WO2024034364A1 - Coil, stator and rotating electric machine - Google Patents

Coil, stator and rotating electric machine Download PDF

Info

Publication number
WO2024034364A1
WO2024034364A1 PCT/JP2023/026856 JP2023026856W WO2024034364A1 WO 2024034364 A1 WO2024034364 A1 WO 2024034364A1 JP 2023026856 W JP2023026856 W JP 2023026856W WO 2024034364 A1 WO2024034364 A1 WO 2024034364A1
Authority
WO
WIPO (PCT)
Prior art keywords
turn
coil
insulating film
conducting wire
rectangular
Prior art date
Application number
PCT/JP2023/026856
Other languages
French (fr)
Japanese (ja)
Inventor
彰彦 渡辺
元輝 近藤
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2024034364A1 publication Critical patent/WO2024034364A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/34Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation

Definitions

  • the present disclosure relates to a coil, a stator, and a rotating electric machine, and particularly relates to a coil used as a winding coil of a stator in an electric motor.
  • Electric motors that converts electrical energy into mechanical energy is known as one type of rotating electric machine.
  • Electric motors are used in various products such as household equipment or industrial equipment.
  • electric motors are used in a wide variety of applications, including home appliances such as vacuum cleaners, automobiles, and robots.
  • Patent Document 1 discloses a rotating electrical machine that uses edgewise coils as stator winding coils.
  • rectangular conductive wires constituting coils such as edgewise coils are coated with an insulating film.
  • rectangular conductive wires are coated with a highly heat-resistant insulating film.
  • the insulating film coated on the edge portion of the rectangular conducting wire becomes thinner than the insulating film coated on the main surface of the rectangular conducting wire.
  • the insulating film breaks at the bent part where the inner diameter R is small, and the turn part There is a risk that problems such as short circuits may occur.
  • a wound coil is manufactured by performing edgewise bending while varying the width of the rectangular conducting wire for each turn, the insulating film is likely to break.
  • the present disclosure has been made to solve such problems, and provides a coil, a stator, and a coil that can be produced at low cost and with high quality by winding a rectangular conducting wire by edgewise bending.
  • the purpose is to provide rotating electrical machines, etc.
  • one aspect of the coil according to the present disclosure is a coil used in a rotating electric machine, which is formed by winding a rectangular conducting wire by edgewise bending or by connecting a plurality of rectangular conducting wires. a winding part in which turn parts are laminated, and an annular insulating film inserted between a first turn part and a second turn part, which are two adjacent turn parts in the plurality of turn parts. .
  • one aspect of the stator according to the present disclosure includes a stator core having a plurality of teeth, and a winding coil wound around each of the plurality of teeth, and the winding coil is the above-mentioned coil. .
  • one aspect of the rotating electric machine according to the present disclosure includes the stator described above and a rotor that rotates due to the magnetic force of the stator.
  • a coil formed by winding a rectangular conducting wire by edgewise bending can be manufactured at low cost and with high quality.
  • FIG. 1 is a sectional view of an electric motor according to an embodiment.
  • FIG. 2 is a perspective view of the coil block according to the embodiment.
  • FIG. 3 is an exploded view of the coil block according to the embodiment.
  • FIG. 4 is a cross-sectional view of the coil block taken along line IV-IV in FIG. 2.
  • FIG. 5 is a cross-sectional view of the coil block taken along line VV in FIG. 2.
  • FIG. 6 is a diagram showing an insulating film in a coil according to an embodiment.
  • FIG. 7 is a front view of the coil according to the embodiment.
  • FIG. 8 is a diagram illustrating an example of a method for manufacturing a coil according to an embodiment.
  • FIG. 9 is a diagram showing another example of the method for manufacturing the coil according to the embodiment.
  • FIG. 1 is a sectional view of an electric motor according to an embodiment.
  • FIG. 2 is a perspective view of the coil block according to the embodiment.
  • FIG. 3 is an exploded view of the coil
  • FIG. 10 is a diagram showing an insulating film in a coil according to Modification Example 1.
  • FIG. 11 is a front view of a coil according to modification example 1.
  • FIG. 12 is a cross-sectional view of a coil block according to modification 2.
  • FIG. 13 is a front view of a coil according to modification 3.
  • FIG. 14 is a perspective view of an insulating film in a coil according to modification example 4.
  • each figure is a schematic diagram and is not necessarily strictly illustrated.
  • symbol is attached to the substantially the same structure, and the overlapping description is omitted or simplified.
  • the radial direction of the stator 10 and rotor 20 is referred to as a "radial direction”, and the rotational direction of the rotor 20 is referred to as a "circumferential direction”.
  • the direction in which the rotating shaft 23 is centered around the axial center C and extends from the axial center C is the "radial direction”
  • the direction in which the rotating shaft 23 is centered around the axial center C and goes around the axial center C is the "circumferential direction”.
  • the "radial direction” is a direction perpendicular to the direction of the axis C of the rotating shaft 23.
  • the terms “upper” and “lower” do not necessarily refer to the upper direction (vertically upward) and the downward direction (vertically downward) in absolute spatial recognition.
  • FIG. 1 is a sectional view of an electric motor 1 according to an embodiment.
  • FIG. 1 shows a cross section taken along a plane perpendicular to the direction of the axis C of the rotating shaft 23 of the rotor 20.
  • the electric motor 1 includes a stator 10 and a rotor 20. Stator 10 and rotor 20 are arranged facing each other.
  • the electric motor 1 in this embodiment is an inner rotor type motor in which the rotor 20 is arranged inside the stator 10.
  • the electric motor 1 also includes parts such as a motor case and a bearing that pivotally supports the rotating shaft 23, but for the sake of convenience, illustration and description of these parts will be omitted.
  • stator 10 (stator) is arranged to face the rotor 20 with an air gap between the stator 10 and the rotor 20. A minute air gap exists between the surface of the rotor 20 and the surface of the stator 10.
  • stator 10 is arranged to surround rotor core 21 of rotor 20 .
  • the stator 10 generates magnetic force that acts on the rotor 20.
  • the stator 10 is configured to generate magnetic flux in the air gap surface between the stator 10 and the rotor core 21 of the rotor 20 .
  • the stator 10 is configured such that north poles and south poles are alternately generated in the air gap surface with the rotor core 21 in the circumferential direction.
  • the stator 10 includes a coil 12 and a stator core 11.
  • the coil 12 is a stator coil provided in the stator 10 as a winding coil.
  • the coil 12 is an armature winding of the stator 10 and is wound around the stator core 11. Specifically, the coil 12 is wound around each of the plurality of teeth 11a of the stator 10. Therefore, a plurality of coils 12 are used in the stator 10. Each of the plurality of coils 12 is wound around each of the plurality of teeth 11a.
  • the plurality of coils 12 are arranged at equal intervals along the circumferential direction so as to surround the rotor 20. Each coil 12 is housed in each slot 11c of the stator 10. The coil 12 is attached to the teeth 11a via an insulator (not shown in FIG. 1).
  • one coil block 100 is composed of one coil 12, one insulator 13, and one tooth 11a.
  • the electric motor 1 has a plurality of coil blocks 100. Specifically, in the electric motor 1 shown in FIG. 1, 18 coil blocks 100 are used. Each of the plurality of coil blocks 100 is fixed to the stator core 11 by fitting the teeth 11a of each coil block 100 into the yoke 11b. Note that detailed configurations of the coil block 100 and the coil 12 will be described later.
  • the stator core 11 is an iron core that becomes the core of the stator 10.
  • the stator core 11 includes a plurality of teeth 11a and an annular yoke 11b.
  • Each of the plurality of teeth 11a protrudes toward the axis C of the rotating shaft 23 of the rotor 20. Specifically, the plurality of teeth 11a are provided radially in a direction (radial direction) orthogonal to the axis C of the rotating shaft 23.
  • a slot 11c for arranging the coil 12 is formed between two adjacent teeth 11a. That is, the slot 11c of the stator 10 is an area between two adjacent teeth 11a. The plurality of teeth 11a are arranged at equal intervals along the circumferential direction while forming slots 11c between two adjacent teeth 11a. In this embodiment, the stator 10 has 18 teeth 11a, so the number of slots in the stator 10 is 18.
  • Each tooth 11a extends radially inward from the annular yoke 11b. That is, the yoke 11b is a back yoke formed on the outside of each tooth 11a. Each tooth 11a is fitted and fixed to a yoke 11b.
  • the yoke 11b may be divided into a plurality of parts, or may be configured as one piece. When the yoke 11b is divided into a plurality of parts, the yoke 11b is configured by connecting the plurality of divided circular arc yokes in an annular shape. For example, the yoke 11b can be configured by six equally divided circular arc yokes. In this case, three teeth 11a are fixed to one arcuate yoke at equal intervals.
  • the teeth 11a and the yoke 11b are each a laminate formed by laminating a plurality of electromagnetic steel sheets.
  • Each of the plurality of electromagnetic steel plates is, for example, a punched steel plate formed into a predetermined shape.
  • the teeth 11a and the yoke 11b may be bulk bodies made of a magnetic material.
  • Each of the plurality of teeth 11a is a magnetic pole tooth, and generates magnetic force when the coil 12 is energized.
  • the plurality of coils 12 in the stator 10 are electrically connected as three-phase windings so that the rotor 20 rotates as a three-phase synchronous motor.
  • the plurality of coils 12 are configured by unit coils for each of three phases, U-phase, V-phase, and W-phase, which are electrically different in phase by 120 degrees from each other. That is, the coil 12 attached to each tooth 11a is energized and driven by three-phase alternating current that is energized in units of U phase, V phase, and W phase. Thereby, main magnetic flux for rotating the rotor 20 is generated in each tooth 11a.
  • the rotor 20 (rotor) is rotated by the magnetic force of the stator 10.
  • the rotor 20 also generates magnetic force.
  • the rotor 20 has a configuration in which a plurality of N poles and S poles that generate magnetic flux are alternately and repeatedly present in the circumferential direction. Thereby, the rotor 20 generates a magnetic force that acts on the stator 10.
  • the direction of the magnetic flux generated from the rotor 20 is a direction perpendicular to the direction of the axis C of the rotating shaft 23 (axial center direction). That is, the direction of the magnetic flux generated by the rotor 20 is the radial direction.
  • the rotor 20 has a rotor core 21, a plurality of permanent magnets 22, and a rotating shaft 23.
  • the rotor 20 rotates about the axis C of the rotating shaft 23 as a rotation center. That is, the rotating shaft 23 becomes the center of rotation of the rotor 20.
  • the rotor 20 is an embedded permanent magnet rotor (IPM rotor) in which a permanent magnet 22 is embedded in a rotor core 21. Therefore, electric motor 1 in this embodiment is an IPM motor.
  • IPM rotor embedded permanent magnet rotor
  • the rotor core 21 is an iron core that becomes the core of the rotor 20.
  • the rotor core 21 is a laminate in which a plurality of electromagnetic steel sheets are laminated in the direction of the axis C of the rotating shaft 23 (axial direction).
  • Each of the plurality of electromagnetic steel plates is, for example, a punched steel plate formed into a predetermined shape.
  • the plurality of electromagnetic steel plates are fixed to each other by caulking, for example.
  • the rotor core 21 is not limited to a laminate of a plurality of electromagnetic steel plates, but may be a bulk body made of a magnetic material.
  • the permanent magnet 22 is arranged in a magnet insertion hole provided in the rotor core 21.
  • ten magnet insertion holes are provided in the rotor core 21, and a plate-shaped permanent magnet 22 is inserted into each magnet insertion hole.
  • permanent magnet 22 is a sintered magnet. Note that the permanent magnet 22 may be a bonded magnet.
  • the rotating shaft 23 is an elongated shaft, for example, a metal rod.
  • the rotating shaft 23 is fixed to the rotor core 21. Specifically, the rotating shaft 23 is inserted into a through hole provided at the center of the rotor core 21 and fixed to the rotor core 21 so as to extend on both sides of the rotor core 21 in the direction of the axis C.
  • the rotating shaft 23 is fixed to the rotor core 21 by, for example, press-fitting or shrink-fitting into a through hole of the rotor core 21.
  • one of the parts of the rotating shaft 23 that protrudes from the rotor core 21 functions as an output shaft.
  • a load such as a rotating fan is attached to the rotating shaft 23.
  • the rotating shaft 23 is rotatably supported by a bearing such as a bearing.
  • the electric motor 1 configured as described above, when the coil 12 of the stator 10 is energized, a field current flows through the coil 12 and a magnetic field is generated in the stator 10. As a result, magnetic flux directed from the stator 10 toward the rotor 20 is generated. Specifically, magnetic flux directed toward the rotor 20 is generated from each of the teeth 11a of the stator core 11 of the stator 10. On the other hand, in the rotor 20, a magnetic flux passing through the stator 10 is generated by the permanent magnet 22 arranged in the rotor core 21. The magnetic force generated by the interaction between the magnetic flux generated by the stator 10 and the magnetic flux generated from the permanent magnets 22 of the rotor 20 becomes a torque that rotates the rotor 20, and the rotor 20 rotates.
  • FIG. 2 is a perspective view of the coil block 100 according to the embodiment
  • FIG. 3 is an exploded view of the coil block 100
  • 4 is a cross-sectional view of the coil block 100 taken along the line IV--IV in FIG. 2
  • FIG. 5 is a cross-sectional view of the coil block 100 taken along the line V-V in FIG. 2
  • FIG. It is a figure which shows the insulating film 12b in the coil 12 which concerns
  • FIG. 7 is a front view of the coil 12 which concerns on embodiment.
  • the coil block 100 includes a coil 12, an insulator 13, and teeth 11a.
  • the coil 12 is attached to the teeth 11a via an insulator 13.
  • the insulator 13 is interposed between the coil 12 and the teeth 11a, as shown in FIGS. 2 to 5.
  • the insulator 13 is a cylindrical insulating frame that covers the teeth 11a.
  • the insulator 13 is made of an insulating resin material such as polybutylene terephthalate (PBT).
  • PBT polybutylene terephthalate
  • the insulator 13 is separated into a first frame 13a and a second frame 13b, and after the coil 12 is attached to the cylindrical portion of the first frame 13a, the second frame 13b is attached to the second frame 13b.
  • the coil 12 can be attached to the insulator 13 by fitting it into the cylindrical portion of the frame 13a.
  • the coil block 100 can be manufactured by inserting the teeth 11a into the cylindrical portion of the insulator 13 to which the coil 12 is attached.
  • the coil 12 includes a winding portion 12a formed by winding a plate-shaped conductor, and an insulating film 12b inserted into the winding portion 12a.
  • the coil 12 is an irregularly shaped coil, and a flat rectangular conducting wire is used as the plate-shaped conductor that constitutes the winding portion 12a.
  • the winding portion 12a in this embodiment is a winding portion having a structure in which a plurality of turn portions are stacked by winding a rectangular conducting wire by edgewise bending. In other words, the coil 12 is an edgewise coil.
  • the coil 12 in this embodiment is a high-density molded coil. By using the coil 12 configured in this way, a higher space factor can be obtained compared to a round wire coil configured with a round wire. For example, the space factor of the coil 12 in this embodiment is 90% or more.
  • the winding part 12a has a rectangular flat conductor wire that constitutes the first turn at the beginning of winding as a winding start turn part, and a rectangular flat conductor wire that constitutes the n-th turn (n is an integer of 2 or more) at the end of winding. Assuming that this is the winding end turn part, the structure is such that n turn parts from the first turn to the nth turn are stacked.
  • the winding portion 12a is formed by winding a rectangular conductive wire having a constant thickness so that each turn has a substantially rectangular shape. is formed into a substantially rectangular frame shape. Therefore, when the winding part 12a is viewed from the stacking direction of the plurality of turn parts, the shape of the winding part 12a is a substantially rectangular frame shape.
  • the winding portion 12a made of n turns of rectangular conducting wire from the first turn to the nth turn is formed into a substantially rectangular frame shape having four sides when viewed from the radial direction of the stator 10.
  • the width of the rectangular conducting wire differs depending on the turn portion.
  • the winding portion 12a is formed such that the width of the rectangular conducting wire gradually increases or decreases from the first turn to the nth turn.
  • the rectangular conductive wire is spirally wound so that the plurality of turn parts in the winding part 12a have the same inner diameter and gradually increase the outer diameter.
  • the turn portion with the smallest external dimension is located on the tip side of the teeth 11a, and the turn portion with the largest external dimension is located on the root side of the teeth 11a (on the yoke 11b side). It is arranged like this.
  • the turn part with the smallest external dimension may be the start turn part, and the turn part with the largest external dimension may be the end turn part, or the turn part with the smallest external dimension may be the end turn part, and the turn part with the smallest external dimension may be the end turn part.
  • the largest turn portion may be used as the starting turn portion.
  • the widths of the rectangular conducting wires in all the turn parts in the winding part 12a may be made the same.
  • a metal plate whose main component is a low-resistance metal material such as copper or aluminum can be used as the rectangular conducting wire constituting the winding portion 12a.
  • a metal plate made of a copper alloy is used as the rectangular conductive wire constituting the winding portion 12a.
  • the surface of the rectangular conducting wire constituting the winding portion 12a is not coated with an insulating film.
  • the surface of the rectangular conducting wire constituting the winding portion 12a is an exposed surface.
  • the surface of the metal plate constituting the winding portion 12a is exposed.
  • an insulating film 12b is inserted into the winding part 12a in order to insulate the rectangular conductive wires of two adjacent turn parts in the winding part 12a.
  • two adjacent turns in the plurality of turns in the winding portion 12a are defined as a first turn (k turn) and a second turn (k+1 turn)
  • the results are shown in FIGS. 4 and 5.
  • the insulating film 12b is inserted between the first turn section and the second turn section.
  • the insulating film 12b may be in contact with either one of the main surfaces of the mutually opposing flat conductive wire of the first turn portion and the second turn portion, which are two adjacent turn portions.
  • the insulating film 12b is in contact with each of the main surfaces of the flat conductive wire facing each other in the first turn part and the second turn part.
  • the insulating film 12b is in contact with the main surface of the rectangular conducting wire constituting the first turn, which is one of the two adjacent turns, and also contacts the second turn, which is the other of the two adjacent turns. It is in contact with the main surface of the constituent rectangular conducting wire. Note that the width of the rectangular conducting wire constituting the first turn portion is different from the width of the rectangular conducting wire constituting the second turn portion.
  • the outer end surface (outer side surface) of the rectangular conducting wire constituting the winding portion 12a is not covered with the insulating film 12b and is exposed. That is, in each turn portion of the winding portion 12a, the outer end surface of the rectangular conducting wire is exposed to the outside air.
  • the inner end surface (inner side surface) of the rectangular conducting wire constituting the winding portion 12a is not covered with the insulating film 12b, similarly to the outer end surface of the rectangular conducting wire. Therefore, in this embodiment, the insulating film 12b is in contact with only the main surface of the main surface and end surface of the rectangular conducting wire that constitutes the winding portion 12a. In this embodiment, the insulating film 12b is in contact with the entire main surface of the rectangular conducting wire that constitutes the winding portion 12a. In this way, since the inner end surface of the rectangular conducting wire constituting the winding portion 12a is not covered with the insulating film 12b, the insulating film 12b is not present in the portion of the coil 12 that contacts the insulator 13. Specifically, the insulating film 12b is not in contact with the entire surface of the insulator 13. Therefore, the inner end surface of the rectangular conducting wire constituting the winding portion 12 a is in contact with the insulator 13 .
  • the insulating film 12b is provided for each turn of the winding portion 12a.
  • the coil 12 includes a plurality of insulating films 12b separated from each other.
  • the coil 12 has a structure in which one turn part made of a rectangular conductive wire and one insulating film 12b are laminated alternately.
  • each insulating film 12b is annular. Specifically, each insulating film 12b has a substantially rectangular ring shape. In this case, each of the plurality of insulating films 12b has the same inner diameter, similar to the plurality of turn parts of the winding part 12a. On the other hand, the outer diameter of the plurality of insulating films 12b gradually increases, similar to the plurality of turn parts of the winding part 12a. Therefore, the plurality of insulating films 12b have different widths depending on the turn portions of the winding portion 12a.
  • the insulating film 12b is a thin insulating member in the form of a film or sheet.
  • the thickness of the insulating film 12b is constant, for example, 20 ⁇ m to 50 ⁇ m.
  • a resin material such as polyphenylene sulfide (PPS), polyethylene naphthalate (PEN), or polyethylene terephthalate (PET) can be used.
  • each insulating film 12b has a cutout portion 12b1.
  • the notch portion 12b1 is a cut portion where the annular insulating film 12b is cut at one location. In this way, each insulating film 12b does not have a continuous closed annular shape.
  • the cutout portion 12b1 of the insulating film 12b is a portion through which a rectangular conducting wire forming each of the plurality of turn portions of the winding portion 12a passes.
  • the insulating films 12b overlap at the cutout portion 12b1. That is, one end of the insulating film 12b at the notch 12b1 and the other end of the insulating film 12b at the notch 12b1 preferably overlap when viewed from the radial direction of the stator 10.
  • the notches 12b1 of the plurality of insulating films 12b are formed when viewed from the lamination method of the plurality of turns (that is, when viewed from the radial direction of the stator 10). ), preferably present at different positions in two adjacent turn parts.
  • the winding portion 12a can be produced by spirally winding a rectangular conducting wire 12M having a constant thickness so that each turn portion is rectangular.
  • a rectangular conductive wire having a constant thickness and width is rolled at a predetermined portion and wound into a rectangular spiral while changing the width for each turn, and an insulating film 12b having a different width for each turn.
  • the coil 12 can be manufactured by sequentially sandwiching the two.
  • a rectangular conducting wire that has been preformed with different widths along the way is bent at a predetermined position and wound into a rectangular spiral to form multiple turns, and each turn is covered with an insulating film.
  • the coil 12 may be manufactured by sandwiching the coil 12b.
  • the rectangular conducting wire 12M and the insulating film 12b of each turn part of the winding part 12a can be joined by thermocompression bonding or ultrasonic waves for each turn part after edgewise bending.
  • the rectangular conducting wire 12M and the insulating film 12b may be joined intermittently in a pot shape, or may be joined continuously. In this way, by joining the rectangular conducting wire 12M and the insulating film 12b after edgewise bending, it is possible to suppress wrinkles or misalignment of the insulating film 12b.
  • a part of the insulating film 12b (for example, a part that does not come in contact with a bending jig for bending the flat conductor 12M) is joined to the flat conductor 12M before edgewise bending, and another part (a part that the bending jig contacts) After edgewise bending the part), it may be joined to the rectangular conducting wire 12M. Thereby, it is possible to further suppress wrinkles and positional deviations in the insulating film 12b.
  • FIG. 9 shows a state in which the winding portion 12a is stretched and the insulating film 12b is inserted only at three locations between the turn portions.
  • an insulating tape having an adhesive layer is used as the insulating film 12b, and the insulating tape is bonded to the rectangular conductor 12M, so that the insulating film 12b is bonded by the adhesive layer. It may be fixed to the rectangular conducting wire 12M. Alternatively, the insulating film 12b may be fixed to the rectangular conducting wire 12M with varnish. Note that the method of fixing the insulating film 12b using an insulating tape or varnish may be used when joining the rectangular conducting wire 12M and the insulating film 12b at each turn portion.
  • the rectangular conducting wire between each turn in the winding part 12a is insulated and separated by inserting the insulating film 12b into each turn of the winding part 12a. . Therefore, the current supplied to the coil 12 is applied to the rectangular conductive wire formed in a spiral shape from the first turn of the first turn to the end of the nth turn, or from the last turn to the first turn of the winding. It will flow along.
  • the coil 12 has a winding part 12a in which a plurality of turn parts are stacked by winding a rectangular conducting wire by edgewise bending, and two adjacent turn parts in the plurality of turn parts. It includes an annular insulating film 12b inserted between a first turn part (kth turn part) and a second turn part ((k+1)th turn part).
  • an inexpensive insulating film 12b made of resin is used to insulate and separate the rectangular conductive wires of two adjacent turn portions. This eliminates the need for the step of coating the rectangular conductive wire with an insulating film, so the coil 12 can be manufactured at a lower cost than when a coil is manufactured using a rectangular conductive wire coated with an insulating film.
  • the insulating film may break at the bending part, resulting in a short circuit between the turn parts, but in this embodiment, the insulating film is Since the film is not coated, the insulating film will not break and short circuit between the turn parts will not occur. Thereby, the coil 12 having desired electrical performance can be manufactured, and thus the coil 12 of high quality can be obtained.
  • the coil 12 formed by winding the rectangular conducting wire by edgewise bending can be manufactured at low cost and with high quality.
  • the insulating film 12b is formed on the main surface of the rectangular conducting wire constituting the first turn portion, which is one of the two adjacent turn portions, and on the other of the two adjacent turn portions. It is in contact with each of the main surfaces of the rectangular conducting wire constituting a certain second turn portion. That is, one insulating film 12b is inserted between the first turn part and the second turn part.
  • the coil 12 can be manufactured at low cost.
  • the width of the rectangular conducting wire constituting the first turn portion which is one of the two adjacent turn portions, and the second turn portion, which is the other of the two adjacent turn portions.
  • the widths of the rectangular conducting wires that constitute the wires are different.
  • the insulating film 12b is provided for each turn of the winding portion 12a.
  • the insulating film 12b can be easily inserted between the rectangular conductive wires of two adjacent turn parts in the winding part 12a.
  • the insulating film 12b has a cutout portion 12b1 through which a rectangular conducting wire forming each of the plurality of turn portions in the winding portion 12a passes.
  • the insulating film 12b can be easily inserted between two adjacent turn portions.
  • the insulating films 12b preferably overlap at the cutout portions 12b1.
  • the cutout portions 12b1 of the plurality of insulating films 12 are located at different positions in two adjacent turn portions when viewed from the lamination method of the plurality of turn portions. Good to have.
  • the insulation of the coil 12 can be improved. Further, as described above, when the insulating films 12b are configured to overlap at the cutout portions 12b1, the presence of the cutout portions 12b1 at different positions in two adjacent turn portions improves the insulation. The presence of the overlapping portion of the film 12b can effectively prevent the entire coil 12 from increasing in size.
  • the inner diameter dimensions of each of the plurality of insulating films 12b are the same.
  • the coil 12 having an inner shape that follows the outer shape of the teeth 11a can be easily manufactured.
  • the outer diameter of the plurality of insulating films 12b gradually increases.
  • the coil 12 is used as a winding coil of the stator 10.
  • the stator 10 includes a stator core 11 having a plurality of teeth 11a, and a coil 12 each wound around each of the plurality of teeth 11a.
  • the stator 10 including the coil 12 can be manufactured by attaching the coil block 100, in which the coil 12 is attached to the teeth 11a via the insulator 13, to the yoke 11b. In this way, since the winding step is not necessary, it is possible to suppress the positional shift of the coil 12.
  • notch 12b1 is formed in one insulating film 12b, but the present invention is not limited to this.
  • two notches 12b1 may be formed in the insulating film 12bA, and the insulating film 12bA may be divided into two film pieces each having a substantially L-shape.
  • the coil 12A shown in FIG. 11 can be manufactured by inserting the insulating film 12bA shown in FIG. 10 between two adjacent turn parts in the winding part 12a. In this way, by using the insulating film 12bA divided into two parts, even if the rectangular conductive wire constituting the winding part 12a is spirally wound, the insulating film 12bA can be separated between two adjacent turn parts. can be easily inserted.
  • the plurality of insulating films 12b in the coil 12 have different widths for each turn, but the width is not limited to this.
  • the plurality of insulating films 12bB in the coil 12B may have the same width.
  • the insulating film 12bB covers the main surface of the rectangular conducting wire constituting the first turn portion, which is one of the two adjacent turn portions, and the second turn portion, which is the other of the two adjacent turn portions. It is in contact with a portion of each of the main surfaces of the rectangular conducting wires.
  • the insulating film 12bB is not present in the gap between the main surface of the rectangular conducting wire constituting the first turn portion and the main surface of the rectangular conducting wire constituting the second turn portion, and in this portion, There is an intervening air layer.
  • the rectangular conductive wires of two adjacent turn portions are air-insulated from each other. In this way, by making the widths of the plurality of insulating films 12bB the same, the coil 12B can be manufactured at even lower cost.
  • the insulating film 12b does not protrude from the corner of the rectangular conducting wire that constitutes the turn portion of the winding portion 12a, but the present invention is not limited to this.
  • the insulating film 12bC protrudes from each corner of at least the rectangular conducting wire constituting the first turn portion and the rectangular conducting wire constituting the second turn portion. may be formed. Since the corners of the winding part 12a are prone to electric current concentration and dielectric breakdown, as shown in FIG. Even if the outer end face of the rectangular conducting wire at the corner of 12a is exposed, it is possible to effectively prevent dielectric breakdown from occurring. In other words, it is possible to eliminate the need for insulation measures for the outer end surfaces of the flat conductive wires at the corners of the winding portion 12a.
  • the inner end surface of the rectangular conducting wire constituting the winding portion 12a is not covered with the insulating film 12b, but the present invention is not limited to this.
  • an insulating film 12bD having a bent portion 12b2 may be used by bending the inner part of the insulating film 12bD so as to stand up. This bent portion 12b2 is bent so as to face the inner end surface of the rectangular conductive wire forming one of the first turn portion and the second turn portion, which are two adjacent turn portions in the winding portion 12a.
  • the insulating film 12bD configured in this manner, it is possible to protect the inner edge portion of the rectangular conductive wire that constitutes the winding portion 12a.
  • the plurality of insulating films 12b inserted into each turn of the winding portion 12a of the coil 12 are not connected, but the present invention is not limited to this.
  • the insulating film 12b inserted into each turn of the winding portion 12a of the coil 12 may be connected at a portion.
  • the winding portion 12a is formed by laminating a plurality of turn portions by winding a rectangular conducting wire by edgewise bending, but the present invention is not limited to this.
  • the winding portion 12a may be formed by laminating a plurality of turn portions by connecting a plurality of rectangular conducting wires.
  • the number of slots in the stator 10 is 18, but the number is not limited to this.
  • the number of magnetic poles of the rotor 20 is 10 (that is, the number of permanent magnets 22 is 10), but the present invention is not limited to this. Any number of slots in the stator 10 and any number of magnetic poles in the rotor 20 can be used.
  • the rotor 20 is an IPM rotor, but the rotor 20 is not limited to this.
  • a surface magnet type rotor SPM rotor in which a plurality of permanent magnets are provided on the outer surface of the rotor core may be used.
  • the electric motor 1 is illustrated as an example of the rotating electric machine, but the present invention is not limited to this.
  • the rotating electric machine using the coil 12 may be a generator.
  • the coil 12 is used as a wire-wound coil included in the stator 10, the coil 12 is not limited to this, and may be used as various coils included in products other than the stator.
  • present disclosure also includes forms in which: Further, the present disclosure also includes arbitrary combinations of one or more constituent elements in each of the plurality of claims recited in the claims as filed.
  • the dependent form claims stated in the scope of claims at the time of filing of the present application are made into multiple claims or multiple multi-claims so as to cite any plurality of claims (for example, the superordinate claim for each claim)
  • all claims are referred to as a multiple claim or multiple multiple claims
  • all forms obtained by combining all claims included in the multiple claim or multiple multiple claims are also included in the present disclosure.
  • the technology of the present disclosure can be widely used in various products using coils, including rotating electric machines such as electric motors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

A coil (12) used for a rotating electric machine comprises: a wound portion (12a) in which a plurality of turn portions are layered by winding a flat conductive wire by edgewise bending or connecting a plurality of flat conductive wires; and an annular insulative film (12b) inserted into a gap between a first turn portion and a second turn portion which are two adjacent turn portions among the plurality of turn portions.

Description

コイル、ステータ及び回転電機Coils, stators and rotating electrical machines
 本開示は、コイル、ステータ及び回転電機に関し、特に、電動機におけるステータの巻線コイルとして用いられるコイルに関する。 The present disclosure relates to a coil, a stator, and a rotating electric machine, and particularly relates to a coil used as a winding coil of a stator in an electric motor.
 回転電機の一つとして、電気エネルギーを機械エネルギーに変える電動機が知られている。電動機は、家庭用機器又は産業用機器等の様々な製品に用いられている。例えば、電動機は、電気掃除機等の家電製品をはじめとして、自動車及びロボット等、多種多様に用いられている。 An electric motor that converts electrical energy into mechanical energy is known as one type of rotating electric machine. Electric motors are used in various products such as household equipment or industrial equipment. For example, electric motors are used in a wide variety of applications, including home appliances such as vacuum cleaners, automobiles, and robots.
 近年、電動機については、さらなる高効率化及び低コスト化が求められている。電動機の効率を向上させる手法として、電動機のステータに用いられる巻線コイルの占積率を高める技術が知られている。巻線コイルの占積率を高くすることで、電動機の駆動時に巻線コイルに流れる電流に起因する損失を抑制できるので、電動機の効率を向上させることができる。 In recent years, electric motors are required to have even higher efficiency and lower cost. As a method for improving the efficiency of an electric motor, a technique for increasing the space factor of a winding coil used in a stator of an electric motor is known. By increasing the space factor of the winding coil, it is possible to suppress the loss caused by the current flowing through the winding coil when the motor is driven, thereby improving the efficiency of the motor.
 従来、電動機のステータにおける巻線コイルの占積率を高める技術の一つとして、巻線コイルとして異形コイルを用いることが提案されている。この種の異形コイルとして、平角導線をエッジワイズ曲げすることで作製されたエッジワイズコイルが知られている。例えば、特許文献1には、ステータの巻線コイルとしてエッジワイズコイルを用いた回転電機が開示されている。 Conventionally, as one technique for increasing the space factor of the winding coil in the stator of an electric motor, it has been proposed to use irregularly shaped coils as the winding coil. As this type of irregularly shaped coil, an edgewise coil produced by edgewise bending a rectangular conductive wire is known. For example, Patent Document 1 discloses a rotating electrical machine that uses edgewise coils as stator winding coils.
特開2020-178457号公報Japanese Patent Application Publication No. 2020-178457
 従来、エッジワイズコイル等のコイルを構成する平角導線には、絶縁膜が被膜されている。特に、回転電機に用いられるコイルについては、平角導線には高耐熱の絶縁膜が被膜されている。 Conventionally, rectangular conductive wires constituting coils such as edgewise coils are coated with an insulating film. In particular, for coils used in rotating electric machines, rectangular conductive wires are coated with a highly heat-resistant insulating film.
 平角導線に絶縁膜を被膜する方法としては、平角導線に絶縁材料を塗布したり電着したりする方法が知られている。 As a method for coating a rectangular conducting wire with an insulating film, a method of coating or electrodepositing an insulating material on the rectangular conducting wire is known.
 しかしながら、このような方法で平角導線に絶縁膜を被膜すると、絶縁膜を被膜させる工程が煩雑になってコストがかかるという課題がある。特に、高耐熱の絶縁膜を被膜する場合には、高コストになる。 However, when a rectangular conducting wire is coated with an insulating film using such a method, there is a problem that the process of coating the rectangular conductive wire with the insulating film becomes complicated and costs increase. Particularly, when coating with a highly heat-resistant insulating film, the cost becomes high.
 また、上記の方法で平角導線に絶縁膜を被膜すると、平角導線のエッジ部に被膜される絶縁膜は、平角導線の主面に被膜される絶縁膜よりも薄くなる。このため、絶縁膜が被膜された平角導線をエッジワイズ曲げにより巻き回して複数のターン部が積層された巻線コイルを作製すると、内径Rが小さい折り曲げ部分で絶縁膜が破断して、ターン部間が短絡する等の不具合が生じるおそれがある。特に、ターン部ごとに平角導線の幅を異ならせながらエッジワイズ曲げを行って巻線コイルを作製すると、絶縁膜が破断しやすい。このように、絶縁膜が被膜された平角導線をエッジワイズ曲げにより巻き回すと、絶縁膜が破断して所望の電気性能を有する巻線コイルを得ることができなくなるおそれがある。つまり、巻線コイルの品質が低下する。 Furthermore, when the rectangular conducting wire is coated with an insulating film using the above method, the insulating film coated on the edge portion of the rectangular conducting wire becomes thinner than the insulating film coated on the main surface of the rectangular conducting wire. For this reason, when a rectangular conductive wire coated with an insulating film is wound by edgewise bending to produce a wound coil in which a plurality of turn parts are stacked, the insulating film breaks at the bent part where the inner diameter R is small, and the turn part There is a risk that problems such as short circuits may occur. In particular, if a wound coil is manufactured by performing edgewise bending while varying the width of the rectangular conducting wire for each turn, the insulating film is likely to break. In this way, when a rectangular conducting wire coated with an insulating film is wound by edgewise bending, there is a risk that the insulating film will break, making it impossible to obtain a wound coil having desired electrical performance. In other words, the quality of the wound coil deteriorates.
 本開示は、このような課題を解決するためになされたものであり、平角導線をエッジワイズ曲げにより巻き回すことにより形成されたコイルを低コストかつ高品質で作製することができるコイル、ステータ及び回転電機等を提供することを目的とする。 The present disclosure has been made to solve such problems, and provides a coil, a stator, and a coil that can be produced at low cost and with high quality by winding a rectangular conducting wire by edgewise bending. The purpose is to provide rotating electrical machines, etc.
 上記目的を達成するために、本開示に係るコイルの一態様は、回転電機に用いられるコイルであって、平角導線をエッジワイズ曲げにより巻き回すことにより又は複数の平角導線を接続することにより複数のターン部が積層された巻回部と、前記複数のターン部における隣り合う2つのターン部である第1ターン部と第2ターン部との間に挿入された環状の絶縁フィルムと、を備える。 In order to achieve the above object, one aspect of the coil according to the present disclosure is a coil used in a rotating electric machine, which is formed by winding a rectangular conducting wire by edgewise bending or by connecting a plurality of rectangular conducting wires. a winding part in which turn parts are laminated, and an annular insulating film inserted between a first turn part and a second turn part, which are two adjacent turn parts in the plurality of turn parts. .
 また、本開示に係るステータの一態様は、複数のティースを有するステータコアと、前記複数のティースの各々に巻き回された巻線コイルと、を備え、前記巻線コイルは、上記のコイルである。 Further, one aspect of the stator according to the present disclosure includes a stator core having a plurality of teeth, and a winding coil wound around each of the plurality of teeth, and the winding coil is the above-mentioned coil. .
 また、本開示に係る回転電機の一態様は、上記のステータと、前記ステータの磁力により回転するロータと、を備える。 Further, one aspect of the rotating electric machine according to the present disclosure includes the stator described above and a rotor that rotates due to the magnetic force of the stator.
 本開示によれば、平角導線をエッジワイズ曲げにより巻き回すことにより形成されたコイルを低コストかつ高品質で作製することができる。 According to the present disclosure, a coil formed by winding a rectangular conducting wire by edgewise bending can be manufactured at low cost and with high quality.
図1は、実施の形態に係る電動機の断面図である。FIG. 1 is a sectional view of an electric motor according to an embodiment. 図2は、実施の形態に係るコイルブロックの斜視図である。FIG. 2 is a perspective view of the coil block according to the embodiment. 図3は、実施の形態に係るコイルブロックの分解図である。FIG. 3 is an exploded view of the coil block according to the embodiment. 図4は、図2のIV-IV線におけるコイルブロックの断面図である。FIG. 4 is a cross-sectional view of the coil block taken along line IV-IV in FIG. 2. 図5は、図2のV-V線におけるコイルブロックの断面図である。FIG. 5 is a cross-sectional view of the coil block taken along line VV in FIG. 2. 図6は、実施の形態に係るコイルにおける絶縁フィルムを示す図である。FIG. 6 is a diagram showing an insulating film in a coil according to an embodiment. 図7は、実施の形態に係るコイルの正面図である。FIG. 7 is a front view of the coil according to the embodiment. 図8は、実施の形態に係るコイルの作製方法の一例を示す図である。FIG. 8 is a diagram illustrating an example of a method for manufacturing a coil according to an embodiment. 図9は、実施の形態に係るコイルの作製方法の他の例を示す図である。FIG. 9 is a diagram showing another example of the method for manufacturing the coil according to the embodiment. 図10は、変形例1に係るコイルにおける絶縁フィルムを示す図である。FIG. 10 is a diagram showing an insulating film in a coil according to Modification Example 1. 図11は、変形例1に係るコイルの正面図である。FIG. 11 is a front view of a coil according to modification example 1. 図12は、変形例2に係るコイルブロックの断面図である。FIG. 12 is a cross-sectional view of a coil block according to modification 2. 図13は、変形例3に係るコイルの正面図である。FIG. 13 is a front view of a coil according to modification 3. 図14は、変形例4に係るコイルにおける絶縁フィルムの斜視図である。FIG. 14 is a perspective view of an insulating film in a coil according to modification example 4.
 以下、本開示の実施の形態について説明する。なお、以下に説明する実施の形態は、いずれも本開示の一具体例を示すものである。したがって、以下の実施の形態で示される、数値、構成要素、構成要素の配置位置及び接続形態、並びに、工程及び工程の順序等は、一例であって本開示を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本開示の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Hereinafter, embodiments of the present disclosure will be described. Note that the embodiments described below each represent a specific example of the present disclosure. Therefore, the numerical values, components, arrangement positions and connection forms of the components, steps and order of steps, etc. shown in the following embodiments are merely examples and do not limit the present disclosure. Therefore, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims representing the most important concept of the present disclosure will be described as arbitrary constituent elements.
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。なお、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する。 Furthermore, each figure is a schematic diagram and is not necessarily strictly illustrated. In addition, in each figure, the same code|symbol is attached to the substantially the same structure, and the overlapping description is omitted or simplified.
 また、本実施の形態において、ステータ10及びロータ20の半径方向を「径方向」とし、ロータ20の回転方向を「周方向」とする。つまり、回転軸23の軸心Cを中心として軸心Cから広がる方向が「径方向」であり、回転軸23の軸心Cを中心として軸心Cを周回する方向が「周方向」である。したがって、「径方向」は、回転軸23の軸心Cの方向と直交する方向となる。なお、本明細書において、「上」及び「下」という用語は、必ずしも、絶対的な空間認識における上方向(鉛直上方)及び下方向(鉛直下方)を指すものではない。 Furthermore, in this embodiment, the radial direction of the stator 10 and rotor 20 is referred to as a "radial direction", and the rotational direction of the rotor 20 is referred to as a "circumferential direction". In other words, the direction in which the rotating shaft 23 is centered around the axial center C and extends from the axial center C is the "radial direction", and the direction in which the rotating shaft 23 is centered around the axial center C and goes around the axial center C is the "circumferential direction". . Therefore, the "radial direction" is a direction perpendicular to the direction of the axis C of the rotating shaft 23. Note that in this specification, the terms "upper" and "lower" do not necessarily refer to the upper direction (vertically upward) and the downward direction (vertically downward) in absolute spatial recognition.
 (実施の形態)
 以下の実施の形態では、回転電機の一例として電動機について説明する。
(Embodiment)
In the following embodiments, an electric motor will be described as an example of a rotating electric machine.
 まず、実施の形態に係る電動機1の全体の構成について、図1を用いて説明する。図1は、実施の形態に係る電動機1の断面図である。図1は、ロータ20が有する回転軸23の軸心Cの方向と直交する平面で切断したときの断面を示している。 First, the overall configuration of the electric motor 1 according to the embodiment will be described using FIG. 1. FIG. 1 is a sectional view of an electric motor 1 according to an embodiment. FIG. 1 shows a cross section taken along a plane perpendicular to the direction of the axis C of the rotating shaft 23 of the rotor 20.
 図1に示すように、電動機1は、ステータ10とロータ20とを備える。ステータ10とロータ20とは対向して配置される。本実施の形態における電動機1は、ロータ20がステータ10の内側に配置されたインナーロータ型のモータである。なお、電動機1は、ステータ10及びロータ20以外に、モータケース及び回転軸23を軸支する軸受等の部品も有しているが、便宜上、それらの部品の図示及び説明は省略する。 As shown in FIG. 1, the electric motor 1 includes a stator 10 and a rotor 20. Stator 10 and rotor 20 are arranged facing each other. The electric motor 1 in this embodiment is an inner rotor type motor in which the rotor 20 is arranged inside the stator 10. In addition to the stator 10 and the rotor 20, the electric motor 1 also includes parts such as a motor case and a bearing that pivotally supports the rotating shaft 23, but for the sake of convenience, illustration and description of these parts will be omitted.
 ステータ10(固定子)は、ロータ20との間にエアギャップを介してロータ20に対向して配置されている。ロータ20の表面とステータ10の表面との間には微小なエアギャップが存在する。本実施の形態において、ステータ10は、ロータ20のロータコア21を囲むように配置されている。 The stator 10 (stator) is arranged to face the rotor 20 with an air gap between the stator 10 and the rotor 20. A minute air gap exists between the surface of the rotor 20 and the surface of the stator 10. In this embodiment, stator 10 is arranged to surround rotor core 21 of rotor 20 .
 ステータ10は、ロータ20に作用する磁力を発生させる。具体的には、ステータ10は、ロータ20が有するロータコア21とのエアギャップ面に磁束を生成するように構成されている。例えば、ステータ10は、ロータコア21とのエアギャップ面にN極とS極とが周方向に交互に繰り返して生成されるように構成されている。 The stator 10 generates magnetic force that acts on the rotor 20. Specifically, the stator 10 is configured to generate magnetic flux in the air gap surface between the stator 10 and the rotor core 21 of the rotor 20 . For example, the stator 10 is configured such that north poles and south poles are alternately generated in the air gap surface with the rotor core 21 in the circumferential direction.
 図1に示すように、本実施の形態において、ステータ10は、コイル12と、ステータコア11とを有する。 As shown in FIG. 1, in this embodiment, the stator 10 includes a coil 12 and a stator core 11.
 コイル12は、巻線コイルとしてステータ10に設けられたステータコイルである。コイル12は、ステータ10の電機子巻線であり、ステータコア11に巻き回された構成になっている。具体的には、コイル12は、ステータ10の複数のティース11aの各々に巻き回されている。したがって、ステータ10には、複数のコイル12が用いられている。複数のコイル12の各々は、複数のティース11aの各々に巻かれた構成になっている。 The coil 12 is a stator coil provided in the stator 10 as a winding coil. The coil 12 is an armature winding of the stator 10 and is wound around the stator core 11. Specifically, the coil 12 is wound around each of the plurality of teeth 11a of the stator 10. Therefore, a plurality of coils 12 are used in the stator 10. Each of the plurality of coils 12 is wound around each of the plurality of teeth 11a.
 複数のコイル12は、ロータ20を囲むように周方向に沿って等間隔に配置されている。各コイル12は、ステータ10の各スロット11cに収納されている。コイル12は、インシュレータ(図1では不図示)を介してティース11aに装着された構成になっている。 The plurality of coils 12 are arranged at equal intervals along the circumferential direction so as to surround the rotor 20. Each coil 12 is housed in each slot 11c of the stator 10. The coil 12 is attached to the teeth 11a via an insulator (not shown in FIG. 1).
 本実施の形態において、1つのコイル12と1つのインシュレータ13と1つのティース11aとで、1つのコイルブロック100が構成されている。電動機1は、複数のコイルブロック100を有する。具体的には、図1に示される電動機1では、18個のコイルブロック100が用いられている。複数のコイルブロック100の各々は、各コイルブロック100におけるティース11aをヨーク11bに嵌合することでステータコア11に固定されている。なお、コイルブロック100及びコイル12の詳細な構成については後述する。 In this embodiment, one coil block 100 is composed of one coil 12, one insulator 13, and one tooth 11a. The electric motor 1 has a plurality of coil blocks 100. Specifically, in the electric motor 1 shown in FIG. 1, 18 coil blocks 100 are used. Each of the plurality of coil blocks 100 is fixed to the stator core 11 by fitting the teeth 11a of each coil block 100 into the yoke 11b. Note that detailed configurations of the coil block 100 and the coil 12 will be described later.
 ステータコア11は、ステータ10のコアとなる鉄心である。本実施の形態において、ステータコア11は、複数のティース11aと、円環状のヨーク11bとによって構成されている。 The stator core 11 is an iron core that becomes the core of the stator 10. In this embodiment, the stator core 11 includes a plurality of teeth 11a and an annular yoke 11b.
 複数のティース11aの各々は、ロータ20の回転軸23の軸心Cに向かって突出している。具体的には、複数のティース11aは、回転軸23の軸心Cと直交する方向(径方向)に放射状に設けられている。 Each of the plurality of teeth 11a protrudes toward the axis C of the rotating shaft 23 of the rotor 20. Specifically, the plurality of teeth 11a are provided radially in a direction (radial direction) orthogonal to the axis C of the rotating shaft 23.
 隣り合う2つのティース11aの間には、コイル12を配置するためのスロット11cが形成されている。つまり、ステータ10のスロット11cは、隣り合う2つのティース11aの間の領域である。複数のティース11aは、隣り合う2つのティース11aの間にスロット11cを形成しながら周方向に沿って等間隔に配置されている。本実施の形態において、ステータ10は18個のティース11aを有しているので、ステータ10のスロット数は、18である。 A slot 11c for arranging the coil 12 is formed between two adjacent teeth 11a. That is, the slot 11c of the stator 10 is an area between two adjacent teeth 11a. The plurality of teeth 11a are arranged at equal intervals along the circumferential direction while forming slots 11c between two adjacent teeth 11a. In this embodiment, the stator 10 has 18 teeth 11a, so the number of slots in the stator 10 is 18.
 各ティース11aは、円環状のヨーク11bから径方向の内側に突出するように延在している。つまり、ヨーク11bは、各ティース11aの外側に形成されたバックヨークである。各ティース11aは、ヨーク11bに嵌合されて固定されている。 Each tooth 11a extends radially inward from the annular yoke 11b. That is, the yoke 11b is a back yoke formed on the outside of each tooth 11a. Each tooth 11a is fitted and fixed to a yoke 11b.
 ヨーク11bは、複数に分割されていてもよいし、一体に構成されていてもよい。ヨーク11bが複数に分割されている場合、ヨーク11bは、分割された複数の円弧ヨークを円環状に連結することで構成されている。例えば、ヨーク11bは、等分割された6個の円弧ヨークによって構成することができる。この場合、1つの円弧ヨークには、3個のティース11aが等間隔で固定される。 The yoke 11b may be divided into a plurality of parts, or may be configured as one piece. When the yoke 11b is divided into a plurality of parts, the yoke 11b is configured by connecting the plurality of divided circular arc yokes in an annular shape. For example, the yoke 11b can be configured by six equally divided circular arc yokes. In this case, three teeth 11a are fixed to one arcuate yoke at equal intervals.
 ティース11a及びヨーク11bは、それぞれ、複数枚の電磁鋼板を積層することによって構成された積層体である。複数枚の電磁鋼板の各々は、例えば、所定形状に形成された打ち抜き鋼板である。なお、ティース11a及びヨーク11bは、磁性材料によって構成されたバルク体であってもよい。 The teeth 11a and the yoke 11b are each a laminate formed by laminating a plurality of electromagnetic steel sheets. Each of the plurality of electromagnetic steel plates is, for example, a punched steel plate formed into a predetermined shape. Note that the teeth 11a and the yoke 11b may be bulk bodies made of a magnetic material.
 複数のティース11aの各々は、磁極ティースであり、コイル12の通電により磁力を発生させる。本実施の形態において、ステータ10における複数のコイル12は、3相同期モータとしてロータ20が回転するように3相巻線として電気的に接続されている。具体的には、複数のコイル12は、互いに電気的に120度位相が異なる、U相、V相及びW相の3相それぞれの単位コイルによって構成されている。つまり、各ティース11aに装着されたコイル12は、U相、V相及びW相の相単位でそれぞれに通電される3相の交流によって通電駆動される。これにより、各ティース11aには、ロータ20を回転させるための主磁束が生成される。 Each of the plurality of teeth 11a is a magnetic pole tooth, and generates magnetic force when the coil 12 is energized. In this embodiment, the plurality of coils 12 in the stator 10 are electrically connected as three-phase windings so that the rotor 20 rotates as a three-phase synchronous motor. Specifically, the plurality of coils 12 are configured by unit coils for each of three phases, U-phase, V-phase, and W-phase, which are electrically different in phase by 120 degrees from each other. That is, the coil 12 attached to each tooth 11a is energized and driven by three-phase alternating current that is energized in units of U phase, V phase, and W phase. Thereby, main magnetic flux for rotating the rotor 20 is generated in each tooth 11a.
 ロータ20(回転子)は、ステータ10の磁力により回転する。また、ロータ20も磁力を生成する。具体的には、ロータ20は、周方向に亘って磁束を生成するN極とS極とが複数交互に繰り返して存在する構成になっている。これにより、ロータ20は、ステータ10に作用する磁力を発生する。本実施の形態において、ロータ20から発生する磁束の向きは、回転軸23の軸心Cの方向(軸心方向)と直交する方向である。つまり、ロータ20が発生する磁束の向きは、ラジアル方向(径方向)である。 The rotor 20 (rotor) is rotated by the magnetic force of the stator 10. The rotor 20 also generates magnetic force. Specifically, the rotor 20 has a configuration in which a plurality of N poles and S poles that generate magnetic flux are alternately and repeatedly present in the circumferential direction. Thereby, the rotor 20 generates a magnetic force that acts on the stator 10. In this embodiment, the direction of the magnetic flux generated from the rotor 20 is a direction perpendicular to the direction of the axis C of the rotating shaft 23 (axial center direction). That is, the direction of the magnetic flux generated by the rotor 20 is the radial direction.
 ロータ20は、ロータコア21と、複数の永久磁石22と、回転軸23とを有する。ロータ20は、回転軸23の軸心Cを回転中心として回転する。つまり、回転軸23は、ロータ20が回転する際の中心となる。 The rotor 20 has a rotor core 21, a plurality of permanent magnets 22, and a rotating shaft 23. The rotor 20 rotates about the axis C of the rotating shaft 23 as a rotation center. That is, the rotating shaft 23 becomes the center of rotation of the rotor 20.
 本実施の形態において、ロータ20は、永久磁石22がロータコア21に埋め込まれた永久磁石埋め込み型のロータ(IPMロータ)である。したがって、本実施の形態における電動機1は、IPMモータである。 In this embodiment, the rotor 20 is an embedded permanent magnet rotor (IPM rotor) in which a permanent magnet 22 is embedded in a rotor core 21. Therefore, electric motor 1 in this embodiment is an IPM motor.
 ロータコア21は、ロータ20のコアとなる鉄心である。本実施の形態において、ロータコア21は、複数の電磁鋼板が回転軸23の軸心Cの方向(軸心方向)に積層された積層体である。複数の電磁鋼板の各々は、例えば、所定形状に形成された打ち抜き鋼板である。複数の電磁鋼板は、例えばかしめによって互いに固定されている。なお、ロータコア21は、複数の電磁鋼板の積層体に限らず、磁性材料によって構成されたバルク体であってもよい。 The rotor core 21 is an iron core that becomes the core of the rotor 20. In this embodiment, the rotor core 21 is a laminate in which a plurality of electromagnetic steel sheets are laminated in the direction of the axis C of the rotating shaft 23 (axial direction). Each of the plurality of electromagnetic steel plates is, for example, a punched steel plate formed into a predetermined shape. The plurality of electromagnetic steel plates are fixed to each other by caulking, for example. Note that the rotor core 21 is not limited to a laminate of a plurality of electromagnetic steel plates, but may be a bulk body made of a magnetic material.
 永久磁石22は、ロータコア21に設けられた磁石挿入孔に配置されている。本実施の形態では、ロータコア21には10個の磁石挿入孔が設けられており、各磁石挿入孔に板状の永久磁石22が挿入されている。一例として、永久磁石22は、焼結マグネットである。なお、永久磁石22は、ボンド磁石であってもよい。 The permanent magnet 22 is arranged in a magnet insertion hole provided in the rotor core 21. In this embodiment, ten magnet insertion holes are provided in the rotor core 21, and a plate-shaped permanent magnet 22 is inserted into each magnet insertion hole. As an example, permanent magnet 22 is a sintered magnet. Note that the permanent magnet 22 may be a bonded magnet.
 回転軸23は、長尺状のシャフトであり、例えば金属棒である。回転軸23は、ロータコア21に固定されている。具体的には、回転軸23は、軸心Cの方向においてロータコア21の両側に延在するように、ロータコア21の中心に設けられた貫通孔に挿入されてロータコア21に固定されている。回転軸23は、例えばロータコア21の貫通孔に圧入したり焼き嵌めしたりすることでロータコア21に固定されている。電動機1において、回転軸23のロータコア21から突出した部分の一方は、出力軸として機能する。例えば、回転軸23には回転ファン等の負荷が取り付けられる。なお、図示しないが、回転軸23は、ベアリング等の軸受によって回転自在に支持されている。 The rotating shaft 23 is an elongated shaft, for example, a metal rod. The rotating shaft 23 is fixed to the rotor core 21. Specifically, the rotating shaft 23 is inserted into a through hole provided at the center of the rotor core 21 and fixed to the rotor core 21 so as to extend on both sides of the rotor core 21 in the direction of the axis C. The rotating shaft 23 is fixed to the rotor core 21 by, for example, press-fitting or shrink-fitting into a through hole of the rotor core 21. In the electric motor 1, one of the parts of the rotating shaft 23 that protrudes from the rotor core 21 functions as an output shaft. For example, a load such as a rotating fan is attached to the rotating shaft 23. Although not shown, the rotating shaft 23 is rotatably supported by a bearing such as a bearing.
 このように構成される電動機1では、ステータ10が有するコイル12に通電すると、界磁電流がコイル12に流れてステータ10に磁界が生成される。これにより、ステータ10からロータ20に向かう磁束が生成される。具体的には、ステータ10が有するステータコア11のティース11aの各々からロータ20に向かう磁束が生成される。一方、ロータ20では、ロータコア21に配置された永久磁石22によってステータ10を通る磁束が生成される。このステータ10で生成される磁束とロータ20が有する永久磁石22から生じる磁束との相互作用によって生じた磁気力がロータ20を回転させるトルクとなり、ロータ20が回転する。 In the electric motor 1 configured as described above, when the coil 12 of the stator 10 is energized, a field current flows through the coil 12 and a magnetic field is generated in the stator 10. As a result, magnetic flux directed from the stator 10 toward the rotor 20 is generated. Specifically, magnetic flux directed toward the rotor 20 is generated from each of the teeth 11a of the stator core 11 of the stator 10. On the other hand, in the rotor 20, a magnetic flux passing through the stator 10 is generated by the permanent magnet 22 arranged in the rotor core 21. The magnetic force generated by the interaction between the magnetic flux generated by the stator 10 and the magnetic flux generated from the permanent magnets 22 of the rotor 20 becomes a torque that rotates the rotor 20, and the rotor 20 rotates.
 次に、本実施の形態に係る電動機1に用いられるコイルブロック100及びコイル12の詳細な構成について、図1を参照しつつ、図2~図7を用いて説明する。 Next, detailed configurations of the coil block 100 and coil 12 used in the electric motor 1 according to the present embodiment will be explained using FIGS. 2 to 7 while referring to FIG. 1.
 図2は、実施の形態に係るコイルブロック100の斜視図であり、図3は、そのコイルブロック100の分解図である。図4は、図2のIV-IV線におけるコイルブロック100の断面図であり、図5は、図2のV-V線におけるコイルブロック100の断面図であり、図6は、実施の形態に係るコイル12における絶縁フィルム12bを示す図であり、図7は、実施の形態に係るコイル12の正面図である。 FIG. 2 is a perspective view of the coil block 100 according to the embodiment, and FIG. 3 is an exploded view of the coil block 100. 4 is a cross-sectional view of the coil block 100 taken along the line IV--IV in FIG. 2, FIG. 5 is a cross-sectional view of the coil block 100 taken along the line V-V in FIG. 2, and FIG. It is a figure which shows the insulating film 12b in the coil 12 which concerns, and FIG. 7 is a front view of the coil 12 which concerns on embodiment.
 図2及び図3に示すように、コイルブロック100は、コイル12と、インシュレータ13と、ティース11aとによって構成されている。コイルブロック100において、コイル12は、インシュレータ13を介してティース11aに装着されている。 As shown in FIGS. 2 and 3, the coil block 100 includes a coil 12, an insulator 13, and teeth 11a. In the coil block 100, the coil 12 is attached to the teeth 11a via an insulator 13.
 インシュレータ13は、図2~図5に示すように、コイル12とティース11aとの間に介在している。インシュレータ13は、ティース11aを覆う筒状の絶縁枠である。インシュレータ13は、例えばポリブチレンテレフタレート(PBT)等の絶縁性樹脂材料によって構成されている。本実施の形態において、インシュレータ13は、第1枠体13aと第2枠体13bとに分離されており、コイル12を第1枠体13aの筒部に装着した後に第2枠体13bを第1枠体13aの筒部に嵌め合わせることで、コイル12をインシュレータ13に装着することができる。また、コイル12が装着されたインシュレータ13の筒部にティース11aを挿入することでコイルブロック100を作製することができる。 The insulator 13 is interposed between the coil 12 and the teeth 11a, as shown in FIGS. 2 to 5. The insulator 13 is a cylindrical insulating frame that covers the teeth 11a. The insulator 13 is made of an insulating resin material such as polybutylene terephthalate (PBT). In this embodiment, the insulator 13 is separated into a first frame 13a and a second frame 13b, and after the coil 12 is attached to the cylindrical portion of the first frame 13a, the second frame 13b is attached to the second frame 13b. The coil 12 can be attached to the insulator 13 by fitting it into the cylindrical portion of the frame 13a. Further, the coil block 100 can be manufactured by inserting the teeth 11a into the cylindrical portion of the insulator 13 to which the coil 12 is attached.
 図4及び図5に示すように、コイル12は、板状の導体が巻き回されることにより構成された巻回部12aと、巻回部12aに挿入された絶縁フィルム12bとを備える。 As shown in FIGS. 4 and 5, the coil 12 includes a winding portion 12a formed by winding a plate-shaped conductor, and an insulating film 12b inserted into the winding portion 12a.
 コイル12は、異形コイルであり、巻回部12aを構成する板状の導体として、平板状の平角導線が用いられている。本実施の形態における巻回部12aは、平角導線をエッジワイズ曲げにより巻き回すことにより複数のターン部が積層された構造を有する巻線部である。つまり、コイル12は、エッジワイズコイルである。本実施の形態におけるコイル12は、高密度の成形コイルである。このように構成されたコイル12を用いることで、丸線によって構成された丸線コイルと比べて、高い占積率を得ることができる。例えば、本実施の形態におけるコイル12の占積率は、90%以上である。 The coil 12 is an irregularly shaped coil, and a flat rectangular conducting wire is used as the plate-shaped conductor that constitutes the winding portion 12a. The winding portion 12a in this embodiment is a winding portion having a structure in which a plurality of turn portions are stacked by winding a rectangular conducting wire by edgewise bending. In other words, the coil 12 is an edgewise coil. The coil 12 in this embodiment is a high-density molded coil. By using the coil 12 configured in this way, a higher space factor can be obtained compared to a round wire coil configured with a round wire. For example, the space factor of the coil 12 in this embodiment is 90% or more.
 巻回部12aは、巻き始めの1ターン目を構成する矩形状の平角導線を、巻き始めターン部とし、巻き終わりのnターン目(nは2以上の整数)を構成する矩形状の平角導線を、巻き終わりターン部とすると、1ターン目からnターン目までのn個のターン部が積層された構成になっている。 The winding part 12a has a rectangular flat conductor wire that constitutes the first turn at the beginning of winding as a winding start turn part, and a rectangular flat conductor wire that constitutes the n-th turn (n is an integer of 2 or more) at the end of winding. Assuming that this is the winding end turn part, the structure is such that n turn parts from the first turn to the nth turn are stacked.
 具体的には、巻回部12aは、厚さが一定の平角導線を各ターン部が略矩形となるように巻き回すことで形成されており、巻回部12aにおける各ターン部では、平角導線が略矩形の枠状に形成されている。したがって、巻回部12aを複数のターン部の積層方向から見たときに、巻回部12aの形状は、略矩形の枠状になっている。つまり、1ターン目からnターン目までのn回巻きの平角導線からなる巻回部12aは、ステータ10の径方向から見て4つの辺部を有する略矩形の枠状に形成されている。 Specifically, the winding portion 12a is formed by winding a rectangular conductive wire having a constant thickness so that each turn has a substantially rectangular shape. is formed into a substantially rectangular frame shape. Therefore, when the winding part 12a is viewed from the stacking direction of the plurality of turn parts, the shape of the winding part 12a is a substantially rectangular frame shape. In other words, the winding portion 12a made of n turns of rectangular conducting wire from the first turn to the nth turn is formed into a substantially rectangular frame shape having four sides when viewed from the radial direction of the stator 10.
 巻回部12aは、ターン部ごとに平角導線の幅が異なっている。例えば、巻回部12aは、1ターン目からnターン目にわたって平角導線の幅が漸次大きく又は小さくなるように形成されている。本実施の形態では、巻回部12aにおける複数のターン部は、内径寸法が同一で、外形寸法が漸次拡大するように、平角導線が螺旋状に巻き回されている。この場合、図1に示すように、コイル12は、外形寸法が最も小さいターン部がティース11aの先端側で、外形寸法が最も大きいターン部がティース11aの根元側(ヨーク11b側)に位置するように配置される。なお、外形寸法が最も小さいターン部を巻き始めターン部とし、外形寸法が最も大きいターン部を巻き終わりターン部としてもよいし、外形寸法が最も小さいターン部を巻き終わりターン部とし、外形寸法が最も大きいターン部を巻き始めターン部としてもよい。また、巻回部12aにおける全てのターン部の平角導線の幅を同じにしてもよい。 In the winding portion 12a, the width of the rectangular conducting wire differs depending on the turn portion. For example, the winding portion 12a is formed such that the width of the rectangular conducting wire gradually increases or decreases from the first turn to the nth turn. In this embodiment, the rectangular conductive wire is spirally wound so that the plurality of turn parts in the winding part 12a have the same inner diameter and gradually increase the outer diameter. In this case, as shown in FIG. 1, in the coil 12, the turn portion with the smallest external dimension is located on the tip side of the teeth 11a, and the turn portion with the largest external dimension is located on the root side of the teeth 11a (on the yoke 11b side). It is arranged like this. In addition, the turn part with the smallest external dimension may be the start turn part, and the turn part with the largest external dimension may be the end turn part, or the turn part with the smallest external dimension may be the end turn part, and the turn part with the smallest external dimension may be the end turn part. The largest turn portion may be used as the starting turn portion. Furthermore, the widths of the rectangular conducting wires in all the turn parts in the winding part 12a may be made the same.
 巻回部12aを構成する平角導線としては、銅又はアルミニウム等の低抵抗の金属材料を主成分とする金属板を用いることができる。本実施の形態において、巻回部12aを構成する平角導線は、銅合金からなる金属板を用いた。 As the rectangular conducting wire constituting the winding portion 12a, a metal plate whose main component is a low-resistance metal material such as copper or aluminum can be used. In this embodiment, a metal plate made of a copper alloy is used as the rectangular conductive wire constituting the winding portion 12a.
 巻回部12aを構成する平角導線の表面には、絶縁膜が被膜されていない。つまり、巻回部12aを構成する平角導線の表面は、露出する露出面になっている。本実施の形態では、巻回部12aを構成する金属板の表面が露出している。 The surface of the rectangular conducting wire constituting the winding portion 12a is not coated with an insulating film. In other words, the surface of the rectangular conducting wire constituting the winding portion 12a is an exposed surface. In this embodiment, the surface of the metal plate constituting the winding portion 12a is exposed.
 このため、巻回部12aにおける隣り合う2つのターン部の平角導線同士を絶縁するために、巻回部12aには、絶縁フィルム12bが挿入されている。具体的には、巻回部12aにおける複数のターン部における隣り合う2つのターン部を第1ターン部(kターン部)及び第2ターン部(k+1ターン部)とすると、図4及び図5に示すように、絶縁フィルム12bは、第1ターン部と第2ターン部との間に挿入されている。絶縁フィルム12bは、隣り合う2つのターン部である第1ターン部及び第2ターン部の互いに向かい合う平角導線の主面のいずれか一方に接していればよい。本実施の形態において、絶縁フィルム12bは、第1ターン部と第2ターン部との互いに向かい合う平角導線の主面の各々に接している。つまり、絶縁フィルム12bは、隣り合う2つのターン部の一方である第1ターン部を構成する平角導線の主面に接しているとともに、隣り合う2つのターン部の他方である第2ターン部を構成する平角導線の主面に接している。なお、第1ターン部を構成する平角導線の幅と第2ターン部を構成する平角導線の幅とは異なっている。 Therefore, an insulating film 12b is inserted into the winding part 12a in order to insulate the rectangular conductive wires of two adjacent turn parts in the winding part 12a. Specifically, if two adjacent turns in the plurality of turns in the winding portion 12a are defined as a first turn (k turn) and a second turn (k+1 turn), the results are shown in FIGS. 4 and 5. As shown, the insulating film 12b is inserted between the first turn section and the second turn section. The insulating film 12b may be in contact with either one of the main surfaces of the mutually opposing flat conductive wire of the first turn portion and the second turn portion, which are two adjacent turn portions. In this embodiment, the insulating film 12b is in contact with each of the main surfaces of the flat conductive wire facing each other in the first turn part and the second turn part. In other words, the insulating film 12b is in contact with the main surface of the rectangular conducting wire constituting the first turn, which is one of the two adjacent turns, and also contacts the second turn, which is the other of the two adjacent turns. It is in contact with the main surface of the constituent rectangular conducting wire. Note that the width of the rectangular conducting wire constituting the first turn portion is different from the width of the rectangular conducting wire constituting the second turn portion.
 一方、巻回部12aを構成する平角導線の外側端面(外側側面)は、絶縁フィルム12bで覆われておらず、露出している。つまり、巻回部12aにおける各ターン部において、平角導線の外側端面は、外気に晒されている。 On the other hand, the outer end surface (outer side surface) of the rectangular conducting wire constituting the winding portion 12a is not covered with the insulating film 12b and is exposed. That is, in each turn portion of the winding portion 12a, the outer end surface of the rectangular conducting wire is exposed to the outside air.
 また、巻回部12aを構成する平角導線の内側端面(内側側面)は、平角導線の外側端面と同様に、絶縁フィルム12bで覆われていない。したがって、本実施の形態において、絶縁フィルム12bは、巻回部12aを構成する平角導線の主面及び端面のうち主面のみに接している。本実施の形態では、絶縁フィルム12bは、巻回部12aを構成する平角導線の主面の全面に接している。このように、巻回部12aを構成する平角導線の内側端面が絶縁フィルム12bで覆われていないので、コイル12におけるインシュレータ13と接する部分には、絶縁フィルム12bが存在していない。具体的には、インシュレータ13の表面全面に絶縁フィルム12bが接触していない。このため、巻回部12aを構成する平角導線の内側端面は、インシュレータ13に接している。 Furthermore, the inner end surface (inner side surface) of the rectangular conducting wire constituting the winding portion 12a is not covered with the insulating film 12b, similarly to the outer end surface of the rectangular conducting wire. Therefore, in this embodiment, the insulating film 12b is in contact with only the main surface of the main surface and end surface of the rectangular conducting wire that constitutes the winding portion 12a. In this embodiment, the insulating film 12b is in contact with the entire main surface of the rectangular conducting wire that constitutes the winding portion 12a. In this way, since the inner end surface of the rectangular conducting wire constituting the winding portion 12a is not covered with the insulating film 12b, the insulating film 12b is not present in the portion of the coil 12 that contacts the insulator 13. Specifically, the insulating film 12b is not in contact with the entire surface of the insulator 13. Therefore, the inner end surface of the rectangular conducting wire constituting the winding portion 12 a is in contact with the insulator 13 .
 本実施の形態において、絶縁フィルム12bは、巻回部12aの1ターンごとに設けられている。つまり、コイル12は、互いに分離された複数枚の絶縁フィルム12bを備えている。具体的には、コイル12は、平角導線からなるターン部と絶縁フィルム12bとが1つずつ交互に積層された構成になっている。 In this embodiment, the insulating film 12b is provided for each turn of the winding portion 12a. In other words, the coil 12 includes a plurality of insulating films 12b separated from each other. Specifically, the coil 12 has a structure in which one turn part made of a rectangular conductive wire and one insulating film 12b are laminated alternately.
 図6に示すように、各絶縁フィルム12bは、環状である。具体的には、各絶縁フィルム12bは、略矩形の環状である。この場合、複数の絶縁フィルム12bの各々は、巻回部12aの複数のターン部と同様に、内径寸法が同一になっている。一方、複数の絶縁フィルム12bは、巻回部12aの複数のターン部と同様に、外径寸法が漸次拡大している。したがって、複数の絶縁フィルム12bは、巻回部12aのターン部ごとに幅が異なっている。 As shown in FIG. 6, each insulating film 12b is annular. Specifically, each insulating film 12b has a substantially rectangular ring shape. In this case, each of the plurality of insulating films 12b has the same inner diameter, similar to the plurality of turn parts of the winding part 12a. On the other hand, the outer diameter of the plurality of insulating films 12b gradually increases, similar to the plurality of turn parts of the winding part 12a. Therefore, the plurality of insulating films 12b have different widths depending on the turn portions of the winding portion 12a.
 絶縁フィルム12bは、フィルム状又はシート状をなす厚さが薄い絶縁部材である。絶縁フィルム12bの厚さは、一定であり、例えば、20μm~50μmである。また、絶縁フィルム12bを構成する絶縁材料としては、ポリフェニレンサルファイド(PPS)、ポリエチレンナフタレート(PEN)、又は、ポリエチレンテレフタレート(PET)等の樹脂材料を用いることができる。 The insulating film 12b is a thin insulating member in the form of a film or sheet. The thickness of the insulating film 12b is constant, for example, 20 μm to 50 μm. Further, as the insulating material constituting the insulating film 12b, a resin material such as polyphenylene sulfide (PPS), polyethylene naphthalate (PEN), or polyethylene terephthalate (PET) can be used.
 図6に示すように、各絶縁フィルム12bは、切り欠き部12b1を有する。具体的には、切り欠き部12b1は、環状の絶縁フィルム12bの1ヵ所が切断された切断部である。このように、各絶縁フィルム12bは、連続する閉じた環状になっていない。図7に示すように、絶縁フィルム12bの切り欠き部12b1は、巻回部12aの複数のターン部の各々を構成する平角導線が通る部分になっている。 As shown in FIG. 6, each insulating film 12b has a cutout portion 12b1. Specifically, the notch portion 12b1 is a cut portion where the annular insulating film 12b is cut at one location. In this way, each insulating film 12b does not have a continuous closed annular shape. As shown in FIG. 7, the cutout portion 12b1 of the insulating film 12b is a portion through which a rectangular conducting wire forming each of the plurality of turn portions of the winding portion 12a passes.
 絶縁フィルム12bは、切り欠き部12b1において重なっているとよい。つまり、切り欠き部12b1における絶縁フィルム12bの一方の端部と、切り欠き部12b1における絶縁フィルム12bの他方の端部とは、ステータ10の径方向から見たときに、重なり合っているとよい。 It is preferable that the insulating films 12b overlap at the cutout portion 12b1. That is, one end of the insulating film 12b at the notch 12b1 and the other end of the insulating film 12b at the notch 12b1 preferably overlap when viewed from the radial direction of the stator 10.
 また、巻回部12aの複数のターン部において、複数の絶縁フィルム12bの切り欠き部12b1は、複数のターン部の積層方法から見たときに(つまり、ステータ10の径方向から見たときに)、隣り合う2つのターン部で異なる位置に存在しているとよい。 In addition, in the plurality of turns of the winding part 12a, the notches 12b1 of the plurality of insulating films 12b are formed when viewed from the lamination method of the plurality of turns (that is, when viewed from the radial direction of the stator 10). ), preferably present at different positions in two adjacent turn parts.
 図8に示すように、巻回部12aは、厚さが一定の平角導線12Mを各ターン部が矩形となるように螺旋状に巻き回すことで作製することができる。この場合、厚さ及び幅が一定の平角導線を所定の部位で圧延加工してターン部ごとに幅を変更しながら矩形の螺旋状に巻き回しつつ、各ターン部ごとに幅が異なる絶縁フィルム12bを順次挟んでいくことで、コイル12を作製することができる。あるいは、途中で幅が異なるように予め形成しておいた平角導線を所定の位置で曲げ加工して矩形の螺旋状に巻き回して複数のターン部を形成しつつ、各ターン部ごとに絶縁フィルム12bを挟んでいくことで、コイル12を作製してもよい。 As shown in FIG. 8, the winding portion 12a can be produced by spirally winding a rectangular conducting wire 12M having a constant thickness so that each turn portion is rectangular. In this case, a rectangular conductive wire having a constant thickness and width is rolled at a predetermined portion and wound into a rectangular spiral while changing the width for each turn, and an insulating film 12b having a different width for each turn. The coil 12 can be manufactured by sequentially sandwiching the two. Alternatively, a rectangular conducting wire that has been preformed with different widths along the way is bent at a predetermined position and wound into a rectangular spiral to form multiple turns, and each turn is covered with an insulating film. The coil 12 may be manufactured by sandwiching the coil 12b.
 このとき、巻回部12aの各ターン部の平角導線12Mと絶縁フィルム12bは、エッジワイズ曲げ後のターン部ごとに熱圧着又は超音波によって接合することができる。この場合、平角導線12Mと絶縁フィルム12bとは、ポット状に断続的に接合してもよいし、連続的に接合してもよい。このように、エッジワイズ曲げをした後に平角導線12Mと絶縁フィルム12bとを接合することで、絶縁フィルム12bにしわが生じたり位置ズレが生じたりすることを抑制できる。あるいは、絶縁フィルム12bは、一部分(例えば平角導線12Mを曲げるための曲げ治具が接触しない部分)をエッジワイズ曲げをする前に平角導線12Mに接合し、他の一部分(曲げ治具が接触する部分)をエッジワイズ曲げをした後に平角導線12Mに接合してもよい。これにより、絶縁フィルム12bにしわが生じたり位置ズレが生じたりすることを一層抑制できる。 At this time, the rectangular conducting wire 12M and the insulating film 12b of each turn part of the winding part 12a can be joined by thermocompression bonding or ultrasonic waves for each turn part after edgewise bending. In this case, the rectangular conducting wire 12M and the insulating film 12b may be joined intermittently in a pot shape, or may be joined continuously. In this way, by joining the rectangular conducting wire 12M and the insulating film 12b after edgewise bending, it is possible to suppress wrinkles or misalignment of the insulating film 12b. Alternatively, a part of the insulating film 12b (for example, a part that does not come in contact with a bending jig for bending the flat conductor 12M) is joined to the flat conductor 12M before edgewise bending, and another part (a part that the bending jig contacts) After edgewise bending the part), it may be joined to the rectangular conducting wire 12M. Thereby, it is possible to further suppress wrinkles and positional deviations in the insulating film 12b.
 なお、平角導線12Mと絶縁フィルム12bは、ターン部ごとに接合するのではなく、図9に示すように、全ターン部を形成した後に、エッジワイズ曲げされたコイル状の巻回部12aを伸ばした状態で絶縁フィルム12bをターン部間に挿入して、巻回部12aを縮ませて絶縁フィルム12bを平角導線12Mに固定してもよい。図9では、巻回部12aを伸ばしてターン部間の3箇所のみに絶縁フィルム12bを挿入した状態を示している。このように全ターン部を形成した後に絶縁フィルム12bを挿入する場合、絶縁フィルム12bとして接着層を有する絶縁テープを用いて、絶縁テープを平角導線12Mに貼り合わせることで接着層により絶縁フィルム12bを平角導線12Mに固定してもよい。あるいは、ワニスによって絶縁フィルム12bを平角導線12Mに固定してもよい。なお、絶縁テープ又はワニスを用いた絶縁フィルム12bの固定方法は、平角導線12Mと絶縁フィルム12bとをターン部ごとに接合する場合に用いてもよい。 Note that the rectangular conducting wire 12M and the insulating film 12b are not joined for each turn, but after forming all the turns, the edgewise bent coil-shaped winding portion 12a is stretched, as shown in FIG. In this state, the insulating film 12b may be inserted between the turn parts, the winding part 12a may be contracted, and the insulating film 12b may be fixed to the rectangular conducting wire 12M. FIG. 9 shows a state in which the winding portion 12a is stretched and the insulating film 12b is inserted only at three locations between the turn portions. When inserting the insulating film 12b after forming all the turn parts in this way, an insulating tape having an adhesive layer is used as the insulating film 12b, and the insulating tape is bonded to the rectangular conductor 12M, so that the insulating film 12b is bonded by the adhesive layer. It may be fixed to the rectangular conducting wire 12M. Alternatively, the insulating film 12b may be fixed to the rectangular conducting wire 12M with varnish. Note that the method of fixing the insulating film 12b using an insulating tape or varnish may be used when joining the rectangular conducting wire 12M and the insulating film 12b at each turn portion.
 このように、本実施の形態におけるコイル12では、巻回部12aの各ターン部ごとに絶縁フィルム12bを挿入することで、巻回部12aにおける各ターン部間の平角導線が絶縁分離されている。したがって、コイル12に供給された電流は、1ターン目の巻き始めターン部からnターン目の巻き終わりターン部まで又は巻き終わりターン部から巻き始めターン部まで、螺旋状に形成された平角導線に沿って流れることになる。 As described above, in the coil 12 according to the present embodiment, the rectangular conducting wire between each turn in the winding part 12a is insulated and separated by inserting the insulating film 12b into each turn of the winding part 12a. . Therefore, the current supplied to the coil 12 is applied to the rectangular conductive wire formed in a spiral shape from the first turn of the first turn to the end of the nth turn, or from the last turn to the first turn of the winding. It will flow along.
 以上、本実施の形態に係るコイル12は、平角導線をエッジワイズ曲げにより巻き回すことにより複数のターン部が積層された巻回部12aと、複数のターン部における隣り合う2つのターン部である第1ターン部(k番目のターン部)と第2ターン部((k+1)番目のターン部)との間に挿入された環状の絶縁フィルム12bとを備えている。 As described above, the coil 12 according to the present embodiment has a winding part 12a in which a plurality of turn parts are stacked by winding a rectangular conducting wire by edgewise bending, and two adjacent turn parts in the plurality of turn parts. It includes an annular insulating film 12b inserted between a first turn part (kth turn part) and a second turn part ((k+1)th turn part).
 この構成により、平角導線に絶縁膜を被膜することなく、巻回部12aにおいて隣り合う2つのターン部の平角導線同士を絶縁分離することができる。具体的には、樹脂製の安価な絶縁フィルム12bを用いて、隣り合う2つのターン部の平角導線同士を絶縁分離している。これにより、平角導線に絶縁膜を被膜させる工程が不要になるので、絶縁膜が被膜された平角導線を用いてコイルを作製する場合と比べて、低コストでコイル12を作製することができる。また、従来のように絶縁膜が被膜された平角導線をエッジワイズ曲げすると、折り曲げ部分で絶縁膜が破断してターン部間が短絡することがあるが、本実施の形態では、平角導線に絶縁膜を被膜しないので、絶縁膜が破断してターン部間が短絡することがない。これにより、所望の電気性能を有するコイル12を作製することができるので、高品質のコイル12を得ることができる。このように、本実施の形態によれば、平角導線をエッジワイズ曲げにより巻き回すことにより形成されたコイル12を低コストかつ高品質で作製することができる。 With this configuration, it is possible to insulate and separate the flat conductive wires in two adjacent turn portions in the winding portion 12a without coating the flat conductive wires with an insulating film. Specifically, an inexpensive insulating film 12b made of resin is used to insulate and separate the rectangular conductive wires of two adjacent turn portions. This eliminates the need for the step of coating the rectangular conductive wire with an insulating film, so the coil 12 can be manufactured at a lower cost than when a coil is manufactured using a rectangular conductive wire coated with an insulating film. Furthermore, when a rectangular conducting wire coated with an insulating film is bent edgewise as in the conventional method, the insulating film may break at the bending part, resulting in a short circuit between the turn parts, but in this embodiment, the insulating film is Since the film is not coated, the insulating film will not break and short circuit between the turn parts will not occur. Thereby, the coil 12 having desired electrical performance can be manufactured, and thus the coil 12 of high quality can be obtained. As described above, according to the present embodiment, the coil 12 formed by winding the rectangular conducting wire by edgewise bending can be manufactured at low cost and with high quality.
 また、本実施の形態に係るコイル12において、絶縁フィルム12bは、隣り合う2つのターン部の一方である第1ターン部を構成する平角導線の主面と、隣り合う2つのターン部の他方である第2ターン部を構成する平角導線の主面との各々に接している。つまり、第1ターン部と第2ターン部との間に1枚の絶縁フィルム12bが挿入されている。 Further, in the coil 12 according to the present embodiment, the insulating film 12b is formed on the main surface of the rectangular conducting wire constituting the first turn portion, which is one of the two adjacent turn portions, and on the other of the two adjacent turn portions. It is in contact with each of the main surfaces of the rectangular conducting wire constituting a certain second turn portion. That is, one insulating film 12b is inserted between the first turn part and the second turn part.
 この構成により、低コストでコイル12を作製することができる。 With this configuration, the coil 12 can be manufactured at low cost.
 また、本実施の形態に係るコイル12において、隣り合う2つのターン部の一方である第1ターン部を構成する平角導線の幅と、隣り合う2つのターン部の他方である第2ターン部を構成する平角導線の幅とが異なっている。 Further, in the coil 12 according to the present embodiment, the width of the rectangular conducting wire constituting the first turn portion, which is one of the two adjacent turn portions, and the second turn portion, which is the other of the two adjacent turn portions. The widths of the rectangular conducting wires that constitute the wires are different.
 絶縁膜が被膜された平角導線をエッジワイズ曲げする場合にターン部ごとに幅を異ならせると、絶縁膜が破断しやすくなり、ターン部間の短絡が発生しやすくなる。これに対して、本実施の形態では、ターン部ごとに幅を異ならせて巻回部12aを形成しても、平角導線に絶縁膜が被膜されていないので、絶縁膜が破断してターン部間が短絡することがない。 When edgewise bending a rectangular conducting wire coated with an insulating film, if the width is made different for each turn, the insulating film will be more likely to break, and a short circuit between the turns will be more likely to occur. On the other hand, in this embodiment, even if the winding portion 12a is formed with a different width for each turn portion, since the rectangular conductive wire is not coated with an insulating film, the insulating film may be broken and the turn portions may be broken. There will be no short circuit between the two.
 また、本実施の形態に係るコイル12において、絶縁フィルム12bは、巻回部12aの1ターンごとに設けられている。 Furthermore, in the coil 12 according to the present embodiment, the insulating film 12b is provided for each turn of the winding portion 12a.
 この構成により、巻回部12aにおいて隣り合う2つのターン部の平角導線の間に絶縁フィルム12bを容易に挿入することができる。 With this configuration, the insulating film 12b can be easily inserted between the rectangular conductive wires of two adjacent turn parts in the winding part 12a.
 また、本実施の形態に係るコイル12において、絶縁フィルム12bは、巻回部12aにおける複数のターン部の各々を構成する平角導線が通る切り欠き部12b1を有する。 Furthermore, in the coil 12 according to the present embodiment, the insulating film 12b has a cutout portion 12b1 through which a rectangular conducting wire forming each of the plurality of turn portions in the winding portion 12a passes.
 この構成により、巻回部12aを構成する平角導線が螺旋状に巻き回されていても、隣り合う2つのターン部の間に絶縁フィルム12bを容易に挿入することができる。 With this configuration, even if the rectangular conducting wire constituting the winding portion 12a is wound in a spiral shape, the insulating film 12b can be easily inserted between two adjacent turn portions.
 また、本実施の形態に係るコイル12において、絶縁フィルム12bは、切り欠き部12b1において重なっているとよい。 Furthermore, in the coil 12 according to the present embodiment, the insulating films 12b preferably overlap at the cutout portions 12b1.
 この構成により、絶縁フィルム12bに切り欠き部12b1を設けたことで生じる隙間を小さくすることができる。 With this configuration, it is possible to reduce the gap created by providing the cutout portion 12b1 in the insulating film 12b.
 また、本実施の形態に係るコイル12では、複数の絶縁フィルム12の切り欠き部12b1は、複数のターン部の積層方法から見たときに、隣り合う2つのターン部で異なる位置に存在しているとよい。 Furthermore, in the coil 12 according to the present embodiment, the cutout portions 12b1 of the plurality of insulating films 12 are located at different positions in two adjacent turn portions when viewed from the lamination method of the plurality of turn portions. Good to have.
 この構成により、コイル12の絶縁性を向上させることができる。また、上記のように、切り欠き部12b1において絶縁フィルム12bが重なるように構成されている場合に、このように隣り合う2つのターン部で切り欠き部12b1が異なる位置に存在することで、絶縁フィルム12bの重なり部分が存在することでコイル12全体が大きくなってしまうことを効果的に抑制することができる。 With this configuration, the insulation of the coil 12 can be improved. Further, as described above, when the insulating films 12b are configured to overlap at the cutout portions 12b1, the presence of the cutout portions 12b1 at different positions in two adjacent turn portions improves the insulation. The presence of the overlapping portion of the film 12b can effectively prevent the entire coil 12 from increasing in size.
 また、本実施の形態に係るコイル12において、複数の絶縁フィルム12bの各々の内径寸法は、同一である。 Furthermore, in the coil 12 according to the present embodiment, the inner diameter dimensions of each of the plurality of insulating films 12b are the same.
 この構成により、ティース11aの外形に沿った内形を有するコイル12を容易に作製することができる。 With this configuration, the coil 12 having an inner shape that follows the outer shape of the teeth 11a can be easily manufactured.
 また、本実施の形態に係るコイル12において、複数の絶縁フィルム12bは、外径寸法が漸次拡大している。 Furthermore, in the coil 12 according to the present embodiment, the outer diameter of the plurality of insulating films 12b gradually increases.
 この構成により、ターン部ごとに平角導線の幅が太くなる巻回部12aを有するコイル12を容易に作製することができる。 With this configuration, it is possible to easily manufacture the coil 12 having the winding portion 12a in which the width of the rectangular conducting wire becomes thicker for each turn portion.
 また、本実施の形態に係るコイル12は、ステータ10の巻線コイルとして用いられる。具体的には、ステータ10は、複数のティース11aを有するステータコア11と、各々が複数のティース11aの各々に巻き回されたコイル12とを備えている。 Further, the coil 12 according to this embodiment is used as a winding coil of the stator 10. Specifically, the stator 10 includes a stator core 11 having a plurality of teeth 11a, and a coil 12 each wound around each of the plurality of teeth 11a.
 本実施の形態におけるコイル12を用いることで、ティース11aにコイル12を配置する際に巻線工程が不要になる。具体的には、インシュレータ13を介してティース11aにコイル12が装着されたコイルブロック100をヨーク11bに取り付けることで、コイル12を備えるステータ10を作製することができる。このように、巻線工程が不要になるので、コイル12の位置ずれを抑制することができる。 By using the coil 12 in this embodiment, a winding process is not necessary when placing the coil 12 on the teeth 11a. Specifically, the stator 10 including the coil 12 can be manufactured by attaching the coil block 100, in which the coil 12 is attached to the teeth 11a via the insulator 13, to the yoke 11b. In this way, since the winding step is not necessary, it is possible to suppress the positional shift of the coil 12.
 (変形例)
 以上、本開示に係るコイル12等について、実施の形態に基づいて説明したが、本開示は、上記実施の形態に限定されるものではない。
(Modified example)
Although the coil 12 and the like according to the present disclosure have been described above based on the embodiments, the present disclosure is not limited to the above embodiments.
 例えば、上記実施の形態では、1枚の絶縁フィルム12bには切り欠き部12b1が1つのみ形成されていたが、これに限らない。具体的には、図10に示すように、絶縁フィルム12bAに2つの切り欠き部12b1を形成し、絶縁フィルム12bAを各々が略L字状の2つのフィルム片に分割してもよい。この場合、図10に示される絶縁フィルム12bAを、巻回部12aにおける隣り合う2つのターン部の間に挿入することで、図11に示されるコイル12Aを作製することができる。このように、2つに分割された絶縁フィルム12bAを用いることで、巻回部12aを構成する平角導線が螺旋状に巻き回されていても、隣り合う2つのターン部の間に絶縁フィルム12bAを容易に挿入することができる。 For example, in the above embodiment, only one notch 12b1 is formed in one insulating film 12b, but the present invention is not limited to this. Specifically, as shown in FIG. 10, two notches 12b1 may be formed in the insulating film 12bA, and the insulating film 12bA may be divided into two film pieces each having a substantially L-shape. In this case, the coil 12A shown in FIG. 11 can be manufactured by inserting the insulating film 12bA shown in FIG. 10 between two adjacent turn parts in the winding part 12a. In this way, by using the insulating film 12bA divided into two parts, even if the rectangular conductive wire constituting the winding part 12a is spirally wound, the insulating film 12bA can be separated between two adjacent turn parts. can be easily inserted.
 また、上記実施の形態において、コイル12における複数の絶縁フィルム12bは、ターンごとに幅が異なっていたが、これに限らない。例えば、図12に示されるコイルブロック100Bのように、コイル12Bにおける複数の絶縁フィルム12bBは、互いに同じ幅であってもよい。この場合、絶縁フィルム12bBは、隣り合う2つのターン部のうちの一方である第1ターン部を構成する平角導線の主面及び隣り合う2つのターン部のうちの他方である第2ターン部を構成する平角導線の主面の各々の一部分と接している。そして、第1ターン部を構成する平角導線の主面と第2ターン部を構成する平角導線の主面との隙間のうち絶縁フィルム12bBが存在しない箇所が存在しており、この箇所には、空気層が介在している。つまり、絶縁フィルム12bBが存在しない箇所では、隣り合う2つのターン部の平角導線同士は、空気絶縁されている。このように、複数の絶縁フィルム12bBの幅を同じにすることで、さらに低コストでコイル12Bを作製することができる。 Furthermore, in the above embodiment, the plurality of insulating films 12b in the coil 12 have different widths for each turn, but the width is not limited to this. For example, like the coil block 100B shown in FIG. 12, the plurality of insulating films 12bB in the coil 12B may have the same width. In this case, the insulating film 12bB covers the main surface of the rectangular conducting wire constituting the first turn portion, which is one of the two adjacent turn portions, and the second turn portion, which is the other of the two adjacent turn portions. It is in contact with a portion of each of the main surfaces of the rectangular conducting wires. There is a portion where the insulating film 12bB is not present in the gap between the main surface of the rectangular conducting wire constituting the first turn portion and the main surface of the rectangular conducting wire constituting the second turn portion, and in this portion, There is an intervening air layer. In other words, in locations where the insulating film 12bB is not present, the rectangular conductive wires of two adjacent turn portions are air-insulated from each other. In this way, by making the widths of the plurality of insulating films 12bB the same, the coil 12B can be manufactured at even lower cost.
 また、上記実施の形態において、絶縁フィルム12bは、巻回部12aのターン部を構成する平角導線の角部からはみ出していなかったが、これに限らない。具体的には、図13に示されるコイル12Cのように、絶縁フィルム12bCは、少なくとも第1ターン部を構成する平角導線及び第2ターン部を構成する平角導線の各々の角部からはみ出すように形成されていてもよい。巻回部12aの角部は電流が集中して絶縁破壊が生じやすので、図13に示すように、絶縁フィルム12bCの外形を巻回部12aの角部よりも大きくすることで、巻回部12aの角部における平角導線の外側端面を露出させたとしても、絶縁破壊が生じることを効果的に抑制することができる。つまり、巻回部12aの角部における平角導線の外側端面の絶縁対策を不要にすることができる。 Furthermore, in the above embodiment, the insulating film 12b does not protrude from the corner of the rectangular conducting wire that constitutes the turn portion of the winding portion 12a, but the present invention is not limited to this. Specifically, as in the coil 12C shown in FIG. 13, the insulating film 12bC protrudes from each corner of at least the rectangular conducting wire constituting the first turn portion and the rectangular conducting wire constituting the second turn portion. may be formed. Since the corners of the winding part 12a are prone to electric current concentration and dielectric breakdown, as shown in FIG. Even if the outer end face of the rectangular conducting wire at the corner of 12a is exposed, it is possible to effectively prevent dielectric breakdown from occurring. In other words, it is possible to eliminate the need for insulation measures for the outer end surfaces of the flat conductive wires at the corners of the winding portion 12a.
 また、上記実施の形態において、巻回部12aを構成する平角導線の内側端面は、絶縁フィルム12bで覆われていなかったが、これに限らない。例えば、図14に示すように、絶縁フィルム12bDの内側部分を立設するように折り曲げることで、折り曲げ部12b2を有する絶縁フィルム12bDを用いてもよい。この折り曲げ部12b2は、巻回部12aにおける隣り合う2つのターン部である第1ターン部及び第2ターン部の一方を構成する平角導線の内側端面に対向するように折り曲げられている。このように構成された絶縁フィルム12bDを用いることで、巻回部12aを構成する平角導線の内側のエッジ部を保護することができる。 Furthermore, in the above embodiment, the inner end surface of the rectangular conducting wire constituting the winding portion 12a is not covered with the insulating film 12b, but the present invention is not limited to this. For example, as shown in FIG. 14, an insulating film 12bD having a bent portion 12b2 may be used by bending the inner part of the insulating film 12bD so as to stand up. This bent portion 12b2 is bent so as to face the inner end surface of the rectangular conductive wire forming one of the first turn portion and the second turn portion, which are two adjacent turn portions in the winding portion 12a. By using the insulating film 12bD configured in this manner, it is possible to protect the inner edge portion of the rectangular conductive wire that constitutes the winding portion 12a.
 また、上記実施の形態において、コイル12における巻回部12aのターン部ごとに挿入された複数の絶縁フィルム12bは繋がっていなかったが、これに限らない。例えば、コイル12における巻回部12aのターン部ごとに挿入された絶縁フィルム12bは、一部で繋がっていてもよい。 Further, in the above embodiment, the plurality of insulating films 12b inserted into each turn of the winding portion 12a of the coil 12 are not connected, but the present invention is not limited to this. For example, the insulating film 12b inserted into each turn of the winding portion 12a of the coil 12 may be connected at a portion.
 また、上記実施の形態において、巻回部12aは、平角導線をエッジワイズ曲げにより巻き回すことにより複数のターン部が積層されたものであったが、これに限らない。例えば、巻回部12aは、複数の平角導線を接続することにより複数のターン部が積層されたものであってもよい。 Furthermore, in the above embodiment, the winding portion 12a is formed by laminating a plurality of turn portions by winding a rectangular conducting wire by edgewise bending, but the present invention is not limited to this. For example, the winding portion 12a may be formed by laminating a plurality of turn portions by connecting a plurality of rectangular conducting wires.
 また、上記実施の形態において、ステータ10のスロット数は18であったが、これに限らない。同様に、上記実施の形態において、ロータ20の磁極数は10(つまり、永久磁石22の数が10個)であったが、これに限らない。ステータ10のスロット数及びロータ20の磁極数は、任意の数を適用できる。 Further, in the above embodiment, the number of slots in the stator 10 is 18, but the number is not limited to this. Similarly, in the above embodiment, the number of magnetic poles of the rotor 20 is 10 (that is, the number of permanent magnets 22 is 10), but the present invention is not limited to this. Any number of slots in the stator 10 and any number of magnetic poles in the rotor 20 can be used.
 また、上記実施の形態では、ロータ20は、IPMロータであったが、これに限らない。例えば、ロータ20として永久磁石型のロータを用いる場合は、複数の永久磁石がロータコアの外表面に設けられた表面磁石型ロータ(SPMロータ)を用いてもよい。 Further, in the above embodiment, the rotor 20 is an IPM rotor, but the rotor 20 is not limited to this. For example, when a permanent magnet type rotor is used as the rotor 20, a surface magnet type rotor (SPM rotor) in which a plurality of permanent magnets are provided on the outer surface of the rotor core may be used.
 また、上記実施の形態では、回転電機として電動機1を例示したが、これに限らない。例えば、コイル12を用いた回転電機は、発電機であってもよい。また、コイル12は、ステータ10が有する巻線コイルとして用いたが、これに限るものではなく、ステータ以外の製品が有する種々のコイルとして用いてもよい。 Further, in the above embodiment, the electric motor 1 is illustrated as an example of the rotating electric machine, but the present invention is not limited to this. For example, the rotating electric machine using the coil 12 may be a generator. Further, although the coil 12 is used as a wire-wound coil included in the stator 10, the coil 12 is not limited to this, and may be used as various coils included in products other than the stator.
 その他、上記各実施の形態に対して当業者が思い付く各種変形を施して得られる形態や、本開示の趣旨を逸脱しない範囲で上記各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本開示に含まれる。また、本願出願時の請求の範囲に記載された複数の請求項の各々における1つ又は複数の構成要素を任意に組み合わせたものも本開示に含まれる。また、本願出願時の請求の範囲に記載された引用形式請求項を、任意の複数の請求項を引用するようにマルチクレーム又はマルチマルチクレームとしたときに(例えば各請求項について上位の請求項を全て引用するようにマルチクレーム又はマルチマルチクレームとしたときに)、そのマルチクレーム又はマルチマルチクレームに含まれる全ての請求項の組み合わせにより得られる全ての形態も本開示に含まれる。 Other embodiments may be obtained by making various modifications to the above embodiments by those skilled in the art, or by arbitrarily combining the components and functions of the above embodiments without departing from the spirit of the present disclosure. The present disclosure also includes forms in which: Further, the present disclosure also includes arbitrary combinations of one or more constituent elements in each of the plurality of claims recited in the claims as filed. In addition, when the dependent form claims stated in the scope of claims at the time of filing of the present application are made into multiple claims or multiple multi-claims so as to cite any plurality of claims (for example, the superordinate claim for each claim) When all claims are referred to as a multiple claim or multiple multiple claims), all forms obtained by combining all claims included in the multiple claim or multiple multiple claims are also included in the present disclosure.
 本開示の技術は、電動機等の回転電機をはじめとして、コイルを用いた種々の製品に広く利用することができる。 The technology of the present disclosure can be widely used in various products using coils, including rotating electric machines such as electric motors.
 1 電動機
 10 ステータ
 11 ステータコア
 11a ティース
 11b ヨーク
 11c スロット
 12、12A、12B、12C コイル
 12a 巻回部
 12b、12bA、12bB、12bC、12bD 絶縁フィルム
 12b1 切り欠き部
 12b2 折り曲げ部
 12M 平角導線
 13 インシュレータ
 13a 第1枠体
 13b 第2枠体
 20 ロータ
 21 ロータコア
 22 永久磁石
 23 回転軸
 100、100B コイルブロック
1 Electric motor 10 Stator 11 Stator core 11a Teeth 11b Yoke 11c Slot 12, 12A, 12B, 12C Coil 12a Winding portion 12b, 12bA, 12bB, 12bC, 12bD Insulating film 12b1 Notch portion 12b2 Bend portion 12M Flat conductor wire 13 Insulator 13a 1st Frame 13b Second frame 20 Rotor 21 Rotor core 22 Permanent magnet 23 Rotating shaft 100, 100B Coil block

Claims (18)

  1.  回転電機に用いられるコイルであって、
     平角導線をエッジワイズ曲げにより巻き回すことにより又は複数の平角導線を接続することにより複数のターン部が積層された巻回部と、
     前記複数のターン部における隣り合う2つのターン部である第1ターン部と第2ターン部との間に挿入された環状の絶縁フィルムと、を備える、
     コイル。
    A coil used in a rotating electric machine,
    A winding part in which a plurality of turn parts are stacked by winding a flat conductor by edgewise bending or by connecting a plurality of flat conductors;
    an annular insulating film inserted between a first turn part and a second turn part, which are two adjacent turn parts in the plurality of turn parts;
    coil.
  2.  前記絶縁フィルムは、前記第1ターン部を構成する平角導線の主面と前記第2ターン部を構成する平角導線の主面との各々に接している、
     請求項1に記載のコイル。
    The insulating film is in contact with each of the main surface of the rectangular conductive wire forming the first turn portion and the main surface of the rectangular conducting wire forming the second turn portion,
    The coil according to claim 1.
  3.  前記絶縁フィルムは、前記第1ターン部を構成する平角導線の主面及び前記第2ターン部を構成する平角導線の主面の各々の一部分と接しており、
     前記第1ターン部を構成する平角導線の主面と前記第2ターン部を構成する平角導線の主面との隙間のうち前記絶縁フィルムが存在しない箇所は、空気層が介在している、
     請求項2に記載のコイル。
    The insulating film is in contact with a portion of each of the main surface of the rectangular conducting wire forming the first turn portion and the main surface of the rectangular conducting wire forming the second turn portion,
    An air layer is present in the gap between the main surface of the rectangular conducting wire constituting the first turn portion and the main surface of the rectangular conducting wire constituting the second turn portion, where the insulating film is not present.
    The coil according to claim 2.
  4.  前記第1ターン部を構成する平角導線の幅と前記第2ターン部を構成する平角導線の幅とが異なる、
     請求項1~3のいずれか1項に記載のコイル。
    The width of the rectangular conducting wire constituting the first turn portion is different from the width of the rectangular conducting wire constituting the second turn portion,
    The coil according to any one of claims 1 to 3.
  5.  前記絶縁フィルムは、前記巻回部の1ターンごとに設けられている、
     請求項1~3のいずれか1項に記載のコイル。
    The insulating film is provided for each turn of the winding portion,
    The coil according to any one of claims 1 to 3.
  6.  前記絶縁フィルムは、前記複数のターン部の各々を構成する平角導線が通る切り欠き部を有する、
     請求項5に記載のコイル。
    The insulating film has a cutout portion through which a rectangular conductive wire forming each of the plurality of turn portions passes.
    The coil according to claim 5.
  7.  前記絶縁フィルムは、前記切り欠き部において重なっている、
     請求項6に記載のコイル。
    the insulating film overlaps in the notch,
    The coil according to claim 6.
  8.  前記切り欠き部は、前記複数のターン部の積層方法から見たときに、前記隣り合う2つのターン部で異なる位置に存在する、
     請求項6に記載のコイル。
    The cutout portions are located at different positions in the two adjacent turn portions when viewed from the stacking method of the plurality of turn portions.
    The coil according to claim 6.
  9.  複数の前記絶縁フィルムの各々の内径寸法は、同一である、
     請求項5に記載のコイル。
    Each of the plurality of insulating films has the same inner diameter,
    The coil according to claim 5.
  10.  複数の前記絶縁フィルムは、外径寸法が漸次拡大している、
     請求項9に記載のコイル。
    The plurality of insulating films have outer diameters gradually increasing.
    The coil according to claim 9.
  11.  前記絶縁フィルムは、少なくとも前記第1ターン部を構成する平角導線及び前記第2ターン部を構成する平角導線の各々の角部からはみ出すように形成されている、
     請求項1~3のいずれか1項に記載のコイル。
    The insulating film is formed so as to protrude from each corner of at least the rectangular conducting wire constituting the first turn portion and the rectangular conducting wire constituting the second turn portion.
    The coil according to any one of claims 1 to 3.
  12.  前記絶縁フィルムは、前記第1ターン部及び前記第2ターン部の一方を構成する平角導線の内側端面に対向するように折り曲げられた折り曲げ部を有する、
     請求項1~3のいずれか1項に記載のコイル。
    The insulating film has a bent portion that is bent to face an inner end surface of a rectangular conductive wire constituting one of the first turn portion and the second turn portion.
    The coil according to any one of claims 1 to 3.
  13.  前記巻回部を構成する平角導線の外側端面は、露出している、
     請求項1~3のいずれか1項に記載のコイル。
    The outer end surface of the rectangular conducting wire constituting the winding portion is exposed;
    The coil according to any one of claims 1 to 3.
  14.  前記絶縁フィルムは、接着層を有する絶縁テープであり、
     前記絶縁フィルムは、前記接着層によって前記平角導線に固定されている、
     請求項1~3のいずれか1項に記載のコイル。
    The insulating film is an insulating tape having an adhesive layer,
    the insulating film is fixed to the rectangular conductive wire by the adhesive layer;
    The coil according to any one of claims 1 to 3.
  15.  前記絶縁フィルムは、ワニスによって前記平角導線に固定されている
     請求項1~3のいずれか1項に記載のコイル。
    The coil according to any one of claims 1 to 3, wherein the insulating film is fixed to the rectangular conductive wire with varnish.
  16.  複数のティースを有するステータコアと、
     前記複数のティースの各々に巻き回された巻線コイルと、を備え、
     前記巻線コイルは、請求項1~3のいずれか1項に記載のコイルである、
     ステータ。
    a stator core having multiple teeth;
    a winding coil wound around each of the plurality of teeth,
    The wire-wound coil is the coil according to any one of claims 1 to 3,
    stator.
  17.  前記巻線コイルと前記ティースとの間に介在するインシュレータを備え、
     前記巻線コイルにおける前記インシュレータと接する部分には、前記絶縁フィルムが存在していない、
     請求項16に記載のステータ。
    an insulator interposed between the winding coil and the teeth,
    The insulating film is not present in a portion of the wire-wound coil that is in contact with the insulator.
    A stator according to claim 16.
  18.  請求項16に記載のステータと、
     前記ステータの磁力により回転するロータと、を備える、
     回転電機。
    A stator according to claim 16;
    a rotor that rotates due to the magnetic force of the stator;
    Rotating electric machine.
PCT/JP2023/026856 2022-08-12 2023-07-21 Coil, stator and rotating electric machine WO2024034364A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-128620 2022-08-12
JP2022128620 2022-08-12

Publications (1)

Publication Number Publication Date
WO2024034364A1 true WO2024034364A1 (en) 2024-02-15

Family

ID=89851460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/026856 WO2024034364A1 (en) 2022-08-12 2023-07-21 Coil, stator and rotating electric machine

Country Status (1)

Country Link
WO (1) WO2024034364A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001292548A (en) * 2000-01-31 2001-10-19 Hitachi Ltd Stator of rotating electric machine
WO2018190124A1 (en) * 2017-04-13 2018-10-18 パナソニックIpマネジメント株式会社 Coil and motor using same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001292548A (en) * 2000-01-31 2001-10-19 Hitachi Ltd Stator of rotating electric machine
WO2018190124A1 (en) * 2017-04-13 2018-10-18 パナソニックIpマネジメント株式会社 Coil and motor using same

Similar Documents

Publication Publication Date Title
JP5519808B2 (en) Stator and rotating electric machine including the stator
JP6771537B2 (en) Axial gap type rotary electric machine
US7928619B2 (en) Gap winding motor
JP5734794B2 (en) Stator and rotating electric machine including the stator
KR20150061452A (en) Concentrated Type motor
WO2014102950A1 (en) Rotating electrical machine
JP2009268161A (en) Stator for rotary electric machine, and rotary electric machine
JP4178558B2 (en) Rotating electric machine
WO2020255614A1 (en) Coil, and stator, rotor, and motor equipped with same, and manufacturing method for coil
JP6288002B2 (en) Manufacturing method of rotating electrical machine stator and cassette coil for rotating electrical machine
JP2018133850A (en) Rotary electric machine
JPWO2020255614A5 (en)
JP2009055750A (en) Claw pole type pm motor and its manufacturing method
JP2003088007A (en) Core sheet, stator, and rotating field type motor using the same
JP2003153472A (en) Electric rotating machine and electromagnetic apparatus
JP2003143822A (en) Induction motor
JP2006187091A (en) Core, armature, motor, compressor and their manufacturing process
WO2023047760A1 (en) Armature and motor
WO2024034364A1 (en) Coil, stator and rotating electric machine
WO2021256178A1 (en) Molding coil, stator, and rotary electric machine
JP2013094030A (en) Armature coil and synchronous rotary machine
JP2005253280A (en) Outer rotor type brushless dc motor and ac servo motor having annular stator coil
JPWO2021256178A5 (en)
EP3084929B1 (en) Stator for an electric machine
WO2023228518A1 (en) Axial gap motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23852340

Country of ref document: EP

Kind code of ref document: A1