compressed to the high pressure in the refrigeration cycle, and then discharged.
  • the high-pressure refrigerant discharged from the compressor 221 is sent to the indoor heat exchanger 231 through the flow path switching mechanism 222 and the gas refrigerant communication pipe 250.
  • the high-pressure refrigerant sent to the indoor heat exchanger 231 exchanges heat with indoor air supplied by the indoor fan 232 in the indoor heat exchanger 231 and radiates heat. As a result, indoor air is heated and blown into the room.
  • the high-pressure refrigerant that has radiated heat in the indoor heat exchanger 231 is sent to the expansion mechanism 224 through the liquid refrigerant communication pipe 240 and is reduced in pressure to a low pressure in the refrigeration cycle.
  • the low-pressure refrigerant whose pressure has been reduced in the expansion mechanism 224 is sent to the outdoor heat exchanger 223.
  • the low-pressure refrigerant sent to the outdoor heat exchanger 223 exchanges heat with outdoor air supplied by the indoor fan 232 in the outdoor heat exchanger 223 and evaporates.
  • the low-pressure refrigerant evaporated in the outdoor heat exchanger 223 is sucked into the compressor 221 again through the flow path switching mechanism 222 .
  • the heat exchanger 10 of this embodiment is included in the indoor unit 230 of the air conditioner 200 in FIG. Specifically, the heat exchanger 10 is the indoor heat exchanger 231 shown in FIG.
  • the heat exchanger 10 of this embodiment is a cross-fin tube heat exchanger.
  • the heat exchanger 10 includes heat exchanger tubes 20 and a plurality of fins 30.
  • Heat exchanger tube 20 extends in the first direction.
  • the fins 30 are stacked in the first direction.
  • the first direction here is the front-back direction.
  • the heat exchanger 10 performs heat exchange between the refrigerant flowing inside the heat exchanger tubes 20 and the air flowing outside the heat exchanger tubes 20.
  • the heat exchanger 10 allows heat exchange between air and refrigerant without mixing them with each other.
  • the heat exchanger 10 of this embodiment includes a plurality of heat exchanger tubes 20.
  • the plurality of heat exchanger tubes 20 are arranged in the second direction.
  • the second direction intersects the first direction.
  • the second direction here is perpendicular to the first direction.
  • the second direction is an up-down direction.
  • the heat exchanger tube 20 allows a refrigerant to flow inside.
  • the heat exchanger tube 20 has a cylindrical shape.
  • the heat exchanger tube 20 is a round tube.
  • the heat exchanger tubes 20 are formed with through holes through which the refrigerant to be heat exchanged with indoor air in the heat exchanger 10 passes.
  • the through hole of the heat exchanger tube 20 penetrates along the first direction.
  • the first direction is the longitudinal direction of the heat exchanger tube 20.
  • Heat exchanger tube 20 is made of aluminum or aluminum alloy, for example.
  • the fins 30 increase the heat transfer area between the heat transfer tubes 20 and the indoor air, and promote heat exchange between the refrigerant and the indoor air.
  • the fins 30 are in contact with the heat transfer tubes 20.
  • the fins 30 are made of aluminum or aluminum alloy, for example.
  • the plurality of fins 30 are arranged in the first direction.
  • the fins 30 are arranged so as to intersect (here, perpendicular to) the extending direction of the heat exchanger tubes 20 .
  • the plurality of fins 30 are arranged in parallel and at equal intervals. Note that in FIG. 2, two adjacent fins 30 are shown as a first fin 131 and a second fin 132.
  • the fin 30 has one side 30a shown in FIG. 3 and the other side 30b shown in FIG. 4.
  • the one surface 30a is the front surface when viewed from the front in the first direction.
  • the other surface 30b is a rear surface when viewed from the rear in the first direction.
  • the plurality of fins 30 include a main body portion 31 and a collar portion 32.
  • the main body portion 31 extends in a second direction intersecting the first direction.
  • the main body portion 31 extends in the up-down direction, which is the second direction orthogonal to the first direction.
  • the up-down direction is the direction of gravity.
  • the main body portion 31 is a flat member.
  • the main body portion 31 is formed with a notch 31a for promoting heat transfer.
  • a plurality of cutouts 31a are arranged in a third direction orthogonal to the first direction.
  • the third direction is the left-right direction.
  • the notch 31a extends in the second direction.
  • the notch 31a projects forward. In other words, the notch 31a protrudes from one side 30a toward the other side 30b of the adjacent fins 30.
  • the collar portion 32 allows the heat exchanger tube 20 to pass through. Specifically, the collar portion 32 has a through hole through which the heat exchanger tube 20 is passed.
  • the collar section 32 includes a first section 33, a second section 34, a third section 35, and a fourth section 36.
  • the first part 33, the second part 34, the third part 35, and the fourth part 36 are composed of one member.
  • the first part 33, the second part 34, the third part 35, and the fourth part 36 are formed by nesting processing.
  • the first portion 33 extends from the main body portion 31 in the first direction.
  • the first portion 33 is perpendicular to the main body portion 31 .
  • the second part 34 extends from the first part 33 toward the heat exchanger tube 20.
  • the second portion 34 extends in the second direction.
  • the second part 34 is orthogonal to the first part 33. The second part will be described later.
  • the third portion 35 extends from the second portion 34 in the first direction along the heat exchanger tube 20.
  • the third portion 35 is in contact with the heat exchanger tube 20 .
  • the third part 35 is orthogonal to the second part 34.
  • the fourth portion 36 extends from the third portion 35 toward the outer circumference. In other words, the fourth portion 36 extends in the second direction.
  • the fourth part 36 is orthogonal to the third part 35.
  • the length of the fourth portion 36 in the second direction is smaller than the length of the second portion 34 in the second direction.
  • the second portion 34 of the first fin 131 contacts the tip of the collar portion 32 of the adjacent second fin 132.
  • the second portion 34 of the first fin contacts the fourth portion 36 of the adjacent second fin.
  • the second portion 34 and the fourth portion 36 extend in the same direction.
  • the second portion 34 has a distance between the inner circumferential surface 34a and the outer circumferential surface 34b when viewed from the first direction (front in FIGS. 5 and 6) (in front view). has a first dimension L1, and a portion where the distance between the inner circumferential surface 34a and the outer circumferential surface 34b is a second dimension L2. As shown in FIGS. 6 to 8, the second dimension L2 is larger than the first dimension L1.
  • the first dimension L1 is the dimension of a portion extending along the third direction orthogonal to the first direction. Specifically, the portion having the first dimension L1 is located at least at the left end and right end.
  • the portion having the first dimension L1 is a portion of the second portion 34 where a triangular portion 34d, which will be described later, is not arranged.
  • the second dimension L2 is the dimension of the portion extending along the second direction. Specifically, the portion having the second dimension L2 is located at at least one of the upper end and the lower end. Here, the portions having the second dimension L2 are the upper end and the lower end of the second portion 34.
  • the second portion 34 has a drop shape when viewed from the first direction (front in FIGS. 5 and 6).
  • the second portion 34 has an annular annular portion 34c and a triangular triangular portion 34d when viewed from the first direction (front in FIGS. 5 and 6).
  • the triangular portion 34d is continuous with a part of the annular portion 34c.
  • the triangular portion 34d has a V-shape.
  • the annular portion 34c is an area surrounded by two concentric circles.
  • the annular portion 34c is located on the entire circumference of the second portion 34. Only the annular portion 34c without the triangular portion 34d constitutes a portion having the first dimension L1. Therefore, the first dimension L1 in this embodiment is a constant value.
  • the second dimension L2 of this embodiment is not a constant value.
  • the second dimension L2 is a value larger than the first dimension L1 of the annular portion 34c, and the value differs depending on the position.
  • the maximum value of the second dimension L2 is, for example, twice or more the first dimension L1.
  • the maximum value of the second dimension L2 here is the distance extending downward (inner circumferential surface 34a) from the upper end of the second portion 34, and the distance extending upward (inner circumferential surface 34a) from the lower end of the second portion 34. .
  • the triangular portion 34d is arranged at the lower end of the second portion 34. Specifically, the triangular portion 34d has a shape that extends downward. Here, the triangular portion 34d is also arranged at the upper end of the second portion 34. Specifically, the triangular portion 34d also has a shape that extends upward.
  • first dimension L1 is, for example, 0.5 mm or more and 0.9 mm or less.
  • the second dimension L2 is, for example, 1.0 mm or more and 1.9 mm or less.
  • the maximum value of the second dimension L2 is, for example, 1.5 mm or more and 1.9 mm or less.
  • the fins 30 are provided with drainage ribs 130.
  • the drainage rib 130 extends from a convex space S formed by the first part 33 and the second part 34 of the first fin 131 and the tip of the collar part 32 of the second fin 132 shown in FIG. .
  • the drainage rib 130 allows water in the convex space S to flow in the second direction (here, downward).
  • the convex space S of this embodiment is formed by the first part 33 and the second part 34 of the first fin 131 and the fourth part 36 of the second fin 132. Specifically, the tip of the collar portion 32 of the second fin 132 (the fourth portion 36 in FIG. 2) enters the recess around the collar portion 32 of the first fin 131 adjacent to the second fin 132, and A convex space S is formed within the recess.
  • the convex space S has a drop shape when viewed from the first direction (here, the front).
  • the convex space S includes an annular space and a triangular space when viewed from the first direction.
  • An annular space is provided around the entire circumference.
  • the triangular space is connected to the annular space.
  • the triangular space of this embodiment is provided at the upper end and the lower end.
  • the convex space S formed by the first dimension L1 of the first part 33 and second part 34 of the first fin 131 and the fourth part 36 of the second fin 132 is, for example, , 0.1 mm or more and 0.3 mm or less.
  • the convex space S formed by the second dimension L2 of the first part 33 and second part 34 of the first fin 131 and the fourth part 36 of the second fin 132 is, for example, 0. .4 mm or more and 1.4 mm or less. It is formed by the portion (upper end and lower end) of the first portion 33 and second portion 34 of the first fin 131 having the maximum second dimension L2, and the fourth portion 36 of the second fin 132.
  • the convex space S is, for example, 1.1 mm or more and 1.4 mm or less.
  • the drainage rib 130 is provided on the main body portion 31. As shown in FIGS. 3, 4, 9, and 10, the drainage rib 130 protrudes in the first direction. Here, the drainage rib 130 projects forward. Specifically, the drainage rib 130 protrudes from one side 30a toward the other side 30b of the adjacent fins 30. In this embodiment, as shown in FIGS. 9 and 10, the drainage rib 130 protrudes in the first direction to the second portion 34. As shown in FIGS. In other words, the height of the drainage rib 130 in the first direction is the same as the height of the second portion 34. In other words, the position of the drainage rib 130 in the first direction and the position of the second portion 34 in the first direction are the same.
  • the drainage rib 130 has a mountain shape when viewed from one side 30a (front), and as shown in FIGS. When viewed from the rear) side, it has a groove shape.
  • the drainage rib 130 of this embodiment has a V-shape when viewed from below.
  • the drainage rib 130 extends in the second direction.
  • the drainage rib 130 extends in the vertical direction, and here extends in the direction of gravity.
  • the drainage rib 130 extends in the second direction from the first collar part 32 to the lower collar part 32.
  • the drainage rib 130 extends from the lower end of the second part of the first collar part 32 in the upper part to the second part in the lower part. It extends to the upper end of the second portion 34 of the collar portion.
  • the drainage rib 130 is connected to a portion of the second portion 34 having the second dimension L2. Specifically, the drainage rib 130 is connected to the triangular portion 34d of the second portion 34. More specifically, the drainage rib 130 is connected to a pointed portion of the triangular portion 34d of the second portion 34. The drainage rib 130 extends from the triangular space of the convex space S.
  • the second portion 34 of the fin 30 of the present embodiment has a portion where the distance between the inner circumferential surface 34a and the outer circumferential surface 34b is the first dimension L1 when viewed in the first direction, and a portion where the distance between the inner circumferential surface 34a and the outer circumferential surface 34b is the first dimension L1, and the inner circumferential surface 34a and a portion where the distance between the outer peripheral surface 34b and the outer peripheral surface 34b is a second dimension L2, which is larger than the first dimension L1.
  • water accumulated in the space between the portion of the first fin 131 having the first dimension L1 and the fourth portion 36 of the second fin 132 can be removed from the portion having the second dimension L2 and the second fin 132.
  • the fourth part 36 can be guided into the space.
  • the fin 30 of this embodiment has a convex portion formed by the first portion 33 and the second portion 34 of the first fin 131 and the fourth portion 36 which is the tip of the collar portion 32 of the second fin 132. It has a drainage rib 130 extending from the shaped space S. Since the drainage rib 130 extends from the convex space S, water accumulated in the convex space S can be guided to the drainage rib 130. Water is drained by the drainage ribs 130.
  • an annular space is formed between the portion of the first fin 131 having the first dimension L1 and the fourth portion 36 of the second fin 132.
  • the accumulated water is guided into a triangular space between the lower portion having the second dimension L2 and the fourth portion 36 of the second fin 132. Since the drainage rib 130 is connected to the portion having the second dimension L2, water guided into the triangular space formed by the portion having the second dimension L2 is further guided to the drainage rib 130. Thereby, water flows along the groove formed on the other surface 30b side of the drainage rib 130 to the collar portion 32 below. In this way, the condensed water adhering to the fins 30 is caused to flow downward.
  • the present inventor has provided a collar portion 32 having a first portion 33, a second portion 34, and a third portion 35, and the second portion 34 of the first fin 131 is connected to the adjacent second fin 132.
  • a problem unique to the heat exchanger 10 that is in contact with the tip of the collar portion 32 of the heat exchanger 10.
  • the first part 33 and second part 34 of the first fin 131 are It has been found that water tends to accumulate in the convex space S formed by the tip of the collar portion 32 of the second fin 132.
  • the heat exchanger 10 includes a heat exchanger tube 20 and a plurality of fins 30.
  • Heat exchanger tube 20 extends in the first direction.
  • the plurality of fins 30 are stacked in the first direction.
  • the plurality of fins 30 include a main body portion 31 and a collar portion 32.
  • the main body portion 31 extends in a second direction intersecting the first direction.
  • the heat exchanger tube 20 passes through the collar portion 32 .
  • the collar section 32 includes a first section 33, a second section 34, and a third section 35.
  • the first portion 33 extends from the main body portion 31 in the first direction.
  • the second portion 34 extends from the first portion 33 toward the heat exchanger tube 20 .
  • the third portion 35 extends from the second portion 34 in the first direction along the heat exchanger tube 20.
  • the second portion 34 of the first fin 131 contacts the tip of the collar portion 32 of the adjacent second fin 132.
  • the fins 30 are provided with drainage ribs 130.
  • the drainage rib 130 extends from a convex space S formed by the first part 33 and the second part 34 of the first fin 131 and the tip of the collar part 32 of the second fin 132.
  • the drainage rib 130 extends from the convex space S, water accumulated in the convex space S can be guided to the drainage rib 130. Therefore, drainage of the convex space S where water tends to accumulate can be facilitated.
  • the collar part 32 further includes a fourth part 36.
  • the fourth portion 36 extends from the third portion 35 toward the outer periphery.
  • the second portion 34 of the first fin 131 contacts the fourth portion 36 of the adjacent second fin 132.
  • the fourth portion 36 allows the plurality of fins 30, 131, and 132 to be easily stacked in the first direction.
  • the drainage rib 130 is provided on the main body portion 31.
  • the drainage rib 130 protrudes in the first direction to the second portion 34 .
  • the water in the convex space S can be easily guided to the drainage ribs.
  • the fins 30 include a plurality of collar parts 32.
  • the drainage rib 130 extends in the second direction from the first collar portion 32 to the lower collar portion 32 .
  • water in the convex space S of the upper collar part 32 can be led to the convex space S of the lower collar part 32 through the drainage rib 130.
  • the convex space S has an annular space when viewed from the first direction.
  • the annular space allows water accumulated around the entire circumference of this space to be guided to the drainage ribs 130.
  • the convex space S further includes a triangular space when viewed from the first direction.
  • the triangular space is connected to the toroidal space.
  • the drainage rib 130 extends from the triangular space.
  • the water accumulated in the convex space S can be moved to the triangular space and guided from the triangular space to the drainage rib 130.
  • the heat exchanger 10 of this embodiment it is included in the indoor unit 230 of the air conditioner 200. In this way, the heat exchanger 10 of this embodiment is suitably used as an indoor heat exchanger 231 placed indoors.
  • the drainage rib 130 has a V-shape when viewed from below, but is not limited to this.
  • the drainage rib 130 of this modification has a U-shape when viewed from below.
  • the triangular portion 34d has a V-shape when viewed from the first direction, but the triangular portion 34d is not limited to this.
  • the triangular portion 34d of this modification is U-shaped.
  • the portions having the second dimension L2 are arranged at both ends in the second direction, but the invention is not limited thereto.
  • the portion having the second dimension L2 is arranged only at the lower end.
  • the triangular portion 34d is not arranged at the upper end but only at the lower end.
  • the collar part 32 includes a first part 33, a second part 34, a third part 35, and a fourth part 36, but the fourth part 36 is omitted. Good too.
  • the notches 31a for promoting heat transfer are formed in the fins 30, but the shape, number, arrangement, etc. of the notches 31a are not limited.
  • the cutout 31a may extend in a direction intersecting the second direction.
  • the notch 31a may protrude toward the rear.
  • the heat exchanger 10 is applied to the air conditioner 200, but is not limited thereto.
  • the heat exchanger 10 may be applied to a refrigeration device such as a water heater, a floor heating device, or a refrigerator.
  • Heat exchanger 20 Heat exchanger tubes 30, 131, 132 : Fin 31 : Main body part 32 : Collar part 33 : First part 34 : Second part 35 : Third part 36 : Fourth part 130 : Drainage rib 200 :Air conditioner 230 :Indoor unit

Abstract

A heat exchanger (10) comprises a heat transfer pipe (20) and a plurality of fins (30). The heat transfer pipe (20) extends in a first direction. The fins (30) are stacked in the first direction. The fins (30) each include a body portion (31) and a collar portion (32). The collar portion (32) allows the heat transfer pipe (20) to pass therethrough. The collar portion (32) has a first portion (33), a second portion (34), and a third portion (35). The first portion (33) extends from the body portion (31) in the first direction. The second portion (34) extends from the first portion (33) toward the heat transfer pipe (20). The third portion (35) extends from the second portion (34) in the first direction. A second portion (34) of a first fin (131) is in contact with the tip of a collar portion (32) of an adjacent second fin (132). The fins (30) are each provided with a drainage rib (130). The drainage rib (130) extends from a convex space (S) that is formed by a first portion (33) and the second portion (34) of the first fin (131) and the tip of the collar portion (32) of the second fin (132).

Description

熱交換器Heat exchanger
 熱交換器に関する。 Regarding heat exchangers.
 従来、特許文献1(特開2015-123458号公報)に開示されているように、空気調和装置等の熱交換器は、カラー部を有するフィンを備えている。特許文献1の図1のカラー部10は、皿型の座部11と、その上方の垂直円筒部12と、その上方のリフレア部13と、を有する。 Conventionally, as disclosed in Patent Document 1 (Japanese Unexamined Patent Publication No. 2015-123458), a heat exchanger such as an air conditioner includes a fin having a collar portion. The collar portion 10 shown in FIG. 1 of Patent Document 1 has a dish-shaped seat portion 11, a vertical cylindrical portion 12 above the seat portion 11, and a flared portion 13 above the seat portion 11.
 本発明者は、特許文献1の図1に示すフィン1を積層すると、カラー部10において、1つのフィン1のリフレア部13が、このフィン1に隣接する別のフィン1の垂直円筒部12の凹部に入り、その凹部内に形成される凸状の空間に、水が溜まりやすいという課題を見出した。 The inventor of the present invention discovered that when the fins 1 shown in FIG. The problem was discovered that water easily enters the recess and accumulates in the convex space formed within the recess.
 第1観点の熱交換器は、伝熱管と、複数のフィンと、を備える。伝熱管は、第1方向に延びる。複数のフィンは、第1方向に積層される。複数のフィンは、本体部と、カラー部と、を含む。本体部は、第1方向と交差する第2方向に延びる。カラー部は、伝熱管を通す。カラー部は、第1部と、第2部と、第3部と、を有する。第1部は、本体部から第1方向に延びる。第2部は、第1部から伝熱管に向けて延びる。第3部は、第2部から伝熱管に沿って、第1方向に延びる。第1のフィンの第2部は、隣接する第2のフィンのカラー部の先端部に接する。フィンには、排水用リブが設けられる。排水用リブは、第1のフィンの第1部及び第2部と、第2のフィンのカラー部の先端とで形成される凸状の空間から延びる。 The heat exchanger of the first aspect includes a heat exchanger tube and a plurality of fins. The heat exchanger tube extends in the first direction. The plurality of fins are stacked in the first direction. The plurality of fins include a main body portion and a collar portion. The main body extends in a second direction intersecting the first direction. The heat exchanger tube is passed through the collar part. The collar part has a first part, a second part, and a third part. The first portion extends in a first direction from the main body. The second part extends from the first part toward the heat transfer tube. The third part extends from the second part in the first direction along the heat exchanger tube. The second portion of the first fin contacts the tip of the collar portion of the adjacent second fin. The fins are provided with drainage ribs. The drainage rib extends from a convex space formed by the first and second parts of the first fin and the tip of the collar part of the second fin.
 第1観点の熱交換器では、第1のフィンの第1部及び第2部と、第2のフィンのカラー部の先端とで形成される凸状の空間に、水が溜まりやすい。しかし、第1観点の熱交換器によれば、凸状の空間から排水用リブが延びているので、凸状の空間に溜まった水を排水用リブに導くことができる。このため、水が溜まりやすい凸状の空間の排水を促進することができる。 In the heat exchanger of the first aspect, water tends to accumulate in the convex space formed by the first and second parts of the first fin and the tip of the collar part of the second fin. However, according to the heat exchanger of the first aspect, since the drainage rib extends from the convex space, water accumulated in the convex space can be guided to the drainage rib. Therefore, drainage of convex spaces where water tends to accumulate can be facilitated.
 第2観点の熱交換器は、第1観点の熱交換器であって、カラー部は、第4部をさらに有する。第4部は、第3部から外周側に延びる。第1のフィンの第2部は、隣接する第2のフィンの第4部に接する。 The heat exchanger of the second aspect is the heat exchanger of the first aspect, and the collar part further includes a fourth part. The fourth part extends toward the outer circumference from the third part. The second portion of the first fin contacts the fourth portion of the adjacent second fin.
 第2観点の熱交換器では、第4部により、複数のフィンを第1方向に容易に積層することができる。 In the heat exchanger of the second aspect, the fourth part allows the plurality of fins to be easily stacked in the first direction.
 また、第2観点の熱交換器では、第2のフィンの第4部と、第1のフィンの第1部及び第2部とで形成される凸状の空間に、水が溜まりやすいという課題が大きいので、排水用リブによる効果が大きい。 Further, in the heat exchanger according to the second aspect, there is a problem that water tends to accumulate in the convex space formed by the fourth part of the second fin and the first part and the second part of the first fin. is large, so the effect of the drainage ribs is large.
 第3観点の熱交換器は、第1観点または第2観点の熱交換器であって、排水用リブは、本体部に設けられる。排水用リブは、第2部まで、第1方向に突出する。 The heat exchanger of the third aspect is the heat exchanger of the first aspect or the second aspect, and the drainage rib is provided in the main body. The drainage rib protrudes in the first direction to the second portion.
 第3観点の熱交換器では、凸状の空間の水を容易に排水用リブに導くことができる。 In the heat exchanger of the third aspect, water in the convex space can be easily guided to the drainage ribs.
 第4観点の熱交換器は、第1観点から第3観点のいずれかの熱交換器であって、フィンは、複数のカラー部を含む。排水用リブは、第1のカラー部から、下方のカラー部まで、第2方向に延びる。 The heat exchanger according to the fourth aspect is the heat exchanger according to any one of the first to third aspects, and the fin includes a plurality of collar parts. The drainage rib extends in the second direction from the first collar to the lower collar.
 第4観点の熱交換器では、上段のカラー部の凸状の空間の水を、排水用リブを通じて、下段のカラー部の凸状の空間に導くことができる。 In the heat exchanger of the fourth aspect, water in the convex space of the upper collar part can be guided to the convex space of the lower collar part through the drainage rib.
 第5観点の熱交換器は、第1観点から第4観点のいずれかの熱交換器であって、凸状の空間は、第1方向から見たときに、円環形状の空間を有する。 The heat exchanger according to the fifth aspect is the heat exchanger according to any one of the first to fourth aspects, and the convex space has an annular space when viewed from the first direction.
 第5観点の熱交換器では、円環形状の空間によって、この空間の全周に溜まった水を、排水用リブに導くことができる。 In the heat exchanger of the fifth aspect, the annular space allows water accumulated around the entire circumference of this space to be guided to the drainage rib.
 第6観点の熱交換器は、第5観点の熱交換器であって、凸状の空間は、第1方向から見たときに、三角形状の空間をさらに有する。三角形状の空間は、円環状の空間と連なる。排水用リブは、三角形状の空間から延びる。 The heat exchanger according to the sixth aspect is the heat exchanger according to the fifth aspect, and the convex space further includes a triangular space when viewed from the first direction. The triangular space is connected to the toroidal space. A drainage rib extends from the triangular space.
 第6観点の熱交換器では、凸状の空間に溜まった水を、三角形状の空間に移動させて、三角形状の空間から排水用リブに導くことができる。 In the heat exchanger of the sixth aspect, water accumulated in the convex space can be moved to the triangular space and guided from the triangular space to the drainage rib.
 第7観点の熱交換器は、第1観点から第6観点のいずれかの熱交換器であって、空気調和装置の室内機に含まれる。 The heat exchanger according to the seventh aspect is the heat exchanger according to any one of the first to sixth aspects, and is included in the indoor unit of the air conditioner.
 第7観点の熱交換器は、空気調和装置の室内機の熱交換器に適用することができる。 The heat exchanger of the seventh aspect can be applied to a heat exchanger of an indoor unit of an air conditioner.
本開示の一実施形態に係る熱交換器を備える空気調和装置の概略構成図である。1 is a schematic configuration diagram of an air conditioner including a heat exchanger according to an embodiment of the present disclosure. 本開示の一実施形態に係る熱交換器の断面図である。FIG. 1 is a cross-sectional view of a heat exchanger according to an embodiment of the present disclosure. 熱交換器を構成するフィンを前方から見たときの斜視図である。It is a perspective view when the fin which constitutes a heat exchanger is seen from the front. 熱交換器を構成するフィンを後方から見たときの平面図である。FIG. 3 is a plan view of fins constituting the heat exchanger, viewed from the rear. 熱交換器の1つのカラー部近傍を前方から見たときの平面図である。FIG. 3 is a plan view of the vicinity of one collar portion of the heat exchanger, viewed from the front. 図5において、第3部及び第4部を省略し、第2部に斜線を施している図である。In FIG. 5, the third part and the fourth part are omitted, and the second part is shaded. 図5におけるVII-VII線に沿った断面図である。6 is a sectional view taken along line VII-VII in FIG. 5. FIG. 図5におけるVIII-VIII線に沿った断面図である。6 is a sectional view taken along line VIII-VIII in FIG. 5. FIG. 図5におけるIX-IX線に沿った断面図である。6 is a sectional view taken along line IX-IX in FIG. 5. FIG. 熱交換器を構成するフィンを下方から見たときの底面図である。It is a bottom view when the fin which constitutes a heat exchanger is seen from below. 図4において、水の流れを示す図である。FIG. 4 is a diagram showing the flow of water. 従来のカラー部近傍を前方から見たときの写真である。This is a photograph of the vicinity of the conventional collar section viewed from the front. 従来の複数のカラー部近傍を右側から見たときの写真である。This is a photograph of the vicinity of a plurality of conventional color sections viewed from the right side. 変形例の熱交換器の1つのカラー部近傍を前方から見たときの平面図である。FIG. 7 is a plan view of the vicinity of one collar portion of a heat exchanger according to a modified example, when viewed from the front. 別の変形例の熱交換器の1つのカラー部近傍を前方から見たときの平面図である。FIG. 7 is a plan view of the vicinity of one collar portion of a heat exchanger according to another modification as viewed from the front.
 (1)空気調和装置
 本開示の一実施形態に係る熱交換器を備える空気調和装置について、図1を参照して説明する。図1に示すように、空気調和装置200は、蒸気圧縮式の冷凍サイクル運転を行うことによって、建物等の室内の冷暖房に使用される装置である。
(1) Air conditioner An air conditioner including a heat exchanger according to an embodiment of the present disclosure will be described with reference to FIG. 1. As shown in FIG. 1, the air conditioner 200 is a device used for heating and cooling indoor rooms such as buildings by performing vapor compression type refrigeration cycle operation.
 空気調和装置200は、主として、室外機220と、室内機230と、室外機220と室内機230とを接続する液冷媒連絡管240及びガス冷媒連絡管250と、を有している。そして、空気調和装置200の蒸気圧縮式の冷媒回路210は、室外機220と室内機230とが液冷媒連絡管240及びガス冷媒連絡管250を介して接続されることによって構成されている。 The air conditioner 200 mainly includes an outdoor unit 220, an indoor unit 230, and a liquid refrigerant communication pipe 240 and a gas refrigerant communication pipe 250 that connect the outdoor unit 220 and the indoor unit 230. The vapor compression type refrigerant circuit 210 of the air conditioner 200 is configured by connecting an outdoor unit 220 and an indoor unit 230 via a liquid refrigerant communication pipe 240 and a gas refrigerant communication pipe 250.
 (1-1)室外機
 室外機220は、室外に設置されている。室外機220は、主として、圧縮機221と、流路切換機構222と、室外熱交換器223と、膨張機構224と、を有している。
(1-1) Outdoor unit The outdoor unit 220 is installed outdoors. The outdoor unit 220 mainly includes a compressor 221, a flow path switching mechanism 222, an outdoor heat exchanger 223, and an expansion mechanism 224.
 圧縮機221は、冷凍サイクルにおける低圧の冷媒を高圧になるまで圧縮する機構である。 The compressor 221 is a mechanism that compresses the low pressure refrigerant in the refrigeration cycle until it becomes high pressure.
 流路切換機構222は、冷房運転と暖房運転との切換時に、冷媒の流れの方向を切り換える機構である。流路切換機構222は、冷房運転時には、圧縮機221の吐出側と室外熱交換器223のガス側とを接するとともに、ガス冷媒連絡管250を介して室内熱交換器231(後述)のガス側と圧縮機221の吸入側とを接続する(図1における流路切換機構222の実線を参照)。また、流路切換機構222は、暖房運転時には、ガス冷媒連絡管250を介して圧縮機221の吐出側と室内熱交換器231のガス側とを接続するとともに、室外熱交換器223のガス側と圧縮機221の吸入側とを接続する(図1における流路切換機構222の破線を参照)。 The flow path switching mechanism 222 is a mechanism that switches the direction of refrigerant flow when switching between cooling operation and heating operation. During cooling operation, the flow path switching mechanism 222 connects the discharge side of the compressor 221 to the gas side of the outdoor heat exchanger 223, and connects the gas side of the indoor heat exchanger 231 (described later) via the gas refrigerant communication pipe 250. and the suction side of the compressor 221 (see the solid line of the flow path switching mechanism 222 in FIG. 1). Further, during heating operation, the flow path switching mechanism 222 connects the discharge side of the compressor 221 and the gas side of the indoor heat exchanger 231 via the gas refrigerant communication pipe 250, and also connects the gas side of the outdoor heat exchanger 223. and the suction side of the compressor 221 (see the broken line of the flow path switching mechanism 222 in FIG. 1).
 室外熱交換器223は、冷房運転時には冷媒の放熱器として機能し、暖房運転時には冷媒の蒸発器として機能する熱交換器である。室外熱交換器223は、その液側が膨張機構224に接続されており、ガス側が流路切換機構222に接続されている。 The outdoor heat exchanger 223 is a heat exchanger that functions as a radiator for refrigerant during cooling operation and as an evaporator for refrigerant during heating operation. The outdoor heat exchanger 223 has its liquid side connected to the expansion mechanism 224 and its gas side connected to the flow path switching mechanism 222.
 膨張機構224は、冷房運転時には室外熱交換器223において放熱した高圧の液冷媒を室内熱交換器231に送る前に減圧し、暖房運転時には室内熱交換器231において放熱した高圧の液冷媒を室外熱交換器223に送る前に減圧する機構である。 During cooling operation, the expansion mechanism 224 reduces the pressure of the high-pressure liquid refrigerant that has radiated heat in the outdoor heat exchanger 223 before sending it to the indoor heat exchanger 231, and during heating operation, it reduces the pressure of the high-pressure liquid refrigerant that has radiated heat in the indoor heat exchanger 231 to the outside. This is a mechanism that reduces the pressure before sending it to the heat exchanger 223.
 また、室外機220には、室外機220内に室外空気を吸入して、室外熱交換器223に室外空気を供給した後に、室外機220外に排出するための室外ファン225が設けられている。 Further, the outdoor unit 220 is provided with an outdoor fan 225 for sucking outdoor air into the outdoor unit 220, supplying the outdoor air to the outdoor heat exchanger 223, and then discharging it outside the outdoor unit 220. .
 (1-2)室内機
 室内機230は、室内に設置されている。室内機230は、主として、室内熱交換器231と、室内ファン232と、を有している。
(1-2) Indoor unit The indoor unit 230 is installed indoors. The indoor unit 230 mainly includes an indoor heat exchanger 231 and an indoor fan 232.
 室内熱交換器231は、冷房運転時には冷媒の蒸発器として機能し、暖房運転時には冷媒の放熱器として機能する熱交換器である。室内熱交換器231は、その液側が液冷媒連絡管240に接続されており、ガス側がガス冷媒連絡管250に接続されている。 The indoor heat exchanger 231 is a heat exchanger that functions as a refrigerant evaporator during cooling operation and as a refrigerant radiator during heating operation. The indoor heat exchanger 231 has a liquid side connected to a liquid refrigerant communication pipe 240 and a gas side connected to a gas refrigerant communication pipe 250.
 また、室内機230には、室内機230内に室内空気を吸入して、室内熱交換器231に室内空気を供給した後に、室内機230外に排出するための室内ファン232が設けられている。 Further, the indoor unit 230 is provided with an indoor fan 232 for sucking indoor air into the indoor unit 230, supplying the indoor air to the indoor heat exchanger 231, and then discharging it outside the indoor unit 230. .
 (1-3)動作
 (1-3-1)冷房運転
 空気調和装置200が冷房運転を行う場合、冷凍サイクルにおける低圧の冷媒は、圧縮機221に吸入され、冷凍サイクルにおける高圧まで圧縮された後に吐出される。圧縮機221から吐出された高圧の冷媒は、流路切換機構222を通じて、室外熱交換器223に送られる。室外熱交換器223に送られた高圧の冷媒は、室外熱交換器223において、室外ファン225によって供給される室外空気と熱交換を行って放熱する。室外熱交換器223において放熱した高圧の冷媒は、膨張機構224に送られて、冷凍サイクルにおける低圧まで減圧される。膨張機構224において減圧された低圧の冷媒は、液冷媒連絡管240を通じて、室内熱交換器231に送られる。室内熱交換器231に送られた低圧の冷媒は、室内熱交換器231において、室内ファン232によって供給される室内空気と熱交換を行って蒸発する。これにより、室内空気は冷却されて室内に吹き出される。室内熱交換器231において蒸発した低圧の冷媒は、ガス冷媒連絡管250及び流路切換機構222を通じて、再び、圧縮機221に吸入される。
(1-3) Operation (1-3-1) Cooling operation When the air conditioner 200 performs cooling operation, the low-pressure refrigerant in the refrigeration cycle is sucked into the compressor 221, compressed to the high pressure in the refrigeration cycle, and then It is discharged. The high-pressure refrigerant discharged from the compressor 221 is sent to the outdoor heat exchanger 223 through the flow path switching mechanism 222. The high-pressure refrigerant sent to the outdoor heat exchanger 223 exchanges heat with outdoor air supplied by the outdoor fan 225 in the outdoor heat exchanger 223, and radiates heat. The high-pressure refrigerant that has radiated heat in the outdoor heat exchanger 223 is sent to the expansion mechanism 224 and is reduced in pressure to a low pressure in the refrigeration cycle. The low-pressure refrigerant whose pressure has been reduced in the expansion mechanism 224 is sent to the indoor heat exchanger 231 through the liquid refrigerant communication pipe 240. The low-pressure refrigerant sent to the indoor heat exchanger 231 exchanges heat with indoor air supplied by the indoor fan 232 in the indoor heat exchanger 231 and evaporates. As a result, the indoor air is cooled and blown into the room. The low-pressure refrigerant evaporated in the indoor heat exchanger 231 is sucked into the compressor 221 again through the gas refrigerant communication pipe 250 and the flow path switching mechanism 222.
 (1-3-2)暖房運転
 空気調和装置200が暖房運転を行う場合、冷凍サイクルにおける低圧の冷媒は、圧縮機221に吸入され、冷凍サイクルにおける高圧まで圧縮された後に吐出される。圧縮機221から吐出された高圧の冷媒は、流路切換機構222及びガス冷媒連絡管250を通じて、室内熱交換器231に送られる。室内熱交換器231に送られた高圧の冷媒は、室内熱交換器231において、室内ファン232によって供給される室内空気と熱交換を行って放熱する。これにより、室内空気は加熱されて室内に吹き出される。室内熱交換器231において放熱した高圧の冷媒は、液冷媒連絡管240を通じて、膨張機構224に送られて、冷凍サイクルにおける低圧まで減圧される。膨張機構224において減圧された低圧の冷媒は、室外熱交換器223に送られる。室外熱交換器223に送られた低圧の冷媒は、室外熱交換器223において、室内ファン232によって供給される室外空気と熱交換を行って蒸発する。室外熱交換器223において蒸発した低圧の冷媒は、流路切換機構222を通じて、再び、圧縮機221に吸入される。
(1-3-2) Heating Operation When the air conditioner 200 performs a heating operation, the low-pressure refrigerant in the refrigeration cycle is sucked into the compressor 221, compressed to the high pressure in the refrigeration cycle, and then discharged. The high-pressure refrigerant discharged from the compressor 221 is sent to the indoor heat exchanger 231 through the flow path switching mechanism 222 and the gas refrigerant communication pipe 250. The high-pressure refrigerant sent to the indoor heat exchanger 231 exchanges heat with indoor air supplied by the indoor fan 232 in the indoor heat exchanger 231 and radiates heat. As a result, indoor air is heated and blown into the room. The high-pressure refrigerant that has radiated heat in the indoor heat exchanger 231 is sent to the expansion mechanism 224 through the liquid refrigerant communication pipe 240 and is reduced in pressure to a low pressure in the refrigeration cycle. The low-pressure refrigerant whose pressure has been reduced in the expansion mechanism 224 is sent to the outdoor heat exchanger 223. The low-pressure refrigerant sent to the outdoor heat exchanger 223 exchanges heat with outdoor air supplied by the indoor fan 232 in the outdoor heat exchanger 223 and evaporates. The low-pressure refrigerant evaporated in the outdoor heat exchanger 223 is sucked into the compressor 221 again through the flow path switching mechanism 222 .
 (2)熱交換器
 (2-1)全体構成
 本開示の一実施形態に係る熱交換器10について、図1~図11を参照して説明する。なお、以下の説明において、「上」、「下」、「左」、「右」、「前」、「後」等の方向を示す表現を適宜用いているが、これらは、通常使用される状態での各方向を表すものであって、限定されるものではない。
(2) Heat Exchanger (2-1) Overall Configuration A heat exchanger 10 according to an embodiment of the present disclosure will be described with reference to FIGS. 1 to 11. In the following explanation, expressions indicating directions such as "top", "bottom", "left", "right", "front", "back", etc. are used as appropriate, but these are not commonly used. It represents each direction in the state, and is not limited.
 本実施形態の熱交換器10は、図1の空気調和装置200の室内機230に含まれる。具体的には、熱交換器10は、図1に示す室内熱交換器231である。本実施形態の熱交換器10は、クロスフィンチューブ式熱交換器である。 The heat exchanger 10 of this embodiment is included in the indoor unit 230 of the air conditioner 200 in FIG. Specifically, the heat exchanger 10 is the indoor heat exchanger 231 shown in FIG. The heat exchanger 10 of this embodiment is a cross-fin tube heat exchanger.
 図2に示すように、熱交換器10は、伝熱管20と、複数のフィン30と、を備えている。伝熱管20は、第1方向に延びる。フィン30は、第1方向に積層される。ここでの第1方向は、前後方向である。熱交換器10は、伝熱管20の中を流れる冷媒と、伝熱管20の外を流れる空気と、の間で熱交換を行わせる。熱交換器10は、空気と冷媒との間で、互いに混合させることなく熱交換を行わせる。 As shown in FIG. 2, the heat exchanger 10 includes heat exchanger tubes 20 and a plurality of fins 30. Heat exchanger tube 20 extends in the first direction. The fins 30 are stacked in the first direction. The first direction here is the front-back direction. The heat exchanger 10 performs heat exchange between the refrigerant flowing inside the heat exchanger tubes 20 and the air flowing outside the heat exchanger tubes 20. The heat exchanger 10 allows heat exchange between air and refrigerant without mixing them with each other.
 (2-2)詳細構成
 (2-2-1)伝熱管
 本実施形態の熱交換器10は、複数の伝熱管20を備えている。複数の伝熱管20は、第2方向に並ぶ。第2方向は、第1方向と交差する。ここでの第2方向は、第1方向と直交する。具体的には、第2方向は、上下方向である。
(2-2) Detailed configuration (2-2-1) Heat exchanger tubes The heat exchanger 10 of this embodiment includes a plurality of heat exchanger tubes 20. The plurality of heat exchanger tubes 20 are arranged in the second direction. The second direction intersects the first direction. The second direction here is perpendicular to the first direction. Specifically, the second direction is an up-down direction.
 伝熱管20は、内部に冷媒を流す。伝熱管20は、円筒形状を有している。ここでは、伝熱管20は、丸管である。 The heat exchanger tube 20 allows a refrigerant to flow inside. The heat exchanger tube 20 has a cylindrical shape. Here, the heat exchanger tube 20 is a round tube.
 伝熱管20には、熱交換器10で室内空気と熱交換される冷媒が通過する貫通孔が形成されている。伝熱管20の貫通孔は、第1方向に沿って貫通する。ここでは、第1方向は、伝熱管20の長手方向である。伝熱管20は、例えば、アルミニウムまたはアルミニウム合金製である。 The heat exchanger tubes 20 are formed with through holes through which the refrigerant to be heat exchanged with indoor air in the heat exchanger 10 passes. The through hole of the heat exchanger tube 20 penetrates along the first direction. Here, the first direction is the longitudinal direction of the heat exchanger tube 20. Heat exchanger tube 20 is made of aluminum or aluminum alloy, for example.
 (2-2-2)フィン
 フィン30は、伝熱管20と室内空気との伝熱面積を増大させて、冷媒と室内空気との熱交換を促進する。フィン30は、伝熱管20と接触している。フィン30は、例えば、アルミニウムまたはアルミニウム合金製である。
(2-2-2) Fins The fins 30 increase the heat transfer area between the heat transfer tubes 20 and the indoor air, and promote heat exchange between the refrigerant and the indoor air. The fins 30 are in contact with the heat transfer tubes 20. The fins 30 are made of aluminum or aluminum alloy, for example.
 複数のフィン30は、第1方向に並ぶ。フィン30は、伝熱管20の延在方向と交差(ここでは直交)するように配置されている。本実施形態では、複数のフィン30は、平行、かつ、等間隔に配置されている。なお、図2では、隣接する2つのフィン30を第1のフィン131及び第2のフィン132として示している。 The plurality of fins 30 are arranged in the first direction. The fins 30 are arranged so as to intersect (here, perpendicular to) the extending direction of the heat exchanger tubes 20 . In this embodiment, the plurality of fins 30 are arranged in parallel and at equal intervals. Note that in FIG. 2, two adjacent fins 30 are shown as a first fin 131 and a second fin 132.
 フィン30は、図3に示す一方面30aと、図4に示す他方面30bと、を有する。ここでは、一方面30aは、第1方向の前方から見たときの前面である。他方面30bは、第1方向の後方から見たときの後面である。 The fin 30 has one side 30a shown in FIG. 3 and the other side 30b shown in FIG. 4. Here, the one surface 30a is the front surface when viewed from the front in the first direction. The other surface 30b is a rear surface when viewed from the rear in the first direction.
 図2~図10に示すように、複数のフィン30は、本体部31と、カラー部32と、を含む。本体部31は、第1方向と交差する第2方向に延びる。ここでは、本体部31は、第1方向と直交する第2方向である上下方向に延びる。本実施形態では、上下方向は、重力方向である。本体部31は、平板状の部材である。 As shown in FIGS. 2 to 10, the plurality of fins 30 include a main body portion 31 and a collar portion 32. The main body portion 31 extends in a second direction intersecting the first direction. Here, the main body portion 31 extends in the up-down direction, which is the second direction orthogonal to the first direction. In this embodiment, the up-down direction is the direction of gravity. The main body portion 31 is a flat member.
 図3及び図4に示すように、本体部31には、伝熱促進用の切り欠き31aが形成されている。切り欠き31aは、第1方向に直交する第3方向に、複数並ぶ。ここでは、第3方向は、左右方向である。また、切り欠き31aは、第2方向に延びる。ここでは、切り欠き31aは、前方に突出している。換言すると、切り欠き31aは、一方面30aから、隣り合うフィン30の他方面30bに向かって突出している。 As shown in FIGS. 3 and 4, the main body portion 31 is formed with a notch 31a for promoting heat transfer. A plurality of cutouts 31a are arranged in a third direction orthogonal to the first direction. Here, the third direction is the left-right direction. Moreover, the notch 31a extends in the second direction. Here, the notch 31a projects forward. In other words, the notch 31a protrudes from one side 30a toward the other side 30b of the adjacent fins 30.
 図2に示すように、カラー部32は、伝熱管20を通す。詳細には、カラー部32は、伝熱管20を通すための貫通穴を有している。 As shown in FIG. 2, the collar portion 32 allows the heat exchanger tube 20 to pass through. Specifically, the collar portion 32 has a through hole through which the heat exchanger tube 20 is passed.
 図2~図10に示すように、カラー部32は、第1部33と、第2部34と、第3部35と、第4部36と、を有している。第1部33、第2部34、第3部35、及び第4部36は、1つの部材で構成されている。ここでは、第1部33、第2部34、第3部35、及び第4部36は、ネスティング加工されてなる。 As shown in FIGS. 2 to 10, the collar section 32 includes a first section 33, a second section 34, a third section 35, and a fourth section 36. The first part 33, the second part 34, the third part 35, and the fourth part 36 are composed of one member. Here, the first part 33, the second part 34, the third part 35, and the fourth part 36 are formed by nesting processing.
 第1部33は、本体部31から第1方向に延びる。ここでは、第1部33は、本体部31と直交する。 The first portion 33 extends from the main body portion 31 in the first direction. Here, the first portion 33 is perpendicular to the main body portion 31 .
 第2部34は、第1部33から伝熱管20に向けて延びる。換言すると、第2部34は、第2方向に延びる。ここでは、第2部34は、第1部33と直交する。第2部については、後述する。 The second part 34 extends from the first part 33 toward the heat exchanger tube 20. In other words, the second portion 34 extends in the second direction. Here, the second part 34 is orthogonal to the first part 33. The second part will be described later.
 第3部35は、第2部34から伝熱管20に沿って、第1方向に延びる。第3部35は、伝熱管20に接する。ここでは、第3部35は、第2部34と直交する。 The third portion 35 extends from the second portion 34 in the first direction along the heat exchanger tube 20. The third portion 35 is in contact with the heat exchanger tube 20 . Here, the third part 35 is orthogonal to the second part 34.
 第4部36は、第3部35から外周側に延びる。換言すると、第4部36は、第2方向に延びる。ここでは、第4部36は、第3部35と直交する。第4部36の第2方向長さは、第2部34の第2方向長さよりも小さい。 The fourth portion 36 extends from the third portion 35 toward the outer circumference. In other words, the fourth portion 36 extends in the second direction. Here, the fourth part 36 is orthogonal to the third part 35. The length of the fourth portion 36 in the second direction is smaller than the length of the second portion 34 in the second direction.
 図2に示すように、第1のフィン131の第2部34は、隣接する第2のフィン132のカラー部32の先端部に接する。ここでは、第1のフィンの第2部34は、隣接する第2のフィンの第4部36に接する。第2部34と第4部36とは、同じ方向に延びる。 As shown in FIG. 2, the second portion 34 of the first fin 131 contacts the tip of the collar portion 32 of the adjacent second fin 132. Here, the second portion 34 of the first fin contacts the fourth portion 36 of the adjacent second fin. The second portion 34 and the fourth portion 36 extend in the same direction.
 ここで、第2部34について、説明する。図5及び図6に示すように、第2部34は、第1方向(図5及び図6では前方)から見たときに(正面視において)、内周面34aと外周面34bとの距離が第1寸法L1である部分と、内周面34aと外周面34bとの距離が第2寸法L2である部分と、を有している。図6~図8に示すように、第2寸法L2は、第1寸法L1よりも大きい。 Here, the second part 34 will be explained. As shown in FIGS. 5 and 6, the second portion 34 has a distance between the inner circumferential surface 34a and the outer circumferential surface 34b when viewed from the first direction (front in FIGS. 5 and 6) (in front view). has a first dimension L1, and a portion where the distance between the inner circumferential surface 34a and the outer circumferential surface 34b is a second dimension L2. As shown in FIGS. 6 to 8, the second dimension L2 is larger than the first dimension L1.
 図6では、第1寸法L1は、第1方向と直交する第3方向に沿って延びる部分の寸法である。具体的には、第1寸法L1である部分は、少なくとも左端部及び右端部に位置する。ここでは、第1寸法L1である部分は、第2部34において、後述の三角部34dが配置されていない部分である。 In FIG. 6, the first dimension L1 is the dimension of a portion extending along the third direction orthogonal to the first direction. Specifically, the portion having the first dimension L1 is located at least at the left end and right end. Here, the portion having the first dimension L1 is a portion of the second portion 34 where a triangular portion 34d, which will be described later, is not arranged.
 第2寸法L2は、第2方向に沿って延びる部分の寸法である。具体的には、第2寸法L2である部分は、上端部及び下端部の少なくとも一方に位置する。ここでは、第2寸法L2である部分は、第2部34において、上端部及び下端部である。 The second dimension L2 is the dimension of the portion extending along the second direction. Specifically, the portion having the second dimension L2 is located at at least one of the upper end and the lower end. Here, the portions having the second dimension L2 are the upper end and the lower end of the second portion 34.
 本実施形態では、第2部34は、第1方向(図5及び図6では前方)から見たときに、雫形状を有している。換言すると、第2部34は、第1方向(図5及び図6では前方)から見たときに、円環形状の円環部34cと、三角形状の三角部34dと、を有している。三角部34dは、円環部34cの一部と連なる。図5及び図6では、三角部34dは、V字形状を有する。 In the present embodiment, the second portion 34 has a drop shape when viewed from the first direction (front in FIGS. 5 and 6). In other words, the second portion 34 has an annular annular portion 34c and a triangular triangular portion 34d when viewed from the first direction (front in FIGS. 5 and 6). . The triangular portion 34d is continuous with a part of the annular portion 34c. In FIGS. 5 and 6, the triangular portion 34d has a V-shape.
 円環部34cは、2つの同心円によって囲まれた領域である。円環部34cは、第2部34において全周に位置する。三角部34dのない円環部34cのみで、第1寸法L1である部分をなす。このため、本実施形態の第1寸法L1は、一定値である。 The annular portion 34c is an area surrounded by two concentric circles. The annular portion 34c is located on the entire circumference of the second portion 34. Only the annular portion 34c without the triangular portion 34d constitutes a portion having the first dimension L1. Therefore, the first dimension L1 in this embodiment is a constant value.
 三角部34dと円環部34cとで、第2寸法L2である部分をなす。このため、本実施形態の第2寸法L2は、一定値でない。具体的には、第2寸法L2は、円環部34cの第1寸法L1よりも大きい値で、位置によって値が異なる。第2寸法L2の最大値は、例えば、第1寸法L1の2倍以上である。ここでの第2寸法L2の最大値は、第2部34の上端から下方(内周面34a)に延びる距離、及び第2部34の下端から上方(内周面34a)に延びる距離である。 The triangular portion 34d and the annular portion 34c form a portion having the second dimension L2. Therefore, the second dimension L2 of this embodiment is not a constant value. Specifically, the second dimension L2 is a value larger than the first dimension L1 of the annular portion 34c, and the value differs depending on the position. The maximum value of the second dimension L2 is, for example, twice or more the first dimension L1. The maximum value of the second dimension L2 here is the distance extending downward (inner circumferential surface 34a) from the upper end of the second portion 34, and the distance extending upward (inner circumferential surface 34a) from the lower end of the second portion 34. .
 三角部34dは、第2部34における下端部に配置される。具体的には、三角部34dは、下方向に延びる形状を有している。ここでは、三角部34dは、第2部34における上端部にも配置される。具体的には、三角部34dは、上方向に延びる形状も有している。 The triangular portion 34d is arranged at the lower end of the second portion 34. Specifically, the triangular portion 34d has a shape that extends downward. Here, the triangular portion 34d is also arranged at the upper end of the second portion 34. Specifically, the triangular portion 34d also has a shape that extends upward.
 なお、第1寸法L1は、例えば、0.5mm以上0.9mm以下である。第2寸法L2は、例えば、1.0mm以上1.9mm以下である。第2寸法L2の最大値は、例えば、1.5mm以上1.9mm以下である。 Note that the first dimension L1 is, for example, 0.5 mm or more and 0.9 mm or less. The second dimension L2 is, for example, 1.0 mm or more and 1.9 mm or less. The maximum value of the second dimension L2 is, for example, 1.5 mm or more and 1.9 mm or less.
 図3~図6、図9及び図10に示すように、フィン30には、排水用リブ130が設けられている。排水用リブ130は、図2に示す第1のフィン131の第1部33及び第2部34と、第2のフィン132のカラー部32の先端とで形成される凸状の空間Sから延びる。排水用リブ130は、凸状の空間Sの水を第2方向(ここでは下方)に流すものである。 As shown in FIGS. 3 to 6, 9, and 10, the fins 30 are provided with drainage ribs 130. The drainage rib 130 extends from a convex space S formed by the first part 33 and the second part 34 of the first fin 131 and the tip of the collar part 32 of the second fin 132 shown in FIG. . The drainage rib 130 allows water in the convex space S to flow in the second direction (here, downward).
 本実施形態の凸状の空間Sは、第1のフィン131の第1部33及び第2部34と、第2のフィン132の第4部36とで形成されている。詳細には、第2のフィン132のカラー部32の先端(図2では第4部36)が、第2のフィン132に隣接する第1のフィン131のカラー部32周囲の凹部に入り、その凹部内に凸状の空間Sが形成されている。 The convex space S of this embodiment is formed by the first part 33 and the second part 34 of the first fin 131 and the fourth part 36 of the second fin 132. Specifically, the tip of the collar portion 32 of the second fin 132 (the fourth portion 36 in FIG. 2) enters the recess around the collar portion 32 of the first fin 131 adjacent to the second fin 132, and A convex space S is formed within the recess.
 具体的には、凸状の空間Sは、第1方向(ここでは前方)から見たときに、雫形状を有している。換言すると、凸状の空間Sは、第1方向から見たときに、円環形状の空間と、三角形状の空間と、を有する。円環形状の空間は、全周に設けられる。三角形状の空間は、円環形状の空間と連なる。本実施形態の三角形状の空間は、上端部及び下端部に設けられる。 Specifically, the convex space S has a drop shape when viewed from the first direction (here, the front). In other words, the convex space S includes an annular space and a triangular space when viewed from the first direction. An annular space is provided around the entire circumference. The triangular space is connected to the annular space. The triangular space of this embodiment is provided at the upper end and the lower end.
 なお、第1のフィン131の第1部33及び第2部34の第1寸法L1である部分と、第2のフィン132の第4部36とで形成される凸状の空間Sは、例えば、0.1mm以上0.3mm以下である。第1のフィン131の第1部33及び第2部34の第2寸法L2である部分と、第2のフィン132の第4部36とで形成される凸状の空間Sは、例えば、0.4mm以上1.4mm以下である。第1のフィン131の第1部33及び第2部34の第2寸法L2の最大値である部分(上端部及び下端部)と、第2のフィン132の第4部36とで形成される凸状の空間Sは、例えば、1.1mm以上1.4mm以下である。 Note that the convex space S formed by the first dimension L1 of the first part 33 and second part 34 of the first fin 131 and the fourth part 36 of the second fin 132 is, for example, , 0.1 mm or more and 0.3 mm or less. The convex space S formed by the second dimension L2 of the first part 33 and second part 34 of the first fin 131 and the fourth part 36 of the second fin 132 is, for example, 0. .4 mm or more and 1.4 mm or less. It is formed by the portion (upper end and lower end) of the first portion 33 and second portion 34 of the first fin 131 having the maximum second dimension L2, and the fourth portion 36 of the second fin 132. The convex space S is, for example, 1.1 mm or more and 1.4 mm or less.
 図3、図4及び図9に示すように、排水用リブ130は、本体部31に設けられている。図3、図4、図9及び図10に示すように、排水用リブ130は、第1方向に突出する。ここでは、排水用リブ130は、前方に突出する。詳細には、排水用リブ130は、一方面30aから、隣り合うフィン30の他方面30bに向かって突出する。本実施形態では、図9及び図10に示すように、排水用リブ130は、第2部34まで、第1方向に突出する。換言すると、排水用リブ130の第1方向の高さは、第2部34の高さと同じである。さらに換言すると、排水用リブ130の第1方向位置と、第2部34の第1方向位置とは、同じである。 As shown in FIGS. 3, 4, and 9, the drainage rib 130 is provided on the main body portion 31. As shown in FIGS. 3, 4, 9, and 10, the drainage rib 130 protrudes in the first direction. Here, the drainage rib 130 projects forward. Specifically, the drainage rib 130 protrudes from one side 30a toward the other side 30b of the adjacent fins 30. In this embodiment, as shown in FIGS. 9 and 10, the drainage rib 130 protrudes in the first direction to the second portion 34. As shown in FIGS. In other words, the height of the drainage rib 130 in the first direction is the same as the height of the second portion 34. In other words, the position of the drainage rib 130 in the first direction and the position of the second portion 34 in the first direction are the same.
 具体的には、図3及び図10に示すように、排水用リブ130は、一方面30a(前面)側から見ると山形状であり、図4及び図10に示すように、他方面30b(後面)側から見ると溝形状である。本実施形態の排水用リブ130は、下側から見たときに、V字形状を有する。 Specifically, as shown in FIGS. 3 and 10, the drainage rib 130 has a mountain shape when viewed from one side 30a (front), and as shown in FIGS. When viewed from the rear) side, it has a groove shape. The drainage rib 130 of this embodiment has a V-shape when viewed from below.
 図3及び図4に示すように、排水用リブ130は、第2方向に延びる。本実施形態では、排水用リブ130は、上下方向に延び、ここでは重力方向に延びている。 As shown in FIGS. 3 and 4, the drainage rib 130 extends in the second direction. In this embodiment, the drainage rib 130 extends in the vertical direction, and here extends in the direction of gravity.
 具体的には、排水用リブ130は、第1のカラー部32から、下方のカラー部32まで、第2方向に延びる。ここでは、上下方向において隣り合う第1のカラー部32及び第2のカラー部32において、排水用リブ130は、上方の第1のカラー部32の第2部の下端から、下方の第2のカラー部の第2部34の上端まで延びる。 Specifically, the drainage rib 130 extends in the second direction from the first collar part 32 to the lower collar part 32. Here, in the first collar part 32 and the second collar part 32 that are adjacent to each other in the vertical direction, the drainage rib 130 extends from the lower end of the second part of the first collar part 32 in the upper part to the second part in the lower part. It extends to the upper end of the second portion 34 of the collar portion.
 排水用リブ130は、第2部34の第2寸法L2である部分に繋がっている。詳細には、排水用リブ130は、第2部34の三角部34dに繋がっている。より詳細には、排水用リブ130は、第2部34の三角部34dの尖った部分に繋がっている。排水用リブ130は、凸状の空間Sの三角形状の空間から延びる。 The drainage rib 130 is connected to a portion of the second portion 34 having the second dimension L2. Specifically, the drainage rib 130 is connected to the triangular portion 34d of the second portion 34. More specifically, the drainage rib 130 is connected to a pointed portion of the triangular portion 34d of the second portion 34. The drainage rib 130 extends from the triangular space of the convex space S.
 (2-3)動作
 図1に示す空気調和装置200の冷房運転、暖房運転などの動作時、冷媒回路210において、冷媒が室内熱交換器231としての熱交換器10の伝熱管20に送られる。そして、伝熱管20の貫通孔の中を流れる冷媒と、伝熱管20の外を流れる室内空気とが熱交換を行う。このとき、フィン30には、凝縮水(以下、水とも言う)が発生することがある。この水は、第1のフィン131の第1部33及び第2部34と、第2のフィン132のカラー部32の先端部である第4部36とで形成される凸状の空間Sに溜まりやすい。
(2-3) Operation When the air conditioner 200 shown in FIG. . Then, the refrigerant flowing through the through holes of the heat exchanger tubes 20 and the indoor air flowing outside the heat exchanger tubes 20 exchange heat. At this time, condensed water (hereinafter also referred to as water) may be generated on the fins 30. This water flows into a convex space S formed by the first part 33 and second part 34 of the first fin 131 and the fourth part 36 which is the tip of the collar part 32 of the second fin 132. Easy to accumulate.
 これに対して、本実施形態のフィン30の第2部34は、第1方向視において、内周面34aと外周面34bとの距離が、第1寸法L1である部分と、内周面34aと外周面34bとの距離が、第1寸法L1よりも大きい第2寸法L2である部分と、を有している。この構造によって、第1のフィン131の第1寸法L1である部分と第2のフィン132の第4部36との空間に溜まった水を、第2寸法L2である部分と第2のフィン132の第4部36との空間に導くことができる。 In contrast, the second portion 34 of the fin 30 of the present embodiment has a portion where the distance between the inner circumferential surface 34a and the outer circumferential surface 34b is the first dimension L1 when viewed in the first direction, and a portion where the distance between the inner circumferential surface 34a and the outer circumferential surface 34b is the first dimension L1, and the inner circumferential surface 34a and a portion where the distance between the outer peripheral surface 34b and the outer peripheral surface 34b is a second dimension L2, which is larger than the first dimension L1. With this structure, water accumulated in the space between the portion of the first fin 131 having the first dimension L1 and the fourth portion 36 of the second fin 132 can be removed from the portion having the second dimension L2 and the second fin 132. The fourth part 36 can be guided into the space.
 また、本実施形態のフィン30は、第1のフィン131の第1部33及び第2部34と、第2のフィン132のカラー部32の先端である第4部36とで形成される凸状の空間Sから延びる排水用リブ130を有している。凸状の空間Sから排水用リブ130が延びているので、凸状の空間Sに溜まった水を排水用リブ130に導くことができる。排水用リブ130によって、水を排水する。 Further, the fin 30 of this embodiment has a convex portion formed by the first portion 33 and the second portion 34 of the first fin 131 and the fourth portion 36 which is the tip of the collar portion 32 of the second fin 132. It has a drainage rib 130 extending from the shaped space S. Since the drainage rib 130 extends from the convex space S, water accumulated in the convex space S can be guided to the drainage rib 130. Water is drained by the drainage ribs 130.
 具体的には、図11に示すように、凸状の空間Sにおいて、第1のフィン131の第1寸法L1である部分と第2のフィン132の第4部36との円環状の空間に溜まった水を、下方の第2寸法L2である部分と第2のフィン132の第4部36との三角形状の空間に導く。排水用リブ130は第2寸法L2である部分と繋がっているので、第2寸法L2である部分で形成された三角形状の空間に導かれた水を、排水用リブ130にさらに導く。これにより、水は、排水用リブ130の他方面30b側に形成された溝を伝って、下方のカラー部32に流れる。このように、フィン30に付着した凝縮水を、下方に流す。 Specifically, as shown in FIG. 11, in the convex space S, an annular space is formed between the portion of the first fin 131 having the first dimension L1 and the fourth portion 36 of the second fin 132. The accumulated water is guided into a triangular space between the lower portion having the second dimension L2 and the fourth portion 36 of the second fin 132. Since the drainage rib 130 is connected to the portion having the second dimension L2, water guided into the triangular space formed by the portion having the second dimension L2 is further guided to the drainage rib 130. Thereby, water flows along the groove formed on the other surface 30b side of the drainage rib 130 to the collar portion 32 below. In this way, the condensed water adhering to the fins 30 is caused to flow downward.
 (3)特徴
 (3-1)
 本発明者は、第1部33と、第2部34と、第3部35と、を有するカラー部32を備え、第1のフィン131の第2部34が、隣接する第2のフィン132のカラー部32の先端部に接する熱交換器10特有の課題を見出した。具体的には、本発明者は、図12及び図13に示すように、排水用リブ130を有していない従来のフィン330において、第1のフィン131の第1部33及び第2部34と、第2のフィン132のカラー部32の先端部とで形成される凸状の空間Sに、水が溜まりやすいという課題を見出した。この課題を解決するために、鋭意検討した結果、本実施形態の熱交換器10に想到した。
(3) Features (3-1)
The present inventor has provided a collar portion 32 having a first portion 33, a second portion 34, and a third portion 35, and the second portion 34 of the first fin 131 is connected to the adjacent second fin 132. We have discovered a problem unique to the heat exchanger 10 that is in contact with the tip of the collar portion 32 of the heat exchanger 10. Specifically, as shown in FIGS. 12 and 13, in a conventional fin 330 that does not have a drainage rib 130, the first part 33 and second part 34 of the first fin 131 are It has been found that water tends to accumulate in the convex space S formed by the tip of the collar portion 32 of the second fin 132. In order to solve this problem, as a result of intensive study, we came up with the heat exchanger 10 of this embodiment.
 本実施形態に係る熱交換器10は、伝熱管20と、複数のフィン30と、を備える。伝熱管20は、第1方向に延びる。複数のフィン30は、第1方向に積層される。複数のフィン30は、本体部31と、カラー部32と、を含む。本体部31は、第1方向と交差する第2方向に延びる。カラー部32は、伝熱管20を通す。カラー部32は、第1部33と、第2部34と、第3部35と、を有する。第1部33は、本体部31から第1方向に延びる。第2部34は、第1部33から伝熱管20に向けて延びる。第3部35は、第2部34から伝熱管20に沿って、第1方向に延びる。第1のフィン131の第2部34は、隣接する第2のフィン132のカラー部32の先端部に接する。フィン30には、排水用リブ130が設けられる。排水用リブ130は、第1のフィン131の第1部33及び第2部34と、第2のフィン132のカラー部32の先端とで形成される凸状の空間Sから延びる。 The heat exchanger 10 according to the present embodiment includes a heat exchanger tube 20 and a plurality of fins 30. Heat exchanger tube 20 extends in the first direction. The plurality of fins 30 are stacked in the first direction. The plurality of fins 30 include a main body portion 31 and a collar portion 32. The main body portion 31 extends in a second direction intersecting the first direction. The heat exchanger tube 20 passes through the collar portion 32 . The collar section 32 includes a first section 33, a second section 34, and a third section 35. The first portion 33 extends from the main body portion 31 in the first direction. The second portion 34 extends from the first portion 33 toward the heat exchanger tube 20 . The third portion 35 extends from the second portion 34 in the first direction along the heat exchanger tube 20. The second portion 34 of the first fin 131 contacts the tip of the collar portion 32 of the adjacent second fin 132. The fins 30 are provided with drainage ribs 130. The drainage rib 130 extends from a convex space S formed by the first part 33 and the second part 34 of the first fin 131 and the tip of the collar part 32 of the second fin 132.
 本実施形態の熱交換器10によれば、凸状の空間Sから排水用リブ130が延びているので、凸状の空間Sに溜まった水を排水用リブ130に導くことができる。このため、水が溜まりやすい凸状の空間Sの排水を促進することができる。 According to the heat exchanger 10 of the present embodiment, since the drainage rib 130 extends from the convex space S, water accumulated in the convex space S can be guided to the drainage rib 130. Therefore, drainage of the convex space S where water tends to accumulate can be facilitated.
 このように、フィン30に水が溜まることを抑制して、排水性を向上できるので、熱交換器10が濡れた状態が続くことを減らすことができる。このため、伝熱管20及びフィン30の腐食を抑制することができる。また、熱交換器10にカビが発生することを抑制できるので、臭いの問題を減らすことができる。 In this way, it is possible to suppress the accumulation of water on the fins 30 and improve drainage performance, thereby reducing the chance that the heat exchanger 10 remains wet. Therefore, corrosion of the heat exchanger tubes 20 and fins 30 can be suppressed. Moreover, since the generation of mold in the heat exchanger 10 can be suppressed, the problem of odor can be reduced.
 (3-2)
 本実施形態の熱交換器10において、カラー部32は、第4部36をさらに有する。第4部36は、第3部35から外周側に延びる。第1のフィン131の第2部34は、隣接する第2のフィン132の第4部36に接する。
(3-2)
In the heat exchanger 10 of this embodiment, the collar part 32 further includes a fourth part 36. The fourth portion 36 extends from the third portion 35 toward the outer periphery. The second portion 34 of the first fin 131 contacts the fourth portion 36 of the adjacent second fin 132.
 ここでは、第4部36により、複数のフィン30、131、132を第1方向に容易に積層することができる。 Here, the fourth portion 36 allows the plurality of fins 30, 131, and 132 to be easily stacked in the first direction.
 また、第2のフィン132の第4部36と、第1のフィン131の第1部33及び第2部34とで形成される凸状の空間Sに、水が溜まりやすいという課題が顕著なので、本実施形態の第2部34を有することによる効果が大きい。 In addition, there is a noticeable problem that water tends to accumulate in the convex space S formed by the fourth part 36 of the second fin 132 and the first part 33 and second part 34 of the first fin 131. , the effect of having the second portion 34 of this embodiment is great.
 (3-3)
 本実施形態の熱交換器10において、排水用リブ130は、本体部31に設けられる。排水用リブ130は、第2部34まで、第1方向に突出する。ここでは、凸状の空間Sの水を、容易に排水用リブに導くことができる。
(3-3)
In the heat exchanger 10 of this embodiment, the drainage rib 130 is provided on the main body portion 31. The drainage rib 130 protrudes in the first direction to the second portion 34 . Here, the water in the convex space S can be easily guided to the drainage ribs.
 (3-4)
 本実施形態の熱交換器10において、フィン30は、複数のカラー部32を含む。排水用リブ130は、第1のカラー部32から、下方のカラー部32まで、第2方向に延びる。
(3-4)
In the heat exchanger 10 of this embodiment, the fins 30 include a plurality of collar parts 32. The drainage rib 130 extends in the second direction from the first collar portion 32 to the lower collar portion 32 .
 ここでは、上段のカラー部32の凸状の空間Sの水を、排水用リブ130を通じて、下段のカラー部32の凸状の空間Sに導くことができる。 Here, water in the convex space S of the upper collar part 32 can be led to the convex space S of the lower collar part 32 through the drainage rib 130.
 (3-5)
 本実施形態の熱交換器10において、凸状の空間Sは、第1方向から見たときに、円環形状の空間を有する。
(3-5)
In the heat exchanger 10 of this embodiment, the convex space S has an annular space when viewed from the first direction.
 ここでは、円環形状の空間によって、この空間の全周に溜まった水を、排水用リブ130に導くことができる。 Here, the annular space allows water accumulated around the entire circumference of this space to be guided to the drainage ribs 130.
 (3-6)
 本実施形態の熱交換器10において、凸状の空間Sは、第1方向から見たときに、三角形状の空間をさらに有する。三角形状の空間は、円環状の空間と連なる。排水用リブ130は、三角形状の空間から延びる。
(3-6)
In the heat exchanger 10 of this embodiment, the convex space S further includes a triangular space when viewed from the first direction. The triangular space is connected to the toroidal space. The drainage rib 130 extends from the triangular space.
 ここでは、凸状の空間Sに溜まった水を、三角形状の空間に移動させて、三角形状の空間から排水用リブ130に導くことができる。 Here, the water accumulated in the convex space S can be moved to the triangular space and guided from the triangular space to the drainage rib 130.
 (3-7)
 本実施形態の熱交換器10において、空気調和装置200の室内機230に含まれる。このように、本実施形態の熱交換器10は、室内に配置される室内熱交換器231に好適に用いられる。
(3-7)
In the heat exchanger 10 of this embodiment, it is included in the indoor unit 230 of the air conditioner 200. In this way, the heat exchanger 10 of this embodiment is suitably used as an indoor heat exchanger 231 placed indoors.
 (4)変形例
 (4-1)変形例1
 上述した実施形態では、排水用リブ130は、下側から見たときに、V字形状を有しているが、これに限定されない。本変形例の排水用リブ130は、下側から見たときに、U字形状を有している。
(4) Modification example (4-1) Modification example 1
In the embodiment described above, the drainage rib 130 has a V-shape when viewed from below, but is not limited to this. The drainage rib 130 of this modification has a U-shape when viewed from below.
 (4-2)変形例2
 上述した実施形態では、三角部34dは、第1方向から見たときに、V字形状を有しているが、これに限定されない。本変形例の三角部34dは、U字形状である。
(4-2) Modification example 2
In the embodiment described above, the triangular portion 34d has a V-shape when viewed from the first direction, but the triangular portion 34d is not limited to this. The triangular portion 34d of this modification is U-shaped.
 (4-3)変形例3
 上述した実施形態では、第2寸法L2である部分(図3~図6では三角部34d)は、第2方向の両端部に配置されているが、これに限定されない。本変形例では、図14に示すように、第2寸法L2である部分は、下端部のみに配置されている。換言すると、三角部34dは、上端部に配置されておらず、下端部のみに配置されている。
(4-3) Modification 3
In the embodiment described above, the portions having the second dimension L2 (the triangular portions 34d in FIGS. 3 to 6) are arranged at both ends in the second direction, but the invention is not limited thereto. In this modification, as shown in FIG. 14, the portion having the second dimension L2 is arranged only at the lower end. In other words, the triangular portion 34d is not arranged at the upper end but only at the lower end.
 (4-4)変形例4
 上述した実施形態では、凸状の空間Sの三角形状の空間は、第1方向から見たときに、第2方向の両端部に設けられているが、これに限定されない。本変形例では、凸状の空間Sの三角形状の空間は、下端部のみに設けられている。換言すると、凸状の空間Sの上端部は、円環形状の空間が設けられている。
(4-4) Modification example 4
In the embodiment described above, the triangular spaces of the convex space S are provided at both ends in the second direction when viewed from the first direction, but the present invention is not limited thereto. In this modification, the triangular space of the convex space S is provided only at the lower end. In other words, the upper end of the convex space S is provided with an annular space.
 (4-5)変形例5
 上述した実施形態では、第2寸法L2である部分(図3~図6では三角部34d)は、第2方向の両端部に配置されているが、これに限定されない。本変形例では、図15に示すように、第2寸法L2である部分は、省略されている。換言すると、第2部34は、第1方向から見たときに、円環形状である。
(4-5) Modification example 5
In the embodiment described above, the portions having the second dimension L2 (the triangular portions 34d in FIGS. 3 to 6) are arranged at both ends in the second direction, but the invention is not limited thereto. In this modification, as shown in FIG. 15, the portion having the second dimension L2 is omitted. In other words, the second portion 34 has an annular shape when viewed from the first direction.
 (4-6)変形例6
 上述した実施形態では、凸状の空間Sの三角形状の空間は、第1方向から見たときに、第2方向の両端部に設けられているが、これに限定されない。本変形例では、凸状の空間Sの三角形状の空間は、省略されている。換言すると、凸状の空間Sは、円環形状の空間である。
(4-6) Modification example 6
In the embodiment described above, the triangular spaces of the convex space S are provided at both ends in the second direction when viewed from the first direction, but the present invention is not limited thereto. In this modification, the triangular space of the convex space S is omitted. In other words, the convex space S is an annular space.
 (4-7)変形例7
 上述した実施形態では、カラー部32は、第1部33と、第2部34と、第3部35と、第4部36と、を有しているが、第4部36は省略されてもよい。
(4-7) Modification example 7
In the embodiment described above, the collar part 32 includes a first part 33, a second part 34, a third part 35, and a fourth part 36, but the fourth part 36 is omitted. Good too.
 (4-8)変形例8
 上述した実施形態では、フィン30に、伝熱促進用の切り欠き31aが形成されているが、切り欠き31aの形状、数、配置などは限定されない。切り欠き31aは、第2方向と交差する方向に延びてもよい。また、切り欠き31aは、後方に向かって突出してもよい。
(4-8) Modification example 8
In the embodiment described above, the notches 31a for promoting heat transfer are formed in the fins 30, but the shape, number, arrangement, etc. of the notches 31a are not limited. The cutout 31a may extend in a direction intersecting the second direction. Moreover, the notch 31a may protrude toward the rear.
 (4-9)変形例9
 上述した実施形態では、熱交換器10は、室内熱交換器231に適用されるが、これに限定されない。本変形例では、熱交換器10は、室外熱交換器223に適用される。
(4-9) Modification 9
In the embodiment described above, the heat exchanger 10 is applied to the indoor heat exchanger 231, but is not limited thereto. In this modification, the heat exchanger 10 is applied to an outdoor heat exchanger 223.
 (4-10)変形例10
 上述した実施形態では、熱交換器10は、空気調和装置200に適用されるが、これに限定されない。熱交換器10は、給湯装置、床暖房装置、冷蔵装置等の冷凍装置に適用されてもよい。
(4-10) Modification example 10
In the embodiment described above, the heat exchanger 10 is applied to the air conditioner 200, but is not limited thereto. The heat exchanger 10 may be applied to a refrigeration device such as a water heater, a floor heating device, or a refrigerator.
 以上、本開示の実施形態を説明したが、特許請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。 Although the embodiments of the present disclosure have been described above, it will be understood that various changes in form and details can be made without departing from the spirit and scope of the present disclosure as described in the claims. .
10        :熱交換器
20        :伝熱管
30,131,132:フィン
31        :本体部
32        :カラー部
33        :第1部
34        :第2部
35        :第3部
36        :第4部
130       :排水用リブ
200       :空気調和装置
230       :室内機
10 : Heat exchanger 20 : Heat exchanger tubes 30, 131, 132 : Fin 31 : Main body part 32 : Collar part 33 : First part 34 : Second part 35 : Third part 36 : Fourth part 130 : Drainage rib 200 :Air conditioner 230 :Indoor unit
特開2015-123458号公報Japanese Patent Application Publication No. 2015-123458

Claims (7)

  1.  第1方向に延びる伝熱管(20)と、
     前記第1方向に積層される複数のフィン(30、131、132)と、
    を備え、
     複数の前記フィンは、
     前記第1方向と交差する第2方向に延びる本体部(31)と、
     前記伝熱管を通すカラー部(32)と、
    を含み、
     前記カラー部は、
      前記本体部から前記第1方向に延びる第1部(33)と、
      前記第1部から前記伝熱管に向けて延びる第2部(34)と、
      前記第2部から前記伝熱管に沿って、前記第1方向に延びる第3部(35)と、
    を有し、
     第1の前記フィン(131)の前記第2部は、隣接する第2の前記フィン(132)の前記カラー部の先端部に接し、
     前記フィンには、排水用リブ(130)が設けられ、
     前記排水用リブは、前記第1のフィンの前記第1部及び前記第2部と、前記第2のフィンの前記カラー部の先端とで形成される凸状の空間(S)から延びる、
    熱交換器(10)。
    a heat exchanger tube (20) extending in a first direction;
    a plurality of fins (30, 131, 132) stacked in the first direction;
    Equipped with
    The plurality of fins are
    a main body (31) extending in a second direction intersecting the first direction;
    a collar part (32) through which the heat exchanger tube passes;
    including;
    The collar part is
    a first part (33) extending from the main body in the first direction;
    a second part (34) extending from the first part toward the heat exchanger tube;
    a third part (35) extending in the first direction from the second part along the heat exchanger tube;
    has
    The second portion of the first fin (131) is in contact with the tip of the collar portion of the adjacent second fin (132),
    The fins are provided with drainage ribs (130),
    The drainage rib extends from a convex space (S) formed by the first part and the second part of the first fin and the tip of the collar part of the second fin.
    Heat exchanger (10).
  2.  前記カラー部は、前記第3部から外周側に延びる第4部(36)をさらに有し、
     前記第1のフィンの前記2部は、隣接する前記第2のフィンの前記第4部に接する、
    請求項1に記載の熱交換器。
    The collar part further includes a fourth part (36) extending from the third part to the outer peripheral side,
    The two portions of the first fin are in contact with the fourth portion of the adjacent second fin,
    The heat exchanger according to claim 1.
  3.  前記排水用リブは、前記本体部に設けられ、
     前記排水用リブは、前記第2部まで、前記第1方向に突出する、
    請求項1または2に記載の熱交換器。
    The drainage rib is provided on the main body,
    The drainage rib protrudes in the first direction to the second portion.
    The heat exchanger according to claim 1 or 2.
  4.  前記フィンは、複数の前記カラー部を含み、
     前記排水用リブは、第1の前記カラー部から、下方の前記カラー部まで、前記第2方向に延びる、
    請求項1~3のいずれか1項に記載の熱交換器。
    The fin includes a plurality of the collar portions,
    The drainage rib extends in the second direction from the first collar portion to the lower collar portion.
    The heat exchanger according to any one of claims 1 to 3.
  5.  前記凸状の空間は、前記第1方向から見たときに、円環形状の空間を有する、
    請求項1~4のいずれか1項に記載の熱交換器。
    The convex space has an annular space when viewed from the first direction,
    The heat exchanger according to any one of claims 1 to 4.
  6.  前記凸状の空間は、前記第1方向から見たときに、前記円環状の空間と連なる、三角形状の空間をさらに有し、
     前記排水用リブは、前記三角形状の空間から延びる、
    請求項5に記載の熱交換器。
    The convex space further includes a triangular space that is continuous with the annular space when viewed from the first direction,
    The drainage rib extends from the triangular space.
    The heat exchanger according to claim 5.
  7.  空気調和装置(200)の室内機(230)に含まれる、請求項1~6のいずれか1項に記載の熱交換器。 The heat exchanger according to any one of claims 1 to 6, which is included in an indoor unit (230) of an air conditioner (200).
PCT/JP2023/028823 2022-08-12 2023-08-07 Heat exchanger WO2024034585A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-129117 2022-08-12
JP2022129117A JP7453578B2 (en) 2022-08-12 2022-08-12 Heat exchanger

Publications (1)

Publication Number Publication Date
WO2024034585A1 true WO2024034585A1 (en) 2024-02-15

Family

ID=89851808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/028823 WO2024034585A1 (en) 2022-08-12 2023-08-07 Heat exchanger

Country Status (2)

Country Link
JP (1) JP7453578B2 (en)
WO (1) WO2024034585A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0886584A (en) * 1994-09-20 1996-04-02 Fujitsu General Ltd Heat exchanger with fins
JPH09119792A (en) * 1995-10-25 1997-05-06 Hidaka Seiki Kk Fin for heat exchanger
US5752567A (en) * 1996-12-04 1998-05-19 York International Corporation Heat exchanger fin structure
JP2008111646A (en) * 2006-10-02 2008-05-15 Daikin Ind Ltd Fin tube type heat exchanger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0886584A (en) * 1994-09-20 1996-04-02 Fujitsu General Ltd Heat exchanger with fins
JPH09119792A (en) * 1995-10-25 1997-05-06 Hidaka Seiki Kk Fin for heat exchanger
US5752567A (en) * 1996-12-04 1998-05-19 York International Corporation Heat exchanger fin structure
JP2008111646A (en) * 2006-10-02 2008-05-15 Daikin Ind Ltd Fin tube type heat exchanger

Also Published As

Publication number Publication date
JP7453578B2 (en) 2024-03-21
JP2024025576A (en) 2024-02-26

Similar Documents

Publication Publication Date Title
JP6180338B2 (en) Air conditioner
US10386081B2 (en) Air-conditioning device
US11175053B2 (en) Heat exchanger, refrigeration cycle device, and air-conditioning apparatus
WO2024034585A1 (en) Heat exchanger
CN110398163A (en) Heat exchanger
WO2024034584A1 (en) Heat exchanger
US11802719B2 (en) Refrigeration cycle apparatus
JP2011112315A (en) Fin tube type heat exchanger and air conditioner using the same
JP2012132641A (en) Outdoor unit of refrigerating device
JP2004138306A (en) Heat exchanger
KR100893746B1 (en) Air conditioner
JP2017203620A (en) Air conditioner
KR102061157B1 (en) Heat exchange and air conditioner having the same
WO2024018983A1 (en) Heat exchanger
JP5127858B2 (en) Air conditioner for vehicles
KR100829185B1 (en) Air conditioner
JP6698196B2 (en) Air conditioner
CN218721877U (en) Vertical air conditioner
CN218544609U (en) Vertical air conditioner
JPH04240364A (en) Heat exchanger
CN218721876U (en) Vertical air conditioner
CN216338605U (en) Heat exchanger, heat pump system and clothes dryer
CN212132714U (en) Air condensing units and air conditioner
KR200239504Y1 (en) heating exchange equipment of air cooling type condenser in air conditioner
JP7258151B2 (en) Heat exchanger and refrigeration cycle equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23852547

Country of ref document: EP

Kind code of ref document: A1